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ABSTRACT

NUMERICAL SOLUTION OF HIGHLY OSCILLATORY

DIFFERENTIAL EQUATIONS BY MAGNUS SERIES METHOD

In this study, the differential equation known as Lie-type equation where the solutions

of the equation stay in the Lie-Group is considered. The solution of this equation can

be represented as an infinite series whose terms consist of integrals and commutators,

based on the Magnus Series. This expansion is used as a numerical geometrical integrator

called Magnus Series Method, to solve this type of equations. This method which is

also one of the Lie-Group methods, has slower error accumulation and more efficient

computation results during the long time interval than classical numerical methods such

as Runge-Kutta, since it preserves the qualitative features of the exact solutions. Several

examples are considered including linear and nonlinear oscillatory problems to illustrate

the efficiency of the method.

iv



ÖZET

MAGNUS SERİ METODU KULLANARAK YÜKSEK SALINIMLI

DİFERANSİYEL DENKLEMLERİN SAYISAL OLARAK ÇÖZÜMÜ

Bu çalışmada Lie-tipi denklemler olarak bilinen, çözümleri Lie-Grup’ta bulunan difer-

ansiyel denklemler irdelenmiştir. Bu denklemin çözümü Magnus Serisine dayanan ve

terimleri integraller ve komütatörler olan sonsuz bir seri olarak ifade edilebilir. Bir çeşit

sayısal geometrik integratör olan Magnus Seri Metodu Lie-tipi denklemleri sayısal olarak

çözer. Aynı zamanda Lie-grup metodlardan biri olan bu metod az hata ve Runge-Kutta

gibi klasik nümerik metodlardan daha etkili hesaplama sonuçlarına sahiptir çünkü tam

çözümlerin niteliksel özelliklerini korur. Lineer ve lineer olmayan salınım problemlerini

içeren birkaç örneğe metod, etkiyi vurgulamak için uygulanmıştır.
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CHAPTER 1

INTRODUCTION

Most of the physical systems, from very large (galaxies) to the very small

(molecules), to the very complicated (the weather), deal with motion. It is possible to

write down the equations of the motion. These equations are in the form of ordinary or

partial differential equations, but it might not be possible to solve all of them exactly.

Some approaches which are improved by the numerical analysts are used to solve them

numerically (’integrated’) on computers (WEB-6, 2005). Up to today’s intelligence,

quantitative character of the problems are used but today qualitative feature is discovered:

Geometric Integration.

Geometric integration is the numerical integration of a differential equation while

preserving one or more ”geometric properties” of the exact flow. Many of these features

are important in physical applications such as preservation of energy, momentum, angular

momentum, phase space volume, symmetries, time-reversal symmetry, symplectic struc-

ture, etc. In recent decades, these qualitative features have been found to be important

in every branch of numerical analysis because of i) appropriateness for methods which

are faster, simpler and more stable, ii) appropriateness for methods which can give qual-

itatively better results than standard methods, iii) possibility to calculate some of ODEs;

example in the long-time integration of Hamiltonian systems.

Most geometric properties are not preserved by classical numerical methods

(McLachlan et al. 2006). In geometric integration the geometric properties are built

into the numerical method, which gives the method markedly superior performance, es-

pecially during long-time simulations. By sharing geometric structure and invariants with

the exact flow, the method is more reliable, faster, accurate, simpler and cheaper than clas-

sical approaches and it is used in the areas such as the structure of liquids, biomolecules,

quantum mechanics, nanodevices , etc. (WEB-6, 2005).

Geometric integrators include symplectic and multisymplectic integrators that pre-

serve the Hamiltonian or Poisson structure; variational integrators that utilize the vari-

ational character of Lagrangian and canonical Hamiltonian systems, conservative inte-

grators that preserve first integrals or conservation laws and symmetric integrators that
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preserve symmetries of the system (WEB-5, 2006).

This new approach either connects pure mathematics with its computation or pro-

duces closer solutions since the solution evolves in the same geometrical structure. The

main types of methods used in geometric integration of ODEs are splitting and com-

position methods, projection methods, Runge-Kutta’s variants and Lie Group Methods

(McLachlan et al. 2006).

The integrations of ODEs in Lie-groups started with Sophus Lie (Ibragimov

1999). As he said in 1895, he claimed that he was the first who used the concept of

groups for an integration theory of differential equations (Ibragimov 1999). The linear

object he obtained was originally called the ”infinitesimal group” by himself and was

later renamed as ”Lie algebra” by H.Weyl (Hsiang 2000). The first numerical method to

integrate ODEs on Lie-groups appeared in 1993 by Crouch and Grossman (Zanna 1997).

Briefly, Iserles, Norsett and their ”numerical analysis group” rendered numerically ef-

ficient numerical approaches. They improved several types of Lie-group methods such

as: Runge-Kutta Munthe-Kaas, Magnus Series Method, etc. They applied these methods

to some typical equations like Airy (Iserles 2002), Mathieu (Iserles et al. 1999) and

Bessel-like, proved the convergency of the Magnus Series and analysed the global error

of Magnus Series Method. Still today, the studies on methods are being continued.

In this thesis, Magnus Series that was developed by Wilhelm Magnus in 1954, is

applied to the first order system of ordinary differential equation. It is used as one of the

Lie-group solvers and solve the following differential system:

y′ = A(t, y)y, t ≥ 0, y(0) = y0 (1.1)

which is called as Lie-type equation. The numerical solution obtained by this method is

compared with the classical numerical Runge-Kutta Method.

Outline of the thesis is as follows: In chapter 2 we start by reviewing some main

ideas of interest us regarding Lie groups, Lie algebras and their relationship. In Chapter 3

and 4, the motivation and implementation of Magnus Series Method for linear and nonlin-

ear differential equations are given. In chapter 5 and 6, the applications of Magnus Series

Method to the different linear and nonlinear ordinary differential equations are presented

and some results obtained from this method are compared with the classical Runge-Kutta

Method. Finally, discussion and future works are presented in the last chapter.
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CHAPTER 2

THEORY AND BACKGROUND

Consider the first order system of ordinary differential equation,

y′ = f(t, y), t ≥ 0, y(0) = y0, y(t) ∈ R
N (2.1)

where f is a vector field on R
+ × R

N, can be solved with the given initial conditions by

using one of the well-known numerical integrators such as Runge-Kutta and multistep

methods; these are known as classical integrators. Lie-group methods give possibility of

replacing the domain R
N by more general configuration spaces, this is the main motivation

and the advantage of the manifold rather than the entire R
N is an insensible configuration

space which has crucial geometric features of the underlying differential system for in-

stance conservation laws, symmetries or symplectic structure and in numerical meaning,

as we will see later, slower error accumulation (WEB-3, 2006).

There are several types of Lie-group methods such as Croach-Grossman Method,

Runge-Kutta-Munthe-Kaas Method and Magnus Series Method. In this study the oscilla-

tory differential equations are solved by Magnus Series Method. In the following sections

oscillatory equations and Magnus Series Method are given theoretically with the basic

definitions in order to make connections between Lie-group structure and Magnus Series.

2.1. Oscillatory Equations

The initial-value ordinary differential system considered in Eq.(2.1) exhibits os-

cillatory solutions with a timescale much shorter than the integration interval. This kind

of dynamical systems is referred as highly oscillatory ones. In this section, we will give a

brief review about this concept.

Consider the equation:

y′′ + a(t)y = 0 (2.2)

where a(t) is a real-valued and continuous function on t0 ≤ t < ∞ (WEB-2, 2006). If

all the nontrivial solutions of (2.1) have an infinite number of zeros on t0 ≤ t < ∞, then
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(2.1) is referred to as an oscillatory equation and these nontrivial solutions are termed

oscillatory solutions. For any equation, if some solutions are oscillatory and remaining

are nonoscillatory, the the equation is an nonoscillatory equation. Consider the equation

u′′ + m2u = 0 where m is a real constant, then this equation is an oscillatory and all the

solutions which are in the form of cos(mt), sin(mt) are oscillatory solutions. However if

we consider the other equation u′′′ − u′′ + u′ − u = 0, this is an nonoscillatory equation

since one of its nontrivial solutions, namely et, is not oscillatory.

The following result help us to get some oscillatory properties of the solutions of

second order linear differential equations.

Theorem 2.1 If all the nontrivial solutions of (2.2) are oscillatory, b(t) is continuous,

and b(t) ≥ a(t), t0 ≤ t < ∞, then all the nontrivial solutions of

u′′ + b(t)u = 0 (2.3)

are oscillatory.

Proof: Let y(t) and u(t) be the nontrivial solutions of (2.2) and (2.3) respectively. Multi-

plying (2.3) by y, (2.2) by u, and subtracting, we get

yu′′ − uy′′ + (b(t) − a(t))yu = 0, (2.4)

that is,

d(yu′ − uy′) + (b(t) − a(t))yu = 0 (2.5)

Let t1 and t2 be any two zeros of y(t) and assume that t0 ≤ t1 < t2 and that y(t) ≥ 0 on

the interval t1 ≤ t ≤ t2. By integrating (2.5) from t1 to t2, we obtain

y(t2)u
′(t2) − u(t2)y

′(t2) − y(t1)u
′(t1) + u(t1)y

′(t1) (2.6)

+

∫ t2

t1

[b(s) − a(s)]y(s)u(s)ds = 0 (2.7)

Since t1 and t2 are two zeros of y(t) and y′(t1) > 0, y′(t2) < 0, we obtain:

u(t1)y
′(t1) − u(t2)y

′(t2) +

∫ t2

t1

[b(s) − a(s)]y(s)u(s)ds = 0 (2.8)

We claim that u(t) has a zero on [t1, t2], since y′(t1) > 0, y′(t2) < 0 and y(t), b(t) − a(t)

are nonnegative on t1 ≤ t ≤ t2. Hence u(t) changes sign in the interval [t1, t2]. This

shows that between any two zeros of y(t) there is a zero of u(t).

4



Corollary 2.2 The nontrivial solutions of

y′′ + (1 + φ(t))y = 0 (2.9)

where φ(t) → 0 as t → ∞ are oscillatory.

Proof: Since limt→∞ φ(t) = 0, for sufficiently large t0 we have

|φ(t)| ≤ ε fort ≥ t0

that is, −ε ≤ φ(t) ≤ ε. Therefore, 1− ε ≤ 1 + φ(t) ≤ 1 + ε. Choose ε = 1
2
, then we have

1 + φ(t) ≥ 1
2

for t ≥ t0. Since all the nontrivial solutions of y ′′ + 1
2
y = 0 are oscillatory.

Corollary 2.3 The nontrivial solutions of

y′′ + φ(t)y = 0 (2.10)

are oscillatory if φ(t) ≥ m2 > 0 for all t.

Proof: Since all the nontrivial solutions of y ′′+m2y = 0 are oscillatory the result follows

from Theorem (2.1)

Corollary 2.4 if limt→∞ a(t) = ∞ monotonically, then all the nontrivial solutions of

(2.2) are oscillatory

Proof: From the hypothesis, it is clear that a(t) > ε > 0 for all t greater than some t0.

Since all the nontrivial solutions of y ′′+ ∈ y = 0, ∈> 0, are oscillatory, the result follows

from Theorem (2.1).

Briefly we can introduce the linear oscillator (2.1) where a(t) > 0, limt→∞ a(t) =

∞ and a′(t) = o(a(t)), t � 1.

2.2. Lie-Group Methods

The most known numerical algorithms in literature are formulated in vector

spaces. The new approach developed lately proposes that the solution of the differen-

tial equation evolves on the differential manifold. In order to clarify the concept, the

following useful definitions and theorems are stated in this section.

Definition 2.1 A m-dimensional manifold M is a smooth surface M ⊂ R
N for some

N ≥ m.

5



As we know from the advanced calculus that the function f : R
n → R

m which is differ-

entiable is smooth if f is differentiable infinitely and denoted by f ∈ C∞.

In algebraic meaning, (Olver 1993) M is a set which has countable collection

of subsets uα ⊂ M (called coordinate charts) and one-to-one functions xα : uα → vα

onto connected open subsets vα ⊂ R
m (called local coordinate maps) and this set satisfies

following properties;

i) The coordinate charts cover M

∪αuα = M,

ii) On the overlap of any pair of coordinate charts uα ∩ uβ , the composite map

xβ ◦ x−1
α : xα(uα ∩ uβ) → xβ(uα ∩ uβ)

is a smooth function,

iii) If x ∈ uα, x̃ ∈ uβ are distinct points of M , then there exist open subsets

ω ⊂ vα, ω̃ ⊂ vβ with xα(x) ∈ ω, xβ(x̃) ∈ ω̃ satisfying

x−1
α (ω) ∩ x−1

β (ω̃) = ∅.

Figure 2.1: Manifold

(Source: Olver 1993)
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The Fig.(2.1) illustrates the above properties. Note that u ⊂ M is an open set if

and only if for each x ∈ u there is a neighbourhood of x contained in u.

Examples are as follows:

1. R
n, n dimensional Euclidean space,

2. An easier example is the unit circle:

S2 = {(x, y, z) : x2 + y2 = 1}

which is one-dimensional manifold,

3. T
n, the n-dimensioanal torus. Fig.(2.2) shows the 2-dimensional torus,

T
n = S1 × S1 × ...... × S1 (n − times)

Figure 2.2: Torus

(Source: James 1987)

4. gl(n, R), real nxn matrices. This is an n2-dimensional manifold homeomorphic

to R
n2 ,

5. Gl(n, R), general linear group, real nxn matrices with non-zero determinant.

It is a manifold as an open subset of R
n2 ≈ Gl(n, R),

6. SO(n, R), special orthogonal group, real nxn orthogonal matrices (AAT = I)

with det=1.

Most manifolds of practical relevance are homogeneous spaces: For the concept of ’ho-

mogeneous space’, we need related definitions as follows

Definition 2.2 Suppose that, given a smooth manifold M, there exists a Lie-Group G and

a map λ : G × M → M such that λ(X1, λ(X2, y)) = λ(X1X2, y) for every X1, X2 ∈ G
and λ(1, y) = y for all y ∈ M . In that case, it is said that G acts on M and that λ is a

group action

7



Definition 2.3 A group action is transitive if for every y1, y2 ∈ M there exists X ∈ G
such that λ(X, y1) = y2. A manifold that admits a transitive group action is called a

homogeneous space.

Many important conservation laws can be described as an evolution restricted to a homo-

geneous space. The simplest example is when M is itself a Lie-Group, whereby G = M

acts upon itself and λ is the usual (left or right) multiplication. The n-sphere and the n-

torus are also homogeneous spaces with respect to the action of O(n; R). Stiefel manifold

(the set of all n×r real matrices X , r ≤ n such that XT X = I), the Grassmann manifold

(the set of all r-dimensional linear subspaces of R
n, alternatively all equivalence classes

in a Stiefel manifold with respect to a product by a member of O(n; R)), the projective

space of all lines through the origin in R or C, and the set of all elements of gl(n; R)

similar to a given matrix.

The most important property of a manifold is the existence of tangents to the

manifold at any point p ∈ M .

Definition 2.4 Let M be a n-dimensional manifold and α(t) be a smooth curve on M ,

(α(0) = p)

a =
dα(t)

dt
|t=0

is the tangent vector at p.

Definition 2.5 Some curves on M can have the same tangent (velocity) vectors at a point,

if we define a set Cp(M) = {α : I → M : α smooth and α(0) = p} (WEB-4, 2005).

Curves in Cp(M) are equivalent if their derivatives at p agree.

Consider a tangent vector to be an equivalence class [α]p. The set of all tangents

(equivalence classes) Cp(M)/[ ]p) is the tangent space at p to M and denoted by TMp.

Fig.(2.3) shows the equivalent and not equivalent class on the manifold M.

Definition 2.6 If all the tangent spaces at all points p ∈ M put together, then it forms

tangent bundle which is also another manifold and denoted by

TM = ∪p∈MTMp

8



equivalent

M

not equivalent

Figure 2.3: Equivalence Class

(Source: James 1987)

Definition 2.7 A (tangent) vector field on M is a smooth function F : M → TM such

that F ∈ TM |p for all p ∈ M . The collection of all vector fields on M is denoted by

Ξ(M).

Definition 2.8 Let F be a tangent vector field on M and suppose the differential equation

on M

y′ = F (t, y), t ≥ 0, y(0) ∈ M (2.11)

The flow of F is the solution operator Ψt,F : M → M such that

y(t) = Ψt,F (y0)

solves the Eq.(2.11).

The general form of differential equation (2.11) is the main type of differential

equations, Lie-type, with small differences such as

Definition 2.9 Every differential equation considered in (2.11) can be written in follow-

ing the form:

y′ = A(t, y)y, , t ≥ 0, y(0) = y0 ∈ G (2.12)

if it evolves in a Lie Group. This equation is called Lie type equation.

Here G is the Lie-group which can be thought as the special case of manifold, A(t, y) :

R
+ → g, g is the Lie-algebra to the corresponding Lie-group which can be thought as the

tangent space of the Lie-group G. It is time to give the basic two definitions of this study;

Lie-group and Lie-algebra (Iserles et al. 2000).

9



Definition 2.10 The differential manifold G is a Lie Group if it has a group structure with

respect to a binary operation, usually multiplication, GxG → G:

p · (q · r) = (p · q) · r for all p, q, r ∈ G (associativity)

∃I ∈ G such that I · p = p · I = p ∀p ∈ G (identity element)

∀p ∈ G ∃p−1 ∈ G such that p−1 · p = I (inverse)

the maps (p, r) 7→ p · r and p 7→ p−1 (smoothness)

are smooth functions

so that multiplication and inverse are continuous in the topology of the manifold.

Note that a group is an ordered pair 〈G, ◦〉, where G is a set (◦ is a binary operation)

satisfying the following conditions;

i) closure, x ∈ G and y ∈ G ⇒ x ◦ y ∈ G,

ii) ◦ is associative, x ◦ (y ◦ z) = (x ◦ y) ◦ z,

iii) e ∈ G is an identity (two-sided) for the operation ◦,

iv) for every element x ∈ G, there is an element y that is an inverse of x, with

respect to ◦ and identity e,

G is an abelian group if ◦ is commutative. Important examples of Lie-groups are as

follows:

1. The general linear group GL(n; F) of all nonsingular nxn matrices over the field F

(typically F = R or F = C),

2. The special linear group SL(n; F) of all X ∈ GL(n; F) such that detX = 1,

3. The orthogonal group O(n; F) of all X ∈ GL(n; F) such that XXT = 1,

4. The special orthogonal group SO(n; F) = O(n; F) ∩ SL(n; F),

5. The symplectic group Sp(n) of all matrices X ∈ GL(2n; R) such that XJXT = J ,

where J =
[ 0 I

−I 0

]

,

6. R
n is an abelian Lie group under vector addition, with Lie algebra just R

n,

7. S1 is an abelian Lie group. The group structure is defined by considering S1 as the

quotient group,

8. T
n is an abelian Lie group with group structure induced from S1. Lie algebra is R

n.

Lie group seems to be a marriage between algebraic concept of a group and

differential-geometric notion of a manifold. This combination of algebra and calculus

create a powerful techniques, as we will see soon.
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Definition 2.11 A Lie algebra is a linear space V equipped with a Lie bracket, a bilinear,

skew-symmetric mapping:

[·, ·] : V × V → V

This mapping, usually called commutator or Lie bracket, obeys the following identities:

1. [a, b] = −[b, a] (skew-symmetry)

2. [αa, b] = α[a, b] for α ∈ R
3. [a + b, c] = [a, c] + [b, c] (bilinearity)

4. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (Jacobi’s identity)

Definition 2.12 A Lie group homomorphism is a smooth map φ : G → H between two

groups which respects the group operations

φ(g.h) = φ(g).φ(h) g, h ∈ G (2.13)

If φ has a smooth inverse, then it is also an isomorphism between G and H

An important feature of a Lie-group is that there exists a natural map taking g to

G and this map is usually called exponential map (WEB-4, 2005).

Definition 2.13 Let G be a Lie group and g its Lie algebra. The exponential mapping

exp : g → G is defined as exp(a) = ρ(1) where ρ(t) ∈ G satisfies the differential

equation ρ′(t) = aρ(t), ρ(0) = I .

In the Fig.(2.4), the mission of the exponential map is shown and here φ is the derivative

map.

H G

gh

df

f

exp exp

Figure 2.4: Exponential Mapping

(Source: James 1987)
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Properties of the exponential map:

1. exp(ta) = ρ(t), ∀t ∈ R,

2. exp(t1 + t2)a = exp(t1a) + exp(t2a), ∀t1, t2 ∈ R,

3. exp(−ta) = (exp(ta))−1, ∀t ∈ R,

4. exp : g → G is smooth, and exp∗ : T0(g) → Te(G) is the identity map. Hence by the

inverse function theorem, exp gives a diffeomorphism of a neighbourhood of 0 in g onto

a neighbourhood e of G,

5. If [a, b] = 0 then exp(a + b) = exp(a)exp(b),

Next, we will give the definition of the adjoint representation.

Definition 2.14 Let p ∈ G and let ρ(t) be a smooth curve on G such that ρ(0) = I and

ρ′(0) = b ∈ g. The adjoint representation is defined as:

Adp(b) =
d

dt
pρ(t)p−1 |t=0 (2.14)

The derivative of Ad with respect to the first argument is denoted as ad. Let ρ(s) be a

smooth curve on G such that ρ(0) = I and ρ′(0) = a;

ada(b) ≡
d

ds
Adρ(s)(b) |s=0= [a, b] (2.15)

The following properties show that Ad is a linear group action and that for a fixed argu-

ment p it is a Lie-algebra isomorphism of g onto itself:

Adp(a) ∈ g, for all p ∈ G, a ∈ g (2.16)

Adp ◦ Adq = Adpq, (2.17)

Adp(a + b) = Adp(a) + Adp(b), (2.18)

Adp([a, b]) = [Adp(a), Adp(b)]. (2.19)

Both Adp and ada may be regarded as matrices acting on the linear space g since they are

linear in their second argument. This gives meaning to the following important formula

which we will use in the next sections:

Adexp(a) = expm(ada)
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CHAPTER 3

MAGNUS SERIES METHOD FOR LINEAR

DIFFERENTIAL EQUATIONS

In this section one of the Lie-Group methods, Magnus series Method is intro-

duced to solve the highly oscillatory differential equations. The main goal is to show the

transitions between Lie-group structure and Magnus Series and then the formation of the

Magnus Series Method.

3.1. Motivation

The linear differential equation on a matrix Lie-group is an equation of the form

Y ′ = A(t)Y, t ≥ 0, Y (0) = Y0 ∈ G (3.1)

where A(t) : R → g is the matrix function, G is the Lie-group, g is the Lie algebra of

the corresponding Lie-group G and AY is the usual matrix product between A ∈ g and

Y ∈ G. These equations are called Lie-type equations or linear type Lie-group equations.

As a motivation first consider (3.1) as a scalar differential equation (for the com-

mon notation lower case a(t) is used for scalar functions and upper case A(t) for the

matrix functions) such that:

y′ = a(t)y, t ≥ 0, y(0) = y0 (3.2)

then the solution is:

y(t) = exp
(

∫ t

0

a(s)ds
)

y(0)

as we know from the basic ODEs courses. However in the matrix form we can not write

the solution as it is in the scalar form since A(t1) and A(t2) does not commute with each

other for all t1, t2 ≥ 0.
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The observation will be for an interval of time [t0, t1] ∪ [t1, t2]. Suppose that the

solution of the Eq.(3.1) is the same as in the scalar form, then the solution is

Y (t) = exp
(

∫ t

t0

A(s)ds
)

Y (t0), (3.3)

We can write it for t2 and t1

Y (t2) = exp
(

∫ t2

t1

A(s)ds
)

Y (t1), (3.4)

Y (t1) = exp
(

∫ t1

t0

)A(s)ds
)

Y (t0), (3.5)

and substitute it in the (3.4), we have

Y (t2) = exp
(

∫ t2

t1

A(s)ds
)

exp
(

∫ t1

t0

A(s)ds
)

Y (t0). (3.6)

On the other hand, we can divide the interval into two parts in the eq.(3.3):

Y (t2) = exp
(

∫ t2

t0

A(s)ds
)

Y (t0) = exp
(

∫ t1

t0

A(s)ds
)

exp
(

∫ t2

t1

A(s)ds
)

Y (t0) (3.7)

If we call exp(
∫ t1

t0
A(s)ds) = B and exp(

∫ t2

t1
A(s)ds) = C, in the (3.7) Y (t2) =

BCY (t0), but in the (3.6) Y (t2) = CBY (t0). As we all know in the matrix form

BC 6= CB. We can not use the solution for the scalar linear differential equations in

the matrix linear systems.

3.2. Magnus series Method

In the context of the Lie groups, the tangent space is the Lie algebra g and required

map is the matrix exponential, thus exponential map carries the elements of algebra to

the corresponding group. Since, in the previous section, the solution of the Eq.(3.1) in

general case can not be written as a single matrix of a single integral unless the group is

not commutative.

To introduce the solution of Eq.(3.1) we need to define the exponential map for

the matrix form.

Definition 3.1 The exponential mapping expm : g → G is defined as

expmA =
∞

∑

j=0

Aj

j!
(3.8)

expm(O) = I , and a is sufficiently near O ∈ g since exponential has a smooth inverse

given by the matrix logarithm logm : G → g.
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After this definition we can give the solution of Eq.(3.1) as

Y = eδ(t)Y0 (3.9)

In order to show this representation is the solution of Eq.(3.1), we need to take the deriva-

tive of Eq.(3.9), so we need to define the derivative of the exponential map.

Definition 3.2 The differential of the exponential mapping is defined as a function dexp :

g × g → g such that

d

dt
exp(A((t)) = dexpA(t)(A

′(t))exp(A(t)). (3.10)

Since dexpA is linear in its second argument for a fixed A and dexpA is an analytic func-

tion of the matrix transformation adA:

dexpA =
expm(adA) − I

adA

(3.11)

where ad is the derivative of the adjoint representation Ad which is given by the formula

AdP A = PAP−1,

adAB = AB − BA = [A,B]

as it was defined in (2.14).

The formula (3.11) should be read as a power series in the following manner. Since

ex − 1

x
= 1 +

1

2!
x +

1

3!
x2 + ... +

1

(j + 1)!
xj + ... (3.12)

we obtain

dexpa(c) = c +
1

2!
[a, c] +

1

3!
[a, [a, c]] +

1

4!
[a, [a, [a, c]]]....

=
∞

∑

j=0

1

(j + 1)!
adj

ac (3.13)

where adj is the adjoint operator defined as

adj
AA = A, j = 0

= [adj−1
A C,C] j ≥ 1
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The fact that dexpA is an analytic function in adA makes it easy to invert the matrix dexpA

simply by inverting the analytic function,

dexp−1
A =

adA

expm(adA) − I
(3.14)

Recall that:

x

ex − 1
= 1 − 1

2
x +

1

12
x2 − 1

720
x4 + ... =

∞
∑

j=0

Bj

j!
xj (3.15)

where Bj are Bernoulli numbers (Abramowitz and Stegun 1970). Thus

dexp−1
A (C) = C − 1

2
[A,C] +

1

12
[A, [A,C]] + ... =

∞
∑

j=0

Bj

j!
adj

A(c) (3.16)

Note that, except for B1, all odd-indexed Bernoulli numbers vanish.

Now, we can return to our main equations. The goal is only to take derivative of

Eq.(3.9) and then to embed it into Eq.(3.1). The derivative of the Eq.(3.9) is

Y ′ = (eδ(t))′Y0. (3.17)

By using the definition (3.2), we obtain

Y ′ = dexpδ(t)(δ
′(t))eδ(t)Y0 (3.18)

After using representation (3.9), the Eq.(3.18) becomes

Y ′ = dexpδ(t)(δ
′(t))Y. (3.19)

After substituting Y ′ in the Eq.(3.1), we have

dexpδ(t)(δ
′(t))Y = A(t)Y (3.20)

or

dexpδ(t)(δ
′(t)) = A(t). (3.21)
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In order to find δ(t), we need to use the inverse of dexp.

dexp−1
δ(t)(dexpδ(t)(δ

′(t)) = dexp−1
δ(t)(A(t)) (3.22)

δ′(t) = dexp−1
δ(t)(A(t)) (3.23)

The following lemma proves that the representation (3.23) produces a solution of the

Eq.(3.1)

Lemma 3.1 For small t ≥ 0 the solution of Eq.(3.1) is given by

Y (t) = expm(δ(t))Y0 (3.24)

where δ ∈ g satisfies the differential equation:

δ′(t) = dexp−1
δ(t)(A(t)); δ(0) = O (3.25)

Eq.(3.24) was originally stated by Felix Hausdorff (1906), although some attribute it to

John Edward Campbell, who might have published it a few years earlier (Iserles et al.

2000).

Next, find the more usefull representation for the right hand side of the Eq.(3.25)

by using the definition (3.2)

δ′(t) = dexp−1
δ(t)(A(t)) = A(t) − 1

2
[δ(t), A(t)] +

1

12
[δ(t), [δ(t), A(t)]] + ...

=
∞

∑

j=0

Bj

j!
adj

δ(t)(A(t)) (3.26)

where Bj are Bernoulli numbers.

Finally, we will use the Picard Iteration to solve the differential equation (3.26).

3.3. Picard Iteration Method

Let Y (x) be the solution (if it exists) to the initial value problem;

y′ = f(x, y) y(x0) = Y0 (3.27)

By integrating

Y (x) = Y0 +

∫ x

x0

f(t, Y (t))dt (3.28)
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This integral equation is solved, at least in theory, by using the iteration

Ym+1(x) = Y0 +

∫ x

x0

f(t, Ym(t))dt, x0 ≤ x ≤ b (3.29)

for m ≥ 0, with Y0 ≡ Y0. This is called Picard Iteration, and under suitable assumptions,

the iterates {Ym(x)} can be shown to converge uniformly to Y (x).

After this brief terminology we can now solve the equation

δ′(t) = dexp−1
δ(t)A(t) =

∞
∑

j=0

Bj

j!
adj

δ(t)A(t) (3.30)

by Picard Iteration

δ[0](t) ≡ O

δ[m+1](t) =

∫ t

0

dexp−1
δ[m](ξ)

A(ξ)dξ

=
∞

∑

j=0

Bj

j!

∫ t

0

adj

δ[m](ξ)
A(ξ)dξ, m = 0, 1, ...

Rearranging terms for simplicity, we obtain

δ[1](t) =

∫ t

0

A(ξ1)dξ1 (3.31)

δ[2](t) =

∫ t

0

A(ξ1)dξ1 −
1

2

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]

dξ1 (3.32)

+
1

12

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2,
[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]]

dξ1 + ...,

δ[3](t) =

∫ t

0

A(ξ1)dξ1 −
1

2

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]

dξ1

+
1

12

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2,
[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]]

dξ1

+
1

4

∫ t

0

[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2)
]

dξ2, A(ξ1)
]

dξ1

− 1

24

∫ t

0

[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3,
[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2

]]

dξ2, A(ξ1)
]

dξ1

− 1

24

∫ t

0

[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2)
]

dξ2,
[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]]

dξ1

− 1

24

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2,
[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2)
]

dξ2, A(ξ1)
]]

dξ1

+ ... (3.33)
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and so on. The Picard theorem implies that δ(t) = limm→∞ δ[m](t) exists in a suitably

small neighbourhood of the origin and the above first few iterations indicate that it can be

expanded as a linear combination of terms that are composed from integrals and commu-

tators acting recursively on the matrix A. This is called as the Magnus expansion.

δ(t) =
∞

∑

j=0

Hj(t) (3.34)

where each Hj is a linear combination of terms that include exactly (j + 1) integrals (or j

commutators). Thus;

H0(t) =

∫ t

0

A(ξ1)dξ1 (3.35)

H1(t) = −1

2

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]

dξ1 (3.36)

H2(t) =
1

12

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2,
[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]]

dξ1 (3.37)

+
1

4

∫ t

0

[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2)
]

dξ2, A(ξ1)
]

dξ1

(3.38)

H3(t) = − 1

24

∫ t

0

[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3,
[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2

]]

dξ2, A(ξ1)
]

dξ1

− 1

24

∫ t

0

[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2)]dξ2,
[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]]

dξ1

− 1

24

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2,
[

∫ ξ1

0

[

∫ ξ2

0

A(ξ3)dξ3, A(ξ2)
]

dξ2, A(ξ1)
]]

dξ1

− 1

8

∫ t

0

[

∫ ξ1

0

A(ξ2)dξ2,
[

∫ ξ1

0

A(ξ2)dξ2,
[

∫ ξ1

0

A(ξ2)dξ2, A(ξ1)
]]]

dξ1

Firstly Willhelm Magnus generalized the Baker-Campbell-Hausdorff formula

log(exey) = x + y +
1

2
[x, y] +

1

12
([x, [x, y]] − [y, [x, y]]) + ... (3.39)

and derived an asymptotic expansion for δ(t) as t → 0 as:

δ(t) =

∫ t

0

A(ξ1)dξ1 −
1

2

∫ t

0

∫ ξ1

0

[

A(ξ2), A(ξ1)
]

dξ2dξ1

+
1

4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[

A(ξ3), A(ξ2)
]

, A(ξ1)
]

dξ3dξ2dξ1 (3.40)

+
1

12

∫ t

0

∫ ξ1

0

∫ ξ2

0

[

A(ξ3),
[

A(ξ2), A(ξ1)
]]

dξ3dξ2dξ1 + ...

19



Although Magnus carried the expansion further, to terms consisting of fourfold in-

tegrals, he neither presented a general formula nor convergence proof (Iserles and Norsett

1997b). This did not prevent the Magnus expansion from being used in literally hundreds

of papers in theoretical physics and quantum chemistry. Comprehensive analysis of the

Magnus expansion within the context of numerical analysis has been carried out recently

by Iserles and Norsett.

Note that all individual terms in Eq.(3.40) are in Lie algebra g, so does their linear

combination. As we will see in the section about numerical experiments, this gives many

advantages like less error since the numerical solution stays in the same manifold as the

exact flow.

3.4. Convergence of the Magnus Series Method

Theorem 3.2 Suppose that the Lie algebra g is equipped with the norm ‖·‖. The Magnus

expansion (3.40) absolutely converges in this norm for every t ≥ 0 such that
∫ t

0

‖a(ξ)‖dξ ≤
∫ 2Π

0

dξ

4 + ξ[1 − cot(ξ/2)]
≈ 1.086868702 (3.41)

Proof: Integrating (3.31) and taking norms, we have by the triangular inequality and the

trivial bound ‖adj
BA‖ ≤ (2‖B‖)j‖A‖ that

‖δ(t)‖ = ‖
∫ t

0

dexp−1
δ(ξ)a(ξ)dξ‖ ≤

∫ t

0

‖dexp−1
δ(ξ)a(ξ)‖dξ

≤
∫ t

0

∞
∑

j=0

|Bj|
j!

(2‖δ(ξ)‖)j‖a(ξ)‖dξ =

∫ t

0

g(2‖δ(ξ)‖)‖a(ξ)‖dξ,

where

g(x) = 2 +
x

2
(1 − cot

x

2
)

Now we use a Bihari-type inequality from Moan(1998): suppose that h, g, , v ∈ C(0, t∗)

are positive and that g is nondecreasing. Then

h(t) ≤
∫ t

0

g(h(ξ))v(ξ)dξ t ∈ (0, t∗)
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implies that

h(t) ≤ g̃−1(

∫ t

0

v(ξ)dξ), t ∈ (0, t∗∗), where g̃ =

∫ x

0

dξ

g(ξ)

and t∗∗ ∈ (0, t∗] is such that g̃(
∫ t

0
v(ξ)dξ)is bounded in (0, t∗∗). In our cases h(t) =

2‖δ(t)‖, v(t) = ‖a(t)‖ and g(t) are all positive and the letter is nondecreasing for t ∈
(0, 2π). Therefore,

‖δ(t)‖ ≤ 1

2
g̃−1(

∫ t

0

‖a(ξ)‖dξ)

and ‖δ(t)‖ is bounded, provided that g̃(
∫ t

0
‖a(ξ)‖dξ) is bounded. 2

Differential equations evolving on a homogeneous space M can be locally written

as

y′ = λy(f(t, y)), t ≥ 0, y(t0) = y0 ∈ M (3.42)

where f : R × M → g is Lipschitz (g being the Lie-algebra of G), while the map

λy : g → TM is defined as

λy(X) =
d

dε
λ(exp(εX), y)|ε=0

Lie-group solvers, in that manner, Magnus Series Method, can be extended to homoge-

neous spaces (Munthe-Kaas, 1999). The homogeneous space (3.1) is translated to the

Lie-Group G, then to the Lie-algebra g, solved there and the solution is mapped to again

M (Celledoni et al. 2002), as it is shown in the following Figure (3.1).

Y

yn + 1

d
Lie-algebratic method

Yn

yn

dn

n + 1

n + 1

y = f (t,y)’ l ( )y

Y =f t, (Y,y ) Y’ ( )l 0

Figure 3.1: Illustration of the Method

(Source: Celledoni et al. 2002)

After the proof of the last convergency theorem, we can introduce the use of the

Magnus Series in the numerical analysis.
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3.5. Implementation of Magnus Series Method

Magnus Methods, obtained by applying symmetric quadrature formulas to the

Magnus Series:

δ(t) =

∫ t

0

A(ξ1)dξ1 −
1

2

∫ t

0

∫ ξ1

0

[A(ξ2), A(ξ1)]dξ2dξ1

+
1

4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ3dξ2dξ1 (3.43)

+
1

12

∫ t

0

∫ ξ1

0

∫ ξ2

0

[A(ξ3), [A(ξ2), A(ξ1)]]dξ3dξ2dξ1 + ...

The simplest formulas for numerical solution of Eq.(3.43) based on the Magnus

expansion, are

δn+1 = hA(tn + h/2),

yn+1 = eδn+1yn

known as MG2 (second order Magnus Method) and it is based on Gauss-Legendre points.

The other one:

δn+1 = h(A(tn) + A(tn + h))/2

yn+1 = eδn+1yn

which is called MG2L and is based on Gauss-Lobatto points (Orel 2001).

Iserles and Norsett (Iserles and Norsett 1997a) introduced the fourth-order

method based on the Gauss-Legendre points. The forth order formula for the first four

integrals in the Magnus expansion (3.43) are
∫ h

0

A(t1)dt1 ≈ 1

2
h(A1 + A2),

∫ h

0

∫ t1

0

[A(t1), A(t2)]dt2dt1 ≈ −
√

3

6
h2[A1, A2],

∫ h

0

∫ t1

0

∫ t2

0

[A(t1), [A(t2), A(t3)]]dt3dt2dt1 ≈ h3[(
3

80
−

√
3

48
)A1 − (

3

80
+

√
3

48
)A2, [A1, A2]],

∫ h

0

∫ t1

0

∫ t2

0

[[A(t1), A(t2)], A(t3)]dt3dt2dt1 ≈ h3[(
3

80
+

√
3

16
)A1 − (

3

80
−

√
3

16
)A2, [A1, A2]].
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where

A1 = A((
1

2
−

√
3

6
)h),

A2 = A((
1

2
+

√
3

6
)h).

Assembling the above quadrature results in a fourth-order method for the linear equation

which respects arbitrary Lie-group structure,

A1 = A(tn + (
1

2
−

√
3

6
)h), A2 = A(tn + (

1

2
+

√
3

6
)h)

Σ =
1

2
h[A1 + A2] −

√
3

12
h2[A1, A2] +

1

80
h3[A1 − A2, [A1, A2]]

yn+1 = eΣyn

Higher order quadrature requires the evaluation of larger number of commutators

which costs expensively in the manner of a numerical criterion.
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CHAPTER 4

MAGNUS SERIES METHOD FOR NONLINEAR

DIFFERENTIAL EQUATIONS

In Chapter 3, we deal with the linear Lie-type equation, the same procedure is

valid except in some details for the nonlinear Lie-type equation

Y ′ = A(t, Y )Y, Y (0) = Y0 ∈ G (4.1)

where G is a matrix Lie-Group, A : R+ × G → g and g is the corresponding Lie algebra.

As we told in the previous chapters, the technique to solve the Eq.(4.1) is to carry

Y (t) from G to the corresponding Lie-algebra g (the tangent space of Lie Group at the

identity of G (Iserles et al. 1998)) by using the exponential map, then solve it there and

finally lift the solution back to G. So, the first step is to map the solution to g such that

Y (t) = eΩ(t)Y0. (4.2)

As we obtained in the linear case Ω is the solution of the following differential equation

Ω′ = dexp−1
Ω (A(t, Y )), Ω(0) = O.

If we substitute mapping into the A(t, Y ), then

Ω′ = dexp−1
Ω (A(t, eΩY0)), Ω(0) = O. (4.3)

We have to remind the reader some operators

dexp−1
Ω (C) =

∞
∑

k=0

Bk

k!
adk

ΩC

{Bk}m∈Z+ are the Bernoulli numbers and adm is the adjoint representation:

ad0
ΩC = C, adm+1

Ω C = [Ω, adm
Ω C], m ≥ 0

and some Bernoulli numbers are:

B0 = 1, B1 =
−1

2
, B2 =

1

6

B3 = 0, B4 = − 1

30
, B5 = 0

B6 =
1

42
. . .
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and so on. Note that for all odd integers k ≥ 3, Bk’s are all zero.

In the linear case we use Picard’s Iteration to solve the eq.(4.3), we can use the

same procedure as follows (WEB-1, 2005)

Ω[0](t) ≡ O,

Ω[m+1](t) =

∫ t

0

dexp−1
Ω[m](s)

A(s, eΩ[m](s)Y0)ds,

=

∫ t

0

∞
∑

k=0

Bk

k!
adk

Ω[m](s)A(s, eΩ[m](s)Y0)ds., m ≥ 0

The power series of Ω[k](t) and Ω[k+1](t) differ in terms of only O(tm+1), then we

can omit all terms of Ω[k](t) with the order greater than O(tm). If Ω[0] = O and if we

choose m = 0 for the first step, then

Ω[1] =

∫ t

0

∞
∑

k=0

Bk

k!
adk

Ω[0]=O
A(s, eΩ[0]=OY0)ds

Ω[1] =

∫ t

0

B0

0!
ad0

OA(s, Y0) +
B1

1!
ad1

OA(s, Y0) +
B2

2!
ad2

OA(s, Y0) + . . . ds

which we can see that except first term in the integral, all the terms give zero because of

the zero multiplication of the adjoint representation. Then Ω[1] is equal to only to the first

term in the integral, therefore

Ω[1] =

∫ t

0

A(s, Y0)ds = Ω(t) + O(t2) (4.4)

Now, let us look at the second term of Picard’s Ω. If we choose m = 2, then

Ω[2] =

∫ t

0

∞
∑

k=0

Bk

k!
adk

Ω[1]A(s, eΩ[1]

Y0)ds

=

∫ t

0

B0

0!
ad0

Ω[1]A(s, eΩ[1]

Y0) +
B1

1!
ad1

Ω[1]A(s, eΩ[1]

Y0) +
B2

2!
ad2

Ω[1]A(s, eΩ[1]

Y0) + . . . ds

=

∫ t

0

A(s, eΩ[1]

Y0) −
1

2

∫ t

0

[Ω[1], A(s, eΩ[1]

Y0)]ds + O(t3)

but here,

−1

2

∫ t

0

[Ω[1], A(s, eΩ[1]

Y0)]ds = O(t3)

When Ω[3] is computed, it is seen that Ω[3] produces Ω[2] up to O(t2), this is valid for all

indexes of Ω[k] , this means that we can truncate dexp−1 at k = m − 2 term for Ω[m] and

take generally
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Ω[1] =

∫ t

0

A(s, Y0)ds, (4.5)

Ω[m] =
m−2
∑

k=0

Bk

k!

∫ t

0

adk
Ω[m−1]A(s, eΩ[m−1]

Y0)ds. m ≥ 2 (4.6)

Detailed discussion can be found in the reference (WEB-1, 2005). Now, it is time to

compute the values of the integrals by using numerical quadrature formulas. If we use

Euler’s formula for Ω[1], then

Order 1:

Ω[1] =

∫ t

0

A(s, Y0)ds = hA(0, Y0) + O(h2), (4.7)

Order 2: Discretization of the Ω[2] by the trapezoidal rule is

Ω[2] =

∫ t

0

A(s, eΩ[1]

Y0)ds =
h

2

(

A(0, Y0) + A(s, eΩ[1]

Y0)
)

+ O(h3), (4.8)

Order 3:

Ω[3] =

∫ t

0

(

A2(s) −
1

2
[Ω[2](s), A2(s)]

)

ds, (4.9)

where A2(s) ≡ A(s, eΩ[3]
Y0). If we use Simpson’s rule, we have

Ω[3] =
h

6

(

A(0, Y0) + 4A2(h/2) + A2(h)
)

− h

3
[Ω[2](h/2), A2(h/2)] (4.10)

− h

12
[Ω[2](h), A2(h)] + O(h4).

In literature, this is a recent research on the Magnus Series Method for non-linear

differential equations. Fernando Casas and Arieh Iserles published an article about this

in 2005 (WEB-1, 2005), however they did not applied this method to any differential

equation as a numerical simulation in their article, and they did not introduced the method

with the order higher than 3 (fourth order is given in the appendix section as an algorithm).

Therefore, this is a topic of on going research. In our study, we obtained the method with

the order 4 and 5 and applied the results to a nonlinear differential equation.

Order 4:

Ω[4](t) =
2

∑

k=0

Bk

k!

∫ t

0

adk
Ω[3](s)A3(s)ds,
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where A3(s) = A(s, eΩ[3](s)Y0,

=

∫ t

0

(B0

0!
A3(s)ds +

B1

1!
[Ω[3], A3]ds +

B2

2!
[Ω[3], [Ω[3], A3]]

)

ds,

If we call all the function under the integral as e.g K(s) and use Simpson’s rule
∫ t

0

K(s)ds =
h

6
[K(0) + 4K(

h

2
) + K(h)].

Then fourth-order method is

Ω[4](h) =
h

6
A(0, Y0) +

h

6
4A3(

h

2
) − h

3

[

Ω[3](
h

2
), A3(

h

2
)
]

(4.11)

+
h

18

[

Ω[3](
h

2
),

[

Ω[3](
h

2
), A3(

h

2
)
]]

+
h

6
A3(h)

− h

12

[

Ω[3](h), A3(h)
]

+
h

72

[

Ω[3](h),
[

Ω[3](h), A3(h)
]]

.

Order 5: In order 5, the coefficients makes it easier to compute the integrals because the

fourth Bernoulli number B3 = 0 as we will see.

Ω[5](t) =
3

∑

k=0

Bk

k!

∫ t

0

adk
Ω[4](s)A4(s)ds,

where A4(s) = A(s, eΩ[4](s)Y0,

=

∫ t

0

(B0

0!
A4(s)ds +

B1

1!
[Ω[4], A3]ds +

B2

2!
[Ω[4], [Ω[4], A4]]

)

ds.

Here B3 = 0, and if we again call the function under the integral as e.g M(s), then
∫ t

0

M(s)ds =
h

6
[M(0) + 4M(

h

2
) + M(h)].

Then the fifth-order method is

Ω[5](h) =
h

6
A(0, Y0) +

h

3
A4(

h

2
) − h

3

[

Ω[4](
h

2
), A4(

h

2
)
]

(4.12)

+
h

18

[

Ω[4](
h

2
),

[

Ω[4](
h

2
), A4(

h

2
)
]]

+
h

6
A4(h)

− h

12

[

Ω[4](h), A4(h)
]

+
h

72

[

Ω[4](h),
[

Ω[4](h), A4(h)
]]

.

In the next chapter, we will apply Magnus Series Method to the both linear and

nonlinear initial value problems in order to show the accuracy of the method.
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CHAPTER 5

APPLICATIONS OF MAGNUS SERIES METHOD

In this chapter several linear and nonlinear differential equations are considered

and the results are compared with a classical numerical method, Runge-Kutta. This

Method is based on the series so it would be the best choice to choose this method for

comparison.

5.1. Brief Introduction to Runge-Kutta Method

The Runge-Kutta Method is based on the Taylor Series expansion of y(x) (Atkin-

son 1988), where y(x) is the solution of the initial value problem given in Eq.(5.1)

y′ = f(t, y) y(x0) = y0 (5.1)

After expanding y(x1) about x0 using Taylor’s theorem:

y(x1) = y(x0) + hy′(x0) + ... +
hr

r!
y(r)(x0) +

hr+1

(r + 1)!
y(r+1)(ξ)

for some x0 ≤ ξ0 ≤ x1, we have an approximation for y(x1) by dropping the remainder

term, provided we can calculate y′′(x0),...y(r)(x1) by differentiating y′(x) = f(x, y(x)).

This Taylor Series Method can give excellent results but we need to differentiate f . The

Runge-Kutta Method is closely related to the Taylor Series expansion, but no differentia-

tion of f is necessary.

All RK (Runge-Kutta is abbreviated to RK) methods can be written in the form

yn+1 = yn +
m

∑

i=1

bifi (5.2)

where

fk = hf(tn + ckh, θk) (5.3)

θk = yn +
m

∑

i=1

ak,ifi (5.4)
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for k = 1, ...,m and the coefficients can be obtained by using Butcher Table (Hairer et al.

1993)

c1 a1,1 a1,2 . . . a1,m

c2 a2,1 a2,2 . . . a2,m

...
...

...
...

cm am,1 am,2 . . . am,m

b1 b2 . . . bm

Fourth-order RK, RK4, is used as the classical method, especially for being in the

same order with the Magnus Series Method’s order. If RK4 is applied to the equation

with the coefficients from the Butcher Table:

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

2
3

2
3

1
6

from t0 to tn+1 = t0 + (n + 1)h, then the numerical solution is

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4) (5.5)

where

k1 = f(tn, yn),

k2 = f(tn +
1

2
h, yn +

1

2
hk1),

k3 = f(tn +
1

2
h, yn +

1

2
hk2),

k4 = f(tn + h, yn + hk3).
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5.2. Application of Magnus Method to Linear Oscillatory Problems

Consider the general form of the oscillatory problems

y′′ + g(t)y = 0 (5.6)

the following transformation is used to obtain matrix Lie-type equations

y = y1

y′

1 = y2

then the equation is in the form




y1

y2





′

=





0 1

−g(t) 0









y1

y2





If we call





y1

y2



 as Y and the matrix function





0 1

−g(t) 0



 as A, we can write the

equation as

Y ′ = A(t)Y (5.7)

which is the linear Lie-type equation.

In this section, the various functions g(t) in the Eq.(5.6) are chosen as g(t) = 1,

g(t) = t and g(t) = t2. First, the linear oscillator equation is considered where g(t) = 1.

y′′ + y = 0 y(0) = 1; y′(0) = 0 (5.8)

First step is to write this equation as a Lie-type equation which is also a linear system. If

we apply the following transformation to obtain the system of equations in the form (5.6):

y = y1

y′

1 = y2

then,




y1

y2





′

=





0 1

−1 0









y1

y2





with the initial condition





y1(0)

y2(0)



 =





1

0



. We can find the exact solution by the

classical ordinary differential equations method, here the exact solution is y(t) = cos(t).

30



We solved the Eq.(5.8) by both fourth order Magnus Series Method and Runge-Kutta

Method. The time interval is taken as [0, 100] and the step size is h = 1/16. In Fig.(5.1)

and Fig.(5.2) the errors between the exact and Runge-Kutta and Magnus Series numerical

methods are plotted as a function of time, respectively. As can be seen in these figures,

Runge-Kutta has 10−5 while Magnus Series Method has 10−14, thus 3 times better result

is obtained by Magnus Series Method.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
x 10−5

t

y

Figure 5.1: Global Error of the Runge-Kutta Method by solving the Linear Oscillatory

Equation for the time interval (0,100) with the step size h=1/16.
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Figure 5.2: Global Error of the Magnus Series Method by solving the Linear Oscillatory

Equation for the time interval (0,100) with the step size h=1/16.
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Next equation we consider is the Airy equation

y′′ + ty = 0 (5.9)

with the initial conditions y(0) = 1 and y ′(0) = 0. In general, it has an analytic solution

y(t) = c1Ai(t) + c2Bi(t), where c1 and c2 can be evaluated to yield the analytic result

given in the following equation (Diele and Ragni 2002).

y(t) =
Ai(−t)Bi′(0) − Ai′(0)Bi(−t)

Ai(0)Bi′(0) − Ai′(0)Bi(0)

If t < 0 then, it does not have an oscillatory behavior.

When we apply the necessary transformation as it has done in the previous section,

the Eq.(5.9) becomes





y1

y2





′

=





0 1

−t 0









y1

y2



 (5.10)

with the initial condition





y1(0)

y2(0)



 =





1

0





In this case the matrix function A(t) becomes

A(t) =





0 1

−t 0



 .

Figures (5.3) and (5.4) display the solution of the Airy Equation (5.8) with fourth order

Runge-Kutta and Magnus Series Method respectively. In these computations, the time

interval is taken as (0, 1000) and the step size as h = 1/16. It is evident in Fig.(5.3)

that Runge-Kutta Method loses accuracy for the longer integral interval. Fig.(5.5) and

Fig.(5.6) show the global error of the Runge-Kutta and Magnus Series Method respec-

tively. As it is seen in these figures that Runge-Kutta has 10−1 error while Magnus Series

has 10−7. Magnus Series Method performs better than Runge-Kutta Method when applied

to the Airy Equation.

32



0 100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y

Figure 5.3: The Solution of the Airy Equation by Runge-Kutta Method for

the time interval (0,1000) with the step size h=1/16.
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Figure 5.4: The Solution of the Airy Equation by Magnus Series Method for

the time interval (0,1000) with the step size h=1/16.
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Figure 5.5: Global Error of the Runge-Kutta Method obtained by solving the Airy

Equation for the interval (0,100) with the step size h=1/16.
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Figure 5.6: Global Error of the Magnus Series Method obtained by solving the Airy

Equation for the interval (0,100) with the step size h=1/16.
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Finally the following equation is considered with the given initial conditions

y′′ + t2y = 0 y(0) = 0 y′(0) = 1. (5.11)

After transformation, the equation is in the form of a Lie-type equation




y1

y2





′

=





0 1

−t2 0









y1

y2



 (5.12)

The methods, Magnus and Runge-Kutta are applied to the Eq.(5.10) for the time

interval (0, 100) with the time step h = 1/16. The results are shown in Figures (5.7)

and (5.8) respectively. As can be seen in these figures, although Magnus Series Method

works for the Eq.(5.10), the other method does not work. In addition, error accumulation

is higher than the other cases which can be seen in Fig.(5.7).
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Figure 5.7: Global Error of the Magnus Series Method obtained by solving the

Eq.(5.10) for the interval (0,100) with the step size h=1/16.
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Figure 5.8: Global Error of the Runge-Kutta Method obtained by solving the

Eq.(5.10) for the interval (0,100) with the step size h=1/16.
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5.3. Application of Magnus Method to Nonlinear Oscillatory Problems

In this section, our aim is to validate the effectiveness of the Magnus Series

Method in the field of nonlinear oscillatory system by applying it to the Duffing Equation

(5.13) which we consider as test problem,

y′′ + y + εy3 = 0, y(0) = 1; y′(0) = 0 (5.13)

The exact solution for this equation is given by Eq.(5.14) obtaining from Multiple-scale

Method (Bender and Orszag 1999) as

y(t) ≈ cos(t) + ε
(cos(3t)

32
− cos(t)

32
− 3t sin(t)

8

)

(5.14)

As can be seen in previous sections, after the transformation, we obtain the fol-

lowing Lie-type equation

Y ′ = A(t, y)Y (5.15)

where the matrix function A(t, y)

A(t, y) =





0 1

(1 + εy2) 0





The Magnus Series and Runge-Kutta Methods are applied to the Duffing Equation

(5.12) for the interval (0, 1000) with the step size h = 1/16. The Figures (5.9) and

(5.10) show the global error obtained by fourth-order Magnus Series Method and Runge-

Kutta Method respectively. It is evident that Magnus Series Method has 10−6 error while

Runge-Kutta has 10−4. Thus Magnus Series Method gives better result than Runge-Kutta

Method.
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Figure 5.9: Global Error of the Runge-Kutta Method obtained by solving Duffing

Equation for the interval (0,1000) with the step size h=1/16.
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Figure 5.10: Global Error of the Magnus Series Method obtained by solving Duffing

Equation for the interval (0,1000) with the step size h=1/16.
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5.4. Magnus Method for Hamiltonian System

Conservative problems, particularly in dynamics, can be expressed in the form:

dpi

dt
= −∂H

∂qi

(5.16)

dqi

dt
= +

∂H

∂pi

i = 1, ..., d (5.17)

where H is a given function called Hamiltonian of the system, qi is a generalized coordi-

nate, and pi a generalized momentum and (p, q) = (p1, ..., pd, q1, ..., qd) ∈ ω, the oriented

Euclidean space R
2d. The integer d is called the number of degrees of freedom and ω is

the phase space. The Hamiltonian is defined by:

H(p, q) = T (p, q) + V (q) (5.18)

where T is the kinetic energy and V the potential energy. The Hamiltonian systems

have two important properties: First, the Hamiltonian is an energy integral of the motion,

second, Hamiltonian systems conserve volumes in phase space. This means that if we

draw the trajectories that originate from all of the points inside a region of volume V in

phase space at t = 0, then the endpoints of these trajectories at time t fill a region with the

same volume V for all t. This condition is Jacobian mathematically. Some examples are

as follows:

The well-known system with d = 1 (one degree of freedom) is the Harmonic

oscillator such that (Sanz-Serna and Calvo 1994):

H = T + V, T =
p2

1

2m
, V =

kq2
1

2

m and k are positive constants that respectively correspond to mass and spring constant.

The system is such that:

p′ = −kq q′ =
p

m

The general solution for q is an oscillation q(t) = C1 sin(
√

((k/m))t+C2) where C1 and

C2 are integration constants. Similarly p(t) = m
√

((k/m))C1 cos(
√

((k/m))t + C2).

When plotted in the phase (p, q)-plane, the parametric curves corresponds to the ellipses.

The other example is the pendulum. If the units are chosen in such a way that the

mass of the blob, the length of the rod and the acceleration of gravity are all unity, then

H = T + V, T =
p2

2
, V = − cos(q) (5.19)
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where q is the angle between the rod and a vertical, downward oriented axis. The equa-

tions of the motion are then:

p′ = − sin q q′ = p (5.20)

The third example and the one that is an application of the Magnus Method is the

double Harmonic oscillator. This has two degrees of freedom and:

H = T + V, T =
p2

1 + p2
2

2
, V =

q2
1 + q2

2

2

In the equations of the motion p′

1 = −q1, q′1 = p1, p′2 = −q2 and q′2 = p2. The projections

of the solutions onto the (pi, qi)-plane corresponds to the circles. If we write it as a linear

lie-type system as it defined in the second section it would be:
















p1

p2

q1

q2

















′

=

















0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

































p1

p2

q1

q2

















(5.21)

with the initial condition [1 1 0 0]T . Magnus Series Method is applied to the Double

Harmonic Oscillator Equation (5.21) for the interval (−1, 1) for the time step h = 1/16.

The Figures (5.11) and (5.12) display the solutions as functions of coordinate q1 and q2

on the (p1, q1) and (p2, q2) phase-plane respectively. The projections are circles as it is

expected.
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Figure 5.11: Projection of the Double Harmonic Oscillator for the first phase-plane by

Magnus Method for the interval (-1,1) with the time step h=1/16.
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Figure 5.12: Projection of the Double Harmonic Oscillator for the second phase-plane by

Magnus Method for the interval (-1,1) with the time step h=1/16.
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5.5. Magnus Method for Boundary Value Problems

In this section; linear second order boundary value problem is solved by using

Magnus Series Method. First, boundary value problem is converted to two initial value

problems with the help of the Shooting Method, then two initial value problems are solved

by Magnus Series Method.

Consider the following linear boundary value problem:

x′′ = p(t)x′ + q(t)x + r(t) x(a) = α x(b) = β (5.22)

which has a unique solution x = x(t) over a ≤ t ≤ b. The solution of the Eq.(5.22) can

be found by considering the following two special initial value problems.

u′′ = p(t)u′ + q(t)u + r(t) u(a) = α u′(a) = 0 (5.23)

v′′ = p(t)v′ + q(t)v v(a) = 0 v′(a) = 1 (5.24)

After the solution of each initial value problems are found, the linear combinations be-

come the solution of the boundary value problem given in Eq.(5.22) as

x(t) = u(t) + Cv(t) (5.25)

where C = (β − u(b))/v(b).

As an illustration, the method is applied to the following simple linear oscillatory

boundary value problem

x′′ = −x x(0) = 1 x(90) = 0.4481 (5.26)

which has the exact solution cos(t). After problem is converted to the following initial

value problem

u′′ = −u u(0) = 1 u′(0) = 0

v′′ = −v v(0) = 0 v′(0) = 1

the Runge-Kutta and Magnus Series Method are applied to the each problem separately.

Figure (5.13) and Figure (5.15) displays the solution of the boundary value problem (5.26)

for the time interval (0, 100) with the time step h = 1/16 by Runge-Kutta Method and

Magnus Series Method respectively while Figure (5.14) and Figure (5.16) shows the error

of Runge-Kutta and Magnus Series Method respectively for the same time interval and

time step. As can be seen in these figures Magnus Series has less error than Runge-Kutta

Method.
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Figure 5.13: Solution of the Boundary Value Problem (5.26) by Runge-Kutta Met-

hod for the time interval (0,100) with the time step h=1/16.
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Figure 5.14: Global Error of the Boundary Value Problem (5.26) by Runge-Kutta Met-

hod for the time interval (0,100) with the time step h=1/16.
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Figure 5.15: Solution of the Boundary Value Problem (5.26) by Magnus Series Met-

hod for the time interval (0,100) with the time step h=1/16.
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Figure 5.16: Global Error of the Boundary Value Problem (5.26) by Magnus Series

Method for the time interval (0,100) with the time step h=1/16.
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5.6. Magnus Method for Second Order System of Equations

In this section we consider the second order linear system as follows

Y ′′ = A(t)Y Y (0) = Y0, Y ′(0) = Ẏ0 (5.27)

Magnus Series Method is applied to find the appropriate solution of this form of matrix

differential equation. First consider Y =





x

y



 such that





x

y





′′

=





a(t) b(t)

c(t) d(t)









x

y



 (5.28)

After the transformation x = x1, x′

1 = x2 for x and y = y1, y′

1 = y2 for y, the Lie- type

equation (5.29) is obtained.
















x1

x2

y1

y2

















′

=

















0 1 0 0

a(t) 0 b(t) 0

0 0 0 1

c(t) 0 d(t) 0

































x1

x2

y1

y2

















(5.29)

As an illustration, the following equation is considered with the given initial conditions.




x

y





′′

=





−t 0

−1 −t









x

y



 , Y (0) =





1

0



 , Y ′(0) =





0

0



 (5.30)

which has the exact solution Airy equation for x and the derivative of the Airy equation

for y.

In Fig.(5.17) first and second figures show the global error of the Runge-Kutta

Method by solving the Eq.(5.30) for x and y respectively in the interval (0, 100) with the

step size h = 1/16. In Fig.(5.18) first figure displays the global error of the Magnus

Series Method for x in the Eq.(5.30) while second displays for y in the same equation.

It is evident in these figures that Magnus Series Method has less error than Runge-Kutta

Method for x in the Eq.(5.30), however, the global error of both methods for y in the

Eq.(5.30) are approximately the same.
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Figure 5.17: Global Error of the Runge-Kutta Method for x and y in the Eq.(5.29) res-

pectively in the interval (0,100) with the time step h=1/16.
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Figure 5.18: Global Error of the Magnus Series Method for x and y in the Eq.(5.29)

respectively in the interval (0,100) with the time step h=1/16.
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CHAPTER 6

CONCLUSION

6.1. Summary

In this thesis, we present numerical solutions of the several types of ordinary dif-

ferential equations including linear, nonlinear initial value problem, hamiltonian system,

based on the magnus series methods, one of the geometric integrator. We also extend the

method to solve boundary value problem and second order system of ordinary differen-

tial equations. All the differential equations we considered exhibits the highly oscillatory

behaviours in their solutions.

Starting with the Magnus integrators for linear systems, we have considered three

cases by choosing the coefficient of y in Eq.(2.2) as a polynomial functions.

First, we choose a(t) as a constant a(t) = 1 and applied both Magnus Series

and Runge-Kutta Methods. After computation, we observed that Magnus Series Method

works three times better than the Runge-Kutta Method.

Next, we choose a(t) = t, which is called Airy Equation. Both Magnus Series

and Runge-Kutta Methods are applied again. At this time not only Magnus Series has less

error than Runge-Kutta, but also we observed that Magnus resumes to give results for the

long time integration while traditional method Runge-Kutta does not work after a fixed

time.

The other polynomial function we considered is a(t) = t2. Classical method

Runge-Kutta does not work for this equation, although Magnus works. For that equation,

we observed that the error accumulation of the Magnus Series Method increases when the

degree of the polynomial function a(t) increases.

Next, to illustrate the main features of Lie-type equation, we applied the method

to the Duffing equation. The new algorithm, we developed, based on fourth and fifth order

expansion of the magnus series is applied to solve duffing equation. After computation,

we observed that the error accumulation is less than the one we obtained by Runge-Kutta

method.

Finally, double Harmonic Oscillator problem as Hamiltonian System is consid-
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ered. Since in future we would like to applly the method for molecular dynamic simula-

tions. This problem can be thought as a simpler case for such computations. In order to

show the methods is also applicable for the boundary value problems, we solve one par-

ticular example. We extend the method for the linear system of second order differential

equation as well. All those computations we observed that the magnus series method has

better performance than the classical Runge-Kutta Method based on the error plots for

each cases.

As a result, all numerical experiments show that the validity and the effectiveness

of Magnus Method by solving highly oscillatory differential equations when it is compar-

ing the classical Runge-Kutta method. Since the geometric integrators led the solutions

stay on the same manifold when the integration time evolves. We have written computer

programs in MATLAB 6.5 to simulate the methods for all problems.

6.2. Future Work

Geometric integration is a new area for the numerical analysis and so Magnus

Series Method. The method is applied to several types of equations in the literature and

this remind us a question ”Which types of equations can be solved by this method?”.

Computational cost is an important criteria in applied sciences and the researches on

computational cost for Magnus Series Method still continue, then the other question that

we have to ask is ”how can the method be cheaper computationally?”. Also, we do not

still know why the Magnus Series Method can give great results for highly oscillatory

differential equations. ”Higher dimensional molecular dynamics simulation by Magnus

Series Method” and ”solution of nonhomogeneous Lie-type equations by Magnus Series

Method” are the topics intended to research.
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APPENDIX A

MATLAB CODES FOR THE APPLICATIONS OF

MAGNUS SERIES METHOD

MAGNUS SERIES METHOD-MATLAB CODE FOR LINEAR OSCILLA-

TORY PROBLEM 1

%Magnus for y’’+y=0,y(0)=1,y’(0)=0

Y=[1;0]; h=1/16; t=0:h:100; n=100/h+1; for i=1:n

ye(i)=cos(t(i));

end for i=1:n

y(i)=Y(1,1);

k1=-t(i)+h*(1/2-(sqrt(3)/6));

A1=[0 1;-1 0];

k2=-t(i)+h*(1/2+(sqrt(3)/6));

A2=[0 1;-1 0];

b=A1+A2;

c=A1*A2-A2*A1;

d=A1-A2;

e=d*c-c*d;

sigma=((1/2)*h*b)-((sqrt(3)/12)*hˆ2*c)+((1/80)*hˆ3*e);

Y=expm(sigma)*Y;

em(i)=ye(i)-y(i);

end plot(t,em,’b’);grid;xlabel(’t’);ylabel(’y’);

RUNGE-KUTTA METHOD-MATLAB CODE FOR LINEAR OSCILLATORY

PROBLEM 1

%RK4 for y’’+y=0,y(0)=1,y’(0)=0

Y=[1;0]; h=1/16; t=0:h:100; n=100/h+1; A=[0 1;-1 0]; for i=1:n

ye(i)=cos(t(i));

end for i=1:n
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y(i)=Y(1,1);

V1=A*Y;

Y2=Y+((h/2)*V1);

V2=A*Y2;

Y3=Y+((h/2)*V2);

V3=A*Y3;

Y4=Y+(h*V3);

V4=A*Y4;

Y=Y+((h/6)*(V1+2*V2+2*V3+V4));

er(i)=ye(i)-y(i);

end plot(t,er,’b’);grid;xlabel(’t’);ylabel(’y’);

RUNGE-KUTTA METHOD-MATLAB CODE FOR LINEAR OSCILLATORY

PROBLEM 1

%Magnus for the Airy Equation y’’+ty=0,y(0)=1,y’(0)=0

Y=[1;0]; h=1/16; t=0:h:100; n=100/h+1; for i=1:n

ye(i)=(airy(3,0)*airy(-t(i))-airy(1,0)*airy(2,-t(i)))/

(airy(0)*airy(3,0)-airy(1,0)*airy(2,0));

end for i=1:n

y(i)=Y(1,1);

k1=-t(i)-h*(1/2-(sqrt(3)/6));

A1=[0 1;k1 0];

k2=-t(i)-h*(1/2+(sqrt(3)/6));

A2=[0 1;k2 0];

b=A1+A2;

c=A1*A2-A2*A1;

d=A1-A2;

e=d*c-c*d;

sigma=((1/2)*h*b)-((sqrt(3)/12)*hˆ2*c)+((1/80)*hˆ3*e);

Y=expm(sigma)*Y;

em(i)=ye(i)-y(i);

end plot(t,em,’b’);grid;xlabel(’t’);ylabel(’y’);

%plot(t,y,’b’);grid;xlabel(’t’);ylabel(’y’);
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RUNGE-KUTTA METHOD-MATLAB CODE FOR LINEAR OSCILLATORY

PROBLEM 2

%RK4 for the Airy Equation y’’+ty=0,y(0)=1,y’(0)=0

Y=[1;0]; h=1/16; t=0:h:100; n=100/h+1; for i=1:n

ye(i)=(airy(3,0)*airy(-t(i))-airy(1,0)*airy(2,-t(i)))/

(airy(0)*airy(3,0)-airy(1,0)*airy(2,0));

end for i=1:n

y(i)=Y(1,1);

A1=[0 1;-t(i) 0];

V1=A1*Y;

A2=[0 1;-t(i)-h/2 0];

Y2=Y+(h/2)*V1;

V2=A2*Y2;

A3=[0 1;-t(i)-h/2 0];

Y3=Y+(h/2)*V2;

V3=A3*Y3;

A4=[0 1;-t(i)-h 0];

Y4=Y+h*V3;

V4=A4*Y4;

Y=Y+((h/6)*(V1+2*V2+2*V3+V4));

er(i)=ye(i)-y(i);

end plot(t,er,’b’);grid;xlabel(’t’);ylabel(’y’);

%plot(t,y,’b’);grid;xlabel(’t’);ylabel(’y’);

MAGNUS SERIES METHOD-MATLAB CODE FOR LINEAR OSCILLA-

TORY PROBLEM 3

%Magnus for the Equation y’’+tˆ2y=0,y(0)=0,y’(0)=1

Y=[0;1]; h=1/16; t=0:h:100; n=100/h+1; for i=1:n

ye(i)=1/2*pi/gamma(3/4)*t(i)ˆ(1/2)*besselj(1/4,1/2*t(i)ˆ2);

end for i=1:n

y(i)=Y(1,1);

k1=t(i)+h*(1/2-(sqrt(3)/6));
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A1=[0 1;-k1ˆ2 0];

k2=t(i)+h*(1/2+(sqrt(3)/6));

A2=[0 1;-k2ˆ2 0];

b=A1+A2;

c=A1*A2-A2*A1;

d=A1-A2;

e=d*c-c*d;

sigma=((1/2)*h*b)-((sqrt(3)/12)*hˆ2*c)+((1/80)*hˆ3*e);

Y=expm(sigma)*Y;

em(i)=ye(i)-y(i);

end

plot(t,em,’b’);grid;xlabel(’t’);ylabel(’y’);

RUNGE-KUTTA METHOD-MATLAB CODE FOR LINEAR OSCILLATORY

PROBLEM 3

%RK4 for the Equation y’’+tˆ2y=0,y(0)=0,y’(0)=1

Y=[0;1]; h=1/16; t=0:h:100; n=100/h+1; for i=1:n

ye(i)=1/2*pi/gamma(3/4)*t(i)ˆ(1/2)*besselj(1/4,1/2*t(i)ˆ2);

end for i=1:n

y(i)=Y(1,1);

A1=[0 1;-t(i)ˆ2 0];

V1=A1*Y;

A2=[0 1;-(t(i)+h/2)ˆ2 0];

Y2=Y+(h/2)*V1;

V2=A2*Y2;

A3=[0 1;-(t(i)+h/2)ˆ2 0];

Y3=Y+(h/2)*V2;

V3=A3*Y3;

A4=[0 1;-(t(i)+h)ˆ2 0];

Y4=Y+h*V3;

V4=A4*Y4;

Y=Y+((h/6)*(V1+2*V2+2*V3+V4));

er(i)=ye(i)-y(i);
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end plot(t,er,’b’);grid;xlabel(’t’);ylabel(’y’);

MAGNUS SERIES METHOD-MATLAB CODE FOR NONLINEAR OSCILLA-

TORY PROBLEM

%Magnus for the Duffing Equation y’’+y+ep*yˆ3=0,y(0)=1,y’(0)=0

Y=[1;0]; h=1/16; t=0:h:1000; n=1000/h+1; ep=0.00001; for i=1:n

ye(i)=cos(t(i))+ep*(cos(3*t(i))/32-

cos(t(i))/32-(3*t(i)*sin(t(i)))/8);

end for i=1:n

y(i)=Y(1,1);

a0=[0 1;-(1+ep*y(i)ˆ2) 0];

k0=h*a0;

k1=(h/2)*a0;

b1=expm(k0)*Y;

a1=[0 1;-(1+ep*b1(1,1)ˆ2) 0];

m0=(h/2)*(a0+a1);

b2=expm(k1)*Y;

a2=[0 1;-(1+ep*b2(1,1)ˆ2) 0];

m1=(h/4)*(a0+a2);

b3=expm(m1)*Y;

a3=[0 1;-(1+ep*b3(1,1)ˆ2) 0];

b4=expm(m0)*Y;

a4=[0 1;-(1+ep*b4(1,1)ˆ2) 0];

n0=(h/6)*(a0+4*a3+a4)-(h/3)*(m1*a3-a3*m1)-

(h/12)*(m0*a4-a4*m0);

k2=(h/4)*a0;

b5=expm(k2)*Y;

a6=[0 1;-(1+ep*b5(1,1)ˆ2) 0];

m2=(h/8)*(a0+a6);

b6=expm(m2)*Y;

a5=[0 1;-(1+ep*b6(1,1)ˆ2) 0];

n1=(h/12)*(a0+4*a5+a3)-(h/6)*(m2*a5-a5*m2)-

(h/24)*(m1*a3-a3*m1);
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b7=expm(n1)*Y;

a7=[0 1;-(1+ep*b7(1,1)ˆ2) 0];

b8=expm(n0)*Y;

a8=[0 1;-(1+ep*b8(1,1)ˆ2) 0];

c1=n1*a7-a7*n1;

c2=n0*a8-a8*n0;

fi4=a0*(h/6)+4*(h/6)*a7-(h/3)*c1+(h/18)*

(n1*c1-c1*n1)+(h/6)*a8-

(h/12)*c2+(h/72)*(n0*c2-c2*n0);

Y=expm(fi4)*Y;

em(i)=ye(i)-y(i);

end plot(t,em,’b’);grid;xlabel(’t’);ylabel(’y’);

%plot(t,y,’b’);grid;xlabel(’t’);ylabel(’y’);

RUNGE-KUTTA METHOD-MATLAB CODE FOR NONLINEAR OSCILLA-

TORY PROBLEM

%RK4 for the Duffing Equation y’’+y+ep*yˆ3=0,y(0)=1,y’(0)=0

Y=[1;0]; h=1/16; t=0:h:1000; n=1000/h+1; ep=0.00001; for i=1:n

ye(i)=cos(t(i))+ep*(cos(3*t(i))/32-

cos(t(i))/32-(3*t(i)*sin(t(i)))/8);

end for i=1:n

y(i)=Y(1,1);

A=[0 1;-(1+ep*y(i)ˆ2) 0];

V1=A*Y;

Y2=Y+(h/2)*V1;

V2=A*Y2;

Y3=Y+(h/2)*V2;

V3=A*Y3;

Y4=Y+h*V3;

V4=A*Y4;

Y=Y+((h/6)*(V1+2*V2+2*V3+V4));

er(i)=ye(i)-y(i);

end plot(t,er,’b’);grid;xlabel(’t’);ylabel(’y’);

57



%plot(t,y,’b’);grid;xlabel(’t’);ylabel(’y’);

MAGNUS SERIES METHOD-MATLAB CODE FOR HAMILTONIAN SYS-

TEM

%Magnus for Double Harmonic Osillator (hamioltanian system)

Y=[1;1;0;0]; h=1/16; n=100/h+1;

for i=1:n

p1(i)=Y(1,1);

q1(i)=Y(3,1);

p2(i)=Y(2,1);

q2(i)=Y(4,1);

A1=[0 0 -1 0;0 0 0 -1;1 0 0 0;0 1 0 0];

A2=[0 0 -1 0;0 0 0 -1;1 0 0 0;0 1 0 0];

b=A1+A2;

c=A1*A2-A2*A1;

d=A1-A2;

e=d*c-c*d;

sigma=((1/2)*h*b)-((sqrt(3)/12)*hˆ2*c)+((1/80)*hˆ3*e);

Y=expm(sigma)*Y;

end

subplot(211); plot(q1,p1,’b’);grid;xlabel(’q1’);ylabel(’p1’);

subplot(212); plot(q2,p2,’b’);grid;xlabel(’q2’);ylabel(’p2’);

MAGNUS SERIES METHOD-MATLAB CODE FOR BOUNDARY VALUE

PROBLEM

%Magnus Method for the Boundary Value Problems

(linear Oscillator)

h=1/16; t=0:h:100; n=100/h+1; beta=90; betax=-0.4481; U=[1;0];

V=[0;1]; for j=1:n

ye(j)=cos(t(j));

end for i=1:n

u(i)=U(1,1);

if t(i)==beta
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ku=u(i);

end

A1U=[0 1;-1 0];

A2U=[0 1;-1 0];

b=A1U+A2U;

c=A1U*A2U-A2U*A1U;

d=A1U-A2U;

e=d*c-c*d;

sigma=((1/2)*h*b)-((sqrt(3)/12)*hˆ2*c)+((1/80)*hˆ3*e);

U=expm(sigma)*U;

end for i=1:n

v(i)=V(1,1);

if t(i)==beta

kv=v(i);

end

A1V=[0 1;-1 0];

A2V=[0 1;-1 0];

b=A1V+A2V;

c=A1V*A2V-A2V*A1V;

d=A1V-A2V;

e=d*c-c*d;

sigma=((1/2)*h*b)-((sqrt(3)/12)*hˆ2*c)+((1/80)*hˆ3*e);

V=expm(sigma)*V;

end

c1=(betax-ku)/kv;

for i=1:n

y(i)=u(i)+c1*v(i);

em(i)=ye(i)-y(i);

end

subplot(211) plot(t,y,’b’);grid;xlabel(’t’);ylabel(’x-Magnus’);

subplot(212);plot(t,em,’r’);grid;xlabel(’t’);ylabel(’Error’);
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RUNGE-KUTTA METHOD-MATLAB CODE FOR BOUNDARY VALUE

PROBLEM

%RK for the Boundary Value Problems(linear Oscillator)

h=1/16; t=0:h:100; n=100/h+1; beta=90; betax=-0.4481; U=[1;0];

V=[0;1]; for j=1:n

ye(j)=cos(t(j));

end AU=[0 1;-1 0]; AV=[0 1;-1 0]; for i=1:n

u(i)=U(1,1);

if t(i)==beta

ku=u(i);

end

V1U=AU*U;

U2=U+((h/2)*V1U);

V2U=AU*U2;

U3=U+((h/2)*V2U);

V3U=AU*U3;

U4=U+(h*V3U);

V4U=AU*U4;

U=U+((h/6)*(V1U+2*V2U+2*V3U+V4U));

end for i=1:n

v(i)=V(1,1);

if t(i)==beta

kv=v(i);

end

V1V=AV*V;

V2=V+((h/2)*V1V);

V2V=AV*V2;

V3=V+((h/2)*V2V);

V3V=AV*V3;

V4=V+(h*V3V);

V4V=AV*V4;

V=V+((h/6)*(V1V+2*V2V+2*V3V+V4V));

60



end

c1=(betax-ku)/kv;

for i=1:n

y(i)=u(i)+c1*v(i);

em(i)=ye(i)-y(i);

end

subplot(211) plot(t,y,’b’);grid;xlabel(’t’);ylabel(’x-RK4’);

subplot(212); plot(t,em,’r’);grid;xlabel(’t’);ylabel(’Error’);

MAGNUS SERIES METHOD-MATLAB CODE FOR SECOND ORDER SYS-

TEM

%Magnus for the Second Order System

M=[1;0;0;0]; h=1/16; t=0:h:200; n=200/h+1; for i=1:n

xe(i)=(airy(3,0)*airy(-t(i))-airy(1,0)*airy(2,-t(i)))/

(airy(0)*airy(3,0)-airy(1,0)*airy(2,0));

end for i=1:n

ye(i)=(airy(3,0)*airy(1,-t(i))-airy(1,0)*airy(3,-t(i)))/

(airy(0)*airy(3,0)-airy(1,0)*airy(2,0));

end for i=1:n

x(i)=M(1,1);

y(i)=M(3,1);

k1=t(i)+h*(1/2-(sqrt(3)/6));

A1=[0 1 0 0;-k1 0 0 0;0 0 0 1;-1 0 -k1 0];

k2=t(i)+h*(1/2+(sqrt(3)/6));

A2=[0 1 0 0;-k2 0 0 0;0 0 0 1;-1 0 -k2 0];

b=A1+A2;

c=A1*A2-A2*A1;

d=A1-A2;

e=d*c-c*d;

sigma=((1/2)*h*b)-((sqrt(3)/12)*hˆ2*c)+((1/80)*hˆ3*e);

M=expm(sigma)*M;

ex(i)=xe(i)-x(i);

ey(i)=ye(i)-y(i);
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end subplot(211); plot(t,ex,’b’);grid;xlabel(’t’);subplot(212);

plot(t,ey,’b’);grid;xlabel(’t’);ylabel(’Error of y’);

RUNGE-KUTTA METHOD-MATLAB CODE FOR SECOND ORDER SYS-

TEM

%RK4 for the Second Order System

M=[1;0;0;0]; h=1/16; t=0:h:100; n=100/h+1; for i=1:n

xe(i)=(airy(3,0)*airy(-t(i))-airy(1,0)*airy(2,-t(i)))/

(airy(0)*airy(3,0)-airy(1,0)*airy(2,0));

end for i=1:n

ye(i)=(airy(3,0)*airy(1,-t(i))-airy(1,0)*airy(3,-t(i)))/

(airy(0)*airy(3,0)-airy(1,0)*airy(2,0));

end for i=1:n

x(i)=M(1,1);

y(i)=M(3,1);

A1=[0 1 0 0;-t(i) 0 0 0;0 0 0 1;-1 0 -t(i) 0];

V1=A1*M;

A2=[0 1 0 0;-t(i)-h/2 0 0 0;0 0 0 1;-1 0 -t(i)-h/2 0];

M2=M+(h/2)*V1;

V2=A2*M2;

A3=[0 1 0 0;-t(i)-h/2 0 0 0;0 0 0 1;-1 0 -t(i)-h/2 0];

M3=M+(h/2)*V2;

V3=A3*M3;

A4=[0 1 0 0;-t(i)-h 0 0 0;0 0 0 1;-1 0 -t(i)-h 0];

M4=M+h*V3;

V4=A4*M4;

M=M+((h/6)*(V1+2*V2+2*V3+V4));

ex(i)=xe(i)-x(i);

ey(i)=ye(i)-y(i);end subplot(211); plot(t,ex,’b’);grid;

xlabel(’t’);ylabel(’Error of x’);subplot(212);

plot(t,ey,’b’);grid;xlabel(’t’);ylabel(’Error of y’);
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