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ABSTRACT

In the scope of this study, preparation of silver – natural zeolite reinforced

polypropylene (PP) composite system possessing antibacterial properties via ion

exchange process and characterization by means of different techniques (FTIR, TGA,

DSC, mechanical tests, optical microscopy) were aimed. It has been established that

zeolites are suitable for removing Ag ions from silver containing solutions and that

silver zeolites are increasingly investigated as germicidal, bactericidal, antifungal, and

antiseptic components in different compositions (Hagiwara 1990, Kawahara 2000,

Klasen 2000).

In the present study, prior to the ion exchange studies, water sorption behavior

of PP – clinoptilolite rich natural zeolite composites was investigated, since the ion

exchange process was to be conducted in aqueous media. It was observed that a

hydrophobic polymer, PP attained the property of water sorption due to the porous

structure of the composite films. The effective diffusivity of liquid water in the PP –

zeolite composites prepared by hot press and extrusion techniques varied in the range of

0.3 – 9.9 x10-10 and 0.1 – 3.3 x10-12 cm2/s, respectively. Silver loading to PP - zeolite

composites was provided by means of two different methods. In Method I, PP - zeolite

composite films were treated with a variety of silver ion containing solutions (5 to 50

ppm AgNO3 solution), whereas in Method II silver exchanged zeolite minerals

(prepared with initial AgNO3 concentrations of 50, 500, and 5000 ppm) were molded

with PP in the presence of DOP (Dioctyl Phthalate).  The amounts of Ag+ loaded per

gram of zeolite for initial AgNO3 concentrations of 50, 500, and 5000 ppm were

determined as 4.36, 27.85, and 183.78 mg, respectively. Antibacterial activity tests

against E.coli indicated that the samples obtained in Method II were superior to those

prepared by Method I since the penetration of silver ions to the zeolite phase was

limited by the PP phase in the case of Method I.  However, the discoloring effect of

silver ion was readily observed for the samples prepared by Method II as indicated by

the discoloration parameters. The release of Ag+ to water was found to be negligible as

reported in literature leading to long – term antibacterial activity.

The thermal characterization studies showed that the addition of the zeolite

increased the crystallinity of the structure acting as a nucleating agent in PP

crystallization as well as retarded the degradation temperature of PP. At low silver
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concentrations, the zeolite behaved as a decelerating agent in PP, however at higher

silver concentrations, the composites degraded at a faster rate than pure PP. Yet the

activation energy values for the thermal decomposition reactions of Method II was

considerably lower indicating that the decomposition has been accelerated by the

presence of silver.

It was found that the addition of the zeolite into the PP matrix decreased the

density of pure PP (0.89 g/cm3) due to the formation of voids. However, a systematic

approach was not observed with the increasing zeolite content as a consequence of the

uneven zeolite distribution. On the other hand, a considerable enhancement was noticed

for the tensile tested film densities changing between 0.58 – 0.78 g/cm3, which are in a

better agreement with the commercially desired range (0.6 – 0.65 g/cm3) for packaging

applications of PP composites. Mechanical tests indicated that the addition of the zeolite

tended to decrease the yield stress values while a slight decrease was observed for

Young moduli. The effect of silver on the Young Modulus values of the composites is

not quite significant, however the yield stress values increased from 23.6 to 29.5 MPa

with the increasing silver concentration.

Consequently, of all the composite films prepared by Method II, the ones loaded

with 4.36 (mg Ag+/g zeolite) containing 2, and 4 % wt zeolite were selected to be the

most appropriate, considering the thermal, mechanical, and structural characteristics as

well as the discoloring actions.



ÖZ

Bu çalõşma kapsamõnda, polipropilen (PP) ile gümüş yüklü doğal zeolitten

oluşan antibakteriyel kompozitlerin ekstrüzyon yöntemi ile geliştirilmesi ve farklõ

teknikler kullanõlarak (FTIR, TGA, DSC, mekanik testler, optik mikroskop) karakterize

edilmesi amaçlanmõştõr. Zeolitlerin gümüş iyonu içeren çözeltilerden gümüşün

uzaklaştõrõlmasõnda uygun olduklarõ saptanmõş olup son zamanlarda gümüş formundaki

zeolitlerin değişik kompozisyonlarda antifungal, bakteriyel ve antiseptik davranõşlarõ

ilgiyle incelenmektedir (Hagiwara 1990, Kawahara 2000, Klasen 2000).

Bu çalõşmada, iyon değişimi denemelerine öncelikle, klinoptilolitçe zengin

doğal zeolit � PP kompozitlerin su sorpsiyonu davranõşõ incelenmiştir. İyon değişimi

işlemi sulu bir ortamda gerçekleşeceğinden kompozit malzemelerin bu ortamda nasõl

davrandõğõ gözlenmiş ve hidrofobik bir malzeme olan polipropilenin oluşan gözenekli

yapõya bağlõ olarak su çekme özelliği kazandõğõ görülmüştür. Suyun sõcak pres ve

ekstrüzyon metodu ile hazõrlanmõş PP � zeolit kompozitlerdeki etkin difüzyon katsayõsõ

sõrasõyla 0.3 � 9.9 x10-10 ve 0.1 � 3.3 x10-12 cm2/ s aralõğõnda değişmektedir. PP � zeolit

kompozitlere gümüş yüklemesi iki metotla gerçekleştirilmiştir. Metot I de PP � zeolit

kompozit filmler farklõ miktarlarda gümüş iyonu içeren ( 5 � 50 ppm AgNO3 )

çözeltilerle muamele edilmiş, Metot II de ise farklõ gümüş derişimlerindeki ( 50, 500, ve

5000 ppm AgNO3 ) çözeltilerle iyon değişimine tabi tutulmuş zeolit mineralleri DOP

ortamõnda PP ile kalõplanmõştõr. İyon değişimi prosesinde 50, 500, ve 5000 ppm Ag+

içeren çözeltilerden gram zeolit başõna yüklenen gümüş miktarõ sõrasõyla 4.36, 27.85, ve

183.78 mg olmuştur. E. coli ye karşõ yapõlan antibakteriyel testler Metot II ile

hazõrlanmõş kompozitlerin Metot I e göre hazõrlananlardan daha iyi sonuç verdiğini

göstermiştir. Bu da Metot I ile hazõrlanan kompozitlerde gümüşün zeolite ulaşmasõnõn

PP fazõ tarafõndan engellenmesinden kaynaklanmõştõr. Ancak, Metot II ile hazõrlanan

örneklerde gümüşün renk üzerindeki etkisi renk bozunma parametrelerinde de

görüldüğü gibi gözle görülebilir seviyede olmuştur. Gümüş iyonunun suya geri salõnõmõ

ise literatürde de belirtildiği gibi ihmal edilebilir düzeydedir ki bu da antibakteriyel

etkinin uzun ömürlü olmasõnõ sağlamaktadõr.

Termal karakterizasyon çalõşmalarõ  zeolitin aşõ kristali gibi davranarak yapõdaki

kristallik oranõnõ arttõrdõğõnõ ve  PP�nin bozunmasõnõ geciktirdiğini göstermektedir.

Düşük gümüş derişimlerinde, zeolit  PP içerisinde yavaşlatõcõ etki yaparken yüksek
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gümüş derişimlerinde ise bozunmayõ hõzlandõrmõştõr. Metot II ile hazõrlanmõş örneklerde

termal bozunma reaksiyonlarõnõn aktivasyon enerjilerinin Metot I�e kõyasla daha düşük

olmasõ da zeolitin ve dolayõsõyla artan gümüş miktarõnõn bozunmayõ hõzlandõrdõğõnõ

göstermektedir.

PP fazõna zeolitin eklenmesi ile  PP�nin 0.89 g/cm3 olan yoğunluğunda yapõda

oluşan boşluklardan dolayõ azalma gözlemlenmiştir. Ancak, bu oranlar zeolitin PP

fazõnda düzensiz dağõlmõş olmasõndan dolayõ  artan zeolit miktarõna bağlõ olarak

sistematik bir değişim göstermemektedir. Gerdirilmiş filmlerde ise 0.58 ile 0.78 g/cm3

arasõnda değişen yoğunluklarõn ticari olarak istenen aralõkla  (0.6 � 0.65 g/cm3) daha

uyumlu olduğu görülmüştür. Mekanik testler, zeolitin ilavesi ile yapõnõn akma

geriliminin düştüğünü, Young modül değerlerinin ise ihmal edilebilir derecede

azaldõğõnõ göstermektedir. Gümüş iyonunun ise Young modülü üzerindeki etkisi belirsiz

iken akma gerilimi değerleri gümüş miktarõ ile orantõlõ olarak  23.6 MPa dan 29.5

MPa�a artmõştõr.

Sonuç olarak, Metot II ile hazõrlanmõş kompozitler içerisinde 4.36 (mg Ag+/ g

zeolite) ile yüklenmiş ve ağõrlõkça % 2 ve 4 zeolitin içerenlerin termal, mekanik, yapõsal

özellikleri ve renk bozunma parametreleri göz önüne alõndõğõnda en uygun olduklarõ

saptanmõştõr.
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Chapter 1

INTRODUCTION

The development of a new science and art such as that of composites occurred at

irregular intervals over a period of years, and such developments are continuing and will

continue in the future.

Polymer composites are materials comprising of polymers as matrix materials,

surrounding very small reinforcing fibers and or fillers. The idea behind the production of a

composite material is to yield superior characteristics than that of the individual

components making up the composite. That is, the individual advantages of different

materials are being combined to be used in different applications.

Polymers are the most widely used matrix materials compared with ceramic or

metal matrices mainly because they are easy to handle and process. Glass fibers, carbon

fibers, and particulate fillers can be used as reinforcing materials. The primary advantages

of polymeric composites can be listed as increase in stiffness, strength, and dimensional

stability, reduced permeability to gases and liquids, and reduced cost.

Polypropylene (PP) is among the most widely exploited thermoplastic polymers and

is of increasing practical importance because of its good comprehensive use, light weight

(0.9 g / cc), chemical resistance, low cost, ease of processing, and recycling properties. It

finds various application fields depending upon these properties such as; food packaging,

medical delivery systems, carpets, fibers, protective coating, automobile, electrical and

furniture industries. Some of the applications of PP appeared because no other plastic resin

was capable of performing. Most applications, however, evolved over time as PP

demonstrated improved economics or enhanced performance over other thermoplastic

polymers, that it has become the polymer of choice. Still, some of the applications are

limited to some extent due to certain drawbacks (Moore, 1996).

 To improve the mechanical properties of PP such as impact toughness, strength,

hardness, and the like, extensive studies on improving the mechanical properties using

particulate fillers into the polymer matrices have been carried out in the last twenty years.

Among the particulate fillers, talc, mica, calcium carbonate are the most used ones.
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Levita et al. (1989) studied the strength and fracture properties of polypropylene

filled with calcium carbonate. Untreated and surface treated (stearic acid, and titanate

coupling agent) grades have been considered. The untreated filler caused a decrease of

toughness whereas a maximum at ~10 % increase was observed for the treated filler.

Maiti et al. (1992) studied the tensile and impact properties of talc-filled isotactic

polypropylene composites. Tensile strength and breaking strain decreased while tensile

modulus increased with filler content. Surface treatment of talc with a titanate-coupling

agent modified the composite properties further. Interphase interaction increased, which in

turn increased the tensile modulus over the values with unmodified talc.

   Liang et al. (1998) studied the effects of filler content and size on the mechanical

properties such as tensile modulus, yield strength, and impact strength of glass bead – filled

polypropylene composites. With the increasing filler content, elastic modulus, and impact

strength increased whereas yield strength decreased non-linearly. The results showed that

the stiffness, and the toughness of the composites were effectively improved by the

addition of glass beads.

In recent studies, different types of zeolite minerals; either natural (clinoptilolite,

mordenite, chabazite), or synthetic (A- type, X- type, Y - type) are being employed as

particulate fillers. All commercial zeolites owe their value to one of the following

properties: ion exchange, adsorption, and catalysis. They have unusual crystalline structures

that give them unique chemical properties. For instance, in one gram of natural zeolite, the

channels can provide up to several hundreds of square meters of surface area on which

chemical reactions can take place. Natural zeolites can also absorb up to 30% of its dry

weight of gases such as nitrogen or ammonia.  Studies are reported on the removal of lead,

silver, and cadmium by clinoptilolite in the presence of competing concentrations of

calcium, magnesium, and sodium via ion exchange process (Semmens et al. 1979). It has

been established that zeolites are suitable for removing Ag ions from silver containing

solutions.

Silver zeolites are increasingly investigated as germicidal, bactericidal, antifungal,

and antiseptic components in different compositions (Kawahara, 2000). Since the growth of

pathogenic microorganisms and their penetration into the body is the main problem, studies

were being established for an antiseptic agent to prevent invasive infection. Klasen (2000)
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investigated the silver as a source of antiseptic agent. Silver salts appeared to meet the

requirements to be considered as an antiseptic agent. It was thought that this antibacterial

activity was caused by adsorption of silver into the microorganisms. But then it was

reported that there was the case that the microorganisms loose the ability of colony forming

without adsorption of silver. In this case, silver was incorporated in the inorganic

compound not in the solution freely. Recently the modification of inorganic compound by

the addition of silver became attractive to protect the circumstances from the diseases

originating from microorganisms.

Metallic silver also finds application areas in dentistry. Ionic silver has the highest

antibacterial activity among metal ions and a variety of silver compounds have been used

as topically applied agents for treatment of burns and ocular infections (Kawahara, 2000).

Although an extensive amount of work has been done related with polypropylene

based composite systems, most of the studies were conducted with calcium carbonate, talc,

or mica and not much work is cited with zeolite as a filling material. Özmıhçı (1999)

investigated the preparation and characterization of natural zeolite – polypropylene

composites. In the so called study, PEG 4000 (Polyethylene Glycol) was selected as the

surface modification material among different materials, which were calcium stearate, and

stearic acid because in the case of PEG 4000, the agglomerates of the zeolite particles were

broken into smaller particles to a higher extent than the other modification materials. Dirim

(2000) studied the manufacture of a new protective polyethylene based film containing

natural zeolite for food packaging. In the scope of the present study, preparation and

characterization of silver- zeolite reinforced polypropylene; a composite system possessing

antibacterial properties is aimed.

In this thesis, preparation and characterization of polypropylene - silver ion

exchanged natural zeolite – PP composites are outlined. Chapter 2 presents general

information on polymer composites and introduces the matrix and the filler to be used in

this study. In Chapter 3, ion exchange process in connection with natural zeolite is

discussed. Chapter 4 deals with sorption and diffusion phenomena in polymers. In Chapter

5 the characterization methodology used for the polymers is given. Chapter 6 presents

information related with the microbiological aspects of this study. In Chapter 7 and 8, the

experimental of this study, the materials and the methods, followed by the results and
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discussions are given. Finally, Chapter 9 presents an over review of the work with the

possible recommendations for future studies, highlighting the final results.



Chapter 2

POLYMER COMPOSITES

Composite materials may be defined as materials made up of two or more

components and consisting of two or more phases. Such materials must be heterogeneous at

least on a microscopic level.

There is no really adequate definition of a composite material, but there are three

major points to be included in a definition of an acceptable composite   material.

(i) It consists of two or more physically distinct and mechanically separable

materials

(ii) It can be prepared by mixing the separate materials in such a way that the

dispersion of one material in the other can be done in a controlled way to

achieve optimum properties.

(iii) The properties are superior, and possibly unique in some specific respects, to

the properties of the individual components.

Composite materials may be divided into three general categories: (1) particulate –

filled materials consisting of a continuous matrix phase and a discontinuous filler phase

made up of discrete particles, (2) fiber – filled composites, and (3) skeletal or

interpenetrating network composites consisting of two continuous phases (Nielsen et al.,

1974).

The rapid growth of the composite materials has been achieved mainly by the

replacement of traditional materials, primarily metals. This suggests that, in some respects,

composite materials have superior properties.

The properties of the composites are determined by the properties of the

components, by the shape of the filler phase, by the morphology of the system, and by the

nature of the interface between the phases (Nielsen et al., 1974). Hence, by combining the

individual advantages of the components, composites with superior characteristics can be

obtained.
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Many commercial polymeric materials are composites, although they are often not

considered as such. Examples include polyblends and ABS materials, foams, filled poly

(vinyl chloride) formulations used in such applications as floor tile and wire coatings, filled

rubbers, thermosetting resins containing a great variety of fillers, and glass or graphite

fiber – filled plastics. The reasons for using composite materials rather than the simpler

homogeneous polymers can be listed as follows: (Nielsen, 1974).

(i) Increased stiffness, strength, and dimensional stability

(ii) Increased toughness or impact strength

(iii) Increased heat distortion temperature

(iv) Reduced permeability to gases and liquids

(v) Modified electrical properties

(vi) Reduced cost.

In the present study, polypropylene was used as the matrix material while

clinoptilolite; a natural zeolitic tuff was employed as the filling material.

2.1 Matrices

2.1.1 Polypropylene

Polypropylene  (PP) is among the most widely used thermoplastic polymers and of

increasing practical importance because of its comprehensive use, low cost, ease of

processing and recycling. It has various application areas such as packaging, protective

coating, automobile, electrical and furniture industries.

PP can be synthesized by the Ziegler – Natta polymerization  (coordination

polymerization) using metallocene catalyst.

The two most critical features of a base polypropylene are its molecular weight and

its tacticity  (polymer - chain configuration). Molecular weight has the strongest influence

on processing characteristics, and the main effect of tacticity is to determine physical

properties.
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Polymers with ordered spatial distribution of chain links are called stereoregular,

whereas those with a random spatial distribution are called atactic. The relative contents of

the stereoregular and the atactic fraction of polypropylene, which determine to a large

extent the properties of the polymer, will depend on the identity of the catalyst and on the

conditions of the polymerization. Catalysts on the basis of TiCl3 and alkyl aluminum

halide, which contain electron-donating additives such as pyridine are highly stereospecific

and yield a polypropylene, which is almost totally crystalline. If the polymerization

temperature is decreased, the content of the stereoregular fraction increases.

The propylene molecule is composed of 3 C atoms and 6 H atoms and possesses

one double bond.  The double bond is the site for initiation of the polymerization reaction.

The third carbon atom is the feature that allows the formation of the various possible chain

structures.

The crystallizability of the chain is a critical factor controlling the resultant

morphology. The degree of crystallinity of polypropylene homopolymer is governed

primarily by the tacticity of the chain. Isotactic chains result from the head - to - tail

addition of propylene monomer units, where the methyl groups always have the same

configuration with respect to the polymer backbone. Syndiotactic chains result from the

same head - to - tail addition of monomer units, but the methyl groups have an alternating

configuration with respect to the polymer backbone. Atactic chains do not have any

consistent placement of the methyl groups. Figure 2.1 shows a schematic of isotactic,

syndiotactic, and atactic polypropylene chains (Moore, 1996).

 

Figure 2.1.Schematic illustrations of the stereochemical configurations of PP:

A) Isotactic PP, B) syndiotactic PP, C) atactic PP
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The properties of the polypropylene making it valuable can be listed as follows:

(Moore, 1996).

•  Fairly low physical properties

•  Fairly low heat resistance

•  Excellent chemical resistance

•  Translucent to opaque

•  Low price

•  Easy to process

The nature of polypropylene is that of a high molecular weight organic material. Its

semi crystalline form is enabled by the regularity of the polymer chain. It typically

combines mechanical strength, stiffness, high softening point, and low density. The

drawbacks of polypropylene include embrittlement at low temperatures and poor resistance

to oxidants, heat and UV radiation (Moore, 1996).

Since polypropylene and its derivatives (blends and copolymers) are very

susceptible to thermal and light induced oxidation, it is indispensable to stabilize any

polypropylene based product in order to guarantee long – term performance. For this

purpose, a variety of stabilizing additives has been developed. Processing stabilizers protect

the polymer during compounding. Antioxidants and light stabilizers are added to minimize

the damaging effects of heat and light in the surface.

2.2 Fillers

Fillers have been used in natural rubber, paints, and celluloid for over a century.

The first large-scale use was the reinforcements of phenolic resins by attrition ground wood

(wood flour) by Baekeland in the early 1900s. As in the case with Bakelite, the filler

increases hardness and mechanical properties and reduces shrinkage but usually increases

the specific gravity of the composite (Seymour, 1990).
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The term ‘reinforcement’ is used to denote the increase in rigidity and strength

achieved by dispersing inorganic fibers or particulate fillers in the polymer matrix (Mascia,

1982).

Filler particle morphology must be considered in the design of a polymeric

composite since nonresinious particles obstruct resin flow.  The resistance to flow is greater

for composites with acicular (needle like) particles than for those with more regular shapes,

such as spheres. The particle shape is related to its length to diameter or aspect ratio. The

term ‘loading’ is used to describe the concentration of fillers present in a composite.

Some fillers such as carbon black, and surface-treated fillers, are actually bonded to

the macromolecular chains in the matrix. Others may be considered as non-reactive fillers

but they do immobilize the polymer chains as attested by an increase in glass transition

temperature (Tg). However, the non-reactive fillers have less effect than most reactive

fillers on modulus and heat deflection temperature of the composites.

Fillers have been classified in accordance with source, function and importance.

The use of properly selected fillers extends the resin supply, and the use of coupling agents

with these composites improves performance of plastics and reduces costs and energy

consumption. The most widely used particulate  fillers depending on the needs can be listed

as follows: calcium carbonate, kaolin, silica, talc, mica, alumina, carbon black, clay, and

zeolite.

Levita et al. (1989) used calcium carbonate, Rochette et al. (1988) used mica, and

Alonso et al. (1997) used talc as with polypropylene for different purposes.

2.2.1 Zeolites

Zeolites are framework silicates consisting of interlocking tetrahedra of SiO4 and

AlO4. Unlike most other framework silicates, zeolites have large vacant species in their

structures that allow space for large cations such as sodium, and calcium ions to reside with

water molecules. The species can be interconnected and form channels of varying sizes

depending on the mineral (Dyer, 1984).  Compositionally, zeolite is similar to clay minerals

in that both are alumino – silicates. They differ,  however,  in their crystal structure. Clay
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has a layered structure (similar to a deck of cards) and is subject to shrinking and swelling

as water is absorbed and desorbed between the layers.

Zeolites, on the other hand, have a rigid 3 dimensional crystal structure (like a

honeycomb) consisting of a network of interconnected tunnels and cages. Water can move

in and out of these pores, but the zeolite framework remains rigid. The structure creates

molecular sized channels, and pores that are host to loosely attached molecules of water

and ions of Na, K, or Ca. The ions can be exchanged for other present ions in the

environment. Uniform pore or channel sizes allow the crystal to act as a molecular sieve,

admitting certain molecules of gasses or liquids into the crystal while rejecting others based

upon their molecular size. Physical and chemical properties of zeolites vary among zeolite

types. The differences are primarily due to differences in crystal structure, and chemical

composition. Properties such as particle density, theoretical CEC (Cation exchange

capacity), cation selectivity, void volume, molecular pore size, and crystal shape vary

depending on the zeolite type under consideration.

Physical and chemical properties also vary for zeolites of the same type (from

different sources) usually determined by the environmental conditions. One important

difference between zeolites is the composition of the exchangeable cations residing in the

zeolite. Exchange sites on natural zeolites are predominantly occupied by 3 major cations:

K, Ca, and Na. Frequently a small amount of Mg is also present. The empirical formula of

zeolite is:

xM2/n O.Al2O3. ySiO2. zH2O

M- exchangeable ion

n- atomic valency of metal ion

x,y-coefficients of metal oxide and silica respectively

z-number of water of crystallization

The unusual crystalline structure of zeolites provides them unique properties. In one

gram of zeolite, several hundred square meters of surface area may be present on which

chemical reactions can occur. Natural zeolites can absorb up to 30% of their dry weight of

gases such as nitrogen or ammonia. The schematic of the natural zeolite structure is shown

in Figure 2.2. The primary-building units combine to form the secondary-building units,

which the zeolite structure is comprised of.
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Figure 2.2. The Structure of Zeolite.

Clinoptilolite, a rare hydrothermal mineral, genesis of hydrological closed system

like a saline, alkaline lake is very common and has been investigated in many times.

Idealized chemical formula of clinoptilolite is (Na, K) 6 (Al6Si30O72) 20H2O & Ca, K, & Mg

may  also be  present in the clinoptilolite content. Si / Al ratio varies along 4.25 – 5.25 and

the density is about 2.16 g/cc (Gottardi and Galli, 1985). Clinoptilolite containing plenty of

potassium, is called as kaliclinoptilolite. It has strong ability to NH4. Most of the

components of clinoptilolite are Na, and K; the content of Ca is less than that of Na and K.

Clinoptilolite is colorless or white. It is transparent to translucent.

Zeolites can be modified in many ways to become active gaseous adsorbents, to

remove or concentrate gaseous pollutants, act as catalyst in chemical manufacturing, serve

as fillers for composite paper, rubber, plastics or ceramics, to produce specialty low density

concrete products, animal feed supplements and scores of other uses. In recent studies

silver form of natural zeolites are being investigated as antibacterial agents to be used in

various applications (Hagiwara 1990, Kawahara 2000, Klasen 2000, Olguin 2000).

2.3 Surface Modification

Surface modification of fillers is essential to give improved properties to plastics. A

wide range of surface modifiers are offered and used commercially, ranging from the

inexpensive fatty acids to silanes, titanates and zirconates. All treatments in commercial use
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are chosen to bond an organic molecule chemically to the filler surface. The most common

functionalities used to produce bonding with the filler surface are acids or acid precursors,

and alkoxysilanes. Improvements in mechanical properties, dispersion of the filler (leading

to improved properties), improved rheology and higher filling loading have all been

reported to accrue from rendering the surface more hydrophobic and hence compatible with

the polymer or by enabling the filler to bond covalently, through hydrogen or ionic bonds

to the polymer; or by changing the physical nature of the interface so that energy absorption

can occur.

It is generally accepted that besides the dimensions, shape and modulus of the

reinforcement filler, the adhesion between the particle and the polymeric matrix plays a

basic role on the stiffness and toughness of the material When the organic molecule is a

simple hydrocarbon, then the coating will generally aid filler incorporation and dispersion,

but does not form a strong bond with the polymer matrix. If strong bonding is required,

then a further functionality capable of forming a covalent bond with the matrix is also

incorporated into the coating molecule. These biofunctional coatings are generally known

as ‘coupling agents’ because of their ability to chemically couple the filler to the matrix

polymer (Alonso et al. 1997, Hancock et al. 1995).

Ulutan and Balköse (1997) studied the interfacial enhancement of flexible PVC –

silica composites by the application of γ - aminopropyl trimethoxysilane on silica. Silane

application resulted in diminishing liquid water and water vapor sorption by about 24 %

and 11.9 % respectively.

Xavier and Schultz (1990) studied the influence of mica surface treatments in

polypropylene composites. They used isopropyl triisostearoyl titanate (TTS) and

3 - aminopropyl triethoxysilane and investigated the effect of surface treatment on the

microstructure and fracture propagation in the composites. Improved interfacial adhesion

was observed in the case of silane treated mica composites.

Rochette et al. (1998) studied the rheological properties of mica filled

polypropylene composites. The effect of mica concentration and of a silane-coupling agent

on material functions such as the complex viscosity, the storage modulus, and the loss

modulus was examined. The affinity of PP for the treated and non-treated mica was

characterized. It was observed that for low mica concentrations, the composite exhibits the
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classical viscoelastic behavior of a homogeneous material. For higher mica concentration,

the material showed a strong heterogeneity. It was also found that the presence of a silane-

coupling agent moves this critical concentration value up to 40 % by weight. Interactions

between mica particles are promoted when there is no surface treatment resulting in the

formation of aggregation of mica flakes. The presence of a coupling agent improves the

homogeneity of the composite, its elastic modulus, and increases the affinity of PP for

mica.

Alanso et al. (1997) studied the crystallization and activity of filler in surface

modified talc polypropylene composites. They concluded that in injected samples the

original treated talc produces a sensible effect of orientation on the matrix structure. The

interaction between filler and matrix was appreciably higher when the talc has been

functionalized.

Mitsuishi et al. (1995) investigated the crystallization behavior of polypropylene

filled with surface- modified calcium carbonate. Alkyl dihydrogen phosphates were used to

improve the affinity of the relation between CaCO3 and the PP matrix.

In literature much more studies were conducted especially about the surface

modified calcium carbonate polypropylene composites performed with different modifiers.

For instance, Akovalı and Akman (1997) modified calcium carbonate by plasma –

polymerized acetylene, Demjen and Pukanszky (1997) used eight different trialkoxy

functional silane-coupling agents and the routinely used stearic acid for comparison.

2.4 Additives

In addition to the fillers, and reinforcements, used in polymer composites, there are

also many functional additives used with or without fillers to improve the useful properties

of polymers. Some examples to these additives can be listed as antiblocking agents,

antifoaming agents, accelerators, antioxidants, antimicrobials, blowing agents, colorants,

coupling agents, flame retardants, heat stabilizers, lubricants, plasticizers, odorants, and the

like.



14

2.4.1 Antimicrobial Agents

The term ‘antimicrobial’ or ‘biocide’ includes algicides, bactericides, bacteriostats,

fungicides, and germicides, etc. Nowadays, different methods for antimicrobial property are

increasingly investigated. Main antimicrobial agents currently under investigation or in use

include natural antibacterial agents such as chitin, chitisan, tea extracts, inorganic

compounds such as titanium oxide particles, zinc oxide, silver containing zeolite, and

synthetic antibacterial agents such as organic ammonium salt compounds (Barry et al.

2000, Niira et al. 1990, Kawahara et al. 2000, Olguin et al. 2000).

Natural antibacterial agents and inorganic antibacterial agents, typically silver are

now attracting attention in review of their safety from toxicity.

In recent years, antibacterial goods, having an inorganic and / or antibacterial agent

incorporated therein or applied are becoming available in the market; such as used in wall

carpeting, rugs, antibacterial fabric and fiber production, antibacterial film and the like.

2.4.2 Plasticizers

A relatively small amount of external plasticizers is used to improve the flexibility

of cellulose esters and acrylics but the major use is for the plasticization of PVC. Small

amounts of plasticizers will actually increase the modulus (stiffness) of PVC and this effect

is called antiplasticization (Seymour, 1990).

According to the viscosity theory, developed by Leitech in 1943, plasticizers

function by modifying the rheological properties of polymers and thus, those having low

temperature coefficients of viscosity have mechanical and electrical properties that are less

sensitive to temperature.

According to lubricity theory, the plasticizer reduced the intermolecular friction

between the polymer chains and allows the macromolecules to slide by each other. Another

theory, i.e., the free volume theory, assumes that movement of polymer chains is dependent

on the movement of chain segments into the free space between the molecules. The free

volume is increased by the addition of plasticizers; thus, the ease of segment mobility is

increased and the glass transition temperature (Tg) is reduced.
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The addition of plasticizer also lowers the hardness, modulus, and tensile strength

of a polymer. Thus, plasticizer efficiency may be estimated by comparing the amount of

additive required to achieve a specified tensile modulus at room temperature.

Phthalates account for almost 70 % of all plasticizers used. The phthalate

plasticizers include (di (2-ethyhexyl) phthalate (DOP), diisooctyl phthalate (DIOP),

diisononyl phthalate (DINP), and diisodecyl phthalate (DINP). The volatility of these

phthalates decreases as the size of the alcohol group increases.

In this study, silver nitrate was used as a source of silver ion for its antimicrobial

activity and dioctyl phthalate  (DOP) was used as a plasticizer.



Chapter 3

ION EXCHANGE

3.1 Ion Exchange Mechanism

Ion exchange basically is a chemical reaction between ions in solution and ions in

an insoluble phase. In ion exchange, certain ions are removed by the ion exchange solid,

since electroneutrality must be maintained, the solid releases ions to the solution.

Ion exchangers, by common definition, are insoluble solid materials, which carry

exchangeable cations or anions. These ions can be exchanged for a stoichiometrically

equivalent amount of other ions of the same sign when the ion exchanger is in contact with

an electrolyte solution. Carriers of exchangeable cations are called cation exchangers, and

carriers of anion exchangers, anion exchangers. Certain materials are capable of both cation

and anion exchange. These are called amphoteric ion exchangers.

A typical cation exchange is:

2 NaX + CaCl2 (aq)           CaX2 + 2Na Cl (aq)

A typical anion exchange is:

2 XCl + Na2SO4 (aq)      X2SO4 + 2NaCl (aq)

X represents a structural unit of the ion exchanger; solid phases are underlined; aq indicates

that the electrolyte is in aqueous solution.

Ion exchange resembles sorption in that, in both cases a dissolved species is taken

up by a solid. The characteristic difference between the two phenomena is that ion

exchange, in contrast to sorption, is a stoichiometric process. Each ion, which is removed

from the solution, is replaced by an equivalent amount of another ionic species of the same

sign. In sorption, on the other hand, a solute (an electrolyte or nonelectrolyte) is taken up
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without being replaced by another species. That is, adsorption is the enrichment of one or

more components in an interfacial layer (adsorbent surface + adsorption space), and it may

also be used to denote the process in which adsorptive molecules are transferred to and

accumulated in the interfacial layer (Helfferich, 1962).

Ion exchangers owe their characteristic properties to a peculiar feature of their

structure. They consist of a framework, which is held together by chemical bonds or

lattice energy. This framework carries a  (+) or (-) electric surplus charge which is

compensated by ions of opposite sign, the counter ions. They are free to move within the

framework and can be replaced by other ions of the same sign. The counter - ion content

of the ion exchanger - the so-called ion exchange capacity - is a constant, which is given

solely by the magnitude of the framework charge and is independent of the nature of the

counter- ion.

As a rule the pores are occupied not only by counter ions but also by solvent and

solutes, which can enter the pores when the ion exchanger is in contact with a solution.

3.2 Ion Exchange in Zeolites

Various alumosilicate minerals with cation – exchange properties are known.

Among the different alternative ion exchangers; zeolites have some advantages compared

with the conventional organic resin types. They have a rigid 3 dimensional framework

structure with cavities and channels in which the counter ions can move.

The primary features of zeolites can be listed as: (Alsoy, 1992).

1) They consist of uniform molecular sized channels and cavities through which

cations diffuse in order to undergo exchange in sites, within the crystal.

2) Most zeolites do not undergo any appreciable dimensional change with ion

exchange due to their 3 dimensional framework structure.

3) The aluminum content, that is the number of tetrahedrally oriented aluminum

atoms per unit cell of framework, defines the maximum number of (-) charges

available to cations.
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4) Ion selectivity shown by specific zeolites for one cation over another is unusual

and does not follow the typical rules that can be shown by other inorganic and

organic exchangers.

The cation exchange behavior of zeolites depends upon:

1) Nature of cation species, cation size, and cation charge

2) Temperature

3) Concentration of cation species in solution

4) Anion species associated with the cation in solution

5) The solvent

6) The structural characteristics

The capacity of ion exchangers is defined in terms of the number of inorganic

groups in the material and is usually given in milliequivalents per gram of dry H+ form or

Cl- form of the resin, or per milliliter of swollen resin bed. The capacity, when defined in

this way, is a characteristic constant of the material. The common ion - exchange resins

have capacities between 2 and 10 meq. /g  (Helfferrich, 1962).

Ion exchangers can distinguish between different counter ions. When counter ions

are exchanged, the ion exchanger usually takes up or retains counter ions in preference to

others. This selectivity can arise from one or several of the following physical causes.  The

Donnan potential, a purely electrostatic effect, results    in a preference for the counter ion

of higher valence (electroselectivity), particularly when the ion – exchange capacity is high

and the external solution is dilute. Specific interactions between a counter ion and the fixed

ionic groups- formation of ion pairs or strong complexes – result in a preference for this

ion. In resins and other gels, the tendency of the elastic matrix to contract results in a

preference for the smaller ion (on a solvated equivalent – volume basis), which causes less

swelling. The selectivity of zeolites, which have a regular and rather rigid lattice, is chiefly

determined by lattice forces and by steric effects such as sieve action and space

requirements of the (nonsolvated) counter ions.

The selectivity of ion exchangers is also affected by interactions in the external

solution, particularly by complex formation of the counter ions with the co – ion. The
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counter ion, which forms the weaker complex, is preferred. Thus, by addition of a

complexing agent to the solution, the selectivity of a given ion exchanger can be enhanced

or varied.

Ion exchange is a diffusion process. Its mechanism is a redistribution of the counter

ions by diffusion. The co – ion has relatively little effect on the kinetics and the rate of ion

exchange. The rate determining step in ion – exchange is interdiffusion of the exchanging

counter ions either within the ion exchanger itself (particle diffusion) or in an adherent

liquid, ‘film’ which is not affected by agitation of the solution (film diffusion).

Film diffusion control is favored by high capacity, low degree of cross linking, and

small particle size of the ion exchanger; by low concentration and weak agitation of the

solution; and by preference of the ion exchanger for the counter ion which is taken up from

the solution.  A simple criterion can be used for predicting whether particle or film

diffusion will be rate – controlling under a given set of conditions.

Particle diffusion controlled exchange is more rapid when the counter ion, which is

initially in the ion exchanger, is the faster one. For film diffusion controlled exchange, the

opposite holds. The counter ion, which is preferred by the ion exchanger, is taken up at the

higher rate and released at the lower rate. Factors which favor high rates are high counter

ion mobilities, small particle size and low degree of cross linking of the ion exchanger,

presence of the ion exchanger for the counter ion which is taken up, high concentration and

efficient agitation of the solution, and elevated temperatures.

Ion exchange has found various application fields since 1800, where Moses used

wool particles and Aristotle used silicates as ion exchangers to treat water (Akyıl, 1996).

Many industries including photographic processing, metal finishing, mining and mineral

processing, and oil refining industries all have problems associated with heavy metal

contamination of process and runoff waters. Where metals are present in reasonably high

concentrations, oxidation, reduction and precipitation processes may be used effectively for

their removal. However, recovery may be difficult when the metal (s) is removed as a

minor component in sludge. Where recovery is important, procedures such as solvent

extraction and ion exchange may be used (Semmens, 1979).

Semmens et al. (1979) studied heavy metal removal from saline waters by

clinoptilolite. Different reagents such as zinc nitrate, calcium nitrate, cadmium nitrate, lead
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nitrate, silver nitrate, and magnesium nitrate were used with naturally occurring zeolite

samples. The results indicate the following selectivity sequence: Pb++ > Ag+ > Cd++. The

competing cations strongly influenced the metal exchange with the zeolite. Metal removal

was greatest in exchange in the order of Mg++>Ca++>Na+ for silver. Silver removals were

very effective at low salt concentrations.

Czaran et al. (1988) also studied Ag+ exchange by natural mordenite and

clinoptilolite.  It has been established that both zeolites are suitable for removing silver ions

from silver – containing solutions. Due to the almost complete ion – exchange, the

mordenite and clinoptilolite containing rocks can be advantageously used for the removal

of small amounts of silver ions from the wastewaters of photochemical works. The Ag+

exchange was carried out with 0.15 M AgNO3 solution by letting the samples stand for 24

hours in the dark for preventing the photoreduction of Ag+. The amounts of Ag+ exchanged

into the different cationic forms of clinoptilolite are as follows:

 Na – Cli: 120.7 mg/g Mg – Cli: 59.3 mg/g

K – Cli: 86.6   mg/g Ca – Cli: 75.0 mg/g

NH4 – Cli: 84.3 mg/g Original rock:  74.0   mg/g

The good exchangeability of Ag ions into zeolites can be explained by the high

polarizability of Ag ions.

3.3 Polymer Articles Having Antimicrobial Properties by Ion Exchange Process

It has been known that certain materials such as silver, copper, and zinc or their

compounds are effective as antimicrobial agents. Silver is one of the most commonly used

metal possessing the highest antimicrobial activity.

Several studies describe the antimicrobial compositions in which zeolite particles

are supports for antimicrobial metal ions (Hagiwara 1990, Kawahara 2000, Matsuura 1997,

Olguin 2000). By treating zeolites with solutions of metal ions, a desired antimicrobial

metal ion can be substituted in the zeolite structure. Polymer articles having antimicrobial

properties are made by incorporating the treated zeolites with the polymer or the zeolites
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can be molded with the polymer and then treated with a solution of the desired

antimicrobial metal ion. The use of zeolite particles in polymer articles was described in

detail in recent years (Hagiwara et. al 1990, Matsuura 1997, Kawahara 2000, Klasen 2000,

Olguin 2000).



Chapter 4

SORPTION AND DIFFUSION PHENOMENA IN POLYMERS

Owing to their favorable performances as highly efficient barrier materials,

polymers have been gaining wide use in packaging and protective coatings. At ambient

temperature, low molecular weight substances can easily migrate in polymer-based

materials. The most important of these substances is water. In many of the applications,

the coating may suffer when the material is exposed to atmospheric moisture or is in

contact with liquid water for a long time. This can lead to loss of adhesive strength,

production of cracks, leaching of polymer fragments, corrosion of metallic substrates

and rotting of wood. This damage results from the diffusion of water molecules through

out the polymer chains causing plasticization, local strain, chain rupture, and chemical

degradation (Lekatou A. et al.1996, Metayer M.et al. 1999). When the composites

containing ion exchanged filler, contact with water, the ions in the filler can exchange

back to the water phase altering the properties of the composite materials. Therefore the

knowledge of water sorption behavior in composites and in polymer matrices is

recognized to be utmost importance.

The water molecule is relatively small and in the liquid and solid states is

strongly associated through hydrogen bond formation. This combination of features

distinguishes it from the majority of organic penetrants.  Whereas the diffusion

coefficient generally increases with concentration for an organic vapor, marked

decreases have been observed with water in several polymers.  As a result, strong

localized interactions may develop between the water molecule and suitable polar

groups of the polymer. In Figures 4.1 and 4.2; typical equilibrium sorption isotherms for

hydrophilic and hydrophobic polymers are shown (Crank, 1968).

In order to test water permeability of polymers, various techniques can be used,

which are roughly divided into sorption measurements and permeation measurements.

Sorption kinetics allows the indirect assessment of permeability coefficient P, from both

diffusion coefficient D and solubility coefficient K. Usually, gravimetric methods are

used. These need an insulated and very sensitive microbalance for accurate

measurements; this equipment is often expensive and the method is not specific to water

since interferences with other volatile substances are possible  (Metayer et al. 1999).
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Figure 4.1. Equilibrium Sorption Isotherms for the Natural Fibres and Proteins:

(a) N.F. pectin at 29oC, (b) wool, (c) cotton, (d) secondary cellulose acetate at

30oC.

Figure 4.2. Equilibrium Sorption Isotherms of Hydrophobic Polymers:

(a) polyvinylchloride at 25oC, (b) polystyrene at 25oC, (c) polydimethylsiloxane

at 35oC, (d) polyethylene at 25oC.
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4.1 Sorption Kinetics

The kinetics of water penetration into polymer matrix composites has been

widely studied. However, there have been very few studies of water and aqueous

solution effects on heterogeneous disordered model materials, such as glass microsphe -

reinforced composites. The simplified geometry of the filler and its random three –

dimensional distribution in the matrix can be used for a quantitative rationalization of

the degradation behavior of a whole class of engineering materials.

      Water penetration into polymer matrix composites involves three mechanisms:

(Lekatou et al.1996).

1) Direct diffusion of water molecules into the matrix and, to a much less extent,

into the filler material

2) Flow of water molecules along the filler – matrix interface, followed by

diffusion into the bulk resin

3) Transport of water by microcracks or other forms of microdamage such as pores

or small channels already present in the material or generated by water attack.

Experimental studies have shown that water diffusion into polymer matrix

composites initially follows the Fickian model, i.e. proportionally between mass gain

and the square root of immersion time, which corresponds to the first mechanism. The

latter two mechanisms result in deviations from ideal behavior. In addition, dissolution

of the matrix, as well as dissolution of charged species in liquid films at the filler matrix

interface, have been reported to lead deviations from Fickian behavior, the former in the

form of non – attainment of equilibrium or a decrease in the mass gain after a maximum

water absorption, the latter in the form of double  - step sorption kinetics.

Sorption process can be modeled to determine the concentration in the sample as

a function of time and position using one dimensional diffusion equation (Crank, 1968).

If by some convenient experimental arrangement, the concentrations just within

the surfaces of a plane sheet of thickness, l, are maintained constant, the amount of

diffusant Mt, taken up by the sheet in a time t, is given by Equation 4.1.
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The uptake is considered to be a diffusion process controlled by a constant

diffusion coefficient D, and M∞ is the equilibrium sorption attained theoretically after

infinite time. Equation 4.1 with suitable interpretation of Mt and M∞ also describes

desorption from the same sheet, initially conditioned to a uniform concentration, whose

surface concentrations are instantaneously brought to zero at t = 0. The value of D can

then be determined by using the initial gradient of Mt / M∞ versus (t1/2). This observation

is made easier by the fact that, for a constant diffusion coefficient, the graph for a

sorption experiment is linear within the limits of the experimental errors (Crank, 1968).

Another form of the equation describing sorption and desorption is
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This equation is most suitable for moderate large times, while (4.1) is best used

for small times.

The more simplified form of equation 4.1 for short times can be approximated as

follows:

Π
=

∞

Dt
lM

M t 4 (4.3)

where,

D: diffusion coefficient

Mt: amount adsorbed at time t

M∞: amount adsorbed at equilibrium

l: film thickness of the polymer sample or length of the transport path

t: time
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By constructing a sorption curve, (Mt/ M∞ vs t ), the diffusion coefficient can

be calculated from the initial slope (s) and final equilibrium state of the curve using

Equation 4.4.

2
)(

16
lxsD

Π
= (4.4)

Lekatou et al. (1996) used silane coated glass microspheres embedded in an

epoxy polymer matrix as a model system to investigate water sorption at three water

activities. Increase in water activity lead to a decrease in the effective water diffusivity

due to trapping, especially at interfaces. Higher water activities favored interfacial water

transport, whereas lower water activities favored water transport through the bulk of the

polymer.

Ulutan and Balköse (1996), studied the diffusivity, solubility and permeability

of water vapor in flexible PVC / silica composite membranes.  Using a Cahn 2000

gravimetric adsorption system, equilibrium and rate studies related to water vapor

adsorption on membranes have been performed. For the solubility and diffusivity of

water vapor in membranes, 4.23 – 7.74cm3/(cm3cmHg) and 2.0 - 3.5X10-13m2/s have

been determined respectively. The measured permeability of water vapor through

membranes 1.6 – 7.3 X10-6 ((cm2/s)/(cm2cmHg)) cm were much higher than predicted

permabilities 0.85 – 2.73 X10-8 ((cm2/s)/(cm2cmHg)) cm from solubility diffusion data,

indicating that the membranes had a porous structure.

Metayer et al. (1999), studied the diffusion of water through various polymer

films as new high performance of characterization method. By testing various polymers,

different behaviors with respect to water have been observed, particularly with low

density polyethylene which shows significant hydrophobic properties.

Langevin et al. (2001) investigated the water vapor uptake of sulfonated

polyimides using an electronic microbalance (IGA, Hiden) from 15 to 55oC. The

sigmoidal shape of the water vapor isotherms obtained is decomposed in three sorption

modes: Henry’s, Langmuir’s, and clustering. These three types of sorption are resumed

in Park’s phenomenological equation versus activity. Good agreement is obtained

between experimental and calculated values.
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Although an extensive amount of work has been done in water sorption of pure

polymers and polymeric composites, not much information is found in literature about

liquid water or water sorption in pure PP and its composites. Therefore in this work,

liquid water sorption of PP-zeolite composites prepared by both hot press and extrusion

techniques has been studied as a function of zeolite loading. The methodology is

presented in experimental (chapter 7), whereas the results are given and discussed in the

results and discussion section (chapter 8).



Chapter 5

CHARACTERIZATION OF POLYMER COMPOSITES

Polymer characterization is different from that of ‘small’ molecule

characterization due to a different number of features about polymers. A polymer,

unlike a pure small molecule, contains molecules of different molecular weight.

Therefore, a polymer molecular weight represents an average distribution of the various

molecules with different molecular weights. A bulk of polymeric sample can contain

residual monomer as well as other low molecular weight ‘oligomeric’ species. Some

polymers are amorphous and cannot crystallize into more ordered structures. Some are

semicrystalline exhibiting crystalline melting points as well as glass transition

temperatures and exhibiting x-ray diffraction patterns characteristic of their structures.

For polymer characterization, spectroscopic methods, thermal analysis, optical

microscopy, can be listed as the most common methods that are in use (Sibilia et al.,

1988).

5.1 Thermal Analyses

Thermal analysis (TA) is frequently used to describe analytical experimental

techniques, which investigate the behavior of a sample as a function of temperature. A

selection of representative TA curves is presented in figure 5.1 (Hatakeyama et al.,

1994).

The advantages of TA over other analytical methods can be summarized as

follows (Hatakeyama et al., 1994):

(i) The sample can be studied over a wide range temperature using various

temperature programmes;

(ii) Almost any physical forms of sample (solid, liquid, or gel) can be

accommodated using a variety of sample vessels or attachments;

(iii) A small amount of sample (0.1 µg-10 mg) is required;

(iv) The atmosphere in the vicinity of the sample can be standardized.
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Figure 5.1.Representative TA Curves.

TA data are indirect, and must be collated with results from spectroscopic

measurements (for example NMR, FTIR, X-ray) before the molecular processes

responsible for the observed behavior can be elucidated. The recorded data are

influenced by the experimental parameters, such as the sample dimensions, and mass,

the heating / cooling rate, the nature and composition of the atmosphere in the region of

the sample. The most common forms of TA are listed in Table 5.1 (Hatakeyama et al.,

1994).

5.1.1 Thermogravimetry (TG)

Thermogravimetric Analysis or thermogravimetry (TG) is the branch of thermal

analysis that is used to determine changes in sample weight, which may result from

chemical or physical transformations, as a function of temperature or time. TG is used

to characterize the decomposition and thermal stability of materials under a variety of

conditions, and to examine the kinetics of the physico-chemical processes occurring in

the sample (Hatakeyama et al., 1994, Sibilia et al., 1988). The TG instrument, in

conjunction with differential thermal analysis (DTA) and mass spectrometry, also

provides a technique to investigate reactions such as dehydration, polymerization, and
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decomposition. Areas of application include purity determination, screening of additives

(e.g. plasticizer, filler, flame retardants, etc.), determination of thermal and oxidative

stability, and evaluation of moisture, volatiles and residues, determination of catalyst

performance, flammability characteristics, and reaction kinetics.

Table 5.1.Conventional Forms of TA.

Property TA Method Abbreviation

Mass Thermogravimetry TG

Difference temperature Differential thermal

analysis

DTA

Alternating temperature Alternating current

calorimetry

ACC

Enthalpy Differential scanning

calorimetry

DSC

Length, volume Dilatometry

Deformation Thermomechanical analysis TMA

Dynamic mechanical

Analysis

DMA

Electric current Thermostimulated current TSC

Luminescence Thermoluminescence TL

5.1.1.1 Polypropylene – Zeolite Composite Characterization by TG

The composite materials as well as their components can be characterized using

thermogravimetry. Natural zeolite and pure polypropylene’s thermal properties can be

examined separately, and then the composite behavior is examined afterwards.

Almost all of the natural zeolites loose water during the heating process. This is

easily seen in the thermogravimetric analysis results. Knowlton and White (1981)

studied the dehydration of clinoptilolite (natural zeolite) and reported that three types of

water are present in natural zeolite; external water, loosely bond water, and tightly bond

water. They are removed from the structure upon heating at around 75 o C, 171oC, and
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271oC respectively, and that clinoptilolite contained 4.6 % external water, 6.6 % loosely

bond water, and 2.4 % tightly bond water.

For the case of polymers, TG is used to determine the weight loss of polymers

upon heating. Depending on the temperature programmed, the filler contents could be

checked, and using Kinetic Analysis, the reaction rate parameters (activation energy,

and reaction rate), can be calculated. The TGA Kinetic Analysis is based on the known

Ozawa method.

Ozawa method assumes that at any given temperature T, the degree of thermal

degredative conversion α, of polymer to volatile products changes as a function of time

according to equation

dα/dt= k f (α) (5.1)

where k is the rate constant. The function f (α ) for the n th order reaction is defined by

f (α ) = (1-α )n  (5.2)

from which

dα/dt = A (1- α )n exp (-E/RT )  (5.3)

where A is the Arrhenius factor, E is the apparent activation energy of the thermal

degradation, and R is the gas constant. If a polymer is heated at a rate of  (β =dT/dt),

then this equation becomes

dα / (1- α )n = A / β. exp (-E/RT). dT (5.4)

Ozawa shows that this equation may be integrated and solved if A, (1-α )n, and E are

independent of T and both A and E are independent of α (Horrocks and D’Souza,

1991).

According to Ozawa principle, in a normal reaction,

G (x)= A*θ (5.5)
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where;

A= frequency factor

θ = exp(-E/RT)Xdt; reduced time

E= activation energy

R= constant

T= temperature

 t= time

If the reaction mechanism is determined, reaction quantity and θ have a linear

relationship, with frequency factor A, being the slope of that line.  However, in a TGA

curve, where the reaction is of the nth order, weight loss C, is equivalent to reaction

percent x, but when the sample is a polymer, x is not necessarily equivalent to C. That

is, a product resulting from the cutting of a chain need not volatilize at the same

temperature, which caused the chain to be broken. Accordingly, the relationship

between the weight loss C and the ratio of main chains which are broken may be

expressed as follows: (Shimadzu, 1999)

1-C = (1-x) L-1 [1+x
N

LLN )1)(( −− ] (5.6)

where;

N = degree of polymerization at initial stage

L = degree of polymerization in smallest remaining non-volatilized polymer segment

C = 1- (1-x ) L-1[1+(L-1)x] (5.7)

G(x) = -Log (1-x) (5.8)

The Ozawa and similar kinetic treatments cannot be applied in any case, where

parallel, competitive reactions occur, and this condition is likely to hold following the

introduction of oxidative reaction centers within the polymeric backbone (Horrocks

D’Souza, 1991).
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Özmıhçı (1999) studied the degradation of PP – zeolite films by TGA and

determined E for PP (MH 418) and PP – zeolite composite of 6 % wt zeolite as 59.3,

and 42.9 kcal/mol respectively by the Ozawa method.

5.1.2 Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry

(DSC)

Differential thermal analysis can be used to detect the physical and chemical

changes which are accompanied by a gain or loss of heat in a material as its temperature

is increased, decreased or held isothermally.  Differential scanning calorimetry, on the

other hand, can provide quantitative information about these heat changes. In other

words, it examines the rate of enthalpy change as a function temperature, which is used

for the determination of melting and crystallization points, heat evolved, or temperature

of phase transformations (Hatakeyama et al., 1994, Sibilia et al., 1988).

DTA and DSC are techniques for studying the thermal behavior of materials as

they undergo physical and chemical changes during heat treatment. Various chemical

and physical transformations occur including the absorption of heat (endothermic

process) or evolution of heat (exothermic process) during heating. DTA measures the

temperature difference arising between a sample and a reference material as both are

heated at a constant rate in the same environment, thereby indicating endotherms and

exotherms. The DSC technique, however, measures the amount of heat that is evolved

as a material undergoes either an exothermic or endothermic transition. These

techniques are particularly useful in the characterization of organics, biological

materials, inorganics, and amorphous alloys. Some applications are: qualitative and

quantitative evaluation of phase transformations such as glass transition, melting,

crystallization; study of polymerization, decomposition and curing processes including

a kinetic description; determination of thermal and processing histories, simulation of

processing conditions and crystal growth (Sibilia et al., 1988).

5.1.2.1 Polypropylene – Zeolite Composite Characterization by DSC

Differential Scanning Calorimetry is used for the determination of the kinetic

parameters. Kissinger’s method assumes that the reaction rate is described by Equation

5.9.
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where;

α = reaction rate

A = frequency factor

E = activation energy

T = temperature

n = reaction order

The most important additional assumption of this method is that the maximum

in the DSC curve occurs at the same temperature as the maximum reaction rate. The

reaction is further assumed to proceed at a rate, which varies with temperature, and

therefore the position of the DSC peak is a function of the heating rate. From the

variation in the peak temperature with heating rate E can be calculated for any value of

n. The maximum reaction rate occurs when d/dt(dα/dt)=0. From Equation 5.9 it follows

that
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where Tm is the peak maximum temperature, and φ is the heating rate. By substituting

an approximate solution to equation (5.8) into equation (5.9) and differentiating, it can

be shown that
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for  –E/R»2T, the slope of lnφ versus 1/T equals –E/R.

Under the same assumptions this method has extended to include reactions,

which follow Avrami’s law (Hatakeyama et al., 1994).

Çaykara and Güven (1998) investigated the effect of preparation methods on the

thermal stability of PAA – Al2O3 (poly (acrylic acid) – alumina) composites. They

studied the thermal degradation reactions of the composites prepared by mixture and

polymerization methods, by using thermogravimetry (TGA). The thermal degradation

reaction was not found to change very much with the ratio of PAA / Al2O3 when the

composites were prepared by simple mixing. For the composites prepared by the

polymerization method, the thermal degradation reaction was observed to change with

percentage conversion. It was concluded that the composites prepared by

polymerization method have better thermal stability.

Fernandes et. al (1999) studied the thermal degradation of polyethylene alone

and in the presence of an ammonium exchanged zeolite chabazite. It was observed that

the presence of chabazite decreased the temperatures corresponding to the initial mass

loss, the maximum rate of mass loss, and the final constant mass. The activation energy

observed for the degradation of PE was 277.8 kJ/mol, as compared with 197.3 kJ/mol

for the chabazite form of natural zeolite. This implies that the zeolite may act as a

cracking catalyst for PE, enhancing the generation of light products of potential

industrial use.

5.2 IR Spectroscopy

Infrared Spectroscopy (IR) provides information about the chemical

composition of the materials. It gives information about the chain structure, degrees of

branching, stereoregularity, geometric isomerism, conformation, crystallinity, and

functional groups present in the material. In other words, it is used to identify materials,

determine the composition of mixtures, monitor the course and extent of reactions, and

provide information useful in deducing molecular structure (Sibilia et al., 1988, Cahn et

al., 1992).

Analysis by IR spectroscopy is based on the fact that molecules have specific

frequencies of internal vibrations. These frequencies occur in the infrared region of the

electromagnetic spectrum: ~ 4000cm-1 to ~200cm-1. When a sample is placed in a beam

of infrared radiation, the sample will absorb radiation at frequencies corresponding to
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molecular vibrational frequencies, but will transmit all other frequencies. The

frequencies of radiation absorbed are measured by an infrared spectrometer, and the

resulting plot of absorbed energy vs. frequency is called the infrared spectrum of the

material. Identification of a substance is possible because different materials have

different vibrations and yield different infrared spectra. Furthermore, from the

frequencies of the absorptions it is possible to determine whether various chemical

groups are present in a chemical structure. In addition to the characteristic nature of the

absorptions, the magnitude of the absorption due to a given species is related to the

concentration of that species (Sibilia et al., 1988).

5.2.1 Characterization of PP- Zeolite Composites by FTIR

IR spectroscopy can be used to characterize the individual components of the

composite, and then the resulting composite material is examined to see the different

effects of the materials on each other’s properties.

According to Fuentes et al. (1997), two groups of vibration were to be

considered in all types of natural zeolites. One is the internal vibrations of T-O and the

other is the vibrations of the external linkages between tetrahedra. The internal

vibrations T-O is sensitive to the Si / Al ratio of the framework. The internal T-O

stretching mode is 650-820 cm-1. Sensitive and internal T-O bonding is 450-500 cm-1.

The characteristic peaks of natural zeolite are given in table 5.2.

Table 5.2.Natural Zeolite Characteristic Peaks (Goryainov et al. 1995) .

Vibration Wave Number (cm-1)

Isolated OH stretching 3700

Hydrogen bonded H2O, O-H stretching 3400

H2O bonding 1620

T-O stretching 1065

External T-O (intense symmetric

stretching)

790

External T-O double ring 609

Internal T-O double ring 450
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To characterize the polypropylene by FTIR, transparent pp films could be used.

Likewise, the polypropylene – zeolite composite films could also be analyzed by

placing the sample in the passage of the beam of light.

The characteristic peaks of pure polypropylene are presented in Table 5.3 as

follows: (Polymer Handbook, Braundrup et al. (1976), Banwell et al. (1983)).

Table 5.3.Characteristic Peaks of Polypropylene

Vibration Wavenumber (cm-1)

i – polypropylene 790, 1158

s – polypropylene 1131, 1199, 1230

t-polypropylene 997, 995

- CH2 asymmetric stretching 2930

symmetric stretching 2860

Deformation 1470

-CH3 asymmetric stretching 2970

symmetric stretching 2870

Asymmetric deformation 1460

Symmetric deformation 1375

5.3 Mechanical Properties of Polymer Composites

Most plastic materials are used because they have desirable mechanical

properties at an economical cost. For this reason, mechanical properties may be

considered the most important of all the physical and chemical properties of high

polymers for most applications.

Many physical properties and tests, can be conducted on polymers. Most of

these tests are very specialized and have not been officially recognized as standard tests.

Some of these tests, however, have been standardized and are described in the

publications of American Society for Testing and Materials (ASTM). The tests are

usually designed to obtain fundamental property information or about the final end use

performance or behavior of the product. Final states of polymers are usually films,

fibers, molded parts or coatings (Nielsen et al., 1974, Sibilia et al., 1988).
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Mechanical testing methods are used to evaluate materials under a variety of

loading conditions. Mechanical properties that can be evaluated include: moduli

(characterizing their rigidity); ultimate or other characteristic values of stresses and

strains; and specific work or energies characterizing their strength, ductility, resilience,

and general toughness, respectively.  Such properties can be obtained with a tensile

tester, which measures the force to stretch a material until it breaks (Sibilia et al., 1988).

Particulate filled thermoplastic composites have proved to be of significant

commercial importance in recent years, as industry and technologists seek to find new

and cost effective materials for specific applications. Various additives are often

incorporated into polymeric matrices to modify the physical, mechanical, and

rheological as well as thermal properties in order to suit a wide range of applications.

The major constituents of these additives are inorganic particulate fillers such as talc,

limestone, silicates, glassbeads, ceramics, etc. For high filler loadings, it is widely

appreciated that the mechanical properties of a moulding are determined primarily by

the interfacial interactions between the polymer matrix and the filler. In recent years,

great efforts have been made to improve the understanding of the chemistry of the

polymer-filler interface, develop methods for enhancing interfacial adhesion and

characterizing filler dispersion. In particular, titanate-based coupling agents have been

reported to modify the filler surface quantitatively, rendering the polymer composites

easily processable due to improved filler dispersion in the polymer through enhanced

wettability of the modified filler surface by the former. Besides interfacial adhesion,

filler particle size, shape and dispersion (in the polymer matrix) are the other important

factors that can have a profound influence on the end-use properties of a composite. The

factors are particularly dependent on the efficiency of the mixing process. With

dispersive mixing of particulate filler in a polymer melt, the associated shear forces can

be so great that fracture of filler particles can occur and lead to a reduction in filler

particle size and change the particle size distribution. Even so, where inter-particle

surface forces are high, particle agglomeration may still occur. Knowledge of particle

size distribution in a composite is critical in relation to the analysis of its mechanical

properties (Khunova et al., 1999, Maiti et al., 1992).
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5.3.1. Elastic Modulus

The generalization of the Einstein concept by Guth with the introduction of a

particle interaction term resulted in the following expression for spherical particles:

Ec = Em (1 + 2.5 φf  + 14.1φf
2) (5.13)

where Ec and Em are the elastic modulus of the composite and matrix respectively and φf

is the filler volume.

Elastic modulus of the pure PP and its composites was calculated according to

Equation 5.13 and tabulated in Table 8.26 in Chapter 8.

Using Paul’s model, for uniform displacement at the boundary, Ishai and Cohen,

obtained a formula as follows
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where m = Ef/Em, and Ef is the elastic modulus of the fillers,.

Halpin Tsai developed a simple model and generalized equation to approximate

the results of more exact equation to approximate the results of more exact

microanalysis:
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and

η = (m-1) / (m+ξ) (5.16)

in which ξ is a measure of reinforcement and depends on the filler geometry, packing

geometry, and loading conditions. For spherical particles, ξ = 2.

Liang et al. (1997),  also proposed a similar equation:
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and
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where λ is the constant related to particle geometry, distribution in the matrix, and

interfacial adhesion between the inclusions and the matrix, and ν is the Poisson’s ratio

of the matrix.

Levita et al. (1989) considered the two extreme conditions in their study

depending on whether uniform strain or stress is assumed. One is the model utilized by

Ishai and Cohen in which a cubic particle was surrounded by a cubic matrix shell and

the limits were calculated as follows:
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where m is the modulus ratio, and CF is the volume fraction of the filler.

A much better fit was obtained by the Kerner equation which since EF>>EM,

reduces to:

EC / EM ~ 1+2.25 CF / (1-CF) (5.21)

Maiti et al. (1992) used two of the known predictive models, Kerner Equation

(equation 5.22), and Guth-Smallwood Equation (equation 5.13).
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where;

νp = Poisson ratio

φF = volume fraction of filler.

5.3.2 Yield Stress

Interfacial adhesion between the inclusion and the matrix is an important factor

affecting the tensile yield behavior of filled polymer composites. In the case of a poor

bond between the matrix and the filler, the interaction layer cannot transfer stress.

Several equations have been proposed to quantify the influence of fillers on the

mechanical strength of polymers. The simplest is based on a random model in which the

strength simply relates to the matrix area on the fracture surface (Levita et al., 1989):

)1( fymyc φσσ −= (5.23)

where σyc and σym are the yield strength of the composite and matrix, respectively, and

φ is the volume fraction of the filler.

Liang et al. (1998) assumed that the strength of a particulate-filled composite is

determined by the effective available area of load borne by the matrix as a result of the

absence of the filler. Thus, the yield strength depends on the effective load bearing cross

- section area fraction (1-ψ). If it is assumed that ψ is a power law function of the

volume of the filler, φf, then

)1( b
fymyc aΦ−=σσ (5.24)

where σyc and σym are the yield strength of the composite and matrix, respectively, and a

and b are the constants related to stress concentration, adhesion, and the geometry of the

particle.

For spherical particles, having no adhesion to the polymer matrix with failure by

random fracture, then equation (5.24) becomes

)21.11( 3/2
fymyc Φ−=σσ    (5.25)
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where a= 1.21; b=2.3.

Jancar et al. believed that the stress concentration depends upon the content of

the particles, with reduction of the effective matrix cross section being the principal

factor, and presented a modified form of equation (5.25):

Sfymyc )21.11( 3/2Φ−=σσ (5.26)

The strength reduction factor S can be determined by finite element analysis and

in general varies from 1.0 to 0.2 respectively, for low and high filler volume fractions.

Yield strength of the PP composites was estimated using equation 5.25.

5.4 ICP (Inductively Coupled Plasma Spectrometer)

Trace analyses are important in demonstrating compliance to FDA (Food and

Drug Administration), EPA (Environmental Protection Agency), and OSHA

(Occupational Safety and Health Administration) regulations; in determining monomer

and solvent purity and in assaying small amounts of material that can affect the

performance or quality of a product. In general, concentration techniques are a good

way of increasing the sensitivity of analytical methodology. Some of the most

commonly used trace elemental analysis techniques are AA (Atomic Absorption

Spectroscopy), OE (Optical Emission Spectroscopy), ICP (Inductively Coupled Plasma

Spectroscopy), and Ion Selective Electrode Analyses (Sibilia et al., 1989).

Inductively Coupled Plasma Emission Spectroscopy, like atomic absorption

methods, is a technique for determining the concentration of elements in solution. The

advantage of ICP is its ability to analyze many elements, either simultaneously or in a

rapid sequential manner depending upon the type of the instrument employed.

The sample may be either liquid or solid, but solid materials must undergo a

suitable preparation involving dissolution, decomposition, or extraction.

ICP AES spectroscopy is based upon the principle that the energy of emission is

specific for each element. The liquid sample is atomized by a nebulizer into a stream of

argon gas, which carries the atomized sample into the plasma where the elements in
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solution are thermally excited. The excited elements emit photons, which are detected

by one or more photomultiplier tubes, depending upon the type of instrument.

In the present study, ICP AES spectroscopy was used to determine the extent of

Ag+ exchange to the zeolites by analyzing the liquid phase.

5.5 Optical Microscopy

Microscopy techniques such as optical, scanning electron, microprobe and

transmission electron microscopy are all useful as trace analysis techniques, especially

in the case of inorganic compounds.

Optical Microscopy is used for the examination and characterization of matter

using visible light. It is one of the most versatile tools in the study of the microstructure

of semicrystalline polymers. In optical microscopy, information is obtained by light

transmission through or reflection from matter (Cahn et al., 1993, Sibilia et al., 1989).

Transmission optical microscopy is routinely used for studying different types of

materials. Some examples are polymer films or fibers; biological or petrographic thin

sections, foam cellular structures, liquids, dispersions, powders and emulsions. The

transmission method requires thin (several microns) specimen sections. Polarizing

elements along the optical path permit the observation of birefringent differences,

thickness differences or orientation variations within the sample (Sibilia et al., 1988).

Reflected light microscopy is often used in the examination of polished / etched

metallurgical or ceramic specimens for inclusion size or grain size determination.

In the characterization of PP composites, transmitted optical microscopy was

used.



Chapter 6

ANTIBACTERIAL BEHAVIOR

As bacterial resistance to currently used antibiotic increases, studies to identify

novel agents and strategies for the prevention and treatment of bacterial infection are being

made. In the past, antimicrobial drug discovery efforts have focused on eradicating

infection resulting in clearance of the bacterium from the infected host. However, inhibition

of the interaction between the bacterium and its host may also be a target (Projan, 2000).  

The term antimicrobial or biocide includes algicides, bactericides, bacteriostats,

fungicides, germicides, prior to 1930’s; the principal biocide was the Bordeaux mixture,

i.e., slaked lime (Ca (OH) 2) in a copper sulfate (CuSO4) solution. Fortunately, the

fungicidal activity of dithiocarbamates and the insecticidal properties of phenothiazine

(C12H9NS) were discovered in the early 1930’s (Seymour, 1990).

Pathogen is defined as any organism that has the capacity to cause disease in a host

at any time (Projan, 2000). Virulence is the quantitative measure of pathogens, that is; it is

the degree of pathogenicity. As defined by Projan, all bacteria that invade a host must do

the following. First, find a way to enter and then establish a beneficial niche. Secondly the

primary defense systems of the host must be prevented and a mounting immune response

must be countered. Finally, the bacterium must be able to multiply and then disseminate

within its host or to a new host as presented in figure 6.1.  Bacteria initiating an infection in

vivo leave what corresponds in vitro to lag phase and begin exponential growth, whereupon

they begin expression of surface proteins required for adherence and host response

avoidance. As the number of cells increases, the post-exponential phase of growth is

entered, and protein expression is altered to produce toxins and exoproteins. When an

abscess is formed, the growth phase corresponds to stationary phase. Individual cells can

break   free of the abscess to disseminate and begin the cycle again. The factors involved in

virulence are unique to bacteria. An agent that targets an infectious process, by definition

may  not be  likely to   be effective in  the clearance   of   an already  established  infection /
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Fig.6.1.Logarithmic growth of pathogens in culture.

colonization (Projan, 2000). If virulence is to be considered a valid target for antimicrobial

agents, it must be shown that virulence inhibitors will be able to eliminate or preclude

disease-causing organisms.

It has been known for a long time that certain ions; especially Ag, Cu, or Zn

possesses antibacterial property. Ag zeolites are increasingly investigated as germicidal,

bactericidal, antifungal, and antiseptic components in different compositions (Kawahara

2000, Klasen 2000, Matsuura 1997, Olguin 2000). Metallic silver is one of the common

elements used in the dentistry. Ionic silver has the highest antibacterial activity among

metal ions, and a variety of silver compounds have been used as topically applied agents

for treatment of burns and ocular infections (Kawahara, 2000).  Zeolite being a porous

crystalline material of hydrated sodium aluminosilicate exhibits a strong affinity for Ag+

and can electrostatically bind this ion up to approximately 40% (w/w) in its framework.

Such silver ion - containing zeolite (silver – zeolite, SZ) can provide antibacterial activity

to resins or synthetic fibers by mixing (Kawahara, 2000). It was thought that this

antibacterial activity was caused by adsorption of silver into the microorganisms. But it was

reported that there was the case that the microorganisms loose the ability of colony forming
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without adsorption of silver. In this case, silver was incorporated in the inorganic

compounds not in the solution freely (Inoue et. al, 1997). Recently, the modification of

inorganic compound by addition of silver was attractive to protect circumstances from the

disease come from the microorganisms. Nowadays, various studies are being carried to

attain antibacterial compositions, and   many different methods are being proposed.

6.1 Alternative Methods for the Preparation of Antibacterial Compositions

Paik et al., (1998) studied UV- irradiation method on nylon films for packaging

applications. Antibacterial packaging could enhance food storage life and safety. The use of

193 nm UV irradiation to convert amide groups, on the surface of nylon to amines having

antibacterial activity has been reported. Three food related bacterial strains were exposed to

antibacterial film in 0.2 M Sodium Phosphate buffer (pH 7.0). The antibacterial film was

effective in reduction of microbial concentration in the bulk fluid for all food- related

bacteria tested. The effectiveness was dependent on the bacterial strain. Adsorption of

bacterial cells diminished the effectiveness of amine groups. Experimental results indicate

that the decrease in concentration of bacterial cells in bulk fluid is more likely to be the

bactericidal action than adsorption of live cells.

Worley et al. (1999) studied novel antimicrobial N- halamine polymer coatings

generated by emulsion polymerization.  A new class of N- halamine polymers can be

emulsified in water to produce coatings, which, once chlorinated, act as contact

disinfectants. The surfaces inactivate bacterial organisms efficiently, requiring relatively

brief contact times of several minutes. These polymers are stable for over a year at room

temperature, and they require short contact times to inactivate a broad spectrum of

organisms. Their biocidal activities are easily regenerated once exhausted by flowing an

aqueous solution of free halogen over them. They show considerable commercial promise

for water and air filtration systems, and they are inexpensive to produce.

Olguin et al. (2000) investigated the antimicrobial effect of the Mexican zeolitic

mineral exchanged with silver ions. It was found that the Mexican silver clinoptilolite-

heulondite mineral eliminated the pathogenic microorganisms E.coli, and S.faecalis from

water with the highest amount of silver supported on the mineral after 2 hours of contact.
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Kawahara et al. (2000) evaluated the antibacterial effect of silver-zeolite (SZ)

against oral bacteria under anaerobic conditions. SZ inhibited the growth of the bacteria

tested under anaerobic conditions showing that SZ may be a useful vehicle to provide

antibacterial activity to dental materials used even under anaerobic conditions.

Matsuura et al. (1997) studied the antimicrobial effect of tissue conditioners

containing silver-zeolite on Candida albicans, S. aureus, and P.aeruginosa. The results

showed that with the SZ samples, all tested microbes were killed, indicating that tissue

conditioners containing SZ have been shown to have antimicrobial effect.

Hagiwara et al. (1990) studied zeolite particles retaining Ag ions having

antibacterial properties. A polymeric substance holding the metallic ions was proposed for

use of various fields. The important point here is  how the polymer will hold the metal ions.

Many methods of incorporating the metal ions into a polymeric substance are known such

as binding or adding fine powder of the metals themselves to a polymer and a method of

incorporating compounds of the metals into a polymer. However, using metals themselves

brings a disadvantage that the metals show poor compatibility because the specific weights

and Young Moduli of the metals are usually very high compared with those of the

conventional polymers (Hagiwara, 1990). Therefore, a method was proposed wherein a

polymer contains organic functional groups having an ion – exchange function over a

complex forming function and thereby these groups retain the metal ions. A new

antibacterial agent, zeolite is now available. It looks like a plain white powder but offers

excellent antiseptic and nontoxic effects. Furthermore, it is reported as a tasteless and

odorless material. Also these inorganic compounds are very different from other

conventional antibacterial agents. These differences include chemical stability such as the

melting and volatility points. Furthermore zeolite is more cost effective and no toxicity to

humans is reported. In Japan, there are many manufactured goods that have this

antibacterial coating, such as toothbrushes, and toothpaste, bath and toilet tiles, kitchen

utensils, baby toys and so on. Recently, many medical instruments have begun to be coated

(Niira, 1990). The invention provides two processes for producing the polymer article.

(Hagiwara, 1990). One process is characterized by admixing zeolite particles retaining at

least one metal ion having a bactericidal property with an organic polymer or a mixture of

polymers at any stage prior to moulding the organic polymer to form the shaped article.
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Another process is characterized in that an organic polymer or a mixture of polymers

containing zeolite particles is moulded and then treated with an aqueous solution of at least

one metal ion having a bactericidal property to provide at least part of the zeolite particles

with so-called metal ion.

According to the studies of Hagiwara et al. (1990), the zeolite particles should retain

the bactericidal metal ion in an amount less than an ion – exchange saturation capacity of

the zeolite. Otherwise, the bactericidal effect of the polymer article is very poor. The

suitable shape of zeolite used in this invention may preferably be fine particulate. A particle

size of the zeolite can suitably be selected depending on application fields. When a

moulded article has a relatively large thickness, like various types of containers, pipes,

granules, or coarse fibers, the particle size may be in the range of a few microns to tens

microns or even above several hundred microns. When fibers or films are moulded as an

article according to the present invention, preference is given to a smaller size of particle.

It’s also reported that when the metal ion in amounts such as to saturate the ion – exchange

capacity of the zeolite are given to the zeolite, a portion of the metal ion deposits on the

surface of zeolite in a form other than an ion, such as silver oxide (in the case of silver

ions). These oxides have been found very detrimental to the bactericidal effect of the

zeolite – metal ion. When a high degree of bactericidal effect is desired, the moulded article

preferably has a large surface area.

Niira et al. (1990) made studies on antibiotic zeolite and an antibiotic resin

composition containing the zeolite. The invention relates to an antibiotic zeolite in which

all or parts of ion exchangeable ions in a zeolite are replaced with antibiotic metal and

ammonium ions.  According to the invention, an antibiotic resin composition is provided.

The resin composition comprises the aforementioned antibiotic zeolite and a resin such as

polyethylene, polypropylene, and polyvinylchloride, etc…

6.2 Preparation of Silver-Zeolite (SZ) Containing Compositions via Ion Exchange

The metal ions should be retained on the zeolite particles through an ion – exchange

reaction. Metal ions, which are adsorbed or attached without using an ion – exchange

reaction, show a poor bactericidal effect and an insufficient durability. Figure 6.2 shows the

three-dimensional structure of the zeolite, which is comprised of aluminosilicates. More



49

specifically, it is fabricated of a tetrahedron of SiO4 and AlO4 and appears as one large

cavity in a molecule (Niira, 1990). In this cavity, zeolite has many Na ions as shown in

Figure 6.2 (Maeda, 1999).

Figure 6.2.Structure of Zeolite.

Hagiwara et al. (1990) reported that substituting a metal ion for the Na ion resulted

in a release of the metal ion little by little and semi permanently as presented in Figure 6.3.

Because of the antibacterial effects of the metal ion, such zeolite has semi permanent

antibacterial effects and is thus antibacterial zeolite  (Maeda, 1999).

In usual methods of ion exchanging the sodium ion of the zeolite with other metal

ions, a rather high concentration of the metal ions is used aiming a high degree of ion

exchange. However in this case, a relatively low degree of ion exchange is not only

satisfactory, but also essential for better bactericidal properties of ion-exchanged zeolite.

Such ion – exchanged zeolite with a relatively low degree of ion – exchange may be

prepared by performing the ion – exchange using a metal ion solution having a

concentration rather low compared to the solutions conventionally used.

Hagiwara et al. (1990) proposed two alternative processes, which enable strong

retention of the ions on the zeolite particles.
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Figure 6.3.Structure of antimicrobial zeolite.

In the first process, metal – zeolite having a bactericidal function is added to an

organic polymer or a mixture of polymers mixed together. In the case of preparing Ag-

zeolite, an aqueous solution of a water-soluble silver salt such as silver nitrate is usually

used,  and in this case the solution concentration should not be kept too high. That is the

precipitation of the silver oxide on the zeolite reduces the porosity of the zeolite, whereby

the specific surface area of the zeolite is greatly reduced. Even when the reduction of

surface area is not serious, the bactericidal activity is reduced by the presence of silver

oxide itself. In order to prevent this deposition, it’s reported to keep the Ag concentration at

a diluted stage, preferably lower than 0.1 M AgNO3. It has been found that in the case of

using aqueous AgNO3 solution of such a concentration, the specific surface area of the Ag

zeolite is comparable with that of the original sample and the bactericidal function can be

utilized at the optimum condition. The amount of the metal incorporated in the mentioned

metal – zeolite may be less than 30 % by weight, preferably 0.001 to 5 %by weight in the

case of Ag based anhydrous zeolite + metal.

The metal zeolite thus obtained is added to the organic polymer. In general, it’s

preferred to add the metal – zeolite to a polymer immediately before moulding. However,

in some cases, it may be preferable to add the metal zeolite into a monomer so as to attain a

good dispersion of zeolite particles. If desired, the metal – zeolite can be dried before its

addition to a polymer preferably at a temperature from 100oC to 500oC under a reduced

pressure.



51

In the second alternative process, the only difference is the sequence of the ion

exchange treatment. The possible range of a content of the zeolite is the same as that in the

first process. Zeolite may be added at any time from a stage of preparation of raw material

for polymerization to a stage of moulding, as in the first process. The resulting polymer

containing zeolite is moulded into an article and then subjected to an ion – exchange

treatment. The manner of ion – exchange treatment is basically similar to the first

alternative. That is, a polymer article containing zeolite is treated with a solution of a water-

soluble salt of metal having a bactericidal property. The Ag+ concentration should again be

preferably kept below 0.1 M. The treatment may be carried either batchwise or

continuously. In order to increase the amount of metal ions retained in the article, the batch

treatment may be repeated or the period of time of continuous treatment may be prolonged.

It depends on the nature of the polymer that how much zeolite in a polymer article be ion

exchanged. Even in the case of a hydrophobic polymer, it has been found that the zeolite

present around the surface area is ion -–exchanged to a considerable extent.

According to the study of Hagiwara et. al (1990), the polymer article containing

zeolite particles may contain components other than the metal zeolite, such as

polymerization catalysts, stabilizers, organic or inorganic pigments, inorganic fillers and so

on.

Niira et. al (1990) prepared the antibiotic zeolite and an antibiotic resin composition

and more particularly, an antibiotic zeolite which does not cause discoloration with time as

in the second process of Hagiwara et al. (1990).

6.3 Test Methods on Antibiotic Action

In order to investigate the antimicrobial effects of the newly developed

antimicrobial materials certain test methods are currently available some of which can be

listed as Agar Diffusion Method (Disc Method), and the Broth Dilution Method.

6.3.1 Agar Diffusion Method (Disc Method)

Disc Method evaluates the bactericidal activity by observing the presence of an

inhibition zone formation after cultivating the samples for a period of time under a set
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temperature. Hagiwara et. al (1990) used the disc method to determine the bactericidal

activity. That is, a polymer article containing zeolite particles was cut into a disc of 20 mm

in diameter to provide a test disc. In the tests, Escherichin coli, Pseudomonas aeruginosa,

Staphylococeus aureus as bacteria, and Candida albicans were used. A Mueller Hinton

culture medium was used for bacteria and a Sabouraud medium was used for Eumycetes.

Test bacteria or fungi were floated on a physiological saline solution at 108 /ml and then

was dispersed in the culture medium by means of a Conradi rod of 0.1 ml. The bactericidal

activity was evaluated by observing the presence of an inhibition zone formation after

cultivating for 18 hours at 37oC in the case of bacteria and by observing the presence of an

inhibition zone formation after culturing for one week at 30oC in the case of Eumycetes.

6.3.2 Broth Dilution Method

In the Broth Dilution Method, the mixture containing the antibacterial material and

the bacterial cells are incubated for a period of time under the specified temperature with

the necessary conditions, and then the bacterial colonies were counted and compared with

the negative control sample.

Olguin et al. (2000) studied the antimicrobial effect of natural Mexican

clinoptilolite supporting Ag ions. E coli and S. faecalis were chosen as indicators for fecal

contamination. For the microbial experimentation, Broth Dilution method was used. Each

growth essay was performed with three replicated samples.

 Matsuura et al. (1997) evaluated the antimicrobial effect of tissue conditioners

containing silver zeolite on Candida albicans, S. aureus, and P. auroginosa using Broth

Dilution Method. The microbial suspension was added to the wells containing the silver

zeolite and the specimens. After the incubation for 24 hours at 37oC in humid conditions,

viable cells in the suspension were counted and expressed as a percentage of the initial

number of viable cells.

 Kawahara et al. (2000) investigated the antibacterial effect of silver zeolite against

oral bacteria under anaerobic conditions by determining the minimum inhibitory

concentration (MIC) by the broth dilution method. The MIC was defined as the lowest

concentration of silver zeolite at which no visible bacterial growth could be detected.
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In the studies of Niira et. al (1990), the antibiotic action was determined on the

following 3 strains: Mold, Yeast and General Bacteria. As culture medium for proliferation

of microorganisms, different mediums for each of them were used. Bacteria solutions, for

inoculation were prepared as follows:

For bacteria: In this case, the bacteria solution was prepared by inoculating a test

strain, which had been subcultured on a medium for proliferation of bacteria, culturing it

and diluting the medium with the same medium for proliferation of bacteria so that the

number of bacterial cells was equal to 106/ ml.

For mold: The bacteria solution for proliferation of mold was prepared by

inoculating a test strain which had been subcultured to a medium for proliferation of mold,

culturing it and floating the resulting conidium on a sterilized solution of 0.05%

polysorbate 80 so that the number of microorganisms was equal to 106ml.

For yeast: The solution for inoculation was prepared by inoculating a test strain

which had been subcultured on a medium for proliferation of yeast, culturing it and floating

the resulting cells of yeast on a sterilized physiologic saline so that the number of yeast

cells was equal to 106/ml.

Culture of each microorganism was carried out in the following manner:

The bacteria solution for inoculation was sneared on the plate for measuring

sensitivity in the form of a line of 2cm long with a loop of nichrome wire (inner diameter =

about 1 mm) followed by culturing it at 37oC, for 18 to 20 hours for bacteria, at 25oC for 7

days for mold. After culturing these for a desired time, MIC was determined as the

concentration at which the growth of microorganisms was completely inhibited.

6.4 Tests on the Amount of Ag+ Leach Out

The amount of Ag+ leach out from the silver containing compositions is critical for

the antibacterial activity to be long lasting.  Munstedt et al. (1999) reported that the release

of about 0.1 ppm (mg/L) of Ag+  possesses antibacterial effect. In all of the studies

conducted for the investigation of antimicrobial properties of certain materials, the   release

of silver ions was also considered.
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Niira et al. (1990) studied the silver release process in a continuous system.

Different samples were charged in a column and then tap water was passed there through

and water samples were collected at time intervals when 10, 50, 100, or 200 liters of water

was passed through the column to determine the concentration of silver ions.

Kawahara et al. (2000) examined the silver release profile after 0.5, 1, 2, 4, 8, and

24 hours of incubation. At all concentrations, of silver zeolite, Ag+ was not detected in

distilled water, but its level in PBS (Phosphate –Buffered Saline) was 0.53±0.06µg/ml.

Olguin et al. (2000) showed that there is a direct proportion between the silver

amount in water and the contact time. Mexican normativeness established that the silver

level in ware should be kept below 50µg/l. Olguin et al.’s study showed that 2 hours of

contact time with a 24 A Ag content in contact with water is sufficient to remove both

pathogenic microorganisms: E. coli, and S. faecalis. Under these conditions, (26.2 µg Ag l-

1) remains within the limit established by the Mexican normativeness.

6.5 Test on Discoloration

As reported in a variety of different studies, antibiotic zeolite exhibits excellent

antibiotic property. However, such an antibiotic zeolite suffers from the disadvantage that it

gradually discolors in the course of time. While this discoloration has no effect on the

antibiotic effect, depending on the nature of the product containing this antibiotic zeolite,

this feature may greatly reduce their commercial value. The discoloration parameters and

their corresponding values are given in Figure 6.4.

In order to prevent this undesired feature a discoloration inhibitor must be used. As

such discoloration inhibitors it is possible to use at least one member of selected from the

groups consisting of, for instance, benzotriazole type compounds, oxalic acid anilide type

compounds, salicyclic acid type compounds, hindered type amine compounds, and the like

(Niira, 1990).
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Figure 6.4.Discoloration parameters.

Niira et al. (1990) gave the the L, a,b values of the different samples measured on

the day of start, after 10,30, and 60 days from the treatment. Samples of antibiotic zeolite,

which had been dried under heating, were kneaded with different resins. The resultant

samples were exposed to sunlight in the air. The color of the samples was determined by

placing them on a white Kent paper (L* a* b* 93.1; -0.7; -0.5) with Minolta color- color

difference meter CR-100 (using D-65 rays). The results for the case of PP – zeolite

composites tested after 10 days are tabulated in Table 6.2 (Niira, 1990), and Figure 6.5

shows the color change with the course of time of PP - zeolite composites. Samples of the

antibiotic zeolite are as follows:

Sample 1: A-type; NH4 0.5 %; Ag 3.0 %; Cu 5.0 %;

Sample 2: A-type; Ag 3.0 %, Cu 5.0 %;

Sample 3: A-type; NH4 1.0 %; Ag 5.0 %; Zn 5.0 %;

Sample 4: A-type; Ag 2.0 %; Zn 10.0 %;

L = 100, white

L = 0, black

- agreen + a red

+ b

yellow

- b
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Table 6.1.Discoloration Test Results of PP-Zeolite Composites (Niira et al.1990)

Sample

#

Heating

Temperature (oC)

Heating time

(hr)

Moulding

Temp (oC)

L* a* b*

1 260 3 260 64.0 -9.8 1.5

2 260 3 260 44.0 3.0 29.5

3 260 3 260 67.6 -0.7 8.9

4 260 3 260 56.0 1.5 19.4

Blank - - 260 74.7 0.1 4.5

The results of the different studies suggested that silver-zeolite could be beneficial

for use in various application fields as an antibacterial agent. Thus, silver-zeolite can

exhibit long-term  antimicrobial activity since in water it released no detectable amounts of

Ag+.
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Figure 6.5.Change in the L parameter with respect to blank sample.



Chapter 7

EXPERIMENTAL

This chapter mainly focuses on the materials, equipments, techniques and the

analyses performed throughout this study. For the preliminary studies, water sorption

behavior of PP- zeolite composite films prepared by hot press and extrusion methods

was examined. To investigate the effect of silver as an antibacterial agent, silver loaded

PP - zeolite composites were prepared with two different methods. Method I is the

treatment of extruded PP- pure zeolite composite films with Ag+ containing solutions.

Method II is the molding of Ag+ exchanged zeolites with polypropylene via extrusion

technique. Silver zeolite containing PP films prepared by different methods were then

characterized using different characterization techniques such as optical microscopy,

FTIR (Fourier Transform Infrared Spectroscopy), and thermal analysis.

7.1 Water Sorption Behavior of PP-Zeolite Composite Films

7.1.1 Materials

PP � zeolite composite films prepared by Özmõhçõ (1999) were used to

investigate the water sorption behavior of PP � zeolite composite films. PP in powder

form supplied by Aldrich was used for the preparation of PP � zeolite composites by hot

press method. PP in pellet form, with a trademark of MH 418 supplied from Petkim

Petrochemicals Company was used for the preparation of PP � pure zeolite composites

by extrusion method. The composition of the additives present in the MH 418 PP is

given in Table 7.1 (Quality Control Laboratory of Petkim, 2001). The additives used

amd their functions are as follows : Calcium Stearate is used for neutralization of the

catalyst residuals, color stability, and for processing ease. Primary oxidant is used

during the processing of the polypropylene to increase its resistance to heat, and prevent

oxidation. Antioxidant (aryl phpsphite) is used to prevent degradation during

processing. Finally, the secondary antioxidant is used for processing ease during fiber

production.
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Table 7.1. Properties of MH-418 PP

Additive material Chemical Formula Amount (wppm)

Calcium Stearate O

Ca (H35C17-C-O-)2

750

Primary Antioxidant C73H108O12 470

Antioxidant

(Aryl     Pohosphite)

Tris (2,4-di-ter-butyl-

phenyl) phosphite

312

Secondary Antioxidant Tris(3,5-di-tert-butyl-4-

hydroxy-

benzyl)isocyanurate

312

Natural zeolite, clinoptilolite, from Gördes, Turkey,  was used as a filler, with

average particle sizes of 2 µm and 45 µm. For the surface modification of the zeolite,

PEG 4000 (Aldrich) was used to prevent agglomerations and provide uniform

distribution along the PP phase. During the modification process, the zeolite to solution

ratio was taken as 1:0.3 on w/v basis.

7.1.2 Composite Preparation

Two different methods were used during the composite preparation. One of

which was the hot press method and the other was the extrusion method. The

preparation of PP � pure zeolites by two methods was given by Özmõhçõ (1999) in

detail.

7.1.2.1 Hot Press Method

PP and zeolite (2 µm) compounds were compression molded at 200 oC and 100

bar pressure at Ege University. The composites were prepared at five different zeolite

loadings; 6, 10, 20, 30, and 40 % respectively.
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7.1.2.2 Extrusion Method

Composites containing 2, 4, and 6 % zeolite (2µm and 45 µm) were prepared via

extrusion technique using Tonable Plastic Machinery Extruder in Petkim

Petrochemicals Company (Aliağa). The temperature of extruder was 260 oC, and the

screw speed was 550 rpm. The L/D ratio of the extruder was 24. The cast film taken

from the flat die was quenched using a polished drum cooled by water and then film

was drawn by rollers.

7.1.3 Liquid Water Sorption Studies

Water swelling experiments were conducted at 25 oC using pure PP film and

PP � zeolite composite films having different zeolite loadings  (6 � 40 % wt for hot

press; and 2 � 6 % for extrusion) for 12 days. The increase in their weights was

recorded daily after removing them from the swelling media and blotting with absorbent

tissue. The experiments were conducted until the samples reached equilibrium uptake.

The water uptakes were plotted as a function of time.

7.2 Preparation of Silver Containing Zeolite – PP composites

To attain antimicrobial compositions in polymer composite films, ionic silver

was used as an antibacterial agent due to the highest antimicrobial activity among other

metal ions and its safety from toxicity (Hagiwara et. al 1990, Matsuura et al.1997,

Klasen et al. 2000). Polymer composites having antimicrobial properties can be

prepared by two alternative methods. Either the antimicrobial agent, silver is introduced

to the system by treating the polymer zeolite composite film with the silver containing

solution (Method I) or the silver treated zeolites are incorporated with the polymer

(Method II).

7.2.1 Material

PP � zeolite composite films prepared by Tonable Plastics machinery were used

to conduct the experiments according to Method I. Films containing 2, 4, and 6 %
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zeolites with two different sets of particle sizes, 2 and 45 µm were prepared by Özmõhçõ

(1999).

PP in pellet form (MH-418, Petkim Petrochemicals Co.) was used as a matrix

material in the composite preparation by Method II.  Clinoptilolite, a natural zeolitic tuff

from Gördes 1 region of Turkey was treated with silver and used as filler by Method II.

AgNO3 (Merck) was used for the treatment of the both the zeolite itself and the

PP- zeolite composite films.

7.2.2 Method I - Ag+ Exchange to Zeolite- PP Composite Films

Method I is the treatment of extruded films with AgNO3 solutions making use of

the ion exchange property of natural zeolite. It was applied to the extruded films with

different zeolite loadings (2, 4, 6 %), and particle sizes (2 µm and 45 µm).  The

densities of the 2 µm, and 45 µm zeolite filled polypropylene composites from different

regions of the films are given in Tables 7.2, and 7.3 respectively.

Table 7.2.Densities of the PP � Pure Zeolite Composite Films, 2 µm (Özmõhçõ, 1999)

Zeolite % Film thickness (mm) Density (g/cm3)

2 (beginning) 0.01 0.87

2 (middle) 0.02 0.82

2 (end) 0.04 0.77

4 (beginning) 0.05 0.73

4 (middle) 0.02 0.87

4 (end) 0.03 0.73

6 (beginning) 0.05 0.83

6 (middle) 0.03 0.78
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Table 7.3.Densities of the PP � Pure Zeolite Composite Films, 45µm (Özmõhçõ, 1999)

Zeolite % Film thickness (mm) Density (g/cm3)

0 (Polypropylene) 0.01 0.88

2 (beginning) 0.07 0.86

2 (end) 0.06 0.9

4 (beginning) 0.07 0.89

4 (end) 0.03 0.88

7.2.2.1 Silver Sorption Experiments

The extruded PP � pure zeolite films were treated with an initial AgNO3 solution

concentration of 50 ppm. Silver sorption experiments were conducted using two

different sample sizes and geometry (discs and strip shape). First, the samples were

prepared in the form of small discs, however, all of them floated on the surface of the

water and sticked to each other. In order to see whether this happening affected the

extent of the ion exchange process, the samples were cut in the form of long strips and

wrapped around their axis so that floating was prevented.

7.2.2.1.1 Polypropylene – Zeolite Composite Discs

The extruded films with a zeolite loading of 2, 4, and 6 % were cut into discs of

diameter 28 mm. 10 pieces of discs each of which their weights were recorded, were

treated with 100 ml of AgNO3 solution with an initial AgNO3 concentration of 5 to 50

ppm at 25oC using a water bath equipped with a shaker for 24 hours.  Due to the fact

that the densities of the composite films were about 0.86 g/cm3, the samples floated at

the top of the solution all stacked to each other. After the ion exchange treatment of the

films, the samples were washed with water twice for the removal of excessive Ag+. The

films were then dried in a vacuum oven at 400 mbar and 100oC for an hour.
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7.2.2.1.2 Polypropylene – Zeolite Composite Strips

In order to prevent the floating of the films at the top all stacked to each other

films of strips with an area of about 30 cm2 (15x2) cm were used instead of small discs.

Films wrapped around their axis were fully in contact with the solution of concentration

40 ppm. The silver loaded samples were again dried at 400 mbar and 100oC in a

vacuum oven for an hour. The block diagram of this process is given in Figure 7.1.

7.2.2.2 Desorption Experiments

Desorption experiments from the film strips were carried out with deionized

water at 25oC for 24 hours using a water bath equipped with a shaker just as the sorption

experiments. However, as reported in literature, silver release to water is considerably

low that it was not possible to detect the extent using ICP - AES. As a second

alternative desorption of Ag+ to 0.9 (w/v) % NaCl solutions was conducted again at

25oC for 24 hours in a shaking mode. In this case silver release was possible to be

detected.

Figure 7.1. Experimental Steps for the Silver Treatment of Composite Films According

to Method I.

•  Ag+ concentration
    (5, 10, 20, 30, 40, 50 ppm)

PP-Zeolite composite
films

(discs or strips)

Ag+ exchange treatment
for 24 hrs.
T : 25oC

•  Zeolite loading (2, 4, 6%)
•  Particle size (2, 45 µ )

AgNO3 Solution

Washing with water for
removal of excessive Ag+

Drying in a vacuum oven
for an hour
T :100oC

Silver Modified Composite Film
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7.2.3 Method II - Preparation of Ag – Zeolite –PP Composite Films

Method II is the compounding of PP with the silver form of natural zeolite; that

is the silver treatment is performed before the composite film drawing process.

7.2.3.1 Size Reduction of Zeolites

The zeolites were first hammered to break down into smaller particles. These

smaller particles were then grinded using Multifix Ball- Mill with ethanol for 4 hours.

After the grinding step, the slurry was dried at 110 oC for sufficient time to remove the

ethyl alcohol from the mixture. The dried zeolites were then sieved from the 45 µm

sieve.

7.2.3.2 Ag+ Ion Exchange to the Zeolite

In order to see the extent of silver sorption onto Gördes1 clinoptilolite mineral,

zeolites were treated with a series of AgNO3 solutions of initial concentrations 50, 100,

200, 400, 750, 1000 ppm. At each set of experiment the solid to liquid ratio was kept

constant as 1 g: 100 ml. The samples were kept at 25oC for 24 hours using a water bath

equipped with a shaker and a top cover preventing light to pass through. Frequently the

silver exchange treatment, by fully precipitating, the liquid parts of the slurries were

removed from the solutions. For convenience the solutions were centrifuged before used

in ICP � AES for the determination of silver ion concentration.

After analyzing the silver exchange to zeolites, it was decided to work with

initial AgNO3 concentrations of 50, 500, and 5000 ppm at 25oC for 24 hours using a

water bath equipped with a shaker and a top cover preventing the passage of light.

Following the ion exchange process, by precipitating, the solid and the liquid part of the

slurry was separated. The liquid phase was centrifuged for convenience to be analyzed

for the remaining silver ions present in the solution. The solid phase was washed twice

for the removal of excessive silver ions. The samples then were dried in a vacuum oven

at 400 mbar and 110oC for 3 hours.
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7.2.3.3 Surface Modification of Silver Form of Zeolites

Surfaces of silver � zeolites were modified with PEG 4000 to obtain

homogeneous distribution in the PP phase. Silver forms of zeolites were mixed with 50

% aqueous ethanol solution containing 10 % modifier. Zeolite to solution ratio was

taken as 1: 0.3 on weight / volume basis (Özmõhçõ, 1999). The block diagram of the

zeolite preparation is given in Figure 7.2.

Figure 7.2 Experimental Steps for Silver Treatment of Gördes 1 Zeolite.

45 µ Gördes 1 zeolite

Ag+ exchange treatment
for 24 hrs.
T : 25oC

AgNO3 Solution

Washing for removal
of excessive Ag+

Drying in a vacuum oven
for 3 hours

T :110oC, P= 400 mbar

Surface modification
with PEG 4000

T : 40oC,
Solid / liquid = 1g : 0.3 ml

Drying in a vacuum oven for 3 hrs.
T = 110oC , P = 400 mbar

•  50, 500, 5000  ppm

Modified Gördes 1 Zeolite
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7.2.3.4 Silver - Zeolite - PP Film Drawing

Zeolites treated with different amounts of Ag+ (50, 500, 5000 ppm) were mixed

with PP pellets. Due to the density difference between the PP and zeolite particles, the

zeolites agglomerated at the bottom of the container. In order to prevent agglomeration

and provide the macromolecules slide by each other dioctyl phthalate (DOP) was used

as a plasticizer. PP pellets, 45 µm zeolite particles (2, 4, and 6 wt %), and DOP (10 %

total w /v) were mixed and conditioned at 85 oC at 400 mbar pressure for an hour before

the film drawing process. The conditioned mixture of materials was then fed to the

hopper of the mini extruder (BX � 18, Axon, Sweden) provided by TÜBİTAK for the

extrusion process. The experimental conditions, all of which were kept constant during

the experimentation for the film drawing process, are given in Table 7.4. The block

diagram of the film drawing scheme using Method II is shown in Figure 7.3.

Experimental set up for the film extrusion process; the single screw extruder, flat die,

and the two-roll mill is shown in Figure 7.4. The extruder has an L/D ratio of 18, and a

flat die of dimensions (50x1mm). Axon two roll mill (AXON, 2R-180) was used to cast

the film from the extruder. Tap water was circulated in polished rolls in order to solidify

the polymer melt from the extruder.

Table 7.4.Experimental Conditions of the Extrusion Process

Zone Temperatures (oC)Screw

Frequency

(Hz)

Motor

Voltage

(V)

Motor

Current

(A)

Roller

Frequency

(Hz)
1 2 3 4 5 6

20 38 4.5 15 200 220 220 220 220 220
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                                    PP – Ag – Zeolite Composite Film

Figure 7.3.Block Diagram of Film Drawing Process by Method II.

PP pellets

Mixing
Ag � Zeolite

(2, 4, 6 % w/w)
DOP

(10% w/v)

Conditioning at
 85 oC, 400 mbar

for 1 hr.

Single Screw
Extruder

Mixing and melting
Zone I: 200 oC
Zone II- VI:220 oC

Flat die

Rollers

Cooling and film drawing
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Figure 7.4.Experimental Set up for Film Drawing Unit (BX-18, AXON)

7.2.3.5 Desorption Experiments

Desorption experiments were carried out with water at 25oC for 24 hours using a

water bath equipped with a shaker just as the desorption experiments conducted for the

composites prepared by Method I. Both of the alternatives; deionized water and 0. 9 %

NaCl solutions were used. The results of these two cases were then compared.

7.3 Characterization of Composite Films

PP � silver zeolite composite films that were prepared using two different

methods were characterized using various characterization techniques.

7.3.1 ICP – AES Analyses

The extent of silver exchange onto the zeolites was determined by analyzing the

remaining Ag+ concentration in the liquid phase using Varian ICP � AES (Inductively

Coupled Plasma Atomic Emission Spectrometer). First, a set of standard solutions with

known silver concentrations was prepared. Using these standards, a calibration curve is

constructed by the instrument at a wavelength of 328.068. The concentrations of the

different samples were then detected according to that calibration curve.
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7.3.2 Thermal Analyses

Thermal analyses of the Ag+ treated films prepared by the two methods were

conducted using Shimadzu Differential Scanning Calorimeter (DSC, 50), and Shimadzu

Thermal Gravimetric Analyzer (TGA, 51). The experiments were carried out from room

temperature up to 500 oC for the DSC analyses and up to 1000 oC for the TGA analyses,

at heating rates of 5, 10, and 20 oC/min. The analyses were performed in a dry nitrogen

atmosphere. N2 flow rate was 40 ml/min and kept constant through out the experiments.

7.3.3 Optical Microscopy

Optical micrographs of the samples with different zeolite loadings, and Ag+

concentrations, and the tensile tested samples were taken using transmission optical

microscope fitted with Olympus BX-60 using different magnifications.

7.3.4 Density Measurements

Sample densities of 12 mm diameter films were measured with the density kit of

Sortorius YDK 01 balance making use of the Archimedes� Principle. For the tensile

tested samples, due to the elongation, a decrease in the samples� width was observed.

Therefore, samples of 1x10 cm samples were used for density measurements.   Both the

sample weight and the weight of the water displaced by the sample were recorded. The

weights of the samples lighter than water were measured when the sample was under a

basket immersed in water, and the ones, which are heavier than water, were put on the

basket.

7.3.5 Infrared Analyses

In order to obtain information on the quality and the relative quantity of the

inorganic phases, the Fourier Transform Infrared Spectroscopy (FTIR) was used. The

IR Spectra of the composite films were taken by placing the samples on the way of the

beam using the transmission technique. The liquid plasticizer material (DOP) was

analyzed by preparing KBr pellets. All spectra were taken between 400 cm-1 to 4400

cm-1 with a Shimadzu FTIR 8201 model instrument.
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7.3.6 Mechanical Characterization of the Composites

Mechanical tests of the extruded composite films were performed with a

Universal testing machine Instron Corporation, Series IX Automated Materials Testing

System (Petkim). The samples were tested according to ASTM 822 standard. The

tensile tests of the films were carried at a crosshead speed of 500 mm / min, with a load

cell of 50 kgf.  Each test was repeated three times and the mean values were used.

7.3.7 Test on Discoloration

Samples of composite films containing silver zeolite were exposed to sunlight in

the air. The color of the samples was determined by placing each sample on a white

paper with Minolta color � color difference meter 2600D (using D 65 rays). The results

are compared with respect to the reference sample,  pure polypropylene film.

7.3.8 Test on Antibacterial Activity

Polypropylene-zeolite composites, treated with 50 ppm Ag+ containing

solutions, were tested for their bactericidal activity with Broth Dilution and Agar

Diffusion methods. The equipment and media used for this purpose are given below.

•  Mueller-Hinton Broth (Oxoid) CM 405

•  Mueller-Hinton Agar (Oxoid) CM 337

•  Potassium dihydrogen phosphate, KH2PO4 (Merck) 1.04871

•  Potassium hydrogen phosphate, K2HPO4 (Merck) 1.05101

•  Sodium chloride, NaCl (Merck) 1.06400

•  Antibiotic discs (Oxoid) (Cefotaxim for E.Coli)

7.3.8.1 Preparation of Media and Solutions

Mueller- Hinton broth and Mueller-Hinton agar were prepared as described by

the manufacturer. The broth and agar were dissolved in deionized water and distilled

water in separate flasks by mixing with a magnet on magnetic stirrer. Before completed
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desired volume, pH of the medium was adjusted to 7.3-7.4 with 1M NaOH or 1 M HCl.

After that the volume of medium was completed to desired volume with dH2O. media

were autoclaved at 121oC for 15 minutes. Mueller-Hinton agar was cooled to 45-50oC

and 25 ml of medium were poured into sterile petri plates with a sterile 25 ml

volumetric flask. After cooling, plates were stored at + 4oC with inverted position, and

Mueller-Hinton Broth was stored at + 4oC.

Phosphate-Buffered Saline (PBS), pH 7.4 was prepared by dissolving 0.34 g

KH2PO4, 1.58 g K2HPO4 and 8.0 g NaCl in distilled or deionized water. PH was

adjusted to 7.4 and volume was completed to 1 liter. PBS was autoclaved at 121oC for

15 minutes and stored at + 4oC.

7.3.8.2 Broth Dilution Method

E.coli from frozen glycerol stock at �20oC was grown by streaking on a

Mueller-Hinton agar plate and incubated at 37oC for overnight. The next day, one young

colony was picked up with a cotton swap and the colony was dissolved in 4 ml of sterile

dH2O. The turbidity was adjusted to McFarland 0.5 (= 108 CFU/ml) by checking

visually. 100 µl bacterium suspension was added to 4.9 ml Mueller-Hinton broth in

sterile glass tubes with a final concentration of 5x104 CFU /tube. Test samples were

placed into the tubes and all tubes were labeled. Medium and test samples were mixed

by vortexing slowly. The tubes were incubated at 37oC with shaking at 90 rpm in

thermo shaker for overnight. Next day, the tubes were mixed again by vortexing slowly.

10 µl was transferred into 990 µl sterile dH2O or Phosphate Buffered Saline (PBS) (pH

7.4) in sterile eppendorf tubes to make 10-2 dilution. Similarly, 10µl from 10-2 dilution

was transferred into 990 µl sterile dH2O to make 10-4 dilution. 10-6 and 10-8 dilutions

were prepared. 100 µl from dilution were taken and spread on Mueller-Hinton agar

plates with a glass spreader. Duplicate plates were prepared to compare number of

colonies for exact results. The plates were incubated at 37oC for overnight. The

following day, the number of colonies in the plates was counted. The number was then

compared with negative control (broth + bacteria, no test sample), sterility control of

medium (only broth) and sterility control of sample (broth + test sample, no bacteria).



71

7.3.8.3 Agar Diffusion Method

One colony from overnight grown culture on blood agar or Mueller-Hinton agar

was taken with a cotton swap an dissolved in 1ml sterile dH2O. The turbidity of

bacterial suspension was adjusted to McFarland 0.5 (=108 CFU/ml). Bacterial

suspension was spread onto Mueller-Hinton Agar plates with a swap of two directions.

Sterilized test samples were put onto agar surface. The plates were left for absorption of

bacteria on agar surface. The plates were incubated at 37oC with inverted position for

overnight. Next day; inhibition zones around test samples and positive controls were

measured. In this method; test samples have to dissolve in agar medium to inhibit

bacterial growth.
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RESULTS AND DISCUSSION

Polypropylene films embedded with untreated natural zeolite and silver form of

natural zeolite were prepared for the purpose of combining the individual advantages of

both materials to be used in different applications. The effects of number of parameters

such as zeolite loading, silver concentration, and preparation techniques were

investigated. The results and assessments of the analyses of the composites prepared by

different techniques are given below.

8.1 Liquid Water Sorption Behavior of PP - Zeolite Composites

For preliminary studies, the equilibrium uptake of water for both the hot press

and extruded samples was investigated with respect to the amount of filler (zeolite). As

expected in both cases, the uptake values showed an increasing trend with the

increasing zeolite content.

8.1.1 Water sorption of PP-Zeolite Composites Prepared by Hot Press Method

 Figure 8.1 shows the water uptake of the composites containing 0 � 40 wt %

zeolites. Oscillatory behavior was observed in water uptake of the composites with

different zeolite loadings. It might be due to the migration of the PP or zeolite into the

aqueous phase causing weight loss. PP, being a hydrophobic polymer, does not absorb

any water at its pure state. However, the composites containing 6, 10, 20, 30, and 40 %

wt zeolite have sorbed 0.062, 0.47, 0.54, 1.37, and 3.03 % wt water, respectively. The

zeolite mineral used in the present study itself at the same conditions sorbed 24.5 % wt

water. As the filler loading in composites increased, equilibrium uptake values

increased too. The results for the composite samples were lower then expected,

corresponding to the adsorption capacity of zeolites. It was due to the fact that zeolite is

distributed along the PP phase, and the passage of water was limited that the zeolites

within the composites could not adsorb water with full capacity.
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Figure 8.1. Equilibrium Uptake of Water for Hot Press Samples with Respect to Zeolite

Content.

The theoretical water sorption capacities of the composites were calculated

using Equation 8.1, taking into account the additivity of the matrix and filler phases on

the sorption capacity (Marshall, 1990; Ulutan, 1996).

q=q1W1+q2W2 (8.1)

where;

q: adsorption capacity of composite (% water, g/g)

W: weight fraction

1,2: matrix, and filler respectively.

The comparison of the theoretical and experimental results is given in Table 8.1.

As shown in Table 8.1, if 10, 20, 30, and 40 % wt zeolite containing composites were

fully saturated with water, they would sorb 2.45, 4.9, 7.35, and 9.8 % wt liquid water,

respectively.

Sorption process could be modeled with one-dimensional diffusion equation to

determine the concentration within the sample with respect to time and position (Crank,
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Table 8.1.Water Sorption Results of Hot Press Samples.

Zeolite Loading

(%)

Water sorption

(Experimental), %

Water sorption

(Theoretical), %

6 0.062 1.47

10 0.47 2.45

20 0.54 4.9

30 1.37 7.35

40 3.03 9.8

t1/2 (s)

Figure 8.2. Fractional Water Uptake versus t1/2 for 20 % wt Zeolite - PP Sample.

1968). In the water sorption study, with the hot press samples, the maximum weight

gain was observed in the 40 % wt zeolite-containing sample. The equilibrium uptake of

the sample with 20 % wt zeolite is given in Figure 8.2. The diffusivity of this sample

calculated using Equation 4.4, was found to be 2.35 x10-10 cm2/s.  Figure 8.2 also shows

the comparison of the experimental data with the analytical solution of Equation 4.2

(Crank, 1968). The effective diffusivity values of liquid water in the composites are

given in Table 8.2.

Sequential increases of the initial slope of the Mt/M∞ with respect to the amount

of filler were observed in Figure 8.3.
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Table 8.2.Effective Diffusivity of Liquid Water in the PP - Zeolite Composites.

Zeolite loading % Dex1010 (cm2/s)

6 0.33

10 3.01

20 2.35

30 8.60

40 9.90

Figure 8.3.Comparison of Water Uptake Curves of 20 and 40 % wt Zeolite Containing

Composites.

The higher the amount of zeolite in the composites, the higher the slope of the

water uptake and the higher the diffusion coefficient of water in the composites.

8.1.2 Water Sorption to Extruded Films

The water sorption behavior was also examined with the extruded samples

prepared in Petkim.  The extruded samples contained 2, 4, and 6 % wt zeolite. Figure
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8.4 shows the equilibrium uptake of water for the composites containing 2, 4, and 6 %

wt zeolite containing films.

Figure 8.4.Equilibrium Uptake of Water for Extruded Samples with Respect to Zeolite

Content.

The experimental water sorption capacities of the extruded composites are

shown in Table 8.3 in comparison with the theoretical results, calculated by Equation

8.1.

The results for the 2 % wt zeolite containing samples coincides with each other

while the experimental and theoretical results for the 4 and 6 % wt samples differ from

each other. This is due to the nonuniform zeolite distribution in the test samples.

The differences between the theoretical and the experimental sorption capacities

of the hot press samples were more significant compared to that of the extruded

samples. This might be due to the fact that the hot press samples were considerably

thicker than the extruded samples and that water could not penetrate into the zeolite

phase.

The effective diffusivity values of water in the extruded samples with respect to

zeolite content are given in Table 8.4. It was observed that the diffusion coefficient of

liquid water through the extruded samples is smaller than that of the hot press samples.

The equilibrium uptake of the 4 % sample with the experimental data compared with

the analytical solution is illustrated in Figure 8.5. The experimental data were in good

agreement with the analytical solution.
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Table 8.3.Water Sorption Results of Extruded Samples.

Zeolite Loading

(% wt )

Water Sorption

(Experimental), %

Water Sorption

(Theoretical), %

2 0.54 0.49

4 0.17 0.98

6 2.68 1.47

 Table 8.4.Effective Diffusivity of Liquid Water in the Extruded Composites.

Zeolite content, % Dex1012 (cm2/s)

2 (2 µm) 0.13

2 (45µm) 1.33

4 (2µm) 2.4

4 (45µm) 3.34

6 (2µm) 0.22

Figure 8.5.Fractional Up
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Figure 8.6 shows the comparison of the water sorption behavior of the

composites containing 6 % wt zeolite prepared by hot press and extrusion methods.

Since the thickness of the samples prepared by hot press and extrusion methods differs

from each other, Mt / M∞ was plotted against (t/l2)0.5 instead of (t)0.5 to normalize sample

thickness.
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8.6.Fractional Uptake versus (t1/2/L) for Extruded and Hot Press Films

ning 6 % wt  Zeolite.

Higher diffusivity coefficient values were obtained for hot press films on the

f �10 vs �12. Although the extruded samples were expected to sorb water faster

e hot press films, the results were came out to be the opposite. This might be due

act that zeolite distribution along the PP phase was significantly better for the hot

amples compared to the extruded samples.

er Sorption Results on PP- Zeolite Composite Films

Silver sorption capacities of PP - zeolite composites treated with AgNO3

n according to Method I were determined at 25oC using ICP technique. Effect of

 loading and initial Ag+ concentration on the sorption capacities of the

sites was investigated.
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8.2.1 Silver Sorption on PP-Zeolite Composite Discs

Silver sorption capacities of the PP � zeolite composite films in the form of

small discs were determined at various initial AgNO3 solution concentrations of 5 to 50

ppm at 25oC. Although the initial solution concentrations were considerably low, still

considerable amount of silver sorption was observed with the films containing 2, 4, and

6 % wt zeolite. Figures 8.7 through 8.12 show the silver sorption results of the

composites at various silver concentrations with respect to zeolite loading and particle

size. However the effect of either the zeolite loading or the particle size of zeolite was

not significant as can be seen from Tables 8.5 to 8.10, and Figures 8.7 to 8.12 due to the

nonhomogeneous distribution of the zeolite particles in the PP phase. The theoretical

sorption capacities of the composites were determined according to Equation 8.1. The

experimental results were found to be lower than the calculated values using equation

8.1, that are given in Figures 8.13 to 8.15 for the composites having 2 � 6 % wt zeolites

(2µm), respectively. This result was due to the fact that, the zeolite loading is not

constant throughout the films and that the extent of the sorption process strongly

depends upon the zeolite content. If the particles were uniformly distributed in the PP

matrix phase, an increase in the sorption capacities would be expected with the

increasing zeolite loading and decreasing particle size. This is easily seen especially

from the Figures 8.7 to 8.9 that the sorption capacity was higher in the composites

containing 2µm zeolite particles compared to that of the 45µm zeolite containing

samples.

Table 8.5.Silver Sorption Results onto Composite Films (Initial conc: 4.65 ppm).

Zeolite

Loading

(%)

Particle Size

(µm)

Mass of film

(g)

Eq. Solution

Concentration

(ppm)

q

(mg/g)

0 0 0.139 4.60 0.04

2 2 0.183 4.17 0.37

2 45 0.141 4.45 0.28

4 2 0.156 4.60 0.03

4 45 0.324 4.79 0.02

6 2 0.164 4.39 0.28
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Figure 8.7.Silver Sorption Results of Composite Films Equilibrated with 4.65 ppm Ag+

Solution with Respect to Zeolite Loading and Particle Size.

Table 8.6.Silver Sorption Results onto Composite Films (Initial conc: 8.67 ppm).

Zeolite

Loading

(%)

Particle Size

(µm)

Mass of film

(g)

Eq. Solution

Concentration

(ppm)

q

(mg/g)

0 0 0.13 8.03 0.43

2 2 0.11 7.91 0.66

2 45 0.16 7.86 0.51

4 2 0.16 7.84 0.51

4 45 0.27 8.43 0.07

6 2 0.17 8.56 0.07
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Figure 8.8.Silver Sorption Results of Composite Films Equilibrated with 8.66 ppm Ag+

Solution with Respect to Zeolite Loading and Particle Size.

Table 8.7.Silver Sorption Results onto Composite Films (Initial conc: 18.08 ppm).

Zeolite

Loading

(%)

Particle Size

(µm)

Mass of film

(g)

Eq. Solution

Concentration

(ppm)

q

(mg/g)

0 0 0.13 17.55 0.41

2 2 0.14 17.46 0.46

2 45 0.15 17.43 0.44

4 2 0.17 17.37 0.42

4 45 0.31 17.52 0.18

6 2 0.18 17.30 0.44
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Figure 8.9.Silver Sorption Results of Composite Films Equilibrated with 18.08 ppm

Ag+ Solution with Respect to Zeolite Loading and Particle Size.

Table 8.8.Silver Sorption Results onto Composite Films (Initial conc: 24.61 ppm).

Zeolite

Loading

 (%)

Particle Size

(µm)

Mass of film

(g)

Eq. Solution

Concentration

(ppm)

q

(mg/g)

0 0 0.13 24.67 0

2 2 0.14 24.61 0.002

2 45 0.15 24.49 0.08

4 2 0.17 24.53 0.05

4 45 0.31 24.39 0.07

6 2 0.17 24.15 0.28
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Figure 8.10.Silver Sorption Results of Composite Films Equilibrated with 24.61 ppm

Ag+ Solution with Respect to Zeolite Loading and Particle Size.

Table 8.9.Silver Sorption Results onto Composite Films (Initial conc: 38.93 ppm).

Zeolite

Loading

 (%)

Particle Size

(µm)

Mass of film

(g)

Eq. Solution

Concentration

(ppm)

q

(mg/g)

0 0 0.14 38.24 0.50

2 2 0.16 38.06 0.55

2 45 0.19 38.15 0.48

4 2 0.18 38.31 0.35

4 45 0.35 37.98 0.28

6 2 0.17 38.02 0.52
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Figure 8.11.Silver Sorption Results of Composite Films Equilibrated with 38.93 ppm

Ag+ Solution with Respect to Zeolite Loading and Particle Size.

Table 8.10.Silver Sorption Values onto Composite Films (Initial conc: 47.22 ppm).

Zeolite

Loading

(%)

Particle Size

(µm)

Mass of film

(g)

Eq. Solution

Concentration

(ppm)

q

(mg/g)

0 0 0.14 46.84 0.27

2 2 0.16 47.41 0

2 45 0.17 46.93 0.17

4 2 0.19 47.34 0

4 45 0.34 46.52 0.21

6 2 0.18 46.87 0.20
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Figure 8.12.Silver Sorption Results of Composite Films Equilibrated with 47.22 ppm

Ag+ Solution with Respect to Zeolite Loading and Particle Size.
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Figure 8.13. Comparison of Experimental and Theoretical Sorption Capacities for 2 %

Zeolite Containing Films (2µm).
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8.2.2 Silver Sorption to Polypropylene – Zeolite Composite Strips

In the case of small discs, it was observed those circular films all stacked to each

other and floated just at the surface of the solution. In order to make sure that all the

films were fully in contact with the solution strips of (15x2) cm films were used instead

of the discs for 40 ppm Ag+ trials. The results however, showed no enhancement in

terms of Ag+ sorption compared with the disc samples. Therefore, this fact was

neglected. Silver sorption results of the strip samples are given in Table 8.11.

Table 8.11.Silver Sorption Results onto Composite Strip Films (Initial conc: 38.6 ppm).

Zeolite

Loading

 (%)

Particle Size

(µm)

Mass of film

(g)

Eq. Solution

Concentration

(ppm)

q

(mg/g)

0 0 0.42 38.09 0.12

2 2 0.28 38.13 0.16

2 45 0.45 37.94 0.14

4 2 0.53 37.67 0.17

4 45 0.73 37.62 0.13

6 2 0.47 37.99 0.13

When the results of the disc and strip samples treated with 40 ppm AgNO3

solution for were compared, the sorption capacities of the disc samples were even

higher than that of the strip samples.

8.2.3 Results of Ag + Release  from Composites

As reported in literature SZ (silver zeolite) releases very small amount of Ag+,

which is the critical point for the antimicrobial activity. Silver release to water from

composites was investigated and found to be negligible. However, when NaCl solution

was used as a desorption media instead of deionized water, composites equilibrated with

50 ppm of Ag+ released about detectable amounts of Ag+ to NaCl solution as given in

Table 8.12 due to the formation of an ion exchange media between Ag+ and Na+ ions.
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The release of Ag+ from SZ containing films is given in Figure 8.16. Release of Ag+

from silver zeolite containing films changed between 0.15 � 0.17 ppm.

Table 8.12.Ag + Release From Composite Films to NaCl Solution.

Zeolite Loading (%) Particle Size (µm) Ag+ in solution (ppm)

0 0 0.167

2 2 0.174

2 45 0.156

4 2 0.175

4 45 0.173

6 2 0.150
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Figure 8.16.Release of Ag+ from SZ Containing Composite Films to NaCl Solution
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8.3 Preparation of Ag-Zeolite-PP Composite Films

As a second alternative the zeolite was treated with silver before molding with

polypropylene. Although, it is difficult to cope with the powder form of zeolite during

the ion exchange process, in terms of washing, filtering, and drying; treating the filler

with the antibacterial agent before molding is more practical and sensible for industrial

applications.

8.3.1 Ag+ Exchange to Zeolite

Gördes Clinoptilolite minerals (45µm) were treated with AgNO3 solutions of

initial concentrations changing between 0 to 5000 ppm. The sorption isotherm of Ag+

on zeolite is given in Figure 8.17. The figure compares the experimental data with the

solution of Langmuir and Freundlich Isotherm Equations (Equation 8.2 and 8.3

respectively). The constant parameters determined for both of the isotherm equations

are given below in Table 8.13. As reported in literature zeolite has a strong affinity

towards cations especially Ag+, likewise the extent of Ag+ exchange to zeolite was

considerably high as shown in Table 8.14.

Table 8.13 Constant Parameters of Langmuir and Freundlich Isotherms

Freundlich Equation Langmuir Equation

K 1.73 qs 35.65

N 2.08 B 0.01

[ ] sqbCbCq += 1/()( (8.2)

where;

q= amount sorbed (mg Ag+ / g zeolite)

qs= maximum sorption capacity

C= equilibrium solution concentration (ppm)

b= constant
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nKCq /1= (8.3)

where;

q= amount sorbed (mg Ag+ / g zeolite )

C= equilibrium concentration (ppm)

K= constant

n= constant

Table 8.14.Silver Sorption Values onto Zeolite.

Initial Solution

Concentration (ppm)

Eq. Solution Concentration

(ppm)

q

(mg / g zeolite)

5 1.14 0.35

10 1.52 0.71

20 0.89 1.72

30 1.22 2.34

40 2.23 3.67

50 3.58 4.36

100 33.91 6.6

200 77.59 12.24

400 186.24 21.3

500 238.57 27.85

750 411.40 33.8

1000 643.51 35.64

5000 3234.60 183.78
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Figure 8.17.Sorption Isotherm of Ag+ onto Zeolite.

The experimental data and the Freundlich isotherm solution showed a better

agreement with each other compared to the Langmuir isotherm.

The maximum amount of silver taken by Gördes 1 zeolite (183.78 mg Ag+/ g

zeolite), in the present study, is comparable with the silver uptake in different

monocationic forms of clinoptilolite. The original clinoptilolite, NH4 � form, K � form,

and Na- form of clinoptilolite were determined to take 74.0, 84.3, 86.6, and 120.7 mg

Ag+/g clinoptilolite respectively. The good exchangeability of silver ions into zeolite

can be explained by the high polarizability of silver ions. The electrostatic charge of

zeolite lattice is capable of polarizing silver ions so that they become dipoles directing

their positively charged end to the lattice (Czaran, 1988).

8.3.2 SZ - PP Film Drawing

 BX � 18 Axon Extruder shown in Figure 7.4 was used for polymer film

drawing process in the present study. The extruder being a laboratory scale machine has

a low L/D ratio of 18, and it is single screw type, therefore the mixing process was not

sufficient. The films were thicker compared to the PP � zeolite composite films

prepared with the Tonable Plastics machinery (Petkim, Aliağa). The film thickness

values for the samples prepared in Petkim changes between 10 � 50 µm, while the film
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thickness values of the samples prepared in the present study changes between 230 �

320µm. Zeolite particles, although they were grinded down to 45 µm, agglomerated in

quite large diameters, and they were not homogeneously distributed along the

composite film. In order to avoid these agglomerations, and provide compatibility

between the zeolite particles and PP phase, DOP (dioctylphthalate) was used to

establish a plasticizer effect.  Although the agglomerations were not totally prevented,

DOP gave considerably better results.

8.3.3 Release of Ag+ from Composite Films

The composites prepared by Method II, were also tested for their silver releases.

It was expected that more amounts of silver would be released to both water and NaCl

solutions compared with the previous set, because the silver concentrations were

comparably higher this time. In the case of deionized water, detectable amounts of

silver ions were present, however for NaCl solution the results were of the same

magnitude with the previous method. Figures 8.18 and 8.19 show the desorption of the

silver ions to water and NaCl solution, respectively. However the effect of either the

zeolite loading or the silver concentration was not seen in the Ag release to water

experiments as shown in Figure 8.18. Silver release to water is in the range of 0.077 �

0.06 ppm level. In the case of NaCl solution, the silver release showed an increasing

trend with the increasing zeolite loading at constant silver concentration as shown in

Figure 8.19. Silver release to NaCl solution is between the range of 0.05 and 0.14 ppm

level. The results of the silver release experiments are tabulated in Tables 8.15 and 8.16.

Although silver releases of the composites to water prepared by Method II was

detectable, they are considerably lower compared to the releases to NaCl.
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Table 8.15.Ag + Release from Composite Films to Water.

Zeolite Loading

(%  wt)

Initial AgNO3

Concentration

(ppm)

Amount of Ag+

exchanged on

composites

 (mg/g zeolite)

Ag+ in solution

(ppm)

2 50 4.36 0.06

4 50 4.36 0.02

6 50 4.36 0.02

2 500 27.85 0.04

4 500 27.85 0.007

6 500 27.85 0.01

2 5000 183.78 0.06

4 5000 183.78 0.03

6 5000 183.78 0.03
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Figure 8.18.Ag+ Release to Water from Composite Films Prepared by Method II.
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Table 8.16.Ag + Release from Composite Films to NaCl Solution.

Zeolite Loading

(%  wt)

Initial AgNO3

Concentration

(ppm)

Amount of Ag+

Exchanged on

composites

 (mg/g zeolite)

Amount of Ag+

(ppm)

2 50 4.36 0.05

4 50 4.36 0.13

6 50 4.36 0.14

2 500 27.85 0.07

4 500 27.85 0.09

6 500 27.85 0.09

2 5000 183.78 0.04

4 5000 183.78 0.06

6 5000 183.78 0.08
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Figure 8.19.Ag+ Release to NaCl Solution from Composite Films Prepared by Method

II.
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8.4 Characterization of Ag - Zeolite – PP Composite Films

The polypropylene � zeolite composites prepared by Method II were

characterized using different methods to examine the effects of silver and zeolite into

PP matrix by different means.

8.4.1 FTIR Spectroscopy Results

To investigate the structure of the PP � zeolite composite films, FTIR

spectroscopy was used. As in the case of polymer films, polymer composites were

analyzed using transparent films. DOP and natural zeolite were analyzed by preparing

KBr pellets.

The FTIR spectra of PP, Gördes1 zeolite and DOP used throughout this study

are given in Figures 8.20 to 8.22. As seen from the figures all characteristic peaks of

polypropylene and zeolite given in Table 5.2 and 5.3 are present in their spectra. In

Figure 8.20, broad peaks at 3100 cm-1 and 1640 cm-1 come from the antioxidants used

in polypropylene. The 450 cm-1 and 609 cm-1 peaks in Figure 8.21 show the internal and

external T- O - double ring respectively, and are known as the characteristic peaks of

natural zeolite. The 609 cm-1 peak was used to determine the clinoptilolite content in

zeolite (Krivascyet al, 1992; Özmõhçõ,1999). The 1750 cm-1 peak stands for the

carbonyl group, here corresponding to the DOP peak in Figure 8.22.

The FTIR spectra of the samples loaded with 4.36 (mg/g) silver and a zeolite

loading of 2, 4, 6 % are given in Figures 8.23 to 8.25. Although the 450 cm-1 peak is

reported as the characteristic peak for natural zeolite it is also seen in the spectrum of

pure polypropylene as shown in Figure 8.20. This might be due to the additive materials

present in the polypropylene. As seen in Figures 8.23 to 8.25, 450 cm-1 peak is greater

in PP � silver loaded zeolite composites than that of in pure PP. The peak intensity at

450 cm-1 was increased with the increasing zeolite content in the composites.
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Figure 8.20.FTIR Spectrum of Polypropylene

Figure 8.21.FTIR Spectrum of Gördes 1 Zeolite.

 

500.0 1000.0 1500.0 2000.0 3000.0 4000.0 
1/cm 

0.0 

1.0 

2.0 

3.0 

ABS 

 

500.01000.01500.02000.03000.04000.0
1/cm

0.0

1.0

2.0

3.0

ABS



97

Figure 8.22.FTIR Spectrum of DOP.

Figure 8.23.FTIR Spectrum of 2 % Zeolite, 4.36 (mg/g) Silver Containing Sample.
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Figure 8.24.FTIR Spectrum of 4 % Zeolite, 4.36 (mg/g) Silver Containing Sample.

Figure 8.25.FTIR Spectrum of 6 % Zeolite, 4.36 (mg/g) Silver Containing Sample.
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For all the samples prepared by Method II, the change of zeolite peak with

respect to the DOP peak was investigated. In order to see this effect, b/a calibration

curve with respect to zeolite content was constructed. Here b and a represent the

absorbance values for the DOP (1750 cm�1 peak) and the combination of pp - zeolite

peaks  (450 cm-1 peak), respectively. Of all the peaks, the maximum b/a value occurred

for sample with a zeolite loading of 2 % wt. The variation of b/a with changing zeolite

loading and amount of Ag+ / g zeolite concentration is presented in Figure 8.26. With

the increasing silver concentration, it was observed that the effect of DOP was

suppressed.
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Figure 8.26. Variation of b/a with Respect to Zeolite Content at Various Ag+

Concentration.

Figure 8.27 shows the effect of Ag+ loading on b/a values of the composites at a

constant zeolite loading of 4% wt. At a specified zeolite loading the effect of silver

concentration is not so significant. There is a slight decrease in the b/a value for the 4 %

sample as seen in Figure 8.27.



100

Figure 8.27.Variation of b/a for 4% Sample with Respect to Ag+ Concentration.

The presence of zeolite and silver ions may have caused catalytic degradation of

DOP since the higher the zeolite and silver content the lower the b/a value. For the films

containing 2 % wt zeolite and 4.36 mg Ag+ /g zeolite (Table 8.14), the absorbance value

of the DOP was maximum. Thus, this film contained optimum amounts of silver and

zeolite that did not cause any degradation of DOP.

8.4.2 Results of Thermal Analyses

In this study, DSC and TGA were used for the thermal characterizations of the

PP, natural zeolite, and PP � silver zeolite composite films. The melting, crystallization,

and degradation behaviors, and the kinetic analysis of the composites were investigated.

8.4.2.1 DSC Studies

8.4.2.1.1 Characterization of PP

DSC analysis of PP (MH 418) was performed up to 250 oC by Özmõhçõ (1999).

In the present study, the experiments were carried out up to 500 oC to observe the

degradation behavior of PP. Figure 8.28 shows the DSC curve of PP at a heating rate of

10 oC /min in a stream of dry nitrogen gas.
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Figure 8.28.DSC Curve of MH 418 Polypropylene.

As seen from the figure, the melting and the degradation temperatures were

found to be 165.0oC, and 459.9oC respectively. The heat of fusion (∆Hf) of the sample

came out to be 59.6 kJ/kg. The heat of fusion and the melting temperature of PP was

found to be 61.5 kJ/kg, and 163.8 oC respectively by Özmõhçõ (1999) which are in close

agreement with the results of the present study.

The energy of the second endotherm, (∆Hd) that was attributed to degradation of

PP, was found as 258.1 kJ/kg.

8.4.2.1.2 Characterization of Natural Zeolite

The DSC curve of natural zeolite mineral is given in Figure 8.29. From the DSC

curve, it is concluded that the external and the loosely bond water was removed around

70oC, whereas the tightly bond water was removed around 350oC. The energy required

from that for these processes are determined to be 69.12 kJ/kg, and 9.66 kJ/kg,

respectively.
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Figure 8.29.DSC curve of Gördes 1 zeolite.

8.4.2.1.3 Characterization of Composite Films Prepared by Method I

Polypropylene � zeolite composites prepared by Method I were used in the DSC

analyses. The DSC curves of the PP � zeolite composites impregnated with 50 ppm

AgNO3 solution at three different zeolite loading (2, 4, and 6 %) at a heating rate of

10oC/ min are shown in Figure 8.30.

In the DSC curve, the first and the second peak temperatures show the melting

and the degradation temperatures of the composites, respectively. All the composites

melt between 161 � 162 oC, and degraded between 459 � 465 oC as seen from Figure

8.30. Although the melting temperatures of the composites did not change with respect

to zeolite loading, the degradation temperatures seemed to increase slightly with the

addition of zeolite into PP matrix from 459 to 465 oC. At a heating rate of 10oC/min, the

quantitative information about peak temperatures for melting and degradation, heat of

fusion (∆Hf) and degradation values (∆Hd), and the % crystallinity values are tabulated

in Table 8.17 for the composite films impregnated at 50 ppm AgNO3 solution. The

% crystallinity of the films was determined using Equation 8.4.



103

-7
-6
-5
-4
-3
-2
-1
0
1
2

0 100 200 300 400 500
Temperature (C)

m
W

2 % zeolite 4 % zeolite 6 %zeolite

Figure 8.30.DSC Curves of Composite Films Prepared by Method I.

% Crystallinity =

The  ∆Hf value for 100 % crystalline PP is cited in literature as 209 kJ/kg

(Horrocks and D�Souza, 1991). This value is used to determine the % crystallinity of

the composites.

As shown in Table 8.17, % crystallinity of PP was increased with the increasing

zeolite content with the exception of the 6 % zeolite sample. This might be due to the

fact that the non homogeneity problem of the filler exists especially for the 6 % wt

loading. It is concluded that zeolite acts as a nucleating agent in the PP matrix. The

higher the zeolite content the higher the crystallinity values were obtained for the

composites.

Figure 8.31 shows the relation between the heat of fusion of the composites and

the zeolite content.  The heat of melting values for the composite films with respect to

zeolite content showed an increasing trend except for 6 % wt zeolite loaded composite

           (Heat of fusion of sample)

(Heat of fusion of 100 % crystalline sample)

x100   (8.4)
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films. This might be due to the non-homogeneous distribution of the zeolite particles

within the composite films especially for the 6 % wt zeolite containing samples. As will

be discussed later, the TGA results also showed that the filler distribution along the

composite films is not uniform.

Figure 8.31.Effect of Zeolite Content on the Heat of Fusion Values.

Table 8.17.DSC Analysis of Composite Films Impregnated with 50 ppm Ag+.

Zeolite

Loading

(%)

1st Peak

Temperature

(C)

2nd Peak

Temperature

(C)

∆Hf

(kJ/kg)

∆Hd

(kJ/kg)

%

Crystallinity

0 161.7 459.2 75.2 365.6 35.9

2 160.3 465.6 87.6 387.8 41.9

4 161.2 463.2 88.8 386.9 42.5

6 162.2 460.7 68.9 356.8 33.0
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8.4.2.1.4 Characterization of Composites Prepared by Method II

Composite films prepared by Method II were all analyzed using DSC with a

heating rate of 10oC/min. The DSC curves of the composites having 4 % wt zeolite

loaded with 4.36, 27.85, and 183.78 mg Ag+ /g zeolite are given in Figure 8.32. 
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Figure 8.32.DSC Curves of the Composites Containing 4 % wt Zeolite Loaded with

Different Amounts of Silver.

The DSC curves of the composites loaded with 27.85 mg Ag+ /g zeolite

containing different amounts of zeolite is shown in Figure 8.33. In both of the Figures,

8.32 and 8.33, the DSC curves of the samples showed very similar results. Thus, all the

samples� first and second peak temperatures were between 161 � 165 oC, and 459 � 466
oC, respectively. This shows that silver concentration and zeolite loading do not affect

the peak temperatures of melting and degradation significantly. However, ∆Hf and ∆Hd

values showed an increasing trend with increasing zeolite loading and silver

concentration except for the case of samples with 183.78 mg Ag+/ g zeolite. At low

silver concentrations, zeolite behaved as a decelerating agent in PP, while at high silver

concentrations zeolite accelerated the decomposition reaction of PP.
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Figure 8.33.DSC Curves of the Composites Loaded with 27.85 mg Ag+/g Zeolite, for

Different Zeolite Loadings.

Table 8.18 gives the quantitative results for the composites of different zeolite

loadings in detail.

Table 8.18.DSC Analysis of Composites by Method II.

Zeolite

Loading

(%)

Ag+ conc.

(mg/g)

1st Peak

temperature

(C)

2nd Peak

Temperature

(C)

∆Hf

(kJ/kg)

∆Hd

(kJ/kg)

%

Crystallinity

0 0 165.0 459.89 59.57 258.21 28.5

2 4.36 161.03 464.19 58.41 321.80 27.9

4 4.36 161.53 459.89 70.00 352.05 33.49

6 4.36 165.60 459.32 79.17 363.55 37.88

2 27.85 158.35 464.08 72.74 315.89 34.8

4 27.85 162.72 462.81 79.31 360.47 37.94

6 27.85 165.70 465.7 83.80 319.43 40.09

2 183.78 162.71 466.54 78.18 390.23 37.4

4 183.78 162.74 459.91 69.66 335.30 33.33

6 183.78 162.60 462.6 81.46 314.60 38.97
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8.4.2.1.5. Kinetic Analyses of the Thermal Decomposition of the Composites

Kinetic analysis of the thermal decomposition was carried out according to both

Ozawa and Kissinger Methods. The methods were explained in detail in Chapter 5.

Thermal decomposition was studied at heating rates of 5, 10, and 20oC/min in a

nitrogen atmosphere. Kinetic analysis was applied to samples prepared by both of the

methods, I and II only for a single zeolite loading of 4 % wt.  Figure 8.34 and 8.35

shows the DSC curves of the composite films treated with 50 ppm AgNO3 solutions

prepared by Methods I and II respectively.
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Figure 8.34.DSC Curves of 4 % wt Zeolite Composite films Prepared by Method I

(Impregnated with 50 ppm Ag+).
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Figure 8.35.DSC Curves of 4 % wt Zeolite Composites Prepared by Method II (4.36

mg/g Silver).



According to the Kissinger method, described in detail in Chapter 5 (Equation

5.12), activation energy of the composites for the decomposition reaction was

determined from the plot of the logarithmic heating rate (lnQ) against 1/Td. The thermal

degradation temperature, Td was measured from the DSC curves of the composites for

various heating rates. The plot of ln Q vs 1/Td for the 4 % wt zeolite loaded composites

treated with 50 ppm Ag+ with Methods I and II are illustrated in Figures 8.36 and 8.37.

Figure 8.36.Kissinger Plot of 4 %

 Method I

Figure 8.37.Kissinger Plot of 4

Method II.
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The thermal degradation activation energy of the composites was determined

from the slopes of the Kissinger plots, corresponding to �Ea/R. DSC curves were also

analyzed according to the Ozawa Method using kinetic analysis software of Shimadzu

50. The kinetic analysis software is based on the Ozawa principle.

The activation energies for the decomposition reactions were calculated from the

slopes of the lines. The quantitative information obtained from the kinetic analysis of

the samples performed with both the Ozawa and the Kissinger Methods were tabulated

in Table 8.19. As seen from the table the activation energies obtained by the two

methods are in agreement with each other.

Table 8.19.Degradation kinetic constants for the 4 % wt  zeolite composite films.

Ozawa MethodMethod Initial AgNO3

Concentration

(ppm)

Kissinger Method

Activation
Energy

(kJ/mol)

Activation
Energy

(kJ/mol)

Frequency
factor
(min-1)

k X102

@ 450 oC

I 50 247 242 8.62X1016 0.282

II 50 170 168 4.09X1011 0.297

II 500 221 226 6.2X1015 0.291

II 5000 215 214 8.68X1014 0.299

Since the thermal decomposition occurs around 450 oC, the reaction constant k

was calculated at 450oC  using the Arrhenius Equation (Equation 8.5).

)/exp( RTEAk −= (8.5)

where;

E = activation energy (kJ/mol)

A = frequency factor (min-1)

R = gas constant

T = temperature (K)
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It was observed that the reaction constant was not significantly affected by the

increasing silver concentration, and that slight increases occurred.

8.4.2.2 Results of the TGA Studies

The weight losses of pure PP, natural zeolite, and PP � zeolite composites

prepared by methods I and II were investigated with respect to the increase in

temperature.

8.4.2.2.1 Characterization of Polypropylene by TGA

Figure 8.38 shows the TGA curve of the polypropylene analyzed with a heating

rate of 10oC/min in a nitrogen atmosphere.
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Figure 8.38.TGA Curve of MH- 418 PP.

The weight loss started at around 230oC, and at about 390oC, the 93 % of the

polypropylene was lost. The mass loss occurs at two steps. The first and the sharp

decrease in the mass occurred at between 230 and 390oC. The second and the slow mass

loss step was observed around 390 - 600oC. Figure 8.39 shows the effect of heating rate

on the degradation of polypropylene. With the increase in the heating rate, while the

thermograms  shifted towards the right,  the onset of degradation temperature increased,

and   the   termination of  degradation  temperatures   decreased.  That is,  the  onset  of



111

Figure 8.39.Effect of Heating Rate on PP egradation.

degradation  temperatures, and  the termination  of degradation values  for the  heating

rates of 5, 10, 20 oC/min, were about 220 oC, 240 oC, 275 oC, and 550 oC, 525 oC,

420 oC respectively.

8.4.2.2.2 Characterization of Composites Prepared by Method I Using TGA

The samples with zeolite loading of 2, 4, and 6 % wt zeolite, prepared by the

two different methods; Method I, and II were analyzed by TGA with a heating rate of

10 oC/min. Figure 8.40 shows the TGA curves of the composite films prepared by

Method I while Table 8.20 presents the information about the degradation behavior of

the composite films. Here, the degradation trend of the 2, 4, and 6 % wt zeolite

containing samples impregnated with 50 ppm of AgNO3 solution is seen.

As shown on the TGA curve, all the samples were stable below 250 oC, but

above 300 oC, the weight losses increased abruptly. Samples containing 2 and 6 % wt

zeolite behaved very similar to each other. Their onset and termination of degradation

temperatures were very close as seen in Figure 8.40 and Table 8.20. However, the 4 %

wt sample started to degrade earlier, the onset of degradation decreased and termination

of degradation temperature increased. Pure PP started to degrade around 200 oC, and the

degradation was terminated around 550 oC, however PP treated with 50 ppm AgNO3
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solution, started to degrade later around 260 o C indicating that the addition of silver

shifted the degradation temperatures up to higher values. The same behavior was also

observed from the DSC analysis. However, with the addition of zeolite into the PP

matrix, the onset of degradation temperature for PP decreased from 260 oC to 218 oC

while the termination of degradation temperature values increased with the increasing

zeolite content. Consequently, it can be concluded that zeolite decelerates the thermal

decomposition reactions at 50 ppm conditions.

Figure 8.40.TGA Curves of Composites Prepared by Method I.

Table 8.20.TGA Analysis Results of the Composites Prepared by Method I

Zeolite content

(% wt)

Onset of

Degradation

Temperature (oC)

Termination of

Degradation

Temperature (oC)

Weight Loss

(%)

0 (PP) 257 537 100

2 218 526 97.87

4 251 535 98.11

6 237 563 97.74
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8.4.2.2.3 Characterization of Composites Prepared by Method II Using TGA

Composite films prepared by Method II were all analyzed using TGA with a

heating rate of 10 oC/min. The TGA thermograms of the 4 % wt zeolite sample with

respect to silver concentration are shown in Figure 8.41.

The TGA analyses of the three different samples showed very similar results.

With the increasing silver concentration, the onset of degradation shifts slightly to

higher values as shown in Table 8.21. On the average, the degradation started at around

220oC, and terminated at about 550oC. The TGA curves of the samples containing 27.85

and 183.78 (mg/g) silver almost overlapped each other, while the sample containing

4.36 (mg/g) silver showed a slower decrease compared to the other two samples. The

weight losses of the 4.36, 27.85, and 183.78 (mg/g) silver containing samples came out

to be 98.6, 98.2, and 96.9 % respectively. Although all the samples were supposed to

contain 4 % zeolite, the TGA results did not agree with this indicating that the zeolite

distribution along the composite films was not uniform.  Table 8.22 presents the

quantitative information of the TGA results as a function of zeolite content and silver

concentration.
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Figure 8.41.TGA Curves of 4 % wt Zeolite Sample Prepared by Method II.
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Table 8.21.TGA Analysis Results of the 4 % wt Composites Prepared by Method II.

Amount of Ag+

Exchanged on

composites

(mg Ag+/g zeolite)

Onset of

Degradation

(oC)

Termination of

Degradation

(oC)

Weight Loss

(% wt)

4.36 212.2 556.9 98.6

27.85 224.6 553.8 96.9

183.78 225.5 552.3 98.3

8.4.2.2.4 Kinetic Analysis of the Composites by TGA

The kinetic analysis was performed with heating rates of 5, 10, and 20 oC/min

for the 4 % wt zeolite samples, which were prepared by Method I, and II. Figure 8.42

shows the TGA curves of the 4 % wt zeolite samples containing 27.85 (mg/g) silver

prepared by Method II.

Table 8.22.TGA Results for the Samples Prepared by Method II.

Zeolite Loading

(%)

Initial AgNO3

Solution

(ppm)

Amount of Ag+ Exchanged on

zeolites

(mg Ag+/g zeolite)

Weight Loss

(%)

2 50 4.36 98.9

2 500 27.85 100.8

2 5000 183.78 100.2

4 50 4.36 98.6

4 500 27.85 96.9

4 5000 183.78 98.3

6 50 4.36 98.19

6 500 27.85 99.5

6 5000 183.78 99.5
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Figure 8.42.TGA Curves of the 4 % wt Zeolite, 27.85 mg Ag+/g Zeolite Containing

Samples Prepared by Method II.

As the heating rates increased, the thermograms shifted toward the right and the

degradation temperature increased. Kinetic analyses of these composites were

performed using Shimadzu 51 TGA kinetic analysis software within a temperature

range of 250 - 550oC. The Ozawa plot shows the logarithm of heating rate versus 1/T at

constant x values (reaction percent) for different conversions (weight loses). From the

slope of the lines, the activation energy, E, is calculated for different weight losses and

averaged by the software. The kinetic energies and the related parameters obtained for

the 4 % zeolite containing samples are shown in Table 8.23.

Reaction rate constant for the degradation reaction was determined using

Arrhenius equation at 250oC. It was observed that silver treatment of the samples

prepared by Method I accelerated the degradation of pure PP (MH418), while zeolite

decelerates the degradation reaction. The TGA kinetic analysis results of the samples

prepared by method II also showed that zeolite addition into the PP matrix speeds down

the decomposition reaction, however activation energies of the samples with a specified

zeolite loading decreased with the increasing silver concentration. This showed that PP

is much more susceptible to thermal decomposition in the presence of silver exchanged

zeolite compared to the pure PP.
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Table 8.23.Kinetic Analysis Results for 4% samples of Method I and II.

Method Zeolite

%

Initial

AgNO3

Conc.

(ppm)

E

(kJ/mol)

L A

(min-1)

kX103

@ 250oC

(min-1)

Control 0 0 56.1 5 4.79x103 11.9

I 0 50 53.9 3 5.84x103 24.3

I 4 50 61.3 3 1.68x104 12.6

II 4 50 96.5 5 9.98x106 2.28

II 4 500 56.5 4 7.75x103 17.4

II 4 5000 64.6 5 2.78x104 9.7

8.4.3 Optical Microscopy

The microstructure of the composite materials without any treatment was

examined by their optical micrographs. Figure 8.43 shows the optical micrographs of

the samples containing 6 % zeolite loaded with 183.78 (mg/g) silver. The agglomerates

of the zeolites, which are the spherical dark particles, could easily be seen within the

horizontally aligned PP molecules.  Although the zeolite particles were grinded down to

45 microns, due to the interface incompatibility between the matrix and the filler, very

large agglomerates formed, leading a non-uniform zeolite distribution throughout the

composite films.

The micrographs of the tensile tested films were also examined in order to see

the effect of stretching. In Figure 8.44 the tensile tested polypropylene is given with

different magnifications. In the tensile tested examples, it is easier to see the horizontal

alignment of the PP molecules.

For the silver treated case, the 6 % zeolite samples, failed in the tension tests.

All the samples broke without elongating just as the tension process started. Therefore it

was not possible to examine the optical micrographs of the tensile tested 6 % wt zeolite

samples. However, the samples, which are free of silver, behaved different then the

silver loaded samples. Figure 8.45 shows the tensile tested micrographs of the 6 %

zeolite samples that are free of silver.
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                  (a)                                              (b)                                             (c)

Figure 8.43.Transmitted Optical Micrographs of the 6 % wt Zeolite, Loaded with

183.78 (mg/g) Silver Samples Prepared by Method II: (a) 50 times Magnified, (b) 100

times Magnified, (c) 200 times Magnified.

        

 

         
                                    

                   (a)                                             (b)                                             (c)

Figure 8.44.Transmitted Optical Micrographs of Tensile Tested Polypropylene: (a) 50

times Magnified, (b) 100 times Magnified, and (c) 200 times Magnified.

            

                   (a)                                            (b)                                             (c)

Figure 8.45.Transmitted Optical Micrographs of Tensile Tested 6 % wt Zeolite

Composite Films: (a) 50 times Magnified, (b) 100 times Magnified, and (c) 200 times

Magnified.

It is observed that the stretching along the machine direction can be detected as

another layer and that the air is entrapped around the zeolite particles. More uniform

5µm 2.5µm 1.25µm

5µm 2.5µm 1.25µm

5µm 2.5µm 1.25µm
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structures are observed after the tensile tests. This suggests that if the composites could

have been prepared using a biaxial orientation, the non-uniformity problem would have

been solved in large scales.

8.4.4 Density Measurements

Density of a composite material is one of the most important factors to be

considered in terms of a manufacture point of view. Improvement of the microporous

structure and the lowering of the density are the primary features of the pearlescent PP

films. The fillers used in the pearlescent films could be particulates or the fibers. While

stretching the films, in machine or the transverse directions, pores form around the filler

particles, causing a decrease in the density and consecutively decreases the

manufacturing cost.

The densities of the samples prepared by Method II were measured by the

density kit of the Sartorious YDK 01 balance as mentioned in the characterization

section.  Also the theoretical densities were determined using Equation 8.6 for

comparison with the experimental results.

[ ])////()()/(/ 332211321 dMdMdMMMMdMMd iiic ++++== ∑∑    (8.6)

where;

dc = theoretical composite density

M = mass

d = density

1, 2, 3 = zeolite, PP, and DOP respectively

dzeolite = 1.8 g/cm3 (Özmõhçõ, 1999)

dpp = 0.89 g/cm3 (Petkim)

dDOP =0.981 g/cm3 (Aldrich)

The void fractions in the composites were determined using Equation 8.7. The

experimental and the theoretical densities and the void fraction values for the samples

are tabulated in Table 8.24.
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tcec xdd ,, )1( ε−= (8.7)

where dc,e, and  dc,t are the experimental and the theoretical densities of the composites

respectively, and ε is the void fraction in the composite.

Experimental densities of the composites were found to be slightly lower than

the theoretical density of pure PP as seen in Table 8.24 except for the 6 % wt samples.

The results indicate that the experimental and the theoretical densities did not show a

systematic agreement with the increasing zeolite content, which is again due to the non-

uniformity of the zeolite distribution along the PP phase. The desired level for the

density in terms of commercial means is 0.6 g/cm3. When the tensile tested film

densities are considered, it is observed that smaller values are obtained compared to the

original samples. Although the results are not as low as desired commercially, there is a

considerable enhancement with respect to the original samples. If perhaps the films

could have been biaxially oriented, the results would be even more close to the desired

level.

8.4.5 Mechanical Tests Results of the Composites

Mechanical tests of the samples prepared by method II as well as the control

samples that are free of silver were conducted. All the samples were tested for three

times and the mean values were used. Yield stress, stress at break, elongation at break,

and Young modulus values measured are shown in Table 8.25.

The results of the mechanical tests show that the addition of DOP decreases the

yield stress, however, increases the stress at break and elongation at break values. It is

observed that the addition of pure zeolite into the PP matrix increases the Young

Modulus values, while the Young moduli slightly decreases with the increasing silver

concentration. Figure 8.46 shows the change of Young modulus values as a function of

zeolite content at different silver loadings. Considering the variation of Young modulus

values between 1100 � 1300 MPa, it is concluded that silver concentration does not

quite affect the Young modulus values of the composites. The effect of silver

concentration on the yield stress values of the composites for a specified zeolite loading
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is presented in Figure 8.47. A linear decrease is observed in the yield stress values with

the increasing silver concentration for the 6 % wt samples prepared by Method II.

Table 8.25.Tensile test results of the pp-zeolite composite films.

Zeolite

%

DOP

%

(v/w)

Ag+ Conc.

(mg/g))

Yield

Stress

(MPa)

Stress at

Break

(MPa)

Elongation

at break

(%)

Modulus

(Mpa)

0(PP) 0 0 24.59 29.18 389.20 1608.32

0(PP) 10 0 23.63 31.29 410.60 1315.95

2 10 0 20.83 31.26 424.33 867.90

4 10 0 27.93 18.75 188.41 1273.60

6 10 0 27.64 24.08 319.72 1483.04

2 10 4.36 22.32 29.47 404.27 1057.67

4 10 4.36 21.92 21.70 382.33 1258.09

6 10 4.36 15.15 15.36 6.39 1189.33

2 10 27.85 27.20 24.40 343.2 1322.96

4 10 27.85 23.22 17.66 344.93 1233.10

6 10 27.85 14.31 15.78 5.99 1190.0

2 10 183.78 29.46 26.49 395.86 1288.43

4 10 183.78 22.78 15.67 205.78 1269.22

6 10 183.78 12.78 13.33 5.03 1129.24
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Figure 8.46.Variation of Young�s Modulus with Respect to Zeolite Content for the

Samples Treated with Different Silver Concentrations Prepared by Method II.

Figure 8.47.Dependence of Yield Stress on Silver Amount for 6 % wt Zeolite

Containing Samples Prepared by Method II.

Figure 8.48 presents the variation of yield stress with respect to zeolite content

at different silver concentrations.
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As seen from Figure 8.48, Yield stress values decreased with increasing zeolite

content at constant silver concentration, however, increased with the increasing silver

concentration at constant zeolite loading.
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Figure 8.48.Variation of Yield Stress with Respect to Zeolite Content at Different Silver

Loading for the Samples Prepared by Method II.

As tabulated in Table 8.25, 6 % wt zeolite containing samples showed a sharp

decrease of the elongation at break values for all the silver concentrations compared to

the 2, and 4 % wt zeolite loaded samples.

Considering these results, it is concluded that 2, and 4 % wt silver � zeolite

loaded composites possess more appropriate mechanical behavior in terms of

application.

The theoretical young modulus and the yield stress values were predicted using

Equations 5.13 and 5.25, respectively. The measured and predicted yield stress and

Young modulus values for the samples loaded with 27.85 (mg/g) silver are tabulated in

Table 8.26.

The comparison of the predicted and the measured elastic modulus and yield

stress are given in Figures 8.49 and 8.50 respectively. The predicted values for the

young modulus showed that no adhesion was present between the filler and the matrix

phases and that the theoretical model did not fit to the experimental results.
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Table 8.26.Predicted and Measured Young Modulus and Yield Stress Values for the

PP � Zeolite Composites Loaded with 27.85 (mg/g) Silver.

Zeolite

wt %
ε Ec,p

(Mpa)

 Ec,m

(Mpa)

σc,p

(Mpa)

σc,m

(Mpa)

2 0.077 1679.282 1322.96 18.45 27.2

4 0.037 1463.077 1233.10 20.45 23.2

2

6 0.184 2549.482 1190.0 14.38 15.78

(Ec: Young modulus, σc: Yield stress, m: measured, p: predicted)

The predicted and measured yield stress values show a better agreement, with a

decreasing trend as the zeolite loading increases.  

Figure 8.49.Variation of Elastic Modulus with Respect to Zeolite Content
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Figure 8.50.Variation of Yield Stress with Zeolite Content.

8.4.6 Microbiological Experimentation Results

Polypropylene � zeolite composite films impregnated with 50 ppm Ag+ prepared

by Methods I and II were tested for their bactericidal activity against E. coli with Agar

Diffusion (Disc method) and Broth Dilution Methods.

It was observed that no inhibition zones were established around the test

samples prepared by both of the methods for the case of disc method. However Ag+

loaded zeolite samples in the form of pellets gave positive results against E.coli by the

disc method (Top, 2001). This shows that disc method is not applicable for the present

study. This might be due to the fact that silver form of zeolites entrapped in PP phase

could not be as effective as the silver form of zeolites alone in the media and the film

sample could not dissolve in the Agar medium. Broth Dilution Method yields

considerable results for the samples prepared by method I and II. The results for both of

the methods are shown in Figures 8.51 and 8.52 respectively.

As seen from the figure 8.51, 401 colonies are counted on the negative control

sample. All the test samples are below this limit, however they are very close to the

control sample. Only the 2 and 6 % zeolite samples of 2 micron particle size gave

acceptable results, but still these experiments should have been performed for several

times to be able to see the reproducibility of the results.
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Figure 8.51.Broth Dilution Method Results for Test Samples Prepared by Method I

against E.coli.

Figure 8.52.Broth Dilution Method Results for Test Samples Prepared by Method II

against E.coli.
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The samples prepared by Method II were expected to be more effective in terms

of bactericidal activity, since the silver exchange was directly performed on the zeolite

minerals. As expected the Broth Dilution method results showed a considerable

enhancement compared with the results of Method I, but still the Agar Diffusion

method did not respond with the Ag-zeolite � PP composites as shown in Figure 8.53.

                                           
                                        (a)                                                         (b)

Figure 8.53.Disc method results of Method II against (a) P.auroginosa (b) E.coli

The pictures of the 6 % wt zeolite samples loaded with (4.36 mg/g) silver

prepared by Method II with the control sample against E.coli is presented in Figure

8.54. As observed from the pictures, the same sample with a larger surface area yields

better results in terms of the number of bacteria that keeps surviving.

               

                  (a)                                             (b)                                             (c)

Figure 8.54. Pictures of (a) 6 % wt zeolite sample (5x10cm) (b) 6 % wt zeolite (10x15

cm) (c) control sample (bacteria alone).
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As a result of the microbiological experiments conducted against E.coli, it was

observed that Ag � zeolite PP composites prevented the bacterial colony formation,

however it was also seen that the PP matrix itself prevents the formation of bacterial

colonies as well. This might be due to the additives present in the MH 418 PP acting

perhaps as an antibacterial agent.

It was expected to see a decrease in the number of bacterial colonies reproduced

in the samples with respect to zeolite content, however it was not the case. Uneven

zeolite distribution throughout the composites prevented this situation.

When the two methods are to be compared in terms of efficiency, Method II

gave better results due to the fact that silver penetration into the zeolite phase was

easier. In Method I, the penetration of the silver ions from the solution to the zeolite

entrapped in the PP matrix was relatively harder.

8.4.7 Discoloration Parameters

Silver, copper, or zinc ion exchanged zeolites have some disadvantages of

discoloring actions. During the blending of the ion-exchanged zeolite with the polymer,

the ion exchanged zeolite leads to discoloration of the composition under the influence

of heat and ultraviolet light such as sunshine. Since the discoloring actions are

important in terms of the final product quality, the discoloration parameters for the

silver � zeolite � PP composites must be considered.

The discoloration parameters consist of three different measures which are the

L, a and b values. L changes between 0 and 100, designating the color transition from

black to white. The a and b values show the transition between green to red, and blue to

yellow, respectively.

The discoloration parameters of the samples prepared by Method I and II were

measured using Minolta 2600 D (using D 65 rays) colorometer. The results are in the

form of difference values with respect to the reference sample. The reference sample is

taken as the pure polypropylene film free of both silver and zeolite. The results obtained

using this apparatus are tabulated in Table 8.27.

The results for the samples prepared by Method I are very similar with the

reference sample. The first method was only conducted with the minimum initial silver

concentration of 50 ppm. However the discoloration results of the second method for

the initial concentration 50 ppm are higher than that of the method I. This means that
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second method has more discoloring action on the composite films. This arises from the

difference of the two methods. In the first method, the pp-zeolite composite films were

treated with silver containing solutions, and the silver exchange between the solution

and the zeolite embedded in the composites was limited. However in the second case,

the silver exchange to zeolite minerals was performed prior to the molding process.

Therefore the extent of the ion exchange processes was not of the same magnitude.

Thus the amount of silver present in the films affected the discoloration parameters as

expected.

Table 8.27.Discoloration Test Results of PP-Zeolite Composite Films

Method Zeolite % Initial AgNO3

Conc. (ppm)

∆L ∆a ∆b

I 2 50 0.35 -0.13 -0.04

I 4 50 0.72 -0.01 -0.16

I 6 50 -0.11 -0.07 0.62

II 2 50 -1.19 -0.41 1.81

II 4 50 -2.02 -0.57 -2.65

II 6 50 -3.71 -0.63 3.96

II 2 500 -2.67 -1.19 6.72

II 4 500 -5.16 -2.16 14.5

II 6 500 -9.93 -2.50 25.3

II 2 5000 -6.39 -0.82 12.6

II 4 5000 -10.8 -1.6 23.6

II 6 5000 -16.3 -1.34 28.8

As the silver concentration is increased, the discoloration parameters of the

samples change from white to black, red to green, and blue to yellow for L, a, and b

values respectively. �L� and �b� parameters changed a lot with the increasing silver

concentration compared to the �a� values. The higher the silver concentration, the more

the pronounced discoloring effect was obtained (Niira, 1990).



Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

In the scope of this study, development of an antibacterial resin composition

comprising of PP and silver form of clinoptilolite rich natural zeolite by the extrusion

technique was investigated.

Sorption studies indicated that, with the addition of zeolite, PP a hydrophobic

polymer attained the property of water sorption due to the porous structure of the

composite films with effective diffusivity values changing between 0.3 – 9.9 X 10-10,

and 0.1 – 3.3 X10-12 cm2/ s for the hot press and extruded films, respectively. This was

the desired fact since the silver exchange process would be conducted in an aqueous

media. Silver loading to the PP – zeolite composites was performed by two different

methods. In Method I, PP - zeolite composite films were treated with a variety of silver

ion containing solutions (5 to 50 ppm AgNO3 solution), whereas in Method II silver

exchanged zeolite minerals (with initial AgNO3 concentrations of 50, 500, and 5000

ppm) were molded with PP in the presence of DOP (Dioctyl Phthalate). The amounts of

Ag+ loaded per gram of zeolite for initial AgNO3 concentrations of 50, 500, and 5000

ppm were determined as 4.36, 27.85, and 183.78 mg, respectively. In both of the

methods, the extent of ion exchange was determined by analyzing the liquid phase. As

expected the extent of the ion exchange with Method II was considerably larger than

that of Method I because of the direct contact between the zeolite minerals and the

silver ions. However, in Method I the penetration of silver ions into the zeolite phase

was prevented by the PP phase.

In the FTIR studies it was observed that silver loading did not affect

significantly the peaks corresponding to both PP and zeolite. Yet the presence of zeolite

and high concentration of silver ions might have caused catalytic degradation of DOP

thereby lowering the absorbance of its characteristic peak (1750 cm-1).

Increase in zeolite content with the presence of silver ions for the samples

prepared by Method I led to a slight increase in the crystallinity values of the

composites. For the composites prepared by Method II, the increase in the heat of

melting and degradation values, and consequently the % crystallinity was more

significant especially with the increasing silver concentration. When the two methods
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are compared in terms of the activation energies for their thermal decomposition

reactions, the activation energy for Method I was considerably higher than that of

Method II, and hence the onset of degradation values were higher. The addition of silver

accelerates the decomposition reactions.

Although the zeolite minerals were surface modified with PEG 4000 and DOP

was used as a plasticizer during the extrusion process, still the interface incompatibility

between the matrix and the filler could not be totally eliminated. However, from the

optical micrographs of the tensile tested films, it is clearly seen that stretching along the

machine direction showed a considerable enhancement in the distribution of zeolite

particles.

The experimental densities of the composites were lower than the theoretical

densities except for the 6 % wt zeolite samples indicating the formation of voids in the

composites. When the tensile tested samples are under consideration, the densities came

out to be even lower, which shows that the stretching along the machine direction yields

better agreement with the commercially desired values that is around 0.6 – 0.65 g /cm3.

Mechanical tests indicated that the addition of zeolite tended to decrease the

Yield stress values while a slight decrease was observed for Young moduli. The effect

of silver on the Young Modulus values of the composites is not quite significant,

however the Yield Stress values increased considerably with the increasing silver

concentration from 23.6 to 29.5 MPa. The fluctuations obtained in the mechanical tests

emphasized the uneven zeolite distribution in the PP matrix as observed in the thermal

analyses, the optical micrographs, and the density measurements.

The discoloring actions of the samples prepared by Method I was almost

negligible. However, the samples prepared by Method II showed very sharp increases

with both the ‘L’ and the ‘b’ values with the increasing silver concentration going from

white to black, and from blue to yellow respectively. Therefore, while using silver as an

antibacterial agent, discoloring agents are absolutely necessary in order to avoid this

discoloring action and provide a commercially valuable product.

The microbiological experiments suggest that silver – zeolite – PP composite

films may be an appropriate composition to be used in different applications seeking for

antibacterial activity. However, PP matrix itself was also determined to prevent the

formation of bacterial colonies. This might be due to the additives present in the MH

418 PP acting perhaps as an antibacterial agent. Comparing the two methods, it was

concluded that the method of Agar Diffusion was not suitable for the silver zeolite



132

loaded films whereas the Broth Dilution Method eliminated almost all of the pathogenic

organisms with the samples loaded with 4.36 mg Ag+/ g zeolite prepared by Method II.

In order to reach a reliable conclusion however, a series of experiments should be

conducted to see the reproducibility of the results and determine the optimum

experimental conditions such as the silver concentration, pH, or the medium

temperature.

The most critical problem in this study was the interface incompatibility

between the filler and the matrix phases. Beyond this, the mixing process within the

extruder was not sufficient. The information obtained from TGA about the zeolite

content of the samples did never match with the actual amount of zeolite present in the

composites. If the zeolite particles and the polypropylene beads could have been

thoroughly mixed and their masterbatch forms could be obtained following a biaxial

orientation of the resultant film, the problem of uneven zeolite distribution could

probably be solved. Another problem was the discoloring action of silver. Especially at

high silver concentrations, the discoloring effect is even more significant. Various

discoloring agents being proposed recently may be used to avoid this action and prepare

colorless films.



REFERENCES

Akyõl S., Uranyum Ayrõlmasõnda Kompozit İyon Değiştiricilerin Geliştirilmesi ve

Çeşitli Uygulama Alanlarõnõn İncelenmesi, Ph.D Thesis, Ege University, İzmir, 1996.

Akovalõ G., Akman M.A., Mechanical Properties of Plasma Surface � Modified

Calcium Carbonate � Polypropylene Composites, Polymer International, 42,1997.

Alonso M., Velasco J.I., Saja J.A., Constrained Crystallization and Activity of Filler

Surface Modified Talc Polypropylene Composites, European Polymer Journal, Vol. 33,

No.3, 1997.

Alsoy S., Natural Zeolite in Wastewater Treatment, MS Thesis, Ege University, İzmir,

1992.

Balköse D., Ulutan S., Özkan F., Flexible Poly (Vinyl Chloride)-Zeolite Composites for

Dye Adsorption from Aqueous Solutions, Separation Science and Technology, 31 (9),

1996.

Barry J.E., Trogolo J.A., Antibiotic Toothpaste, United States Patent: 6,123,925, 2000.

Cahn R.W., Hoasen P., Kramer E.J., Material Science and Technology, Vol. 12, New

York, 1993.

Çaykara T., Güven O., The Effect of Preparation Methods on the Thermal Properties of

Poly (Acryclic Acid) / Alumina Composites, Polymer Composites, Vol. 19, No.2, 1998.

Colthup N.B., Daly L.H., Wiberley S.E., Introduction To Infrared and Raman

Spectroscopy, Third Edition, 1990.

Crank J., Park G.S., Diffusion in Polymers, London, 1968.



134

Czaran E., Papp J., Agnes M.K., Domokos E., Ag-Ion Exchange by Natural Mordenite

and Clinoptilolite, Acta Chimica Hungarica, 126 (5), 1989.

Demjen Z., Pukanszky B., Effect of Surface Coverage of Silane Treated CaCO3 on the

Tensile Properties of Polypropylene Composites, Polymer Composites, Vol. 18, No.6,

1997.

Dirim (Aktaş), Safiye Nur, Manufacturing of a New Protective Polyethylene Based

Film Containing Zeolites for Packaging of Food, PhD Thesis, 2000.

Dyer A., Uses of Natural Zeolites, Chemistry and Industry, 1984.

Esenli F., Kumbasar I., Thermal Behaviour of Heulandites and Clinoptilolites of

Western Anatolia, Studies in Surface Science and Catalysis, Vol.84, 1994.

Fernandes Jr., V.J., Araujo A.S., Medeiros R.A., Matos J.R., Mercuri L.P., Silva A.O.,

Melo M.A., Kinetic Parameters of Polyethylene Degradation by the Natural Zeolite

Chabazite, Journal of Thermal Analysis and Calorimetry, Vol. 56, 1999.

Fuentes G.R., Ruiz- Salvador A.R., Mir M., Picazo O., Quintana G., Delgado M.,

Thermal and Cation Influence on IR Vibrations of Modified Natural Clinoptilolite,

Microporous and Mezaporous Materials, 20, 1998.

Goryainov S.V.,Stolpovskaya V.N., Likhacheva A.Y., Belitsky I. A., Fursenko B.A.,

Quantitative Determination of Clinoptilolite and Heulandite in Tuffaceous Deposits by

Infrared Spectroscopy, Natural Zeolites, Mumpton F.A., 1995.

Hancock M., Rothon N., Polymer Science and Technology Series � Particulate Filled

Polymer Composites, England, 1995.

Hagiwara Z., Hoshiro S., Nohara S., Tagawa K., Zeolite particles Retaining Silver Ions

Having Antibacterial Properties, United States Patent, 1990.



135

Hatakeyama T., Quinn F.X., Thermal Analysis - Fundamentals and Applications To

Polymer Science, Japan, 1994.

Helfferich F., Ion Exchange, Mc Graw Hill Book Company, London, 1962.

Hull D., An Introduction to Composite Materials, Cambridge University Press, 1995.

Kawahara K., Tsuruda K., Morishita M., Uchida M., Antibacterial Effect of Silver �

Zeolite on Oral Bacteria Under Anaerobic Conditions, Dental Materials, 16, 2000.

Khunova V., Hurst J., Janigova I., Smatko V., Plasma Treatment of Particulate Polymer

Composites for Analyses by Scanning Electron Microscopy, Polymer Testing 18, 1999.

Klasen H.J., A Historical Review of the Use of Silver in the Treatment of Burns.II:

Renewed Interest for Silver, Burns 26, 2000.

Knowlton G.D., White T.R., Thermal study of types of Water Associated with

Clinoptilolite, Clays and Clay Minerals, Vol. 29, No.5, 1981.

Kubota K., Katoh T., Hirata M., Hayashi K., Dyed Synthetic Fiber Comprising Silver-

Substituted Zeolite and Copper Compound, and Process for Preparing Same, United

States Patent, 1993.

Langevin D., Detallante V., Chappey C., Metayer M., Mercier R., Pineri M., Water

avpor Sorption in Naphthalenic Sulfonated Poliymide Membranes, Journal of

Membrane Science 190, 2001.

Lekatou A., Faidi S.E., Ghidaoui D., Lyon S.B., Newman R.C., Effect of Water and Its

Activity on Transport Properties of Glass / Epoxy Particulate Composites, Composites

Part A 28 A, 1997.

Levita G., Marchetti A., Lazzeri A., Fracture of Ultrafine Calcium Carbonate /

Polypropylene Composites, Polymer Composites, Vol. 10, No.1, 1989.



136

Liang J.Z., Li R.K.Y., Mechanical Properties and Morphology of Glass Bead-Filled

Polypropylene Composites, Polymer Composites, Vol.19, No.6, 1998.

Maeda T., Nose Y., A New antibacterial Agent: Antibacterial Zeolite, Artificial Organs,

Vol. 23(2), 1999.

Maiti S.N., Sharma K.K., Studies on Polypropylene Composites Filled with Talc

Particles, Journal of Materials Science, 27, 1992.

Mascia L., Thermoplastics (Material Engineering), Elsevier Science Publisher, New

York, 1982.

Matsuura T., Abe Y., Sato Y., Okamoto K., Ueshige M., Akagawa Y., Prolonged

Antimicrobial Effect of Tissue Conditioners Containing Silver-Zeolite, Journal of

Dentistry, Vol. 25, (5), 1997.

Metayer M., Labbe M., Marais S., langevin D., Chappey C., Dreux F., Brainville M.,

Belliard P., Diffusion of Water Through Various Polymer Films: A New High

Performance Method of Characterization, Polymer Testing 18, 1999.

Mitsuishi K., Ueno S., Kodama S., Kawasaki H., Crystallization Behavior of

Polypropylene Filled with Surface � Modified Calcium Carbonate, Journal of Applied

Polymer Science, Vol. 43, 1995.

Moore E.P., Polypropylene Handbook-Polymerization, Characterization, Properties,

Processing, Applications, Hanser / Gardner Publications, Inc., Cincinnati, 1996.

Nielsen L.E.,landel R.F., Mechanical Properties of Polymers and Composites, Marcel

Dekker Inc.,New York, 1974.

Niira R., Niira Y., Yamamato T., Uchida M., Antibiotic Zeolite, United States

Patent:4,938,955, 1990.



137

Olguin M.T., Rivera-Garza M., Garcia �Sosa I., Alcantra D., Rodriguez- Fuentes G.,

Silver Supported on Natural Mexican Zeolite as an Antibacterial Material, Microporous

and Mezoporous Materials, 39, 2000.

Özmõhçõ F., Polypropylene � Natural Zeolite Composite Films, MS Thesis, 1999.

Paik James S., Dhanasekharan M., Kelly M.J., Antimicrobial Activity of UV-Irrardiated

Nylon Film for Packaging Applications, Packaging Technology and Science, Vol. 11,

1998.

Pehlivan H., Tõhmõnlõoğlu F., Özmõhçõ F., Balköse D., Ülkü S., Doğal Zeolit-

Polipropilen Kompozitlerde Su ve Su Buharõ Sorpsiyonunun İncelenmesi, II. Uluslararsõ

Ambalaj Kongresi ve Sergisi, İzmir, 2001.

Pehlivan H.,Tõhmõnlõoğlu F., Balköse D., Ülkü S., Silver Exchange on Polypropylene-

Zeolite Composite Films, Eastern Mediterranean Chemical Engineering Conference,

Ankara, 2001.

Projan S.J., Alksne L.E., Bacterial Virulence as a Target for Antimicrobial

Chemotherapy, Pharmaceutical Biotechnology, 2000.

Rochette A., Choplin L., Tanguy P.A., Rheological Study of Mica-Filled Polypropylene

as Influenced by a Coupling Agent, Polymer Composites, Vol.9, No.6, 1988.

Semmens M.J.,Martin W., Studies on Heavy Metal Removal From Saline Waters by

Clinoptilolite, AIChe Symposium Series, No 197, Vol. 76, 1979.

Seymour R.B., Polymer Composites, The Netherlands, 1990.

Sibilia J.P., A Guide to Materials Characterization and Chemical Analysis, New York,

1988.

Top A., Cation Exchange (Ag+, Zn2+, Cu2+) Behavior of Natural Zeolites, MS Thesis,

İzmir Institute of Technology, 2001.



138

Ulutan S.,Balköse D., Diffusivity, Solubility and Permeability of Water Vapor in

Flexible PVC / Silica Composite Membranes, Journal of Membrane Science 115, 1996.

Ulutan S.,Balköse D., Interfacial Enhancement of Flexible PVC � Silica Composites by

Silane Coupling Agents, Composite Interfaces,Vol.4, No.4, 1997.

Worley S.D., Eknoian M.W., Bickert J., Williams J.F., Novel Antimicrobial N-

Halamine Polymer Coatings Generated by Emulsion Polymerization, Polymer 40, 1999.

Xavier S.F., Schultz J.M., Friedrich K., Fracture Propagation in Particulate � Filled

Polypropylene Composites, Journal of Materials Science 25, 1990.


