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ABSTRACT 

 

 

 

Industrial product design, as a field of design discipline, borrows concepts and methods 

from other disciplines, one of which is engineering, in order to develop its own 

knowledge in research and industry contexts. In the means of strengthening its place 

among other disciplines, a concentration on ‘designerly’ ways of knowing, thinking and 

acting should be provided. Therefore, in this study, the intersection between industrial 

product design field and engineering discipline is searched for revealing the engineering 

concepts and non-intuitive design methods within intuitive design methods used in 

industrial product design. Engineering design field is stated, since its being close to 

industrial product design, and a comparison is made between industrial product design 

and some engineering fields through their approach to design problems and the tools 

they use. Engineering design methods are stated and their advantages in design activity 

are revealed. This study is a part of design systems area, with formal approaches to 

models of design processes and knowledge. Finally, a case study of bicycles is carried 

out in order to prove the design approaches and the priorities of engineering and 

industrial product design on a product. 

 

Keywords: industrial product design, design criteria, engineering design, design 

methods, bicycle 
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ÖZ 

 

 

 

Endüstri ürünleri tasarımı, kendi disipliner bilgisini, araştırma ve endüstriyel bağlamda 

geliştirebilmek amacı ile, mühendisliğin de dahil olduğu pek çok disiplinin öngörü ve 

metotlarından faydalanır. Bu doğrultuda, diğer disiplinler arasında kendi çalışma alanı 

içerisindeki yerini güçlendirebilmek amacı ile, “tasarımcı yaklaşımlı”, bilme, düşünme 

ve hareket etme eylemlerine konsantre olmalıdır. Bu çalışmada, mühendislik 

disiplininin içerisindeki mühendislik öngörülerinin ve sezgisel olmayan tasarım 

metotlarının, endüstri ürünleri tasarımı alanında kullanılan sezgisel tasarım metotları 

içerisindeki yerini ortaya koyabilmek amacı ile; endüstri ürünleri tasarımı alanı ve 

mühendislik disiplini, kesişme noktaları bağlamında araştırılmıştır. Endüstri ürünleri 

tasarımına olan yakınlığı sebebiyle mühendislik disiplini tercih edilmiş; bu doğrultuda, 

endüstri ürünleri tasarımı alanının bazı mühendislik alanları ile birlikte, tasarım 

problemlerine ve araçlarına yaklaşımlarının karşılaştırılması gösterilmiştir. Ayrıca, 

mühendislikte kullanılan tasarım metotları ve bunların tasarım aktivitesi sürecindeki 

avantajları da konunun daha net bir şekilde açıklanabilmesi amacı ile belirlenmiştir. Bu 

çalışma, tasarım sistemleri alanının bir parçasıdır ve sonuçta, tasarım sürecine ve 

bilgisine yönelik akılcı yaklaşımların belirlenmesini amaçlanmaktadır. Sonuç olarak; 

mühendislik disiplininin ve endüstri ürünleri tasarımı alanının tasarım yaklaşımları ve 

öncelikleri, endüstriyel bir ürün olan bisiklet örneği üzerinde irdelenmiştir. 

 

Anahtar kelimeler: endüstri ürünleri tasarımı, tasarım kriterleri, tasarım mühendisliği, 

tasarım metotları, bisiklet            

 

 

 

 



 iv

 

 

 

 

 

TABLE OF CONTENTS 

 

 

 

ACKNOWLEDGEMENT............................................................................................... i 

ABSTRACT..................................................................................................................... ii 

ÖZ.................................................................................................................................... iii 

TABLE OF CONTENTS .............................................................................................. iv 

LIST OF FIGURES..................................................................................................... viii 

Chapter 1 INTRODUCTION ........................................................................................ 1 

1.1. Definition of problem .................................................................................... 2 

1.2. Aims of the Study .......................................................................................... 4 

1.3. Methods of the Study..................................................................................... 5 

Chapter 2 DESIGN AND INDUSTRIAL PRODUCT DESIGN................................ 7 

2.1. What is Design ............................................................................................... 7 

2.1.1. Defining Design .............................................................................. 8 

2.1.2. Nature of Design ........................................................................... 12 

2.1.3. Design as a Discipline................................................................... 15 

2.1.4. Specializations in Design Discipline............................................. 17 

2.2. Industrial Product Design............................................................................. 20 

2.2.1. History and Definition of Industrial Product Design .................... 20 

2.2.2. Industrial Designer ........................................................................ 23 

2.2.2.1. Multidisciplinarity and Creativity in the Industrial 

Designer’s Ability ....................................................................... 23 

2.2.2.2. Industrial Designer’s Tools and Techniques .................. 24 

2.2.2.3. Working as a Consultant or in an Organization ............. 26 



 v

2.2.3. Product Range in Industrial Product Design................................. 25 

2.2.4. Core Characteristics of Industrial Product Design........................ 27 

2.2.5. Design Criteria in Industrial Product Design ................................ 28 

2.2.5.1. Functional Criteria.......................................................... 29 

2.2.5.2. Psychological Criteria .................................................... 31 

2.2.5.3. Technological Criteria.................................................... 32 

2.2.5.4. Economic Criteria........................................................... 32 

2.2.6. Engineering Criteria in Industrial Product Design........................ 33 

Chapter 3 ENGINEERING CONCEPTS IN INDUSTRIAL PRODUCT 

DESIGN .................................................................................................... 36 

3.1. Engineering and Industrial Product Design ................................................. 36 

3.1.1. What is Engineering...................................................................... 36 

3.1.1.1. Definition of Engineering............................................... 36 

3.1.1.2. Significance of Science and Design in Engineering ...... 37 

3.1.1.3. Functions of Engineering ............................................... 39 

3.1.1.4. Raw Materials of Engineering........................................ 40 

3.1.2. Engineering Design Field.............................................................. 41 

3.1.2.1. Modern Engineering Trends and the Complexity in 

Design.......................................................................................... 42 

3.1.2.2. What is Engineering Design? ......................................... 44 

3.1.2.3. Functions associated with Engineering Design.............. 45 

3.1.2.4. Economics of Engineering Design ................................. 47 

3.1.2.5. Engineering Design Knowledge..................................... 48 

3.1.3. Comparison of Industrial Product Design with Engineering 

Professions .............................................................................................. 51 

3.1.3.1. Decomposition................................................................ 53 

3.1.3.2. Form-Function Relation ................................................. 54 

3.1.3.3. Languages of Design ...................................................... 55 

3.2. How Industrial Designers and Engineers Approach Design Problems?...... 57 

3.2.1. Design Problems ........................................................................... 57 

3.2.1.1. Characteristics of Design Problems ............................... 59 

3.2.1.2. Problem Structures ......................................................... 60 

3.2.1.3. Types of Design Problems ............................................. 65 



 vi

3.2.2. Design Ability ............................................................................... 69 

3.2.2.1. How Designers Think?................................................... 70 

3.2.2.2. Drawings of the Artist and the Engineer ........................ 71 

3.2.2.3. How a Successful Designer Acts?.................................. 72 

3.3. Design Process and Design Methods ........................................................... 73 

3.3.1. Introduction to Design Methods.................................................... 75 

3.3.1.1. Design Methodology ...................................................... 75 

3.3.1.2. Comparison of Scientific Method with Design 

Method......................................................................................... 76 

3.3.1.3. Four Unifying Principles of Design Methods ................ 77 

3.3.2. Design Process .............................................................................. 82 

3.3.2.1. Descriptive Models......................................................... 83 

3.3.2.2. Prescriptive Models........................................................ 86 

3.3.3. Design Methods ............................................................................ 93 

3.3.3.1. New Design Procedures ................................................. 93 

3.3.3.2. What is Design Method? ................................................ 94 

3.3.3.2.1. Creative Methods............................................. 96 

3.3.3.2.2. Rational Methods........................................... 101 

Chapter 4 A CASE STUDY IN BICYCLE DESIGN .............................................. 105 

4.1. Introduction to Bicycles ............................................................................. 105 

4.1.1. Mysterious Bicycle...................................................................... 105 

4.1.1.1. The Origin .................................................................... 105 

4.1.1.2. Balancing...................................................................... 108 

4.1.2. Significance of the Bicycle ......................................................... 109 

4.1.3. Evolution of the Bicycle.............................................................. 112 

4.1.4. Types of the Bicycle.................................................................... 118 

4.1.4.1. Roadster and Style Bikes.............................................. 119 

4.1.4.2. Commuter and City Bikes ............................................ 121 

4.1.4.3. Road Sport Bikes.......................................................... 123 

4.1.4.4. Mountain Bikes ............................................................ 126 

4.1.5. Elements of a Bicycle.................................................................. 128 

4.1.5.1. Frame............................................................................ 129 

4.1.5.2. Wheels .......................................................................... 130 



 vii

4.2. Bicycle Design: Frame Design .................................................................. 131 

4.2.1. Geometric Parameters ................................................................. 132 

4.2.1.1. The Diamond Frame..................................................... 134 

4.2.1.2. Alternatives: the Moulton, the Burrows Monocoque 

and the New Trends................................................................... 134 

4.2.2. Materials...................................................................................... 137 

4.2.2.1. Composite Materials..................................................... 139 

4.2.2.2. Monocoque Designs ..................................................... 140 

4.2.3. Engineering and Industrial Design of Bicycles........................... 141 

4.2.3.1. Positioning Bicycles according to Industrial Design 

and Engineering Priorities ......................................................... 142 

4.2.3.2. Frame as an Engineered Structure................................ 144 

4.2.3.3. What is a Good Bike .................................................... 147 

Chapter 5 CONCLUSION ......................................................................................... 149 

REFERENCES............................................................................................................ 152 

 

 

 



 viii

 

 

 

 

 

 LIST OF FIGURES 

 

Chapter 2 

Figure 2.1  Leonardo da Vinci’s Codex Atlanticus Bicycle, 1493............................ 11  

Figure 2.2  Design is integrative................................................................................ 12 

Figure 2.3  Axonometric projections of the Codex Atlanticus Bicycle..................... 14 

Figure 2.4  Chains and cogs, from Da Vinci’s Codex Madrid .................................. 14 

Figure 2.5  Heskett’s positioning of design in an industrial context ......................... 16 

Figure 2.6  Heskett’s model applied research............................................................ 16 

Figure 2.7  Types of Design ...................................................................................... 18 

Figure 2.8  Columbia Factory, Hartford, Connecticut, 1884..................................... 22 

Figure 2.9  A conveyor on the final inspection line at Raleigh, England, 1935........ 22 

Figure 2.10  Examples of Industrial Product Design................................................... 27 

Figure 2.11  Basic Model of Change........................................................................... 28 

Figure 2.12  Design through Quality, Quantity, Identity, Method .............................. 28 

Figure 2.13  Juicy Salif Lemon Squeezer.................................................................... 30 

 

Chapter 3 

Figure 3.1  A diagram showing specifications for a bicycle frame........................... 41 

Figure 3.2  Increasing complexities in mechanical design........................................ 43 

Figure 3.3  Wing warping in the first Wright airplane .............................................. 50 

Figure 3.4  Comparison of industrial product design with engineering 

professions .............................................................................................. 52 



 ix

Figure 3.5  Decomposition of design fields............................................................... 54 

Figure 3.6  Exploded safety bicycle .......................................................................... 55 

Figure 3.7  Levels of abstraction in different languages ........................................... 56 

Figure 3.8  Levels of abstraction in describing a bolt ............................................... 57 

Figure 3.9  Designer and the design problems .......................................................... 57 

Figure 3.10  Division of design problem in order to reach overall solution................ 61 

Figure 3.11  Problem structure found in a housing design problem............................ 61 

Figure 3.12  Decision tree derived from the design of a device for carrying a 

backpack on a bicycle ............................................................................. 64 

Figure 3.13  Design process paradox........................................................................... 66 

Figure 3.14  Humber bicycle 1890 .............................................................................. 67 

Figure 3.15  Otto dicycle ............................................................................................. 68 

Figure 3.16  Aero bike of Burrows.............................................................................. 68 

Figure 3.17  Comparison of Scientific Method with Design Method ......................... 77 

Figure 3.18  The basic three-stage design method schema ......................................... 80 

Figure 3.19  The waterfall model of software engineering ......................................... 81 

Figure 3.20  Knowledge used in the design process.................................................... 82 

Figure 3.21  A simple four-stage model of the design process ................................... 84 

Figure 3.22  French’s model of the design process ..................................................... 85 

Figure 3.23  Archer’s model of the design process ..................................................... 88 

Figure 3.24  Archer’s three-phase summary model of the design process.................. 89 

Figure 3.25  Pahl and Beitz’s model of the design process......................................... 90 

Figure 3.26  March’s model of the design process...................................................... 92 

Figure 3.27 The symmetrical relationships of problem / sub-problems / sub-

solutions / solution in design .................................................................. 92 

Figure 3.28  Seven stages of the design process positioned within the 

symmetrical problem / solution model ................................................. 103 



 x

Chapter 4 

Figure 4.1  Hobby Horse by Baron Karl von Drais, 1817....................................... 106 

Figure 4.2  Leonardo da Vinci’s Codex Atlanticus Bicycle, 1493.......................... 107 

Figure 4.3  Daimler's first vehicle ........................................................................... 110 

Figure 4.4  Karl Benz's first vehicle ........................................................................ 110 

Figure 4.5  Glenn Curtiss’s “June Box”, 1908 ........................................................ 111 

Figure 4.6  Velo development ................................................................................. 112 

Figure 4.7  McMillan type bicycle built by McCall, 1860 ...................................... 113 

Figure 4.8  The Humber “Genuine Beeston” Racing Ordinary, 1886..................... 115 

Figure 4.9  The Rover safety bicycle by J K Starley of England, 1885 .................. 116 

Figure 4.10  The Humber, 1890 ................................................................................ 117 

Figure 4.11  Beach Cruiser ........................................................................................ 120 

Figure 4.12  BMX Cruiser ......................................................................................... 120 

Figure 4.13  Old Faithful ........................................................................................... 121 

Figure 4.14  Light Roadster ....................................................................................... 121 

Figure 4.15  Pashley Paramount ................................................................................ 121 

Figure 4.16  Commuter.............................................................................................. 121 

Figure 4.17  Touring.................................................................................................. 124 

Figure 4.18  Fast touring............................................................................................ 124 

Figure 4.19  Triathlon................................................................................................ 125 

Figure 4.20  Giant TCR ............................................................................................. 125 

Figure 4.21  Short distance TT .................................................................................. 126 

Figure 4.22  Track ..................................................................................................... 126 

Figure 4.23  Classic ................................................................................................... 128 

Figure 4.24  Downhill: fast........................................................................................ 128 

Figure 4.25 Downhill mountain bike............................................................................ 128 



 xi

Figure 4.26 Diamond frame.......................................................................................... 129 

Figure 4.27 Geometric Parameters ............................................................................... 132 

Figure 4.28 Seat tube angle’s affects ............................................................................ 133 

Figure 4.29 The Moulton .............................................................................................. 135 

Figure 4.30 The Burrows Monocoque –1..................................................................... 136 

Figure 4.31 Stylish design of bicycles .......................................................................... 137 

Figure 4.32 The Burrows Monocoque –2..................................................................... 141 

Figure 4.33 Position of bicycles in the product range .................................................. 142 

Figure 4.34 The complete frame of a conventional diamond-frame bicycle................ 144 

Figure 4.35 Schematic representation of the types of loading...................................... 145 

Figure 4.36 A model of the frame of a common touring bicycle frame ....................... 146 

Figure 4.37 Modern day cruiser: Silver Bullet by Sparta ............................................. 147 

Figure 4.38 Aero-race bike .......................................................................................... 148 

 

 

 



 1

 

 

Chapter 1 

 

INTRODUCTION 
 

Design occurs in nature with humans while they abstract the nature and concretize the 

ideas and visions in their minds. The relationship between humans and nature differs 

from the relationship between animals and nature, since humans define and use nature 

(materials and resources) for their prosperity instead of the simple and direct help 

derived from nature in animals’ life. In Paleolithic ages, physical needs of human beings 

caused them to sharpen the edges of stones in order to kill the animals and feed 

themselves, and psychological needs of human beings have caused them to carve 

figures on stones, paint the caves, etc. This two dimensional structure of needs appears 

to be the key concept of designing, since it is the reason of design to come into 

existence.  

 

From dictionaries it can be learnt that the word “design” has various meanings, ranging 

from conceiving a plan in the mind –whatever this plan may be- to making a drawing or 

pattern of something to be made or built. This study focuses on design in the more 

limited sense of “designing material products”. For that purpose design is defined as “to 

conceive the idea for some artefact or system and/or to express the idea in an 

embodiable form (Roozenburg and Eekels 1995: 53 quoted Archer 1971: 1-2)” in this 

study.  

 

The term design began to be used in the language in the fifteenth century, with the aim 

of revealing the departure of design from “doing”. After the Industrial Revolution in the 

eighteenth century, division of labor, mechanization, standardization, rationalization 

became the features of the new world. These developments encouraging new demands 

and changing demands encouraging new developments, helped the new world evolve 

faster. Humans develop technology to meet the needs they have perceived for 

themselves, not for the universal needs over which the nature rules. Gaston Bachelard, 

the French philosopher, states that “ ‘obtaining the more than the enough’ has stronger 

warning on souls as humans are not the creatures of needs, but they are the creatures of 
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desire (Basalla 1996: 18)”. This desire has brought about today’s artificial world, which 

includes three times more variety than the organic world does. This incredible amount 

of objects can only be produced by the human mind that longs, dreams, and desires.  

 

A lot of specializations have been developed that verify the desires of humans today, 

one of which is the profession of industrial designer that emerged in the twentieth 

century, also as a feature of the division of labor and specialization characteristic of 

large-scale modern industry. Industrial design is concerned with determining the 

qualities (materials, construction, mechanism, shape, color, surface finishes and 

decoration) of objects, which are reproduced in quantity by industrial processes, and 

their relationship to people and the environment. The industrial designer is responsible 

for these aspects of products and their impact on society and nature.  

 

Industrial design is the most widely used term for the professional design of objects 

intended for mass production. However, it is not always used correctly since many 

industrial designers may work on products for craft manufacture and in related fields 

such as exhibition or interior design. In order to make a clear distinction in this study, as 

it is the subject of this study, “the industrial product design” is going to be used. This 

field includes the design of 2 and 3-dimensional forms with transportation, furniture, 

home-office (accessories like clock, pencil, etc.), high-tech (Dvd player, monitor, etc.), 

lightening, fashion (accessories like umbrella, wristwatch, etc.), toys and games, food, 

packaging, gift/promotion, sports, medical and other functions and related production 

techniques (metal lightening, wooden furniture, etc.) in sectors.  

 

1.1. Definition of the Problem 

 

Designing an industrial product is a multidisciplinary activity as functional, 

psychological, technological and economical criteria are all involved. Industrial product 

designer, acting through these criteria and fulfilling the design function, also acts as a 

team synthesist that builds a communication bridge between other professions like 

engineering, sociology, marketing etc. This formation is because of the demands of the 

modern world. Within many specializations that have been developed, needs of the 

modern world like airplanes, fast trains, spaceships have caused to bring these 

specializations together and act in a team towards the common purpose. At this point 
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industrial product design has become one of the most important strategic elements of 

competitive advantage in industrial context.  

 

Following this advantage, new constitutions in educational context have been developed 

like IDBM (International Design Business Management), which is a collaborative 

program between three leading Finnish universities. The aim of this programme is to 

produce professions (designers, marketers) with a multifaceted view on product 

development, and with a holistic understanding of the design dimension. This 

constitution reveals the interdisciplinary approach to both design and business 

educations.  

  

Creating an interdisciplinary discipline, fails to connect between sub-disciplines, fails to 

reach common understanding, and fails to develop new knowledge and perceptions of 

design as Nigel Cross states in the proceedings of the Politecnico di Milano Conference 

(2000: 46). Because of dealing with a lot of criteria, the industrial product design field 

can be stretched to other fields easily, and other fields can be welcomed in industrial 

product design field easily, which causes conflicts in developing industrial product 

design knowledge. Cross states that the design should be taken as a discipline. In this 

study, industrial product design is going to be taken as a field of design discipline that 

accumulates and develops its own design knowledge. Referring to this formation, 

industrial product design might create and strengthen its place among other overlapping 

fields and disciplines.  

 

Industrial product design, as a field of design discipline, borrows concepts and methods 

from sciences, arts, engineering, and humanities in order to develop its own knowledge 

in research and industry contexts. Thinking and acting in this way might strengthen the 

place of industrial product design while still keeping it as an advantage of the modern 

world. In order to do this, as the problem with which this study is concerned, the 

intersection between the fields of industrial product design and the discipline of 

engineering is researched in order to reveal the engineering concepts and methods used 

in industrial product design.  

 

Engineering, where scientific knowledge is applied to artifacts, is the most important 

features of industrial product design in the means of bringing design to an end product 
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that is sold in the market. Its priority might change according to the product that is 

going to be designed. More or less it is still involved in the designing activity. In order 

to reveal the importance of engineering and its balanced combinations with design, the 

bicycle, as a transportation function of designing, is taken as a case in this study. The 

reason for choosing the bicycle as an example is that this object bespeaks one of the 

best harmonies that the engineering and the design concepts dissolved in.  

 

1.2. Aims of the Study 

 

1. Searching for non-intuitive and intuitive concepts and methods used in the industrial 

product design field is the primary aim of this study in order to try to put a milestone in 

developing industrial product design knowledge in design discipline. With this aim, this 

study belongs to the area of design systems those researches for formal approaches to 

models of design processes and knowledge. 

 

2. Revealing the advantages of using non-intuitive methods in designing activity, is the 

following aim in the study. Although design naturally is soft, intuitive and hard to 

formalize, it is one of the complementary ways of looking at the same thing with 

science. Intuitive and non-intuitive methods acting together can give the best solutions 

to design problems. 

 

3. Giving an understanding of unions and intersections between industrial product 

design and engineering criteria will be an advantage in activities of these professions 

both in industrial and educational contexts, whether working in a design team or 

working alone on the product. Although the advantages in industrial product design are 

brought to the fore, this will be an advantage for the engineering discipline and 

professions as well. 

 

4. Arriving at an understanding of how scientists, engineers and industrial designers 

approach the design problem will be another advantage of observing the artifacts in 

using this knowledge for designing. 

 

5. Design priorities change according to different products. Although only bicycles are 

mentioned in this study, there is the aim of giving at least an idea about determining the 
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design and engineering priorities according to the product, depending on the big variety 

of the bicycle area. 

 

1.3. Methods of the Study 

 

This study is structured in three parts throughout the considered problem and the aims 
mentioned above.  
 

Chapter 2 consists of two parts comprising design and industrial product design. This 

chapter is for constituting a general understanding of design and industrial product 

design. It starts with the importance of giving an explicit definition of design in an 

academic language and continues with the nature of design. After making two 

statements about the nature of design, which concern its integrative and intuitive 

natures, the relationships between the disciplines of design and science are discussed 

according to these characteristic natures of design and an example is given in order to 

reveal the scientific and the artistic features of design. Then, referring to Cross, the 

importance of taking design as a discipline is emphasized throughout the 

multidisciplinary and interdisciplinary activities of design. A general classification of 

design is made in the following title and some design specializations of the design 

discipline are given for a step to reach industrial product design. 

 

In industrial product design part, industrial product design’s brief history, definition, 

and evolution from being taught in Fine Arts and Architecture Faculties to Engineering 

Faculties are given. By revealing this evolution, the importance of engineering concepts 

and methods used in the products of modern world is emphasized. Industrial designer’s 

abilities, tools and techniques, and some product design areas are mentioned in the 

following titles in order to reveal a general panorama of industrial product design. Then 

the design criteria in industrial product design and the intersecting engineering criteria 

are indicated, as these are the criteria (priorities) in certain products that usher the field 

of industrial product design into the fields of engineering. 

 

Chapter 3 constitutes the mainstay of the study with the title of “engineering concepts in 

industrial product design”. It is divided into three parts, that the first part gives general 

knowledge about engineering discipline (definition, functions, and raw materials) and 
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engineering design field –as being close to industrial product design-, and additionally, 

a comparison of industrial product design with some other engineering fields is made 

through seven measures of type of objects, type of problem, form-function relation, 

decomposition potential, language complexity, graphic complexity, and design 

methods. Three of these measures, which are form-function relation, decomposition 

potential and language complexity, are mentioned briefly here, while measures of type 

of problem and design methods have constituted the other two parts of this chapter. In 

the second part, design problems (characteristics, structures, types); as an example of 

mature design, bicycles; design abilities of scientists and designers (industrial and 

engineering designers) and their approach to design problems; and being a successful 

designer are mentioned. Third part constitutes of design methods and process. 

Emergence of scientific and design methods, the comparison between them, and four 

unifying principle of methods are described as an introduction to this part of the chapter. 

Then some examples of design process and design methods are handled deeply, in the 

following of this part. In constitution of Chapter 3, the researches of Ullman, Cross and 

Jones are taken into consideration generally. 

  

Chapter 4, focusing on products, has an aim of revealing the engineering and the design 

criteria on bicycle examples. Change in design priorities are indicated on different types 

of products, using the advantage of variety in bicycles. 

 

In this study, documentary reading and critical research methods are used, and for 

providing a better explanation of the subjects, related bicycle examples are given. Since 

this study involves a case of bicycles in Chapter 4, most of the examples are tried to be 

chosen from bicycles in order to provide a complementary meaning in the language of 

the study as a whole.   
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Chapter 2 

 

DESIGN AND INDUSTRIAL PRODUCT DESIGN 

 

2.1. What is Design? 

 

Design has a fuzzy meaning in terms of its functions that literature cannot put a 

clear definition. Looking at a dictionary or researching the meaning of design in 

books, articles, etc. cause even bigger problems in understanding it simply. It is a 

noun and a verb. Briefly, the verb design can be defined as “to conceive and plan 

out in the mind, to have as a purpose: intend, to devise for a specific function or 

end (Merriam-Webster Authority & Innovation 2000: Version 2,5)” and the noun 

design as “way something is made, picture of something’s form and structure, 

decorative pattern, process of designing, scheme, something planned (Encarta 

World Dictionary 2001: developed for Microsoft by Bloomsbury Publishing 

Plc.)”. 

 

The verb “design” comes from the Latin designare, which means to specify, as in 

pointing out what to do. The modern sense of design is held to have originated in 

the Renaissance, when architect and builder functions came to be two separated 

functions. The architect would no longer always be present on site during building 

and therefore had to specify what to build, which previously hadn’t been 

necessary (Gedenryd quoted Herbert 1998: 42). Similarly, the noun “design” 

comes from signum, which is not so much in the modern sense of root “sign” (as 

in symbol, mark; semantics, semiotics, etc.) as is sometimes claimed. It rather has 

the meaning of something that you follow, in the sense of the specifications 

passed on from architect to builder. “Around the sixteenth century, there has 

emerged in most of the European languages the term “design” or its equivalent. 

The emergence of the word has coincided with the need to describe the 

occupation of designing. Above all, the term indicates that designing is to be 

separated from doing (Gedenryd quoted Cooley 1998: 42).”  
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2.1.1. Defining Design 

 

Defining design is not easy and it is much more than describing the occupation of 

designing. It is difficult, because it is broadly and subjectively used in colloquial 

language. On the other hand, it is needed to be defined in a common ground as it 

is an academically research subject like design theory, design methodology and 

etc. Below states Papanek, how design is in life with people, and indicates the 

complexity of defining design. 

 

All men are designers. All that we do, almost all the time, is design, for 
design is basic to all human activities. The planning and the patterning of 
any act toward a desired, foreseeable end constitute the design process. 
Any attempt to separate design, to make it a thing-by-itself, works 
counter to the fact, design is the primary underlying matrix of life. 
Design is composing an epic poem, executing a mural, painting a 
masterpiece, writing a concerto. But design is also cleaning and 
reorganizing a desk drawer, pulling an impacted tooth, baking an apple 
pie, choosing sides for a back lot baseball game, and educating a child 
(Papanek 1984: 3). 

 

Papanek discusses separating design from life and making it a thing-by-itself is 

injustice to people and life. Design is natural in life to people and therefore it is as 

relative as life for the people. People define design differently, and then they 

change their minds and define it again and again for each case and scenario in 

their life. It becomes a translation problem not only as a language, but also as a 

socio-cultural fact.  

 

On the contrary, it needs to be defined in a common ground for academic 

activities. Researchers seek for explicit definitions and try to reach a consensus in 

design definition. Chuck Burnett, design researcher, states the importance of a 

clear general understanding in academic research while paying respect to the 

nature of design within its complexities:  

 

Both higher-level theories and professional conduct need a common 
framework of reference, interaction, and assessment. Design thinking is a 
universal discipline, the instantiation of which depends on its particular 
intent, context, and background. The "common ground" sought for 
design theory, research, and practice will never be encompassing enough 
if it is focused primarily on professional competence in the field in which 
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we practice. Nor will it have practical value if it cannot support situated 
thought and behavior in any field or on any subject. As designers, design 
educators and researchers we need to reframe our goals to seek a 
comprehensive integrated theoretical framework that is operationally 
(computationally and behaviorally) defined as well as emotionally 
meaningful and personally useful. Computational and behavioral because 
the interactive complexity warrants it, personally useful and meaningful 
because we are individually (and collectively) human (Friedman quoted 
Burnett, PHD-DESIGN Archives – July 2003).  

 

A clear general understanding at the comprehensive domain level across the full 

domain and its fields, and subfields enables researchers and practitioners to 

understand and work with issues in all areas within the domain. Burnett’s 

statement summarizes the value of clear conceptual structures in this effort. 

 

Explicit definitions of design are important for a common ground in academic 

language and also for understanding the usage of the term in daily life. The editors 

and lexicographers at Merriam-Webster's Dictionary, Encarta World Dictionary, 

Oxford English Dictionary etc. have clearly intended the published definitions in 

an explicit way. Their goal is to record and capture the primary usages of a term, 

to reflect those usages in an accurate definition, and to provide accurate 

definitions as a guide to understanding. 

 

Merriam-Webster Authority & Innovation (2000: Version 2,5) defines the verb 

design as: 

1 a: to conceive and plan out in the mind <a savage on seeing a watch would at 

once conclude that it was designed— Samuel Butler, 1902>  

   b: to plan or have in mind as a purpose: intend, purpose, contemplate <he was 

sociable by disposition, and I believe he designed particularly to shine in the 

world of talk and manners— Osbert Sitwell> <when some other foreign power 

designed division or seizure— Roger Burlingame> 

   c: to devise or propose for a specific function <a book designed primarily as a 

college textbook> <a program obviously designed as a first approach to this 

problem> 

2 archaic: to indicate with a distinctive mark, sign or name  

3 a: to make a drawing, pattern or sketch of (an object or scene)   

   b: to draw the plans for  
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   c: to create, fashion, execute or construct according to plan <he was also a 

clever artist and designed scenes with a flair for color— Winifred Bambrick> 

<buildings of the institution are so designed that each patient's room opens upon a 

porch— American Guide Series: Michigan> 

 

Merriam-Webster Authority & Innovation (2000: Version 2,5) defines the noun 

design as:  

1: a mental project or scheme in which means to an end are laid down: plan  

2 a: a particular purpose held in view by an individual or group: a planned 

intention <my design in writing this preface is to forestall certain critics>  

   b: deliberate purposive planning <what superficially may appear to be a 

masterpiece of design was likely to have been just an empirical policy of 

muddling through— Times Literary Supplement>  

   c: direction toward an ultimate end <the teleological, which shows the marks of 

design in nature, and from them argues to a great designer— Encyc. Americana>  

3: a preliminary sketch or outline (as a drawing on paper or a modeling in clay) 

showing the main features of something to be executed: delineation  

4 a: a painter or sculptor's preliminary drawing or model  

   b: a scheme for the construction, finish, and ornamentation of a building as 

embodied in the plans, elevations, and other architectural drawings pertaining to it   

   c: a conceptual outline or sketch according to which the elements of a literary or 

dramatic composition or series are disposed  

   d : a settled coherent program followed or imposed;  usually: an underlying 

scheme that governs functioning, developing or unfolding: pattern, motif  

5 a: the arrangement of elements that make up a work of art, a machine, or other 

man-made object <systematic art instruction begins with the study of design, 

which includes little except the perception and creation of formal relations— 

Hunter Mead>  

   b: the process of selecting the means and contriving the elements, steps, and 

procedures for producing what will adequately satisfy some need <industrial 

design> <included in design are the arrangement of the basic text page, choice of 

typeface, title page, and special pages— Joseph Blumenthal>;  specifically: the 

drawing up of specifications as to structure, forms, positions, materials, texture, 
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accessories, decorations in the form of a layout for setting up, building, or 

fabrication <the design of the ship's bridge>  

6 a: a visual arrangement or disposition of lines, parts, figures, details usually 

unified by an implicit key or clue of signification or an artistic motif (as in 

engravings, medals, textiles, metalwork) <linoleum in a great number of designs>  

   b: a pattern or figuration applied to a surface (as of a vase): decoration 

<porcelain with carved or engraved floral designs>  

 

These definitions are broad. They cover all instances of design and design 

process, and any instantiation of design and design process will fit within them. 

 

For example, Leonardo da Vinci’s (artist, inventor, engineer, architect, scientist, 

geologist, physicist, and musician lived between 1452-1519) bicycle drawing 

(Fig. 2.1) is “a preliminary sketch or outline (as a drawing on paper or a modeling 

in clay) showing the main features of something to be executed; a painter or 

sculptor's preliminary drawing or model; the arrangement of elements that make 

up a work of art, a machine, or other man-made object; a visual arrangement or 

disposition of lines, parts, figures, details usually unified by an implicit key or 

clue of signification”. And this drawing has been “had in mind as a purpose, 

intended; devised for a specific function; and sketched”. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 (Perry 1995: 7) 

Leonardo da Vinci’s Codex Atlanticus Bicycle, from Biblioteca Ambrosiana, 1493 
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This drawing of a bicycle design can be defined and described explicitly by the 

definitions given above (Merriam-Webster Authority & Innovation 2000: Version 

2,5), and therefore it is called a design. It is also a very interesting example as it is 

accepted as the evidence of the earliest true bicycle idea. It has been found in 

Leonardo da Vinci’s notebook Codex Atlanticus (also it might be drawn by his 

assistant, it is unknown), but the drawing is not available for date testing, and 

therefore a few historians regard it as a fake. If it is not a fake, this drawing also 

reveals the design as invention and it can be accepted as the invention of the 

bicycle. 

 

 2.1.2. Nature of Design 

 

Basic characteristics in the nature of design are as follows:  

• “Design is naturally integrative, not separative (Owen 1988:5)”. 

• “Design is intellectually soft, intuitive, informal, and cook-booky (Simon 

1996: 112)”. 

 

 

       Arts 

 

 

    Sciences 

 

 Engineering 

 

      

 

 Humanities 

 

 

Professions 

 

Figure 2.2 (Owen 1988: 5) Design is integrative 

 

Design is in life with people while they reorganize a desk drawer, educate a child, 

decorate a house, and etc. As Figure 2.2 indicates, design integrates (Owen 1988: 

5) all human activities in research and industry contexts as well.  

 

Professionally managers, engineers, architects, scientists etc. all act designerly in 

the context of industry while they conceive and plan out in the mind, and devise 

for a specific function or end. Design is also at the heart of professional training as 

schools get their pupils ready to meet the needs of life. 

 

Design 
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Academically, design is in humanities (literature, history, philosophy, 

mathematics etc.), in sciences (natural, mathematical, behavioral, physical, 

economical sciences, etc.), in engineering (electrical, civil, chemical, textile, 

human engineering, etc.), and in arts in the means of research context. 

 

Design is the epitome goal of engineering discipline since it facilitates the creation 

of new products, processes, software, systems, and organizations through which 

engineering contributes to society by satisfying its needs and aspirations. 

 

Design has been the task of arts for many years. Arts discipline has developed its 

knowledge benefiting from design. Unifying principles of design in arts are stated 

as repetition, variety, rhythm, balance, emphasis, and economy (Zelanski, Fisher 

1996: 33). Design is defined with these principles in the discipline of arts.  

 

The base of academic studies has been accepted as the scientific principles 

through years. Academicians have sought for the explicit knowledge and a 

common ground for discussions that is found in science, as the academic 

respectability has called for subject matter that is intellectually tough, analytic, 

formalizable, and teachable. However, design is intellectually soft, intuitive, 

informal, and cook-booky (Simon 1996: 112). Design is naturally hard to be 

formalized as it is stated above. This strict structure of science and this nature of 

design have delayed benefiting from design knowledge in science discipline and 

from scientific knowledge in design discipline until twentieth century. In this 

century with the modern movement of design three different interpretations of the 

relationship between science and design have become significant: Design Science, 

Science of Design, and Scientific Design.  

 

“Design Science, firstly used by Buckminster Fuller, refers to an explicitly 

organized, rational and wholly systematic approach to design; not just the 

utilization of scientific knowledge of artifacts, but design in some sense a 

scientific activity itself (Cross 2000: 45)”. “The Science of Design refers to that 

body of work which attempts to improve our understanding of design through 

‘scientific’ (i.e., systematic, reliable) methods of investigation (Cross 2000: 45)”. 

“Scientific Design refers to modern, industrialized design –as distinct from pre-
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industrial, craft-oriented design- based on scientific knowledge but utilizing a mix 

of both intuitive and non-intuitive design methods (Cross 2000: 44)”. 

 

These developments are important in the task of design practice, especially the 

scientific design since design as a discipline provides non-intuitive design 

methods as well as intuitive methods in building its own design knowledge.  

 

On the other hand, these developments have brought up many discussions, 

whether design is science or art. However, as Margolin states, “Design is as much 

expression of feeling as an articulation of reason; it is an art as well as science, a 

process and a product, an articulation of disorder, and a display of order 

(Doloughan 2002: 57 quoted Margolin 1989: 6)”, design integrates art and science 

naturally although it is again naturally hard to be formalized in scientific context.  

 

 
 

Figure 2.3 (Perry1995: 7 quoted Calegari)                 Figure 2.4 (Perry 1995: 6) 

 

Figure 2.3 Axonometric projections of the Codex Atlanticus Bicycle  

Figure 2.4 Chains and cogs, from Da Vinci’s Codex Madrid 
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As an example, Leonardo da Vinci’s bicycle drawing, whose axonometric 

projections are shown in Fig. 2.3, and chains and cogs in Fig. 2.4; includes 

mathematics, physics and artistic knowledge. It is integrated naturally by the 

scientific and the artistic knowledge. 

 

2.1.3. Design as a Discipline 

 

As being integrative (not separative), design is considered as multidisciplinary or 

interdisciplinary activity in literature. Interdisciplinary and multidisciplinary are 

defined as follows (Merriam-Webster Authority & Innovation 2000: Version 2,5): 

 

Interdisciplinary: characterized by participation or cooperation of two or more  

                            disciplines or fields of study <an interdisciplinary conference> 

                          : drawing on or contributing to two or more disciplines   

                            <interdisciplinary approach to anthropology> 

 

Multidisciplinary: combining several specialized disciplines (as those in the field 

of  

            applied social science) for a common purpose <use of a 

                             multidisciplinary approach by a child guidance clinic> 

 

For example, bringing out a bicycle into the market, in the means of modern 

world, brings together the disciplines like design, engineering, humanities, 

sciences and the related professions for a common purpose. This is a 

multidisciplinary activity in research and in industrial contexts. Heskett (2000: 

363) states these multidisciplinary collaborations in Fig. 2.5 and Fig. 2.6 where he 

positions the disciplines according to their related subjects (material or human 

centered) and methods (synthesis or analysis) in acting towards the common 

purpose of bringing out a bicycle into markets. In this multidisciplinary activity 

design is taken as a discipline on its own among the other disciplines. 
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Figure 2.5 Heskett’s positioning of design in an industrial context (2000: 363) 

 

 

 

                                                             Synthesis 

 

                                            

                                           Engineering              Design 

 Material Centered                                                                                     Human 
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                                 Physical Sciences               Social Sciences 
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Figure 2.6 Heskett’s model applied research (2000: 363) 

 

On the other hand, design is also considered as an interdisciplinary activity 

because of its integrative nature where two or more disciplines participate. 

However, this formation causes some conflicts, as Cross states (2000: 46), in the 

means of developing design knowledge on its own. Therefore design should be 

taken as a discipline where it seeks for a common ground in itself among other 

disciplines while benefiting from other fields and disciplines:  
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We do not want conversations that fail to connect between sub-
disciplines, that fail to reach common understanding, and that fail to 
create new knowledge and perceptions of design. It is the paradoxical 
task of creating an interdisciplinary discipline. Design should be taken 
as a discipline. This discipline seeks to develop domain-independent 
approaches to theory and research in design. The underlying axiom of 
this discipline is that there are forms of knowledge peculiar to the 
awareness and ability of a designer, independent of the different 
professional domains of design practice. Just as the other intellectual 
cultures in the sciences and the arts concentrate on the underlying 
forms of knowledge peculiar to the scientist or the artist, so we must 
concentrate on the ‘designerly’ ways of knowing, thinking and acting 
(Cross, “Proceedings of the Politecnico di Milano Conference” 2000: 
46). 

 
 

 In doing so, Cross (“Proceedings of the Politecnico di Milano Conference” 2000: 

46) states that, “We must avoid swamping our design research with different 

cultures imported either form sciences or the arts. This does not mean that we 

completely ignore these other cultures. On the contrary, they have much stronger 

histories of enquiry, scholarship and research than we have in design. We need to 

draw upon those histories and traditions where appropriate, whilst building our 

own intellectual culture, acceptable and defensible in the world on its own terms. 

We have to be able to demonstrate that standards of rigour in our intellectual 

culture at least match those of the others”.  

 

2.1.4. Specializations in Design Discipline 

 

Design can be classified into four broad categories according to its form, function, 

production and education. Form category includes 2D, 3D, 4D, and other artifacts, 

function category includes the areas for which the artifacts were produced like 

transportation, medicine, home-office, the production category includes the 

production techniques of any sector like metal lightning, glass objects, wooden 

furniture etc., education includes the fields of design professions. 

 

Emphasizing the design professions that are studied in the education category of 

the design classification given above, the first thing that can be said for all 

professions (the schools of engineering, business, architecture, medicine, etc.) 

within the design professions is that design is the core of all professional training 
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(Simon 1996: 111). On the other hand, design as a discipline includes design 

professions like architecture, industrial design, graphic design, stage design etc. 

These professions have been generally studied in the Faculty of Fine Arts or in the 

Faculty of Architecture of the universities. But the demands of the modern world 

(like more complex designs with the developing technology) have created new 

structures like the Faculty of Industrial Design Engineering (a faculty of Delft 

University in the Netherlands, that brought industrial design close to engineering), 

Faculty of Design, etc. addition to this, new design professions like engineering 

design, product design, process design, etc. have come into existence, which are 

studied in the Faculty of Engineering of the universities. These professions use 

engineering and design knowledge and they constitute design discipline together 

with other design professions. 

 

As a result of the nature of design, which is broad and integrative, the complex 

structuring of design in professions can be understood more easily. There are 

various specializations in the design disciplines one of which is given by Dhillon 

(1985: 225) in Fig. 2.7 that is appropriate to the subject of this study. 

 

 
       

 

 

 

 

 

Figure 2.7 Types of Design (Dhillon 1985: 226) 

 

Engineering Design: It is concerned with applying various techniques and 

scientific principles to the development and analysis of basic functional features 

of systems, devices, etc.  

Industrial Design: It designates an independent design effort by the individual 

(consultant) with combined abilities in areas such as product design, styling, and 

engineering.  

                 Types of Design 

Engineering 
Design 

Industrial 
Design 

Process 
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Visual 
Design 

Product 
Design 
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Process Design: It is usually concerned with the type of design that restricted to 

the design of components, tools, equipment, etc. (items for mass production 

systems) 

Visual Design (Styling Design): It is concerned with the appearance features of 

an item. 

Product Design: It is associated with specifically those items that are ultimately 

to be sold to consumers. 

 

In this classification, the industrial designer is accepted as a consultant, not a part 

of a specific product manufacturing organization. However, industrial designer 

can be a part of these organizations such as Sony, Ford, Arçelik, etc. and work in 

a team that ultimately includes engineers, marketers, sociologists, etc. 

 

The modern world has generated too many specializations in disciplines, which 

can be seen clearly in design area as well. The specializations above reveal only a 

small part of this result. It is difficult to distinguish design fields definitely 

through the developments in the design area, as they can easily overlap with other 

design fields and subfields while building their own knowledge to the design 

discipline.  

 

Product design is more specifically the design of discrete, physical products. In 

some respects the concept “product design” is narrower than “engineering 

design”, which also includes for instance the design of chemical and physical 

processes. But, on the other hand, it is a wider concept than “industrial design”, 

which generally focuses on the usage and external appearance of products. So 

there is more engineering content in this treatise than in most works on industrial 

design, yet this is not a traditional work on engineering design. Engineering 

designers work with product and process designers while industrial designers 

work more with styling and product designers. Engineering designers take part in 

testing and design while the industrial designers take more part in design and 

styling. But they readily overlap with other fields and subfields, and an industrial 

designer should at least have an idea of how the product is going to be made, 

understand the engineering problems, and be able to read the engineering test 

results. 
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2.2. Industrial Product Design 

 

Through many movements in art and culture in the twentieth century, design has 

come to be regarded as the professional occupation of bringing humanity to 

dehumanized and impersonal mass-produced items. Industrial design is concerned 

with all the human aspects of machine-made products and their relationship to 

people and the environment. The designer is responsible for these products and 

their impact on society and nature.  

 

The term "designer" is too general since it includes architects, engineers, stage, 

and fashion designers, and the like. Industrial Design is the most widely used term 

for the professional design of objects intended for mass production. The term is 

not always used correctly since many industrial designers may work on products 

for craft manufacture and in related fields such as exhibition or interior design. In 

order to make a clear distinction, since such distinctions are the very subject of 

this study, the term “industrial product design” is going to be used.  

 

2.2.1 History and Definition of Industrial Product Design 

 
During the Middle Ages in Europe, crafts culture had been dominant. Craftsman 

(or men in small teams) was supposed to learn design, use skills and produce with 

the spirit of their culture. They worked in their studios or workshops and 

transferred what they had learnt from their masters to the crafts and as well 

teaching the skill to the new pupils. As craft came from copying, the principle of 

“little creativity, more tradition” was at work. Craftsmen did not carry the 

responsibility the industrial designer carries today. Dormer states “The greatest 

difference between the designer and the single craftsperson is that the craftsperson 

does not have the problem of communicating his or her intensions to others for 

translation into objects. The designer, however, must make his or her intensions 

explicit-communication is at the heart of industrial design (Dormer 1993: 9)”. 

 

The profession of industrial designer emerged in the twentieth century 
and can be seen as a feature of the division of labour and 
specialization characteristic of large-scale modern industry. Before 
this specialism developed the function of design in industry was less 
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well defined and was performed by a variety of people, from major 
artists to anonymous workers who presented particular problems and 
challenges (Heskett 1987:110). 

 

After the Industrial Revolution, accepted as the invention of the steam engine by 

James Watts in 1764-65, the power-driven machinery, assembly lines and 

growing automation (mass production) gave rise to concepts like mechanization, 

standardization, and rationalization. Industrialization within these concepts has 

caused two significances, which are division of labour and specialization. In the 

late 1920s in the USA, a body of specialists emerged who established industrial 

design as a discrete profession, bringing to activity a new status and recognition. 

Governments too began in this period to show a greater awareness of the 

economic role and propaganda possibilities of industrial design, often forming 

bodies to encourage its development, with, for example in Britain, the Council of 

Art and Industry being established in 1932, followed by the Council for Industrial 

Design in 1944.  

 

The definition of industrial design announced by the International Council of 

Societies of Industrial Design (ICSID) as a general and a standard definition is as 

follows: 

 

Industrial Design is a creative activity whose aim is to determine the 
formal qualities of objects produced by industry. These formal qualities 
include external features but are principally those structural and 
functional relationships, which convert a system to a coherent unity both 
from the point of view of the producer and the user. Industrial design 
extends to embrace all aspects of human environment, which are 
conditioned by industrial production (Christiaans 1992: 1 quoted ICSID 
1964).     
 

Industrial design is concerned with the vast array of goods manufactured by serial 

or mass production methods. A high-wheeled bicycle factory in the United States 

of America, and a safety bicycle factory in England are shown in Figure 2.8 and 

Figure 2.9 respectively, as an example of mass production in bicycle industry.  
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Figure 2.8 Assembly room, Columbia factory, Hartford, Connecticut, 1884 

(Perry 1995: 29)  

 

Figure 2.9 A conveyor on the final inspection line at Raleigh, England, 1935 

(Rosen 2002: 66) 
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Design in industrial design is industrially produced. This is the significance of 

industrial design among other design professions. It has been indicated in ICSID’s 

definition, that industrial design is an activity of determining the design through 

many criteria; this conception carries two important characteristics, namely 

creativity and multidisciplinarity. These characteristics come from the nature of 

design, as it is “intellectually soft, intuitive, informal, and cook-booky (Simon 

1996: 112)” and,  “integrative, not separative (Owen 1988: 5)”. 

 

2.2.2. Industrial Designer 

 

2.2.2.1. Multidisciplinarity and Creativity in the Industrial Designer’s Ability 

 

An industrial designer is one who is qualified by training, technical 
knowledge, experience and visual sensibility to determine the materials, 
construction, mechanism, shape, color, surface finishes and decoration of 
objects which are reproduced in quantity by industrial processes. The 
industrial designer may, at different times, be concerned with all or only 
some of these aspects of an industrially produced object. The depth of 
designer’s responsibility may range from the original conception of the 
product’s mode of use to its visual and tactile finishes, and involves the 
correlation of its functional, cultural, social, and economic contributions 
to the betterment of the human environment (Asatekin 1997: 37 quoted 
ICSID 1964). 

 

As designing is a multidisciplinary activity, when an industrial designer designs 

an object, he has to deal with a lot of criteria, which are stated in ICSID’s 

definition of he/she has to overlap with other disciplines such as engineering, 

marketing, psychology, anthropology, etc. in order to determine the formal 

qualities of objects produced by industry. When he/she is working in a team, 

he/she becomes the only one who can perceive the work as a whole. Other team 

members, specialized in work, have difficulties in understanding each other. At 

this point, many times the industrial designer becomes the only one who is able to 

speak the various jargons from other disciplines and behave like the team 

synthesist. Besides fulfilling its normal design functions, industrial design also 

acts as a communication bridge among disciplines. 
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When an industrial designs an object, “he/she goes through analysis, synthesis and 

evaluation stages, which is one of the simplest and most common observations 

about designing (Jones 1992: 63)”. Simply, he/she breaks the problem into pieces 

(analysis), then puts them together in a new way (synthesis), and then tests to 

discover the consequences of putting the new arrangement into practice 

(evaluation). He acts creatively in each stage with the abilities of (Christiaans 

1992:2 quoted Cross 1990: 132): 

• Resolving ill-defined problems 

• Adopting solution-focusing strategies 

• Employing abductive/productive/appositional thinking 

• Using non-verbal, graphical/spatial modeling media 

 
Industrial designer fulfills the design function besides acting like a 

communication bridge between other disciplines.  

 

2.2.2.2. Industrial Designer’s Tools and Techniques 

 

Industrial designer uses some techniques and tools while designing. These can be 

classified (http://sjsu-id.org/id/how-tools.htm) as: Ideation, Model Making, and 

Computer Programs. 

 

Ideation is a process of making ideas visual by means of drawing with a utensil of 

some kind “quick impulsive drawing technique used to gather numerous ideas 

quickly (Brainstorming)”, “a finished sketch using rendering techniques to convey 

a solid idea of the final product concept (Color Rendering)”, “a refined sketch, 

sometimes using color, to convey a more understandable concept or idea (Concept 

Sketch)”. 

 

Model Making is a stage of design process where one transfers a design project 

from a two- dimensional layout to three-dimensional using different techniques 

like “using one's hand or tool to shape a material into the desire shape (Shaping)”, 

“a mold of the project is made to allow us to mass reproduce the project 

(Molding)”, “using thermoplastic sheets and a mold to form the desirable shape 
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(Thermoforming)”, and “applying paint onto a surface of a model to increase 

aesthetic (Painting)”.  

 

Computer Programs are also a stage of design process where one transfers a 

design project from a two- dimensional layout to three-dimensional using 

different techniques. Some of the important computer programs for industrial 

design are: Auto-Cad (used to draw technical drawings), Rhino (mostly used for 

3-d modeling and rendering, and also does dimensioning but not as precise as 

auto-Cad or pro-E), Pro-E (able to do both technical drawing and 3-D computer 

modeling), Illustrator (for quick 2-d design layouts), Alias (complex 3-d modeling 

and rendering). 

 

Industrial designer presents his/her final design with “a 2D representation of an 

object with its parts separated, but depicted in relation to each other (Exploded 

View)”, “6 orthographic views (Control Layout)”, “parts list and locations 

(Component Layout)”. In final detailing logo, control markings etc. are added as 

graphics. Also a prototype is made by rapid prototyping and rapid tooling by 

using advanced computer and polymer technology. “The main benefits of rapid 

prototyping (RP) and rapid tooling (RT) are a dramatic cut in part/product 

development time and a shorter time to market (http://sjsu-id.org/id/how-

model.htm)”. 

 

2.2.2.3. Working as a Consultant or in an Organization 

 

“Modern practice for industrial designers generally falls into two broad categories 

when he/she is either a direct employee of an organization designing exclusively 

for it, or an independent consultant commissioned to design for a variety of clients 

(Haskett 1987: 110)”.  

 

For the first type designers working for Sony, Ford, Teba, Vestel, Arcelik, and 

etc. can be given as examples. Such teams are responsible for translating the 

possibilities of scientific and technological invention into products that are 

appropriate and appealing to the buying public. Their success or failure can 
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profoundly influence the performance of the company. Consultants perform a 

similar function but for a variety of clients and product types. 

 

2.2.3. Product Range in Industrial Product Design 

 

Heskett’s phrase draws a panorama of the product types and the objects around us 

as: “Unlike design for ceramics, glass or textiles, industrial design is not confined 

to one material, nor, as in furniture or interior design, to a particular category of 

artifact or environment. The range of objects concerned may extend from ‘a 

lipstick to a steamship’ or from ‘match to a city’ (Haskett 1987: 110)”. Such 

breadth can be problematic. The sheer extent and diversity of the innumerable 

products of industry is itself confusing. For example kitchen area, transportation 

area, etc. Any area reveals a diversity that contains a variety of objects to facilitate 

particular activities. All will have been conceived to serve a certain purpose and 

embody a particular set of values. … Our environment is composed of industrial 

products. They are so numerous and ubiquitous as to be frequently taken for 

granted. They form the material framework of our existence, enabling it to 

function, not only in practical or utilitarian terms, but also in ways that give 

pleasure, meaning and significance to our lives. They are elements of our material 

culture, tangible expressions of individual and social values.  

 

Products can be categorized functionally in classification of design that reveals 

the design areas of products. Industrial designer deals with transportation, 

furniture, home-office (accessories like the clock, pencil, etc.), high-tech (Dvd 

player, monitor, etc.) lightening, fashion (accessories like umbrella, wristwatch, 

etc.), toys and games, food, packaging, gift/promotion, sports, medical and etc. 

functions, some of which are described and given examples below. 

 

• Medical Products: Health care supplies and equipment are involved in this 

field, which provides better design and solution for medical society. 

• Transportation: Design and manufacture in automobile, public transit, 

aviation and naval transit, and etc. are involved in this field. 
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• Furniture: This field involves the creation of pleasurable surrounding by 

designing innovative furniture that is both ergonomically comfortable and 

aesthetically beautiful. 

• Sports: Design and innovation in all kinds of sports activity, gear and 

equipment are involved in this field, which provides better design and 

solution for people practicing variety of sports. 

• High-Tech: This field involves the most advance technological 

equipments, which requires the highest knowledge and expertise.  

 

         

             
 

Figure 2.10  

Examples of Industrial Product Design 

 (http://sjsu-id.org/id/who-corp.htm) 

 

Whatever the mode of employment, or type of product under consideration, the 

task of modern industrial designers is to produce a plan and specification of a 

form or mechanism for large-scale production.  

 

2.2.4. Core Characteristics of Industrial Product Design 

 

There are four core characteristics in industrial product design that are: quality, 

quantity, identity, and method. Quality gives the value, quantity means the mass 

production, identity gives the name, and the method produces the design. These 
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characteristics are set up in order according to priorities of the product, but they 

should be all included and dissolved in the industrial product itself. For example, 

in race bike design, quality is more important as it is a design for a special 

purpose. On the other hand, for a road bike, identity might be put forwardly in a 

competing market strategy. 

 

As mentioned before, industrial designers deal with a lot of criteria. While dealing 

with these criteria, they design the product with an eye to quality, quantity, 

identity, and the method. 

 

                                                               Change 

 

       Input                                                                          Output 

 

Figure 2.11 Basic Model of Change (Bayazıt 1994: 55)  

 

 

 

 

      Design                                                                          Product 
                    Criteria                                                                           
 

 

 

 

Figure 2.12 Design through Quality, Quantity, Identity, Method 

 

 

2.2.5. Design Criteria in Industrial Product Design  

 

Industrial product design carries a bunch of criteria such as being responsible to 

society, culture, environment, economy etc. Mehmet Asatekin (1997: 39-43) 

systematically classifies these criteria with a holistic approach to industrial 

product.  

Design 

through 

Quality 

Quantity 

Identity 

Method 

Design 
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• Functional Criteria 

o Physiological Criteria 

o Environmental Criteria 

o Communicational Criteria 

• Psychological Criteria 

o Perceptional Criteria 

o Socio-Cultural Criteria 

o Sensitive Quality (Criteria) 

o Explanatorily Criteria 

• Technological Criteria 

o Material Criteria 

o Production Criteria 

• Economic Criteria 

o At the Consumers’ Level 

o At the Producers’ Level 

o At Macro-Level  

 

2.2.5.1. Functional Criteria 

 

Objects come in existence because of physical needs and their main duty is to 

suffice these needs. Functional criteria are directed to optimize the sufficiency of 

physical needs in the object.  

 

a. Physiological Criteria: Physiological criteria are directed to optimize the 

fitting of object to human physically (visually, auditorily etc. as well) by 

formulating ergonomic data. 

 

b. Environmental Criteria: Objects should relate to each other in the 

environment, and to environmental elements as well as to the users. 

Environmental criteria are directed to optimize the fitting in these relationships. 

The hanging components, standing components, combining details etc. are 

designed as a result of these criteria. 
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c. Communicational Criteria: The object itself should communicate to the user. 

Communicational criteria are directed to optimize the communication between the 

object and the user. The communicated knowledge can be the object itself or the usage 

directions of the object. According to this, communicational criteria may be classified 

as functional and conceptual criteria. Functional criteria are the usage directions of the 

object. It can be graphical like the play button of a cd player, or the image that occurred 

in user’s mind through evolution like the hammer. Conceptual criteria destroy this 

functional image or graphics. The object itself becomes the communication knowledge 

conceptually. Philippe Starck’s Juicy Salif Lemon Squeezer (Fig. 2.5) could be an 

example of this.  

 

                    
 

Figure 2.13 Juicy Salif Lemon Squeezer 
 

Juicy Salif lemon squeezer’s aim in communication is different than being an only 
lemon squeezer, Starck states:  

 

Sometimes you must choose why you design - in this case not to squeeze 
lemons, even though as a lemon squeezer it works. Sometimes you need 
more humble service: on a certain night, the young couple, just married, 
invites the parents of the groom to dinner, and the groom and his father 
go to watch football on the TV. And for the first time the mother of the 



 31

groom and the young bride are in the kitchen and there is a sort of 
malaise - this squeezer is made to start the conversation (Lloyd and 
Snelders 2003: 243 quoted Starck 1998). 

 

Whether this is the reason of Starck or not, but for sure, he uses conceptual 

communication in his Juicy Salif lemon squeezer design and meets the 

psychological needs of humans. 

 

2.2.5.2. Psychological Criteria 

 

Human beings estimate everything in their life, environment and the objects that 

form the environment. The perception period before estimating, and the 

estimation period together cause the needs that form the Psychological Criteria. 

 

a. Perceptional Criteria: Object’s physical qualities and its form affect not only 

how it is going to be perceived, but also the estimation period followed. 

Perceptional criteria are directed to optimize the designing of the object according 

to its being perceived as the object itself and reliability in the estimation period. 

 

b. Socio – Cultural Criteria: Every community brings up its rules and value 

systems within. Person growing and living in his/her community perceives the 

object not only with its functionality or formal qualities, but also with these social 

norms. Therefore, socio-cultural criteria are directed to optimize the fitting of the 

product design to social norms of the communities. Socio-cultural criteria differ 

according to time and place, and it has dynamic qualities. Aesthetics criteria rest 

on these qualities as well, and they should be handled as a part of this class. 

 

c. Sensitive Quality (Criteria): People set up empathy while they approach to 

objects. Roughly they like the object, or not, and to do this they try to find 

something in the object that means something to themselves. They look for 

something that is identical to them. This likeness occurs in person’s life. 

Therefore it is impossible to generalize, and it is not concrete either. These 

difficulties shouldn’t make the designer behave like the sensitive qualities do not 

exist. These criteria are important to reveal the sensitive qualities that an object 

carries. 
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d. Explanatorily Criteria: A designer acts with the aims that he has determined 

while forming the object. He carries scientific aims and criteria as well as some 

idea that he wants to communicate with the user through the object. This kind of 

communication is the core of artistic explanatory. In architecture and industrial 

design functional aims compete with these artistic explanatory. Designer should 

be capable to harmonize these aims and reflect to the object. He should translate 

his interpretations of the object to the object language in giving a physical 

appearance to the object. With this language designer suggests his social, physical 

and psychological aspects to the user. This explanatory act is two dimensional 

that, not only the designer’s ideas, but also the user’s ideas should be considered. 

 

2.2.5.3. Technological Criteria 

 

Technological criteria are directed to optimize the fitting of the object that is 

going to be to be produced to design process and manufacturing.  

 

a. Material Criteria: The chosen material should fit the function and usage 

conditions of the object. The chosen material should fit the form of the object, and 

the form of the object should fit the chosen material (two directed determination, 

active-passive). If more than one material is going to be used in the object, the 

fitting of these materials should be also considered as material criteria. 

 

b. Production Criteria: These criteria are also active and passive, and two 

directed in a way that the production methods of the object should fit the chosen 

form-material combination and the chosen form-material combination should fit 

the production methods of the object. Material criteria are connected to production 

criteria and cannot be thought separately. 

 

2.2.5.4. Economic Criteria 

 

The production period and also the following usage period happen together in an 

economical environment. “The object that sufficing the need” aims economical 

profits in all units. Economical criteria take part in these economical 

environments. 
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a. At the Consumers’ Level: The object should worth its price in satisfying the 

consumer’s need. Giving a price to the produced object is a complex fact that, 

here, the designer should carry the responsibility of the least price is transformed 

to the object.   

 

b. At the Producers’ Level: Producers have some possibilities like production 

methods, marketing types, productive power, time and etc. with the aims like 

maximizing the profit. Designer should act in this environment for the production 

of his/her designs. 

 

c. At Macro-Level: Designs are produced in mass that a lot of source like human 

power, raw material, energy and etc. is consumed. Designer is responsible not 

only in satisfying the consumers’ needs, but also in using enough sources for the 

production of the object. 

 

2.2.6. Engineering Criteria in Industrial Product Design 

 

Industrial product design is a multidisciplinary activity. The industrial designer 

deals with numerous criteria, which are also among subjects of other disciplines. 

As he/she approaches design with a holistic view, he/she fulfills the design 

function besides acting like a communication bridge between other disciplines.  

 

Engineering is one of these disciplines that industrial product design is tightly 

related. Industrial product design benefits from engineering knowledge in 

constituting the design knowledge as being a field of the design discipline.   

 

Engineers apply the theories and principles of science and mathematics to 

research and develop economical solutions to practical technical problems. Their 

work is the link between scientific discoveries and commercial applications. 

 

The intersecting criteria of engineering and industrial design in a product are:  
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• Functional Criteria 

o Physiological Criteria 

o Environmental Criteria 

• Technological Criteria 

o Material Criteria 

o Production Criteria 

• Economical Criteria 

o At the Producers’ Level 

o At Macro-Level 

 

Engineering fields such as human-factors engineering, materials engineering, 

mechanical engineering, industrial engineering, process engineering, 

manufacturing engineering, design engineering, product design engineering deal 

with the criteria given above, and participate in design of the industrial product. 

 

Engineering Designers are responsible for applying various techniques and 

scientific principles to the development and analysis of basic functional features 

of systems, devices, etc.  

 

Process Engineers are responsible for the type of design that restricted to the 

design of components, tools, equipment, etc. (Dhillon 1985: 226). (Items for mass 

production systems.)  

 

Human-Factors Engineers are responsible for ergonomics of the product to the 

user and the environment. 

 

Mechanical Engineers are responsible for developing machinery or mechanisms 

vital to the design of a product. Computer-Aided engineering and analysis are also 

done to determine failure and stress levels of specific products (http://sjsu-

id.org/id/what-issues-eng.htm). 

 

Manufacturing Engineers are responsible for determining if designs can be 

produced. Their expertise also involves rapid prototyping and assembly 

documentation of products. 
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Product Design Engineers are responsible for the design of discrete, physical 

products (Roozenburg and Eekels 1995: 53). They are associated with specifically 

those items that are ultimately to be sold to consumers. 

   

Industrial Engineers are involved with the work environment and how the better 

can be improved for better productivity. They design, install, and improve systems 

that integrate people, technology, materials, and information (http://sjsu-

id.org/id/what-issues-eng.htm). 

 

Materials Engineers study the structure, properties and processing of materials 

used in   products. The materials study done by these engineers is important to the 

performance of the product (http://sjsu-id.org/id/what-issues-eng.htm). 

 

In the lack of these criteria, with which engineers too are engaged, the designs 

cannot come into existence as a product sold in the markets of the modern world. 

Since this is the purpose of the industrial product design and the significance of it 

among the other design fields, engineering can be considered as one of the closest 

disciplines to the industrial product design field. 
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Chapter 3 

 

ENGINEERING CONCEPTS IN INDUSTRIAL PRODUCT DESIGN 

 

3.1. Engineering and Industrial Product Design 

 

3.1.1. What is Engineering? 

 

Before the middle of the eighteenth century, large-scale construction work was usually 

placed in the hands of military engineers involving the preparation of topographical 

maps, the location, design, and construction of roads, bridges and the like. In the 

eighteenth century, however, the term civil engineering came into use to describe 

engineering work that was performed by civilians for nonmilitary purposes. With the 

increasing use of machinery in the ninteenth century, mechanical engineering was 

recognized as a separate branch of engineering, and later mining engineering was 

similarly recognized. The technical advances of the ninteenth century greatly broadened 

the field of engineering and introduced a large number of engineering specialties, and 

the rapidly changing demands of the socioeconomic environment in the twentieth 

century have widened the scope even further like automotive engineering, acoustic 

engineering, human factors engineering and so on (Encyclopedia Britannica Article).  

 

3.1.1.1. Definition of Engineering 

 
The term engineering applied to the profession in which a knowledge of the 

mathematical and natural sciences, gained by study, experience, and practice, is applied 

to the efficient use of the materials and forces of nature (Encyclopedia Britannica 

Article). 

 

Materials and forces of nature are converted to products, processes, systems etc. in 

order to suffice the needs of human beings. While doing this, engineers use engineering 

knowledge that is derived from studying, experiencing and practicing the knowledge of 
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the sciences and mathematics. The application of engineering knowledge provides 

analysis and synthesis. Synthesis of experience and analysis of materials and forces of 

the nature is included that the engineer acts like an artist (designer) as well as a scientist 

in the expansion of the engineering knowledge. 

Because of these characteristics, engineering is the most important feature of industrial 

product design in the means of bringing design to an end product that is sold in the 

market. The priority of using engineering knowledge might change according to the 

product that is going to be designed. However, more or less it is still involved in 

designing activity. 

 

3.1.1.2. Significance of Science and Design in Engineering 

 

The British Institution of Structural Engineering defines structural engineering in every 

issue of The Structural Engineering, the official journal, as: “Structural engineering is 

the science and art of designing and making, with economy and elegance, buildings, 

bridges, frameworks, and other similar structures so that they can safely resist the forces 

to which the may be subjected (Petroski 1992: 40 quoted)”. Petroski critisizes this 

declaration as follows: 

 

Since some engineers deny that engineering is either science or art, it is 
encouraging to see this somewhat official declaration that it is both. And 
indeed it is, for the conception of a design for a new structure can involve 
as much a leap of the imagination and as much a synthesis of experience 
and knowledge as any artist is required to bring his canvas or paper. And 
once that design is articulated by the engineer as artist, it must be 
analyzed by the engineer as scientist in as rigorous an application of the 
scientific method as any scientist must make (Petroski 1992: 40). 

 

Florman agreeing with Petroski defines the engineering in a holism of synthesis and 

analysis in the names of science and art (design). But he also emphasizes that scientific 

principles have recognized engineering as a profession and brought up today’s 

engineering concepts:  

 

Engineering is the art or science of making practical application of the 

knowledge of pure sciences. In other words, although engineers are not scientists, they 

study the sciences and use them to solve problems of practical interest, most typically 
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by the process that we call creative design. Engineers are not mechanics, nor are they 

technicians. They are members of a profession. Although this profession has its roots in 

the earliest development of the human species, it only achieved recognition as a 

‘learned profession’ in the mid-nineteenth century, when scientific principles were first 

applied systematically to engineering problems, and when engineering schools and 

societies began to be established (Florman 1976: Preface to the first edition). 

 

Science is very important in engineering education, and as well in engineering practice, 

where it validates the process results. Suh states the importance of scientific knowledge 

is engineering as follows: 

 

In the absence of a scientific basis, human intellectual endeavors ranging 
from fine arts to engineering are performed subjectively in the realm of 
the “creative” activity. Since the output of such activities cannot be 
understood rationally in the absence of commonly accepted criteria, they 
are treated as such. What this really means is that we can appreciate the 
outcome of the intellectual endeavor but do not understand the process 
that produces the outcome, and cannot quantify the results (Suh 1990: 6).   

 

On the other hand, design is the epitome of the goal of engineering. It facilitates the 

creation of new products, processes, software, systems, and organizations through 

which engineering contributes to society by satisfying its needs and aspirations. Every 

field of engineering involves and depends on the design or synthesis process, which 

allows people to fulfill needs through the creation of physical and/or informational 

structures, including machines, software and organizations. Suh states the importance of 

design and the inability of using it in engineering as follows: 

 

Design is important because it determines the ultimate outcome of engineering 

activities, including the manufacturing of the goods, improvement in the quality of life, 

and the provision of defense needs. Design decisions made at the initial or upstream 

stage of engineering affect all subsequent outcomes. … we often relegate the design 

decisions to the least experienced or the least educated of engineering professionals. 

The reason why this practice has lasted for so long lies in our inability to reduce design 

to absolute or scientific principles, rendering the educated and uneducated alike 

handicapped in this field (Suh 1990: 6). 
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As engineering includes science and art (design), it carries the paradox of 

complementing these two disciplines. Engineer, benefiting from scientific and design 

knowledge, designs products, systems, processes, that can be validated. However, this 

shouldn’t be seen as a paradox as Pirsig states:  

 

…science and art are two different complementary ways of looking at the same 

thing. In the largest sense it is really unnecessary to create a meeting of the arts and 

sciences because in actual practice, at the most immediate level they have never really 

been separated. They have always been different aspects of the same human purpose 

(Pirsig, “Subjects, Objects, Data and Values”). 

 

3.1.1.3. Functions of Engineering 

 
Through application of engineering knowledge to the products, engineering deals with 

time (delivery time, manufacturing time etc.), cost and quality (value added, consumer 

preference etc.) of the product (or process, software, system, organization), in other 

words, deals with factors of the “real world”. The aims of engineering in this “real 

world” can be stated generally as follows: 

• to find solutions to problems experienced in a complex industrial-social system 

• to provide public services with highest reliability, quality, and safety at a lower 

cost 

• to increase the pleasures of life (Dhillon 1985: 27) 

 

Any engineering field must take into consideration the economic factors that the “real 

world” is associated with. As the environments in which the engineering product has to 

exist become increasingly competitive and demanding, more and more attention is 

being given to economic aspects as a fact of the “real world”. 

 
Industrial product design carries the same functions with engineering in some ways. It 

seeks for finding solutions to problems experienced in a complex industrial-social 

system, increases the pleasures of life, and provides public services. However, its 

priorities are different in verifying these. It acts through concepts of quality, quantity, 

identity and method that, it determines the qualities (materials, construction, 

mechanism, shape, color, surface finishes and decoration) of objects, which are 
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reproduced in quantity by industrial methods, and their relationship to people and the 

environment. In this activity, industrial product design weighs in human-centered aspect 

of designs and generally focuses on the usage and external appearence of the products, 

where engineering more weighs in material-centered aspect of designs (aspects of “real 

world”) with the priorities of reliability, quality, and safety at a lower cost. 

 

3.1.1.4. Raw Materials of Engineering   

 
Raw materials that forms the engineering knowledge classified by Dhillon (1985: 230) 

is as follows: 

 

a. Engineering Technology: It includes areas such as manufacturing methods, 

experience, manipulations, etc. 

b. Mathematics: Mathematical calculations simplify and help in engineering acting, 

however, they must be employed with caution and judgment as the mathematical 

models are always less complex that actual structures, processes, or machines. 

c. Natural Sciences: They include life and space sciences, earth sciences, physics, 

chemistry, etc. 

d. Engineering Sciences: They include areas such as electrical theory, fluid and solid 

mechanics, material sciences, and thermodynamics, etc. 

 

The historian Edwin Layton has contributed to the topic of engineering 

knowledge the important insight that what engineers call “the engineering sciences” –

mechanics, thermodynamics, materials science, and several others- have taken their 

pattern from science. They are mathematical and exact within prescribed limits, and 

their similarities to the “hard sciences” are so striking that Layton calls science and the 

engineering sciences “mirror-image twins”. The purpose of engineering sciences, 

however, is not to record “laws of nature” but to state relations among measurable 

properties –length, weight, temperature, velocity, and the like- to permit a technological 

system to be analyzed mathematically. The engineering sciences also differ from pure 

sciences in that they have an array of abstract concepts, independent of science, that 

serve as a framework within which technical problems can be analyzed (Ferguson 1994: 

10).  
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e. Miscellaneous: It includes areas such as economics, information theory, psychology, 

literature, communications and etc. 

 

These raw materials of engineering affect the design of the products directly in the 

means of finding the best solution to ergonomics, manufacturing, marketing problems, 

etc. that bring out the product into markets. In Figure 3.1, the use of engineering 

knowledge with the raw materials of mathematics, engineering sciences and natural 

sciences is shown on a bicycle frame. 

 

                
 

Figure 3.1 A diagram showing specifications for a bicycle frame 

(Rosen 2002: 128) 
 
3.1.2. Engineering Design Field 

 

An architect and engineering designer, Jack Howe says that; “I believe in intuition. I 

think that’s the difference between a designer and an engineer … I make a distinction… 

An engineering designer is just as creative as any sort of designer”. And an industrial 

designer, Richard Stevens says that; “A lot of engineering design is intuitive, based on 

subjective thinking. But an engineer is unhappy doing this. An engineer wants to test; 

test and measure. He’s been brought up this way and he’s unhappy if he can’t prove 
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something. Whereas an industrial designer … is entirely happy making judgments 

which are intuitive” (Cross 2000: 19, 20).  

 

Engineering designers seem closer to industrial designers relatively more than the 

engineers. Especially the engineers, as the engineering education focuses on mostly the 

scientific principles, get used to analysis more than synthesis. On the other hand, 

engineering designers apply the scientific principles to the products, processes, systems 

and etc. Therefore the engineering designer deals with more synthesis and uses more 

engineering knowledge, derived from experiencing, rather than scientific knowledge. 

He/she still tests and analyzes, but also knows to act intuitively during the design 

process. Although the priorities of the engineering designer and the industrial designer 

are closer to each other’s more than the engineer’s, their criteria in designing have some 

different focus. Where the industrial designer weighs in styling problems more, the 

engineering designer weighs more in functional problems. Their product focusing 

differs in some ways as well as their design problems. 

 

3.1.2.1. Modern Engineering Trends and the Complexity in Design 

 

Modern engineering is characterized by the broad application of what is known as 

systems engineering principles. “The systems approach is a methodology of decision-

making in design, operation, or construction that adopts (i) the formal process included 

in what is known as the scientific method; (ii) an interdisciplinary, or team approach, 

using specialists from not only the various engineering disciplines, but from legal, 

social, aesthetic, and behavioral fields as well; (iii) a formal sequence of procedure 

employing the principles of operation research (Encyclopedia Britannica Article)”. 

Transportation engineering, time-study engineering, human factors engineering can be 

given as examples of modern engineering professions. 

 

Because of the complexity of most problems, as shown in Figure 3.2, design work is 

generally done by teams or groups. The complexity of mechanical devices has grown 

rapidly over the last 200 years that cannot be afforded to by a single designer. “Devices 

such as the Boeing 747 aircraft, with over 5 million components, required over 10,000 

person-years of design time. Thousands of designers worked over a three-year period on 



 43

the project (Ullman 1992: 50)”. Obviously, a single designer could not approach this 

effort; yet within design groups it is still the individual who has to solve design sub-

problems. The individual designer still has to understand the sub-problem in the context 

of the larger product, has to generate ideas, has to evaluate the ideas, and has to make 

decisions about the solution. 

 

 
 

Figure 3.2 Increasing complexities in mechanical design 

(Ullman 1992: 51) 
 

There are two types of groups found industry. The first one is made up of designers who 

are all working on a single component or separate components in an assembly. On these 

teams, all participants have similar role to play in the design process. They are all 

designers with similar domain knowledge who work as a team because the problem is 

too large for one individual to complete in reasonable time. 

 

Contrasted to this, in the other design team (concurrent), each member of the teams fills 

a different role. Teams of this type are typically composed of representatives from 

engineering, marketing, and production. Additionally, other team members may 

represent material engineering, purchasing, quality assurance, and training, as warranted 
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by the device being designed and the size of the company. On these teams each member 

brings different domain knowledge to the problem, which both enriches and 

complicates problem understanding, idea generation, and idea evaluation. In small 

companies the design engineer may fill many of the roles of a concurrent design team. 

 

3.1.2.2. What is Engineering Design? 

 
Engineering design is a relatively new discipline. It has a distinct academic identity and 

credibility in the last 50 years, where both the art of designing and the science of design 

are involving. “Due to the fact that it influences almost all aspects of creating artifacts 

for the society, engineering design has become the strategic element of competitive 

advantage (Horvath, Vergeest 2000)”. 

 

Engineering design is a distinguished discipline since it (i) synthesizes new information 

for product realization, (ii) establishes quality through defining functionality, 

materialization and appearance of artifacts, and (iii) influences the technological, 

economic and marketing aspects of production. By generating knowledge about design 

and for design, discipline-oriented (scientific) research is instrumental to the 

development of engineering design (Horvath 2001).  

 

Some Definitions of Engineering Design 

 
• Dhillon (1985: 4): Engineering design is the activity in which various methods 

and scientific principles are used to decide the selection of materials and the 

placement of these materials to develop an item that fulfills specific 

requirements.   

 

• Hubka and Eder quoted Taylor (1959): Engineering design is the process of 

applying various techniques and scientific principles for the purpose of defining 

a device, a process, or a system in sufficient detail to permit its physical 

realization. 

 

• Hubka and Eder quoted Asimow (1962): Engineering design is a purposeful 

activity directed towards the goal of fulfilling human needs, particularly those 
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which can be met by the technology factors of our culture. And: (ibid.) Decision 

making, in the face of uncertainty, with high penalty for error. 

 

• Hubka and Eder quoted Feilden (1963): Mechanical engineering design is the 

use of scientific principles, technical information and imagination in the 

definition of a mechanical structure, machine or system to perform pre-specified 

functions with the maximum economy and efficiency. The designer's 

responsibility covers the whole process from conception to the issue of detailed 

instructions for production and his interest continues throughout the designed 

life of the product in service. 

 

In engineering design, all product and artifacts have some intended reason behind their 

existence: the product or artifact function. Some of them are as follows: 

• Designing the product: 

o Producing a useful item 

o Producing a physically realizable product 

o Producing an item with economic worth 

• Designing the artifact function 

o Reducing the cost 

o Developing a new way 

o Lowering hazard 

o Reducing inconvenience 

o Meeting competition 

o Developing the market 

o Meeting social changes 

 

3.1.2.3. Functions associated with Engineering Design 

 
There are various functions involved in engineering design those can be classified into 

five broad categories (Dhillon 1985:225): 

 

• Manufacturing Functions: It includes all those functions related to 

manufacturing such as assembly, finding out the tooling requirement, 
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manufacturing planning, the design of tools, detail manufacture, keeping pace 

with the latest manufacturing methods, purchasing materials, cost control. 

• Commercial Functions: It involves relationships with various clients. Some of 

the functions are conducting market surveys and tendering, managing contracts 

effectively, arranging delivery, advertising the company and its products, and 

arranging payment. 

• Engineering Functions: These are subcomponents of the design activity such 

as developing new design concepts, designing for production, supporting 

functions (estimating cost, analyzing field problems, the provision of 

maintenance instructions, etc.) 

• Quality Assurance Functions: It is concerned with the quality of the end 

product. These functions are relevant to areas such as design methods and 

procedures, design auditing setup, quality and design data. 

• Research Functions: It is associated with research such as conducting basic 

applied research, preparing specifications for quality testing procedures, 

preparing process specifications for welding, preparing process specifications 

for the testing of highly stressed parts. 

 

Related to these functions, in producing a new machine, structure, or other 

technological artifact, two separate but closely related processes are generally required. 

In the first, engineering designers convert the visions in their minds to drawings and 

specifications. In so doing, they solve an ill-defined problem that no single “right” 

answer but has many better or worse solutions. Engineers learn a great deal during the 

process of design as they strive to clarify the visions in their minds and seek ways to 

bring indistinct elements into focus. When the designers think they understand the 

problem, they make tentative layouts and drawings, analyze their tentative designs for 

adequacy of performance, strength, and safety, and then complete a set of drawings and 

specifications. The second process revolves around the first drawings and 

specifications. Those who will make or build the machine, structure, or system can now 

learn exactly what they are expected to produce. Until their task is complete and the 

project has been turned over to its user, those drawings and specifications will be their 

formal instructions that guide their work (Ferguson 1994: 2). 
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3.1.2.4. Economics of Engineering Design 

 
The economic, technical, and aesthetic merits of the engineering design are vital for its 

commercial success. 

 

During the design phase of the product certain economic considerations are very 

important because they may be vital to the success or failure of the organization. The 

economic considerations concerning the market for the product are regarded as the most 

necessary economic factors. 

 

The production and distribution of the designed product are dictated by the market 

requirement. Thus the designer must take into consideration the following factors when 

designing a new product (Dhillon 1985: 36 quoted Beakley and Chilton 1973): 

• The competitive products’ prices 

• The percentage of the total market for the demand of the product 

• The size and the type of the total market 

• The price/sales relationship 

and so on. 

 

During the product development, design selection mainly determines the cost of 

production. Therefore, engineering manufacturers emphasize that the production costs 

must be controlled during the design phase of the product. 

 

The following are the principal elements of an item production cost (Dhillon 1985: 37): 

• Material cost 

• Labor cost 

• Production overhead costs: The components of production overhead costs are 

the machinery depreciation cost, cost of indirect labor, services cost (fuel, 

electricity, etc.); cost of indirect materials such as small tools, lubricants, etc., 

cost of tool replacement and so on. 
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3.1.2.5. Engineering Design Knowledge 

 

Knowledge can be classified generally as follows (Ullman 1992: 39): 

• General Knowledge: Information that most people know and apply without 

regard to a specific domain. For example, red is a color, the number 4 is bigger 

than the number 3, and applied force causes a mass to accelerate- all exemplify 

general knowledge. This knowledge is gained through everyday experiences and 

basic schooling. 

 

• Domain-specific Knowledge: Information on the form or function of individual 

objects or a class of objects. For example, all bolts have a head, a threaded body, 

and a tip; bolts are used to carry shear or axial stresses; the proof stress of a 

grade 5 bolt is 85 kpsi- all exemplify domain specific knowledge. This 

knowledge comes from study and experience in the specific domain. It is 

estimated that it takes about 10 years to gain enough specific knowledge to be 

considered an expert in a domain. Formal education sets the foundation for 

gaining this knowledge. 

 

• Procedural Knowledge: the knowledge of what to do next. For example, if 

there isn’t an answer to problem X, then decomposing X into two independent 

subproblems, X1 and X2, would illustrate procedural knowledge. This 

knowledge comes from experience, but some procedural knowledge is also 

based on general knowledge and some domain-specific knowledge. Especially 

mechanical designers use this knowledge in solving design problems. 

 

• Process Knowledge: This knowledge is distinct from domain knowledge. 

Because of this independence, a successful product can result from the design 

process, regardless of the knowledge of the designer or the type of design 

problem. However, to produce any reasonably realistic design, substantial 

domain knowledge, which comes from the raw materials of engineering (like 

material science, engineering science, mathematics, etc.) is required. 
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In engineering design the designer uses three types of knowledge that are (Ullman 1992: 

preface xii): 

 

• Knowledge to generate ideas: comes from experience and natural ability 

• Knowledge to evaluate ideas: comes from experience and formal training  

• Knowledge to structure the design process: comes from a dual setting of 

academic environment and, at the same time, in an environment that simulates 

industrial realities.  

 

Generative and evaluative knowledge are forms of domain-specific knowledge, where 

the knowledge about the structure of the design process is largely independent of 

domain specific knowledge. 

 

An Example of Engineering Design Knowledge 

 
The formal knowledge that engineering designers use is not science, although a 

substantial part of it is derived from science. It includes as well knowledge based on 

experimental evidence and on empirical observations of material and systems. Walter 

Vincenti, an aeronautical engineer who has traced the evolution of engineering 

knowledge, argues cogently the it has been developed and formalized primarily to meet 

the needs of engineering designers. For example, the optimum or “correct” degree of the 

inherent stability of an airplane was by no means obvious until more than 30 years after 

the Wrights first powered flight in 1903. European designers of airplanes assumed at 

first that pilots would merely steer their craft in the manner of automobile drivers or 

mariners. Therefore, the need of inherent stability seemed obvious. On the other hand, 

as the Wrights saw, too much inherent stability would reduce a pilot’s control over his 

airplane. A bicycle is inherently unstable, yet with practice it is readily controlled. But, 

as Vincenti reminds us, training wheels on a bicycle, intended to help hold the bike 

upright for the beginning rider, are soon discarded as the rider’s reflexive responses 

make them obstructive rather than helpful.  

 

The Wright brothers had recognized that airplanes, unlike automobiles and boats, must 

be controlled in three dimensions rather than merely steered. Their decision to build 

airplanes that would require skilled piloting was, in Vincenti’s words, “largely 
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deliberate, conceptually linked to the sideway instability of the bicycle, with which the 

Wrights were familiar.” They devised an ingeniously simple and elegant system of wing 

warping to keep their first airplanes on an even keel and to allow banked turns. 

 

By the 1930s, designers, pilots, aerodynamicists, and instrumentation specialists had 

reached a consensus that an aircraft should have enough instability to avoid disaster 

through a momentary aberration but enough instability to give the pilot optimum 

control. Vincenti points out that although aerodynamicists (scientists) were involved in 

the debates, the subjective response of pilots –a sense of what is flyable- and the 

experiences of designers (engineers) were the determining factors in the consensus. It 

was a collective “practical judgment (based largely on subjective opinion) of a sort that 

cannot be avoided in engineering” – “an instance par excellence of engineering, as 

opposed to scientific knowledge. Eventually the consensus was codified in reasonably 

unambiguous terms made a routine part of design specifications (Ferguson 1994: 9, 10). 

 

       
 

Figure 3.3 (Ferguson 1994: 11) Wing warping in the first Wright airplane, 1903. 

 

To maintain stability, cables twisted the trailing corners of both wings simultaneously. 
In this front view, the right rear corners are twisted downward and the left rear corners 

upward. Wing warping (later, hinged ailerons) also made steering practicable, 
permitting a roll about the fore-and-aft axis as the rudder was turned. 
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3.1.3. Comparison of Industrial Product Design with Engineering Professions 

  

Engineering is one of these disciplines that industrial product design is tightly related. 

Industrial product design benefits from engineering knowledge in constituting the 

design knowledge as being a field of the design discipline.   

 

The intersecting criteria of engineering and industrial design in a product are:  

• Functional Criteria 

o Physiological Criteria 

o Environmental Criteria 

 

 

• Technological Criteria 

o Material Criteria 

o Production Criteria 

 

• Economical Criteria 

o At the Producers’ Level 

o At Macro-Level 

 

Engineering fields such as human-factors engineering, materials engineering, 

mechanical engineering, industrial engineering, process engineering, manufacturing 

engineering, design engineering, product design engineering deal with the criteria given 

above (as it was mentioned in the previous chapter), and participate in design of the 

industrial product. 

 

The comparison of industrial product design with some of the engineering professions, 

through seven measures, is shown in Figure 3.4, and the comparison with mechanical 

design engineering is briefly described as follows (Ullman 1992: 32): 
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Figure 3.4 Comparison of industrial product design with engineering professions 

(Ullman 1992: 32) 

 

• Type of Objects: 

Mechanical Design: Many types of components and assemblies vary widely in  

shape, composition, functional complexity and technologies - fluid dynamics, 

thermodynamics, and kinematics. 

Industrial Design: Primary objects are those that affect the aesthetics or human 

factors of the product. 

• Type of Problem:  

 Mechanical Design: All types discussed before 

Industrial Design: All types discussed before 

• Form–Function Relation: 

 Mechanical Design: A component or assembly plays a role in many functions. 

Industrial Design: Little or no functionality, form dominates function.  

• Decomposition Potential: 

Mechanical Design: Form-function relationship determines the potential to 

decompose a problem into sub problems. It is limited though, as form and 

function is overlapped in devices. 

Industrial Design: Decomposition is in form, not in function. 
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• Language Complexity:  

 Mechanical Design: Semantic, analytical, graphical, physical. 

Industrial Design: Usually graphical. 

• Graphic Complexity:  

Mechanical Design and Industrial Design: 3D, 2D, shaded images greatly  

complicate the process.  

• Design Methods:  

 Mechanical Design: Partially developed. 

Industrial Design: Many different philosophies. 

 

3.1.3.1. Decomposition  

 

A system is generally considered a conglomeration of objects that perform a specific 

function. The car is a transportation system; its function is to move goods and people. 

The engine is the power subsystem; its purpose is to convert potential energy started in 

the fuel into kinetic energy. In the engine, the ignition is one of many subsystems. Thus, 

this is the decomposition of car into three system levels, while still referring to the 

function of objects.  

 

Another view, the engine is an assembly of components in terms of the physical 

components or form of the engine. Engine assembly can be decomposed into 

subassemblies such as the carburetor and it can be further decomposed into smaller 

assemblies and, finally, into individual components. “System” and “assembly” used 

where the object of interest falls in the decomposition as it goes on sub…of sub… and 

“sub” is used to show one level of decomposition in a specific discussion.  

 

In Figure 3.5, the decomposition of design fields (software, mechanical and electrical) is 

shown, where the function of system and its decomposition are considered first, and 

then the subs… and the components.  
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Figure 3.5 Decomposition of design fields (Ullman 1992: 19) 

 

“For example, the ignition system and the controller on carburetor are electrical. These 

systems provide energy transfer and control functions in the engine. Some of the control 

functions are filled by microprocessors. Physically, these are electric circuits, but the 

actual control function is provided by a software program in the processor (Ullman 

1992: 19)”. It is often unclear whether the actual function should be met by mechanical 

assemblies, electrical circuits, software programs or a mix of these elements.  

 

3.1.3.2. Form-Function Relation  

 

Function= Operation= Purpose: to describe what the device does 

Form: any aspect of physical shape, geometry construction, material or size. 

Performance: measure of function - how well the device does what it is designed to do. 

 

Earlier, mechanical systems are decomposed into assemblies and components 

physically. Functional decomposition is often much more difficult than physical 

decomposition, as each function may use part of many components and each component 

may serve many function. “For example, the handlebars of a bicycle. They are a single 

component that serves many functions. They allow for steering (a verb that tells what 

the device does), and they support upper-body weight (again, a function telling what the 

handlebars do). Further, they not only support the brake levers but also transform 

(another function) the gripping force to a pull on the brake cable. The shape of the 
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handlebars and their relation with other components determine how they provide all 

these different functions. The handlebars, however, are not the only component needed 

the steer the bike. Additional components necessary to perform this function are the 

front fork, the bearings between the fork and frame, the front wheel, and miscellaneous 

fasteners. Actually, it can be argued that all the components on a bike contribute to 

steering, since a bike without a seat or rear wheel would be hard to steer. In any case, 

the handlebars perform many different functions, but in fulfilling these functions, the 

handlebars are only a part of various assemblie (Ullman 1992: 20)”. This coupling 

between form and function makes mechanical devices hard to design. Performance, as 

measure of function, clarifies how well the steering is fulfilled with handlebars.  

Figure 3.6 shows and example of physical decomposition in a safety bicycle. 

 

 
Figure 3.6 Exploded safety bicycle, 1900 (Perry 1995: 44) 

 
3.1.3.3. Languages of Design  

 

There are four types of design languages, which are as follows (Ullman 1992: 28): 

• Semantic: The verbal or textural representation of the object – for example, the 

word “bolt,” or the sentence “The shear stress is equal to the shear force on the 

bolt divided by the stress area.” 



 56

• Graphical: The drawing of the object- for example, scale representations such 

as orthogonal drawings, sketches, or artistic renderings. 

• Analytical: The equations, rules, or procedures representing the form or 

function of the object –for example, τ=F/A 

• Physical: The hardware or a physical model of the object. 

 

The initial need is expressed in a semantic language as a written specification or a 

verbal request by a customer or supervisor. The final result of the design process is a 

physical product. Although the designer produces a graphical representation of the 

product, not the hardware itself, all the languages are used as the product is refined from 

its initial, abstract semantic representation to its final physical form.  

  

The process of making an object less abstract (or more concrete) is called “refinement”. 

Especially, mechanical design is a continuous process of refining the given needs to the 

final hardware. Figures 3.7 and 3.8 reveal the refinement of the abstract representations 

as follows: 

 

 
 

Figure 3.7 Levels of abstraction in different languages (Ullman 1992: 31) 
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Figure 3.8 Levels of abstraction in describing a bolt (Ullman 1992: 31) 

 

3.2. How Industrial Designers and Engineers Approach to Design Problems? 

 
3.2.1. Design Problems 

 

                         

Figure 3.9 Designer and the design problems (Bayazit 1994: 109) 

 

Design problems normally originate as some form of problem statement provided to the 

designer by someone else, the client or the company management. These problem 

statements, normally called a design brief, can vary widely in their form and content. 

“At one extreme, they might be something like the statement made by President 
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Kennedy in 1961, setting a goal for the USA, ‘before the end of the decade, to land a 

man on the moon and bring him back safely’. In this case the goal was fixed, but the 

means of achieving it were very uncertain. The only constraint in the brief was one of 

time –before the end of the decade. The designers were given a completely novel 

problem, a fixed goal, only one constraint, and huge resources of money, materials and 

people (Cross 2000: 11)”. This is quite an unusual situation for designers to find 

themselves in. 

 

A typical example of design brief, unlike the extreme one given above, might be like the 

following brief provided to the design department by the planning department of a 

company manufacturing plumbing fittings. It is for a domestic hot and cold water 

mixing tap that can be operated with one hand (Cross 2000: 11 quoted Pahl and Beitz 

1984). 

 

Design of one-handed water mixing tap: 

 

Required: one-handed household water mixing tap with the following characteristics: 

Throughput                     10 l/min 

Maximum pressure         6 bar 

Normal pressure              2 bar 

Hot water temparature    60 C 

Connector size               10 mm 

Attention to be paid to appearence. The firm’s trade mark to be prominently displayed. 

Finished product to be marketed in two years’s time. Manufacturine costs not to exceed 

DM 30 each at a production rate of 3000 taps per month. 

 

What these examples of design problems have in common is that thye set a goal, some 

costraints within which the goal must be achieved, and some criteria by which a 

successful solution might be recognized. “If a goal does not require ‘searching for the 

solution’ period –constraints- the there cannot be a problem (Bayazit 1994: 110)”.  

 

Design problems do not specify what the soltion will be, and there is no certain way of 

proceeding from the statement of the problem to a statement of the solution, except by 

designing. Unlike some other kinds of problem (mathamatical, economical problems, 
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etc.), the person setting the problem does not know what the answer is, but he/she will 

recognize it when he/she sees it. However, this recognition of the solution of the design 

problem is not easy, and it might not be liked by the client or the company management. 

Especially the first step, which is determinig the design, is accepted as the hardest and 

the most important stage of design activity. Determining an object that does not exist, 

includes a huge uncertainty for the designers as well as for anybody. It is this 

uncertainty that makes desiging such a challenging activity. Because of this, the design 

problems are defined as ill-defined problems by many authors. 

 

3.2.1.1. Characteristics of Design Problems 

 

The kinds of problem that designers tackle are regarded as ill-defined or ill-structured, 

in contrast to well-defined or well-structured problems such as chess-playing, crossword 

puzzle or standard calculations. Well-defined problems have a clear goal, often one 

correct answer, and rules or known ways of proceedings that will generate an answer.  

 

The characteristics of ill-defined problems can be summarised as follows (Cross 2000: 

14): 

• There is no definitive formulation of the problem: When the problem is initially 

set, the goals are usually vague, and many constraints and criteria are unknown. 

The problem context is often complex and messy, and poorly understood. In the 

course of problem-solving, temporary formulations of the problem may be fixed, 

but these are unstable and can change as more information becomes available. 

• Any problem formulation may embody inconsistencies: The problem is unlikely 

to be internally consistent; many conflicts and inconsistencies have to be 

resolved in the solution. Often inconsistencies emerge only in the process of 

problem-solving. 

• Formulations of the problem are solution-dependent: Ways of formulating the 

problem are dependent upon ways of solving it; it is difficult to formulate a 

problem statement without implicity or explicitly referring to a solution concept. 

The way the solution is conceived influences the way the problem is conceived. 

• Proposing solutions is a means of understanding the problem: Many 

assumptions about the problem, and specific areas of uncertainty can be exposed 
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onlt by proposing solution concepts. Many constraints and criteria emerge as a 

result of evaluating solution proposals. 

• There is no definitive solution to the problem: Different solutions can be equally 

valid responses to the initial problem. There is no objective true-or-false 

evaluation of a solution; but solutions are assessed as good or bad, appropriate 

or inappropriate. 

 

In order to take some steps towards improving the initial definition of the problem, the 

clients are questioned, data are collected, some research is carried out, and etc. There 

are also some rational procedures and techniques, which can be applied in helping to 

solve ill-defined problems. Whatever does the designer; he/she tries to move fairly 

quickly to a potential solution, or a set of potential solutions, and to use that as a means 

of further defining and understanding the problem. 

 

3.2.1.2. Problem Structures 

 

Even the designer has progressed well into the definition of a solution; some difficulties 

may come to light because of the problem structure. A design problem can be divided 

into sub-problems, or decision areas, in order to reach to an overall design solution, 

which forms the problem structure as shown in Figure 3.10. In particular, sub-solutions 

can be found to be inter-connected with each other in ways that form a pernicious, 

circular structure to the problem, e.g. a sub-solution that resolves a particular sub-

problem may create irreconcilable conflicts with other sub-problems. 

 

An example of this pernicious problem structure was found in a study of housing design 

by Luckman (Cross 2000: 15 quoted Luckman 1984). The architects identified five 

decision areas, or sub-problems, concerned with the directions of span of the roof and 

first floor joists, and the provision of load-bearing or non-load-bearing (external) walls 

and partitions at ground and first-floor levels. Making a decision in one area had 

implicants for the other area, which had the implicants for the other area and so on until 

it becomes a full-circle back to the first decision area. This problem structure is shown 

diagrammitically in Figure 3.11, illustrating the circular structure that is often found in 

design problems. 
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Figure 3.10 Division of design problem in order to reach overall solution 

(Cross 2000: 41) 

                       
Figure 3.11 Problem structure found in a housing design problem  

(Cross 2000: 16) 
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As part of the research study, the individual sub-solution options in each decision area 

were separated out and the incompatible pairs of options identified. With this approach, 

it was possible to enumerate all the feasible solutions (i.e. sets of five options containing 

no incompatible pairs). There were found to be eight feasible solutions, and relative 

costings of each could indicate which would be the cheapest solution. This approach 

was later generalised into a new design method: AIDA, the Analysis of Interconnected 

Decision Areas.  

 

This technique helps to solve the design problem –the problem itself and the difficulty 

in the pernicious structure-, and brings it to a more well-defined position. Some 

designers argue that design problems are not always ill-defined or ill-structured as they 

might appear to be. On the other hand, “research into the behaviour of designers has 

shown that they will often treat a given problem as though it is ill-structured, even when 

it is presented as a well-structured problem, so that they can create something 

innovative” (Cross 2000: 16-17). 

 

Therefore, designers often attemp to avoid cycling around the pernicious decision loops 

of design problems by high-level strategic decisions about solution options. Having 

identified a number of options, the designer selects what appears to be the best one for 

investigation at a more detailed level; again, several options are usually evident, and 

again a choice is made. This results in hat is known as a decision tree, with more and 

more branches opening from each decision point. An example is shown in Figure 3.12, 

based on a study by Dwarakanath and Blessing (Cross 2000: 18 quoted Dwarakanath 

and Blessing 1996) of an engineer designing a carrying/fastening device for attaching a 

back-pack to a mountain bicycle. This decision tree was derieved from an experimental 

study in which the designer’s progress was recorded over a two-hour period. The 

decision tree shows how higher-level strategic decisions (such as positioning the device 

either the front or rear wheel of the bicycle) gradually unfolded into lower-level 

implications and decisions, right down to details of screws, pins, etc. 

 

The decision tree analysis of the design process perhaps implies that the result is the 

best possible design, if the best options are chosen at each level. However, a decision at 

any particular level may well turn out to be sub-optimal in the light of subsequent 

options available at the other levels. For this reason, there is frequent back-tracking up 
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and down the levels of hierarchy in the design tree. In Figure 3.12 this is confirmed by 

some of the ‘time stamps’ inserted at points within the tree, recording the time at which 

the designer considered the various alternatives and made decisions. 

 

Resolving design problems by a top-down approach is quite common, although 

sometimes a bottom-up approach is used, starting with the lowest-level details and 

building up to a complete overall solution concept. 
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Figure 3.12 Decision tree derieved from the design of a device for 

carrying a backpack on a bicycle (Cross 2000: 17) 
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3.2.1.3. Types of Design Problems 

 

Design situations have a mixture of design problems, and these design problems should 

be considered independent of disciplines, as design is a multidisciplinary activity. Types 

of design problems (www.med.umich.edu/rehabeng/curriculum.htm and Ullman 1992: 

21) are as follows: 

 

• Selection Design: It is a well-defined problem that can be solved by existing 

product e.g. picking the correct bearing or software from a catalog. Selection 

design is an activity of picking one (maybe more) item from a list that the 

chosen item meets certain requirements. To solve a selection design problem, it 

should be started with a clear need. The catalog or the list of choices effectively 

generates potential solutions for the problem. These potential solutions must be 

evaluated versus specific requirements to make the right choice. 

 

• Configuration Design: It is a well-defined problem that requires assembly or 

combination of standard components, e.g. computer workstation configuration. 

All components have been designed and the problem is how to assemble them 

into the completed product. 

 

• Parametric Design: It involves finding values for the variables, or design 

parameters, that characterize the object being studued, in order to optimize the 

design, e.g. designig a cylindrical tank to hold X gallons and having minimum 

surface area. These problems lend themselves to analysis, and often have 

standard solutions that are tabulated in handbooks. 

 

• Routine Design: It is characterized by cook-book design solution steps for a 

well-defined problem, usually varations on a well-characterized centrel or basic 

design theme. 

 

• Original Design: Any time the design problem requires the development of a 

process, component, or assembly not previously in existence, it calls for original 
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design. These problems cannot be defined with algorithm and the solution starts 

with the design problem itself and a blank sheet of paper. 

 

• Redesign: It starts with a well-defined problem and an existing product that is 

going to be studied on. It is the modification of this existing product to meet new 

requirements, to improve its function and etc. Because new processes, new 

materials, new enabling technologies, change in needs or demand, improvement 

in domain knowledge come into existence through years. Redesign must include 

substantial improvement over the original (existing product). Redesign problems 

have some advantages such as development costs are vastly reduced, proof of 

concept is already done, market is usually developed and the user input is 

available. 

 

Mature Design and the Bicycle 

 
Redesign often occurs on a mature design, which is the design that remained virtually 

unchanged over many years such as scissors, pencil sharpeners, and etc. For these 

products, knowledge about the design problem is complete and there is nothing more to 

learn, as it is shown in Figure 3.13.  

 

                  
 

Figure 3.13 Design process paradox (Ullman 1992: 13) 
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The cleanly cutting material problem is thought to be solved in the Bronze Age as 

scissors. Whatever detailed variations have subsequently have appeared, and they are 

innumerable, the fundamental configuration remains unaltered. This kind of design 

concepts and forms often called as type-forms (mature designs), which have become 

firmly established due to their appropriateness and widely adopted to industrial mass-

production. In principal, there is little difference of form in relation to function of 

modern scissors to those evolved long ago, despite the very different production 

technques used (Haskett 1987: 116)”. 

 

However, considering the bicycle as a mature design reveals the need of redesign 

problems and solutions. The basic configuration of the bicycle –the two tensioned, 

spoked wheels of equal diameter, the diamond shaped frame, and the chain drive- was 

fairly refined late in the last century. While the 1890 Humber shown in Figure 3.14 

looks much like a modern bicycle, not all bicycle of this era were refined. The Otto 

dicycle, shown in Figure 3.15, had two spoked wheels and a chain; stopping and 

steering this machine must have been a challenge. In fact, “the technology of bicycle 

design was so well developed by the end of the ninteenth century that a major book on 

the subject, Bicycles and Tricycles: An Elementary Treatise on Their Design and 

Construction was published in 1896. (Ullman 1992: 26)”.   

 

 

 

Figure 3.14 Humber bicycle 1890 (Ullman 1992: 26) 
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Figure 3.15 Otto dicycle (Ullman 1992: 27) 

 

However, in the 1980s the traditional bicycle design began to change again, as it can be 

seen in Aero Bike of Burrows, shown in Figure 3.16. 

 

 

Figure 3.16 Aero bike of Burrows (Perry 1995: 11) 

 

Why did a mature design begin evolving again? As it is metioned above in redesign 

section, new processes, new materials, new enabling technologies, change in needs or 

demand, improvement in domain knowledge have caused new designs to come into 

existence. The followings factors have affected the changes in bicycle design (Ullman 

1992: 28): 

1. New materials such as carbon-fiber were developed. At first these new materials were 

substituted for the old, as in most redesign problems; however, creative designers soon 
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began to develop original designs that made use of the unique properties of the new 

materials. 

2. Domain knowledge is improved and new enabling technologies were developed. An 

increased understanding of aerodynamic drag and its effects on the speed of the bicycle 

prompted the design of streamlined wheels, frames, and other components. 

3. The demand has changed. Improved understanding of the capabilities and the needs 

of the rider –that is, better knowledge of human factors- further encouraged original 

design, e.g. mountain bikes. 

 

3.2.2. Design Ability 

 

Some statements made by industrial and engineering designers (Cross 2000: 19) 

indicate their abilities that can be summarized as follows: 

• Creativity and intuition 

• Recognition that problems and solutions in design are closely interwoven 

• The need to use sketches, drawings, or models of various kinds as a way to 

explore the problem and solution together 

This summary reflects the view that designers have a particular ‘designerly’ way of 

thinking and working. 

 

Experiment of Designers and Scientists Solving a Design Problem 

 
In an experimental research study, Lawson (1984) compared the ways in which 

designers (in this case architects) and scientists solved the same problem. The scientists 

tended to use a strategy of systematically trying to understand the problem, in order to 

look for underlying rules, which would enable them to generate an optimum solution. In 

contrast, the designers tended to make initial explorations and then suggest a variety of 

possible solutions until they found one that was good, or at least satisfactory. The 

evidence from the experments suggested that scientists problem-solve by analysis, 

whereas designers problem-solve by synthesis; scientists use ‘problem-focused 

strategies’ and designers use ‘solution-focused strategies’ (Cross 2000: 21). 
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3.2.2.1. How Designers Think? 

 
Some other studies have also suggested that designers tend to use conjectures about 

solution concepts as the means of developing their understanding of the problem. 

“Darke (1984) found that designers impose a primary generator onto the problem, in 

order to narrow the search space and generate early solution concepts. This primary 

generator is usually based on a tightly-restricted set of constraints or solution 

possibilities derived from the design problem. Since ‘the problem’ cannot be fully 

understood in isolation from consideration of ‘the solution’, it is natural that solution 

conjectures should be used as a means of helping to explore and understand the problem 

formulation (Cross 2000: 21)”. Making sketches of solution concepts is one way that 

helps the designer to identify their consequences, and to keep the problem exploring 

going; in what “Schön (1983) called the ‘reflective conversation with the situation’ that 

is characteristic of design thinking (Cross 2000: 21)”. 

 

Drawing and sketching have been used in design for a long time, certainly since long 

before the Renaissance, but the period since that time has seen a massive growth in the 

use of drawings, as designed objects have become more complex and more novel. 

Looking at the sketches of Leonardo and today’s designers, similar kinds of 

representations can be seen. Plans, elevation and section are all being considered 

together with the considerations of structure, and calculations of dimensions and areas. 

What can be learnt looking at these sketches? One thing that seems to appear is that 

sketches enable designers to handle different levels of abstraction simultaneously. 

Clearly this is something important in the design process. Designers think about the 

overall concept and at the same time think about the detailed aspects of the 

implementation of that concept. Obviously not all of the detailed aspects are considered 

early on, because if they could do that, designers could go straight to the final set of 

detailed drawings. So they use the concept sketch to identify and then to reflect upon 

critical details, particular details that they realise might hinder or somehow significantly 

influence the final implementation of the complete design. This implies that, although 

there is a hierarchical structure of decisions, from overall concept to details, designing is 

not a strictly hierarchical process; in the early stages of design, the designer moves 

freely between different levels of detail Cross 2000: 23). 
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“The identification of critical details is part of a more general facility that sketches 

provide, which is that they enable identification and recall of relevant knowledge. As 

the architect Richard McCormac had said about designing, ‘What you need to know 

about the problem only becomes apparent as you are trying to solve it’ (Cross 2000 

24)”. There is a massive amount of information that may be relevant. These large 

amounts of information and knowledge need to be brought into play in a selective way, 

being selected only when they become relevant, as the designer considers the 

implications of the solution concept as it develops. 

 

Because the design problem is itself ill-defined and ill-structured, a key feature of 

design sketches is that they assist problem structuring through the making of solution 

attempts. Sketches incorporate not only drawings of tentative solution concepts but also 

numbers, symbols and text, as the designer relates what he knows of the design problem 

to what is emerging as a solution. Sketching enables exploration of the problem space 

and the solution space to proceed together, assisting the designer to converge on a 

matching problem-solution pair. Problem and solution co-evolve in the design process. 

In sketching the designer takes the initiative in finding a problem starting point and 

suggests tentative solution areas. Problem and solution are then developed in parallel, 

sometimes leading to a creative redefinition of the problem, or to a solution that lies 

outside the boundaries of what was previously assumed to be possible (Cross 2000: 25). 

 

Solution-focused strategies are therefore perhaps the best way of tackling design 

problems, which are by nature ill-defined. In order to cope with the uncertainty of ill-

defined problems, the designer has to have the self-confidence to define, redefine and 

change the problem as given, in the light of solutions that emerge in the very process of 

designing. 

 

3.2.2.2. Drawings of the Artist and the Engineer 

 
The drawings have two principal purposes. First they show designers how their ideas 

look on paper. Second, if complete, they show workers all the information needed to 

produce the object. The information that the drawings convey is overwhelmingly visual: 

not verbal, except for notes that specify materials or other details; not numerical, except 

for dimensions of parts and assemblies (Ferguson 1994: 5). 
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The differences between the direct design of the artisan and the design drawing of the 

engineer are differences of form rather than differences of conception. In both cases, 

“the design starts with an idea –sometimes distinct, sometimes tentative-which can be 

thrown on the mind’s screen and observed and manipulated by the mind’s eye 

(Ferguson 1994: 5)”. Usually, the “big”, significant, governing decisions regarding an 

artisan’s or an engineer’s design have been made before the artisan picks up his tools or 

the engineer turns to his drawing board. Those big decisions have to be made first so 

that there will be something to criticize and analyze. Thus, far from starting with the 

elements and putting them together systematically to produce a finished design, both the 

artisan and the engineer start with the visions of the complete machine, structure, or 

device. 

 

3.2.2.3. How a Successful Designer Acts? 

 
From studies of a number of engineering designers, of varying degrees of experience 

and with varying exposures to education in systematic design processes, Fricke (1996) 

found that designers following a ‘flexible-methodical procedure’ tended to produce 

good solutions. These designers worked reasonably efficiently and followed fairly 

logical procedure, whether or not they had been educated in a systematic approach. In 

comparison, designers either with a too-rigid adherence to a systematic procedure 

(behaving ‘un-reasonably’ methodically), or with very unsystematic approaches, 

produced mediocre or poor design solutions. Successful designers (ones producing 

better quality solutions) tended to be those who (Cross 2000: 27): 

 

• clarified requirements, by asking sets of related questions which focused on the 

problem structure 

• actively searched for information, and critically checked given requirements 

• summarised information on the problem formulation into requirements and 

partially prioritized them 

• did not suppress first solution ideas; they held on to them, but returned to 

clarifying the problem rather than pursuing initial solution concepts in depth 

• detached themselves during conceptual design stages from fixation on early 

solution concepts 
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• produced variants but limited the production and kept an overview by 

periodically assessing and evaluating in order to reduce the number of possible 

variants. 

 

The key to successful design therefore seems to be the effective management of the dual 

exploration of both the ‘problem space’ and the ‘solution space’. 

 

Designing is a form of skilled behaviour. Learning any skill usually relies on controlled 

practice and the development of techniques. However, performing is different that 

learning, where underneath lies mastery of technique and procedure. The performance 

of a skilled practitioner appears to flow seamlessly, adapting the performance to the 

circumstances without faltering. 

 

3.3. Design Process and Design Methods 

 

Around the year 1400, Filippo Brunellesci (1377-1446), the Italian architect and 

engineer, built the cupola (dome) of the new cathedral for the city of Florence. Until 

that time buildings were not really engineered at all. The craft was then known as 

artisanship, and basically involved using well-understood principles and trial and error 

methods of building. In the environment of artisanship, the artisan simply starts building 

or manufacturing the product. When problems are encountered, the entire project is 

started over again. This contributed to making engineers extremely conservative; 

innovation was rarely encouraged and often discouraged because of its implied risks. 

 

Brunelleschi began by keeping a journal in which he sketched and described individual 

ideas for features and components of the cathedral from both architectural and civil 

engineering perspectives. Once he had developed what he believed were a wide enough 

assortment of different ideas and concepts for the cathedral, he started looking at the 

ideas with a more critical eye to see how the different concepts would work together. 

Not all of them made sense if used together. He pieced together an overall concept for 

the cathedral, which he described in a single master plan. 
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Brunelleschi did something new. He knew he would have to "subcontract" the 

construction of the building materials to other people, but he did not want to show them 

the master plan - for fear of having his idea copied before he could finish the project. So 

he created a large collection of individual drawings. Each drawing specified only a few 

components of the cathedral's structure - few enough that anyone getting one or two of 

the drawings would be unable to intuit the nature of the building as a whole. He then 

distributed the drawings to the various manufacturers. Brunelleschi did not tell them 

what the parts were for. He only wanted them made and delivered to a certain off-site 

location. Once he'd received enough of the parts, he began to build the cathedral. 

 

Brunelleschi completed the cathedral, which was recognized as one of the most 

impressive buildings of its kind. Indeed, it still remains a masterpiece of engineering 

and architecture (http://deed.ryerson.ca/~fil/T/gen/history0.html). 

 

Design Aspect of Brunelleschi’s Work 

 

Brunelleschi had unwittingly invented a design process. First he did some conceptual 

design, which included the sketches and ideas in his journal. He then examined and 

evaluated the concepts, blending some together and discarding others altogether, 

leading to a single overall concept of the cathedral; this is concept evaluation. 

Brunelleschi then detailed the idea to the level of a master plan - this is detailed design. 

Then, Brunelleschi developed all the different parts drawings. In order to do this 

properly, he needed to keep in mind some sort of assembly process, and make sure that 

the parts were designed in a way that he could fit them all together on the building's site. 

This is process planning. The parts were then "outsourced" for manufacture, and 

assembled on-site. 

 

Because of the success of the project, this basic process - conceptual design, concept 

evaluation, detailed design, process planning, manufacture, and assembly - became the 

standard way that buildings were engineered. Indeed, any engineering design textbook 

up to the 1970s, finds the basic design process described just as Brunelleschi developed 

it (http://deed.ryerson.ca/-fil/T/gen/history0.html). 
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3.3.1. Introduction to Design Methods 

 

When the scientific study of design emerged after World War II, it began as an effort 

toward developing new procedures for designing. In the face of the increasingly 

complex tasks that designers were encountering, the pioneers of the field saw a need for 

improved ways of designing, as they thought the existing procedures were inadequate 

(Alexander 1964, 1971, Cross 1984, Jones 1970, Rittel 1972). Therefore, the early work 

almost exclusively sought to develop such new procedures, or design methods; and so, 

the field was appropriately called design methodology—the study of such methods. It 

was also known as “the design methods movement” (Gedenryd 1998: 19 quoted Cross 

1984). 

 

3.3.1.1. Design Methodology 

 
Design methodology is the science of methods that are or can be applied in designing. 

In English the word ‘methodology’ has two meanings. The firs meaning is: a science or 

study of method, i.e. the description, explanation and valuation of methods. The second 

meaning of ‘methodology’ is: a body of methods, procedures, working concepts and 

rules employed by a particular science, art or discipline. In academic circles the term 

‘methodology’ normally has the first meaning, i.e. field of study and research 

(Roozenburg and Eekels 1995: 29).  

 

In design methodology (having the second meaning) there are two principle questions: 

(a) what is the essential structure of designing? And (b) how should the design process 

be approached to make it effective and efficient? 

 

It is the task of descriptive design methodology to answer the first question, and the 

second should be answered by prescriptive design methodology. Descriptive design 

methodology tries to reveal the methods applied in design through logical structural 

analyses, and empirical research, as well as to identify the needs for methodical support. 

Prescriptive or normative design methodology forms an opinion based on descriptive 

analyses, and recommends for certain problems the application of certain methods, or 

even demands it. Prescriptive design methodology is, of course, not limited to the 

assortment of methods found in a descriptive manner, but must also construct new 
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methods it for a certain part of the design process no satisfactory methods are available 

(Roozenburg and Eekels 1995: 29).  

 

“Design methodology aims at providing conceptual tools for designers to organize the 

design process effectively and efficiently (Roozenburg and Eekels 1995: 29)”. 

 

There are many similarities between the design process in such diverse fields as 

architecture, mechanical engineering, industrial design, software engineering, and the 

development of the ‘objects’ of management, such as policies, strategies, and 

organizations. The form of the design process appears to be hardly dependent on the 

content of the problem, nor on the type of the object being designed. On the whole, the 

same procedure is followed in all design processes, and consequently comparable 

methodological problems occur. Many product design methods are therefore also 

applied outside product development, and the opposite also occurs. That is not 

surprising, as quite a few design methods have their origin in the same, more general 

methodologies, such as the systems approach, operations research and decision theory. 

 

3.3.1.2. Comparison of Scientific Method with Design Method 

 

Over the years different disciplines have developed specific individual techniques 

within the general methodology. For example, scientists working in natural sciences 

have evolved what is called as the “scientific method” (Ackoff –1961). Over a period of 

time the philosophy common to all research methods and techniques is usually given the 

name scientific method. The scientist has to go on uncharted journeys of discovery 

through systematic investigation and experimentation in order to uncover the “truth”. 

The same can be said of the designer who has to explore and experiment in order to 

uncover and bring out the truth in its most innovative and beautiful form. Unlike in 

design there are no penalties for failing to uncover the truth in science. In the scientific 

method even if no truth get unveiled, the researchers contribution is valuated for 

charting and uncharted route. Therefore while determining the worth of a research 

project in science, the process itself has an equal value as that of the end result. In 

design methods, the emphasis has always been on the end result (a physical product, 

graphics etc). In the scientific method aspects such as validity, bias, reliability, 

repeatability and universality of the processes are supreme parameters of judging the 
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truth-value of the outcome. In design the judgment has always been based on the end 

result. 

 

The ensemble of methods employed in designing products, their systematic 

arrangements is called the methodology of product design. (Maldonado an Bonsiepe – 

1989). In the case of design there exist a context to start with (Fig. 3.17) which has been 

termed as “state of the art”. Within this state there exists an unfilled need or a problem 

of the user, which is to be solved. The design method like the scientific method has well 

defined processes at each stage, involving iterations. These iterations systematically 

reduce the factor of chance or arbitrariness of the result. In the words of Maldonado and 

Bonsiepe (1989) “methods operate in the range of possibilities laying between random 

success and rational determination” (Yammiyavar 2000: 252).  

SCIENTIFIC METHOD DESIGN METHOD 

Existing Knowledge State of The Art (Market Requirement / 

Unfilled Need) 

Scientific curiosity / Problem Problem (Identification / Definition) 

Hypotheses Conceptualization (Analysis +Synthesis) 

Analysis / Experimentation Realization / Simulation 

Proof Production 

 

Figure 3.17 Comparison of Scientific Method with Design Method  

(Yammiyavar 2000: 256) 

 

3.3.1.3. Four Unifying Principles of Design Methods 

 
The number of design methods (and accompanying diagrams) that have been published 

is immense. Probably no two authors have ever agreed on a method, so at least as many 

methods have been presented as there have been authors. But as people change their 

minds, the number is probably higher. Therefore, if someone reviews the field and the 

various methods, quickly becomes bewildered by the plethora of variants, the different 

labels on the various boxes, and the directions of the arrows. 

Examining a large enough number of variants, patterns begin to form: certain features 

are due to the specific content of a domain; architecture is different from information 
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design, and so the methods differ. In many cases, different labels disguise the same 

ideas; and different authors emphasize different aspect of design, so the methods focus 

on different aspects of the design process. Other variation comes from whether a 

method is an entirely theoretical construction, or if it has actually been confronted with 

real design projects, and so forth.  

 

To make this essence explicit, Gedenryd (1998: 21) characterizes it in terms of four 

fundamental principles, which are of particular interest from a cognitive point of view: 

 

1. Separation: The separation of the design process into distinct phases, with each 

individual activity being performed in isolation from the others. 

2. Logical order: The specification of an explicit order in which to perform these 

different activities. 

3. Planning: The pre-specification of an order in which to perform the activities within a 

phase. 

4. Product–process symmetry: The plan being organized so as to make the structure of 

the design process reflects the structure of the sub-components of the resulting design 

product. 

 

These principles make up the heart of design methods thinking, and give the various 

methods their family resemblance. 

 

1. Separation 

Out of the four principles, each consecutive one is an elaboration of those before it, 

drawing out their consequences and filling in their details. From this it follows that they 

are ordered, from the first being the most general and most fundamental one, to 

successively becoming more explicit and detailed. Although it may seem abstract and 

inconspicuous, separation is the most important principle, from which the remaining 

three follow as consequences. The most important separation is to divide the design 

process into three major phases: analyzing the problem, synthesizing a solution, and 

evaluating the outcome. 
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One of the simplest and most common observations about designing, and 
one upon which many writers agree, is that it includes the three essential 
stages of analysis, synthesis and evaluation. These can be described in 
simple words as “breaking the problem into pieces”, “putting the pieces 
together in a new way” and “testing to discover the consequences of 
putting the new arrangement into practice” (Jones 1970: 63). 

 

This is the foundation of all design methods, and may well be the most consequential 

idea of design methodology as a whole.  

 

Design methods normally make additional separations. In particular, the three major 

stages are often divided further into several smaller sub-activities. The principle of 

separation says that different functions of the design process are performed as separate 

activities. With respect to analysis and synthesis, one can say that design activity must 

serve two functions: understanding the problem and producing a solution. Separation 

then means that each of these two functions is worked on in a separate phase of problem 

solving. It is for instance easy to imagine a situation where both of these aspects are 

worked on together (Gedenryd 1998: 21). 

 

2. Logical order 

The second principle concerns the imposition of an order among the activities of a 

design method. Perhaps the distinction between the different activities that a design 

method is made up of may seem obvious, and the prescribed ordering among the 

activities may seem more significant. However, even though it might appear so, the 

working order is a necessity that follows directly from separation, whereas it is not 

obvious that they should be kept separated: If you do separate analysis from synthesis, 

then you must perform the analysis before the synthesis, as you have to have to 

understand the problem before you produce the solution. The same goes for evaluation, 

it requires that you have something to evaluate, and so must follow synthesis. 

 

And conversely, if you do not separate the process into distinct phases then there is 

nothing to order, so an ordering doesn’t make sense. This applies to all other separations 

that are made: the ordering among the activities is a logical consequence of the purpose 

that each serves. It is therefore the logical order (Gedenryd 1998: 22). 
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Taken together, the first two principles, separation and logical order, generate a basic 

three-stage model of design; shown in Figure 3.18. 

 

 

 

Figure 3.18 The basic three-stage design method schema 

(Gedenryd 1998: 23) 

 

3. Planning 

Whereas the logical order concerns the relation between different phases, the third 

principle aims to lay down the organization of the design activities in even greater 

detail, to include the activity within a phase. Because of the size and complexity of 

design problems, each of the three major phases is quite complex. Without an internal 

order, each phase would be a large, unstructured activity, left by the methodologist for 

the eventual designer to decide. Planning consists in setting up a strategy, a plan, for 

how a particular activity should be performed. The prototypical case is when a plan is 

set up as the final part of the analysis, and the course of action in the synthesis is 

thereby laid down before this activity begins (Gedenryd 1998: 23). 

 

4. Product–process symmetry 

The fourth principle concerns the decomposition scheme used in the plan; the particular 

strategy that organizes activity inside the synthesis phase. There is not automatically 

any logical ordering within the phases. Therefore, a decomposition strategy needs to be 

chosen.  

 

There is however one strategy that is particularly obvious. This is the idea of using the 

division of the product into subcomponents for the decomposition of the activity as 

well: As also the design solution is bound to be complex, it too ought to be broken 

down into manageable parts. Hence, part of the analysis typically consists in finding 

such suitable solution decomposition, usually a hierarchical one. And when you have 

this decomposition, it is not far-fetched to use it to structure the synthesis activity as 

well. In effect, the synthesis phase gets a hierarchical organization that mirrors the 

hierarchical structure of the final product. Hence the process and product are structured in 

analysis synthesis evaluation 
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the same way; the decomposition principle consists in a product–process symmetry. 

This lies particularly close at hand since the symmetry results in a natural one-to-one 

mapping between different parts of the synthesis and of the design product. 

 

All four principles taken together yield a resulting schema that is more complex than the 

basic three-stage version. As the last two principles are elaborations of the first and 

second, the complex schema can be regarded as an “elaborated” version of the basic 

one. 

 

Examples of the elaborated version are the classical “waterfall” model (Boehm 1975, 

Fig. 3.19) from software engineering, which centers on a technique for determining a 

suitable problem decomposition. The models like these are known as “structured design 

methods”: analysis creates the decomposition structure of the artifact, and which the 

synthesis is to follow as a “structured decomposition”. Together, the basic and 

elaborated versions capture the central features of most design methods (Gedenryd 

1998: 24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 The waterfall model of software engineering  

(Gedenryd 1998: 24 quoted Boehm 1975) 
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3.3.2. Design Process 

 
Design process is a map for how to get from the need for a specific object to the final 

product. The knowledge required -through the map- for the design process is shown in 

Figure 3.20.  

 

 
 

Figure 3.20 Knowledge used in the design process (Ullman 1992: 4) 

 

“The three measures of the design process are cost, quality and time (Ullman 1992: 8)”. 

Regardless of the product being designed –whether it is an entire system or small 

subpart of a larger product- the customer and management always want it cheaper, 

better and faster. 

 

There is a continuous need for new, cost-effective, high-quality products. It has been 

estimated that 85% of problems with new products are not working as they should 
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(quality), taking too long to bring to market (time), and costing too much, as the results 

of poor design processes.  

 

The decisions made during the design process have the greatest effect on the cost of a 

product for the least investment. Design decisions directly determine the materials used, 

goods purchased, parts to be assembled, shapes of those parts, product sold, and, in the 

end, the scope of management.  

 

It is clear that quality cannot be built into a product unless it is designed into it. Quality 

definitions of the customers also indicate the responsibilities of the design engineer: 

works as it should, lasts a long time, easy to maintain, looks attractive, incorporates 

latest technology, has many features, and etc. 

 

3.3.2.1. Descriptive Models 

 
There have been many attempts to draw up maps or models of the design process. Some 

of these models simply describe the sequences of activities that typically occur in 

designing; other models attempt to prescribe a better or more appropriate pattern of 

activities. 

 

Descriptive models of the design process usually identify the significance of generating 

a solution concept early in the process, thus reflecting the solution-focused nature of 

design thinking. 

 

Cross’s Model: 

 

As shown in Figure 3.21, Cross developed a simple descriptive model of the design 

process, based on the essential activities that the designer performs. The end-point of 

the process is the communication of a design, ready for manufacture. Prior to this, the 

design proposal is subject to evaluation against the goals, constraints and criteria of the 

design brief. The proposal itself arises from the generation of a concept by the designer, 

usually after some initial exploration of the ill-defined problem space. Putting these four 

activity types in their natural sequence, we have a simple four-stage model of the design 

process consisting of: exploration, generation, evaluation and communication. 
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Assuming that the evaluation stage does not always lead directly onto the 

communication of a final design, but that sometimes a new and more satisfactory 

concept has to be chosen, an iterative feedback loop is shown from the evaluation stage 

to the generation stage. 

                                          
 

Figure 3.21 A simple four-stage model of the design process (Cross 2000: 30) 

 

 

French’s Model: 

 

French (1985) has developed a more detailed model of the design process, shown in 

Figure 3.22, based on the following activities: analysis of problem, conceptual design; 

embodiment of schemes; detailing. In the diagram, the circles represent stages reached, 

or outputs, and the rectangles represent activities, or work in progress. 
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Figure 3.22 French’s model of the design process (Cross 2000: 31) 

 

The process begins with an initial statement of a need, and the first design activity is 

analysis of the problem. 

 

• Analysis of Problem: The analysis of the problem is a small but important part 

of the overall process. The output is a statement of the problem, and this can 

have three elements, which correspond to the goals, constraints and criteria of 

the design brief: 

o a statement of the design problem proper 

o limitations placed upon the solution, e.g. codes of practice, statutory 

requirements, customers’ standards, date of completion, etc. 

o the criterion of excellence to be worked to. 
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• Conceptual Design: This phase takes the statement of the problem and generates 

broad solutions to it in the form of schemes. It is the phase that makes the 

greatest demands on the designer, and where there is the most scope for striking 

improvements. It is the phase where engineering science, practical knowledge, 

production methods and commercial aspects need to be brought together, and 

where the most important decisions are taken. 

 

• Embodiment of Schemes: In this phase the schemes are worked up in greater 

detail and, if there is more than one, a final choice between them is made. The 

end product is usually a set of general arrangement drawings. There is (or should 

be) a great deal feedback from this phase to the conceptual design phase. 

 

• Detailing: This is the last phase, in which a very large number of small but 

essential points remain to be decided. The quality of this work must be good, 

otherwise delay and expense or even failure will result; computers are already 

reducing the drudgery of this skilled and patient work and reducing the chance 

of errors, and will do so increasingly. 

 

3.3.2.2. Prescriptive Models 

 

These models are concerned with trying to persuade or encourage designers to adopt 

improved ways of working. They usually offer a more algorithmic, systematic 

procedure to follow, and are often regarded as providing a particular design 

methodology. 

 

Many of these prescriptive models have emphasized the need for more analytical work 

to precede the generation of solution concepts. The intention is to try to ensure that the 

design problem is fully understood, that no important elements of it are over-looked, 

and that the real problem is identified. 

 

These models have therefore tended to suggest a basic structure to the design process of 

analysis-synthesis-evaluation. These stages were defined by Jones (1984) in an early 

example of a systematic design methodology, as follows. 
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Jones’s Model: 

 

• Analysis: listing of all design requirements and the reduction of these to a 

complete set of logically related performance specifications. 

• Synthesis: finding possible solutions for each individual performance 

specification and building up complete designs from these with least possible 

compromise. 

• Evaluation: evaluating the accuracy with which alternative designs fulfill 

performance requirements for operation, manufacture and sales before the final 

design is selected. 

 

This may sound very similar to a conventional design process, but the emphases here 

are on performance specifications logically derived from the design problem, generating 

several alternative design concepts by building-up the best sub-solutions and making a 

rational choice of the best of the alternative designs. Such apparently sensible and 

rational procedures are not always followed in conventional design practice. 

 

Archer’s Model:   

 

A more detailed prescriptive model was developed by Archer (1984), and is 

summarized in Figure 3.23. This includes interactions with the world outside the design 

process itself, such as inputs from the client, the designer’s training and experience, 

other sources information, etc. the output is, of course, the communication of a specific 

solution. These various inputs and outputs are shown as external to the design process in 

the following diagram, which also features many feedback loops. 
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Figure 3.23 Archer’s model of the design process (Cross 2000: 35) 

 

Within the design process, Archer identified six types of activity. 

 

• Programming: establishing crucial issues; propose a course of action. 

• Data collection: collect, classify and store data. 

• Analysis: identify sub-problems; prepare performance (or design) specifications; 

reappraise proposed program and estimate. 

• Synthesis: prepare outline design proposals. 

• Development: develop prototype design(s); prepare and execute validation 

studies. 

• Communication: prepare manufacturing documentation. 

 

Archer summarized this process as dividing into three broad phases: analytical, creative 

and executive (Fig. 3.24). He suggested that: 

 

One of the special features of the process of designing is that the analytical phase 

with which it begins requires objective observation and inductive reasoning, while 

the creative phase the heart of it requires involvement, subjective judgment, and 

deductive reasoning. Once the crucial decisions are made, the design process 

continues with the execution of working drawings, schedules, etc., again in an 

objective and descriptive mood. The design process is thus a creative sandwich. 

The bread of objective and systematic analysis may be thick or thin, but the 

creative act is always there in the middle (Cross 2000: 36 quoted Archer). 
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Figure 3.24 Archer’s three-phase summary model of the design process 

(Cross 2000: 36) 
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Figure 3.25 Pahl and Beitz’s model of the design process 

(Cross 2000: 37) 

 

Pahl & Beitz’s Model: 

 

Some much more complex models have been proposed, but they often tend to obscure 

the general structure of design process by swamping it in the fine detail of the numerous 
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tasks and activities that are necessary in all practical design work. A reasonably 

comprehensive model that still retains some clarity is that offered by Pahl and Beitz 

(1984) (Figure 3.25). It is based on the following design stages: 

 

• Clarification of the task: collect information about the requirements to be 

embodied in the solution and also about the constraints. 

• Conceptual design: establish function structures; search for suitable solution 

principles; combine into concept variants. 

• Embodiment design: starting from the concept, the designer determines the 

layout and forms and develops a technical product or system in accordance with 

technical and economic considerations. 

• Detail design: arrangement, form, dimensions and surface properties of all the 

individual parts finally laid down; materials specified; technical and economic 

feasibility re-checked; all drawings and other production documents produced. 

 

March’s Model 
 
A more radical model of the design process, which recognizes the solution-focused 

nature of design thinking, has been suggested by March (1984) (Figure 3.26). He argued 

that the two conventionally understood forms of reasoning - inductive and deductive – 

only apply logically to the evaluative and analytical types of activity in design. 

However, the type of activity that is most there is no commonly acknowledged form of 

reasoning. March drew on the work of the philosopher Peirce to identify this missing 

concept of abductive reasoning. According to Peirce 

 

Deduction proves that something must be; induction shows that something actually is 

operative; abduction suggests that something may be.  

 

It is this hypothesizing of what may be, the act of synthesis, that is central to design. 

Because it is the kind of thinking by which designs are generated or produced, March 

prefers to call it productive reasoning. Thus his model for a rational design process is a 

‘PDI model’: production-deduction-induction. 
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Figure 3.26 March’s model of the design process (Cross 2000: 41) 

 

 

 

 

 

 

 

 

Figure 3.27 The symmetrical relationships of problem /  

sub-problems / sub-solutions / solution in design (Cross 2000: 42) 

 

In this model the first phase, productive reasoning, drawings on a preliminary statement 

of requirements, and some presuppositions about solution types in order to produce, or 

describe, a design proposal. From this proposal and established theory (e.g. engineering 

science) it is possible deductively to analyze, or predict, the performance of the design. 

From these predicted performance characteristics it is possible inductively to evaluate 

further suppositions or possibilities, leading to changes or refinements in the design 

proposal. 

Overall problem Overall solution 

Sub- solutions Sub- problems 
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3.3.3. Design Methods 

 

3.3.3.1. New Design Procedures 

 

There is a need to improve on traditional ways of working in design. There are several 

reasons for this concern to develop new design procedures. One is the increasing 

complexity of modern design. A great variety of new demands is increasingly being 

made on the designer, such as the new materials and devices (e.g. electronics.) that 

become available and the new problems that are presented to designers. Many of the 

products and machines to be designed today have never existed before, and so the 

designer’s previous experience may well be irrelevant and inadequate for these tasks. 

Therefore a new and the more systematic approach is needed, it is argued. 

 

A related part of the complexity of modern design is the need to develop teamwork, 

with many specialists collaborating in and contributing to the design. To help coordinate 

the team, it is necessary to have a clear, organized approach to design, so that 

specialist’s contributions are made at the right point in the process. Dividing the overall 

problem in to sub-problems in a systematic procedure also needs that the design work 

itself can be subdivided and allocated to appropriate team members. 

 

As well as being more complex, modern design work often has very high risks and costs 

associated with it. For example, many products are designed for mass manufacture, and 

the costs of setting up the manufacturing plant, buying-in raw materials, and so on, are 

so high that the designer cannot afford to make mistakes: the design must be absolutely 

right before it goes into production. This means that any new product must have been 

through a careful process of design. Other kinds of large, one-off designs, such as 

chemical process plants, or complex products such as aeroplanes, also need to have a 

very rigorous design process to try to ensure their safe operation and avoid the 

catastrophic consequences of failure. 

 

Finally, there is a more general concern with trying to improve the efficiency of the 

design process. In some industries there is a pressing need to ensure that the lead-time 

necessary to design a new products kept to a minimum. In all cases, it is desirable to try 

to avoid the mistakes and delays that often occur in conventional design procedures. 
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The introduction of computers already offers one way of improving the efficiency of the 

design process, and is also in itself an influence towards more systematic ways of 

working.  

 

3.3.3.2. What is Design Method? 
 
One of the most significant aspects of this concern to improve the design process has 

been the development of new design methods. In a sense, any identifiable way of 

working within the context of designing can be considered to be a design method. The 

most common design method can be called the method of design-by-drawing. 

 

Design methods can, therefore, be any procedures, techniques, aids or “tolls” for 

designing. They represent a number of distinct kinds of activities that the designer 

might use and combine into an overall design process. Although some design methods 

can be the conventional and normal procedures of design, such as drawing, there has 

been a substantial growth in new, unconventional procedures that are more usually 

grouped together under the name of design methods. 

 

The main intention of these new methods is that they attempt to bring rational 

procedures into the design process. It sometimes seems that some of these new methods 

can become over-formalized, or can be merely fancy names for old commonsense 

techniques. They can also appear to be too systematic to be useful in the rather messy 

and often hurried world of the design office. For these kinds of reasons, many designers 

are still mistrustful of the whole idea of design methods. 

 

The counter-arguments to that view are based on the reasons for adapting systematic 

procedures, outlined above. For instance, many modern design projects are too complex 

to be resolved satisfactorily by the old conventional methods. There are also to many 

errors made with conventional ways of working, and they are not very useful where 

teamwork is necessary. Design methods try to overcome these kinds of problems, and 

above all they try to ensure that a better product result from the new design process. 

  

Some design methods are new inventions of rational procedures, some are adapted from 

operational research, decision theory, management sciences or other sources, and some 
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are simply extensions or formalizations of the informal techniques that designers have 

always used. For example, the informal method of looking of manufacturer’s catalogues 

or seeking advices from colleagues might be formalized in to an information search 

method; or informal procedures for saving costs by detailed redesigning of a component 

can be formalized into a value analyses method. Different design methods have 

different purposes and are relevant to different aspect of and stages in the design 

process. 

 

The new methods tend to have two principles features in common. One is that they 

formalized certain procedure of design and the other is that they externalized design 

thinking. Formalization is a common feature of design methods because they attempt to 

avoid the occurrence of oversights, of overlooked factors in the design problem and of 

the kinds of errors that occur with informal methods. The process of formalizing a 

procedure also tends to widen the approach that is taken to a design problem and to 

widen research for appropriate solutions; it encourages and enables you to think beyond 

the first solutions that comes into your head. 

 

This is also related to other general aspects of design methods, that they externalize 

design thinking, i.e. they try to get your thoughts and thinking process out of your head 

and into the charts and diagrams that commonly feature in design methods. This 

externalizing is a significant aid when dealing with complex problems, but it is also a 

necessary part of team work, i.e. providing means by which all the members of the team 

can see what is going on and contribute to the design process. Getting a lot of 

systematic work out of your head and onto paper also means that your mind can be 

more free to pursue the kind of thinking it is best at: intuitive and imaginative thinking. 

Design methods therefore are not the enemy of creativity, imagination and intuition. 

Quite the contrary: they are perhaps more likely to lead to novel design solutions than 

the informal, internal and often incoherent thinking procedures of the conventional 

design process. Some design methods are, indeed, techniques specifically for aiding 

creative thought. In fact, the general body of design methods can be classified into two 

broad groups: creative methods and rational methods.  
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3.3.3.2.1. Creative Methods 

 

There are several design methods, which are, intend to help stimulate creative thinking.  

In general, they work by trying to increase the flow of ideas, by removing the mental 

blocks that inhibit creativity, or by widening the area in which a search for solutions is 

made. 

 

Brain Storming: 

The most widely known creative methods is brain storming. This is a method for 

generating a large number of ideas, most of which will subsequently be discarded but 

with perhaps a few novel ideas being identified as worth following-up. It is normally 

conducted as a small group session of about 4-8 people.  

 

The group of people selected for a brain storming session should be diverse. It should 

just not be experts or those knowledgeable in the problem area, but should include a 

wide range of expertise and even laypeople if they have familiarity with the problem 

area. The group must be non-hierarchical, although one person does need to take an 

organizational lead. 

 

An important prior task for the leader is to formulate the problem statement used as a 

starting point. If the problem is stated too narrowly, than the range of ideas from the 

session may be rather limited. On the other hand, a very vague problem statement leads 

to equally vague ideas, which may be of no practical use. The problem can often be 

usefully formulated as a question, such as “how can we improve on x?” 

 

In response to the initial problem statement, the group members are asked to spent a few 

minutes-in silence-writing down the first ideas that come into their heads. 

 

The next, and major, part of the session is for each member of the group, in turn, to read 

out one idea from his or her set. The most important rule here is that no criticism is 

allowed from any other member of the group. At this stage, the feasibility or otherwise 

of any idea is not important: evaluation and selection will come later. 
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What each group members should do in response to every other person’s is to try to 

build on it, to take it a stage further, to use it as a stimulus for other ideas, or to combine 

it with his or her own ideas. For this reason, there should be a short pause after each 

idea is read out, to allow a moment for reflection and to write down further new ideas. 

 

The group session should not last more than about 20-30 minutes, or should be wound 

up when no more ideas are forthcoming. The group leader, or someone else, then 

collects all the cards and spends a separate period evaluating the ideas. A useful aid to 

this evaluation is to sort or classify the ideas into related groups; this in itself often 

suggest further ideas, or indicates the major types of idea that there appear to be. If 

principle solution areas and one or two novel ideas result from a brainstorming session 

then it will have been worthwhile. 

 

The essential rules of brainstorming are as follows (Cross 2000: 50): 

 

• No criticism is allowed during the session. 

• A large quantity of ideas is wanted. 

• Seemingly crazy ides are quite welcome. 

• Keep all ideas short and snappy. 

• Try to combine improve on the ideas of others. 

 

Synectics: 

 

Creative thinking often draws on analogical thinking, on the ability to see parallels or 

connections between apparently dissimilar topics.  

 

The use of analogical thinking has been formalized in a creative design method known 

as synectics. Like brainstorming, synectics is a group activity in which criticism is ruled 

out, and the group members attempt to build, combine and develop ideas towards a 

creative solution to the set problem. Synectics is different from brainstorming in that the 

group tries to work collectively towards a particular solution, rather than generating a 

large number of ideas. A synectic session is much longer than brainstorming, and much 
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more demanding. In a synectic session, the group is encouraged to use particular types 

of analogy, as follows: 

Direct Analogies: these are usually found by seeking a biological solution to a similar 

problem. For example, Brunel’s observation of a shipworm forming a tube for itself as 

it bored trough timber is said to have led him to the idea of a caisson for underwater 

constructions; Velcro fastening was designed on an analogy with plant burrs. 

 

Personal Analogies: the team members imagine what it would be like to use oneself as 

the system or component that is being designed. For example, what would it feel like to 

be a motorcar suspension unit; how would I operate if I were a computerized filling 

system. 

 

Symbolic Analogies: here poetic metaphors and similes are used to relate aspects of one 

thing with aspects of another. For example, the “friendliness” of a computer, the “head” 

and “claw” of a hammer, a “tree” of objectives, the “Greek key pattern” of a housing 

layout. 

 

Fantasy Analogies:  these are impossible wishes for things to be achieved in some 

magical way. For example, “what we really want is a door keeper who recognize each 

system user”. “We need the bumps in the road to disappear beneath the wheels.” 

 

A synectics session starts with the problem as given: the problem statement as presented 

by the client or company management. Analogies are then sought that help to “Make the 

strange familiar”, i.e. expressing the problem in terms of some more familiar (but 

perhaps rather distant) analogy. This leads to a conceptualism of the problem as 

understood: the key factor or elements of the problem that need to be resolved or 

perhaps a complete formulation of the problem. The problem as understood is then used 

to guide the use of analogies again, but this time to “make the familiar strange”. 

Unusual and creative analogies are sought which may lead to novel solution concepts. 

The analogies are used to open up lines of development, which are pursued as hard and 

as imaginatively as possible by the group. 
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Enlarging the Search Space: 

 

A common form of mental block to creative thinking is to assume rather narrow 

boundaries within which a solution is sought. Many creativity techniques are aids to 

enlarging the “search space”.  

 

Transformation: one such technique attempts to transform the search for a solution from 

one area to another. This often involves applying verbs that will transform the problem 

in some way, such as magnify, minify, modify, unify, subdue, subtract, add, divide, 

multiply, repeat, replace, relax, dissolve, thicken, soften, harden, roughen, flatten, 

rotate, rearrange, reverse, combine, separate, substitute, eliminate.  

 

Random input: creativity can be triggered by random inputs from whatever source. This 

can be applied as a deliberate technique, e.g. opening a dictionary or other book and 

choosing a word at random and using that to stimulate thought on the problem in hand. 

Or switch on a television set and use the first visual image as the random input stimulus. 

 

Why? Why? Why?: another way of extending the search space is to ask a string of 

“why?” question about the problem, such as “why is this device necessary?” “Why can 

not it be eliminated?”, etc. each answer is followed up, like a persistent child, with 

another “why?” until e deed end is reached or  an unexpected answer prompts an idea 

for a solution. There may be several answers to any particular “why?”, and these can be 

charted as a network of question and answer chains.  

 

Counter-Planning: this method is based on the concept of the dialectic, i.e. pitting an 

idea (the thesis) against its opposite (the antithesis) in order to generate a new idea (the 

synthesis). It can be used to challenge a conventional solution to a problem by 

proposing its deliberate opposite, and seeking a compromise. Alternatively, two 

completely different solutions can be deliberately generated, with the intention of 

combining the best features of each into a new synthesis. 

 



 100

The Creative Process 

 

The methods above are some techniques, which have been found useful when it is 

necessary for a designer or design team to “turn on” their creative thinking. However, 

creative, original ideas can also seem to occur quite spontaneously, without the use of 

any such aids to creative thinking. Is there, therefore, a more general process of creative 

thinking which can be developed? 

 

Psychologists have studied accounts of creative thinking from a wide range of scientists, 

artists and designers. In fact, as most people have also experienced, this highly creative 

individuals generally report that they experience a very sudden creative insight that 

suggests a solution to the problem they have been working on. 

 

This creative “ah-ha!” experience often occurs when the individual is not expecting it, 

and after a period when they have been thinking about something else. This is rather 

like the common phenomenon of suddenly remembering a name or word that could not 

be recalled when it was wanted. 

 

However, the sudden illumination of a bright idea does not usually occur without 

considerably background work on a problem. The illumination or key insight is also 

usually just the germ of an idea that needs a lot of further work to develop it into a 

proper, complete solution to the problem. Similar kinds of thought sequence occur often 

enough in creative thinking for psychologists to suggest that there is a general pattern to 

it. This general pattern is the sequence: recognition – preparation – incubation – 

illumination - verification. 

 

• Recognition is the first realization or acknowledgement that a problem exists.  

• Preparation is the application of deliberate effort to understand the problem.  

• Incubation is a period of leaving it to mull over in the mind, allowing one’s      

subconscious to go to work. 

• Illumination is the (often quite sudden) perception or formulation of the key 

idea. 

• Verification is the hard work of developing and testing the idea. 
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This process is essentially one of work-relaxation-work, with the creative insight (if you 

are lucky enough to get one) occurring in a relaxation period. The hard work of 

preparation and verification is essential. Like most other kinds of creative activity, 

creative design is 1% inspiration and 99% perspiration. 

 

The sudden illumination is often referred as a creative leap, but it is perhaps not helpful 

to think of creative design as relying on a flying leap from the problem space into the 

solution space. The creative event in design is not so much a leap from problem to 

solution as the building of a bridge between the problem space and the solution space by 

the identification of a key solution concept. This concept is recognized by the designer 

as embodying a satisfactory match of relationships between problem and solution.   

 

3.3.3.2.2. Rational Methods 

 

More commonly regarded as design methods than the creativity techniques are the 

rational methods, which encourage a systematic approach to design. Nevertheless, these 

rational methods often have similar aims to the creative methods, such as widening the 

search space for potential solutions, or facilitating teamwork and group decision-

making. So it is not necessarily true that rational methods are somehow the very 

opposite of creative methods. 

 

Many designers are suspicious of rational methods, fearing that they are straitjackets, or 

that they stifle creativity. This is a misunderstanding of the intentions of systematic 

design, which is meant to improve the quality of design decisions, and hence of the end 

product. Creative methods and rational methods are complementary aspects of a 

systematic approach to design. Rather than a straitjacket, they should be seen as a 

lifejacket, helping the designer-especially the student designer- to keep afloat. 

 

Perhaps the simplest kind of rational methods is the checklist. Everyone uses this 

method in daily life, for example, in the form of a shopping list, or list of things to 

remember to do. It externalizes what you have to do, so that you do not have to try to 

keep it all in your head, and so that you do not overlook something. It formulizes the 

process by making a record of items, which can be checked-off as they are collected or 
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achieved until everything is complete. It also allows teamwork or participation by a 

wider group, e.g. all the family can contribute suggestion for the shopping list. It also 

allows sub-division of the task (i.e. improving the efficiency of the process) such as 

allocating separate sections of the list to different members of the team. In these 

respects, it is a model for most of the rational design methods. In design terms, a 

checklist may be a list of questions to be asked in the initial stages of design, or a list of 

features to be incorporated in the design, or a list of criteria, standards, etc., that the 

final design must meet. 

There is a wide range of rational design methods, covering all aspects of the design 

process from problem clarification to detail design. The selected set is detailed below, 

with the stage in the design process shown on the left, and the method relevant to this 

stage on the right.  

 

• Clarifying objectives 

o Method: Objectives tree 

o Aim: Clarify design objectives, and sub-objectives, and the relationships 

between them. 

• Establishing functions 

o Method: Function analyses 

o Aim: Establish the functions required, and the system boundary, of a new 

design. 

• Setting requirements  

o Method: Performance specification 

o Aim: to make an accurate specification of the performance required of a 

design solution. 

• Determining characteristics 

o Method: Quality function deployment 

o Aim: Set targets to be achieved for the engineering characteristics of a 

product, such that they satisfy customer requirements. 

• Generating alternatives 

o Method: Morphological chart 

o Aim: to generate the complete range of alternative design solutions for a 

product, and hence to widen the search for potential new solutions. 
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• Evaluating alternatives 

o Method: Weighted objectives 

o Aim: Compare the utility values of alternative design proposals, on the 

basis of performance against differentially weighed objectives. 

• Improving details 

o Method: Value engineering 

o Aim: to increase or maintain the value of a product to its purchaser while 

reducing its cost to its producer. 

 

These seven stages of design and their accompanying design methods should not be 

assumed to constitute an invariate design process. However, Figure 3.28 suggests how 

they related to each other and to the symmetrical problem solution model. For example, 

clarifying objectives (using the objectives tree method) is appropriate both to 

understand the problem solution relationship and to develop from the overall problem 

into sub-problems.  

 

 
 

Figure 3.28 Seven stages of the design process positioned 

 within the symmetrical problem / solution model (Cross 2000: 58) 
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This model of designing integrates the procedural aspects of design with the structural 

aspects of design problems. The procedural aspects are represented by the sequence of 

methods (anti-clockwise, from top left), and the structural aspects are represented by the 

arrows showing the commutative relationship between problem and solution and the 

hierarchical relationships between problem/sub-problems and between sub-

solutions/solution. Such methods are often adapted to suit the particular requirements of 

the task in hand. Although it is important not to follow any method in a slavish and 

unimaginative fashion, it is also important that an effort is made to follow the principles 

of the method with some rigour. No beneficial results can be expected from slipshod 

attempts at “method”. 
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Chapter 4 

 
 

A CASE STUDY IN BICYCLE DESIGN 

 

4.1 Introduction to Bicycles 

4.1.1. Mysterious Bicycle 

4.1.1.1. The Origin 

 

Baron Karl von Drais, who is called an engineer by Burrows (2000: 11), took the most 

remarkable first step in the evolution of the bicycle, when he discovered that a vehicle 

with a pair of in-line wheels does not necessarily do the obvious and fall over. For all 

the significance of the subsequent innovations, they were all logical and inevitable steps 

like cranks, chains, etc. What von Drais did, on the other hand, went far beyond logic 

and evolution. There was no precedent in nature, no natural forerunner to be improved 

upon. His running machine was as original as possible. 

 

It is inconceivable that anyone would have theorized the bicycle into existence. There is 

no natural predecessor for the bicycle, unlike cars that are horseless carriages, airplanes 

that are iron birds, and even the helicopter, which has the humble sycamore seed as a 

logical starting point. “This is a case where, necessity was the daughter of invention, for 

we certainly could not do without the bicycle now (Burrows 2000: 14)”. 

 

Despite having no natural forerunners, it had to come from somewhere. There were at 

the time four-wheeled vehicles in use, both animal and human powered. The French 

Celerifere, often misquoted as a bicycle, was one of these. It is usually suggested that 

one of these devices, built by von Drais, was the starting point for the bicycle. But this 

is not seeing with an engineer’s (Drais’s) eye. An engineer is a relatively logical person 

and knows perfectly well what would happen if he took two of the four wheels off his 

vehicle – it would fall over. But, an engineer can see the advantage in adding another 
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wheel to one wheel. The best known one-wheeler in this era was the child’s 

hobbyhorse. Several authors accept this as a starting point, while Burrows (2000: 12) 

thinks of wheelbarrows, although they are not mentioned in the history of bicycles. The 

Chinese have used wheelbarrows in sixteenth century which, Burrows thinks European 

would have known about and adopted. For there must have been a great need for cheap 

specialized transport in Europe at this time especially for artisans and craftspeople. This 

would have resulted in an enormous variety of handcarts developed.  

 

Von Drais had worked for a while in the forestry industry, and at the time was teaching 

the trade to others. He was also an ‘inventor’. Such a man would surely have looked at 

ways of getting timber out of the forests without using expensive horses. It could be a 

single-track vehicle (Fig. 4.1). It seems logical that, having added steering it would not 

have taken long for an inventor and a group of students to discover the secret of the 

balance without which the bicycle is impossible. 

 

 

Figure 4.1 Hobby Horse by Baron Karl von Drais, 1817 (Ballantine 2001: 11) 

 

The other great name that is always mentioned in connection with the origins of the 

two-wheeler is Leonardo da Vinci (as was mentioned in Chapter 2). The reason he is 

always mentioned is the famous sketch of something, shown in Figure 4.2. However, no 

serious historian has ever claimed that the sketch was by da Vinci, and no cycling 

historian has ever claimed it was bicycle. Burrows thinks that this might be the creation 

of the media and he adds that, “the original confusion arises from the sketch’s 

superficial similarity to a bicycle. This has caused people to assume that it was at least 

an elevation or side view of something. I would argue, as an engineer and one who has 
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dealed with similar things, that this is actually a plan view, looking down on something, 

and not a bicycle that had fallen over” (2000: 13-14). 

 

 
 

Figure 4.2 (Perry 1995: 7) 

Leonardo da Vinci’s Codex Atlanticus Bicycle, from Biblioteca Ambrosiana, 1493 

 

But whichever way it came about, and whether it was genius or luck, it started a chain 

of events that led the modern cycle in all its forms. Seen by many as the “wallpaper” of 

the transport world, the bicycle is in fact one of the finest examples of engineering 

design of all time. It uses so little in the form of material or resources to produce; yet it 

does so much so efficiently with cheap healthy transport, enjoyable leisure, exciting 

sport and no harmful side effects.        

 

On the other hand, it makes sense that (as the figures and facts have been available for a 

long time through Archibald Sharp’s book Bicycles and Tricycles, first published in 

1896), what affects the performance of a bicycle by now is a 180-year-old device. 

 

However, the subject still remains as mysterious as the dark side of the moon since a 

manufacturer’s claim that his bicycle is made from a remarkable new thermoplastic 

titanium alloy cannot be questioned. The manufacturer seems to have supernatural 
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powers, as he says he can feel the difference between various grades of steel tubing, 

even though there is no instrument yet can do this.  

 

4.1.1.2. Balancing 
  
An object is balanced by standing on -at least- three points with the center of gravity 

being in the middle. However, bicycle is against this rule because of its structure while 

balancing with two points in motion. Even tricycles are not balanced as well as two-

wheelers in motion, especially in rounding a corner position where the bicycle cannot 

lean in order to balance the centrifugal forces in the proper direction.     

 
“The bicycle is too unique to have been invented – it must have been a chance 

discovery (Ballantine 2000: 9)”. Describing the dynamics of how a bicycle in motion 

remains upright, involves fourth-order, non-linear, partial differential equations with 

variable coefficients, and complex calculations that cause problems even for evolved 

computers. Yet it is almost impossible to make a bicycle that will not work. Build a 

frame, attach two in-line wheels, one of them with steering, set the thing in motion, and 

with someone or something aboard to “steer”, the vehicle can be made to stay upright. 

In fact, it is possible to build a bicycle that so long as it is rolling will stay upright by 

itself, without a rider. 

 

Once a bicycle is seen, it all seems incredibly obvious. A bicycle in motion does not fall 

down because it is constantly moving from out of balance into balance; motion resolves 

the yes/no issue of balance into dynamic equilibrium. It seems simple, but the process is 

physically unique, and there is no possibility to imagine it in the abstract. No creature in 

nature, nor any mechanical process, will serve model for the bicycle. “The only analogy 

for the bicycle I can imagine is life itself. Ecosystems operate just like a bicycle. 

Responding to environmental change, elements in an ecosystem increase or decrease, 

constantly moving the entire ecosystem from an out of balance state toward equilibrium 

(Ballantine 2001: 9).”     

 

Motion is fundamental to the operation of a bicycle, and the complexity of the balancing 

process is probably why it works so well despite many variables. Those fourth-order, 
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non-linear, etc. equations for how a bike stays upright have never been completed, 

because the permutations are infinite. 

 

Any script about the bicycle was originally developed is pure conjecture, but it is 

interesting to note that if you try to teach people to ride a bike by explaining how to do 

it and then just send them off, they are likely to go down in a tangle or head straight for 

the nearest tree. If you remove the pedals and ask them to use their feet to scoot along, 

they will learn mystery of balance within seconds (Ballantine 2001: 10).  

 

The bicycle is a 100 percent kinetic machine, i.e. its equilibrium depends on motion, 

and almost certainly was a hands on discovery intended for some other idea. 

 

4.1.2. Significance of the Bicycle 
 

The invention of the bicycle started a chain of events that led the modern cycle in all its 

forms that is seen by many historians as the “wallpaper” of the transport world. 

 

“The bicycle was the first widely available means of individual transportation, and it 

began the era of high-speed, long-range personal transport. It has had enormous social 

and technological impact, providing freedom of travel to ordinary people and 

contributing to a host of social transformations (McMahon & Graham 1992: 1)”. It led 

directly to the automobile beginning in 1885 when Gottlieb Daimler produced a 

motorized bicycle, shown in Figure 4.3. Karl Benz independently unveiled a motorized 

tricycle the next year, shown in Figure 4.4, and the U.S. auto industry began in 1896 

with Henry Ford's bicycle-derived vehicle. 
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Figure 4.3 Daimler's first vehicle                   Figure 4.4 Karl Benz's first vehicle 

         (McMahon & Graham 1992: 1)                      (McMahon & Graham 1992: 1) 

 

The preceding fifty years of bicycle development yielded a number of inventions that 

made these automotive precursors possible, many of which are still found in motorcars 

today. These include: 

 …the pneumatic tire, the differential gear (which allows two side-by-
side wheels to turn at slightly different speeds when a vehicle is rounding 
a corner), the tangent-spoked wheel (in which the spokes brace the rim 
against the torque applied during acceleration and deceleration), the 
perfection of ball bearings and the bush-roller chain for power 
transmission, the concept of gearing, gear ratios, and free-wheeling (in 
which the driving wheels are allowed to rotate free of the driving 
mechanism), and, of course, various braking systems, which were made 
necessary by the introduction of free-wheeling (McMahon & Graham 1992: 2). 

 

Many features of today's automobiles are direct descendants of bicycle technology. The 

free-wheeling concept is used in clutch assemblies, and the derailleur is used in 

transmissions. The timing-chain that turns the camshaft is a sometimes bicycle-type 

bush-roller chain, and both drum and caliper-disc brakes were bicycle developments. It 

is no mystery how this technology was transferred so rapidly, since a great number of 

the early auto manufacturers got their start making and repairing bicycles. Of course, 

one of the most important contributions of the bicycle pioneers was the development of 

methods for mass production of intricate, highly reliable and easily repairable machines. 

 

A number of advances in materials technology stem from the 
development of the bicycle. These include the processing of thin-walled, 
seamless drawn-steel tubing, brazing, electric welding, heat treatment 
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and case-hardening of steel, and the use of fibers for reinforcement 
(which was necessary for the pneumatic tire) (McMahon & Graham 1992: 2). 

 

It may be less obvious that the airplane is the other major offspring of the bicycle. 

However, a careful look at the early flying machines of the Wright brothers and Glenn 

Curtiss shows the genealogy quite clearly. The Wrights were in the business of bicycle 

manufacturing, and Curtiss was a bicycle racer. The Wrights were familiar with the 

technology needed for minimizing weight in a high-strength, stiff structure, and they 

employed a framework of drawn-steel tubing, braced like a bicycle frame, along with 

bicycle wheels and the cabling used on bicycles for brakes and gears to manipulate their 

control panels. With this they used the lightweight motors that came from motorized 

bicycles. An example of an early airplane is shown in Figure 4.5. 

 

 
 

Figure 4.5 Glenn Curtiss’s “June Box”, 1908 (McMahon & Graham 1992: 3) 

 

Most of the early pilots got started with bicycles.  

Curtiss edged out the Wrights in getting the first U.S. pilot license. 
Orville Wright, who along with Wilbur invested the flying machine, 
ironically received the second license. Both Curtiss and Orville Wright 
had also raced bicycles. In France, the Farman brothers, also bicycle 
racers, took up flying and became airplane manufacturers. The same 
thing happened in Germany, where August Euler (German pilot license 
no.1) established the first airplane factory there. German license no. 2 
went to Hans Grade, also a bicycle racer. Helene Dutrieu of Belgium was 
a bicycle racer and daredevil stunt rider who became one of the first 
women to fly in Europe. Alessandro Anzani a professional Italian bicycle 
sprint champion became a pioneer in airplane-engine manufacture 
(McMahon & Graham 1992: 3).  
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None of this was accidental; the same skills needed for balancing a bicycle and banking 

it on turns, practiced to the point where they become instinctive, could be transferred 

directly to flying. For the leading cyclists of the early 20th century, flying was a logical 

extension of cycling. 

 

4.1.3. Evolution of the Bicycle 

 

Figure 4.6 Velo development (Perry 1995: 11) 
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Baron Karl von Drais of Germany, in 1817, introduced a running machine that is still 

popularly known as a hobbyhorse. The vehicle consisted of a body set above two 

wheels, and was powered by the rider pushing his feet alternately against the ground. 

Crucially, the front wheel could be steered.       

                              

The hobbyhorse (Fig. 4.1) was crude and uncomfortable, but it was fast; on a good road 

a hobbyhorse rider could beat a horse. In a fashion craze, hobbyhorses rapidly appeared 

throughout Europe and even in America, primarily as objects of curiosity. But the 

newfangled machines were physically hard on riders, and they were not always liked by 

the general public. Therefore, the popular interest in hobbyhorses ebbed. 

 

Technological improvement was needed, and in subsequent years, a number of 

backyard inventors devised two-wheel machines with pedal drive transmissions. 

Especially notable was a Scottish blacksmith, Kirkpatrick Macmillan, who around 1839 

built a bicycle with rear wheel drive via a treadle transmission (Fig. 4.7). Technically 

advanced, Macmillan’s velocipede (what a bike was called back then) was capable of a 

sustained average speed of eight mph. Macmillan made no effort to market or 

manufacture his bike, and the original machine has not survived, although many copies 

were made.  

 

 
 

Figure 4.7 McMillan type bicycle built by McCall, 1860  

(Ballantine 2001: 11) 

 

Another technically advanced rear wheel drive velocipede similar to Macmillan's was 

made around 1842 by Alexander Lefebvre of France. In 1860 or 1861 Lefebvre moved 
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to California, taking his original machine with him; “it now survives as the world's 

oldest existing bicycle (Ballantine 2001: 11)”. 

 

There were other attempts at pedal drives, but now, achieving widespread popularity for 

a bicycle design or innovation depended on achieving successful commercial 

manufacture, marketing, and sales. This was the accomplishment of one Pierre 

Michaux, a French cabinetmaker and locksmith, who, with his son Ernest, organized 

workshops in Paris and in 1861 launched a bicycle with pedals and cranks attached 

directly to the front wheel. The first machines were crude and not very comfortable (the 

vehicle was known in Britain as a boneshaker), but in 1866 a new model was 

introduced, with a curving wrought-iron frame, a larger front wheel, and various other 

refinements. Astutely, Pierre supplied French royalty with finely crafted, upmarket 

versions of the new edition. The aristocracy was entranced, and played with their new 

toys in the streets of Paris, sparking a vogue for velocipedes. Suddenly, in all the best 

places, cycling was the thing to do (Ballantine 2001: 11-12). 

 

As demand for velocipedes soared, an overwhelmed Michaux factory was refinanced 

and relocated by the Olivier Brothers, who took over the business in 1869. The new 

regime marketed vigorously, advertising top range machines in "enamelled, polished 

and damascened steel, polished or engraved aluminum bronze. Wheels of West Indian 

hardwood, amaranth, makrussa, hickory, ebony or lemon tree. Handlebar grips of 

sculpted ivory." Until 1867, Michaux had produced a few hundred machines a year; 

under the Olivier Brothers, production was claimed to be 200 machines a day - and they 

were only one of some 75 manufacturers of velocipedes in France (Ballantine 2001: 

12).  

 

France led the world in bicycle design. In 1869, in a development eventually crucial for 

the efficiency and performance of all types of machines throughout the world, Jules 

Suriray patented and produced ball bearings (accepted as the atoms of machine age 

were first developed for the bicycle) for bicycle wheel hubs. Other innovations featured 

that same year at the Paris Velocipede Exhibition were metal spoked-wheels, solid 

rubber tires, a four-speed gear, and a free wheel. In 1870 the Franco-Prussian War broke 

out, and the bicycle industry was all ruined.  

 



 115

Fortunately, the passion for velocipedes had spread throughout Europe and across the 

Atlantic. In America, the craze was short lived, but in Britain, the velocipede found an 

enduring home. Firms in the Midlands counties of England, producing sewing 

machines, firearms, and other machinery took up the manufacture of velocipedes, first 

as a sideline and eventually as a principal activity. Coventry, in particular, became the 

epicenter for the continuing evolution of the bicycle. 

 

With pedals and cranks attached directly to the front wheel, the speed of a boneshaker 

was a function of wheel size; the larger the diameter of the driving wheel, the faster the 

rider could go. The limiting factor was rider leg length, and through the 1870s the 

boneshaker quite literally grew into the famous, elegant high wheel bicycle (Fig. 4.8), a 

machine that often stood as tall as a man. 

 

 
 

Figure 4.8 The Humber “Genuine Beeston” Racing Ordinary, 1886 

(McMahon & Graham 1992: 6) 

 

The high wheel bicycle (known as “Ordinary”) was an athletic sporting machine 

extremely fast, and quite dangerous to ride. The large driving wheel gave speed, but 

since the most effective riding position was almost straight above the wheel, the center 

of gravity was very high, and finely balanced. This made the bike unstable and when 

under way, encountering a chance stone, stick, or rut could, and often did, cause the 

bike to cartwheel, pitching the rider over the handlebars in a horrendous forward fall 

known as "coining a cropper." The instability of the bike also prohibited any possibility 

of serious braking. A spoon brake (which worked by rubbing against the front tire) 
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fitted to many machines was only a wishful hope, because overzealous application of 

this puny device, or even just backpedaling too hard could also tilt the bike and send the 

rider flying (Ballantine 2001: 15). 

 

In the 1880s, designers and inventors were experimenting with an enormous variety of 

pedal powered machines: monocycles, dicycles, tricycles, quadricycles, swimming 

machines, flying machines, and innumerable cycle-related mechanisms, devices, and 

accessories. One strong line of investigation was the quest for what would later be 

called a "safety" bicycle, a machine stable enough to be ridden without the likely 

possibility of an upset. 

 

The deficiencies of the Ordinary led to a decline in its popularity and the demand for the 

"safety" bicycle, which was introduced by Starley in 1885: he called it the "Rover." 

(Fig. 4.9) It had a diamond frame, a chain-and-sprocket drive to the rear wheel, wheels 

of almost equal size, and a seat for the rider that was so far to the rear that the risk of a 

"header" was all but eliminated (McMahon & Graham 1992: 6). 

 

 
 

Figure 4.9 The Rover safety bicycle by J K Starley of England, 1885 

(McMahon & Graham 1992: 7) 

 

The Rover utilized the 1879 advances of Lawson, who had also equalized the wheel 

sizes and introduced rear-wheel chain drive, but apparently prematurely for the market. 
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Starley also benefited from the bush-roller chain, introduced by Renold in 1880, which 

greatly reduced the friction and wear that plagued earlier chain designs. 

 

The final major advance in this "golden age of the bicycle" came in 1889, when John 

Dunlop, a veterinary surgeon from Belfast, patented the pneumatic tire. The present-day 

configuration of the bicycle was set by 1890 with the Humber, with its straight-tube 

diamond frame (Fig. 4.10). Both the pneumatic tire and the safety bicycle displaced 

their predecessors entirely in a rather short period of time (McMahon & Graham 1992: 

7).  

 

 
 

Figure 4.10 The Humber, 1890 (McMahon & Graham 1992: 7) 

 

By 1910 most present-day bicycle equipment had been introduced, including the 

freewheel mechanism, caliper and drum brakes, derailleur-type gears, and the hub gear. 

With the introduction of the safety, the popularity of the bicycle grew explosively. By 

1899 there were several hundred factories in the U.S. producing close to one million 

bicycles per year (McMahon & Graham 1992: 8). 

 

The success of the bicycle in creating widespread demand for a private mode of 

transportation and stimulating the paving of roads and highways finally led to the shift 

in public attention to motorcycles and automobiles. Thus, the evolution of the bicycle 

came to a standstill soon after the turn of the century. It was not until the relatively 
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recent spin-off of materials developed for aerospace applications, including high-

strength aluminum and titanium alloys and fiber-reinforced composites that the 

excitement returned to bicycle technology. Since the story of the bicycle parallels that 

of the development of structural materials over the last century and a half, it can be 

thought that it is in many ways the ideal vehicle for the study of that subject. 

 

4.1.4. Types of the Bicycle 

 
Once there were three basic kinds of bikes: sport bikes with drop handlebars and 

derailleur gears, roadster bikes with flat handlebars and hub gears, and rugged single 

speed paperboy bikes. Sport bikes were divided into lightweight racers with no frills, 

and more strongly built tourers equipped with pannier racks and fenders. Roadsters 

were heavy and usually featured a chain guard, fenders, carrier rack, and possibly built 

in lights and a kickstand. Paperboy (now cruiser) bikes were really heavy, and had wide 

tires and a single pedal-operated coaster brake. Only a glance at a bike was needed to 

understand its genre and purpose. 

 

Today there are more general categories and sub-types, and the distinctions often blur; a 

mountain bike designed and equipped for touring, for example, may be similar to a road 

touring bike in all but small details. A roadster city bike with hub gears may be a quality 

lightweight well able (other things being equal) to show its heels to a sport bike. 

Cruisers have sprouted alloy frames and wheels, and multi-speed gears. Then there are 

human-powered vehicles (HPVs), a category covering a range of designs, from sleek, 

high speed streamliners to large, four wheel quadricycles made to carry freight or 

passengers (Ballantine 2001: 27). 

 

Despite their many different forms, most cycles have a clear primary purpose, and fit 

fairly firmly within a category. Two important things should be mentioned here, before 

revealing the types of bicycles are: weight and gear. 

 

• Weight: Bike weight is fundamental so that, if a bike is heavy, it cannot be made 

to go. Here, the limiting factor is the human power.  
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• Gear: The transmission converts energy input at the pedals into power at the 

driving wheel. Different size gear ratios allow the rider to maintain an even 

match between work rate and terrain. Low gears produce more power but less 

speed by requiring more turns of the cranks for every turn of the driving wheel; 

high gears produce more speed but less power by requiring fewer turns of the 

cranks for every turn of the driving wheel. 

 
First of all bicycles can be divided into two broad categories that are safety, or upright, 

bicycles and recumbent cycles. This classification depends on how bikes are built and 

how they look, rather than how they are used (Ballantine 2001: 31). As recumbent 

cycles are not subject of this study, they are not going to be mentioned here.  

 

Full size upright or safety bicycles sort out into four basic groups (Ballantine 2001: 31): 

(1) roadster and style bikes; (2) commuter and city bikes; (3) road sport bikes; and (4) 

mountain bikes.  

 

4.1.4.1. Roadster and Style Bikes 

 

Cruisers are tough and durable, and are the ubiquitous mount for local deliveries, and 

rental fleets in parks. Cruisers are simple and need little mechanical care, fitting 

comfortably with a casual, laid back approach to life. Some models are available with 

alloy wheels, which greatly improve riding ease and enjoyment. 

 
• Beach Cruiser (Fig.4.11): It is the modern reincarnation of the classic American 

paperboy bike. Heavy, robust steel frame, 26-inch steel wheels with hefty 2-inch 

wide tires, single speed hub with a pedal operated coaster brake, wide handle-

bars, and mattress saddle. Beach cruisers are about style rather than performance 

and are usually done up in bright, cheerful colors.  

 
• BMX Cruiser (Fig. 4.12) (and BMX Free style): This off-beat category generally 

features a compact frame, 24-inch wheels with wide, knobby tires, a single 

speed gear, and straight forks. BMX cruisers are basically BMX for bigger boys 

and girls, or smaller adults. BMX freestyle bikes are made and equipped for 

performing   tricks   and   stunts   and   have   also become quite popular as local 

ride around machines.  
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           Figure 4.11 Beach Cruiser                                Figure 4.12 BMX Cruiser 

                                                    (Ballantine 2001: 31) 

 

• Heavy Roadster (Fig. 4.13): Steel frame and 26- or 28-inch wheels, 1.5-inch 

wide tires, single speed or 3-speed hub gears are used. A proper classic version 

will have 28-inch wheels and roller lever rim brakes. Fully enclosed chain 

guard, kickstand, stout rear carrier, and built in lights. At around 50 pounds this 

is the European version of the paperboy bike, sometimes called an "Africa" 

model because of its popularity in developing countries like China. Many "Old 

Faithfuls" are still trundling out decades of service, and new machines continue 

to be produced by a few manufacturers. Heavy roadsters with a rear hub brake 

are imported from the Netherlands from time to time. The bikes are well made 

and pretty, with rustic charm, and they ride steadily and gracefully as long as the 

terrain is flat. 

 

• Light Roadster (Fig. 4.14): "Light roadster" as a description could embrace 

several kinds of bikes, including some very up market models. A traditional 

light roadster, however, is a more sprightly version of a heavy roadster, and 

features a steel frame. 26-inch steel wheels with 1.375-inch wide tires, long 

reach side pull calliper rim brakes, 3-speed hub gears, half chainguard, and steel 

or plastic fenders are used. With a weight of around 35 pounds, a light roadster 

is more than a bit of work to pedal, and steel wheels mean grossly inadequate 

braking in wet weather.  
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                 Figure 4.13 Old Faithful                             Figure 4.14 Light Roadster 

                                                    (Ballantine 2001: 32) 

 

• Modern Roadster Bike (Fig. 4.15): Steel or cro-mo alloy frame, alloy wheels, 

hub gears, fully enclosed chainguard, hub brake rear, calliper cantilever or V-

brake front are used. Hub gears and fully-enclosed chainguard slant this type 

toward regular everyday urban use, with a minimum of attention and 

maintenance – a transport machine, but one that goes nicely — a smooth good 

clothes bike. A modern roadster is fairly heavy, but handles well and, unlike a 

traditional light roadster, it has serious brakes. 

 

        

          Figure 4.15 Pashley Paramount                            Figure 4.16 Commuter 

                                                        (Ballantine 2001: 33) 

 

 4.1.4.2. Commuter and City Bikes 

 
The distinctions between a commuter bike, a town bike, and a city bike are quite fine, 

and are readily mixed by manufacturers in their catalogs. The basic concept, though, is a 

bike, which is a proper lightweight with a cro-mo, or aluminum frame and full size 26-

inch or 700C alloy wheels, fitted with a semi-mattress saddle and flat handlebars for a 
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fully upright riding position. These bikes generally weigh 25 to 30 pounds and have a 

pleasantly brisk performance, and can cope with day rides and light touring (25 to 35 

miles), as well as regular commuting and local utility use. 

 

• Commuter Bike (Fig. 4.16): Derailleur gears, part chainguard, 700C wheels with 

fairly light 1.125-inch wide tires, calliper V-or cantilever brakes, fenders, carrier 

rack, and possibly, built in lights. The slant here is towards the performance of a 

fast road sports bike, and a primary use for regular journeys of some distance, 7 

to 8 miles or more. A good model should be 26 pounds or less. Some 

manufacturers have tried producing really high quality commuter models, with a 

carbon fiber or other high tech lightweight frame and very light wheels, for a 

weight of 23 pounds and less. Such machines are a real treat, but they are expen-

sive and not enough demand has developed for them to become available on a 

regular basis. 

 
• City Bike: It is similar to the commuter bike, but with 26-inch wheels and 1.5- 

or 1.75-inch wide tires - a seemingly small but significant difference. Where the 

commuter bike is kin to the fast road bike, the city bike is clearly derived from 

the tough, go-anywhere mountain bike, and can cope more ably with the jagged 

surfaces and deep pot holes of mean urban streets. A city bike has firm, stable 

handling. A city bike can also be just fine in the countryside. With smooth city 

tires and close fitting fenders, it cannot cover the same spectrum of rough terrain 

as a true cross country mountain bike, but it will handily take to paths, trails, and 

the open countryside and, with a little skill, can be pushed surprisingly far in 

more extreme conditions. 

 

• Cross or Hybrid Bike: It is cross between a mountain bike and a road bike, with 

700C wheels and flat handlebars. Hybrid bikes are available in many 

specifications, from plain to full suspension. Some manufacturers offer hybrid 

city bikes, with fenders, a rack, and lights. Most models, though, lean toward 

off-road sport and are fairly sparse. The larger 700C wheels are a little faster on 

the road than 26-inch wheels, a bit of an advantage for longer journeys or 

touring, but not important over short distances. A hybrid is a highly flexible all 

rounder. Depending on the tires and equipment Fitted, it can manage, say, 45-
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mile tours in comfort, tackle all but extreme off-road riding conditions, or serve 

ably as a quick and durable urban commuting machine. Weight varies according 

to quality, and can range from around 23 or 24 pounds up to 28 pounds. 

 

4.1.4.3. Road Sport Bikes 

 

• Sport Bike: It is modeled after road racing bikes, sport models feature a 

lightweight frame, steel or alloy components. 700C 25/32 tires, calliper rim 

brakes, derailleur gears, narrow saddle, and drop bars are used. Weight is around 

28 to 30 pounds, sometimes more. Sport bikes vary a great deal in quality. At 

the low end, the machine may be nothing more than an ordinary mild steel 

roadster frame fitted with derailleur gears, drop handlebars, and "go faster" 

stripes for a racy appearance. At the high end, the machine may be a genuine 

lightweight with a fairly lively performance. In general, however, most quality 

sport bikes are function-specific models identified as fast touring, training, 

triathlon, racing, and so on. Sport bikes have modest performance and easy, 

predictable handling. Better models with alloy components (unless steel models) 

are fine for general riding, commuting, light touring, and moderately hilly 

terrain. 

 

• Touring Bike, road version (Fig. 4.17): A full on road touring bike follows the 

general outline of a sport bike, but the frame geometry or configuration is 

arranged to provide a more comfortable ride and stable, predictable handling 

even when laden with baggage. Panniers are positioned so that they neither foul 

the rider, nor induce instability in handling because they are too far away from 

the bike. There are front and rear pannier racks, full-length fenders, and a 

profusion of mounting points for water bottle cages. The derailleur gearing is 

wide range, with ample low ratios for easier hill climbing, and the brakes are 

stout and strong - calliper cantilever or V-brake, or possibly hydraulic calliper. 

Wheels and tires are 700C or, in some cases, smaller and stronger 26-inch or 

650B. Full on touring bikes can be used for commuting and day rides, but their 

proper activity is daily touring in the 50 to 100 mile range. Some models are 

claimed to weigh as little as 24 pounds, but, with a comprehensive equipment 

specification, 27 to 32 pounds is more likely. 
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• Fast Touring/Sport Touring (Fig. 4.18): A touring bike tweaked with lighter 

wheels and narrow 1- or 1-1.25-inch wide tires, and stiffer frame geometry, or a 

racing bike beefed up with heavier wheels and tires, and a more relaxed frame 

geometry - either way, a quick machine that can still manage light touring loads. 

This best of both worlds approach is popular for general use and commuting, as 

well as for weekend and holiday touring. Gearing is often a group of high, 

closely spaced ratios for speed, and a handful of low ratios for long climbs. 

There is provision for mounting slim fenders and a rear carrier rack. Compact 

side pull calliper brakes are used and its weight is 23 to 28 pounds. 

 

        

                 Figure 4.17 Touring                                     Figure 4.18 Fast touring 

                                                   (Ballantine 2001: 35) 

 

• Fast Road/Training Bike: Fast-touring bikes can be quick, but are still rooted in 

touring and carrying things. Fast road or training bikes are derived from racing 

bikes, and the emphasis is on performance. The frame is close clearance, with no 

room or provision for fenders or a carrier rack, and is designed for quick 

handling and rapid acceleration. Shod with narrow profile 1- or 1.125-inch wide 

tires, a fast road bike typically has a stiff ride over rough surfaces. Glose ratio 

gears, compact side pull calliper brakes are used and its weight is 21 to 26 

pounds. 

 

• Triathlon (Fig. 4.19): Bikes made for triathlon (swimming-running-cycling) 

events are similar to fast road models, but the frame geometry has a tight back 

end, for fast response to pedal input, while the front end is more relaxed, to help 

guide tired riders through the bends. Profile bars for an aerodynamic riding 
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position and lots of water bottle mounts are usually standard. Its weight is 21 to 

25 pounds. 

 

• Road Racing (Fig. 4.20): Strong, tight, close clearance frame for taut 

responsiveness and crisp, quick handling. Close ratio gears, and sprint wheels 

with sew up tubular tires. Mass start road racing in a pack of riders is often 

rough and tough, and the bikes are made to be light but strong and reliable. 

Weight is usually 20 to 22 pounds, but can pare down to 18 pounds. With sprint 

wheels and tubular tires a racing bike is strictly for competition. The trend with 

road racing bikes is toward compact frames with a sloping top tube, as pioneered 

by the TCR from Giant. 

 

         

               Figure 4.19 Triathlon                                     Figure 4.20 Giant TCR 

                                                  (Ballantine 2001: 36) 

 

• Time Trial (Fig. 4.21): A time trial (TT) bike is similar to a road-racing bike, but 

more lightly built. In a time trial, riders race on their own against the clock. The 

object is to go as fast as possible, and TT machines are set up according to 

course requirements, for example as a single speed, if the course is flat. A classic 

TT bike can be a study in painstaking effort to shed every ounce of excess 

weight, with cranks, chainrings, and other components drilled with hundreds of 

holes. A modern TT bike concentrates on aerodynamic efficiency, with a 

smooth, sculpted frame and profile bars. 

 

• Track Bike (fig. 4.22): Made for racing on wooden tracks, these are stark 

greyhounds with a single fixed gear (the wheels turn when the cranks turn and 

vice versa), no brakes, and a weight of 16 to 17 pounds. 
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        Figure 4.21 Short distance TT                                    Figure 4.22 Track 

                                                          (Ballantine 2001: 37) 

 

4.1.4.4. Mountain Bikes 

 

The mountain bike has changed the definition of what a bicycle is. Mountain bikes 

began as machines for off-road downhill racing, but then quickly evolved into many 

different forms covering a broad range of functions.  

 

In essence, mountain bikes represent a fresh, no holds barred approach to bike design, 

and the use of new materials, to come up with bikes that do what people want. This 

innovative approach has rewritten the design rules for creating bikes of all kinds, from 

roadsters through to flat out speed machines. Diamond framed road-racing bike, which 

is a perfect synthesis of design and technology for the goal of speed, is now a classic. 

Modern racing bikes, built with ideas derived at least in part from mountain bike design 

and technology, are better and faster. 

 

Mountain bikes offer a range of options in transmissions, brakes, controls, saddles, and 

handlebars; how these are mixed and matched has a big effect on the nature of a bike. A 

feature almost exclusive to mountain bikes, however, is suspension, which can be for 

the front or the back wheel, or both. Briefly, suspension improves bike control and rider 

comfort, but adds weight and mechanical complexity. For a downhill racing bike, the 

benefit of suspension is well worth the extra weight. In the case of a cross-country 

machine that must go up as well as down, weight is a significant performance factor, so 

there may be front wheel suspension only, or none at all. 
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• Mountain Bike, Standard or "Classic" (Fig. 4.23): It is a simple non-suspension 

mountain bike of good enough quality to be worth riding off-road. Bikes of this 

sort are suitable for general transport and moderate off-road riding. 

 

• Mountain Bike, Cross Country: As the name suggests, cross-country mountain 

bikes are designed for both climbing and descending, and in between. There are 

many different specifications. It's common to have front suspension for comfort 

but, to save weight, not back. On the weight count, many racing mountain bikes 

do not have any suspension at all. However, as suspension systems steadily 

become lighter, cross-country bikes with dual suspension are becoming more 

popular. 

 

• Technical/Trials Mountain Bike: Technical and trials mountain bikes are built 

for handling extreme terrain and obstacles. The idea with trials is to ride "clean." 

without the feet touching the ground, and so the bottom bracket is high to 

provide clearance over obstacles. The frame geometry is tight, for precise 

control. These are skill bikes and people use them to ride over cars, clamber 

over 5-foot diameter logs, and perform other incredible stunts. Technical riding 

is also popular in cities. 

 

• Freestyle Mountain Bike: At one level, freestyle is about simply messing around 

with more flash and catching air (jumping). Trials bikes generally do not have 

suspension, freestyle bikes often do. At a competitive level, freestyle is wild and 

woolly. The action is fast and furious, with lots of air and spills. 

 

• Downhill Mountain Bike (Fig. 4.24): Downhill mountain bikes axe made to do 

just one thing: blast along as fast as possible. Deep travel, dual suspension is a 

requirement, and as suspension systems become better and speeds rise ever 

higher, the bikes are becoming bulkier and stronger. A full on downhill racer 

with a bomb proof frame and massive 3-inch wide tires resembles a motorcycle 

more than a bicycle. It's so heavy that no one ever thinks about pedalling one of 

these up a mountain. Fast downhill riding and racing is wildly exciting, but the 

latest advances in suspension   systems are pushing speeds to extreme levels. 
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Like rock climbing and sky diving, downhill bike racing is a sport that should be 

approached with respect. 

 
• Touring Mountain Bike: A touring mountain bike is similar to a road-touring 

bike, but has 26-inch rather than 700C wheels, and flat instead of drop bars. 

Otherwise the concept is the same: wide range gears, powerful brakes, pannier 

racks front and rear, and an abundance of water bottle mounts and other 

accoutrements for comfortable long distance travelling. 

 

           

                  Figure 4.23 Classic                                     Figure 4.24 Downhill: fast 

                                                (Ballantine 2001: 38, 39) 

 
4.1.5. Elements of a Bicycle 

 
 

 
 

Figure 4.25 Downhill mountain bike (Ballantine 2001: 39) 
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A bike consists of the: 

•    frame; 

•    suspension (optional); 

•    wheels (hubs, spokes, rims, tires); 

•    transmission (pedals, chainset, gear changers, chain, freewheel); 

•    brakes; 

•    handlebars, stem and saddle (Fig. 25). 

 
Some bicycle manufacturers make their own frames (brand names like Trek. Giant, 

Fisher, Cannondale, etc.), others buy them from outside builders, and many do both. 

Frames vary in quality from crude to ultra-fine, and are produced by firms that range 

from lone builders through to huge factories.  

 
The components of the bicycle are known as the specification. Components are supplied 

by specialist companies, in various designs and quality grades. Some firms produce 

specific components such as rims or brakes: others produce group sets containing the 

components of a complete specification. Group sets are identified by a name or model 

number, as in Campagnolo Chorus or Shimano 105, and are ranked by design and 

quality, or cost. Sources of components are diverse, but volume sales to bike 

manufacturers are dominated by the Japanese firm Shimano (Ballantine 2001: 44). 

 
4.1.5.1. Frame 

 

 

Figure 4.26 Diamond frame 
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The frame, separately shown in Fig. 26, is the heart and soul of a bicycle. It translates 

pedal effort into forward motion, guides the wheels in the direction selected, and helps 

to absorb the road shock. How well the frame does these various jobs is determined by 

the materials from which it is built, the design, and the method of construction. There is 

no way to work around or upgrade a cheap frame. Components such as wheels are 

easily changed, but the frame endures and should be the first focus of attention when 

considering a bike. 

 
Weight in a bike is pretty well everything, and the most fundamental factor in this 

department is the frame. The better the frame, the lighter the weight for the same or 

even greater strength. Related to this are two qualities. The first is resiliency, twang, or 

flex, which gives better bikes springiness and vitality. This is inherent in the materials 

from which the bike is made, and is exactly the dynamic difference between heavy, 

unyielding cast iron and light, flexible tempered steel. The second quality is stiffness, 

which is related to materials and geometry as well as weight. In a nutshell, a frame with 

too little stiffness will bend and twist too much, and a frame that is too stiff will not 

have enough give for comfort. Strength shouldn’t be confused with stiffness: a frame 

made of heavy, weak tubing can be stiff, and a frame made of light, very stiff tubing can 

be weak. Essentially, frame design consists of trying to strike the best balance between 

strength, stiffness, and weight (Ballantine 2001: 39). 

 
4.1.5.2. Wheels 

 
After the frame, the wheels - tires, rims, spokes, and hubs - are the most important 

components of a bike. The frame is the vitality, the wheels the point of translation into 

motion. Their effect on performance and comfort is enormous. Once completed, a bike 

frame is unlikely to go back to the torch or glue pot for changes and modifications. 

Wheels, however, are easily altered, and offer a range of options regarding performance, 

durability, and suitability for different conditions. 

 
A traditional metal-spoked bicycle wheel is one of the strongest engineering structures 

in existence. The spokes are in tension rather than compression - the weight of the bike 

hangs from the spokes rather than stands on them - and this is why a well-built wheel 

can support a rolling weight of up to a ton or more. Wheels are made to be as light as 

possible because weight has a greater effect on a wheel than anywhere else on a bike. 
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To appreciate the truth of the old saying, "an ounce off the wheels is worth a pound off 

the frame," hold a bicycle wheel by the axle ends and move it around in the air, and then 

do so again while spinning the wheel. The faster the rotation, the greater the "weight," 

or inertia, and the harder it is to move the wheel into a new plane of rotation. Bicycle 

wheels are built with spokes and rims to keep weight to the minimum and thereby 

reduce both the force of gyroscopic inertia, and energy required for acceleration or 

braking. 

 
Another force that operates on wheels is aerodynamic drag. At speed, ordinary spokes 

churn the air like an eggbeater and disrupt its flow. This is of little consequence for 

everyday riding, but is significant when racing. Deep rim spoked, molded one piece, 

and disc wheel designs all increase the surface area of the wheel to smooth the flow of 

air and improve aerodynamic efficiency, at some cost in weight. 

 
Wheels operate on a simple spectrum: light wheels are quicker and more fragile; heavier 

wheels are slower and more durable. The type of bike, rider, and conditions determine 

the balance of priorities. Wheels for racing on smoothly surfaced roads are lighter and 

slimmer than wheels for touring with heavy loads on dirt tracks. 

 
A wheel is a package where the components -tire, rim, spokes, and hub - tend to follow 

suit in weight and quality. Stout tires, wide rims, and thick spokes go with touring and 

mountain bikes. Light tires, narrow rims, and slender spokes go with road racing bikes. 

Generally, heavier wheels are better able to cope with bumps, potholes, and rough sur-

faces. Much depends on the rider. "Comfortable" for a beginner usually means a wheel 

stable enough to not skitter at the sight of a pebble. An experienced cyclist, however, is 

likely to be happier with a lighter, more responsive wheel (Ballantine 2001: 61-63). 

 
4.2. Bicycle Design: Frame Design  

 
Designing a bicycle frame looks like designing clothes in the means of fitting of designs 

(bicycles or clothes) on humans body. As the tailor designs clothes for a person, there 

are bicycle designers like tailors that design bicycles specialized for a person. On the 

other hand, in the means of ready-made clothing industry, there are bicycle designers 

and manufacturers that design and produce for the bicycle industry. They design and/or 

buy standard components for building the bicycles. As this study is concerned with 



 132

industrial product design, it is more included in the second area; however, the designer 

should have an idea of both of these areas in order to improve him/herself in designing 

bicycles. 

 

Designing a frame carries two important complementaries that are: geometric 

parameters and materials. As a general rule in bicycle design, where the performance of 

the bicycle increases, the comfort of the bicycle decreases. Therefore, the frames of race 

bikes are designed through the geometric parameters and materials in a way that they 

are fast and light, but uncomfortable. On the other hand; in roadster, style, and city 

bikes, comfort becomes more important than the performance that their geometric 

parameters and materials differ from the race bikes. 

 
4.2.1. Geometric Parameters 
 
The design or geometry of a bicycle frame with an upright riding position varies 

according to its intended purpose and the type and weight of rider. The two fundamental 

types of bikes are road and off-road, and within each category there is a similar basic 

choice: going quickly and responsively, or more slowly and evenly. Generally, per-

formance bikes have quick pedal response and handling, while bikes made for general 

riding are more stable. 

 

 

Figure 4.27 Geometric Parameters 
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The first crude indication of a bike's character is the wheelbase (Fig. 4.27), the distance 

between the wheel axles. On road bikes this ranges from 38.5 inches for racing models 

to around 42 inches for touring models. On mountain bikes the range is from around 41 

inches to 45 inches. Wheelbase is an additive function of the relative angles at which 

the frame tubes are joined, and their length. Tightly built, short wheelbase frames are 

often described as "stiff," and long wheelbase frames as "soft." These terms give the 

misleading impression that tight frames have a harsh ride compared to relaxed frames. 

In fact, wheelbase makes only a slight difference to ride comfort, more important are 

the type of wheels and tires. Frame design variations are for performance 

characteristics, degree of stability, and room for mounting panniers. 

 

The design and character of a bike is often described as a function of the angles to 

horizontal formed by the head and seat tubes (Fig. 4.27). While it is broadly true that a 

classic "soft" touring bike might be 72° parallel, and a more responsive "stiff" racing 

bike might be 74° parallel, frame angles depend on the length of the frame tubes and not 

the other way round. For example, women generally have less reach than men, and short 

women in particular have limited reach. A correctly proportioned frame will have a top 

tube of a length that requires steepening the seat tube angle to 75° or even 76°. Despite 

having a supposedly "stiff" geometry, such a bike will be comfortable to ride (Fig. 

4.28). 

 

Seat Tube Angle Rider Position Recommended Uses 

Shallow (< 73.0 º) Relaxed Road race, century, ultra 

Normal (73.0º-74.0) Neutral Road race, criterium 

Steep (74.0º-75.0º) Aggressive Criterium, time trial, triathlon 

Extra steep (>75.0º) Aerodynamic-
aggressive 

Time trial, triathlon 

 

Figure 4.28 Seat tube angle’s affects 

   

The stiffness of a frame in a vertical (up and down) plane has little if anything to do 

with the seat tube angle. Even a very whippy frame with a lot of torsional (twist) and 

lateral (side to side) movement, will have very little vertical compliance. It's a structural 

thing, seen everywhere in large four-sided farm gates with a single diagonal cross brace. 
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The gate may rock, and sway in the breeze, but so long as the cross brace is adequate, 

the up and down position won't change. On a bike, in a vertical plane, the forks move 

but the rest of the frame pretty much stays put. Vertical compliance of a frame is a 

function of height and length, or wheelbase. A longer or shorter wheelbase does make a 

difference, but only a very small one (Ballantine 2001: 50, 51). 

 

The important point is that position on a bike is a function of saddle and handlebar 

position. This provides the question: why the diamond frame? 

 

4.2.1.1. The Diamond Frame 

 
The diamond pattern frame with a level top tube evolved over 100 years ago and is a 

perfect design for road bikes and the kinds of alloy steels used through the 1970s. This 

combination of steel tube and diamond frame has proved to be very enduring that it 

gives anyone setting out to design a better (rigid safety bike) a bit of problem. For it 

makes the situation different from that of many other mechanical devices –cars, food-

mixers and the like- where there are numerous design variations and opportunities for 

improvement. “With the bicycle there is one absolute and totally defined shape handed 

down by generations of frame-builders. And not only the shape, but also the size of the 

tubes, has been institutionalized (Burrows 2000: 55)”.  

 

A profound economic advantage of a dropped top tube is that to fit different riders it is 

no longer necessary to make frames in a range of perhaps ten or more different sizes. 

Small, medium, and large will cover the lot. Precision fit for individual riders is 

achieved through different size seat posts and stems. In a mass-production bike, this is a 

huge economy, not just for the manufacturer, but also for the stores, which only have to 

stock three sizes instead of ten or more, with lower retail prices (Ballantine 2001: 53). 

 

4.2.1.2. Alternatives: the Moulton, the Burrows Monocoque and the New Trends 

 
Although the 1890s manufacturers such as Thomas Humber had clearly got the frame 

right (diamond frame), there have been many designers trying to change it. Two of 

these alternatives deserve to be mentioned here, as being successful.  
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The Moulton: Figure 4.29 shows Alex Moulton’s small-wheel/suspension approach, 

using (firstly) monolithic cruciform and (later) multi-tube geodesic frame construction. 

Many subsequent small-wheel designs stem from Moulton’s 1960 original. It is, if not a 

better bicycle, at least a viable alternative offering some real advantages over the 

traditional format (Burrows 2000: 56).  

 
Figure 4.29 The Moulton (Burrows 2000: 56) 

 

The Burrows Monocoque: The other and most recent alternative is Mike Burrows’s 

moulded monocoque racing design, shown in Figure 4.30. It is again not a better bike, 

but offering the racing cyclist at least some advantage over ‘iron sticks’ Figure 4.30 

Burrow’s Monocoque (Burrows 2000: 57).  
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Figure 4.30 The Burrows Monocoque -1 (Burrows 2000: 76). 

 

The New Trends: Many designers try to change the 130 years old diamond structure. 

Recognition of the new materials makes them dream wide (beyond iron sticks), as 

shown in Figure 4.31. These examples need to be solved with rational – engineering - 

knowledge, since they seem to be easily broken and destroyed with only stylish 

thinking. 
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Figure 4.31 Stylish design of bicycles 

 

4.2.2. Materials 

 
Once the geometry parameters are determined, it is time for deciding on the materials. 

Nowadays, high performance racing bicycles constructed of steel and aluminum as well 

as more sophisticated materials such as carbon fiber and titanium are all widely 

available. Moreover, the aerospace-derived titanium and carbon fiber are not as 

astronomically priced as they once were.  

 
• Steel 

Steel is the most versatile material and can be drawn, machined, shaped, and alloyed 

with other metals to accommodate a wide variety of strength and performance 

requirements. The result is an impressive array of strong, comfortable, excellent 

handling, and inexpensive frames built of steel alloys. The one drawback to steel is that 

it is much heavier than newer materials.  
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• Aluminum 

Aluminum is a popular material because it is extremely lightweight, produces strong 

tubing and framesets, and yet is remarkably inexpensive. Aluminum's major 

disadvantage is that it lacks the durability or damage and fatigue resistance of either 

steel or titanium.  

 

• Titanium 

Titanium is as strong as steel at half the weight, and free from corrosion and fatigue. 

Fabricating titanium is difficult, and the cost of tooling (making machines to work it) is 

high, which makes titanium frames expensive. Still, they are truly beautiful, and 

regarded by many as the ultimate.  

 

•  Metal Matrix Composites 

Metal matrix composites (MMC) are metals with the addition of small, hard particles. 

This mixture has improved strength and fatigue resistance, but weld quality goes down, 

and the material is difficult to machine or work into various forms, such as tubes. 

Basically, it is more suitable for components than for frames. 

 

•  Magnesium 

Very, very light, but the stuff is better for parts than frames. Magnesium works best in 

bulky shapes, and not very well in fine, drawn out shapes.  

 

•  Plastic 

It should be possible to build nice bicycles with injection molded plastics such as nylon, 

but major research is needed to understand what bicycle designs will work in plastics. 

The first successful plastic bicycle will probably be a recumbent design, as this 

configuration is more sympathetic to the use of new materials. 

 

•  Carbon Fiber 

Carbon fiber is the lightest of all frame materials. Since it can be layered and reinforced, 

it produces some of the stiffest and strongest frames available. Additionally, it can be 

molded and sculpted into aerodynamic forms without sacrificing strength, making it a 

top choice of triathletes. Carbon fiber's one disadvantage is that in the event of cracking 

or damage the frame is not repairable and must be replaced. Also, a poor quality carbon 
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fiber frame may be brittle and lack the shock absorption of top quality carbon fiber 

frames.  

 

In mass-production, frames for cheap bikes are made with heavy, inert mild steel; for 

entry level, basic quality bikes, much better hi-ten steel is used; for midrange bikes, 

cromo and other lightweight alloy steels are used; and for top-range bikes, aluminum or 

composites. Fine alloy steels, aluminum; titanium, and composites such as carbon fiber 

and aramid are used for hand built frames. With modern materials, a dropped or sloping 

top tube is practical even for racing bikes and, since it has many advantages, will soon 

be standard. The future for frames, whether for crafting exotic racing machines or mass-

producing inexpensive, is in composite materials and one-piece monocoque designs. 

 
4.2.2.1. Composite Materials  

 
Steel and aluminum as frame materials work best in tubular form. Both metals are 

isotropic, equally strong in all directions. However, the new cutting edge in frame 

materials, composites, are anisotropic - i.e., composed of fibers strong in specific 

directions - and the builder can decide which way they go. This means a radical change 

in design approach. 

 

Composites consist of fibers bound by glue or resin, or by a substance such as nylon. 

The most common type for bikes is carbon fiber, which in pure form is as strong as the 

finest steel, never fatigues, and yet is only two-thirds the weight of aluminum. Carbon 

fiber is somewhat brittle, so frames and components made in this material are overbuilt 

by a generous margin. They are nonetheless still ultra lightweight, yet can withstand 

more abuse than steel. Frames are also produced in aramid, the material for bulletproof 

shields and armor and better known by the trade name Kevlar™. Aramid is not as 

strong as carbon fiber, but is much tougher. 

 

A number of manufacturers produce traditional tubular design frames in composite 

materials. The tubes are glued together via lugs, made either from cast aluminum alloy 

or molded carbon. Because a material such as carbon fiber is so light and strong, it has 

considerable advantages even when shaped into tubing.  Replicating the form of a metal 

bicycle, however, is not the best way to use composites. 
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One big asset of composites is the ease with which they can be worked and shaped into 

various forms. This allows strength, flexibility, and other characteristics to be placed 

and added precisely where required. The most efficient configuration for composites is 

monocoque, the entire frame as a single piece, with the means to hold the wheels, 

cranks, forks, saddle, and everything else in one cohesive unit. Monocoque means that 

chassis and body, or skin, are one; more than a few of the slick-looking frames currently 

labeled as monocoques are in fact glued together assemblies of bits and pieces. 

 

4.2.2.2. Monocoque Designs 

 

Monocoque designs (Fig. 4.32) are aerodynamic, light and strong, look great, and are 

fun to ride. The frame has a decided shape and form, and the large surface areas open up 

almost limitless graphic and decorative possibilities. There are monocoques just as 

beautiful as the finest paintings. They are easy to enjoy: while a regular bike has a lot of 

nooks and crannies and can be a bit of chore to keep clean, a few swipes with a rag and 

a monocoque is shining. 

 

Monocoque designs are limited to racing and very high-end bikes. Yet composite   

materials   and   monocoque   construction   hold enormous potential for producing not   

just competition machines with precise performance characteristics, but also a range of 

general use and utility bikes of better quality and design at lower cost. Realizing this 

potential, however, is nothing like as easy as rolling off a log. Volume production in 

composites requires a huge investment and, up until now, few if any bike designers 

have created monocoques that are much more than aerodynamic, fast, and good looking. 

There's still a lot of expensive, computer aided design research and development to be 

done, and as well, considerable production engineering to, work out the best 

manufacturing techniques. Then, too, currently available components are designed for 

stick bikes: monocoque designs have different needs. 
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Figure 4.32 The Burrows Monocoque –2 (Burrows 2000: 57). 

 

Somebody can design something that looks very pretty, having some sense of how and 

where to build for strength and flex and so on, but even he/she is a leading bike 

designer, from a technical point of view the final product is likely to lag behind a well-

crafted frame in steel or aluminum. The reason is so little about monocoque 

construction for bicycles is known, but there is a rich fund of experience of building 

with tubes. 

 

Composite materials are already well established and monocoque designs, with greater 

aerodynamic efficiency, are faster than traditional stick design bicycles. As builders 

learn more about composites, particularly in volume production, monocoque bikes will 

become increasingly commonplace. It can't happen too soon. For example, using 

monocoque construction it is feasible to create a bicycle with everything but the pedals 

and the wheels completely self-contained and sealed. No external lights, cables, brakes, 

gears, or chain. All the mechanical bits run in constant lubrication protected from dirt 

and will last almost forever. 

 
4.2.3. Engineering and Industrial Design of Bicycles 

 

The bicycle can be accepted as one of the finest examples of engineering design of all 

the time. It uses so little in the form of material or resources to produce; yet it does so 

much so efficiently with cheap healthy transport, enjoyable leisure, exciting sport and 

no harmful side effects.        

 



 142

4.2.3.1. Positioning Bicycles according to Industrial Design and Engineering 

Priorities  

 

Product range of industrial design and engineering design, and their weighing in 

products are shown in Figure 4.33. According to this figure, and the given examples in 

the figure, bicycles can be positioned in the middle. However, as bicycle has been 

accepted as a mature design for along time, the basic design that the Humber carries did 

not change until 1970s. The incredible variety related to demands, creates a broad 

design area today, in the means of both engineering and industrial design. 

 

 
                                                        Bicycle 

 

Figure 4.33 Position of bicycles in the product range 

(Figure at top is from Cross 2000: 198) 

 

The industrial designer acts through concepts of quality, quantity, identity and method 

that, he/she determines the qualities (materials, construction, mechanism, shape, color, 

surface finishes and decoration) of objects, which are reproduced in quantity by 

industrial methods, and their relationship to people and the environment.  In doing so, 

he/she deals with a lot of criteria (that were mentioned in Chapter 2):  

 
• Functional Criteria 

o Physiological Criteria 

o Environmental Criteria 

o Communicational Criteria 
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• Psychological Criteria 

o Perceptional Criteria 

o Socio-Cultural Criteria 

o Sensitive Quality (Criteria) 

o Explanatorily Criteria 

 

• Technological Criteria 

o Material Criteria 

o Production Criteria 

 

• Economical Criteria 

o At the Consumers’ Level 

o At the Producers’ Level 

o At Macro-Level 

 

The bicycle provides an example of technology, which applies to many different areas 

of science. The basic principles of physics, mechanical engineering, materials, and 

design are all included in determining how a bicycle is built. In addition human 

physiology, physical education, and kinesiology [study of the principles of mechanics 

and anatomy in relation to human movement (Merriam-Webster Authority & 

Innovation 2000: Version 2,5)] are also represented in the basic way that bicycles are 

designed. Even psychology becomes important in acceptance of a design. For example, 

mountain bikes are the primary type of the bike sold in the United States, even in 

Kansas and Nebraska, which haven't seen any mountains for a few million years. As we 

look at bicycles from different countries and see how their designs differ, we see how 

science and technology evolve within the local cultural context. In addition to the 

content of science, technology and culture the bicycle also offers a way to teach various 

types of skills related to science and technology. The process of science can be 

developed by trying to understand why these designs are preferred. This process can 

develop problem solving skills, the process of science skills, and an understanding of 

the design process of engineers. 
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4.2.3.2. Frame as an Engineered Structure  
 
From the standpoint of structural engineering, the most important component of a 

bicycle is the frame. It is also the most interesting component with regard to materials 

engineering. To consider frames properly, it is necessary to know how to analyze stress 

and deformation in a loaded structural member of a bicycle and then to see how the 

stresses can be accommodated by intelligent choices of frame geometry, materials, and 

joining methods. 

 

The evolution of frame design has led to the so-called diamond frame, shown in detail 

in Figure 4.34.  

 

 
 

Figure 4.34 The complete frame of a conventional diamond-frame bicycle 

 

Stresses in the various parts of such a frame due to the static weight of a rider can be 

estimated fairly easily, and they turn out to be rather small. However, stresses arising 

from some dynamic loads can be much larger and must be given serious attention. The 

important kinds of loading are indicated schematically in Figure 4.35.  

 

The potentially large loads depicted in Fig. 4.35 can cause permanent deformation, or 

even catastrophic fracture, of the bicycle, or they can lead to fatigue cocking. In 

addition, the response of the frame to vertical forces from a bumpy road (Fig. 4.35.a) 

affects riding comfort. A frame that distorts elastically by a relatively large amount (for 

a given set of forces) is said to be more compliant than one that distorts less. The more 

compliant the frame, the more comfortable the bicycle is to ride. However, this kind of 

flexing wastes energy, because the work done by the rider in distorting the frame is not 
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used in forward propulsion. For this reason, a racer opts for a frame that is elasticity 

stiff, rather than compliant. 

 

 
Figure 4.35: Schematic representation of the types of loading that must be withstood by 

a bicycle as a result of: (a) a vertical drop after passing over a large bump, (b) an impact 

from a frontal barrier, and (c) the force of pedaling by a strong rider, e.g., when 

climbing a steep hill. 

 

Forces in a Bicycle Frame; Basic Definitions and Rules 
 
The analysis of forces employed here will be fairly elementary but require some 

explanation of the methods of engineering static, which involves the applications of 

Newton's laws to bodies at rest. That is, only the equilibrium of a stationary bicycle in 

response to the applied forces will be considered; dynamics of the moving bicycle will 

not be treated here. To begin, only the forces that act in the plane of the frame will be 

considered; later the important out-of-plane forces due to the pedaling action and to the 

off-center pull chain on the rear wheel spindle will be examined briefly. To make an 

approximate analysis of the forces on the members of a frame, a typical version of a 

touring bicycle has been selected. The basic geometry is as shown in Figure 4.36. 
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Figure 4.36: A model of the frame of a common touring bicycle frame, showing the 

downward caused by a rider on the seat, W1, and pedals, W2, and the upward (reaction) 

forces transmitted wheel axles, R1 and R2. 

 

Before the forces in this frame can be analyzed, one must first know simple rules of 

static’s: 

 

1. A force is a quantity that has both direction and magnitude; therefore, it is a vector 

quantity. By use of a system of rectangular (i.e., x, y) coordinates, a force vector can be 

resolved into two components, each of along one of the coordinate axes. 

 

2. Newton deduced that any force on a body at rest must be opposed by an equal and 

opposite force. That is, there can be no net force on a body at rest. The presence of a net 

force would cause a body to be accelerated, according to the famous Newtonian law: F 

= ma, or force equals mass times acceleration. This law is applied to the pinned joints 

on the bicycle frame, resolving forces applied at the joints into x and y components and 

setting the sums of the vertical and horizontal components equal to zero. 

 

3. This law of Newton applies not only to transnational motion, i.e., motion of a body 

from one place to another, but also to rotational motion of the body about some axis. 

Thus, Newton's law states that, for a body at rest, there must be no net moment. That is, 

the sum of all moments must be zero. 

 



 147

4.2.3.3. What is a Good Bike? 

 
With a good bike, design materials, and construction are well balanced and suit the 

intended purpose and cost of the machine. An ultralight, aerodynamic time trial bike 

made for the Tour de France and built with advanced composite materials, and a crude 

cargo bike made for hauling bananas to market in Nicaragua and built with crude mild 

steel, can both be good machines. In the Tour de France, the stakes are high and scores 

of consultants, designers, scientists, and technicians from several companies may work 

together on creating a bike especially for the event. High cost is axiomatic. In 

Nicaragua, the average yearly income is less than many people in America earn in a 

week, and the typical bike building resource is one person equipped with a hacksaw and 

a simple gas welder. Low, low cost is essential. For the Tour contender, exotic design, 

space age materials, and high tech construction; for the banana carrier, a simple design, 

easily worked mild steel, and rudimentary joinery. 

 

A good bike is honest. It does the job it sets out to do, makes efficient use of materials, 

and stands up. In Nicaragua, most of the rural bike builders have a pretty fair idea of 

what they are doing. They have to. The bikes they build to earn their bacon must work 

well and be reliable, or else the builder goes hungry. Similarly, high tech racing bikes 

must deliver performance; excuses do not win races. 

 

 
 

Figure 4.37 Modern day cruiser: Silver Bullet by Sparta (Burrows 2000: 79) 
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Figure 4.38 Aero-race bike (Burrows 2000: 72) 

 

 

Design features of Figure 4.37                                         Design features of Figure 4.38                          

Stylish                                                            Race 

Fashionable                                                    Aerodynamic 

Comfort                                                          Performance    

Heavy                                                             Light    
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Chapter 5 

 

CONCLUSION 

 

Today, industrial product design has become one of the most important strategic 

elements of competitive advantage in industrial context, because of the increase in 

“designed” demand of objects and the requirement of teamwork in designing complex 

objects of the new world.     

 

Since industrial product design deals with a lot of criteria, like physiological, 

environmental, communicational and technological criteria, borrows concepts and 

methods from other disciplines, and the industrial designer behaves like the team 

synthesist between other professions such as engineers, sociologists, marketers etc. in 

order to determine the formal qualities of objects produced by industry. Unless being in 

a design team, the industrial designer still acts through concepts of quality, quantity, 

identity and method that, it determines the qualities (materials, construction, 

mechanism, shape, color, surface finishes and decoration) of objects, which are 

reproduced in quantity by industrial methods, and their relationship to people and the 

environment.    

 

Industrial product design field, because of dealing with a lot of criteria, considered by 

some authors as an interdisciplinary activity in research context. However, as industrial 

product design field can be stretched to other fields easily, and other fields can be 

welcomed in the field easily, interdisciplinary approach causes conflicts in developing 

industrial product design knowledge. Referring to Cross, industrial product design 

should be taken as a field of design discipline that accumulates and develops its own 

design knowledge. With this approach, industrial product design might create and 

strengthen its place among other trespassing fields and disciplines.  

 

Designing is a multidisciplinary activity with the participation of disciplines such as 

design, engineering, sciences, and humanities acting toward the same purpose. 

Industrial product design borrows concepts and criteria from other disciplines 
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throughout this activity. Engineering, as the subject of this study, is one of the most 

important features of industrial product design in the means of bringing design to an end 

product that is sold in the market. Industrial product design intersects with engineering 

criteria, given below, and deals with engineering professions related to these criteria 

throughout the design activity.  

 

The intersecting criteria of engineering and industrial design in a product are:  

 

• Functional Criteria 

o Physiological Criteria 

o Environmental Criteria 

• Technological Criteria 

o Material Criteria 

o Production Criteria 

• Economical Criteria 

o At the Producers’ Level 

o At Macro-Level 

 

By revealing these criteria and comparing industrial product design with related 

engineering professions, human-centered aspect and synthesis approach of industrial 

product design, and on the contrast, material-centered aspect and analysis-synthesis 

approach of engineering design, which is the chosen engineering field as being close to 

industrial product design field, are indicated. 

 

Synthesis of experience and analysis of materials and forces of the nature in engineering 

discipline causes the engineer act like an artist (designer) as well as a scientist in the 

expansion of the engineering knowledge. In these means, engineering design field, 

where engineering and scientific knowledge is applied to products, processes, systems, 

and etc., uses some design methods, techniques, or procedures. Scientific methods and 

design methods are not different at the most immediate level, which is revealed in the 

last part of Chapter 3. Industrial designer, who provides from these intuitive and non-

intuitive methods in the means of scientific design [“Scientific Design refers to modern, 

industrialized design –as distinct from pre-industrial, craft-oriented design- based on 
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scientific knowledge but utilizing a mix of both intuitive and non-intuitive design 

methods (Cross 2000: 44)”], and combining these with his/her own abilities of: 

• Creativity and intuition 

• Recognition that problems and solutions in design are closely interwoven 

• The need to use sketches, drawings, or models of various kinds as a way to 

explore the problem and solution together; becomes successful. 

 

“From studies of a number of industrial and engineering designers, Fricke (1996) found 

that designers following a ‘flexible-methodical procedure’ tended to produce good 

solutions (Cross 2000: 27)”. These designers worked reasonably efficiently and 

followed fairly logical procedure, whether or not they had been educated in a systematic 

approach. In comparison, designers either with a too-rigid adherence to a systematic 

procedure (behaving ‘un-reasonably’ methodically), or with very unsystematic 

approaches, produced mediocre or poor design solutions. 

 

In this study, 

 

1. Non-intuitive and intuitive concepts and methods used in industrial product design 

field is searched for in order to try to put a milestone in developing industrial product 

design knowledge in design discipline 

 

2. The advantages of providing from non-intuitive methods are revealed.  

 

3. Intersecting criteria between industrial product design and engineering fields, as an 

advantage of these professions both in industrial and educational contexts are given.  

 

4. Approaches of scientists, engineers and designers to the design problems, as another 

advantage of observing the artifacts in order to design, are given. 

 

5. Focusing on products, the engineering and the design criteria are revealed in the 

bicycle examples, as a case of this study. Change in design priorities are indicated on 

different types of products, using the advantage of variety in bicycles. 
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