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ABSTRACT 
 

 This thesis covers a study on kinematic and dynamic analysis of a new type of spatial 

six degree of freedom parallel manipulator. The background for structural synthesis of parallel 

manipulators is also given. The structure of the said manipulator is especially designed to 

cover a larger workspace then well-known Stewart Platform and its derivates. The main point 

of interest for this manipulator is its hybrid actuating system, consisting of three revolute and 

three linear actuators. 

Kinematic analysis comprises forward and inverse displacement analysis. Screw 

Theory and geometric constraint considerations were the main tools used. While it was 

possible to derive a closed-form solution for the inverse displacement analysis, a numerical 

approach was used to solve the problem of forward displacement analysis. Based on the 

results of the kinematic analysis, a rough workspace study of the manipulator is also 

accomplished. On the dynamics part, attention has been given on inverse dynamics problem 

using Lagrange-Euler approach. 

Both high and lower level software were heavily utilized. Also computer software 

called ‘CASSoM’ and ‘iMIDAS’ are developed to be used for structural synthesis and inverse 

displacement analysis. The major contribution of the study to the scientific community is the 

proposal of a new type of parallel manipulator, which has to be studied extensively regarding 

its other interesting properties. 
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ÖZ 
 

 Bu tez yeni bir tip uzaysal alti serbestlik dereceli paralel manipülatörün kinematik ve 

dinamik analizini kapsamaktadir. Paralel manipülatörlerin yapısal sentezi için gerekli temel de 

verilmiştir. Bahsedilen manipülatör, iyi bilinen Stewart Platform’u ve türevlerinden daha 

yüksek bir çalışma alanına kapsaması için tasarlanmıştır. Manipülatörün en önemli özelliği, 

üç döner ve üç lineer tahrik ünitesinden oluşan hibrid tahrik sistemidir. 

Sunulan kinematik analiz, düz ve evrik konum analizinden oluşmaktadır. Kullanılan 

ana gereçler Vida Teorisi ve geometrik kısıtlardır. Evrik konum analizi için analitik bir 

çözüme ulaşılmış olunmakla beraber, düz konum analizi için nümerik yöntemlere 

başvurulmuştur. Kinematik analiz sonuçlarından yararlanılarak, kaba bir çalışma alanı analizi 

de yapılmıştır. Dinamik analiz kısmında ise, evrik dinamik problemi Lagrange-Euler 

yaklaşımıyla çözülmüştür. 

Çalışmalarda, programlama dilleri ve paket programlar yoğun olarak kullanılmıştır. 

Yapısal sentez ve evrik konum analizlerinde yardımcı olması amacıyla CASSoM ve iMIDAS 

adlı iki program da geliştirilmiştir. Çalışmanın bilimsel literatüre en önemli katkısı, sunulan 

yeni tip paralel manipülatördür ki ileride diğer özelliklerinin de ayrıntılı olarak çalışılması 

gereklidir. 
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Chapter 1 

 

INTRODUCTION 

 
 The introduction of industrial robots was the beginning of a new era in many fields, 

especially in manufacturing industry. Eventually, the serial manipulators became an 

invaluable tool for a broad range of applications. As the science of machine and mechanisms 

develop and the need for higher precision, robustness, stiffness and load-carrying capacity 

arise, the parallel manipulators begin to show up. 

 In 1949, Gough proposed a universal tire test machine (Figure 1.1). However that new 

structure did not take attention till mid 60s. In 1965, Stewart used a similar parallel 

manipulator to design a flight simulator in his famous study [1] (Figure 1.2). In 1967, an 

engineer named Klaus Cappel took the first patent on octahedral hexapod (Figure 1.3) that 

was later actually built (Figure 1.4). Even today “Stewart Platform” or “Gough Platform” is 

taking attention from researchers. 

The main research activity in the field of parallel structure manipulators has began in 

80s and the scientific studies, together with real-life application kept a steady growth as it can 

be ascertained from the publications and products. In 90s, the Stewart-Gough Platform and 

parallel manipulators in general became a popular research topic. In 1995 alone, more than 

fifty papers have appeared in this field. 

 

 

 

 
Figure 1.1 – Gough’s universal tire test machine 
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Figure 1.2 – Schematic of Stewart Platform (Proc. IMechE, 1965-66) 

 

 

 

 

 

 

 

 
Figure 1.3 – Excerpt from the first patent on an octahedral hexapod issued in 1967 

(US patent No. 3,295,224). 
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Figure 1.4 - The first flight simulator based on an octahedral hexapod (courtesy of Klaus Cappel) 

 

 

 

 In general, parallel manipulators provide superior precision, robustness, stiffness and 

load capacity in excess of workspace, in contrast to conventional serial manipulators. In 

various tasks, parallel manipulators are used as vehicle simulators, high-precision machine 

tools, torque/force sensors, industrial robots and alike. They are also used for 

laser/camera/antenna positioning, ophthalmic surgery, et cetera. With the accumulation of the 

knowledge in this area, the areas of application for the parallel manipulators are growing 

rapidly. In a sense, walking machines with many legs are parallel manipulators such that, the 

feet touching the ground can be idealized as spherical joints and the body as the moving 

platform. 

 The most common type of parallel structure is the six degree of freedom (DOF) 

Stewart-Gough Platform. Many researchers proposed different designs, along with many 

different techniques and methods to solve the problems of kinematics [2-9], dynamics [10-15] 

control [16-21], design [22] and optimization [23-26]. 

 As indicated, much research has been done on the problem of forward kinematics. In 

contrast to serial manipulators, forward kinematics of a parallel manipulator is very hard to 

solve. Although closed form/analytical solutions are obtained for simpler parallel 

manipulators [27], numerical techniques are generally being used for their spatial 

counterparts. This complexity is due to the highly non-linear nature of equations governing 
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the forward kinematics of a parallel manipulator. Other difficult tasks regarding parallel 

manipulators are workspace [28-32] and singularity [33-37] analysis. A complete and general 

description of workspace still does not exist. 

 Surprisingly, some fields of research are still virtually untouched except for a few 

studies. One of those fields is the problem of structural synthesis. Structural synthesis of a 

manipulator is the preliminary task in designing a manipulator. For a parallel manipulator, 

this task becomes intense. 

 Another untouched field is the design of parallel manipulators other then spatial (λ = 

6), spherical or planar (λ = 3). Also design of parallel manipulators with both angular and 

linear constraints, like the Bennett Mechanism (1903) has not taken much attention yet. 

 

1.1 Characteristics of Serial and Parallel Manipulators 

  

 A serial manipulator consists of several links connected in series by various types of 

joints, typically revolute and prismatic joints. One end of the manipulator is connected to the 

ground and the other end is free to move in space. For this reason a serial manipulator is also 

referred as open-loop manipulator. The fixed link is called as base, and the free end where a 

gripper or a mechanical hand is attached, the end-effector. 

 A parallel manipulator is, in contrast to serial manipulators, is a closed-loop 

mechanism where the end-effector is connected to the base by at least two independent 

kinematic chains. The end-effector of a parallel manipulator is generally referred as platform 

and the kinematic chains connecting platform and the base are referred as branch, limb or leg. 

A parallel manipulator is said to be fully-parallel if the number of branches is equal to the 

number of degrees of freedom such that every branch is controlled by only one actuator. Also, 

a parallel manipulator is said to be symmetrical if the kinematic structure of all branches are 

the same. The manipulator studied in this thesis is a symmetrical, fully-parallel manipulator. 

 

1.2 Physical Comparison Between Serial and Parallel Manipulators 

 

 A force or moment exerted on the platform of a parallel manipulator is approximately 

equally distributed on all braches, increasing the load carrying capacity. On the other hand, 

the maximum payload of a serial manipulator is limited with the actuator having the smallest 

torque or force rating. This is analogous to the bottleneck problem of all serial systems; the 

overall capacity of the system is limited to the capacity of the weakest component. 
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 Generally, the actuators of a serial manipulator are placed on the links. The 

manipulator has to carry the weight of its own actuators. This leads to high inertia forces and 

possible unwanted vibrations that the designer has to consider. Also, the moment created by 

the payload has to be balanced with a counterweight in heavy industrial robots, even 

decreasing the load/weight ratio. In contrast, all actuators can be placed on or near immobile 

base in parallel manipulators. This leads to higher stiffness and lower inertia. Another 

advantage is that it is possible to use powerful and bulky actuators, without suffering from 

high inertia, to construct very fast manipulators. 

 In serial parallel manipulators, positioning errors of the joint actuators are 

accumulated in the end-effector. Small positioning errors in actuators inevitably lead to larger 

positioning errors in the end-effector. Due to this fact, sensors and motors used in high 

precision serial manipulators has to be very precise and therefore expensive. On the other 

hand, position of the end-effector of a parallel manipulator is less sensitive to actuator and 

articular sensor errors. Unlike a serial manipulator, positioning errors do not sum up in the 

end-effector but rather an average error propagates to the platform. Also because of its high 

stiffness, deformation of the links of a parallel manipulator is minimal, which contributes to 

the accuracy of the end-effector. 

 The main disadvantage of a parallel manipulator is its small useful workspace 

compared to a serial manipulator. The main reasons behind this are link interference, physical 

constraints of universal and spherical joints and range of motion of actuators. 

 It is necessary to say that not every parallel manipulator is guaranteed to have these 

advantages. Like in every aspect of engineering, an incompetent design may lead to a 

deficient manipulator. 

 

 

1.3 Comparison of Design Process Between Serial and Parallel Manipulators 

 

 The main tasks when designing a serial manipulator are strength and stiffness 

considerations, vibration characteristics. There is a variety of computer software directed to 

analyze these main tasks thereby saving the time of a designer and reducing the complexity of 

the problem. Structure, workspace and singularities generally do not impose problematical 

constraints. 

 However, the main problems to be solved in the design of a parallel manipulator are 

structure, workspace considerations, singularities, link interference. Unfortunately, solutions 
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to these problems are far from completeness and a systematic approach for design of parallel 

manipulators is still inexistent. The different structures proposed are mainly flourishing from 

intuition. 

 From kinematic and dynamic point of view, analysis of parallel manipulators are 

much more complicated then serial manipulators and most solutions lack analytical results. 

The complexity of the governing equations inevitably increases the computation time. 

 To generate a desired motion, inverse kinematics of a manipulator has to be solved. 

For serial manipulators inverse kinematics leads to multiple, and real solutions that the 

controller has to choose the most suitable. For a parallel manipulator, inverse kinematic 

solution is unique and generally a simple analytical solution can be found. However, a parallel 

manipulator is not able to attain every position because of singularity configurations and link 

interference. Therefore, a designer has to investigate the problem thoroughly. 

 

1.4 Singular Configurations of Parallel Manipulators 

 

 Let the joint variables denoted by a vector q and the location of the moving platform 

be described by a vector x. Then the kinematic constraints imposed by the branches can be 

written in the general form: 

0xqf =))(),(( tt      (1.1) 

 

where f is an n-dimensional implicit function of q and x, 0 is an n-dimensional zero vector. 

 Differentiating Eqn. (1.1) with respect to time, a relationship between the input joint 

rates and the end-effector output velocity as follows: 

 
..
qJxJ qx =      (1.2) 

where 






∂
∂

=
x
fJ x  and 








∂
∂

=
q
fJq  

 

 Above derivation leads to two separate Jacobian matrices. Hence the overall Jacobian 

matrix, J, can be written as 
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..
xJq =      (1.3) 

where xq JJJ 1−= . 

 

 Due to existence of two Jacobian matrices, a parallel manipulator is said to be at a 

singular configuration when either Jx or Jq or both are singular. Three different types of 

singularities can be identified. 

 

1.4.1 Singularity of First Kind 

 

 Singularity of first kind occurs when the determinant of Jx is equal to zero, namely, 

 

( ) 0det =xJ  

 

 Assuming that in the presence of such a singular condition the null space of Jx is not 

empty, there exist some nonzero 
.
x vectors that result in zero 

.
q vectors. That is, the moving 

platform can possess infinitesimal motion in some directions while all the actuators are 

completely locked. Hence the moving platform gains one or more degrees of freedom. This is 

in contradiction with a serial manipulator, which loses one or more degrees of freedom 

(Waldron and Hunt, 1988). In other words, at a second kind of singular configuration, the 

manipulator cannot resist forces or moments in some directions. 

 

1.4.2 Singularity of Second Kind 

 

 Singularity of first kind occurs when the determinant of Jq is equal to zero, namely, 

 

( ) 0det =qJ  

 

 In the presence of such a singular condition the null space of Jx is not empty, there 

exist some nonzero 
.
q vectors that result in zero 

.
x vectors. Infinitesimal motion of platform 

along certain directions cannot be accomplished. Hence the manipulator loses one or more 

degrees of freedom. Second type of singularity generally occurs at the workspace boundary. 
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1.4.3 Combined Singularities 

 

 Combined singularity occurs when the determinants of both Jx and Jq are zero. At a 

combined singular configuration, Eqn. (1.1) will degenerate. The moving platform can 

undergo some infinitesimal motions while all actuators are locked. On the other hand, it can 

also remain stationary while the actuators undergo some infinitesimal motion. 
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Chapter 2 

 

SCREW KINEMATICS 

 
In this thesis, the tool used to derive the kinematic equations is called as the screw 

theory. In this chapter, the screw theory is explained in detail. 

 

2.1 Definition of a Unit Screw in Space 

 

 A screw can be described as a dual vector as in figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 – A unit screw in space 

 
oweeE +=         (2.1) 

where 

e : the unit vector of screw axis 
oe : moment of e wrt. the origin of fixed coordinate system 

w: Clifford operator (w2=0) 

 

 Equation (2.1) is the definition of a unit screw. Screw algebra is the vector algebra of 

this dual vector. A screw can be described using three dual coordinates in space as 

 

e  

oe

y

z 

x 

Q M

L

P 

R

N 
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)~,~,~( NMLE         (2.2) 

 

 Using equation (2.1) and definition (2.2), each dual coordinate of a screw can be 

divided into two parts 

 

wPLL +=~   wQMM +=~   wRNN +=~        (2.3) 

 

 The six real coordinates of a screw (2.3) are called as the Plücker coordinates of unit 

screw E(L,M,N,P,Q,R). L,M,N are the components of the unit vector e and P,Q,R are the 

components of the moment vector oe .  

 Velocity and acceleration of a unit screw in space can be obtained from the first and 

the second differentials of (2.3) with respect to time as: 

 
...

PwLL +=~   
...

QwMM +=~   
...

RwNN +=~        (2.4) 

......

PwLL +=~   
......

QwMM +=~   
......

RwNN +=~        (2.5) 

 

 From equations (2.4) and (2.5), one can write the time derivatives of Plücker 

coordinates of a unit screw as: 

 

),,,,,(
.......

E RQPNML    ),,,,,(
..............

E RQPNML  

 

2.2 Equation of a Unit Screw in Space 

 

 In this section the equations relating Plücker coordinates to Cartesian space will be 

derived. Figure 2.2 shows a unit screw lying arbitrarily in space. 

 The moment of the unit vector component, oe is defined as the vector product of the 

radius vector and the unit vector as: 

 

eρe ×=o       (2.6) 

 

where ),,( zyxρρ = is the radius vector to an arbitrary point on the screw axis E. 
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Figure 2.2 – A unit screw with radius vector 

 

 

 From equation (2.6) we have; 

 

kjikji )()()( LyMxNxLzMzNyRQP −+−+−=++  

 

or 

 

MzNyP −=   NxLzQ −=   LyMxR −=     (2.7) 

 

 Equations (2.7) are called as the equations of the screw axis, which are the equations 

of a line in space. The equations of the axis of a screw in Plücker coordinates are homogenous 

wrt. their coordinates. From (2.7) we can write: 

 

0)()()( =−− PzMyN λλλ  

0)()()( =−− QxNzL λλλ  

0)()()( =−− ryLxM λλλ  

 

 If (L,M,N,P,Q,R) satisfies the line equations then (λL, λM, λN, λP, λQ, λR) also 

satisfies the line equations. Since screw E is unit, E2 = 1 + w·0, in coordinate form we have: 

 

01~~~ 222 ⋅+=++ wMNL      (2.8) 

e

oe

y

z 

x 

ρ

E
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wPLLL 2~ 22 +=  wQMMM 2~ 22 +=  wRNNN 2~ 22 +=           (2.9) 

 

 Substituting (2.9) into (2.8) we have 

 

01)(2222 ⋅+=+++++ wRNQMPLwNML     (2.10) 

 

 From (2.10), one can write using the components of e and oe as: 

 

00 =++⇔=⋅ NRMQLPoee  

11 222 =++⇔=⋅ NMLee  

 

 The system of equations (2.11) provides us with two constraints regarding Plücker 

coordinates. So from six Plücker coordinates, just four are independent. The remaining two 

can be found using (2.11). We can remark that: 

 

• Plücker coordinates are dependent 

• The axis of a screw is defined synonymously with ),,( NMLe and ),,( RQPoe . 

To find
o.

e and
o..

e , we can take the time derivative of (2.7) as: 

 
.....
zMzMyNyNP −−−=  

.....
xNxNzLzLQ −−−=  

.....
yLyLxMxMR −−−=  

)(2
..............
zMyNzMyNzMyNP −+−+−=  

)(2
..............
xNzLxNzLxNzLQ −+−+−=  

)(2
..............
yLxMyLxMyLxMR −+−+−=  

 

(2.11)

(2.12)
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 Using (2.7) and (2.12), one can find the magnitude of components of the moment 

vector ),,( RQPoe  and its time derivatives from known vectors ),,( zyxρ and ),,( NMLe and 

their known time derivatives. 

 

2.3 Kinematics of Two Unit Screws in Space 

 

 A rigid body in space can be described by two unit screws E1 and E2. Figure 2.3 

shows two unit screws placed arbitrarily in space. The angle and the distance between these 

two screws is defined with the dual angle, awA ⋅+=α~ whereα is the twist angle and a is the 

shortest distance between the two screw axis. 

 

 

 

 
 

 

 

 

Figure 2.3 – Two arbitrary unit screws in space 

 

For these two unit screws, one can write the following equations: 

 

⇒








=⋅

⋅+=

⋅+=

A

w

w

~cos

01

01

21

2
2

2
1

EE

E

E

ANNMMLL

wNML

wNML

~cos~~~~~~
01~~~
01~~~

212121

2
2

2
2

2
2

2
1

2
1

2
1

=++

⋅+=++

⋅+=++

           (2.13) 

 

 From screw algebra we know that 

 

αα sincos)~cos( awA ⋅−=         (2.14) 

 

 From six dual coordinates 222111
~,~,~,~,~,~ NNLNML that describe the position of a rigid 

body in space, just three of them are independent as we have three constraint equations (2.13). 

α

a 

)~,~,~( 1111 NMLE

)~,~,~( 2222 NMLE  
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From equations (2.13) and (2.14), using the real Plücker coordinates of the screws E1 and E2 

we have: 

 

121212

122112212121212121

222222
2
2

2
2

2
2

111111
2
1

2
1

2
1

sincos
)(

01)(2

01)(2

αα aw
NRNRMQMQPLLPwNNMMLL

wRNQMPLwNML

wRNQMPLwNML

⋅−=
++++++++

⋅+=+++++

⋅+=+++++

 (2.15) 

 

From (2.15) it is clear that unit vectors 1e and 2e , moment vectors o
1e and o

2e can be 

written using their components as; 

 

121221212121212112122121

122121211221

2
2

2
2

2
222

22222222

2
1

2
1

2
111

11111111

sinsin

coscos
11

00

11

00

αα

αα

aRNNRQMMQPLLPa

NNMMLL
NML

RNQMPL

NML

RNQMPL

oo

o

o

−=+++++⇔−=+

=++⇔=
=++⇔=

=++⇔=

=++⇔=

=++⇔=

eeee

ee
ee

ee

ee

ee

 

 

 The last equation in (2.16) describes the relative moment of two screws E1 and E2 in 

screw theory. It can be seen that the relative mutual moment of the two screws equals zero if: 

 

• 012 =α , Axes of E1 and E2 are parallel 

• a12 = 0, Axes of  E1 and E2 are intersecting 

 

That is, from 12 Plücker coordinates of two screws E1 and E2, describing the position 

of a rigid body in space, just 6 of them are independent. We can find the remaining 6 

coordinates from the constraint equations (2.16). To define the components of ),,( 1111 RQPoe  

and ),,( 2222 RQPoe  from ),,( 1111 zyxρ , ),,( 2222 zyxρ , ),,( 1111 NMLe , ),,( 2222 NMLe  one can 

use (2.7) for E1 and E2. When the axes of the screws are parallel we will have L = L1 = L2, M 

= M1 = M2 and N = N1 = N2. So in this case, 9 coordinates is enough instead of 12 coordinates 

where only 6 of them are independent as we have three constraint equations as given in (2.18) 

 

(2.16)
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1

0
0

222
222

111

=++

=++
=++

NML

NRMQLP
NRMQLP

     (2.18) 

 

2.4 Kinematics of Three Unit Screws in Space 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 – Three arbitrary unit screws in space 

 

 Let’s describe three arbitrary unit screws in space; Ei, Ej and Ek as in figure 2.4. We 

will write the algorithm to find the dual coordinates of unit screw )~,~,~( kkkk NMLE  using 

known dual coordinates of screws )~,~,~( iiii NMLE  and )~,~,~( jjjj NMLE . Dual angles between 

those three unit screws are defined using (2.14) as ijijij waA +=α , jkjkjk waA +=α , 

kikiki waA +=α  where kijkij ααα ,,  and kijkij aaa ,,  are the angles and shortest distances 

between the corresponding screw axis respectively. 

 Firstly we describe the same task for system of unit vectors e, the real part of a unit 

screw E. That is, we need to define the direction cosines Lk,Mk,Nk of ek from given unit 

vectors ei(Li,Mi,Ni) and ej(Lj,Mj,Nj). Now we define a new vector n = ei x ej to determine the 

orientation of unknown vector ek wrt. the plane defined by ei x ej. 

 

ijijji αα sinsin =⋅= een  

 

 

)~,~,~( iiii NMLE

)~,~,~( jjjj NMLE

)~,~,~( kkkk NMLE  

ijα

jkα

kiα

ija

jkα

kia

z 

x 

yO 
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 To define the direction of unit vector ek we can use the following equations: 

 

kjkj

kiik

ijknk

α
α

αα

C
C

SC

=⋅
=⋅

=⋅

ee
ee

ne

    (2.19) 

 

 In equations (2.19) C stands for cos and S stands for sin. From later on, we will use 

this convention for the sake of brevity. Writing (2.19) in coordinate form we have: 

 

jkjkjkjk

kiikikik

ijknjijikjijikjijik

NNMMLL
NNMMLL

LMMLNNLLNMMNNML

α
α

αα

C
C

SC)()()(

=++
=++

=−+−+−

 (2.20) 

 

 The system of three linear equations (2.20) in three unknowns Lk, Mk and Nk can be 

solved using various approaches. In what follows is the application of Crammer’s method to 

find the solutions. 

System of equations (2.20) can be written in matrix form as: 

 

( ) ( ) ( )

















=






























 −−−

jk

ki

ijkn

k

k

k

jjj

iii

jijijijijiji

N
M
L

NML
NML

LMMLNLLNMNNM

α
α
αα

C
C

SC
 

 

 The discriminant of the coefficients matrix is: 

 

( ) ( ) ( )

jjj

iii

jijijijijiji

NML
NML

LMMLNLLNMNNM −−−
=∆  

 

( ) ( ) ( )
jj

ii
jiji

jj

ii
jiji

jj

ii
jiji ML

ML
LMML

NL
NL

NLLN
NM
NM

MNNM −+−−−=∆  

 

( ) ( ) ( ) ijijjijijijijiji LMMLNLLNMNNM α22222 S==−+−+−=∆ n  
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 Following Crammer’s method, the unknowns can be found as: 

 

( ) ( )
ij

jjjk

iiki

jijijijiijkn
L

k

NM
NM

LMMLNLLN
L α

α
α
αα

2S
C
C

SC
−

−−
=

∆
∆

=  

 

( ) ( )
ij

jjkj

ikii

jijiijknjiji
M

k

NN
NN

LMMLMNNM
M α

α
α
αα

2S
C
C

SC
−

−−
=

∆
∆

=  

 

( ) ( )
ij

jkjj

kiii

ijknjijijiji
N

k

ML
ML

NLLNMNNM
N α

α
α
αα

2S
C
C

SC
−

−−
=

∆
∆

=  

 

After expanding the discriminants and simplifying, we have: 

 

( ) ijknijijjik LDLDLL ααα 2
32 SCS −++=  

( ) ijknijijjik MDMDMM ααα 2
32 SCS −++=  

( ) ijknijijjik NDNDNN ααα 2
32 SCS −++=  

 where 

ijjkkiD ααα CCC2 −=  kiijjkD ααα CCC3 −=  

jijiij MNNML −=   jijiij NLLNM −=  jijiij LMMLN −=  

 

 From three angles jkki αα , and knα , just two of them are independent as we have one 

constraint equation given as: 

 

1222 =++ kkk NML     (2.21) 

 

 Substituting Lk, Mk and Nk we can find the angle knα  as a function of angles kiα  and 

kjα : 
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( )
ij

ijjkkijkijij
kn α

αααααα
α

S
CCC2CCS

C
2/1222 +−−

±=  

 

 Sign )(± indicates two possible directions of vector ek wrt. plane ei x ej . A (+) 

designates that the angle between ek and positive direction axis n = ei x ej < 2/π  where as (–) 

designates knα >  2/π . Generalized equations for the components of unit vector ek can now be 

written as follows: 

 

( )
( )
( ) ijijijk

ijijijk

ijijijk

DNDNDNN

DMDMDMM

DLDLDLL

α

α

α

2
123

2
123

2
123

S

S

S

−

−

−

±+=

±+=

±+=

             (2.22) 

where 

( ) 2/1222
1 CCC2CCS ijjkkijkijijD αααααα +−−=  

 

 In the solution of above task, two cases are possible; 

a) System of vectors kji eee ,, are fixed to the rigid body, that is kji ααα ,, are constant. In 

this case the sign of expression D1 is decided according to the rule given above. 

b) Vector ek is not fixed as ek and ek and either kiα or jkα is variable. In this case there are 

two solutions of D1 (i.e. )(±  is preserved). The sign of D1 is chosen by extra 

conditions. These conditions can be the loop closure equations of vectors in the 

mechanism.  

 

Apparently, discriminant ∆ of D1 should be greater then zero for a real solution to 

exist. Let’s discuss the case when D1 = 0. 

 

0CCC2CCS 222
1 =+−−= ijjkkijkijijD αααααα              (2.23) 

 

Leaving kiαC alone we get 

 

jkijkijkijjkijjkijki αααααααααα ±=→±=±= )C(SSCCC  
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 That’s, the variable angle kiα  is in the following range: 

 

jkijkijkij ααααα +<≤−  

 

 This condition is met for all 01 ≥D . Applying the same method to (2.23) solve for 

angles ijα or jkα , we can write the following for these angles: 

 

kiijjkkiij ααααα +<≤−  

jkkiijjkki ααααα +<≤−  

 

 Now that we derived and solved the equations of components of unit 

vector ),,( kkkk NMLe , we may find the components of the moment vector ),,( kkk
o
k RQPe . 

Firstly we will transform the coordinates of the unit vector to dual coordinates of unit screw 

using Kotelnikov – Shtudi transformations [38]. Using this principle, we can use the 

equations of vector algebra as equations of screw algebra. The system of equations (2.22) is as 

follows after transformation: 

 

( )
( )
( ) ijjijiijk

ijjijiijk

ijjijiijk

ADLMMLDNDNN

ADNLLNDMDMM

ADMNNMDLDLL

2
123

2
123

2
123

S~)~~~~(~~~~~
S~)~~~~(~~~~~

S~)~~~~(~~~~~

−

−

−

−±+=

−±+=

−±+=

    (2.24) 

 

where 

( )

ijkijk
o

ijjkki
o

ijjkkijkijij
o

AAAwDDD

AAAwDDD

AAAAAAwDDD

CCC~
CCC~

CCC2CCS~

333

222

2/1222
111

−=+=

−=+=

+−−=+=

 

 

 Using the rules of screw algebra and after some arrangement, the general solution of 

( )kkkkkkk RQPNML ,,,,,E  with real Plücker coordinates is found as follows. 
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( )
( )
( )
( )
( )
( ) ijk

o
j

o
i

o
ijjiijk

ijk
o

j
o

i
o

ijjiijk

ijk
o

j
o

i
o

ijjiijk

ijijijk

ijijijk

ijijijk

fNDNDNDNDRDRDRR

fMDMDMDMDQDQDQQ

fLDLDLDLDPDPDPP

DNDNDNN

DMDMDMM

DLDLDLL

α

α

α

α

α

α

2
1321321

2
1321321

2
1321321

2
123

2
123

2
123

S

S

S

S

S

S

−

−

−

−

−

−

−++±++±=

−++±++±=

−++±++±=

±+=

±+=

±+=

 (2.25) 

 where 

( ) 2/1
32

2
1 CCS jkkiij DDD ααα −−=  ijjkkiD ααα CCC2 −=  

ijkijkD ααα CCC3 −=   jkkiijD ααα CCC4 −=  

( ) 1
14321 SSS −++= DaDaDaDD ijijjkjkkiki

o ααα  

kikiijjkjkjkijij
o aaaD ααααα SCSCS2 −+=  

jkjkijkikikiijij
o aaaD ααααα SCSCS3 −+=  

ijijjijiij NQQNMRRMP −+−=  jijiijijij NPPNLRRLQ −+−=  

ijijjijiij MPPMLQQLR −+−=  ijijaf α2
1 S=  

 

 For three unit screws arbitrarily positioned in space, if two of them and the dual angles 

between them are known, one can find the Plücker coordinates using (2.25). Also note that, 

the unit vector defining the axis of a screw has three components of which only two are 

independent. Using three screw axes, it is possible to define the position of a rigid body in 

space, which makes a total of six independent parameters. The kinematics of three unit screws 

in space for the general case is therefore concluded.  

 

2.5 Kinematics of Three Recursive Screws in Space 

 

As explained in section 2.4, it is possible to find the Plücker coordinates of a unit 

screw using two known screws and the dual angles between them. However, equations (2.25) 

represent the general case and therefore somewhat bulky. For kinematic analysis, it is 

desirable to have simpler equations to save computation time. For this reason, we will create 

the same kind of equations for the case of three specially placed screws.  As we will see in 

chapter 4, this screw placement describes a well-suited method for the solution of forward 

kinematics.  
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Let )~,~,~( iiii NMLE and )~,~,~( kkkk NMLE be two unit screws positioned arbitrarily in 

space. A third unit screw )~,~,~( jjjj NMLE , perpendicular to both iE  and kE , thus jE  lies on 

the line of shortest distance between iE  and kE  as shown in figure 2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5 – Three recursive screws in space 

 

 

 

 In figure 2.5, the dual angles between iE , jE and kE are given by 2/πα =+= ijijij waA  

( 0=ija ), 2/πα =+= jkjkjk waA ( 0=jka ), kikiki waA +=α  where kiα is the twist angle and 

kia  is the shortest distance between screw axis iE  and kE . 

Now, the recurrent screw equations to find )~,~,~( kkkk NMLE  from )~,~,~( iiii NMLE  and 

)~,~,~( jjjj NMLE  will be created. First of all we will describe the recurrent equations for unit 

vector ),,( kkkk NMLe using known vectors ),,( iiii NMLe and ),,( jjjj NMLe . To have only 

n

ie

kia

je

// n  

knαke  

// ie  
kiα
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one meaning of orientation for unit vector ke wrt. plane ( ji ee , ), we describe a new vector n as 

1S ==→×= ijjiji αeeneen . To determine the direction of vector ke ( knα  = π/2- kiα ) we 

have: 

kikiknkk ααπα S)2/C(C =−== nene  

kikiikik αα CC == eeee                         (2.26) 

0C == kjjkjk αeeee  

 

Re-writing equation (2.26) in coordinate form: 

 

Lk(MiNj – NiMj) + Mk(NiLj – LiNj) + Nk(LiMj – MiLj) = Sαki 

LkLi + MkMi + NkNi = Cαki                       (2.27) 

LkLj + MkMj + NkNj = 0 
 

Solving the system of linear equations (2.27) for Lk, Mk and Nk using Crammer’s 

method, ∆=1 and the components of vector ),,( kkkk NMLe are found as: 

 

Lk = (MiNj – NiMj) Sαki + Li Cαki 

Mk = (NiLj – LiNj) Sαki + Mi Cαki       (2.28) 

Nk = (LiMj – MiLj) Sαki + Ni Cαki 

 

 Using Kotelnikov - Shtudi transformations on (2.28) to find the equations of screw 

)~,~,~( kkkk NMLE  we change the form of equation (2.28) to: 

 

kiikiijjik ALANMNML C~S)~~~~(~ +−=  

kiikiijjik AMALNLNM C~S)~~~~(~ +−=           (2.29) 

kiikiijjik ANAMLMLN C~S)~~~~(~ +−=  
 

From equations (2.29), we can find the components of the moment of unit vector 

),,( kkk
o
k RQPe  as: 

 

Pk = (MiRj + NjQi – NiQj – MjRi – akiLi) Sαki + [(MiNj – NiMj)aki + Pi] Cαki 
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Qk = (NiPj + LjRi – LiRj – NjPi – akiMi) Sαki + [(NiLj – LiNj)aki + Qi] Cαki (2.30) 

Rk = (LiQj + MjPi – MiPj – LjQi – akiNi) Sαki + [(LiMj – MiLj)aki + Ri] Cαki 

 

 Equations (2.28) and (2.30) are called as Recurrent Screw Equations, introduced by R. 

Alizade [39]. They are called as recurrent because, when we apply them to kinematics they 

will be used recursively to obtain the solutions, as explained in detail in chapter 4. 
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Chapter 3 

 

STRUCTURAL SYNTHESIS OF PARALLEL MANIPULATORS 

 
 One of the most important steps in designing a robotic mechanical system is to solve 

the problem of structural synthesis of mechanisms. An inefficient design for a mechanism, 

from structural point of view, will lead to excessive loads at kinematic pairs. At this point, 

computer software’s make it possible to refine and correct the manipulator or robot structure. 

 In year 1883 M. Grubler [40,41] described a structural formula for planar mechanisms 

for a range of functional determinant (λ=3, λ=2) and kinematic chains with revolute, cam and 

prismatic pairs, and another equation for only prismatic pairs. In 1887, P. O. Somov [42] 

described a structural formula for spatial and planar mechanisms (λ=6, λ=3). Many other 

scientists devoted their studies in this direction as, P.L. Chebyshev, D. Silvester, K. I. 

Gokhman, R. Muller, A.P. Malushev, F. Wittenbayer, K. Kutzbach, V. V. Dobrovolski, J. F. 

Moroshkin, B. Paul, K. H. Hunt, N. Boden, O. G. Ozol, etc. 

 Further development of structural formulas to find degree of freedom (DOF) of 

complex mechanisms with variable general constraint was done by F. Freudenstein and R. 

Alizade [43]. This formulation incorporated various magnitudes of constraints imposing 

linear loop closures considering geometrical connections of kinematic pairs and also 

independent variables of relative displacements. In 1988, Alizade [44] presented a new 

structural formula, in which platform types, number of platforms, number of branches 

between platforms and so were included along with mobility of kinematic pairs. Analysis of 

physical essence and geometrical interpretation of various constraint parameters were also 

given [45,46]. 

 The basis of structural synthesis of mechanisms is indication of kinematically 

unchanging bodies. Defining the inseparable groups and constructing mechanisms using their 

combinations was done, striving to systemize the methods for investigating the mechanisms. 

In year 1916, L. V. Assur [47] introduced the formal structural classification for planar 

mechanisms and in 1936, I. I. Artobolevski [48] introduced the structural classification for 

both planar and spatial mechanisms using the loop development method. The method of V. V. 

Dobrovolski [49] was based on the principle of dividing joints but the structural synthesis 

made by S. N. Kojevnikov [50] was using the method of developing joints. Structural 

synthesis by O. G. Ozol [51] was based on mechanisms topological property. 
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 The methods reported by F. Freudenstein [52, 53] and Davies et. al.  [54] were based 

on graph theory. Freudenstein [55] used the concept of dual graphs and generated kinematic 

chains with up to 11 links and 2 DOF. A computer-aided method for generating planar 

kinematic chains was also introduced [56]. Hunt [57] presented the method for generating the 

chains using a test for avoiding isomorphism. The method presented in [58] is based on the 

concept of loop formation, which cancels the necessity of the test for isomorphism. 

 The 6-DOF parallel manipulator introduced by D. Stewart [1] took great interest. 

Further development on structural synthesis of spatial mechanisms [59], and new structural 

classification of mechanisms [60] was given by R. Alizade, using the method of developing 

basic links (platform) and their connections. 

 

3.1 Structural Formula 

 

 Increasing the number of independent parameters in a structural formula will lead to a 

more general formulation that will cover more geometrical conditions. Kinematic chains that 

form a platform (or base) are usually hexagons, pentagons, quadrilaterals and triangles. Now 

the theorem will be formulated, establishing the connections joining the platforms via 

intermediate branches. 

 

 Definition: Total number of linear independent closed loops is defined as the 

difference between the total number of joints in platforms and total number of platforms, 

intermediate branches: 

 

     L = N – C – B    (3.1) 

 

 where  

B: total number of platforms 

N: total number of joints in the platforms,  

C: total number of intermediate branches between platforms 

L: number of independent loops. 

 

 As a particular case, when B = 0, we will have a single loop. The structural formula 

for parallel kinematic chains is written as: 

 



 26

      W = ∑
=

M

i
im

1
 – λ(N – C – B) + q     

(3.2) 

 where  

mi: independent scalar variable of relative joint displacement, 

  M: total number of independent scalar displacement variable, 

  λ: total number of independent, scalar loop closure equations, 

  q: number of redundant connections. 

 

 Linking each magnitude of displacement variable mi to one DOF relative joint motion 

fi and taking q = 0 in equation (3.2) we get: 

 

    W = ∑
=

j

i
if

1
– λ(N – C – B)         

(3.3) 

 

 where j is the number of joints connecting n links (j = n – 1). 

 

 Using the principle of interchangeability of kinematic pairs, we can describe our 

manipulators and mechanisms using just single mobility kinematic pairs. From now on in this 

text, ‘joint’ will be used in account for single mobility kinematic pair. Taking W = 0, we get 

the equation for structural groups that are indivisible into other structural groups: 

 

j – λ(N – C – B) = 0    (3.4) 

 The number of independent loops l−+= jL 1 , we can write this as: 

 

nLLj +=−+= 1l     (3.5) 

 

 Using equations (3.5), (3.4) and (3.1) we can find a second equation of structural 

groups as: 

 

        n – (λ – 1)(N – C – B) = 0   (3.6) 
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 Using equations (3.4) and (3.6), we can solve structural synthesis task for parallel 

structural groups for λ = 6 or λ = 3. If B = 0, equations (3.4) and (3.6) can be used for λi = 2, 

3, 4, 5, 6 where we can describe single loop structural groups considering linear and angular 

constraint kinematic pairs. 

 

3.2 Structural Synthesis of Parallel Manipulators 

 

 Structural synthesis of parallel manipulators will now be considered. From equation 

(3.4), (3.6) we may write the two objective functions of structural synthesis for parallel 

structural groups as: 

 

   j = λ(N – C – B)    (3.7) 

 

          n = (λ – 1)(N – C – B)    (3.8) 

 

 also we have additional requirements in the form of equalities and inequalities as: 

 

1) 3B ≤ N ≤ λB 2) B – 1 ≤ C ≤ 0.5N – 1 3) b = N – C 

4) L = N – C – B 5) j = λL 6) jb = j / b 7) bv = N – 2C         (3.9) 

 

 

 

where   

b: number of branches 

 jb: number of joints in a branch  

bv: number of vacant branches. 

 

 For above conditions, we will give some explanations and reach to some conclusions: 

1) The number of vacant branches is defined as the difference between number of 

platforms joints and twice the number of intermediate branches between them. A 

vacant branch is the branch that’s one end is connected to a platform and the other 

end is vacant for connecting an actuator or connecting to ground. 
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2) Total number of branches ‘b’ is defined as the difference between the total number 

of joints ‘N’ in the platforms and intermediate branches ‘C’ between them. Note 

that total number of branches is the sum of intermediate branches and vacant 

branches, i.e. b = bv + C. 

3) Total number of joints in a branch of a structural group cannot exceed five. Note 

that by adding the actuators, there may be more than five degree of freedom per 

kinematic chain forming that branch. 

4) The total number of joints in a structural group is equal to number of independent 

loops (L) multiplied by the number of independent loop closure equations (λ). 

 

Example: Let’s determine the structure of a multi-platform spatial (λ = 6) parallel 

manipulator with six degree of freedom (W = 6). The six input actuators will be located on the 

ground (or on a fixed base). We’ll take one quadrilateral and two hexagonal platforms (Note: 

the shape of the platforms defines the number of joints of that platform, a quadrilateral 

platform means that platform is formed of four joints where as a hexagonal platform is 

composed of six joints), thus B = 3. Now, we may find N by summing the number of joints in 

each platform as N = 4 + 6 + 6 = 16. We need at least six vacant branches since we need to 

put six actuators (bv ≥ W), so we take bv = 6. From (9), we find the number of intermediate 

branches (or connections) between platforms as C = 5 which we also check and see that it 

satisfies the condition as 2 ≤ C ≤ 7, then determine the total number of branches as b = 11, the 

number of independent loops as L = 8, the number of kinematic pairs as j = 48. The number of 

joints on each branch is jb = 48 / 11, let’s denote this as jb = 4(4), the latter 4 being the 

remainder. Now the 5 joints on four branches and 4 joints on the remaining seven branches is 

placed. (Figure 3.1). Note that for this particular example, we have only one way to place the 

remaining joints since we cannot put more than 5 joints on a single branch as stated before. 

At this point we can give the following definitions for structural classification: 

 

Class of a structural group is the number of platforms that the group has. A structural group 

without any platforms is called zero class. 

 

Type of a structural group is determined by the shape of its platforms. 

 

Kind of a structural group is the number of kinematic constraints between its platforms. 
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Order of a structural group is the number of its vacant branches. 

 

Modification: We can have three modifications for a structural group. First modification 

consists of revolute pairs R and their kinematic substitutes as Universal joint, U (RR) and 

spherical joint, S (RRR). Second modification consists of both revolute R and prismatic P 

pairs and their kinematic substitutes as C (RP), U (RR) and S (RRR) for spatial chains. The 

third modification consists of screw pairs H. The number of P and H pairs in each loop cannot 

exceed three. Classification of higher-class structural groups for manipulators λ=6 with W=6, 

λ=5 W=5 and λ=3 with W=3 are given in Figure 3.1. Using this algorithm, any structural 

group can be described using computers. 
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Parameters of Structural Synthesis Structural Classification 
λ B N bv C b L j jb Class Kind Type Order Mod.

6 3 16 6 5 11 8 48 4(4) 3 5 4,6,6 6 1 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

λ B N bv C b L j jb Class Kind Type Order Mod.

5 1 4 4 0 4 3 15 3(3) 1 0 4 4 1 
  

 
 
 
 
 
 
 
 
 
 
 

λ B N bv C b L j jb Class Kind Type Order Mod.

3 5 15 5 5 10 5 15 1(5) 5 5 3,3,3,3,3 5 2 

 

 
 
 
 
 
 
 
 
 

Figure 3.1 – Examples of structural synthesis of some parallel manipulators 
operating in space and subspaces. 

2
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3.3 Geometrical Structural Synthesis of Parallel Manipulators 
 

 The purpose of geometrical structural synthesis is creating the foundation to discover 

the particular geometrical features and optimum structures by: 

1) Generating set of main branches of platforms and structural groups. 

2) Linking structural groups to the vacant branches of the manipulator. 

3) Creating modular systems with multi DOF using successive layers of parallel 

manipulators. 

 

3.3.1 Generating Set of Main Branches of Platforms and Structural Groups 

 

Consider the task of geometrical structural synthesis by generating a set of branches 

for a parallel manipulator. 

 

 Definition: Position and orientation of ‘rigid body’ and its subsets ‘plane or line’, 

‘cone surface’, ‘spherical or plane motion’ in space can be described by six, five, four and 

three independent parameters respectively. A branch, taken as individual, must also has as 

many DOF as independent parameters to be able to describe a rigid body or its subsets. 

 Let’s consider lower kinematic pairs only: one mobility p1, two mobility p2(p1- p1), 

and three mobility p3(p1- p1- p1) where p1 = R  (revolute) or P (prismatic) or H(screw), p2 = 

C(cylindrical) or U(Universal), p3 = S(spherical) joints. On the base of interchangeability of 

kinematic pairs we get common number of modification of platform branches (Table 3.1).  

 

3.3.2 Linking Structural Groups to the Vacant Branches 

 

 In Figure 3.2a, a spatial parallel manipulator with a triangular platform is shown. 

Each of three branches has two actuators. To place the actuators on the fixed base, a R-R-R 

structural group is added to each branch. 
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∑ƒi 6 5 4 3 
l  2 3 4 5 6 2 3 4 5 2 3 4 3 

non-symmetrical 
branches 1 18 64 68 23 2 14 31 16 5 14 10 6 

symmetrical 
branches 0 14 58 62 19 2 10 31 10 3 11 5 2 

in all 1 32 122 130 42 4 24 62 26 8 25 15 8 

pi p 3
-p

3 

p 1
-p

2-p
3 

p 2
-p

2-p
2 

p 1
-p

1-p
1-p

3 
 p

1-p
1-p

2-p
2 

p 1
-p

1-p
1-p

1-p
2 

p 1
-p

1-p
1-p

1-p
1-p

1 

p 3
-p

2 

p 1
-p

2-p
2 

p 1
-p

1-p
1-p

2 

p 1
-p

1-p
1-p

1-p
1 

p 1
-p

3 
p 2

-p
2 

p 2
-p

1-p
1 

p 1
-p

1-p
1-p

1 

p 1
-p

1-p
1 

 
Table 3.1 – Possible set of main branches 

 
 

3.3.3 Modular Parallel Manipulators 

 

 A modular 6 DOF manipulator is shown in Figure 3.2b. It consists of 2 x (3 x RUU) 

type spatial 3 DOF parallel manipulators. The upper one rests on the mobile base of the lower 

one. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 –     a) 6 DOF spatial parallel manipulator with a triangular platform.  
b) 2x3 DOF modular spatial parallel manipulator. 

 

a) b)
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3.4 Kinematic Structural Synthesis of Parallel Manipulators 

 

Kinematic structural synthesis focuses on the following problems: 

1) Generation of the branches of parallel manipulators by describing the construction 

parameters such as the axis of kinematic pairs and links. 

2) To identify redundant constraints to find the angular and linear conditions for over-

constraint mechanisms. 

3) Rearranging the branch configurations of a parallel manipulator such that it will be 

easier to solve the forward and inverse task. 

 

3.4.1 Describing the Construction Parameters 

 

To generate the branches of a parallel manipulator, we can use the principle of 

interchangeability of kinematic pairs for cylindrical C(RP), Universal U(RR), spherical 

S(RRR) where the number of links n decreases. Each branch of the manipulator is connected 

to a mobile platform composed of 3 to 6 joints. These branches may be considered as separate 

serial manipulators with W = 3..6 DOF. We know that W = 6 DOF serial manipulator can 

orient and position a rigid body in space where as W = 3..5 DOF serial manipulator can orient 

and position in some subspace. Let’s consider kinematic structural synthesis of a branch with 

three joints. The task is to find the limited number of structural schemes and construction 

parameters of the branch with revolute joints. The structural scheme of kinematic chains is 

divided by a number of unit screws. In Figure 3.3, the number of screw chains is 6..8 and we 

know that we have 4 combinations of variables and construction parameters. The combination 

of revolute and prismatic pairs for this kind of branch equals 8. Theoretically it is possible 

that 8x4 = 32 combination with different variable and construction parameters exists. For 

branch with four joints we have 8 algorithm and 15x8 = 120 different theoretical schemes. For 

branch with five joints we have 14 construction and combination with revolute and prismatic 

pair that will produce 26x14 = 364 theoretical algorithms to find the variable and construction 

parameters. 
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Construction Parameters 
a13, a24, a35 a13, a24, a35, α24 a13, a24, a35, a46, α35 a13, a24, a35, a46, a57, 

α24, α46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

θ13, θ24, θ35  θ13, θ35, θ46 θ13, θ24, θ46 θ13, θ35, θ57 
Variable Joint Angles 

 
Figure 3.3 – Structural synthesis of an RRR kinematic chain. 

 
 

3.4.2 Identifying Redundant Constraints 

 

This step of kinematic structural synthesis is to find a manipulator with redundant 

constraints. Plane and spherical mechanisms was shown by Willis (1870), spatial linkage 

mechanism with four revolute pairs by Bennet (1903) and spatial six-bar by Bricard (1923). 

Combining Bennet mechanisms, F. Myard (1931) and M. Goldberg(1943) created five and six 

bar spatial mechanisms with revolute pairs respectively. Now we use spherical parallel 

manipulators, spherical five or six link manipulators widely in practice. By improving the 

analytical methods, we can solve the task of structural synthesis to find new types of 

manipulators with linear and angular constraints. 

 

3.4.3 Rearranging Branch Configurations 

 

Parallel manipulator with a mobile hexagonal platform has 6 DOF that describes the 

orientation and position of a rigid body in space. Each branch can conditionally be broken 

into six serial 6 DOF manipulators. For inverse task we know the positions and orientations of 

axis of each kinematic pair lying on the mobile platform (Figure 3.4a). 
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Let’s consider a 5 DOF parallel manipulator with a mobile pentagonal platform that’s 

end-effector moving in subspace. To solve kinematic structural synthesis we conditionally 

break one branch with 5 DOF and remaining branches to 6 DOF serial chains. Given 

parameters are the position of the center of the platform and two parameters of normal of the 

platform in subspace. For a 5 DOF serial manipulator, five parameters can be solved to find 

one input and four joint variables. Secondly, we solve the position and orientation of 

kinematic pairs lying on the mobile platform. The third step is to solve inverse task for each 

remaining branch conditionally broken and constricted as serial manipulator with 6 DOF 

(Figure 3.4b). 

Consider a 4 DOF parallel manipulator in subspace with a mobile quadrilateral 

platform. Known parameters for these manipulator are position of center of its mobile 

platform ρ(x,y,z) and some angle φ, where )cos(ϕ=⋅ in ee ( ne  is the normal of the moving 

plane, ie  is an arbitrary direction is space). These four parameters describe a cone surface in 

the subspace. Algorithm consists also from these three steps. Firstly we solve the 

conditionally broken branches as serial manipulators with 4 DOF. Secondly we solve position 

and orientation of kinematic pairs laying on the mobile quadrilateral. Next we look to the 

remaining three branches as serial manipulators with 6 DOF (Figure 3.4c). 

Finally we will give the algorithm of structural kinematic synthesis for parallel 

manipulator with 3 DOF having a mobile triangular platform (Figure 3.4d). The position of 

the platform is defined by three parameters x, y and z. We take manipulator kind 2 x 

(SUR)+(3R). Firstly, we conditionally break the 3 DOF branch as a serial manipulator. 

Secondly find the position and orientation of the platform and than solve the inverse task of 

two conditionally broken branches as serial manipulators with 6 DOF. 

 

3.5 Computer Aided Structural Synthesis 

 

 At present, there isn’t any computer software that is specifically designed to focus on 

the subject of structural synthesis. However, analysis software like MSC Visual Nastran 

Desktop, Solid Works, Pro Engineer, AutoDesk Mechanical Desktop, etc. can be used to 

verify the structural integrity, visualize the kinematic, static, dynamic, strength and vibration 

considerations of mechanisms and manipulators. 

 In Appendix A, documentation of the computer program CASSoM is given. CASSoM 

is a useful calculating tool, using the methods given in section 3.2. 
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Figure 3.4 - 6,5,4 and 3 DOF spatial parallel manipulators. 
 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Chapter 4 

 

KINEMATIC ANALYSIS 

 

 Kinematics deals with the aspects of motion without regard to the forces and/or 

torques that cause it. Hence kinematics is concerned with the geometrical and time properties 

of motion. The joint variables of a robot manipulator are related to the position and 

orientation of the end effector by the constraints imposed by joints. These kinematic relations 

are the focal points of interest in a study of the kinematics of robot manipulators. 

 Kinematic analysis deals with the derivation of relative motions among various links 

of a given manipulator. There are two types of kinematic analysis problems: forward (or 

direct) kinematics and inverse kinematics. Inverse kinematic analysis can be defined as the 

problem of finding all possible sets of actuated joint variables (input variables) and possibly 

their corresponding time derivatives which will bring the end effector to the set of desired 

positions and orientations with the desired motion characteristics. Inverse kinematic analysis 

is required to control the motion of a robot manipulator via computers, controllers and alike. 

On the other hand, to find the location of the end effector using known input variables is 

defined as Forward kinematic analysis. This is mainly used to calculate the actual position of 

the end effector based on sensor readings of the actuators. Inverse and forward kinematic 

analysis comprises displacement analysis, velocity analysis and acceleration analysis. The 

scope of this study is limited to the displacement analysis. 

  Both direct and inverse kinematics problems can be solved by various methods of 

analysis, such as geometric vector analysis, matrix algebra, screw algebra, numerical 

integration and so on. In this study, two approaches are investigated: screw algebra and 

numerical integration. 

 The main advantage of using screw algebra is that once the objective function of 

platform position is obtained, one is able to solve the direct position analysis for arbitrary 

input parameters. The main drawback is the accuracy limitation. On the contrary, it is possible 

to define the problem as a temporal process and divide the problem into discrete intervals. 

Following the methodology, it is possible to model a variety of problems using differential 

equations arising from the mechanics principles. The main advantage of this approach in our 

case is the availability of highly accurate solutions. Unfortunately, one can not obtain the 
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solutions for arbitrary values of input parameters efficiently. The algorithm should be started 

from the initial conditions by supplying the input velocities, for each arbitrary actuator value. 

In this thesis, numerical integration is used to verify the results acquired utilizing screw 

theory. 

4.1 Forward Displacement Analysis Using Screw Theory and Function Minimization 

Approach 

 
 To form the mathematical for the forward displacement analysis of spatial parallel 

structure manipulator, we will create a set of equations to be solved simultaneously for the 

unknown variables. First of all, we will describe the structure of the manipulator (Figure 4.1).  

 

4.1.1 Structural Definition of the Manipulator 

 

 The manipulator shown in figure 4.1 is a six degree of freedom, spatial parallel 

manipulator. Following the definitions given in chapter 3, it is of class 1, type 6, kind 0, order 

6, mod 2. The primary revolute pairs are placed on the x-y plane. Their axes intersect at O, the 

center of the frame. Following the initial revolute pair, another revolute pair is placed 

perpendicularly. Note that these two joints comprises a universal joint.The center of the 

universal joint is on the x-y plane. Between the spherical joint on the mobile platform and the 

universal joint, a prismatic joint is placed. For the inner branches, which have an offset ra 

from the center, the actuated joints are the initial revolute pairs(rotary actuators/motors). 

However, for the outer branches, which have an offset rb from the center, the actuated joints 

are the prismatic pairs (linear actuators). 

 

4.1.2 Definition of Screw Axis 

 

The first two known screws are defined as follows: 
v
1E (0,0,1, svrv, -cvrv,0)    v

2E (cv,sv,0,0,0,0) 

where 

 )2/C(21 π== cc  ,  )2/S(21 π== ss  , )6/7C(43 π== cc  

 )6/7S(43 π== ss  , )6/11C(65 π== cc  ,  )6/11S(65 π== ss  

 r1= r3= r5= ra     ,    r2= r4= r6= rb   ,  v = 1,2,…,6 
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Figure 4.1 - The six degree of freedom manipulator 
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 The screws are placed on the axis of kinematic pairs subsequently. Location of the 

moving platform can be defined fully if we know the coordinates of three points on it. Since 

two intersecting screws define a point, we’ll place ν
5E on the first axis of the spherical pair to 

be able to find the center of the spherical pair using ν
4E and ν

5E . This point coincides with the 

connection point on the moving platform. 

 



























−

=
+

+−

+

0
2413

2413

242413

242413

242413

4

SS

SS

CSC

CSC

CSC

vv
vv

v
vv

v
v

vv
v

v
v

vv
v

v
v

vv
v

v

rc
rs v

cs

sc

cs

αα

αα

ααα

ααα

ααα

E
 

(4.1) 

( )[ ]
( )[ ]



























−

=

−+

+−

−

+

−

1335

1335242413

1335242413

2413

241324

241324

5

C
SCSC2

SCSC2

CS

CCS

CCS

α
αααα

αααα

αα

ααα

ααα

v

vv
vv

v
v

vv
v

vv
vv

v
v

vv
v

vv

vv
v

v
v

vv
v

v
v

v

a
a
a

crcs

srsc

cs

sc

E
 

  

 To solve the forward task for the parallel manipulator, we will separately handle each 

branch as a serial manipulator. Using the recurrent equations (2.28) and (2.30), the 

expressions for the components of ν
4E and ν

5E  are found as given in (4.1). Note that, to find 

these expressions, a simple recursive algorithm is used. (Appendix B). 

 

4.1.3  Construction of the Set of Equations to be Solved 

 

For two intersecting unit screws ν
4E and ν

5E in space (a45 = 0), the equations of screw 

axis in Plücker coordinates can be written as: 
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v
v

v
v

v MzNyP 444 −=         v
v

v
v

v NxLzQ 444 −=  

v
v

v
v

v LyMxR 444 −=           v
v

v
v

v MzNyP 555 −=                 (4.2) 

v
v

v
v

v NxLzQ 555 −=           v
v

v
v

v LyMxR 555 −=  

 

To define the components of radius vector ρv(xv,yv,zv) in Cartesian coordinates, we 

need three equations. Solving vvv PPQ 544 ,, for xv, yv and zv we get: 

 

( )( ) 1
12454554

−
++= vvvvvvv

v LRNQMPLx  

( )( ) 1
124554

−
−= vvvvv

v LPMPMy                                 (4.3) 

( )( ) 1
124554

−
−= vvvvv

v LPNPNz  

where vvvvv MNNML 545412 −=  

 

Using some of the components of ν
4E  and ν

5E  in equation (4.1), one can find from 

(4.3) the coordinates xv, yv, zv of the six intersection points of screws, lying on the moving 

platform. Since we know the distances between the points, we can write the following 

equalities (Figure 4.2).  

 

|A1 – A2| = |rb – ra| |A3 – A4| = |rb – ra|  |A5 – A6| = |rb – ra| 

|A1 – A3| = ar3  |A3 – A5| = ar3  |A5 – A1| = ar3  

|A2 – A4| = br3  |A4 – A6| = br3  |A6 – A2| = br3  

 |A6 – A1| = baba rrrr ++ 22    |A2 – A3| = baba rrrr ++ 22  

|A4 – A5| = baba rrrr ++ 22                                (4.4) 
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Figure 4.2 - Connection points of branches and platform 

 

 

Now, we can solve the set of equations (4.4) for the 12 unknown variables using an 

iterative approach. Accurate solutions are achived using constrained nonlinear function 

optimization, using MathCAD. Please see Appendix C for details. 

It should be noted that setting the initial values of the unknown joint angles and 

lengths equal to the inputs of their respective neighboring branch ( ii
13

1
13 αα =+ and 

)5,3,1,1
3535 == + iaa ii  and setting all 2/24 πα =v  reduces computation time and increases the 

possibility of finding a reasonable solution. 

 

4.2 Forward Displacement Analysis Using Numerical Integration 

      and Verification of Results 

 

 Solution of forward displacement problem is accomplished using a software called 

Visual NASTRAN Desktop. For the details on numerical formulas and a brief overview of 

NASTRAN please see Appendix C. In the following sections, the results acquired using 

screw algebra and function optimization is compared with the solutions acquired using 

NASTRAN. For the analysis in the software, Kutta - Merson numerical integration formulas 

are used with a time step of 0.0001 s. A typical solution of 3 real-time seconds therefore 

comprises 30,000 integrations. For the manipulator discussed in this thesis, a typical 

simulation takes about four hours to complete on a Intel Pentium 4 1.4 Ghz system. 
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 The best way of visualizing the discrepancies between two solutions is to plot the 

graphs of corresponding data. However for the parallel manipulator, there are six input 

variables and six output variables, for which there isn’t a convenient way to show all data in a 

single graph. For this reason the orientation and location of the platform center are plotted on 

separate sheets. Also for the cases where two or more actuators are used simultaneously, the 

values of those are set equal (i.e. linear speeds of pistons are the same where as the angular 

velocities of the motors are the same). Finally for comparison of the results, the main criterion 

used is the distance of the platform centroid from the origin. 

 

 

4.2.1 Results for the Actuation of the First Rotary Actuator 

 

The first rotary actuator corresponds to Input( 1
13α ) in figure 4.1. Figures 4.3, 4.4 and 

4.5 shows the graphs of the results. For figure 4.3, Eavg = 1.35, %Eavg = 0.83. The maximum 

error occurs at near singularity configuration, 1
13α =90º, Emax = 112.56, %Emax = 8.71. 
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Figure 4.3 - Comparison of results for a single actuated rotary actuators 
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Figure 4.4 - Platform position for manipulator actuated by a single rotary actuator 
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Figure 4.5 - Platform orientation for manipulator actuated by a single rotary actuator 
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4.2.2 Results for the Actuation of the First Two Rotary Actuators 

 

The first two rotary actuators corresponds to Input( 1
13α ) and Input( 3

13α ) in figure 4.1. 

Figures 4.6, 4.7 and 4.8 shows the graphs of the results. For figure 4.6, Eavg = 1.42, %Eavg = 

0.91. The maximum error occurs at near singularity configuration, 1
13α =90º, Emax = 58.74, 

%Emax = 3.92. 
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Figure 4.6 - Comparison of results for two actuated rotary actuators 
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Figure 4.7 - Platform position for manipulator actuated by two rotary actuators 
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Figure 4.8 - Platform orientation for manipulator actuated by two rotary actuators 
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4.2.3 Results for the Actuation of the First Linear Actuator 

 

The first linear actuator corresponds to Input( 2
35a ) in figure 4.1. Figures 4.9, 4.10 and 

4.11 shows the graphs of the results. For figure 4.9, Eavg = 0.98, %Eavg = 0.22. 
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Figure 4.9 - Comparison of results for a single actuated linear actuator 
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Figure 4.10 - Platform position for manipulator actuated by a single linear actuator 
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Figure 4.11 - Platform orientation for manipulator actuated by a single linear actuator 
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4.2.4 Results for the Actuation of the First Two Linear Actuators 

 

The first two linear actuators correspond to Input( 2
35a ) and Input( 4

35a ) in figure 4.1. 

Figures 4.12, 4.13 and 4.14 shows the graphs of the results. For figure 4.12, Eavg = 0.91, 

%Eavg = 0.18.  
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Figure 4.12 - Comparison of results for two actuated linear actuators 
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Figure 4.13 - Platform position for manipulator actuated by two linear actuators 
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Figure 4.14 - Platform orientation for manipulator actuated by two linear actuators 
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4.2.5 Results for the Actuation of All Inputs 

 

 In figures 4.15 & 4.16, the comparison of results for full-actuation is presented. The 
average discrepancy between the MathCAD (optimization) and NASTRAN (numerical 
integration) is found to be %Eavg = 1.6542 for position data and %Eavg = 1.1132 for 
orientation data. 
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Figure 4.15 - Comparison of results for full actuation, 

200,4 == υπω mm/s for motors and pistons respectively. 
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Figure 4.16 - Comparison of results for full actuation,  

200,4 == υπω mm/s for motors and pistons respectively. 
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4.3 Inverse Displacement Analysis 

 

The inverse displacement analysis is rather straight forward. The problem can be 

defined as, to find the input joint angles and displacements, 5
13

3
13

1
13 ,, ααα  and 6

35
4
35

2
35 ,, aaa  

respectively. The known parameters are the coordinates of the centers of spherical joints, 
v
z

v
y

v
x AAA ,, . We also know the coordinates of the fixed centers of universal joints, v

z
v
y

v
x BBB ,,  

and all other construction parameters. Equation (4.5) is the analytical solution of the inverse 

displacement analysis problem. Atan2 function is used instead of Tan-1 to obtain the correct 

quadrant. 

 

vvv BAa −=35 , v = 2, 4, 6 

 ( )[ ]v
z

v
yv

v
xv

v AAcAs 2,2Atan13 −=α , v = 1, 3, 5   (4.5) 

 

where 

v : the branch number 
vA  : known coordinates of the respective branch end (center of the S joint). 
vB  : constant coordinate of the branch beginning (center of the U joint). 

)2/C(21 π== cc  ,  )2/S(21 π== ss  

)6/7C(43 π== cc  ,  )6/7S(43 π== ss  

)6/11C(65 π== cc  ,  )6/11S(65 π== ss  

 

 In figure 4.17 and 4.18, the required piston lengths and motor orientations are plotted 

to locate the platform with a certain roll angle and z position. These data are obtained from 

iMIDAS that uses equations (4.5). Please see Appendix A for the documentation of the 

computer program that accomplishes inverse displacement analysis and simulation. 
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Figure 4.17 – Corresponding piston lengths for desired platform position 
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Figure 4.18 – Corresponding motor positions for desired platform position 
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Chapter 5 

 

DYNAMIC ANALYSIS  

 
 Dynamics deals with the forces and/or torques required to cause the motion of a 

system of bodies. The study includes inertia forces as one of the principal concerns. The 

dynamics of a robot manipulator is a very complicated subject. Typically, the end effector is 

to be guided through a given path with certain prescribed motion characteristics. A set of 

torque and/or force functions must be applied at the actuated joints in order to produce that 

motion. These actuating force and/or torque functions depend not only on the spatial and 

temporal attributes of the given path but also on the mass properties of the links, the payload, 

the externally applied forces and so on. 

 Dynamical analysis deals with the derivation of the equations of motion of a given 

manipulator. There are two types of dynamical analysis problems: direct (or forward) and 

inverse dynamics. Direct dynamics can be defined as follows: Given a set of actuated joint 

torque and/or force functions, calculate the resulting motion of the end effector as a function 

of time; and inverse dynamics as: Given a trajectory of the end effector as a function of time, 

find a set of actuated joint torque and/or force functions which will produce that motion. 

Direct dynamics is mainly used for computer simulations of robot manipulators. On the other 

hand inverse dynamics is primarily used for real-time model-based control of a manipulator. 

This chapter is devoted to the inverse dynamics of the six DOF spatial parallel manipulator 

given in Chapter 4. 

 

5.1 Determination of the Reduced Moments and Forces 

 

 An external force f acting to the moving platform of the manipulator in figure 1 can be 

represented as a moment equation as: 

 

fρm ×=  

 

where ),,( zyxρ is the acting point of force f . The equation can be rewritten as follows: 

 

yMxFMxFzFMzFyFM xyzzxyyzx −=−=−=  
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 The sum of virtual work done by internal reduced moment rm and force rf , for 

infinitesimal increments of input parameters (rotational: 5,3,1,13 =νϕν and linear: 

6,4,2,35 =ννa ) in a fixed time interval t, is equal to the work done by external force 

),,( zyx FFFf by linear displacements zyx δδδ ,, and external moment ),,( zyx MMMm by 

angular displacements δγδβδα ,, on the moving platform. Following convention will be used 

here after for convenience: iϕϕν =13 and 313 += isaν and all i = 1, 2, 3 unless otherwise specified. 

 The equation of virtual works of external and internal forces and moments can be 

written as follows: 

 

∑
=

+++++=
3

1
,

i
zyxzyxiir FFFzFyFxFM δγδβδαδδδδϕ  

∑
=

++ ++=
3

1
33,

i
zyxiir zFyFxFsF δδδδ δγδβδα zyx MMM +++          (5.1) 

 

When operating the manipulator with multi DOF, the virtual work of all external forces 

and moments are consequently determined by varying one of the input parameters with others 

held constant: 
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 Fixing the five input parameters, we get a 1-DOF mechanism and for every 

combination of fixed input parameters. The values of generalized moment and force equals to 

reduced moments and forces. Using equations (5.1) and (5.2) we have: 
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 Thus, according to Lagrange, the reduced moments and forces equals to the sum of 

possible work done by external forces and moments, applied to the moving platform when 

varying just one input parameter. 

 

5.2 Equation of Motion of the Manipulator 

 

 Let’s consider the equation of motion for the manipulator in figure 4.1. The Lagrange-

Euler’s equation of motion of second order will be setup in the following form: 
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where  

 T is the sum of kinetic energy of the platform and rotating input links; 

 
o
T is the sum of kinetic energy of the platform and the translating input links. 

 

 The kinetic energy of the system will be determined on the assumption that all links 

are counterbalanced and inertia masses and moments of each branch can be neglected since 

they are located symmetrically relative to the moving platform. The reference axes are chosen 

so that all mass moments of inertia are equal to zero. 

 The equation of kinetic energy for the moving platform and for input links with linear 

and angular parameters of manipulator is formed as: 
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where 

Ii : moments of inertia for input links relative to axis of rotation of revolute joints 

wi : angular velocity of input links; m is the mass of moving platform  
...

,, zyx  : projections of the velocity, of the acting point of the external force 

Ix, Iy, Iz : moments of inertia relative to main reference axes of inertia 

wx, wy, wz : projections of angular velocity onto the reference axes 

mi : masses of translational input links 

Vi : linear velocity of translational input links. 

 

The position of the acting point of the external force and angular orientation of the 

moving platform are functions of three angular and three linear displacements of input links 

as: 

 

),( 3+= ii sxx ϕ  ),( 3+= ii syy ϕ  ),( 3+= ii szz ϕ  

),( 3+= ii sϕαα  ),( 3+= ii sϕββ  ),( 3+= ii sϕγγ             (5.6) 

 

Differentiation of equation (5.6) wrt. time yields the projections of the velocity for the 

acting point of external  force and projections of instantaneous angular velocity onto main 

reference axes: 
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J is the 6x6 Jacobian matrix that’s the partial derivations (5.7) of six outputs to six 

input parameters. Solving equation (5.7), we can find 
...

,, zyx , wx,wy,wz. Thus the problem of 

determination of the partial derivatives in (5.7) comes to kinematic analysis of mechanism 

having 1-DOF. After substituting the values of output parameters (5.7) into (5.5) and 

straightforward transformations, we obtain the equation of kinetic energy for the spatial 6-

DOF parallel manipulator with three angular and three linear actuators as: 
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where 
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Differentiation of kinetic energy equations (5.8) wrt. six input parameters gives: 
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Note that the inertia factors in six equation (5.9) depends on the Jacobian matrix (5.7) 

which, in one’s turn, depends on input angular and linear displacements. The partial 

derivatives for inertia forces can easily be found from equations (5.8). 
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When we differentiate the equation of kinematic energy (5.8) wrt. the angular and 

linear velocity of input links and impose simple mathematical transformation, we obtain: 
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Differentiating (5.10) wrt. time and substituting those differentiations into Lagrange-

Euler’s equation (5.4) along with equation(5.9) we obtain: 
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for  i = 1,2,3 

Equations (5.11) are the equations of motion for the 6-DOF manipulator with parallel 

structure having variable inertia factors, depending on the input angular and linear 

displacements of six input links.  
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Chapter 6 

 

DISCUSSION AND CONCLUSIONS 

 
 The essence of this thesis is the proposal a new type of six degree of freedom spatial 

parallel manipulator, and to analyze its kinematics and dynamics. The proposed manipulator, 

unlike its many counterparts in literature, has both rotary and linear actuators. Also it is fully-

parallel and has identical branch structures. The most distinctive feature of the manipulator is 

its ability to provide near-full rotations about z-axis, which is lacking in almost all spatial 

parallel manipulators. 

 The use of recurrent screw equations is an uncommon practice in literature. However, 

by using this method, one can quickly derive the necessary kinematic equations and have an 

insight on the problem more easily. It also provides a strict methodology to solve forward and 

inverse kinematics problems. It can be said that matrix methods, utilizing homogenous 

transformations, are more suitable for solving serial manipulator kinematics and recurrent 

screw equations are more efficient in solving parallel manipulator kinematics. 

 In literature, structural synthesis is one of the least developed studies in the field of 

parallel manipulators. This thesis, compiling and extending the previous works, tries to 

contribute the literature by supplying a methodology in the structural design and classification 

of parallel manipulators. The sample manipulators proposed by the author and the supervisor 

of this thesis are also new designs regarding parallel manipulators. 

 The non-linear set of equations governing the forward and inverse position analysis 

are derived for this particular manipulator. Derivations are accomplished using recurrent 

equations and computer. Since an analytical solution does not exist, numerical approaches are 

used. The results obtained using optimization and finite integration techniques are in good 

agreement. The advantage of optimization over finite integration is that, it is possible to 

obtain the solution for arbitrary actuator positions. On the other hand it is not possible to 

ensure that the platform will actually position itself following a real path. For finite 

integration, one has to supply the initial and valid values for the starting position and simulate 

the motion up to the desired actuator values. The main advantage is that, it is possible to see 

the actual path traversed and ascertain that the desired target is reachable. In addition, using 

capable cad software, it is possible to detect the problems like link interference and 

singularities along the generated path and find a remedy.  
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 A simple analytical solution is obtained for inverse displacement problem and 

implemented in a computer program called iMidas. The program can provide the user with the 

required values of input corresponding to the desired path of motion. It is also possible to 

visually verify the path from the three dimensional graphical simulation provided by the 

program. From the data provided by the program, it is possible to reach some conclusions as: 

 

• Manipulator becomes more sensitive to errors in actuators as the distance between 

platform centroid and base frame increases, and vice versa. 

• Accuracy of the manipulator, contributed by linear actuators, increases and the 

useful workspace decreases as the construction parameter outer radius increases, 

and vice versa. 

• Accuracy of the manipulator, contributed by rotary actuators, increases and the 

useful workspace decreases as the construction parameter inner radius increases, 

and vice versa. 

• Orientation capability of the platform decreases as the distance of the platform 

from the base frame increase. 

 

 

 The inverse dynamics analysis is done using Lagrange-Euler’s equations of motion 

and principle of virtual work. The equation of motion for the proposed manipulator, having 

variable inertia factor, are derived. Finally, the inverse dynamics problem of the manipulator 

is defined by six non-linear differential equations of second order. 

 Future research on this manipulator can be directed on forward and inverse velocity 

and acceleration analysis, a complete workspace analysis, optimization of construction 

parameters for specific tasks, stiffness analysis regarding different construction parameters 

and identification of singular configurations. In addition, it will be a good practice to 

endeavor solving the forward kinematics using artificial neural networks, using the exact 

results obtained from inverse kinematics. 
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APPENDIX A 
 

DOCUMENTATIONS OF DEVELOPED SOFTWARES 
 

 

A.1 CASSoM 

 

 CASSoM stands for Computer Aided Structural Synthesis of Manipulators. It is 

mainly a calculation tool for the first step of structural synthesis in parallel manipulators. 

Using CASSoM, it is possible to find the values of C (platform connections), bv (vacant 

branches), jb (# joints in a branch) and B (total number of branches) of a parallel manipulator. 

The required inputs are λ (DOF of workspace), W (DOF of mechanism), number and types of 

platforms to be used. The program uses the formulations and algorithm presented in chapter 3. 

A screenshot is given in figure A.1. The program in its current state is fully functional. 

CASSoM is a SDI (single document interface) style program. The programming language 

used is Borland Delphi 6.0. Delphi is a visual programming language based on Pascal. 

 

 

 
 
 

Figure A.1 – a Screenshot of CASSoM 
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A.1.1 CASSoM Source Code 

 

 Like all visual programming languages, Delphi creates very long codes. Due to this, 

only the engine of CASSoM is presented here. 

 
procedure TSynInpForm.DoSynthesis; 
var 
 code : integer; 
 Cc : real; 
 J,Jb,JbExtra,P,Lambda,B,Bv,C,Np:integer; 
 ResultMessage : string; 
begin 
 Lambda := UpDownLambda.Position; 
 P := UpDownN.Position; 
 Bv := UpDownW.Position; 
 Np := UpDownTri.Position * 3 + 
       UpDownQuad.Position * 4 + 
       UpDownPenta.Position * 5 + 
       UpDownHexa.Position * 6; 
 If 3*P>Np then 
 begin 
  showmessage('Invalid platform specification! (Condition 1)'); 
  exit; 
 end; 
 If Np > Lambda*P then 
 begin 
  showmessage('Invalid platform specification! (Condition 1)'); 
  exit; 
 end; 
 
 Cc := 0.5*(Np - Bv); 
 If Cc - trunc (Cc) <> 0 then 
 begin 
  showmessage('Invalid platform specification! (Condition 7)'); 
  exit; 
 end; 
 C := Trunc (Cc); {# of connections between basic(plat.) links} 
 B := Np - C; {# of branches} 
 J := Lambda * (Np - C - P); {total # of pairs} 
 Jb := J div B; {number of pairs in a branch} 
 JbExtra := J - Jb * B; {total additional # of pairs to be put on} 
 ResultMessage := 'J='+strs(J)+ 
               ' | B= '+strs(B)+ 
               ' | Jb='+strs(Jb)+ 
               ' | Jb Add.='+strs(JbExtra)+ 
               ' | C='+strs(C); 
 Label9.Caption :=ResultMessage; 
 end; 
function TSynInpForm.Strs(I: Longint): string; 
{ Convert any integer type to a string } 
var 
  S: string[11]; 
begin 
  Str(I, S); 
  Result:= S; 
end; 
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A.2 iMIDAS 
 
 iMIDAS stands for Iztech Manipulator Inverse Displacement Analysis and Simulation 

Tool. It accomplishes real-time inverse displacement analysis and its 3D graphical simulation 

based on formulations in chapter 4. It can also save the data for future use. 

Screenshots of iMIDAS can be seen in figure A.1, A.2. The form has four main parts; 

platform position, construction parameters, input parameters and the drawing area. As 

explained in chapter 4, the given parameters for an inverse task are the position of the 

platform or the end effector. In iMIDAS, these parameters are entered to the program via the 

slider bars or the up-down buttons in ‘platform position’ part. The construction parameters of 

the manipulators are entered in the respective part. User may read the necessary input values 

to acquire the required position from the ‘Input Parameters’ part. Using these calculated input 

and given position values, a 3D representation of the manipulator is given in the drawing part. 

In this last part, the lines represent the branches and the triangle represents the platform. It is 

possible to zoom in/out or rotate the image. All calculations and drawings take place as soon 

as the user moves the sliders or presses the up-down buttons, or by any means changes one of 

these parameters. Program works quite fast. iMIDAS is a SDI (single document interface) 

style program. The programming language used is Borland Delphi 6.0. OpenGL is used for 

3D graphics. 

 

A.2.1 Overview of Program Sections 

 

 iMIDAS consists of 5 sections as: 

• Platform position 

• Construction parameters 

• Command line 

• Graphics panel 

• Main menu 

 

A.2.2 Platform Position Section 

 

To make the analysis, one has to move the sliders, or click the up-down buttons in the 

Platform Position section. The program will give the required inputs to achieve that position 
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in the 'Input Parameters' section. Also see a 3D representation of the current position of the 

manipulator will be drawn. 

The first trio of track bars represent the position of the center of the platform in 

Cartesian coordinates. The latter trio represents the orientation of the platform in yaw, pitch 

and roll Euler angles. 

Euler angles are limited to ±180 degrees and the position parameters are limited by 

stroke. 

 

A.2.3 Construction Parameters Section 

 

It is possible to change the construction parameters of the manipulator and directly see 

the results. To do this, type the desired values in the corresponding boxes.  Inner radius and 

outer radius corresponds to the connection points of the branch ends to the fixed and mobile 

platform. Stroke is the maximum possible displacement of the mobile platform in wrt. the 

origin. 

 

A.2.4 Command Line 

 

This is the white text region at the bottom of the form. One can keep the track 

of executed commands from here. 

 

A.2.5 Graphics Panel 

 

This is the place where the manipulator is seen in motion. The panel is interactive: 

 

• Click, hold & drag mouse to rotate the camera. 

• Double click to pause/resume a demonstration. 

 

A.2.6 Main Menu 

 

In the main menu there are three menu items as File, Analysis and Help 

File 

• Sample data to memory: Records the input parameters and platform position to 

memory. This behaves as a checkbox. When clicked once it starts to record, then 
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clicking again will stop recording data. When recording, iMIDAS saves every change 

of platform position either manual or automatic. 

• Clear data in memory: Clears the recorded data from memory. 

• Save as: This item opens a dialog for you to give a filename for the data file. However 

this item does not save your file, one has to click Save button for that. The filename 

extension is .ikd by default (inverse kinematic data). The file is in text format and can 

be viewed by appropriate viewers such as notepad. 

• Save: Saves the data file in memory to disk, using the name selected before. 

 

Analysis 

• Demonstration: iMIDAS will give random motions to the platform. If you have 

already selected to sample data to memory, then the motions created by this option 

will also be saved. Clicking on this menu item will stop demonstration. 

 

• Reset position: This will reset the platform to its starting position (x=0, y=0, 

z=stroke, yaw = 0, pitch =0, roll =0). 

 

A.2.7 Source Code 

 

 Like all visual programming languages, Delphi creates very long codes. Due to this, 

only the engine of iMIDAS is presented here. 

 
procedure ReadTransformationParameters; 
begin 
  rx:=InvMainForm.UpDownX.Position; 
  ry:=InvMainForm.UpDownY.Position; 
  rz:=InvMainForm.UpDownZ.Position; 
  roll:=InvMainForm.UpDownRoll.Position*pi/180; 
  pitch:=InvMainForm.UpDownPitch.Position*pi/180; 
  yaw:=InvMainForm.UpDownYaw.Position*pi/180; 
end; 
 
procedure MyPoint.Transform(r,p,y,rox,roy,roz : double); 
var 
 dx,dy,dz : double; 
begin 
 dx:=cos(y)*cos(p)*px; 
 dx:=(cos(y)*sin(p)*sin(r)-sin(y)*cos(r))*py+dx; 
 dy:=sin(y)*cos(p)*px; 
 dy:=(sin(y)*sin(p)*sin(r)+cos(y)*cos(r))*py+dy; 
 dz:=-sin(p)*px; 
 dz:=cos(p)*sin(r)*py+dz; 
 ptx:=rox+dx; 
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 pty:=roy+dy; 
 ptz:=roz+dz; 
end; 
 
function MyPoint.AbsDifference : double; 
begin 
  AbsDifference := sqrt(sqr(tx-x)+sqr(ty-y)+sqr(tz-z)); 
end; 
 
function MyPoint.Alpha : double; 
begin 
  Alpha:=180/pi*ArcTan2(ptz,(ptx*py/r1-pty*px/r1)); 
end; 
 
procedure InitConstParam; 
var 
  code:integer; 
  a1,a2,a3:double; 
begin 
  a1:=90*pi/180; 
  a2:=(90+120)*pi/180; 
  a3:=(90+240)*pi/180; 
  Val(InvMainForm.EditR1.Text,r1,code); 
  if code <> 0 then ShowMessage('Illegal entry for R1'); 
  Val(InvMainForm.EditR2.Text,r2,code); 
  if code <> 0 then ShowMessage('Illegal entry for R2'); 
  BasePoint[1].x:=r1*cos(a1); 
  BasePoint[2].x:=r2*cos(a1); 
  BasePoint[3].x:=r1*cos(a2); 
  BasePoint[4].x:=r2*cos(a2); 
  BasePoint[5].x:=r1*cos(a3); 
  BasePoint[6].x:=r2*cos(a3); 
  BasePoint[1].y:=r1*sin(a1); 
  BasePoint[2].y:=r2*sin(a1); 
  BasePoint[3].y:=r1*sin(a2); 
  BasePoint[4].y:=r2*sin(a2); 
  BasePoint[5].y:=r1*sin(a3); 
  BasePoint[6].y:=r2*sin(a3); 
  for code:=1 to 6 do BasePoint[code].z:=0; 
end; 
 
Procedure CalculateInputParameters; 
begin 
 InvMainForm.EditP1.Text:=Format('%8.3f',[BasePoint[2].AbsDifference]); 
 InvMainForm.EditP2.Text:=Format('%8.3f',[BasePoint[4].AbsDifference]); 
 InvMainForm.EditP3.Text:=Format('%8.3f',[BasePoint[6].AbsDifference]); 
 InvMainForm.EditM1.Text:=Format('%4.2f',[BasePoint[1].Alpha]); 
 InvMainForm.EditM2.Text:=Format('%4.2f',[BasePoint[3].Alpha]); 
 InvMainForm.EditM3.Text:=Format('%4.2f',[BasePoint[5].Alpha]); 
end; 
 
Procedure DoInverseTask; 
var 
  i:integer; 
  scale: real; 
begin 
  InitConstParam; 
  ReadTransformationParameters; 
  For i:=1 to 6 do 
    BasePoint[i].Transform(roll,pitch,yaw,rx,ry,rz); 
  CalculateInputParameters; 
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   Scale:=1000; 
  for i:=1 to 6 do 
  begin 
    InvMainForm.PntX[2*i-1]:=BasePoint[i].px/Scale; 
    InvMainForm.PntX[2*i]  :=BasePoint[i].ptx/Scale; 
    InvMainForm.PntY[2*i-1]:=BasePoint[i].py/Scale; 
    InvMainForm.PntY[2*i]  :=BasePoint[i].pty/Scale; 
    InvMainForm.PntZ[2*i-1]:=BasePoint[i].pz/Scale; 
    InvMainForm.PntZ[2*i]  :=BasePoint[i].ptz/Scale; 
  end; 
  InvMainForm.GLPanel1GLLines(InvMainForm.TrackBarX); 
  InvMainForm.GLPanel1.GLRedraw; 
end; 
 
Procedure TInvMainForm.GLPanel1GLDraw(Sender: TObject); 
 
begin 
  glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT); 
  glMatrixMode(GL_MODELVIEW); 
  glLoadIdentity; 
  glTranslated(0.0, -1.0, (GlPanel1Zoom-20.0)); 
  glRotatef(-60.0, 1.0, 0.0, 0.0); 
  glRotatef((GlPanel1AngleZ-15.0), 0.0, 0.0, 1.0); 
  glCallList(2); 
  glPopMatrix; 
end; 
 
Procedure TInvMainForm.GLPanel1GlLines(Sender: TObject); 
const 
  glfMaterialColorB: Array[0..3] of GLfloat = (1.0, 1.0, 1.0, 1.0); 
  glfMaterialColorR: Array[0..3] of GLfloat = (1.0, 0.0, 0.0, 1.0); 
  glfMaterialColorG: Array[0..3] of GLfloat = (0.0, 1.0, 0.0, 1.0); 
  glfMaterialColorRG: Array[0..3] of GLfloat = (0.6, 0.8, 0.0, 1.0); 
var 
  i:integer; 
begin 
 glNewList(2, GL_COMPILE); 
 
 glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, @glfMaterialColorB); 
 glbegin(GL_LINES); 
 for i:=1 to 12 do glvertex3d(PntX[i],PntY[i],PntZ[i]); 
 glend; 
 
 glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,@glfMaterialColorR); 
 glbegin(GL_POLYGON); 
 glnormal3f(0.0,0.0,1.0); 
 for i:=1 to 3 do glvertex3d(PntX[4*i],PntY[4*i],PntZ[4*i]); 
 glend; 
 
glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,@glfMaterialColorRG); 
 glbegin(GL_POLYGON); 
 glnormal3f(0.0,1.0,0.0); 
 for i:=1 to 3 do glvertex3d(PntX[4*i],PntY[4*i],PntZ[4*i]); 
 glend; 
 
 glnormal3f(0.0,0.0,1.0); 
 glbegin(GL_LINES); 
 glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, @glfMaterialColorG); 
 for i:=1 to 6 do glvertex3d(PntX[2*i-1],PntY[2*i-1],PntZ[2*i-1]); 
 glend; 
 glEndList();end; 
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Figure A.2 – a Screenshot of iMIDAS 
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Figure A.3 – a Screenshot of iMIDAS 
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APPENDIX B 

 

RECURSIVE SYMBOLIC CALCULATION ALGORITHMS  

IN MATHCAD 

 
 Recurrent equations to be used in kinematic analysis are developed in Chapter 2 and 

the solution for a six DOF spatial parallel manipulator is given in Chapter 4. We need to find 

the components of E4 and E5 for each branch, to find their intersection points. Derivation of 

screw equations using recurrent equations is a straight forward algorithm. However, using 

computer to develop the equation greatly saves time and minimizes the possibility of making 

calculation errors. In what follows is the derivation of screw equations from recurrent 

equation using MathCAD software. 

 

B.1 Derivation of Unit Vectors 

 

 To find the unit vectors of the screws ),,( kkkk NMLe , we input the two initial unit 

vectors e1 and e2 as given in Section 4.1.2. The second step is to use a loop to calculate the 

unit vectors of the unknown screws using equation (2.28). Using MathCAD the algorithm is 

written as in figure B.1. 

 

B.2 Derivation of Moments of Unit Vectors 

 

 Deriving the equations for moments of unit vectors ),,( kkk
o
k RQPe is more complicated 

since these depend on ),,( kkkk NMLe  as given in (2.30). To find the unit vector of the screws, 

we input the two initial screws e1, o
1e ,e2, o

2e . Similarly, a loop is used to calculate the unit 

vectors of the unknown screws using equation (2.30). Using MathCAD, the algorithm is 

written as in figure B.2. The final results are compiled in (4.1). Note that, MathCAD cannot 

fully simplify the trigonometric equations, final touches are made manually. 
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LL L1 0←

M1 0←

N1 1←

L2 cos v( )←

M2 sin v( )←

N2 0←

a1k M k 2− Nk 1−⋅ Nk 2− M k 1−⋅−( ) sin α k( )⋅ Lk 2− cos α k( )⋅+←

b1k Nk 2− Lk 1−⋅ Lk 2− Nk 1−⋅−( ) sin α k( )⋅ M k 2− cos α k( )⋅+←

c1k Lk 2− M k 1−⋅ M k 2− Lk 1−⋅−( ) sin α k( )⋅ Nk 2− cos α k( )⋅+←

Lk a1k←

M k b1k←

Nk c1k←

k 3 5..∈for

L

:=

 
 

 

LL

simplify

collect sin v( ),

substitute α5
π

2
,

→

 
 

 
Figure B.1 – MathCAD Program to Find Unit Vector Expressions 
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PP L1 0←

M1 0←

N1 1←

L2 cv←

M2 sv←

N2 0←

P1 sv rv⋅←

Q1 cv− rv⋅←

R1 0←

P2 0←

Q2 0←

R2 0←

a1 0←

a2 0←

a3 0←

a4 0←

a6 0←

a1k Mk 2− Nk 1−⋅ Nk 2− Mk 1−⋅−( ) sin α k( )⋅ Lk 2− cos α k( )⋅+←

b1k Nk 2− Lk 1−⋅ Lk 2− Nk 1−⋅−( ) sin α k( )⋅ Mk 2− cos α k( )⋅+←

c1k Lk 2− Mk 1−⋅ Mk 2− Lk 1−⋅−( ) sin α k( )⋅ Nk 2− cos α k( )⋅+←

d1k Mk 2− Rk 1−⋅ Rk 2− M k 1−⋅− Nk 1− Qk 2−⋅+ Nk 2− Qk 1−⋅− ak Lk 2−⋅−( ) sin α k( )⋅ ak Mk 2− Nk 1−⋅ Nk 2− Mk 1−⋅−( )⋅ Pk 2−⋅  cos α k( )⋅+←

e1k Nk 2− Pk 1−⋅ Pk 2− Nk 1−⋅− Lk 1− Rk 2−⋅+ Lk 2− Rk 1−⋅− ak Mk 2−⋅−( ) sin α k( )⋅ ak Nk 2− Lk 1−⋅ Lk 2− Nk 1−⋅−( )⋅ Qk 2−⋅  cos α k( )⋅+←

f1k Lk 2− Qk 1−⋅ Qk 2− Lk 1−⋅− Mk 1− Pk 2−⋅+ Mk 2− Pk 1−⋅− ak Nk 2−⋅−( ) sin α k( )⋅ ak Lk 2− M k 1−⋅ Mk 2− Lk 1−⋅−( )⋅ Rk 2−⋅  cos α k( )⋅+←

Lk a1k←

Mk b1k←

Nk c1k←

Pk d1k←

Qk e1k←

Rk f1k←

k 3 5..∈for

P

:=

 
 

PP

substitute α5
π

2
,

simplify

collect rv,

collect sin α3( ),

→

 
 

Figure B.2 – MathCAD Program to Find Moments of Unit Vector Expressions 
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APPENDIX C 

 

SOFTWARE USED FOR NUMERICAL ANALYSIS 

 
C.1 MathCAD Solution Using Optimization 

 

 MathCAD offers a variety of tools for numerical analysis, one of them being the 

optimization commands. Following the method a single objective function of single or more 

variables is given and the values of variables to make the function minimum is found with a 

desired precision. The objective function in our case is assembled in the following way:  

 

1) Transform the functions given in (4.4) as: gn = | fn - cn | = 0 

 

2) Objective function is defined as fobjective= ∑
=

12

1n
ng = 0 

 

The last step is to give the initial conditions and the constraints for the solver. In the 

following pages, the actual MathCAD sheet is shown. 
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Objective function definitions

D r1
2 r2

2+ r1 r2⋅+:=C 3 r2⋅( ):=B r2 r1−( ):=Q 3 r1⋅( ):=

δ5 δ6:=δ3 δ4:=δ1 δ2:=

φi
π

2
:=θ6 θ5:=θ4 θ3:=θ2 θ1:=

Initial values

δ6 1.42929552:=δ4 1:=δ2 1.42929552:=

Preleminary function definitions

p c ss, r, α3, α4, a5,( )
ss cos α3( )⋅ sin α4( )⋅ a5⋅ c cos α4( )⋅ a5⋅+ r c⋅+

c− cos α3( )⋅ sin α4( )⋅ a5⋅ ss cos α4( )⋅ a5⋅+ r ss⋅+

sin α3( ) sin α4( )⋅ a5⋅













:=

Fixed construction parameters

c1 cos 90
π

180
⋅





:= s1 sin 90
π

180
⋅





:=

c2 cos 90 120+( )
π

180
⋅





:= s2 sin 90 120+( )
π

180
⋅





:=

c3 cos 90 240+( )
π

180
⋅





:= s3 sin 90 240+( )
π

180
⋅





:=

i 1 6..:= r1 1:= r2 1.5:= r 2 should be greater then r1

Input Coordinates

θ1 105( )
π

180
⋅:= θ3 87( )

π

180
⋅:= θ5 112.61986495( )

π

180
⋅:=
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Fgn u( ) p c1 s1, r1, θ1, φ1, δ1,( ) p c2 s2, r1, θ3, φ3, δ3,( )− Q−( ):=

Fgn u( ) Fgn u( ) p c2 s2, r1, θ3, φ3, δ3,( ) p c3 s3, r1, θ5, φ5, δ5,( )− Q−( )+:=

Fgn u( ) Fgn u( ) p c1 s1, r1, θ1, φ1, δ1,( ) p c3 s3, r1, θ5, φ5, δ5,( )− Q−( )+:=

Fgn u( ) Fgn u( ) p c1 s1, r1, θ1, φ1, δ1,( ) p c1 s1, r2, θ2, φ2, δ2,( )− B−( )+:=

Fgn u( ) Fgn u( ) p c2 s2, r1, θ3, φ3, δ3,( ) p c2 s2, r2, θ4, φ4, δ4,( )− B−( )+:=

Fgn u( ) Fgn u( ) p c3 s3, r1, θ5, φ5, δ5,( ) p c3 s3, r2, θ6, φ6, δ6,( )− B−( )+:=

Fgn u( ) Fgn u( ) p c1 s1, r2, θ2, φ2, δ2,( ) p c2 s2, r2, θ4, φ4, δ4,( )− C−( )+:=

Fgn u( ) Fgn u( ) p c1 s1, r2, θ2, φ2, δ2,( ) p c3 s3, r2, θ6, φ6, δ6,( )− C−( )+:=

Fgn u( ) Fgn u( ) p c3 s3, r2, θ6, φ6, δ6,( ) p c2 s2, r2, θ4, φ4, δ4,( )− C−( )+:=

Fgn u( ) Fgn u( ) p c3 s3, r2, θ6, φ6, δ6,( ) p c1 s1, r1, θ1, φ1, δ1,( )− D−( )+:=

Fgn u( ) Fgn u( ) p c1 s1, r2, θ2, φ2, δ2,( ) p c2 s2, r1, θ3, φ3, δ3,( )− D−( )+:=

Fgn u( ) Fgn u( ) p c2 s2, r2, θ4, φ4, δ4,( ) p c3 s3, r1, θ5, φ5, δ5,( )− D−( )+:=  

Call routineSoln Minimize Kgn u,( ):=

u11 2<u10 2<u9 2<u8 π<u7 π<u6 π<

u5 π<u4 π<u3 π<u2 π<u1 π<u0 π<
u

θ2

θ4

θ6

φ1

φ2

φ3

φ4

φ5

φ6

δ1

δ3

δ5









































:=

u11 0>u10 0>u9 0>u8 0>u7 0>u6 0>

u5 0>u4 0>u3 0>u2 0.1>u1 0.1>u0 0.1>

Given

Kgn u( ) Fgn u( ):=

 

SolnT
=  
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C.2 Visual NASTRAN Desktop 

 

 NASTRAN is a CAD program capable of kinematical, dynamic and finite element 

analysis. The model of the manipulator is constructed using this software and analyses have 

been made. Figure C.1 and C.2 shows the screenshots of the program at work. The most 

important point when working with such software is the necessity of precise solid body 

modeling. Also, once the model is constructed, it is quite hard to change some of the 

dimensions to make new analysis. 

 

 

 

 

 
 

Figure C.1 – User Interface of NASTRAN 
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Figure C.2 – Manipulator at singular configuration 

 

 

 

 

 

 

 

 

 

 

 

 


