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ABSTRACT 

 

 

A numerical investigation has been conducted on the strain rate dependent 

compression mechanical behavior of a SiC-particulate reinforced Al (2024-O) metal 

matrix composite. The effect of particle volume fraction on the strain rate sensitivity of 

the composite was determined using axisymmetric Finite Element unit cell models, 

where the particles are treated as elastic spheres embedded within a visco-plastic matrix, 

implemented in LUSAS Finite Element Analysis program. Particles are taken to be 

elastic, equal-sized, spherical and uniformly distributed in the matrix. The strain rate 

dependent constitutive behavior of the matrix material uses a linear relation between 

stress and strain rate formulation and is obtained from independent experimental results 

on the matrix. The flow stress of the composites is predicted over a range of strain rates 

for different particle volume fractions. Numerical results of the flow stress and strain 

rate sensitivity of the composite were also compared with those of experimental results, 

for 15% SiC particle reinforced 2024-O Al metal matrix composite. Influence of 

particle shape on the behavior of the MMC at high strain rates is also investigated. A 

unit cell, which is an elastic cylinder embedded within a visco-plastic matrix, is used. It 

is also shown that the rate dependent flow stress and local stress in the microstructure 

are influenced by particle shape. If reinforcement edge sharpness increases, local stress 

increases at that area. The results show that both the flow stress and the strain rate 

sensitivity increase with increasing volume fraction of the reinforcement due to the 

constraining effect of the reinforcement. Numerical calculations have shown an 

increased strain rate sensitivity of the composite over the matrix alloy. The discrepancy 

found between numerical and experimental results was finally discussed based on 

geometrical and microstructural parameters that might affect the composite flow stress 

and strain rate sensitivity. 
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ÖZ 

 

 

SiC-partikül takviyeli Al (2024-O) metal matrisli kompozit malzemenin, 

deformasyon hızına duyarlı basma davranışı nümerik olarak incelenmiştir. Parikül 

hacim oranının, kompozit malzemenin deformasyon hızı duyarlılığına etkisi, LUSAS 

Sonlu Elemanlar programında oluşturulan bir eksenel-simetrik sonlu elemanlar birim 

hücre modeli ile belirlenmiştir. Birim hücrede küresel partikülün elastik ve matrisin 

visko-plastik davranış gösterdiği kabul edilmiştir. Ayrıca partiküller eşit boyutlu ve 

matris içinde homojen dağıldığı varsayılmıştır. Matrisin deformasyon hızına duyarlı 

davranışı, deneysel gerilme-deformasyon hızı verilerinden elde edilen lineer bir ilişki ile 

formule edilmiştir. Kompozitin farklı deformasyon hızlarındaki ve farklı partikül hacim 

oranlarındaki gerilme-birim şekil değişim grafikleri nümerik olarak elde edilmiştir. 

Nümerik olarak hesaplanan gerilme ile deformasyon hızı duyarlılığı sonuçlarından % 15 

SiC partikül takviyeli Al metal matrisli kompozit için elde edilenleri deneysel sonuçlar 

ile karşılaştırılmıştır. Nümerik hesaplamalar, kompozitin deformasyın hızı duyarlılığının 

matris malzemesinden yüksek olduğunu göstermiştir. Kompozitin deformasyon hızı 

duyarlılığının artan partikül hacim oranı ile de arttığı hesaplanmıştır. Ayrıca 

kuvvetlendiricinin şeklinin kompozitin davranışına etkiside incelenmiştir. Bu inceleme 

için birim hücrenin içine silindirik bir kuvvetlendirici yerleştirilmiştir. Sonuç olarak 

kompozitin deformasyon hızına duyarlı basma davranışının ve birim hücre içinde 

oluşan bölgesel gerilmelerin kuvvetlendiricinin şeklinden etkilendiği görülmüştür. 

Nümerik ve deneysel sonuçlar arasında gözlenen farklılıklar, kompozitin deformasyon 

duyarlılığı ve gerilme-birim deformasyon davranışını etkileyebilecek geometrik ve 

mikroyapısal parametrelerle  tartışılmıştır. 
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 CHAPTER 1 

 

INTRODUCTION 

 

Metal Matrix Composites (MMCs) exhibit a significant improvement in 

mechanical performance over monolithic alloys in many structural applications. Some 

specific advantages include high specific modulus and strength, high strength/weight 

ratio and high corrosion and temperature resistance [1]. Applications in which the 

dynamic response of MMCs is important include aerospace and automobile components 

exposed to crashing and metal forming processes.  

The quasi-static mechanical properties and failure mechanisms of particle, 

whisker and long and short fiber reinforced MMCs have been well characterized [2-6]. 

Theoretical and numerical investigations have been performed to predict the stiffness 

and the strength of the composites, given the mechanical properties of the matrix and 

reinforcement phases [7-10]. The effects of reinforcement volume fraction, size, shape, 

aspect ratio and particle distribution on the plastic deformations and failure mechanisms 

under quasi-static loading have been extensively studied [7,10-12]. 

The mechanical properties under high strain rates are not well investigated and 

developed as much. Much of the high strain rate studies on these materials have been 

reviewed in references 7,22. The first experimental investigation of high strain rate 

behavior of MMCs is due to Harding et al. [13] and Marchand et al. [14]. Studies of the 

high strain rate behavior of specific MMCs include those of Perng et al. [15], Hong and 

Gray [16], Mukai et al. [17], Yadav et al. [18], Chichili and Ramesh [19], Vaidya et al. 

[20], Gray et al. [21] and Guden and Hall [22]. A higher strain rate sensitivity of the 

composite compared with matrix material is commonly found in these studies. Yadav et 

al. [23] numerically indicated that the effect of strain rate in particle reinforced MMCs 

would be strongly dependent on the particle volume fraction. Bao and Lin [10] and 

Yadav [23], based on axisymmetric unit cell model, showed that the effect of strain rate 

is coupled with the particle volume fraction and the strain rate hardening of the 

composite may be significantly higher than that of the matrix due to the constraining 

effect of particles. Li and Ramesh [7] also studied the effects of particle shape and 

aspect ratio on the high strain rate response of SiC-particle (SiCp) reinforced MMCs, 
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and concluded that both variables have a strong influence on the flow stress at high 

strain rates.  

High strain rate mechanical properties are a great concern of the design 

engineers as the mechanical properties of materials are significantly affected by the 

loading rates.  Many materials, for example, show more brittle but stronger mechanical 

response to the increasing loading rates. High strain rate material properties are 

important in impact-related applications such as collisions of automobiles, hitting of 

external objects to the structural elements (e.g. aeroplane wings, satellite), impinging of 

projectiles to armors and so on. In modeling these structures, high strain rate mechanical 

properties are certainly required in order to increase their confidence limits. Many of the 

high strain rate testing methods however necessitate the utilization of expensive 

instrumentation and time-consuming specimen preparation and data analysis involving 

complex wave propagation. Models that could predict the rate dependent material 

properties with limited number of tests are therefore very attractive for the design 

engineers.   

This study presents a systematic computational investigation of the compression 

stress-strain curves of a SiCp reinforced Aluminum (Al) MMC, with different particle 

volume fractions, over a wide range of strain rate from quasi-static (10-3s-1) to high 

strain rates (~104 s-1). Axisymmetric unit cell models with varying boundary conditions 

were implemented in LUSAS Finite Element Model (FEM) program. Rigid ceramic 

particle embedded into viscoplastic matrix was assumed to have strain rate insensitive 

elastic modulus in the studied strain rate regime. The strain rate dependent matrix flow 

properties were therefore considered to be the only factor affecting composite strain rate 

dependent mechanical properties. The matrix flow stress behavior (constitutive 

equation) was determined through limited number of tests conducted at quasi-static and 

high strain rates. The numerical results of the models were compared with the 

experimental results in order to validate the model capability to predict the stress-strain 

curves of the similar composites at different strain rates. 
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CHAPTER 2 

 

METAL MATRIX COMPOSITES 

 
Metal Matrix Composites (MMCs) refer to a composite material group of 

reinforced metallic matrices. The reinforcement is usually a ceramic based material in 

one of the forms; particle, whisker and/or short and long fibers. The reinforcement 

enhances the strength and thermomechanical properties while the ductile metallic 

matrix confers toughness and strength on the composite. The function of the matrix in 

MMCs is different from that in polymeric matrix composites in which the matrix 

contribution to the strength of the composite is insignificant. Strengthening of the 

matrix itself can, however, contribute to the strength of the MMC and can be easily 

achieved using conventional strengthening methods developed for metallic materials 

such as alloying element additions and precipitation or dispersion hardening. 

 

2.1. History 

Initial studies on MMCs started in the 1960s for the needs of the aerospace 

industry. The first MMC produced was 60% boron monofilament reinforced Al-based 

composite and used in the U.S. Space Shuttle as tubing for cargo bay stiffeners [25].  

The manufacturing process for production of monofilament component preforms was 

quite expensive and consisted of a variety of complex processes such as bonding of lay-

up of filaments to Al-alloy foils and consolidation by diffusion bonding [26].  

Manufacturing which involves relatively cheaper and simpler processes such as casting 

and powder metallurgy (P/M) techniques incorporating particle, whisker and short fiber 

reinforcements was started to be successfully applied to MMCs in 1980s.   

The first commercial application of MMCs in the automotive industry was 

achieved in 1983 when Toyota replaced a diesel piston with a Saffil™ Short Fiber (SF)-

reinforced Al MMC. Later, Honda replaced the engine block on one of its models with a 

hybrid (Saffil and carbon SF) Al-Si MMC lined Al-block. The application areas of 

MMCs have widened to several different industries including automotive, aerospace 

and sports industries. The potential applications of MMCs in the aerospace industry 

have been considered by Ponzi [27]. 
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2.2. Matrix 

The following criteria may be considered to be important for the selection of the 

matrix: The chemical compatibility of the alloy with reinforcement, ability of the alloy 

to wet reinforcement, properties of the alloy and processing behavior. The choice of 

matrix alloy is usually between the light metals, Al, Mg and Ti, and their alloy groups 

diverse in physical and mechanical properties.  

Relatively good load transfer to the reinforcing phase is ensured by a strong 

interface between matrix and reinforcement. That is provided with adequate wetting of 

matrix to reinforcement. This frequently, however, involves chemical reactions between 

fiber and matrix, which in turn degrade the fiber properties. A compromise, therefore, it 

is needed to provide strong bonding without leading to excessive fiber degradation by 

chemical reactions. Nearly all commercial fibers are poorly wetted by Al and its alloys. 

Al can also easily react with C and SiC reinforcements. Several methods are proposed 

and applied to increase wettability such as addition of alloying elements, modification 

of the oxide layer on the metal surface, use of coatings and pre-treatment of the 

reinforcement [26].  

 

2.3. Reinforcement 

The most widely used reinforcements include SiC whisker, particle and long 

fiber and Al2O3 particle, short and long fibers. The composite microstructures may be 

grouped as continuous fiber, short fiber and particle reinforced MMCs (Figure 2.1 a, b 

and c). Further distinctions may be drawn on the basis of fiber diameter and orientation 

distribution. 

Reinforcement type, size and geometry can easily be varied, depending on the 

desired mechanical properties of the MMC. Particle reinforced MMCs have almost 

isotropic mechanical properties. With whisker, short and long fibers reinforcement, 

directional strengthening can be achieved depending on fiber distribution and 

orientation. A list of selected whisker and particle reinforcements used in MMCs is 

tabulated in Tables 2.1 together with mechanical and physical properties.  
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  (a)            (b)             (c)  

 

Figure 2. 1. (a) FP Alumina long fiber (b) alumina saffil short fiber and (c) SiC whisker 
reinforced Al MMCs [1]. 

 

Table 2.1. Mechanical and physical properties of particulates and whiskers [1]. 
 

Whisker or 
particle 

Tensile 
Strength 
(GPa) 

Elastic 
Modulus 
(GPa) 

Density 

(kgm-3) 

Diameter 
(µm) 

CTE 
(10-6K-1) 

Al2O3  430 3.8 1-50 7 

B4C 2.1 480 2.5 1-50  

SiC 3.2 450 3.2 1-50 4 
TiC  230 4.9   
SiCw 3.1,<21 450, <700 3.2 0.1-1 4 

Si3N4w  2-4, <14 350-385 3.1   

 

 

2.4. Manufacturing 

Liquid/preform infiltration (squeeze infiltration), slurry casting, spray casting and 

P/M routes are the processes successfully applied to MMCs. Squeeze casting is the most 

widely used technique for MMC manufacturing in which the liquid metal is infiltrated 

through a preheated preform and the melt solidifies under pressure. Squeeze casting is 

suitable for all types of fiber reinforced MMCs. In slurry casting, also called compo-

casting, the particles are added to the semi-solid slurry and the slurry is then agitated 

mechanically to promote reinforcement wetting with liquid and to avoid reinforcement 

agglomeration and sedimentation. Slurry casting can be applied to short fiber, whiskers 

and particulates forms of the reinforcements but is mostly used for manufacturing of 

particulate reinforced MMCs [1]. In spray casting, the droplets of the molten metal are 

sprayed together with reinforcement phase and collected on a substrate. The process is 

applicable for particulate and continuous fiber reinforcements. In the P/M route, the 

reinforcement and metal powders are blended and the blend is then consolidated at high 

temperature and pressure. The process is usually followed by commercial metal forming 
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techniques such as extrusion and rolling. The P/M route is applicable to short fiber, 

whisker and particulate reinforced MMCs.   

 

2.5. Basic Mechanics 

There are several methods to predict MMCs mechanical properties. These include 

the slab, the shear-lag, Eshelby and FE models. The first two methods will be 

summarized shortly in this section and detailed information on Eshelby method is for 

example found in [1]. FEM will be explained separately in Chapter 3. 

The slab model treats the composite as if it were composed of two slabs bonded 

together; one of which is matrix and the other is the reinforcement as shown in Figure 

2.2 for a transversely loaded long fiber composite. The load sharing between fiber and 

matrix is then used to calculate composite strength in fiber and normal to fiber 

directions.   

 

 

 

(a) 

 

 

(b) 

 

Figure 2. 2. (a) Long fiber composite loaded normal to the fiber plane and (b) slab 
model presentation [1]. 
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Based on this model, following equations are derived for the tensile strength of the 

unidirectional long (Eq. 2.2) and short fiber (Eq. 2.3) composites in the fiber direction:  

 
*

c f f f mσ = V σ +(1-V )σ     (2.1) 

 

 *c
c f f f m c f

f

l
σ = V σ (1- )+(1-V )σ   l l

2l
  (2.2) 

 

   
f

c m f f um c f
f

l
σ =τ V( )+(1-V )σ   l >l

d
           (2.3) 

  

where c is the composite strength, f  is the fiber strength, lf is the fiber length, m
*is 

the matrix stress at fiber failure strain, mis the interfacial stress, um is the matrix 

tensile strength, Vf is the volume fraction and lc is the critical fiber length and given by  

 

 
m

ff
c

2

d
l




   (2.4) 

 
In many cases the interface strength is assumed to be the yield strength of the matrix in 

shear and therefore can be considered as my/2. Equation 2.1 is used for continuous 

fiber reinforced composites and Equations 2.2 and 2.3 are for the longitudinal strength 

of short fiber reinforced composites when taking the fiber length effect into account. 

One of the most widely used models describing loading of an aligned short 

fiber composite is the shear-lag model, originally proposed by Cox [28]. The shear-lag 

model formulates fiber and matrix shear stresses via load transfer from matrix to 

interface. It is therefore suitable for short fibers aligned to loading axis (Figure 2.3). For 

elastic deformation, composite strength is given by the following equation: 
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lz

r

L

Rro

= applied
strain

i

 
 
 
Figure 2.3. Schematic of the shear-lag model; i : interface shear stress r0 : fiber radius, 
R: point where matrix has uniform strain [1]. 

 

 





  mfc E)f1(

ns

)nstanh(
1fE    (2.5) 

 

where Ef and Em are the modulus of  fiber and matrix respectively, s is the fiber aspect 

ratio (fiber length/diameter) and n is  

 

2E2 mn
E (1 )ln(1/f)f mv


     (2.6) 

 
where m is the matrix Poissons ratio.   

The continuum approach to predicting the modulus and strength of composites 

containing long fibers can be successfully applied. The role of the matrix is to transfer 

load to the strong fibers and the composite attains its ultimate strength when the fibers 

fracture. In the case of discontinuous fiber reinforced composites containing fibers 

whose length is less than the critical length, the ultimate stress is reached when the 

fibers debond and are pulled out of the matrix. However, the continuum models are 

argued to give rough estimations of strength in the particulate and whisker reinforced 

composites by ignoring the effects of particle size and unrelaxed stresses in the 



 

 9

composite. The micromechanical approach is believed to give better estimates of the 

flow stress of discontinuously reinforced MMCs by taking into account the dislocation 

mechanism in the matrix. 

The micromechanical approach considers several possible barriers to dislocation 

motion including factors such as internal stress, residual dislocations, particles, grain 

boundaries and substructure. The difference in coefficient of thermal expansion (CTE) 

between matrix and fiber almost unavoidably results in internal stresses as the 

composite cools down from the elevated production temperature. Part of these stresses 

is relieved by generation of dislocations and the remaining misfit gives rise to a build-

up of tensile residual stresses in the matrix. 

The strengthening due to small particles can be estimated using the Orowan 

equation for bowing dislocations around particles giving dislocation loops around them 

 

 


Gb2
  (2.7) 

 

where   is the distance between particles. The Orowan strengthening in MMCs is 

argued to be small due to the relatively large particle size and the distance between 

particles. The Orowan strengthening is calculated to be ~6 MPa in a composite 

containing 3 µm particles with 17Vf%. However, it may be significant in the age 

hardenable matrices where residual dislocations may affect the precipitate nucleation 

rate and size. The MMCs usually have finer grain size as compared to monolithic 

alloys. The typical grain sizes in particulate and whisker reinforced MMCs are around 

10 µm. The strengthening due to grain size refinement in composite can be determined 

using the Hall-Petch equation 

 

 2

1

gyG dk    (2.8) 
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where ky  is a constant and dg  is the grain size. The grain size refinement is calculated to 

be significant in MMCs containing grain sizes in the order of 1-10 µm. The contribution 

from subgrains near to the reinforcement can be also predicted using the Hall-Petch 

Equation.  
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CHAPTER 3 

 

FINITE ELEMENT MODEL 

 

3.1. The Finite Element Method 

The Finite Element Method is a numerical method for solving problems of 

engineering and mathematical physics. It is useful for problems with complicated 

geometries, loadings, and material properties where analytical solutions are difficult to 

obtain or can not be obtained [28]. Until the advent of computers, the only way to test a 

designed structure was to build a prototype and carry out the necessary tests. Today 

computers allow designs to be assessed much more quickly and easily.  

In order to calculate the response of a complex shape, that we called engineering 

problem, to any external load the complex shape must be divided into smaller and 

simple shapes as shown Fig. 3.1. These are the finite elements that give the method its 

name. The shape of each finite element is defined by the coordinates of its nodes. 

Adjoining elements with common nodes will interact each other. 

 

 

  (a)    (b)    (c) 

 

Figure 3.1. (a) A complex engineering structure (b) its FEM and (c) elements [29]. 

 

The real engineering problem responds in an infinite number of ways to external 

forces. The manner in which the Finite Element Model will react is given by the degrees 

of freedom, which are expressed at the nodes. For example, a three-dimensional solid 

element has three degrees of freedom at each node representing the three global 

directions in which it may move. If one can express the response of a single Finite 

Element to a known stimulus, a model for the whole structure can be build up by 
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assembling all of the simple expressions into a set of simultaneous equations with the 

degrees of freedom at each node as the unknowns. These are then solved using a matrix 

solution technique. For a mechanical analysis, once the displacements are known, the 

strains and stresses can be calculated. For a thermal analysis, the gradients and fluxes 

can be calculated from the potentials [29]. 

 
3.2. Static Analysis 

Static analysis is one of the most commonly used analysis of engineering 

structures. As its name implies, in this analysis, loads are applied instantaneously; that 

is, any transient effect is ignored. For linear static analysis the loaded body 

instantaneously develops a state of internal stress so as to equilibrate the total applied 

loads. The overall structural response, both the geometric and material response, is 

considered to be linear in linear static analysis. This is often represented by the 

extension of a spring with a stiffness constant of k (Figure 3.2).  

 

                     

 

Figure 3.2. Linear elastic stress-strain behavior of a spring. 

 

Consider the equilibrium of a general three-dimensional body subject to surface 

(t), body (b) and concentrated (F) forces. The body will be displaced from its original 

configuration by an amount u, which gives rise to strain  and corresponding stress . 

The governing equations of equilibrium may be derived by utilizing the principle of 

virtual work. This states that, for any small virtual displacements u imposed on the 

body, the total internal work must equal the total external work for equilibrium to be 

maintained, i.e. 

 



 

 13

        

T T T T

v v s

δε σ dv = δu f dv + δu t ds + du F                 (3.1) 

 

where  are the virtual strains corresponding to the virtual displacements . 

In finite element analysis, the body is approximated as an assemblage of discrete 

elements inter-connected at nodal points. The displacements within any element are 

then interpolated from the displacements at the nodal points corresponding to that 

element, i.e. for element e 

 

      
(e) (e) (e)u =N a                           (3.2) 

 

where N (e) is the displacement interpolation or shape function matrix and a (e) is the 

vector of nodal displacements. The strains �(e)  within an element may be related to the 

displacements a (e) by 

 

     
(e) (e) (e)ε =B a                (3.3) 

 

where B is the strain-displacement matrix. For linear elasticity, the stresses  �within 

the finite element are related to the strains using a constitutive relationship of the form 

 

(e) (e) (e) (e) (e)
0 0σ =D (ε -ε )+σ                (3.4) 

 

where D(e) is a matrix of elastic constants, and 0
(e) and 0

(e) are the initial stresses and 

strains respectively. 

Using (3.2), (3.3) and (3.4), the virtual work equation (3.1) may be discretised to 

give 
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n
T (e)T (e) (e)

e=1 v

n n n
T (e)T (e) (e) (e)T (e) (e) (e)

s 0 0
e=1 e=1 e=1v s v

δa B D B dVa=

δa N f dV+ N - B (σ -D ε )dV+F
 
 
 

 

    
        (3.5) 

 

where Ns
(e) are the interpolation functions for the surfaces of the elements and n is the 

number of elements in the assemblage. 

By using the virtual displacement theorem, the equilibrium equations of the 

element assemblage becomes 

 

             Ka=R                                              (3.6) 

 

where K is the structure stiffness matrix, defined as 

 

    
n

(e)T (e) (e)

e=1 v

K= B D B dV                 (3.7) 

 

and R is the structure force vector, defined as 

 

b s o eR=R +R -R +R               (3.8) 

 

where Rb is the force vector due to the element body loads, 

 

n
(e)T (e)

b
e=1 v

R = N f dV                (3.9) 

 

Rs is the force vector due to the element surface tractions, 

 

(e)T
n

(e)
s s

e=1 s

R = N t dV              (3.10) 
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R0 is the force vector due to the initial stresses and strains, 

(e)T
n

(e) (e) (e)
0 0 0

e=1 v

R = B (σ -D ε )dV                         (3.11) 

 

and Rc is the force vector due to concentrated loads, 

 

0R =F               (3.12) 

 

Equation (3.6) may be utilized for situations where the applied loading is 

independent of time or when the load level changes very slowly. If rapid changes in the 

load level occur, inertia and damping forces must be included in the equilibrium 

equations. 

 

3.3. Plasticity and Non-Linear Analysis 

 
3.3.1. Basics of Plasticity and Related Material Properties 

When a material deforms above a critical stress or strain, deformation becomes 

permanent; that is the material cannot recover its original shape. Plastic deformation is 

therefore irreversible, although there always exists small anelastic strain which is 

usually ignored in continuum mechanics. Contrary to elastic deformation, the stress-

strain relation is usually non-linear in plastic deformation. Many plasticity-related 

properties however can be easily extracted from the uniaxial stress-strain curve.   

  

3.3.1.1. Proportional Limit and Yield Point 

The point at which the stress-strain curve deviates from linearity is called the 

proportional limit (Figure 3.3). On a stress-strain curve, a tangent line drawn in the 

elastic region will give the proportional limit. The yield point is determined by a 

repeated loading and unloading and simultaneously recording the strain until the point 

reached where strain does not return back to zero. The load at which the irreversible 

point is reached is called the yield point (Figure 3.3). Since the yield point 

determination is difficult to perform and there is usually little difference between the 

yield point and the proportional limit, in many FE analysis programs they are generally 

assumed to be the same.   
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Figure 3.3. Proportional and yield point on a stress-strain curve [43]. 

 

3.3.1.2. Strain Hardening 

The increase of the yield stress with increasing strain is called strain hardening.  

Strain hardening behavior is usually characterized as being either elastic perfectly 

plastic or strain hardening. In the former, the yield stress remains constant above the 

yield strain (Figure 3.4(a)) and in the latter stress increases with strain either linearly 

(Figure 3.4(b)) or non-linearly. 

 

    (a)     (b)   

Figure 3.4. Uniaxial stress-strain curves; (a) elastic-perfectly plastic and (b) strain 
hardening material [43]. 
 

Incremental plasticity theory provides a mathematical relationship that 

characterizes the increments of stress and strain (D and De) to represent the material 

behavior in the plastic range. There are three basic components of the incremental 

plasticity theory: yield criterion and flow and hardening rules. 
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3.3.1.3. Yield Criterion 

In uniaxial tensile test, the yield stress or proportional limit is determined based on 

the measured stress-strain data. However, for a multiaxial state of stress, it is necessary 

to define a yield criterion. The yield criterion is a single-valued (scalar) measure of the 

stress state that may be readily compared to the yield stress from the uniaxial test. A 

common yield criterion is the von Mises yield criterion. It states that yielding begins 

whenever the internal energy of distortion (equivalent stress) exceeds a certain value.  

The von Mises equivalent stress is defined as: 

 

2 2 2
1 2 2 3 3 1

1
[( ) ( ) ( ) ]

2e                (3.13) 

where 1 , 2 and 3 are the principal stresses. Yielding occurs when the equivalent 

stress exceeds the yield stress of the material:  

 

e > y     (3.14) 

 

In principal stress space the von Mises yield criterion is represented by a 

cylindrical yield surface aligned along the axis = 2 = 3 in 3D (Figure 3.5 (a)) and 

by an ellipse in 2D (Figure 3.5 (b)). Any stress state outside the yield surface causes 

yielding. 

 

 

   (a)     (b)   
 

Figure 3.5. Representation of the von Misses yield surface in (a) 3D and (b) 2D [43]. 

.  
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 3.3.1.4. Flow Rule 

The flow rule prescribes the direction of the plastic straining when yielding 

occurs.  It defines how the individual plastic strain components (ex
pl, ey

pl, etc.) develop 

with yielding. Flow equations, which are derived from the yield criterion, typically 

imply that the plastic strains develop in a direction normal to the yield surface. Such a 

flow rule is termed associative. If some other flow rule is used (derived from a different 

function), it is called non-associative 

 
3.3.1.5. Hardening Rule 

The hardening rule describes how the initial yield criterion changes with 

progressive plastic straining. There are two basic hardening rules used in FEM to 

prescribe the modification of the yield surface: isotropic and kinematic hardening.  

In isotropic hardening the yield surface expands uniformly in all directions with 

plastic flow (Figure 3.6). The stress-strain behavior for a uniaxial specimen with 

isotropic hardening is given in Figure 3.7 and it is noted that the subsequent yield in 

compression is equal to the highest stress attained during the tensile loading. Isotropic 

hardening is often used for large strain or proportional (non-cyclic) loading simulations.   

 

 
 

Figure 3.6.  Isotropic hardening. 
 

 

Figure 3.7. Uniaxial stress-strain behavior of a material with isotropic hardening. 
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In kinematic hardening, the yield surface remains constant in size and 

translates in the direction of yielding (Figure 3.8). Most metals exhibit kinematic 

hardening behavior for small strain cyclic loading. The stress-strain behavior for a 

uniaxial specimen with kinematic hardening is given in Figure 3.9. Note that the 

subsequent yield in compression is decreased by the amount that the yield stress in 

tension increased, so that a 2σy difference between the yields is always maintained.  

(This is known as the Bauschinger effect.). An initially isotropic material is no longer 

isotropic after it yields and experiences kinematic hardening. For very large strain 

simulations, the kinematic hardening model can become inappropriate. 

 

 

Figure 3.8. Kinematic hardening. 
 

 
 

Figure 3.9. Uniaxial stress-strain behavior of a material of kinematic hardening. 
 

3.3.2. Non-linear Analysis 

Linear Finite Element Analysis assumes that all materials are linear elastic in 

behavior and that deformations are small enough to not significantly affect the overall 

behavior of the structure. This description applies to very few situations but with a few 

restrictions and assumptions, linear analysis will suffice for the majority of engineering 

applications. Significant classes of structures do not however have a linear relationship 

between force and displacement. Since a plot of force versus displacement for such 
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structures is not a straight line, such structures are said to be non-linear. The stiffness is 

no longer a constant, K; it becomes a function of applied load, KT (the tangent 

stiffness) (Figure 3.10).  

 

 

Figure 3.10. A ductile metal tensile test specimen and its non-linear force-displacement 
behavior [43]. 
 

Non-linear structural behavior arises for a number of reasons, which can be 

reduced to three main categories: (i) Geometric Nonlinearities (large strains, large 

deflections, stress stiffening), (ii) Material Nonlinearities (plasticity, hyperelasticity, 

creep) and (iii) Changing Status Nonlinearities (contact, element birth and death), see 

Figure 3.11. 

 

 

 

 
Figure 3.11. Types of nonlinearities in aluminum extrusion process [43]. 

 

Materially non-linear effects arise from a non-linear constitutive model (that is, 

progressively disproportionate stresses and strains). Common examples of non-linear 

material behavior are the plastic yielding of metals, the ductile fracture of granular 

composites such as concrete, or time-dependent behavior such as creep. 

A non-linear stress-strain relationship is a common cause of non-linear structural 

behavior as shown in Figure 3.12 in plastically deforming steel and elastically 

deforming rubber specimens. 
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Figure 3.12. Non-linear stress-strain behavior of steel and rubber. 

 

3.4. Non-linear Solution Procedures 

For non-linear analysis, since it is no longer possible to directly obtain a stress 

distribution, which equilibrates a given set of external loads, a solution procedure is 

usually adopted in which the total required load is applied in a number of increments. 

Within each increment a linear prediction of the non-linear response is made, and 

subsequent iterative corrections are performed in order to restore equilibrium by the 

elimination of the residual or ‘out of balance’ forces [16]. 

The iterative corrections are referred to some form of convergence criteria which 

indicates to what extent an equilibrate state has been achieved. Such a solution 

procedure is therefore commonly referred to as an incremental-iterative (or predictor-

corrector) method shown in Figure 3.13.  

 

 

Figure 3.13. Incremental-iterative solution procedure [30]. 
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For the analysis of non-linear problems, the solution procedure adopted may be 

of significance to the results obtained. In order to reduce this dependence, wherever 

possible, non-linear control properties incorporate a series of generally applicable 

default settings, and automatically activated facilities. 

 

3.4.1. Iterative Procedures 

In LUSAS, which was used in this study as a numerical tool, the incremental-

iterative solution is based on Newton-Raphson iterations. In the Newton-Raphson 

procedure, an initial prediction of the incremental solution is based on the tangent 

stiffness from which incremental displacements, and their iterative corrections may be 

derived. 

 

3.4.1.1. Standard Newton-Raphson procedure 

In the standard Newton-Raphson procedure, each iterative calculation is always 

based upon the current tangent stiffness. For finite element analysis, this involves the 

formation (and factorization) of the tangent stiffness matrix at the start of each iteration. 

Although the standard Newton-Raphson method generally converges rapidly, the 

continual manipulation of the stiffness matrix is often expensive. The need for a robust 

but inexpensive procedure therefore leads to the development of the family of modified 

Newton-Raphson methods. The Newton-Raphson method iterates to a solution using the 

equation: 

 

[K T]{Du} = {F} - {Fnr}            (3.15) 
where:   

[KT] = Tangent Stiffness Matrix 

{Du} = Displacement Increment 

{F}  = External Load Vector 

{Fnr}   = Internal Force Vector(sum of element stresses) 
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 Each iteration is a separate pass through the equation solver. One iteration is as 

expensive as a single linear static analysis. The difference between external and internal 

loads, {F} - {Fnr}, is called the residual. It is a measure of the force imbalance in the 

structure. The goal is to iterate until the residual becomes acceptably small; that is, until 

the solution converges. When convergence is achieved, the solution is in equilibrium, 

within an acceptable tolerance. 

 
3.4.1.2. Newton Iteration 

Although Newton-Raphson iteration is stable and converges quadratically 

(provided the initial estimate is close enough to the solution), it has the disadvantage 

that the tangent stiffness matrix needs to be inverted during each iteration. Also, it may 

fail to converge when extreme material nonlinearities are present in a structure. For this 

case, modified Newton iteration may be more effective. With modified Newton 

iteration, the current tangent stiffness matrix is replaced with a previous stiffness 

matrix, say from the beginning of the increment. This reduces the cost of the 

computation/iteration as the factorization of the tangent stiffness matrix is not required 

for every iteration. Three common forms of modified Newton-Raphson are initial 

stiffness method, KT1 method, KT2 method (Figure 3.14(a), (b) and (c)). 

The convergence rate of modified Newton iteration is not quadratic and the 

procedure often diverges. However, when coupled with the line search procedure it 

forms an iteration algorithm that is particularly suitable for structures exhibiting 

extreme material nonlinearity. Newton-Raphson iteration, which also was used in this 

study, is more effective for geometrically non-linear problems than modified Newton 

iteration.  

 

(a) Initial Stiffness Method 
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(b) KT1 Method 

 

 

(c) KT2 Method 

 

Figure 3.14. Common forms of modified Newton iteration [30]. 

 

3.4.1.3. Iterative Acceleration (Line Searches) 

A slow convergence rate may be significantly improved by employing an 

iterative acceleration technique. In cases of severe and often localized nonlinearity, 

encountered typically in materially non-linear or contact problems, some form of 

acceleration may be a prerequisite to convergence. 

In LUSAS, iterative acceleration is performed by applying line searches. In 

essence, the line search procedure involves extra optimization iterations in which the 

potential energy associated with the residual forces at each iterative step are minimized. 

Line search application is controlled via parameters on the iteration section of the non-

linear control properties. The selection of line search parameters is problem dependent 

and largely a matter of experience. However, a maximum of 3 to 5 line search iterations 
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with a tolerance of 0.3 to 0.8 is usually sufficient (the closer the tolerance is to unity, the 

more slack the minimum energy requirement). 

 

3.4.2. Incremental Loading 

Incrementation for non-linear problems may be specified in four ways: 

 Manual Incrementation where the loading data in each load increment is 

specified separately. 

 Automatic Incrementation where a specified load case is factored using fixed or 

variable increments. 

 Mixed Incrementation: Mixed manual and automatic incrementation. 

 Load Curves where the variation of one or more sets of loading data is specified 

as a load factor vs. load increment or time step load curve. 

The choice and level of incrementation will depend on the problem to be solved. 
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CHAPTER 4 

 

UNIT CELL AND MODEL MATERIAL 

 

4.1. Unit Cell Model 

 

4.1.1. Geometry  

Ceramic particles are assumed spherical, elastic and homogeneously dispersed 

in the matrix. A particle in a cylindrical matrix phase is taken as the unit cell and used to 

model the whole composite structure [7,8,10-12] (Figure 4.1). Due to symmetry, only 

one quarter of the axisymmetric unit cell is used in the model calculations. The 

geometrical parameters of the model are particle radius, unit cell cylinder radius and 

height, as depicted in Figure 4.2. 

 

 

         (a)           (b)           (c) 
 
Figure 4.1. Schematic of the axisymmetric unit cell model; a) composite, b) unit cell 
and c) a quarter of the unit cell. 
 
 

 

Figure 4.2. Geometrical parameters of the model. 
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The effect of reinforcement volume fraction on the stress-strain behavior of the 

SiCp/2024-O Al MMC (the model material) was investigated using four different unit 

cell models containing 5, 10, 15 and 25 volume percentage of SiCp as shown 

sequentially in Figure 4.3(a), (b), (c) and (d). The particles are assumed to be spherical 

and homogeneously distributed in the composite with an average particle size of 30 m. 

The particle packing geometry was chosen as a square. The height or length of the unit 

cell was calculated using the following equation: 

3/13

f6

r4
R 








      (4.1) 

where f is the particle volume fraction, r is the particle radius and R is the length of the 

unit cell. Since the particle packing geometry is a square, the height of the cylinder is 

equal to its diameter.   

 

             (a)  

  

   (b)              (c)         (d) 

Figure 4.3. Unit cell composite models based on; a) 5, b) 10, c)15 and d)25% SiC 
particles. 
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 4.1.2 Meshing 

LUSAS 6 noded triangle, TAX6 (Figure 4.4(a)), and 8 noded quadrilateral, 

QAX8 (Figure 4.4(b)), 2D continuum axisymmetric solid elements with quadratic shape 

functions were used for regular and irregular meshing of the axisymmetric unit cell 

models. Detailed information on TAX6 and QAX8 is given in Appendix 2. The 

investigated irregularly and regularly meshed quadrilateral axisymmetric solid (QAX8) 

models with 108 elements are shown in Figure 4.5(a) and (b), respectively. At the 

locations where meshing with quadrilateral axisymmetric element was not possible, the 

program automatically utilized triangle axisymmetric solid (TAX6) elements as 

depicted in Figure 4.5(a). Since the QAX8 has 4 Gauss points, the regular mesh model 

has 432 and irregular mesh model has 422 Gauss points. Figure 4.6(a) and (b) show 

irregularly and regularly meshed triangular element models. The number of elements in 

these models is 150 (450 Gauss points) and 206 (618 Gauss points) for regular or 

irregular mesh models respectively. The number of elements (also Gauss or integration 

points) in irregular mesh model at the particle-matrix interface are increased 

intentionally in order to model the stress and strain distribution as fine as possible.  

 

 

        (a)     (b) 

 
Figure 4.4. LUSAS; a) TAX6 (6 nodes) and b) QAX8 (8 nodes) axisymmetric 
elements. 
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(a) (b) 

 

Figure 4.5. Quadrilateral axisymmetric unit cell solid elements with a) irregular and b) 
regular meshes. 

 

 

 

(a) (b) 
 
Figure 4.6. Triangle axisymmetric solid element mesh models a) irregular and b) 
regular. 
 

 

Since plasticity calculations take place at the finite element integration points, it 

is important to consider the integration (or Gauss) point density when meshing the 

model. Although, fully integration uses multiple points (Figure 4.7(a)) reduced, 

integration uses limited number of points or single point (Figure 4.7(b)) in integration. 

Reduced integration elements will require a more refined mesh than fully integrated 

elements. Therefore, fully integrated elements are used in the unit cell.  
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Integration Points 
(Fully Integrated)

Reduced 
Integration

Integration Points 
(Fully Integrated)

Reduced 
Integration

 

(a) (b) 

 
Figure 4.7. (a) Fully integrated element with 4 integration points and (b) reduced 
integrated element. 
 

4.1.3. Boundary conditions 

The meshed unit cell with boundary conditions is shown in Figure 4.8. Due to 

the symmetry, the left edge of the unit cell is fixed on the x-direction: dx=0, and bottom 

edge is fixed on the y-direction: dy=0. Top edge is constrained on the y-direction: 

dy/y=0 for geometrical fitting [7,11,12]. There are two possibilities that can be applied 

to the right edge of the cell [12]. The first one is to unconstraint the right edge so that 

outer sidewall of the cell will not remain straight after deformation. This is shown in 

Figure 4.9(b) for 20% total final strain in the y-direction. The second possibility is to 

constrain the right edge in the-x direction (dx/x=0) so that the right edge will remain flat 

after the deformation as shown in Figure 4.9(c) for applied 20% total final strain in the 

y-direction. The condition that the circular cylindrical cell remains circular cylinder 

comes from enforcing geometric compatibility for a uniform array of fibers perfectly 

aligned with tensile axis [12]. In our analyses, the unconstrained model is adopted and 

an example of constrained model is also investigated. Numerical calculations for 

various particle fractions were conducted on the unconstrained model and calculations 

with constraint model were only conducted for 15% particle reinforced composite. 
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Figure 4.8. Meshed unit cell model and boundary conditions applied. 

 

 

          (a)         (b) 

 

(c) 

Figure 4.9. a) Undeformed unit cell model, b) unconstraint deformed mesh at 20% 
strain and c) constrained unit cell model deformed  until 20% strain. 
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4.1.4. Calculation Methods  

Uniaxial loading of the model was simulated by imposing an incremental 

displacement in the y-direction. Two displacement increments are applied in two 

different load cases. Increments of 0.002% and 1% are applied until and after 1% 

displacement respectively. The deformation of the composite was modeled using von-

Misses theory of plastic flow of the 2024-O Al and elastic properties of the SiC 

reinforcement. The flow stress-strain behavior of the matrix corresponding to the 

studied strain rate was entered to the program. The elastic modulus of the SiC 

reinforcement was taken as 450 GPa [24]. 

 The macroscopic stress was calculated using,  

 


N

j
j=1

Ci

σ

σ =
N

           (4.2) 

 
where ci  is the average composite stress at ith increment,  j is the element stress at the 

Gauss points and N is the total number of Gauss points. Macroscopic strain was 

calculated using, 

 

o

i
i l

l
ln         (4.3) 

where i is the increment number and l is the final and lo is the initial  length of the unit 

cell. 

 

4.2. Model Material  

The modeling results were compared with a SiCp reinforced 2024-O Al MMC 

compression behavior at quasi-static and high strain rates. The composite was 

manufactured by stir casting and its microstructure is shown in Figure 4.10. The average 

particle size was 30 μm but the particle size ranges between 10 to 50 μm. The average 

matrix grain size was 200 μm. Since the particles are pushed by the growing dendrites, 

they are collected at the grain boundaries (Figure 4.10). The matrix material is a 

wrought alloy which was exposed to extrusion and cross-rolling. Solution treatment was 

applied to the alloy in order to simulate cast matrix alloy properties. The heat treatment 
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process was conducted at 385 ˚C for 3 hours following by cooling to 260 ˚C with a 

cooling rate of 28 ˚C /hour and cooling in the furnace from 260 ˚C to room temperature.  

The composite and matrix quasi-static and dynamic compression behavior was 

previously investigated by Güden and Hall [22] on small cylindrical specimens (6-10 

mm in diameter and 6.6 mm in length) using Instron and Split Hopkinson Pressure Bar 

techniques. In Instron compression testing, the typical strain rate range involved was 

around ~10-4 to 10-3 s-1 depending on the specimen dimensions and chosen cross-head 

speed. High strain rate tests in the SHPB involved strain rates up to 4000 s-1.  

 

 

 

Figure 4.10. SEM micrograph of SiCp reinforced 2024 Al-O, showing the particle 
clustering at grain boundaries [22]. 
 

4.2.1 Matrix compression properties 

The effect of strain rate on the compression behavior of the matrix alloy is 

shown in Figure 4.11. The flow stress increases with increasing strain rate, showing a 

strain rate sensitive flow stress behavior.  
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Figure 4.11. True stress-strain curves of the 2024 matrix alloy at various strain rates. 

 

In order to find matrix constitutive equation, the flow stresses of the matrix 

corresponding 6% strain was extracted and shown as a function of strain in Figure 4.12.  

The flow stress vs. strain rate data shown in this figure was fitted to the equation: 

 

.

SD k                                                (4.4) 

 

where D and S are the dynamic and reference strain rate flow stresses, respectively.  

The reference strain rate was 1.5x10-3 s-1 corresponding to quasi-static strain rates. The 

high strain rate stress-strain behavior was then calculated by multiplying strain rate 

sensitivity parameter, k, with the strain rate interested. The value of k was calculated 

0.00149 for the matrix alloy.  Figure 4.13 shows the calculated stress-strain curves at 

various strain rates and comparison between experimental and calculated stress-strain 

curves at 1140 and 3200 s-1 strain rates. A good agreement between two in this figure 

confers that matrix constitutive equation can be simply presented by the Equation 4.4. 
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Figure 4.12.  Linear fit of the 2024 Al flow stress at 6% strain vs. strain rate curve. 
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Figure 4.13. Comparison of experimental high strain rate stress-strain curves with the 
numerical stress-strain curves of Equation 4.4. 
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4.2.2. Metal Matrix Composite 

Quasi-static stress-strain curve (0.0015s-1) of the composite is shown in Figure 

4.14. Initially higher strain hardening and flow stress behavior are observed in the 

composite. In Figure 4.15, the stress-strain curves of the composite are shown at various 

strain rates.  Similar to the matrix alloy behavior, a strain rate sensitive flow stress 

behavior is measured.  
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Figure 4.14. Comparison stress-strain curves of matrix and MMC. 
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Figure 4.15. True stress-strain curves of the SiCp reinforced MMC at various strain 
rates. 
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CHAPTER 5 

 
RESULTS  

5.1. Model Parameters 

5.1.1. Effect of Element Type and Number  

Numerical quasi-static stress-strain curves of four models, regularly and 

irregularly meshed triangular and quadrilateral solid models (see Figures 4.5 and 4.6), 

are shown in Figure 5.1 for 15% SiCp reinforced 2024-O Al composite. In the same 

figure, quasi-static (0.0015 s-1) experimental stress-strain curve of the composite is also 

shown for comparison purposes. All models result in lower stresses than composite 

below 15% strain. It is also noted that regular mesh models give lower stress values 

than the irregular mesh models. Since the triangular irregular meshing is more flexible 

and provides relatively fine meshing at particle-matrix interface, it has been chosen for 

meshing the unit cell models with varying particle fractions.  
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Figure 5.1. Numerical (irregular and regular mesh,  triangle and quadratic axisymmetric 
solid elements models) and experimental stress-strain curves of the 15% SiCp reinforced   
Al MMC. 
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5.1.2. Effect of Boundary Conditions and Mesh Density 

Corresponding numerically computed stress-strain curves of the unconstrained 

and constrained models given in Figure 4.9(b) and (c) are plotted in Figure 5.2. It is 

found that constraining the right edge results in higher flow stresses and strain 

hardening in the composite. A similar behavior has been previously found for the 

modeling of a short fiber composite [12].  
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Figure 5.2. Corresponding stress strain curves of the unconstrained and constrained 
models and experimental stress-strain curve of 15% SiCp reinforced MMC.  
 

 To investigate the effect of mesh density, a coarse meshed model (98 elements) 

of the unit cell (Figure 5.3) is also used in the analysis. It is found that, although fine 

and coarse mesh models have similar stress values at relatively low strains, at higher 

strains, the latter results in higher stresses (Figure 5.4). The difference between two also 

increases as the strain increases.  
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Figure 5.3.  Coarse mesh model of the unit cell given in Figure 4.6(a). 
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Figure 5.4. Comparison of the quasi-static stress-strain curves of the coarse and fine 
mesh models of 15% SiCp reinforced MMC.  
 

5.2. Modeling Results 

 
5.2.1. Effect of Volume Fraction 

The effect of volume fraction on the composite quasi-static (0.0015 s-1) stress-

strain behavior is shown in Figure 5.5. As expected, increase in reinforcement volume 

fraction (particle size of 30 m) increases the flow stresses of the matrix. However, 

increase in the flow stress also depends on the plastic strain. The strain dependent flow 

stress is shown in Figure 5.6, in which the strengthening (matrix flow stress is 
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subtracted from composite flow stress) is drawn as function of strain for different 

particle volume fractions. Linear interpolation to the data in this figure confirms the 

highest strengthening and strain hardening in 25% of the particle reinforced composite.    

 

0

100

200

300

400

500

0 0.05 0.1 0.15 0.2

matrix
5% vf MMC
10% vf MMC
15% vf MMC
25% vf MMC

s
tr

e
s

s
 (

M
P

a
)

true strain 
 

 
Figure 5.5.  Quasi-static true stress-strain curves of 5-10-15-25 % SiCp reinforced 
MMC.  
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Figure 5.6. Strengthening vs. strain for different volume percentages of particles. 
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5.2.2. Effect of Strain Rate 

Numerical stress-strain curves of the composite at 1500 and 3200 s-1 are shown 

in Figure 5.7 and 5.8 respectively, for different particle volume percentages. Strain rate 

sensitive flow stress behavior of the composite is clearly seen in these figures. The flow 

stress of 25% particle reinforcement at 3200s-1 is over 500 MPa at 20% strain, while at 

the same strain it is slightly less than 500 MPa at 1500s-1. In Figures 5.9, 5.10 and 5.11 

the strain rate dependent composite flow stress-strain behaviors are shown sequentially 

for 5, 10 and 25% particle reinforcement. It is noted in these figures that the increase in 

flow stress is also function of strain. The rate sensitivity of the composite at a specific 

strain is calculated by plotting on a graph corresponding to flow stresses as function of 

strain rate, which is shown in Figure 5.12 at 5% strain. Linear interpolation to the data 

on this figure gives the strain rate sensitivity as a function of particle volume fraction. In 

Figure 5.12 the highest rate sensitivity is found in 25% particle volume fraction 

(0.02007) and the smallest rate sensitivity in 5% composite (0.018139). The rate 

sensitivity of the matrix alloy (0.0149) is less than the composite rate sensitivity.   
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Figure 5.7. Calculated true stress-strain curves of 5, 10, 15 and 25% SiCp reinforced 
MMC for 1500 s-1 strain rate test.  
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Figure 5.8. Calculated true stress-strain curves of 5, 10, 15 and 25% SiCp reinforced 
MMC for 3200 s-1 strain rate test.  
. 
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Figure 5.9. Calculated quasi-static and high strain rate stress-strain curves of the 5% 
SiCp reinforced MMC.  
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Figure 5.10. Calculated quasi-static and high strain rate stress-strain curves of the 10% 
SiCp reinforced MMC.  
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Figure 5.11. Calculated quasi-static and high strain rate stress-strain curves of the 25% 
SiCp reinforced MMC.  
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Figure 5.12. Stress vs. strain-rate for different volume fractions at 5% strain  

 

The strain rate sensitivity parameters, k and σo given in Equation 4.4 were 

calculated as function strain for the studied particle volume percentages and matrix 

material and tabulated in Table 5.1. On the same table, the values of k and σo of the 

15% particulate reinforced MMC with constrained model are also shown. The rate 

sensitivity of the composite is higher than the matrix alloy for all particle volume 

fractions studied. The higher strain rate sensitive behavior of the composite also 

continues at larger values of the strain (Table 5.1). Contrary to matrix alloy rate 

sensitivity, composite rate sensitivity increases with increasing strain. It is also noted on 

the same table, the constrained model gives higher strain rate sensitivities than the 

unconstrained model. The increase in strain rate sensitivity with strain is also higher in 

the constrained model.  

 
Table 5.1. Strain rate sensitive behavior of the matrix and 5-10-15-25% volume fraction 
particle reinforced MMC models, and constrained 15% volume fraction reinforced 
model.  

strain 

matrix MMC, 5% vf MMC, 10% vf 

0 K 0 K 0 K 

5 
244.88 0.014929 299.99 0.018139 308.78 0.01841

10 
263.31 0.014929 333.05 0.018444 343.27 0.018684

15 
282.1 0.014929 353.54 0.018668 364.87 0.018813

25 
292.65 0.014929 368.93 0.018846 381.21 0.018878
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Continue Table 5.1. 

strain 

MMC, 15% vf MMC, 15% vf+cx MMC, 25% vf 

0 K 0 K 0 K 

5 
324.92 0.019046 374.43 0.021763 350.22 0.020067

10 
365.16 0.019525 426.36 0.023103 398.12 0.020621

15 
386.93 0.019738 456.73 0.023668 425.58 0.020793

25 
406.02 0.019871 483.85 0.023979 450.31 0.020912

 
 
5.3. Comparison of Numerical and Experimental Stress-Strain Curves 

Numerical stress-strain curves of 15% particle reinforced MMC at increasing 

strain rates are shown in Figure 5.13. Numerical and experimental stress-strain curves 

of the composite at quasi-static (0.0015 s-1) and high strain rates (2300s1) is given in 

Figure 5.14. Since deformation of the composite after 15% strain is inhomogeneous 

(excessive barreling and shear band formation) as marked by arrows in Figure 5.14, the 

comparison is made until 15% strain. The flow stress-strain curves of the composite, 

numerical and experimental are given sequentially in Figure 5.15, 5.16 and 5.17 at 5, 10 

and 15% strains. As it is seen in these figures within the studied strain range, the 

experimental flow stresses are higher than those of numerical ones. The linear 

interpolation to the flow stress-strain rate curves give the strain rate sensitivity which 

are tabulated in Table 5.2. It is noted in this table, that both experimental and numerical 

k values increase as the strain increases at a constant matrix rate sensitivity. However, 

numerical strain rate sensitivity is found to be higher than experimental one. Further 

more, the matrix strain rate sensitivity is also higher than the experimental composite 

rate sensitivity except at 15% strain.  
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Figure 5.13. Quasi-static and high strain rate stress-strain curves of the 15% particle 
reinforced MMC and quasi-static stress-strain curve of the matrix. 
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Figure 5.14. Comparison of numerical and experimental quasi-static (0.0015 s-1) and 
2300 s-1 strain rate stress-strain curves of 15% volume fraction SiCp reinforced MMC.  
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Figure 5.15. Numerical and experimental flow stress at 5% strain vs. strain rate of 15% 
particle reinforced MMC. 
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Figure 5.16. Numerical and experimental flow stress at 10% strain vs. strain rate of 
15% particle reinforced MMC. 
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Figure 5.17. Numerical and experimental flow stress at 15% strain vs. strain rate of 
15% particle reinforced MMC. 
 
 
 
Table 5.2. Calculated and experimental strain rate sensitivity parameters of 15% 
particle reinforced MMC and matrix alloy.  
 

Strain 

matrix MMC, 15% vf 

MMC, 15% vf 

experimental 

0 K 0 K 0 K 

5 
244.88 0.014929 324.92 0.019046 344.96 0.013902 

10 
263.31 0.014929 365.16 0.019525 378.98 0.014752 

15 
282.1 0.014929 386.93 0.019738 390.79 0.015503 

  

 

5.4. Stress-Strain Distribution in the Unit Cell 

Using the unit cell model, it is also possible to contour the stresses and strains 

within the unit cell. Stress distributions in the y-direction for the unconstrained and 

constrained models are shown sequentially in Figure 5.18.(a) and (b) for 5% particulate 

reinforced composite at strain of 0.002. The highest compressive stress at the particle-

matrix interface is found to be higher than 162 MPa (Figure 5.18(a)) with an average 

stress of 128 MPa. For the constrained model, the highest stress at the particle-matrix 

interface is clearly seen at an angle approximately 25 to the loading axis (Y-axis). The 
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maximum interface compressive stress in the constrained model (>179 MPa) is higher 

than that with unconstrained model. The stress distribution in the X-direction for both 

models are also very similar as shown in Figures 5.19 (a) and (b), however, compressive 

stresses become higher and tensional stresses become smaller in the constrained model. 

The highest compressive stress is located near to the particle–matrix interface at the 

upper quarter of the particle. Highest tensile stress is along the particle matrix interface 

at about 25 degrees to the X-direction. In Figures 5.20 and 5.21, the strain distributions 

in Y and X-directions are shown for unconstrained and constrained models, 

respectively. Although average strains for the models are the same, the maximum 

compressive strain is higher in constrained model in the Y-direction. Similarly, the 

strain in the X-direction for the constrained model is higher than that of the 

unconstrained model (Figure 5.21(a) and (b)). Following figures, Figure 5.22 and 5.23 

show the stress and strain distribution in 25% particle reinforced MMC for the average 

strain of 0.002% for the unconstrained model. The particle effect is clearly seen in 

Figure 5.22(a); the maximum compressive stress increases to 232 MPa and average 

stress to 148 MPa (see Figure 5.18 for comparison). The stress distribution profile in 

25% particle reinforced MMC in X and Y-directions is however similar to that in 5% 

composite. It is also noted that for both directions, the maximum strains in 25% particle 

reinforced MMC are higher than those of 5% particle reinforced MMC, although the 

average strains are the same (0.002%). These results confirm the fact that higher particle 

volume fractions induce higher maximum stresses and strains in the composite, showing 

the higher probability of the failure in composites with higher volume fraction particle.   

In Figure 5.24(a) and 5.25(a), the stress and strain distributions in Y-direction 

in 5% particle reinforced MMC are shown sequentially at 5, 10 and 20% strains. As 

seen in these figures, both maximum stresses and strains at particle-matrix interface 

increase as the strain increases. 

Figure 5.26 shows the equivalent stress distribution in the composite. The 

maximum stress is 25o to the loading axis and plastic deformation most probably starts 

at this location. 
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(b) 

Figure 5.18. Stress distribution in Y-direction for 5% particle reinforced MMC a) 
unconstrained and b) constrained models. 
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(b) 

Figure 5.19. Stress distribution in X-direction for 5% particle reinforced MMC a) 
unconstrained b) constrained models. 
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(b) 

Figure 5.20. Strain distribution in Y-direction for 5% particle reinforced MMC a) 
unconstrained b) constrained models. 
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(b) 

Figure 5.21. Strain distribution in X-direction for 5% particle reinforced MMC a) 
unconstrained b) constrained models. 
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(b) 

Figure 5.22. Stress distribution for 25% reinforced MMC a) Y and b) X  direction. 
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0.00219333
0.00182778

0.00146222
0.00109667
0.000731111
0.000365556
0

Max 0.4423E-02 at Node 304
Min 0.3681E-04 at Node 1

 
(b) 

Figure 5.23. Strain distribution for 25% reinforced MMC a) Y-direction b) X-direction 
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LOAD CASE    =      10
Increment 10 Load Factor = 0.500E+01
RESULTS FILE =       1
STRESS
CONTOURS OF SY

-69.7469
-122.794
-175.841
-228.889
-281.936

-334.983
-388.03
-441.078
-494.125
-547.172

Max -43.22 at Node 1029

Min -573.7 at Node 1047

LOAD CASE    =      15
Increment 15 Load Factor = 0.100E+02
RESULTS FILE =       1
STRESS
CONTOURS OF SY

195.602
86.8414
-21.9188
-130.679
-239.439

-348.2
-456. 96
-565. 72
-674. 48
-783.241

Max 250.0 at Node 1046

Min -837.6 at Node 1047

LOAD CASE    =      25
Increment 25 Load Factor = 0.200E+02
RESULTS FILE =       1
STRESS
CONTOURS OF SY

830.538
594.114
357.691
121.268
-115.155

-351.578
-588.002
-824.425
-1060.85
-1297.27

Max 948.7 at Node 1046

Min -1415. at Node 31

 
 
   (a)      (b)       (c) 
 
 

Figure 5.24. Stress distribution in Y-direction a) 5, b) 15 and c) 20 % strains for unconstrained model.
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LOAD CASE    =      10
Increment 10 Load Factor = 0.500E+01
RESULTS FILE =       1
STRAIN
CONTOURS OF EY

-0. 00116686
-0.01587
-0.0305731
-0.0452762
-0.0599793

-0.0746824
-0.0893855
-0. 104089
-0. 118792
-0. 133495

Max 0.6185E-02 at Node 18

Min -0.1408 at Node 1026

LOAD CASE    =      15
Increment 15 Load Factor = 0.100E+02
RESULTS FILE =       1
STRAIN
CONTOURS OF EY

0.000406303
-0.0273329
-0.0550721
-0.0828113
-0.11055

-0.13829
-0.166029
-0.193768
-0.221507
-0.249246

Max 0.1428E-01 at Node 18

Min -0.2631 at Node 1026

LOAD CASE    =      25
Increment 25 Load Factor = 0.200E+02
RESULTS FILE =       1
STRAIN
CONTOURS OF EY

0. 00567539
-0.0486746
-0. 103025
-0. 157375
-0. 211725

-0. 266075
-0. 320425
-0. 374775
-0. 429125
-0. 483475

Max 0.3285E-01 at Node 18

Min -0.5106 at Node 1026

 
 
    (a)      (b)       (c)  
 
 

Figure 5.25. Strain distribution in Y-direction a) 5, b) 15 and c) 20 % strains for unconstrained model. 
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Figure 5.26. Equivalent stress distribution for 25% reinforced MMC, unconstrained 
model. 
 

 

The effect of particle corners to the stress-strain curve of the composite was 

investigated by comparing the unit cell models given in Figure 5.27. The first unit cell 

in this figure is a cylindrical and the second is a perfectly spherical particle embedded 

inside the matrix. The unit cells have the same particle percentages, 15%. The 

corresponding stress-strain curves of the unit cells given in Figure 5.28 show flow 

stresses and strain hardening rate are higher in the unit cell of cylindrical particle. The 

stress distribution of two models in the Y-direction is shown in Figure 5.29 for 1 and 

10% strains. In the first model, the maximum stresses and the average stress are much 

higher than those of the second model.   
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(a) (b) 

 

Figure 5.27. a) Cylindrical and b) spherical particle reinforced MMC unit cell models. 
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Figure 5.28. Sharp corner strengthening effect. 
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(c) 
 
 

Figure 5.29. Stress distribution in Y-direction a) spherical and b) cylindrical particle 
MMC at 1% strain and c) at 10% strain in cylindrical particle reinforced MMC. 
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CHAPTER 6 

 

DISCUSSION 

 
6.1. Unit cell model 

An increase in the number of elements (mesh density) is known to increases the 

accuracy of any FE unit cell model. A compromise should however be made between 

accuracy and program-run time since higher number of elements unavoidably rises the 

program-run time. The run time for the unit cell model used in this thesis is 

approximately 30 minutes. This might be increased in order to investigate the effect of 

number of elements on the accuracy of the results obtained. Since the program is limited 

to 250 numbers of elements, an investigation over this value could not be possible.  

The use of irregular mesh is more appropriate for the structures that contain 

irregular surfaces and interfaces. Irregularities in geometry including cracks, notches, 

sharp-cornered particles and interfaces should also be meshed in an appropriate way in 

order to precisely simulate local variations of stresses and strains around them. These 

can only be possible with irregular meshing. 

The higher stresses developed in the constrained model is obviously due to the 

development of the internal stresses in order for the right edge of the unit cell to remain 

flat after the deformation. Although, at low particle volume fractions, this may result in 

negligible increase in stress values as compared with the unconstrained model, at 

increasingly high particle volume fractions, the increase in stress values becomes 

significantly higher, as also shown for the studied model in Figure 5.2. In previous 

studies, it has been also shown for short and whisker reinforced MMCs that the 

constrained model resulted in relatively higher flow stresses [12].    

 

6.2. Model Results 

 

6.2.1. Matrix Rate Sensitivity  

The effect of strain rate on the flow stresses of the FCC and BCC materials is well 

documented. Tirupataiah and Sundararajan [31] have represented flow stress vs. logarithm 

of strain rate in two parts, a high strain rate sensitive regime after a transition strain 

rate, tr
.
 , and a lower strain rate regime below tr

.
  as schematically plotted in Figure 6.1. 
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Tirupataiah [32] has further constructed the transition strain rates for a number of metals 

and alloys as shown in Figure 6.2. As depicted in Figure 6.2, the transition strain rate for 

common metals and alloys lies between 102 to 104  s-1. The transition strain rate, as shown 

in Figure 6.2, decreases as the strength of the metals or alloys increases and it is not 

affected by the specific metal-alloy system but is only affected by the strength. Before the 

transition strain rate, it is usually assumed that the deformation is controlled by the 

thermally activated deformation mechanism [33] and a logarithmic relation between stress 

and strain rate is usually found in this regime as, 

    
.

o logk                    (6.1) 

Above the transition strain rate, the flow stress is assumed to be drag controlled [33]. 

Stress and strain rate in this regime is usually expressed with a linear relation as, 

    
.

o k                        (6.2) 

In order to apply Equations 6.1 and 6.2 to the flow stresses, the experimental flow stresses 

between quasi-static and high strain rate, 1 and 100 s-1, must also be provided. Using 

conventional static and dynamic testing methods, the experimentation within this strain 

rate regime could not be possible. However, the matrix flow stresses of the studied 

composite material are sufficiently well represented by the Equation 6.2 within the studied 

strain rate regime. 
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Figure 6.1. Schematic of the flow stress (constant strain) variation with strain rate in 
metallic materials [31]. 
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Figure 6.2. Transition strain rate vs. strength for common metals and alloys [32]. 

 

6.2.2. Composite Stress-Strain Curve and Rate Sensitivity  

The agreement between the unit cell model and experimental stress-strain curves 

for the 15% particle reinforced MMCs is reasonably good, although the latter shows 

slightly higher flow stresses before 15% strain (Figure 5.14). At lower strains, below 

5%, high strain rate flow stress data of SHPB testing however do not show exact 

material property. This is because at least four stress wave reversals are required in 

SHPB for stress homogenization in the sample, which may occur approximately within 

1-4 microseconds (0-10% strain) depending on tested sample wave velocity and size 

and applied strain rate. At lower strain rates and for small size samples, stress 

homogenization occurs at lower strain levels. One can therefore tends to use flow 

stresses obtained at lower strain rates for the representative material property.  

However, the lower the strain rate is, the smaller the final strain attained is in the sample 

and therefore; comparison of the relatively lower and higher strain rate flow stresses at 

larger strain levels is not possible. 

It is noted that while numerical flow stresses increase continuously with 

increasing strain, the experimental quasi-static and high strain rate flow stress started to 

decrease after 15% strain. This is most likely due to the damage accumulation in the 

composite and at larger strains, about 30% strain, the composite failed by forming shear 

bands, lining 45 degrees to the load axis as shown in Figure 6.3 for a sample tested until 

about 30% strain. When damage accumulation rate in the composite becomes higher 

than strain hardening rate, a decline in strength emerges and finally material fails. The 

continuous increase of stress and strain levels in the composite would eventually induce 
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damages in the composite particularly in particle-matrix interface, particle and matrix. 

Interface debonding and particle and matrix cracking, leading to the reduction of the 

strength, have been previously observed in particulate reinforced MMCs [1]. 

 

 

Shear band Loading 
direction 

 

 
Figure 6.3. Quasi-statically deformed composite sample, showing shear bands on the 
surface.  

 

Increasing particle volume fraction has been found to have two major effects on 

the composite stress-strain behavior (Figure 5.5). These are i) increase of the flow stress 

and b) strain hardening rate. An increase in the volume fraction of the particle obviously 

increases the amount of load carried by the strong particles. The higher strain hardening 

behavior of the composite with the higher particle volume fractions is due to the 

development of the higher stresses as compared with the composite with lower particle 

volume fraction at the same average strain. 

The increased strain sensitivity of the composite relative to the matrix alloy is 

due to the constraint effect of the particles [7,10]. This effect also increases with 

increasing particle volume fraction. The higher the particle volume fraction, the larger 

the maximum strain and hence the strain rate attained in the composite, leading to 

increased strain rate sensitivity. At an average strain rate, for example, the maximum 

strain rate in the matrix may rise well above the average strain rate. This forms a 

strengthening effect in the composite if the matrix flow stress is strain rate sensitive. Li 

and Ramesh [7] have previously proposed this explanation for the increased strain rate 

sensitivity in the particle reinforced MMCs. The model developed in this study, 

however, is based on the deformation of the composite with a matrix material whose 

constitutive equation is known. Since the matrix flow stress increases with increasing 

strain rate, the composite flow stress also increases but with an amount higher than the 

matrix flow stress at a constant strain. Therefore, the proposed model requires the use of 
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the matrix constitutive equations which is available for the majority of the Al alloys and 

most of the Al alloys have been found to have strain rate sensitive flow stress behavior 

as depicted in Figure 6.4, in which the strain rate sensitivity parameter was drawn as a 

function of flow stress at 1 s-1 for common Al-alloys.  

The increased rate sensitivity of the composite in the constrained model as 

compared with the unconstrained model is due to particle constraint effect. This is 

clearly seen in Figure 5.2, where constrained model induces higher stresses than the 

unconstrained model at the same average strain. 

 

 

Figure 6.4. Rate sensitivity parameter vs. strength (έ=1s-1) of Al and its alloys [44]. 
 

The rate insensitive behavior of the ceramic materials has been observed in the 

strain rate regime of quasi-static to 100s s-1 [34]. Strain rate sensitive failure strength in 

ceramic materials has been found at strain rates higher than 1000 s-1 [34]. However such 

high strain rates could only be attained in the composite when the average strain rate in 

the composite would reach extremely high strain rates. The validity of the assumption 

of rate insensitive particle stress is also shown in Figure 5.20; the strain and hence strain 

rate on the particle is much smaller than the average strain.   

The discrepancy between experimental and numerical flow stresses and rate 

sensitivities of the composite might be due to several complex factors, which will be 

elaborated below. 

One reason of the discrepancy may be due to the experimental errors in the 

SHPB as explained previously. The errors in SHPB analysis mostly occur at low strains 

and therefore; could not be used to explain for the discrepancies at larger strains.  
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One should also consider the fact that the matrix macrostructure in the 

composite might be quite different from that in monolithic alloy, although both have the 

same alloy composition. Microscopic studies have shown that, in particulate reinforced 

MMCs, the grain size is smaller than that in the monolithic matrix produced by the 

same processing parameters [35]. The precipitation reactions were also faster in the 

composite [35]. Therefore, the microstructure of the matrix may be enhanced by the 

present particles. Moreover, the difference in thermal expansion coefficients of the Al 

and SiC results in development of residual stresses in the composite. Residual stresses 

are likely to increase flow stress in compression because in the studied particular 

composite system, the matrix might be under the tensional residual stresses. These tend 

to increase the flow stresses of the composite. It was shown that alloying and heat 

treatment processes applied to Al reduced the strain rate sensitivity relative to the pure 

Al. 

In metals, most of the plastic deformation work is converted into heat and the 

conversion factor is usually assumed around 90-95% [36]. Mason et al. [37] measured 

the rate of conversion of plastic work into heat in 2024 Al alloy at high strain rates. The 

conversion factor was found to reach 85-90% after about 10% strain, a result that is 

very similar to the predicted value of this conversion factor. At high strain rates, the 

deformation is usually assumed to be adiabatic or near to the adiabatic condition due to 

short deformation duration for any significant heat dissipation [38,39]. Under adiabatic 

conditions, the temperature of the material increases as deformation proceeds and the 

increase of temperature is calculated using 

                     



 d
C

T                                                         (6.3) 

where ∆T, C and  are the temperature increase, specific heat and density, respectively 

and  is the conversion factor of plastic work into heat (usually taken as 0.9). The flow 

stress of most metals is quite sensitive to temperature [40] and, therefore, adiabatic 

heating can cause stress softening. The effect of stress softening due to adiabatic heating 

should be also taken into account for particularly strain rates above 100 s-1. The critical 

strain rate for adiabatic strain rates is given as [41] 
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2

4
cr L

 
             (6.4) 

 

where  is the thermal diffusivity and L is the specimen length. Using a thermal 

diffusivity of 5x10-5 m2s-1 for Al, initial specimen length of 10 mm and a strain of 20%, 

the critical strain rate is found to be ~0.4 s-1. One can therefore consider all the quasi-

static tests of the composite as isothermal and high strain rate tests as adiabatic. Since 

the thermal diffusivity of the composite is lower than the monolithic alloy, lower critical 

strain rates for the adiabatic heating of the composite is predicted. Using Equation 6.3, 

the isothermal stress-strain curves of the composite (%15) and matrix material is 

calculated according to the equation  

 

T
Tadiabaticisothermal 



     (6.5) 

 

where /is the thermal softening parameter. Following parameters are further used 

in calculations: Thermal softening parameter; 0.5 MPa oC and heat capacity; 875 for 

2024 and 843 for the SiC MMC. The calculated isothermal curves for the composite and 

2024-O are shown in Figure 6.5. At 5, 10 and 15% strains the increase of stress due to 

adiabatic heating for 2024 and composite are 2, 4.5 and 7 MPa and 3, 7.3 and 11 MPa 

respectively. Although utilization of isothermal stress-strain curves increases the rate 

sensitivity parameter of the composite, the discrepancy between experimental and 

numerical strain rate sensitivity parameters are still relatively large. It is also noted that 

the difference between experimental and numerical stress-strain curves increases further 

with isothermal stress-strain curve as shown in Figure 6.6. 
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Figure 6.5. Isothermal curves for the composite and 2024-O 
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Figure 6.6. Experimental and numeric stress-strain curves of MMC. 

 
  

It has been found that particles that have sharp corners have higher 

strengthening effect in the composite than spherical particles [24]. A similar result was 

also found in this study as depicted in Figure 5.28. The lower ductility and higher flow 

stress in short fiber reinforced MMCs as compared with particulate reinforced MMCs 

are simply due to the fact that higher local stresses are developed in these composites. 

The SiCp in the studied composite is not really spherical but have an irregular shape 
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with sharp corners. Real composite particles are also not perfectly cylindrical in shape. 

The stress-strain curve would therefore be in between spherical and cylindrical case, but 

biased towards the spherical case. 

Previous numerical study has shown that particle-clustering increases the plastic 

strains accumulated in the matrix, leading to a higher strain hardening and thus a higher 

flow stress [42]. Although the effect of particle-clustering on the strain rate sensitivity 

has not been investigated yet, the development of higher plastic strains is expected to 

increase constraint effect of the particles, which may lead to higher strain rate 

sensitivity.   

During processing of the composite, the SiC particles may react with liquid Al, 

producing brittle Al-C phase and Si-rich region around the particle. The Al-C phase is 

extremely brittle and it cannot be resolved under the electron microscope. The effect of 

brittle interface on the strain rate sensitivity is however not known very well.    

The damage accumulation in the composite with increasing strain reduces 

degradation in the flow stresses of the composite. The reflections of stress waves at the 

boundaries could form complex wave interactions and result in rise of the damage 

accumulation rate. 

As a summary, several parameters are considered for the discrepancy between 

experimental and numerical results. Among them, enhancement of the composite matrix 

microstructure, thermal residual stresses, sharp corners and clustering of particles tend 

to increase flow stresses of the composite, while adiabatic heating and damage 

accumulation tend to decrease flow stress. The parameters that affect the strain rate 

sensitivity of the composite however should be further investigated through a 

systematical experimental research program that provides large number of data on 

composites of varying particle volume fractions and matrix alloys.   

Present model can be used to predict both small and large strain deformation 

behavior of the composite by applying suitable displacement increments. Not only 

particle reinforced composite’s but also short and long fiber reinforced composite’s 

mechanical behavior can be modeled by adapting suitable reinforcement shape and 

entering appropriate material properties.   
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CHAPTER 7 

 

CONCLUSIONS 

 

Strain rate dependent compression mechanical behavior of a SiC-particulate 

reinforced Al (2024-O) MMC with different particle volume fractions has been 

numerically investigated. An axisymmetric Finite Element unit cell model in which an 

elastic particle is embedded inside a strain rate sensitive visco-plastic matrix was used 

to determine composite stress-strain curves at various strain rates. The numerically 

calculated and experimentally found stress-strain curves and strain rate sensitivities 

were also compared for 15% particulate reinforced MMC. The followings have been 

found based on numerical and experimental results: 

 

1. The average flow stresses of the MMC increase with increasing 

reinforcement volume fraction. A higher strain hardening rate behavior was 

also found in the composite as compared with matrix alloy. 

2. The strain rate sensitivity of the composite was higher than that of the 

matrix. Strain rate sensitivity of the composite was further found to increase 

with increasing strain although the matrix strain rate sensitivity was constant.  

This was attributed to the constrained effect of the particles. 

3. Strain rate sensitivity of the composite increased with the increasing particle 

volume fraction at the same particle size. This was again attributed to the 

increased constrained effect of the particles with increasing particle volume 

fraction. 

4. Relatively good correlation between experimental and numerical stress-strain 

curves of the composite was found at strains less than 15%. The discrepancy 

at larger strains was attributed to damage accumulation. 

5.  Although experimental strain rate sensitivity of 15% SiC reinforced MMC, 

increased with increasing strain, it was found to be smaller than the 

numerical values. Several reasons for the discrepancy were discussed 

including adiabatic heating, microstructural variations between the 

composite matrix and matrix alloy, particle shape and distribution and 

damage accumulation. 
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6. It was found that the constrained model resulted in higher stresses as 

compared with the unconstrained model. This was likely due to the 

development of internal stresses for the geometrical fit arising from the 

constraint. 

7. It was also confirmed in this study that cylindrical particles induce higher 

average and local stresses in the composite as compared with spherical 

particles. 
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APPENDIX 1 

 
LUSAS Finite Element System 

A complete finite element analysis involves three stages. 

 Pre-Processing 

 Finite Element Solver 

 Results-Processing 

The LUSAS Finite Element System consists of two parts to perform a full 

analysis: 

 LUSAS Modeller is a fully interactive pre- and post-processing graphical 

user interface. 

 LUSAS Solver performs the Finite Element Analysis. 

 

Pre-Processing 

Pre-processing involves creating a geometric representation of the structure, 

then assigning properties, then outputting the information as a formatted data file (.dat) 

suitable for processing by LUSAS. 

 

Creating a Model 

A model is a graphical representation consisting of Geometry (Points, Lines, 

Combined Lines, Surfaces and Volumes) and Attributes (Materials, Loading, Supports, 

Mesh, etc.). Each part of the model is created in two steps: 

 Define the Feature or Attribute. 

 Assign the Attribute or Attributes. 

Features can be defined by entering coordinates, selecting Points on the screen 

or by using utilities such as transformations. An attribute is first defined by creating an 

attribute dataset. The dataset is then assigned to chosen features. For example, to assign 

a Point Load (Attribute) to a Point (Feature) representing the corner of a platform. 

To complete a model it may be necessary to define additional utilities called 

control datasets. These are used to control the progress of advanced analyses. 

 

Finite Element Solver 

Once a model has been created by clicking on the solve button the solution stage 

begins. LUSAS creates a data file from the model, solves the stiffness matrix, and 
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produces a results file (.mys). The results file will contain some or all of the following 

data: 

 Stresses            · Strains          · Displacements                  · Velocities     

· Accelerations   · Residuals   · Reactions    · Yield flags   · Potentials 

· Fluxes              · Gradients     · Named variables          · Combination 

datasets 

· Envelope definitions             · Fatigue datasets                 · Strain energy 

 

Results-Processing 

Results-processing involves using a selection of tools for viewing and analysing 

the results file produced by the Solver. Many different ways of viewing results are 

supported: 

 Contour plots (averaged/smoothed) 

 Contour plots (unaveraged/unsmoothed) 

 Undeformed/Deformed Mesh Plots 

 Wood-Armer Reinforcement Calculations 

 Animated Display of Modes/Load Increments 

 Section Line/Slice Plots 

 Yield Flag Plots 

 Graph Plotting 

 Vector Plots 

Input Parameters 

1.Control parameters 

1.Number of Elements 

2.Number of Nodes 

3.Number of B.C.’s 

4.Number of Nonzero Forces 

2.Geometry 

1.x,y,z location of each node 

2.Element connectivity (which nodes are associated with which 

elements) 

3.Element Properties 

1.Area 
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2.Moment of Inertia 

3.Thickness 

4.Location of  Neutral Axis 

4.Loading Information 

1.Location and magnitude of every external force. 

2.Location and magnitude of every constrained d-o-f 
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APPENDIX 2 

 
Axisymmetric solid element properties 

General 

Element Name: TAX3 TAX6  QAX4 QAX8 

Element Group: 2D Continuum 

Element Subgroup:    Axisymmetric Solid 

Element Description: A family of 2D isoparametric elements with higher order 

models capable of modelling curved boundaries. The formulations apply over a unit 

radian segment of the structure and the loading and boundary conditions are 

axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are 

numerically integrated. 

Number Of Nodes:  3, 4, 6, or 8 numbered anticlockwise. 

Freedoms U, V: at each node. 

Node Coordinates X, Y: at each node. 

Geometric Properties 

Not applicable (a unit radian segment is assumed). 

Material Properties 

Linear  

Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic) 

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC (Elastic: 

orthotropic Axisymmetric) 

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS 

Modeller) 

Rigidities: Not applicable. 

Matrix: Not applicable.  

Joint: Not applicable.  

Concrete: MATERIAL PROPERTIES NONLINEAR 82 (Elastic: Isotropic, 

Plastic: Cracking concrete) 

Elasto-Plastic  

Stress resultant: Not applicable. 
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Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: 

Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic 

Total Strain) 

Drucker-Prager: MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, 

Plastic: Drucker-Prager, Hardening: Granular) 

Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, 

Plastic: Mohr-Coulomb, Hardening: Granular with Dilation) 

Von Mises (B/Euler): MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, 

Plastic: Von Mises, Hardening: Kinematic) 

Volumetric Crushing: MATERIAL PROPERTIES NONLINEAR 81 (Volumetric 

Crushing or Crushable Foam) 

Rubber:  Not applicable.  

Composite:  Not applicable.  

Field:   Not applicable.  

Stress Potential: STRESS POTENTIAL VON_MISES, HILL, HOFFMAN 

Creep:   CREEP PROPERTIES (Creep) 

Damage:  DAMAGE PROPERTIES SIMO, OLIVER (Damage) 

Viscoelastic:  VISCO ELASTIC PROPERTIES 

 

Loading 

Prescribed Value  PDSP, TPDSP Prescribed variable. U, V: at nodes. 

Concentrated Loads  CL Concentrated loads. Px, Py: force per unit radian at nodes. 

Element Loads  Not applicable.  

Distributed Loads UDL Not available. 

FLD Face loads. Px, Py: local face pressures at nodes (force per unit area). 

Body Forces CBF Constant body forces for element. Xcbf, Ycbf, Wx, Wy (angular 

velocity must be applied about axis of symmetry) 

BFP, BFPE Body force potentials at nodes/for element. 0, 0, 0, j4, Xcbf, Ycbf 

Velocities   VELO Velocities. Vx, Vy: at nodes. 

Accelerations  ACCE Acceleration Ax, Ay: at nodes. 

InitialStress/Strains SSI, SSIE Initial stresses/strains at nodes/for element. sx, sy, 

sxy, sz: global stresses. ex, ey, gxy, ez: global strains. 

SSIG Initial stresses/strains at Gauss points. sx, sy, sxy, sz: global stresses. ex, ey, gxy, 

ez: global strains. 
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ResidualStresses SSR, SSRE Residual stresses at nodes/for element. sx, sy, sxy, 

sz: global stresses. 

SSRG Residual stresses at Gauss points. sx, sy, sxy, sz: global stresses. 

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0, To, 

0, 0, 0 

Field Loads  Not applicable.  

TempDependentLoads Not applicable.  

 

Output 

LUSAS Solver Stress (default): sx, sy, sxy, sz, smax, smin, b, ss, se (see 

description of principal stresses)  

   Strain: ex, ey, gxy, ez, emax, emin, b, es, ee 

LUSAS Modeller See Results Tables (Appendix K). 

 

Local Axes 

Not applicable (global axes are the reference). 

 

Sign Convention 

· Standard 2D continuum element 

 

Formulation 

Geometric Nonlinearity 

Total Lagrangian For large displacements and large rotations. 

Updated Lagrangian For large displacements and large rotations. 

Eulerian   For large displacements, large rotations and moderately 

large strains. 

Co-rotational  Not applicable. 

 

Integration Schemes 

Stiffness Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4, QAX8) 

Fine (see Options). 3x3 (QAX8), 3-point (TAX3). 

Mass Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4, QAX8) 

Fine (see Options). 3x3 (QAX8), 3-point (TAX3). 
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Mass Modelling 

Consistent mass (default). 

Lumped mass. 

 

Options 

18 Invokes finer integration rule. 

47 X-axis taken as axis of symmetry. 

54 Updated Lagrangian geometric nonlinearity. 

55 Output strains as well as stresses. 

87 Total Lagrangian geometric nonlinearity. 

91 Invokes fine integration rule for mass matrix. 

105 Lumped mass matrix. 

123 Clockwise node numbering. 

139 Output yielded Gauss points only. 

167 Eulerian geometric nonlinearity. 

Notes on Use 

1 The element formulations are based on the standard isoparametric approach. The 

variation of stresses within an element can be regarded as constant for the lower order 

(corner node only) elements, and linear for the higher order (mid-side node) elements. 

2 All elements pass the patch test. 

3 Non-conservative loading is available with these elements when using either 

Updated Lagrangian or Eulerian geometric nonlinear formulations together with the 

FLD loading facility. 

4 Option 123 will not operate on a mesh with a mixture of clockwise and anti-

clockwise elements, it is only applicable if every element is numbered clockwise. 

Surface normals should be visualised and if necessary corrected in the pre-processing 

stage. 

 Using Option 123 with local loading types, such as FLD and UDL, will cause 

load reversal. 

5 The maximum and minimum principal stress computations for axisymmetric 

elements do not include the sz term as this is implicitly a principal stress in a biaxial 

stress field.  
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Restrictions 

· Ensure mid-side node centrality 

· Avoid excessive element curvature 

· Avoid excessive aspect ratio 

 

Recommendation on Usage 

The 8-noded element with a 2*2 Gauss rule is usually the most effective element, as the 

under-integration of the stiffness matrix prevents locking, which may occur either when 

the element is subjected to parasitic shear, or as the material reaches the incompressible 

limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate 

locations for the element. However, the element does possess one spurious zero energy 

mode. This mode is very rarely activated in linear analysis, but it may occur in both 

materially and geometrically nonlinear analyses. Therefore, a careful examination of the 

solution should be performed, to check for spurious stress oscillations and peculiarities 

in the deformed configuration. 

The 8-noded element with a 3*3 Gauss rule may be used if a spurious mechanism is 

excited with the 2*2 Gauss rule. 

The 4-noded element should not be used for analyses where in-plane bending effects are 

significant as the element tends to lock in parasitic shear. 

Copyright © 1999 FEA Ltd. 

 

 

 

 

 


	TEZKAPAK
	ACKNOWLEDGEMENTS
	TEZENSON

