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ABSTRACT 
 

DETERMINATION OF CHARACTERISTICS OF ADSORBENT FOR 

ADSORPTION HEAT PUMPS 

 

Adsorption heat pumps, which are environmentally friendly and operating with 

thermal sources, have gained attention in recent years. Although they have higher 

primary energy efficiency than traditional heat pumps, adsorption heat pumps require 

improvements due to the low COP and SCP/SHP values. The selection of appropriate 

working pair, the determination of adsorption equilibrium and kinetics of the pair is 

quite important in the design of adsorption heat pumps.  

In this study, the working pairs used in adsorption heat pumps were discussed, 

and the models used in adsorption equilibria and kinetics were explained. In the 

experimental part, the effect of the adsorption and desorption temperatures on 

adsorption capacity and mass diffusivity were investigated. Type RD silica gel-water 

and zeolite 13X-water were selected as working pairs in the adsorption experiments. 

Accordingly, two volumetric systems were constructed; adsorption experiments were 

conducted and pressure changes were recorded against time.  

The experimental studies showed that the adsorption capacity was decreased 

with increasing adsorption temperature and with decreasing desorption temperature, and 

zeolite 13X-water pair had higher adsorption capacity than type silica gel-water pair 

under the same conditions. Type II and Type I isotherms were observed for type RD 

silica gel-water pair and zeolite 13X-water pair, respectively.  

The effective diffusivity of zeolite 13X-water pair was found in the range of 

2x10
-8

-9x10
-9

 m
2
/s for the short time period  and in the range of 7x10

-10
-10

-8
 m

2
/s for the 

long time period. In addition, it was seen that the effective diffusivity was effected from 

the initial adsorptive concentration and the effective diffusivity was decreased with 

increasing adsorbate concentration. This may be related to the effects of the heat 

transfer resistance, surface resistance or hydration and migration of the cations in the 

structure of the zeolite 13X.  
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ÖZET 
 

ADSORPSİYONLU ISI POMPALARI İÇİN ADSORBENT 

ÖZELLİKLERİNİN BELİRLENMESİ 

 
Çevre dostu olan ve termal kaynaklar ile çalıştırılan adsorpsiyonlu ısı pompaları 

son yıllarda önem kazanmıştır. Birincil enerji verimlilikleri geleneksel ısı pompalarına 

göre daha yüksek olmasına rağmen, düşük COP ve SCP/SHP değerlerinden dolayı 

adsorpsiyonlu ısı pompalarının geliştirmeleri gerekmektedir. Adsorpsiyonlu ısı pompası 

tasarımında uygun çalışma çiftinin seçilmesi, çalışma çiftinin denge ve kinetik 

özelliklerinin belirlenmesi oldukça önemlidir.  

Bu çalışmada, adsorpsiyonlu ısı pompalarında kullanılan çalışma çiftleri 

tartışılmış, ve adsorpsiyon dengesi ve adsorpsiyon kinetiğinde kullanılan modeller 

açıklanmıştır. Deneysel çalışmalarda, adsorpsiyon ve desorpsiyon sıcaklıklarının 

adsorpsiyon kapasitesi ve kütle yayılımı üzerine etkileri incelenmiştir. Adsorpsiyon 

deneyleri için çalışma çiftleri olarak tip RD silika jel-su ve zeolit 13X-su seçilmiştir. 

Bunun için iki adet volumetrik sistem kurulmuş; adsorpsiyon deneyleri yapılmış ve 

basınç değişimleri zamana göre kaydedilmiştir.  

Deneysel çalışmalar göstermiştir ki adsorpsiyon kapasitesi adsorpsiyon sıcaklığı 

arttıkça ve desorpsiyon sıcaklığı azaldıkça artmaktadır, ve aynı şartlar altında zeolit 

13X-su çiftinin adsorpsiyon kapasitesi tip RD silika jel-su çiftinden daha yüksektir. Tip 

II ve tip I izotermleri sırasıyla tip RD silika jel-su çifti ve zeolit 13X-su çifti için 

gözlenmiştir.  

Zeolit-su çiftinin efektif difüzivitesi adsorpsiyonun başlangıç bölgesinde 2x10
-8

-

9x10
-9

 m
2
/s aralığında ve son bölgesinde ise 7x10

-10
-10

-8
 m

2
/s aralığında bulunmuştur. 

Ayrıca, efektif difüzivitenin başlangıç adsorptive konsantrasyonundan etkilendiği ve 

adsorpsiyon konsantrasyonu arttıkça azaldığı görülmüştür. Bu durum ısı transfer 

direncinin, yüzey direncinin ya da zeolit 13X’in yapısında bulunan katyonların 

hidrasyonunun ve migrasyonunun etkisine bağlı olabilir. 

 

 

 



vi 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ........................................................................................................ IX 

 

LIST OF TABLES ......................................................................................................... XII 

 

NOMENCLATURE .................................................................................................... XIII 

 

CHAPTER 1. INTRODUCTION ..................................................................................... 1 

 

CHAPTER 2. ADSORPTION IN ENERGY STORAGE AND RECOVERY 

SYSTEMS ................................................................................................. 4 

2.1. Energy Recovery and Storage Systems .................................................. 4 

2.1.1. Open Cycle Systems .......................................................................... 4 

2.1.2. Closed Cycle Systems ....................................................................... 5 

2.2. Adsorption ............................................................................................... 8 

2.3. Adsorbate-Adsorbent Pairs Used in Energy Recovery Systems ........... 10 

2.3.1. Water as Adsorbate .......................................................................... 11 

2.3.2. Adsorbents ....................................................................................... 12 

2.3.3. Working Pairs Used in Energy Systems .......................................... 13 

2.3.3.1. Activated Carbon-Methanol .................................................. 13 

2.3.3.2. Silica Gel-Water .................................................................... 15 

2.3.3.3. Zeolite-Water ......................................................................... 17 

 

CHAPTER 3. ADSORPTION EQUILIBRIA ................................................................ 24 

3.1. Adsorption Equilibrium Models ........................................................... 26 

3.1.1 Henry’s Relationship ........................................................................ 26 

3.1.2. Langmuir Relationship .................................................................... 27 

3.1.3. Freundlich Relationship ................................................................... 27 

3.1.4. Toth’s Relationship ......................................................................... 28 

3.1.5. Dubinin-Radushkevich Relationship ............................................... 28 

3.1.6. Dubinin-Astakhov Relationship ...................................................... 29 

3.1.7. Three-term Langmuir Relationship ................................................. 30 

3.1.8. Experimental Correlations ............................................................... 31 



vii 

 

3.2. Heat of Adsorption ................................................................................ 31 

3.2.1. Differential Heat of Adsorption ....................................................... 32 

3.2.2. Integral Heat of Adsorption ............................................................. 32 

3.2.3. Isosteric Heat of Adsorption ............................................................ 33 

3.3. Experimental Techniques to Determine Adsorption Isotherm and 

Differential Heat of Adsorption.......................................................... 33 

3.3.1. Volumetric Method ......................................................................... 34 

3.3.2. Gravimetric Method ........................................................................ 35 

3.3.3. Calorimetric Method ....................................................................... 36 

 

CHAPTER 4. ADSORPTION KINETICS ..................................................................... 38 

4.1. Mass Transfer in and Through an Adsorbent Particle .......................... 38 

4.1.1. Diffusion in Micropores .................................................................. 39 

4.1.2. Diffusion in Macropores .................................................................. 40 

4.2. Adsorption Kinetics Models ................................................................. 42 

4.2.1. Reaction Based Models ................................................................... 42 

4.2.1.1. Pseudo First Order Rate Equation ......................................... 42 

4.2.1.2. Pseudo Second Order Rate Equation ..................................... 43 

4.2.1.3. Elovich Model Equation ........................................................ 43 

4.2.1.4. Ritchie Equation .................................................................... 44 

4.2.2. Diffusion Based Models .................................................................. 45 

4.2.2.1. Fluid Film (External) and Surface (Skin) Diffusion 

Models ................................................................................................ 45 

4.2.2.2. Intraparticle Diffusion Model ................................................ 47 

4.2.3. Calculation of Diffusion Coefficient ............................................... 51 

4.3. Previous Studies for Adsorption Kinetic Models ................................. 59 

 

CHAPTER 5. MATERIALS AND METHODS ............................................................ 63 

5.1. Materials ............................................................................................... 63 

5.1.1. Characterization of Adsorbents ....................................................... 63 

5.2. Experimental ......................................................................................... 64 

5.2.1. Volumetric Adsorption Systems ...................................................... 64 

5.3. Experimental Procedure ........................................................................ 66 

 



viii 

 

CHAPTER 6. RESULTS AND DISCUSSION .............................................................. 70 

6.1. Characterization of Adsorbents ............................................................. 70 

6.2. Adsorption Equilibria ............................................................................ 72 

6.2.1. Type RD Silica Gel-Water Pair ....................................................... 72 

6.2.2. Zeolite 13X-Water Pair ................................................................... 76 

6.3. Adsorption Kinetics .............................................................................. 80 

 

CHAPTER 7. CONCLUSIONS ..................................................................................... 89 

 

REFERENCES ............................................................................................................... 93 

 

APPENDICES 

APPENDIX A. PHYSICAL FORCES INVOLVED IN ADSORPTION 

PROCESSES ............................................................................................. 105 

APPENDIX B. PHYSICAL PROPERTIES OF MATERIALS ................................... 109 

APPENDIX C. SAMPLE CALCULATIONS ............................................................. 111 

APPENDIX D. PLOTS OF LEAKAGE AND CONDENSATION TESTS ................ 113 

APPENDIX E.PRESSURE AND TEMPERATURE CHANGES DURING 

THE EXPERIMENT ................................................................................. 115 

APPENDIX F. RAW DATA FOR EXPERIMENTAL STUDY ................................. 120 

 



ix 

 

LIST OF FIGURES 

 

Figure                  Page 

Figure 2.1. Air drying and heating system ........................................................................ 5 

Figure 2.2. Working Principle of Heat Pump ................................................................... 6 

Figure 2.3. Components of Adsorption Heat Pump and Isoster Diagram ........................ 6 

Figure 2.4. Effect of regeneration temperature on energy density ................................... 8 

Figure 2.5. Schematic view of adsorption phenomena ..................................................... 9 

Figure 2.6. Hydrogen bonding in water .......................................................................... 11 

Figure 2.7. Pore Size Distribution of Common Adsorbents ........................................... 14 

Figure 2.8. Isotherms of water vapor on silica gel .......................................................... 16 

Figure 2.9. Experimental and correlated isotherms for water vapor adsorption 

onto zeolite 13X at various temperatures: ●293.2K; ■, 313.2 K; ▲, 

333.1 K; ▼, 353.1 K .................................................................................... 21 

Figure 2.10. Water vapor adsorption isotherm of the CLI outgassed at 160°C (×), 

250°C (•), 400°C (○) and 600°C (●) ............................................................ 22 

Figure 3.1. Adsorption Equilibrium plots a) isotherm, b) isobar, c) isoster ................... 24 

Figure 3.2. Types of adsorption isotherms ..................................................................... 25 

Figure 3.3. Basic set up for volumetric system ............................................................... 34 

Figure 3.4. Schematic view of gravimetric analyzer ...................................................... 35 

Figure 3.5. Schematic View of Tian-Calvet Calorimetry ............................................... 37 

Figure 4.1. Adsorption steps ........................................................................................... 38 

Figure 4.2. Macropore diffusion mechanisms a) Knudsen diffusion b) Molecular 

diffusion c) Surface diffusion ...................................................................... 41 

Figure 4.3. Schematic diagram showing the form of the concentration profiles 

within the fluid phase (c) and adsorbed phase (q) for irreversible 

adsorption in a spherical particle ................................................................. 50 

Figure 5.1. Schematic view of experimental setup for silica gel .................................... 65 

Figure 5.2. Schematic view of experimental setup for zeolite 13X-water pair .............. 66 

Figure 6.1. TGA curve of zeolite 13X ............................................................................ 72 

Figure 6.2. TGA curve of type RD silica gel .................................................................. 72 

Figure 6.3. Pressure and temperature changes of adsorption of type RD silica 

gel-water pair at 60°C (Treg=90°C) .............................................................. 73 



x 

 

Figure 6.4. Adsorption isotherms of type RD silica-water pair at temperature of  

35, 45 and 60°C............................................................................................ 73 

Figure 6.5. Adsorption isotherms of type RD silica gel-water pair as a function  

of P/P
sat

 ......................................................................................................... 74 

Figure 6.6. Clausius-Clapeyron diagram of type RD silica gel-water pair; ♦10%;  

■8%; ▲6%; ○4%; □ 2% .............................................................................. 75 

Figure 6.7. Change of isosteric heat of adsorption with adsorbate loading for  

type RD silica gel-water pair ....................................................................... 76 

Figure 6.8. Pressure and temperature changes of zeolite 13X-water pair (Treg=90°C) .. 76 

Figure 6.9. Adsorption isotherms at different adsorption temperatures (Treg=90°C) ..... 77 

Figure 6.10. Adsorption isotherms of zeolite 13X-water pair as a function of  

P/P
sat

 (Treg=90°C) ......................................................................................... 77 

Figure 6.11. Adsorption isotherm of zeolite 13X-water pair at 25°C............................. 78 

Figure 6.12. Isosteric heat of adsorption for zeolite 13X-water pair (Treg=90°C) .......... 79 

Figure 6.13. Adsorption isotherms of zeolite 13X-water pair at 35°C for  

different regeneration temperatures ............................................................. 79 

Figure 6.14. Uptake curves of type RD silica gel-water at 45°C (Treg=90°C) ............... 81 

Figure 6.15. Uptake curves of zeolite 13X-water at 45°C (Treg=90°C) .......................... 81 

Figure 6.16. Uptake curve of zeolite13X-water pair at logarithmic scale for  

adsorption temperature of 35°C (Treg=90°C) ............................................... 82 

Figure 6.17. Linear curve of zeolite 13X-water pair at 35°C (Treg=90°C)  

─ experimental; …. Long term intraparticle diffusion; ---- surface  

resistance ...................................................................................................... 83 

Figure 6.18. Experimental and theoretical amount of fractional approach to  

equilibrium of zeolite 13X-water pair at 35°C (11
th

 pulse) ......................... 83 

Figure 6.19. Experimental and theoretical uptake curves; a) Treg=90°C;  

b) Treg=120°C ............................................................................................... 84 

Figure 6.20. The change of effective diffusivity with amount of water vapor  

adsorbed on zeolite 13X at 35°C for different regeneration temperatures .. 86 

Figure 6.21. Effect of initial adsorptive concentration on the effective  

diffusivity (Treg=90°C) ................................................................................. 87 

Figure 6.22. The change of effective diffusivity with amount of water vapor  

adsorbed on zeolite 13X at 35°C for different regeneration temperatures .. 87 

Figure 6.23. The change of effective diffusivity with adsorbate concentration  



xi 

 

a) Type RD silica gel-water pair; b) Zeolite 13X-water pair (Treg=90°C) ... 88 

 



xii 

 

LIST OF TABLES 

 

Tables                                                                                                                 Page 

Table 2.1. Heat of Adsorption Ranges for Physisorption and Chemisorption  

Processes .......................................................................................................... 9 

Table 2.2. Pore Size Classifications ................................................................................ 12 

Table 2.3. Performed Studies in Energy Systems with Activated Carbon-Methanol  

Pair ................................................................................................................. 14 

Table 2.4. Performed Studies in Energy Systems with Silica gel-Water Pair ................ 17 

Table 2.5. Physical properties of Commercial Zeolites .................................................. 18 

Table 2.6. Summary of Zeolite Dehydration .................................................................. 19 

Table 2.7. Performed Studies in Energy Systems with Zeolite-Water Pair .................... 23 

Table 4.1. Models for Diffusion Calculation ................................................................ 522 

Table 4.2. Previous Studies for Adsorption Kinetics .................................................... 600 

Table 5.1. Performed Experiments ................................................................................. 68 

Table 6.1. Textural Properties of Adsorbents ............................................................... 700 

Table 6.2. Elemental compositions of zeolite 13X ....................................................... 711 

Table 6.3. Parameters of Langmuir Relationship ........................................................... 80 

 

 

 

 



xiii 

 

NOMENCLATURE 

 

b Langmuir Constant 

c adsorptive concentration in fluid phase, kg kg
-1

 

COP coefficient of performance 

D diffusivity, m
2
 s

-1
 

Dc intracrystalline diffusivity, m
2
 s

-1
 

Dp pore diffusivity, m
2
 s

-1
 

Deff intracrystalline diffusivity, m
2
 s

-1
 

Dkn knudsen diffusivity, m
2
 s

-1
 

Dm molecular diffusivity, m
2
 s

-1
 

Ds surface diffusivity, m
2
 s

-1
 

D0 reference diffusivity, m
2
 s

-1
 

E activation energy, J mol
-1

 

Em energy density, kJ kg
-1

 

G Gibbs free energy, kJ kg
-1

 

H enthalpy, kJ kg
-1

 

hfg heat of vaporization, kJ/kg
-1

 

K Henry’s law constant 

m mass of dry adsorbent, kg 

P pressure, Pa 

P
sat

 saturation pressure, Pa 

q adsorbed amount, kg kg
-1

 

qm monolayer capacity, kg kg
-1

 

q∞ amount of adsorbed at equilibrium, kg kg
-1

 

 ̅ average adsorbate concentration, kg kg
-1

 

qst isosteric heat of adsorption, kJ kg
-1

 

Qev heat of evaporation, kJ kg
-1

 

Qab heat of isosteric heating process, kJ kg
-1

 

Qbc heat of isobaric desorption process, kJ kg
-1

 

Qcd heat of isosteric cooling process, kJ kg
-1

 

Qda heat of isobaric adsorption process, kJ kg
-1

 

r pore radius, m 



xiv 

 

R particle radius, m 

S entropy, kJ K
-1

 

SCP specific cooling power, W kg
-1

 

SHP specific heating power, W kg
-1

 

T temperature, °C or K 

T
sat

 saturation temperature, K 

x mass fraction of adsorbed adsorbate per dry adsorbent, kg kg
-1

 

 

Greek letters 

∆ah differential heat of adsorption, J mol
-1

 

∆aH integral heat of adsorption, J kg
-1

 

∆H heat of adsorption, kJ kg
-1

 

p porosity 

λ fraction of the adsorbate added in the step 

cycle period of cycle 

ρ density, kg m
-3

 

 dimensionless time variable  

 

Subscripts 

ads adsorption 

cond condensation 

eff effective 

ev evaporator or evaporation 

eq equilibrium 

i initial  

reg regeneration  

sat saturation 

∞ infinite 



1 

 

CHAPTER-1 

 

INTRODUCTION 

 

The increase in the share of energy consumption for cooling and heating 

applications in both industry and daily life has drawn attention to energy storage, 

recovery and efficiency. In recent years, the researchers have focused on the use of 

adsorption technologies in energy recovery and storage systems, especially due to the 

role of traditional heating and cooling systems in the depletion of ozone layer and in the 

increase of global warming (Tchernev 1978; Ülkü 1986).  

The adsorption-desorption cycle was first used by Close and Dunkle (1977) in 

order to obtain warm and relatively dry air by using silica gel. By using adsorption-

desorption cycle, open and closed systems can be constructed. While the main task in an 

open cycle systems is dehumidification of air, the extraction of heat from low 

temperature source to high temperature source is the aim of the closed cycle systems. 

According to the third energy source, closed cycle systems can be classified as 

mechanical heat pumps and thermal driven heat pumps. Although the mechanical heat 

pumps have high coefficient of performance (COP) value, thermal driven heat pumps 

gained attention due to the environmental issues in recent years.   

Thermal driven heat pumps can utilize the waste and solar heat as a third energy 

source. Thus, they are environmentally friendly systems. Adsorption heat pumps, 

absorption heat pumps and chemical heat pumps are the kinds of the thermal driven heat 

pumps. Although adsorption heat pumps are still under investigation, they have some 

advantages compared of absorption and mechanical heat pumps. Besides having higher 

primary energy efficiency, they do not contain any hazardous materials and they can 

operate without noise and vibration.  

An adsorption heat pump consists of four components: an evaporator, a 

condenser, an adsorbent bed and an expansion valve. The adsorbent bed is filled with 

adsorbent and the working fluid is circulated between adsorber, evaporator and 

condenser. In adsorption heat pump cycle, which consist of four thermodynamic steps; 

isosteric heating, isobaric heating (desorption), isosteric cooling and isobaric cooling 

(adsorption), the adsorption and desorption processes enable the working fluid to 
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circulate in the cycle without requirement of mechanical energy. Thus, selection of 

appropriate working pair is quite important for adsorption heat pump systems.  

The selection of working pair usually depends on the adsorption isotherm. 

Although the identification of adsorbent (high affinity, high capacity and selectivity to 

adsorbate) is usually the only technical consideration, the temperature dependence of 

the adsorption equilibrium gains attention in the applications of thermal driven 

processes such as energy storage, refrigeration and heat pumps. The efficiency of the 

adsorption heat pump mainly depends on the parameters of coefficient of performance 

(COP), specific cooling/heating power (SCP/SHP) and the energy storage density of the 

pair, which depend on the operating conditions of the adsorption and desorption 

processes, and net amount adsorbate of cycled in the system. 

There are several adsorbate-adsorbent pairs used in energy recovery systems. 

Activated carbon-methanol, silica gel-water and zeolite-water are the common working 

pairs preferred in adsorption systems. While zeolite-water pair is generally selected for 

heating purposes due to high adsorption capacity, heat of adsorption and energy density, 

silica gel-water pair is generally preferred for cooling applications and activated carbon-

methanol is preferred for applications where temperature is below 0°C (Ülkü 1986).  

The long time period of adsorption and desorption processes reduces the specific 

cooling/heating power of the adsorption heat pump system. The cycle time of 

adsorption process can be reduced by the enhancement of the heat and mass transfer 

rate of the pair which depend on the particle size, diffusivity of adsorptive in adsorbent, 

thermal conductivity of the adsorbent and operating conditions of the process. The mass 

transfer of fluid through adsorbent occurs in five steps; transport of fluid from bulk fluid 

to the exterior film surrounding the adsorbent particle, diffusion of the fluid through the 

surrounding the particle, diffusion of fluid in the pores of the adsorbent particle, 

diffusion of the fluid along the adsorbent surface and adsorption of solute on the 

adsorbent surface with surface reaction due to physical or chemical interaction 

(Cansever-Erdoğan 2011). In a biporous adsorbent, one or more of these steps controls 

the adsorption rate of the system.  

The aim of this study is to investigate the effect of temperature on the adsorption 

capacity and rate of mass diffusivity. Due to the lack of the enough studies for 

adsorbate-adsorbent pairs, especially zeolite-water pair, type RD silica gel-water and 

zeolite 13X-water were selected as working pairs. The experiments were performed at 

different adsorption temperatures by using both pairs and at different desorption 
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temperatures by using zeolite 13X-water pair. The detailed information is given in 

Chapter 5.   

The working principles of energy recovery and storage systems are explained in 

Chapter 2. Also, the adsorption phenomena and the common working pairs used in 

energy recovery systems are given in this chapter by summarizing the previous studies 

performed by researchers.  

The adsorption equilibrium is represented in Chapter 3. Equilibrium models 

derived by researchers are summarized. In addition, the heat of adsorption and the 

experimental methods used in determination of adsorption equilibrium are discussed in 

this chapter.  

In Chapter 4, the detailed information about adsorption kinetics and the 

adsorption kinetics models are given. The performed studies for reaction based models 

and diffusion based models are also tabulated in this chapter.  

The characterization of the adsorbent and the experimental set up are discussed 

in the Chapter 5, which is titled as Materials and Methods. Two different experimental 

setups and the procedures are explained in details. 

In Chapter 6, the results are given and discussed. This chapter consists of three 

parts; the characterization of adsorbents, the effect of adsorption temperature on 

adsorption equilibrium and the effect of desorption temperature on adsorption 

equilibrium and kinetics.  

The conclusion is given in Chapter 7. The summary of the performed studies 

and suggestions about these studies are given in this chapter. 
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CHAPTER 2 

 

ADSORPTION IN ENERGY STORAGE and RECOVERY 

SYSTEMS 

 

In this chapter, energy recovery and storage systems will be explained. Also, the 

detailed information about the adsorption phenomena and the common adsorbate-

adsorbent pairs used in energy recovery systems are mentioned.  

 

2.1. Energy Recovery and Storage Systems 

 

In recent years, due to the effect of chlorofluorocarbons and similar chemicals 

on depletion of ozone layer and global warming, studies on adsorption technologies in 

energy systems, i.e. recovery, storage and conversion of thermal energy, has gained 

attention. Thermal energy sources such as solar energy, waste energy and peak 

electricity can be recovered as sensible heat or latent heat during the desorption step and 

this energy can be used in adsorption step. By using the adsorption-desorption cycle, 

open or closed cycle systems can be constructed.  

 

2.1.1. Open Cycle Systems 

 

In open cycle systems, adsorbent bed is the key component. The main task of the 

bed is to dehumidify the air that is passing through it. While the humid air is passing 

through the bed , its temperature is rising due to the heat of adsorption (Ülkü and 

Mobedi 1989). The outcoming air can be used for drying and space heating purposes. 

Continuity of the process can be achieved by the use of two or more beds of adsorbent: 

while one adsorbs moisture, the other is regenerated by any thermal energy source such 

as geothermal energy, peak electricity, waste heat or hot combustion gases (Ülkü 1986; 

Ülkü and Mobedi 1989; Ülkü and Çakıcıoğlu 1991). 
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Figure 2.1. Air drying and heating system 

(Source: Atuonwu et al. 2011) 

 

2.1.2. Closed Cycle Systems 

 

Main application areas for closed cycle systems are heat pumps and heat 

transformers. Devices which extract heat from low temperature source to high 

temperature source are known as heat pumps. Transfer of heat is made by using a third 

energy source (Figure 2.2).  

According to the third energy source, heat pumps can be classified as 

mechanical heat pumps and thermal driven heat pumps. Adsorption heat pumps, 

absorption heat pumps and chemical heat pumps are defined as thermal driven heat 

pumps. 

An adsorption heat pump, which can use solar energy and waste energy as third 

energy source, is environmentally friendly equipment. It works without vibration and 

operation cost is lower than mechanical systems.  

A basic adsorption heat pump consists of four main components: adsorbent bed, 

evaporator, condenser and an expansion valve. The operation of adsorption heat pump 

can be outlined by isoster diagrams (Figure 2.3). 

a-b: Isosteric heating of the adsorbent bed from Ta to Tb 

b-c: Isobaric heating and desorption. Bed temperature is rising from Tb to Tc and 

desorbed vapor is condensed in condenser at Tcond. 

c-d: Isosteric cooling of the adsorbent bed from Tc to Td 
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d-a: Isobaric cooling and adsorption. Temperature of bed is decreasing from Td 

to Ta and vapor coming from evaporator at Tev is adsorbed. 

 

 
 

Figure 2.2. Working Principle of Heat Pump 

(Source: Yıldırım 2011) 

 

 
 

Figure 2.3. Components of Adsorption Heat Pump and Isoster Diagram 

 

The criteria which determine the performance of an adsorption heat pump are 

the coefficient of performance (COP) and specific cooling and heating powers 

(SCP/SHP). The basic definition of the COP is the ratio of the amount of useful output 

to the amount of energy input. In another words, it is the ratio of heat taken from the 

low temperature heat source (or high temperature source) to the heat transferred from a 

third energy source. For an adsorption heat pump, the cooling and heating COP can be 

given as; 
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COPcooling=
 

ev

 
ab
  

bc

 

 

COPheating=
 

c
  

cd
  

da

 
ab
  

bc

 

 

Another important parameter for adsorption heat pump systems is SCP/SHP 

which can be defined as the cooling/heating power per unit mass of adsorbent and cycle 

time of adsorption operation. In adsorption heat pump system, it is important to increase 

the specific cooling power value. Large heat transfer coefficient and short cycle time are 

the parameters that affect the specific cooling power.  

 

SCP=
 

e

m cycle
 

 

SHP=
 

c
  

cd
  

da

m cycle
 

 

Adsorption heat pumps are discontinuous systems. This problem can be solved 

by the design of multi-bed adsorption heat pump. Another problem in adsorption heat 

pumps is the requirement of high vacuum which leads to the leakage problem. 

Differently from the mechanical heat pumps, adsorption heat pumps can also be 

operated by solar energy, peak electricity, waste heat and geothermal energy in addition 

to electrical energy. Thus, although COP and SCP adsorption heat pumps are low, the 

primary energy efficiency is comparable with mechanical heat pump. While the primary 

energy efficiency of traditional heat pump is %90-100, it is %130-180 for thermal 

driven heat pumps (Ülkü et al. 1987). 

Adsorbent bed is the most important component of the system. One of the main 

drawbacks of the adsorption heat pump is the low thermal conductivity of the adsorbent.  

Due to low thermal conductivity of adsorbent, heat transfer rate is low. Therefore, 

adsorption and desorption cycle periods become longer. Beside thermal conductivity, 

the characteristics of adsorbate-adsorbent pair, such as density, adsorption equilibria, 

diffusivity and heat of adsorption, are the other factors that affect the adsorbent bed 

design.  

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Energy density is one the most important parameters in choosing the working 

pair for adsorption heat pump. It is a function of regeneration temperature and heat of 

adsorption and can be found by the equation (Ülkü and Mobedi 1989); 

 

Em=∫ (qst
)dx

2

1
 ∫ (Ca x2Cw)dT

2

1
 

 

Where 1 and 2 represents the initial and final conditions during the desorption 

process, Ca and Cw are the specific heat of adsorbent and adsorbate, respectively. The 

effect of regeneration temperature on energy density is illustrated in Figure 2.4. 

 

 
 

Figure 2.4. Effect of regeneration temperature on energy density                               

(Source: Ülkü and Mobedi 1989) 

 

2.2. Adsorption 

 

The adsorption term first appeared in 1881 to predicate the condensation of 

gases on free surfaces contrary to gaseous absorption where the molecules of gas 

penetrate into the mass of the absorbing solid (Gregg and Sing 1982). Adsorption is a 

surface phenomena which occurs at the solid-fluid interface due to the molecular or 

atomic interactions. The solid particle, which adsorbs the fluid, is called adsorbent. The 

adsorbed phase, which may be liquid or gas, is called as adsorbate and adsorbable 

substance in the fluid phase is called as adsorptive. The adsorbed layer can be removed 

by increasing the temperature or the decreasing pressure. This process is known as 

desorption (Figure 2.5). 

(2.5) 
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Figure 2.5. Schematic view of adsorption phenomena 

 

Adsorption may occur in two different ways according to the interactions of the 

adsorbent and adsorbate which are named as physical adsorption (physisorption or Van 

der Waals) and chemical adsorption (chemisorption). The adsorption processes with 

nonspecific interactions are generally referred as physisorption. In chemisorption 

processes, electrons are shared or transferred between two phases. Since chemical bonds 

occur between the adsorbate and the surface of the adsorbent, new chemical compound 

is formed. As a result of this, interactions are very strong at the chemisorption processes 

with respect to the physisorption processes. Also, only monolayer is observed in 

chemisorption and it is slower than the physisorption process.  

Dispersion and short range repulsive forces, H-bonds and covalent bonds can be 

involved in adsorption processes. In addition, if the solid or the gas is polar in nature, 

there will be also electrostatic (coulombic) forces comprising dipole-dipole, dipole-

induced dipole interactions (Appendix A).   

Due to the specific interactions between adsorbate and adsorbent, the heat of 

adsorption of chemisorption is higher than physisorption and is observed in the short 

range. However, there are different heat of adsorption ranges for physical and chemical 

adsorption processes (Table 2.1). 

 

Table 2.1. Heat of Adsorption Ranges for Physisorption and Chemisorption Processes 

 

Researcher & Year Physisorption (kJ/mol) Chemisorption (kJ/mol) 

Thomas (1998) 10-40 - 

Keller (2005) 10-50 70-200 

Inglezakis and Poulopoulos 

(2006) 
5-40 40-800 
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Adsorption of vapor on a solid surface is a spontaneous process, so the overall 

free energy change for the process is negative. On the other hand, during the adsorption 

process, the adsorbing molecules lose a degree of freedom and their entropy decreases. 

From the thermodynamic relationship given in Equation 2.6 it is obvious that for ΔG to 

be negative, ΔH should be negative. So, adsorption process generally becomes 

exothermic. 

 

∆G=∆H T∆S 

 

However, endothermic behavior can also be observed in some cases. For 

instance, due to the lateral protein-protein interactions and conformational changes in 

the adsorbed protein, adsorption becomes endothermic (Katiyar et al. 2010). 

 

2.3. Adsorbate-Adsorbent Pairs Used in Energy Recovery Systems 

 

Characteristics of the adsorbate-adsorbent pairs and selection of the appropriate 

working pair are the most important task of the adsorption heat pump systems since the 

available adsorbents are not developed for the purpose of the energy recovery. 

Availability, low cost, non-toxicity, corrosiveness and minimum loss in performance 

with repeated cycle are the general constraints for the selection of working pair. 

Besides, the properties that influence the energy density and the performance are; 

 Affinity of the pair for each other 

 Adsorption capacity 

 Shape of isotherm 

 Heat of adsorption 

 Thermal conductivity 

 Diffusivity of adsorbate through the adsorbent 

 Specific heat of the pair 

 Rate of adsorption and desorption under specified conditions and 

possibility of regeneration with available source 

 Hysteresis upon thermal cycling 

 Cyclic repeatability 

(2.6) 
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 Volume change between loaded states 

Water is the most suitable adsorbate for most of the applications due to its 

features such as nontoxicity and high latent heat of evaporation. Methanol can be used 

instead of water especially for applications where temperature is lower than 0°C.  

 

2.3.1. Water as Adsorbate 

 

Water is perhaps the most important chemical substance in human life.  The 

molecular structure and the interactions of water molecules with solid surfaces is a trend 

topic in research areas such as meteorology, electrochemistry, solar energy conversion 

and physical chemistry.  

Water molecules have some special properties. The water molecule is non-linear 

and the oxygen atom has a higher electronegativity than hydrogen atoms, so while the 

oxygen atom carries negative charge, the hydrogen atoms are positively charged. 

Consequently, water is a polar molecule with an electrical dipole moment (Figure 2.6).  

 

 
 

Figure 2.6. Hydrogen bonding in water 

 

In addition to the molecular structure of water, it is used in adsorption processes 

according to the properties such as non-toxicity, availability, low cost, non-flammability 

and affinity for the adsorbents.  
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2.3.2. Adsorbents 

 

In energy systems, some thermophysical properties are required for a good 

choice of adsorbent.  

 Good compatibility with adsorbate  

 High surface area 

 High adsorption capacity  

 Quick response of adsorption capacity to temperature change 

 High thermal conductivity 

 High mass diffusivity 

 Thermal stability  

Adsorbents can be classified according to their pore sizes, nature of surfaces and 

nature of structures. Different pore size classifications were made by researchers as 

given in Table 2.2. 

 

Table 2.2. Pore Size Classifications 

(Source: Zdravkov et al. 2007) 

 

Classification 
Specific pore sizes, d(nm) 

Macro Meso Micro Super Ultra Sub 

IUPAC >50 2:50 <2, 2-0.4 0.7:2 <0.7 <0.4 

Dubinin 
>200-

400 

200-

400>d>3-3.2 
<1.2-1.4 

3-

3.2>d>1.2-

1.4 

- - 

Cheremkoj >2000 - 2000>d>200 - <2:4 <200 

Kodikara 10
4
-10

5
 - 10

3
-3*10

4
 25-10

3
 <3-4 - 

 

The surface structures are also important in classification of adsorbents. 

According to the affinity of solid to water, adsorbents can be separated as hydrophilic 

and hydrophobic. Most zeolites have great affinity to water. Low silica zeolites (Zeolite 

A and X) and the intermediate Si/Al zeolites (chabazite, erionite, clinoptilolite, 

mordenite and zeolite Y, etc.) are known as hydrophilic and high silica zeolites (beta, 

ZSM-5 and silicalite, etc.) are called hydrophobic (Flanigen 2001). On the other hand, 



13 

 

activated carbon is considered to be hydrophobic although small amount of water can 

be adsorbed on oxygen containing sites of activated carbon.  

 

2.3.3. Working Pairs Used in Energy Systems 

 

Although sensible heat is one of the simplest ways for energy storage, there are 

limitations due to the requirement of large volumes of storage material. Use of heat of 

adsorption as a latent heat method has gained attention in recent years. However, the 

selection of appropriate working pair is still one of the main problems for the design of 

energy system. Several studies were performed in order to determine the proper 

working pair. The common adsorbate-adsorbent pairs used in energy recovery systems 

are active carbon-methanol, zeolite-water and silica gel-water.  

 

2.3.3.1. Activated Carbon-Methanol 

 

Actived carbons are carbonaceous solids with a specific surface structure. The 

surface of the activated carbon is generally nonpolar. However the surface oxide groups 

in the structure of the actived carbon makes the surface slightly polar. Therefore, 

although actived carbon has a hydrophobic surface, water can be adsorbed in oxygen 

containing sites.  

Actived carbon has a high surface area and micropore volume. Also, the 

bimodal (sometimes trimodal) pore size distribution enables adsorbate molecules to 

access interior of the solid easily (Do 1998) (Figure 2.7). The property of large pore 

volume enables actived carbon to adsorb nonpolar or weakly polar molecules more 

easily than other adsorbents. For example, equal weight of actived carbon can adsorb 

methane twice that zeolite 5A can adsorbed under the same conditions (Yang 2003). 

Since only non-specific, van der Waals forces are available as the main force for 

adsorption, the heat of adsorption of activated carbon is usually lower than the other 

sorbents.  

Activated carbons are available in different forms such as powders, 

microporous, granulated, molecular sieves and carbon fibers. Wang et al. (1997) 

compared the methanol adsorption of carbon fibre types (ACF0, ACF1, ACF2, ACF3) 



14 

 

with activated carbon (AC) which were degassed at 120°C under vacuum. They 

concluded that ACF adsorbed methanol much faster than that of AC based on the 

isobaric measurement of adsorption capacity: while AC–methanol pairs took three to 

four days, ACF–methanol took only 12–20 h for the adsorption process at 50°C. The 

disadvantage of the carbon fibre is the low thermal conductivity which is as low as 

0.0893 W/mK (Hamamoto et al. 2006) and is nearly insulating materials. Although 

carbon fibres have low thermal conductivity than silica gel, the study of San and Lin 

(2008) indicated that the activated carbon/methanol pair yielded a higher vapor pressure 

than the silica gel/water pair did and a larger overall heat transfer coefficient was 

obtained. The pair was also preferred for its high cyclic adsorption capacity. 

 

 
 

Figure 2.7. Pore Size Distribution of Common Adsorbents 

(Source: Knaebel 2003) 

 

According to Hu (1998), decomposition of the methanol into other compounds 

starts to occur at 120°C although the rate of the decomposition may be very low. 

Therefore, temperatures above 120°C should be avoided. Since methanol can evaporate 

at a temperature below 0°C, activated carbon-methanol is generally preferred in ice-

making and refrigeration systems. Some of the performed studies in energy recovery 

and storage systems by using activated carbon-methanol pair are presented in Table 2.3.  
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Table 2.3. Performed Studies in Energy Systems with Activated Carbon-Methanol Pair 

 

Year Researcher Purpose 
Temperature 

(°C) 

Max. 

Adsorption 

Capacity 

(kg/kg) 

Maximum 

COP 

1998 Wang et al. Ice Making -15-100 
1.17 (kg/kg 

day) 
0.15-0.23 

2000 Leite et al. Ice Making - 0.322 0.13 

2006 Hamamoto et al. Cooling 15-150 0.25-0.35 - 

2008 San and Lin Cooling 30-90 0.259 ≈ 0.4 

 

2.3.3.2. Silica Gel-Water 

 

Silica gel (SiO2.xH2O) is an amorphous synthetic silica compound which is 

hydrated form of silicon dioxide. Since the hydroxyl in the structure of the silica gel can 

form hydrogen bonds with the polar oxides, it is defined as the adsorption center of 

silica gel. There is about 5% mass water which cannot be removed and connected to the 

single hydroxyl group on the surface of silica atoms. If silica gel is heated up to 150°C, 

it loses this water and adsorption capacity decreases (Srivastava and Eames 1998). 

Thus, desorption temperature should not be higher than 150°C and should be applied to 

available low temperature energy sources such as waste heat, solar energy and 

geothermal energy for adsorption heat pumps. 

The most commonly used silica gel types are Type A, Type 3A, Type B and 

Type RD. High thermal conductivity and surface area give advantage to type RD silica 

gel in the adsorption processes rather than type A.  

Ng et al. (2001) compared the adsorption of water between three types of silica 

gel. In their study, the silica gels were regenerated at 90°C and 140°C. Although all 

types of silica gel types have a similar behavior at temperature 90°C, it is observed that 

the response time for regeneration of Type 3A silica gel is smaller than Type A and 

Type RD silica gel at 140°C due probably to its higher porous volume. They also 

determined the equilibrium characteristics of Type 3A and Type RD silica gel with 

water in temperature ranges of 30-65°C and pressure ranges of 500-6500 Pa and 

decided that the isotherm was well defined by Henry’s relationship. A similar study was 
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conducted by Chua et al. (2002) and Wang et al. (2004) with Type A and Type RD 

silica gels at temperature ranges 25-65°C and pressure ranges 500-7000 Pa. In contrast 

to Ng et al. (2001), Chua et al. (2002) and Wang et al. (2004) observed that the 

isotherms of selected silica gels-water pairs were defined by Toth’s relationship. On the 

other hand, Aristov et al. (2006) discussed the equilibrium and kinetic behavior of Type 

RD silica gel-water pair at 29-64°C and 650-6400 Pa with thermogravimetric method. 

They reported that the equilibrium relationship is described by Dubinin Polanyi 

potential instead of Toth’s and Henry’s relationship.  

The water adsorption on silica gel was investigated by Demir et al. (2011) by 

using Tian-Calvet microcalorimetry. The silica gel was regenerated at 120°C and 10
-5

 

mbar for 24 h.  While the adsorption capacity was higher than %10 (kgw/kgs) at the 

temperature range of 30-40°C, the capacity decreased to %2 (kgw/kgs) for the 

temperatures higher than 75°C (Figure 2.8). Also, the average isosteric heat of 

adsorption was determined as 2644 kJ/kg for this pair. The effective diffusivity was 

obtained by using the analytical solution of one-dimensional unsteady isothermal 

diffusion mass transfer for a spherical particle. While the effective diffusivity for the 

short time period was in the range of 3.92x10
-13

-2.28x10
-10

 m
2
/s, in the long term period 

the range was 1.26x10
-10

-7.03x10
-11

 m
2
/s. 

 

 
 

Figure 2.8. Isotherms of water vapor on silica gel 

(Source: Demir et al. 2011) 

 

Silica gel-water pair has been used in energy recovery and storage systems since 

1970s. However, it does not work at evaporating temperature below 0°C. Some of the 

performed studies of silica gel-water pair are given in Table 2.4. 
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Table 2.4. Performed Studies in Energy Systems with Silica gel-Water Pair 

 

Year Researcher Purpose 
Temperature 

(°C) 

Max. 

Adsorption 

Capacity 

(kg/kg) 

Heat of 

Adsorption 

(kJ/kg) 

Maximum 

COP 

1979 
Shigeishi et 

al. 
Drying 30-150 0.37 2560 - 

1984 
Sakoda and 

Suzuki 
Cooling 20-120 0.25 2800 - 

1993 Ülkü 
Cooling 

Heating 
- 0.15 - 

0.631 

1.573 

2001 Tahat 
Cooling 

Heating 
20-70 0.25 2712 - 

2002 
Aristov et 

al. 

Air 

conditioning 
20-150 0.55 2440 0.79 

2003 
Dawoud 

and Aristov 
- 50 0.20 - - 

2004 
Akahira et 

al. 
Cooling 50-80 0.28 2800 0.36-0.46 

2004 Chua et al. Chilling 30-90 0.14 2693 0.38 

2007 Freni et al. Chilling 35-100 0.3 - 0.15-0.30 

2008 San and Lin Cooling 30-90 0.116 - ≈ 0.4 

2011 Demir et al. - 30-40 0.1-0.15 2644 - 

 

2.3.3.3. Zeolite-Water 

 

Structure of Zeolite 

 

Zeolites are porous crystalline aluminosilicates. The framework of the zeolite is 

structurally based on an infinitely extending three dimensional network of AlO4 and 

SiO4 tetrahedra linked to each other by sharing all oxygens. The zeolite structure is 

represented as; 

 

Mx n⁄ [(AlO2)x(SiO2)y].wH2O 

 

(2.7) 
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Where M is the cation of valence n, w is the number of water molecules, the 

ratio y/x has the value of 1-5 due to the structure and the sum of x and y defines the 

total number of tetrahedra in the unit cell.  

Due to the lack of the electrical charge in the region of the AlO4 tetrahedra, 

additional positive charges are required to balance the electrical charge and to obtain a 

stable crystal structure. Replaceable and easily removable cations such as Na, K, Ca and 

Mg are used as additional positive charges in zeolites. The location, size and number of 

cations in the zeolite structure are the factors that affect the adsorption properties since 

they are the adsorption sites of the zeolites.  

The porous solid materials that act as sieves on a molecular scale are named as 

molecular sieves. Molecular sieve zeolites have uniform pore sizes in the range of 3Å-

10Å determined by the unit structure of the crystal. The molecules with larger diameter 

than these pores will be completely excluded. The dehydrated crystalline zeolites have 

high internal surface area available for adsorption and they show high molecular sieve 

effect (Breck 1974). 

There exist more than 50 natural zeolites and about 150 types of synthetic 

zeolites which are named by one letter or a group of letters such as 4A, 13X and 5A. 

Some physical properties of commercial zeolites are given in Table 2.5 (Sircar and 

Myers 2003). 

 

Table 2.5. Physical properties of Commercial Zeolites  

(Source: Sircar and Myers 2003) 

 

Zeolite 

Crystal 

Framework 

Si/Al ratio 

Crystal 

Structure 

symmetry 

Crystal 

density 

(g/m
3
) 

Common 

ion-

exchanged 

forms 

Pellet 

density 

(g/m
3
) 

Bulk 

density 

(g/m
3
) 

Nominal 

pore 

opening 

(Å) 

A 0.7-1.2 Cubic 1.52 
Na, K, Ag, 

Mg, Ca 
1.20 0.72 3,4,5 

X 1.0-1.5 Cubic 1.47 
Na, Li, Ca, 

Ba 
1.05 0.68 

7.5 

(NaX) 

10.0 

(CaX) 

Chabazite 1.6-3.0 Trigonal 1.67 Na, Ca 1.16 0.73 4.9 

Clinoptilolite 4.2-5.2 Monoclinic 1.85 K, Ca - - 3.5 

Silicalite Very high Orthorhombic 1.79 none - - 3 
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The micropore structure of zeolite is determined by crystal lattice, so it is 

precisely uniform and this property separates zeolites from other microporous 

adsorbents. The adsorption ability of zeolites is related to the proportion between Si and 

Al, and the adsorption ability increases when this proportion decreases. When the Si/Al 

ratio increases, the thermal stability also increases. Less energy is required to break the 

Al-O bonds instead of Si-O bonds. Although most of the zeolites are hydrophilic, 

aluminum-deficient zeolites with low hydroxyl content becomes hydrophobic (Halasz et 

al. 2002). 

Regeneration of zeolites is generally accomplished at temperatures above 

350°C. The regeneration conditions for common zeolites are given in Table 2.6 (Breck 

1974). However, the regeneration of zeolites requires attention due to the poor 

hydrothermal stability of aluminum-rich zeolites at high temperatures. Also, during 

dehydration process, the cation sites in channels and in the framework cavities changed 

(Tsitsishvili et al. 1992). So, the temperature of the zeolite should be raised slowly, 2-

3°C/min (Yucel and Ruthven 1980), maintaining vacuum during degasing.  

 

Table 2.6. Summary of Zeolite Dehydration 

(Source: Breck 1974) 

 
Zeolite TGA Structure Remarks 

Erionite Cont., 14.8% Stable 750°C 
Stable to H2O at 

375°C 

Faujasite Cont., 26.2% Stable to 475°C - 

X Cont., 26.2% No change 700°C 
Stability varies 

with cation 

Y Cont., 26% No change 760°C 
Stability varies 

with cation 

Chabazite Cont., 23% No change 700°C 
Stability varies 

with cation 

Clinoptilolite Cont., 14% No change 750°C - 

 

Adsorption of Water on Zeolite 

 

Zeolites can be used for different purposes. They can be used as adsorbent, ion-

exchanger or catalyst in applications such as energy storage and recovery systems, air 

drying, hydrogenation and dehydrogenation and removal of NH4 from waste water. 

The cationic sites of the zeolites determine the adsorption properties of zeolites 

and these sites have strong affinity for water. The adsorption of water on zeolites is 

caused by the specific interactions between water molecules and exchangeable cations 
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which have the hydrophilic properties.  Barrer (1966) observed that the non-specific 

interactions have a very small effect on water adsorption on zeolite and yields low heat 

of adsorption value. 

The effect of the cations on adsorption capacity and heat of adsorption of zeolite 

X-water pair were determined by Dzhigit et al. (1971). The increase in cation 

dimensions and the decrease in number of large cavities per g zeolite led to decrease in 

both adsorption capacity and heat of adsorption.   

In water adsorption on zeolites, a rectangular isotherm is generally observed. 

According to Carrott et al. (1990) while the amount of adsorption at low relative 

pressures depends on the specific interactions between adsorbate and adsorbent, the 

micropore size and shape affect the adsorption at higher relative pressures. 

Several studies in applications of energy recovery and storage systems with 

zeolite have been reported. For instance, Ülkü et al. (1985) determined the performance 

of natural zeolites for energy storage and air drying systems. They found that if a waste 

heat at 200°C was obtained, 0.12 kg H2O/kgdryzeolite was adsorbed. By this way, 

energy stored in the temperature range of 20-200°C will be 600 kJ/kgdryzeolite. When 

the temperature range is changed to 20-110°C, the energy stored will be reduced to 310 

kJ/kgdryzeolite. 

Ülkü and Mobedi (1989) studied adsorption in energy storage systems for 

different adsorbate-adsorbent pairs. They concluded that for high temperature long term 

operations zeolite MgA-water is most suitable pair due to its high adsorption capacity 

and energy density. The study of Cacciola and Restuccia (1995) supported that result. 

They compared zeolite 4A-water, zeolite 13X-water and activated carbon-methanol 

pairs for heating and cooling applications and decided that zeolite-water pair is more 

applicable for heating purposes. Many other researchers used zeolite-water pair in their 

studies for energy recovery and storage systems. Some of these studies are summarized 

in Table 2.7.   

Ryu et al. (2001) discussed the adsorption equilibrium and kinetics of water on 

zeolite 13X by using gravimetric method. They made desorption of zeolite 13X for 7 

hours in a furnace at 340°C and performed adsorption experiments in the temperature 

range of 25-45°C and pressure range of 660-9300 Pa. Although type I isotherm is 

generally observed for zeolite 13X-water pair, they obtained Type II isotherm for this 

pair which may result from the inefficient regeneration of zeolite 13X.  
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Kim et al. (2003) also performed a volumetric study for adsorption of water on 

zeolite 13X which was regenerated at 150°C in a drying vacuum oven. It was seen that 

while type II isotherm was observed at 20°C, Type I isotherm was obtained at higher 

temperatures (Figure 2.9). 

 

 
 

Figure 2.9. Experimental and correlated isotherms for water vapor adsorption onto 

zeolite 13X at various temperatures: ●293.2K; ■, 313.2 K; ▲, 333.1 K; 

▼, 353.1 K (Source: Kim et al. 2003) 

 

The regeneration of adsorbents requires attention in most studies. The effect of 

desorption temperature on adsorbed amount of water on clinoptilolite was studied by 

Ozkan (1991) and Cakicioglu-Ozkan and Ulku (2005). The sample was regenerated at 

temperatures of 160, 250, 400 and 600°C for 16 h under vacuum higher than 10
-3

 Pa.  It 

was found that when the temperature was raised up to 400°C, the amount of adsorbate 

also increased due to an effective regeneration. However, if the regeneration 

temperature was increased to 600°C, the degradation in the framework structure of 

zeolite occurs and the adsorption amount decreased (Figure 2.10). According to the 

adsorption equilibria and kinetics of water-clinoptilolite pair, Ozkan (1991) also 

concluded that this pair could be used in air drying and energy storage systems.  

The effect of regeneration temperature on coefficient of performance of 

adsorption heat pumps for different working pairs was studied by San and Lin (2008). 

For silica gel-water and activated carbon-methanol pairs the COP values decrease when 

the temperature is greater than 120°C. On the other hand, when the temperature of 
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zeolite 13X-water pair is raised from 120°C to 150°C, both the COP value and 

adsorption capacity increase.  

 

 
Figure 2.10. Water vapor adsorption isotherm of the CLI outgassed at 160°C (×), 250°C 

(•), 400°C (○) and 600°C (●) (Source: Ozkan 1991; Cakicioglu-Ozkan and 

Ulku 2005) 
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Table 2.7. Performed Studies in Energy Systems with Zeolite-Water Pair 

 

Year Researcher Zeolite Type Purpose Temperature (°C) 

Max. Adsorption 

Capacity 

(kg/kg) 

Heat of 

Adsorption 

(kJ/kg) 

Maximum COP 

1978 Tchernev Chabazite 
Heating 

Cooling 
25-120 0.26 - 

0.70 

0.42 

1979 Shigeishi et al. 13X Drying 30-350 0.3 4400 - 

1979 Shigeishi et al. 4A Drying 30-350 0.22 4400 - 

1982 Gopal et al. 13X - 25-250 0.33 2770-5000 - 

1986 Ülkü Natural zeolite 
Cooling 

Heating 
- 0.14 3000 

1.33 

0.34 

1986 Ülkü Clinoptilolite 
Cooling 

Heating 
20-240 0.12 3000 1.65 

1986 Ülkü et al. Natural zeolite 
Cooling 

Heating 
- - 3540 

0.09 

0.37 

1991 
Ülkü and 

Çakıcıoğlu 
Clinoptilolite Drying - 0.01-0.115 2500-10000 - 

2005 Liu and Leong 13X Cooling 25-200 - 3200 0.43 

2006 Wang et al 13X Air Conditioning 40-450 - - 0.25 

2008 San and Lin 13X Cooling 30-120 0.236 - 0.2 

2009 Bauer et al. ALPO/Al Refrigeration 27-120 0.07-0.15 2644 - 
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CHAPTER 3 

 

ADSORPTION EQUILIBRIA 

 

Adsorption equilibria can be defined as the amount of adsorbate taken up by the 

adsorbent at specified temperature and pressure. Surface characteristic and pore 

structure of the adsorbent, adsorbate characteristic and working temperature and 

pressure identify the adsorption equilibrium. 

Adsorption equilibrium can be represented by equilibrium relationships and 

plots. If the adsorbed amount is plotted as a function of pressure at constant 

temperature, the plot is called as isotherm (Figure 3.1a). Isobar represents the plot of 

amount adsorbed as a function of temperature at constant pressure (Figure 3.1b). 

Finally, if the pressure is plotted as a function of temperature at constant amount of 

adsorbate, then the plot is called as isoster (Figure 3.1c). In all types of plots, the 

pressure represents the adsorptive concentration in equilibrium. 

 

 
 

Figure 3.1. Adsorption Equilibrium plots a) isotherm, b) isobar, c) isoster 
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Due to the interactions between adsorbate and adsorbent, the isotherms of 

different working pairs are classified into six classes in the IUPAC classification (Gregg 

and Sing, 1982). 

 

 
 

Figure 3.2. Types of adsorption isotherms 

  

Type I isotherm is generally observed in adsorption on microporous adsorbents 

having relatively small external surface area. The flat in the isotherm means that the 

pores of the adsorbent are filled with adsorbate, and monolayer coverage is observed.  

Type II isotherm refers to adsorption on non-porous or macroporous adsorbent. 

Point B in type II represents the end of the monolayer coverage and start of multilayer 

adsorption. 

Type III isotherm is related to adsorption on macroporous or non-porous 

adsorbents. Since the interactions of molecules are larger than the interactions between 

the adsorbate and adsorbent, multilayer adsorption is observed.  
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Although there is a similarity between type II and type IV isotherms, hysteresis 

loop is observed in type IV isotherm because of the capillary condensation in 

mesopores.  

Type V isotherm is also observed in mesoporous adsorbents. Type IV and Type 

V isotherms are characteristics of multilayer adsorption and as in the case of type III 

isotherm; type V isotherm is related to weak interactions between adsorbate and 

adsorbent.  

Type VI isotherm is related to the stepwise multilayer adsorption in non-porous 

adsorbents. The height of the steps represents the capacity of monolayer adsorption. 

 

3.1. Adsorption Equilibrium Models 

 

There are several models defining adsorption equilibrium for which coefficients 

are calculated by experimental studies. Henry’s, Freundlich, Langmuir, Toth’s and 

Dubinin-Astakhov, Dubinin-Radushkevich relationships are some of these models.  

 

3.1.1 Henry’s Relationship 

 

Henry’s equation is the most common equation and form basis for many 

equilibrium equations. All the adsorbate molecules are isolated from their neighbors at 

low concentration or low pressure of adsorbate. In both cases, Henry’s relationship 

which is a function of temperature and pressure represents the adsorption equilibrium. 

Henry’s equation which has been used widely in literature (Yucel and Ruthven 1980; 

Ruthven 1984; Suzuki 1990; Valsaraj and Thibodeaux 1999; Ng et al. 2001). It is 

defined by: 

 

q=KP  

 

Where q denotes adsorption adsorbed amount K is adsorption equilibrium 

constant and derived from Van’t Hoff equation.  

 

K=K0e
  /RT 

(3.1) 

(3.2) 
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3.1.2. Langmuir Relationship 

 

This is a theoretical equation which is derived by the assumption that the surface 

is homogeneous. In other words the heat of adsorption is independent of surface 

coverage (Ruthven 1984; Do 1998). The adsorbate molecules are adsorbed on specific 

sites of the adsorbate and only monolayer coverage is observed.  

According to Langmuir’s relationship, for an ideal surface, the adsorption rate 

will equal to the desorption rate. The Langmuir relationship is based on this equality. 

Langmuir equation is defined by the equation 3.3. Several researchers such as Hall et al. 

(1966), Parfitt (1978), Gregg  and Sing (1982), Ruthven (1984), Do et al. (1992), Kim et 

al. (2003), Hamamoto et al. (2006), Cansever-Erdoğan and Ülkü (2011) have used this 

equation in order to define adsorption equilibrium in their studies. 

 

q=q
m

bP

1 bP
 

 

Where P is pressure and qm is the monolayer coverage. Parameter b is the 

Langmuir (affinity) constant and it represents the strength of the interaction since it 

directly depends on the heat of adsorption or activation energy for desorption (Do 

1998). 

 

3.1.3. Freundlich Relationship 

 

Freundlich equation is an empirical equation to describe the adsorption 

equilibrium. Freundlich relationship has been used in several studies performed by 

Sakoda and Suzuki (1986), Gray and Do (1992), Cho and Kim (1992), Afonso and 

Silveria (2005), Liu and Leong (2006), Gerente et al. (2007) and Leppäjärvi et al. 

(2012). It is represented by the equation given below: 

 

q=q
∞
 (

P

Psat)
1/n

 

 

(3.3) 

(3.4) 
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Where q∞ is the limiting amount adsorbed, n is a constant, q is the equilibrium 

adsorbed amount, P is the pressure and P
sat

 is the saturation pressure at a specific 

temperature. The parameter n is usually greater than unity, and the larger this parameter 

is, the more deviation from linearity is observed in the isotherm.  

 

3.1.4. Toth’s Relationship 

 

Toth’s Equation is one of the frequently used empirical formula which can be 

valid at low and high pressure ranges. It originates from Henry’s equation. This 

equation describes many systems well with sub-monolayer coverage, and it has the 

following form used by several researchers such as Do (1998), Chua et al. (2002), Kim 

et al. (2003), Wang et al. (2009), Leppäjärvi et al. (2012): 

 

q=
K0exp(∆Hads/RT)P

{1 [K0/qm
exp(∆Hads/RT)P]

n
}
1/ 

 

 

Where q is the adsorbed quantity of adsorbate by the adsorbent under 

equilibrium conditions, qm denotes the monolayer capacity, P is the equilibrium pressure 

of the adsorbate in the gas phase, T is the equilibrium temperature of the gas-phase 

adsorbate, R is the universal gas constant, ΔHads is the isosteric enthalpies of adsorption, 

K0 is the pre-exponential constant and n is a parameter which is usually less than unity 

and defines the heterogeneity of the system. If parameter n diverges from 1, the system 

will be more heterogeneous (Do 1998).  

 

3.1.5. Dubinin-Radushkevich Relationship 

 

Dubinin-Radushkevich equation is a semi-empirical equation where adsorption 

process follows a pore-filling mechanism. The chemical potential is a function of 

adsorbed amount in the case of pore filling mechanism, while it is independent from 

adsorbed amount in the case of surface layering. Dubinin-Radushkevich equation is 

represented by; 

 

(3.5) 
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q=q
0
exp [  (Tln

Psat

P
)
2

] 

 

Where   is the constant for specific pair, q0 is the saturated adsorption capacity, 

T is the temperature, Psat is the saturation pressure and P is the pressure.  

Dubinin-Radushkevich relationship is generally used in the description of sub-

critical vapor adsorption on microporous solids such as activated carbon and zeolite. 

Gregg and Sing (1982), Ülkü and Mobedi (1989), Lavanchy et al. (1996), Jaroniec 

(1997), Teng et al. (1996), Sumathy et al. (2003), Saha et al. (2007) have explained the 

equilibrium relationship of adsorbate-adsorbent pair by using D-R relationship in their 

studies. 

 

3.1.6. Dubinin-Astakhov Relationship 

 

When the degree of the heterogeneity increases due to a wider pore size 

distribution, Dubinin-Radushkevich does not describe the equilibrium data well. 

Therefore, Dubinin and Astakhov (1971) proposed the Dubinin-Radushkevich equation 

to allow for the surface heterogeneity. Dubinin-Astakhov relationship is represented as: 

 

q=q
0
exp [ D (Tln

Psat

P
)
n

] 

 

Where q0 is the saturated adsorption capacity and Psat is the saturation pressure. 

D and n are the constants of the equation which depend on the working pairs.  

A modified form of Dubinin Astakhov relationship which was used by authors 

such as TamainotTelto and Critoph (1997), Critoph (2000), Chahbani et al. (2004), 

Wang et al. (2009) can be given as: 

 

q=q
0
exp( K (

Tz

Tsat  1)
n

) 

 

(3.6) 

(3.7) 

(3.8) 
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Where q0 is the saturated adsorption capacity and T
sat

 is the saturation 

temperature. K and n are the constants of the equation which depend on the working 

pairs. 

 

3.1.7. Three-term Langmuir Relationship 

 

When the simple Langmuir relationship is inadequate in description of 

adsorption equilibrium, it is convenient to use two or three terms of Langmuir 

relationship with the assumption that there are two or three sites for adsorption with 

energy of adsorption constant at each site (Parfitt 1978). So, especially in systems that 

zeolite is used as adsorbent, three-term Langmuir relationship can be used in the 

definition of adsorption equilibria. The equation of the three term Langmuir relationship 

can be given as: 

 

q=
q
s1
b1P

1 b1P
 
q
s2
b2P

1 b2P
 
q
s3
b3P

1 b3P
 

 

where qs,i and bi (i=1,2,3) are functions of temperature and defined as; 

 

q
s,1

=∑
ai

Ti

3

i=0

 

 

q
s,2

=∑
ci

Ti

3

i=0

 

 

q
s,3

=0.276 q
s,1

 q
s,2

 

 

bi=b0,iexp (
Ei

T
) 

 

 

 

(3.9) 

(3.10) 

(3.12) 

(3.11) 

(3.13) 
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3.1.8. Experimental Correlations 

 

Experimental correlation which is convenient for energy storage applications 

can be used to evaluate adsorption equilibrium. The equilibrium condition for working 

pair can be determined by the following equation: 

 

ln P=a(q) 
b(q)

T
 

 

a(q)=a0 a1q a2q
2 a3q

3  

 

b(q)=b0 b1q b2q
2 b3q

3 

 

Where P is the pressure (mbar), T is the temperature (K), a and b are the 

parameters depending on q which is the percentage content of the adsorbate.  

Ülkü et al. (1986), Mobedi (1987), Douss and Meunier (1988), Cacciola and 

Restuccia (1995) and San (2006) have used experimental correlations in order to define 

adsorption equilibria of working pairs used in energy recovery systems.  

 

3.2. Heat of Adsorption 

 

The thermodynamic relationship that indicates the exothermic behavior of an 

adsorption process was given in Equation 2.6. The heat evolved from the system is 

known as the heat of adsorption. When heat is released, a portion of heat energy is 

absorbed by the solid while the remaining is dispersed to surrounding. The absorbed 

portion of energy increases the adsorbent temperature and slows down the adsorption 

rate of the process (Do 1998). The information about the interactions between the fluid 

and the solid phases can be obtained from the heat of adsorption value. High value of 

heat of adsorption points to the strength of the interactions between the adsorbate and 

adsorbent. Also, the temperature profile for the regeneration of adsorbent can be 

determined by using the magnitude heat of adsorption. For a specific pair, heat of 

adsorption depends on temperature, pressure and surface coverage.  

(3.14) 

(3.15) 

(3.16) 
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Heat of adsorption can be described by three equations: differential heat of 

adsorption, integral heat of adsorption and isosteric heat of adsorption 

 

3.2.1. Differential Heat of Adsorption 

 

In an adiabatic process which means there is no heat transfer with the 

surrounding, the heat evolved during the adsorption is known as the differential heat of 

adsorption. It can be also defined as the internal energy change of a complete adsorption 

process, produced by a small amount of adsorbate at constant temperature, volume and 

surface area. 

 

∆ah= (
  

 na

)
T

 V (
 P

 na

)
T

 

 

Where Δah is the differential heat of adsorption in the adsorbed phase, Q is the 

heat transferred, na is the amount of adsorbate, V is the volume of the system and P is 

the pressure (Gregg and Sing 1982). The differential heat of adsorption can be directly 

measured by the calorimetric method. 

 

3.2.2. Integral Heat of Adsorption  

 

Integral heat of adsorption is the total heat released from initial state to final 

state of adsorbate loading at constant temperature. The integral heat of adsorption is 

obtained by integrating the differential heat of adsorption against the amount of 

adsorbate. It is formulized as the following equation: 

 

∆aH=∫   hdna

na

0

 

 

Where ΔaH is the integral enthalpy of adsorbed phase.  

 

(3.17) 

(3.18) 
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3.2.3. Isosteric Heat of Adsorption 

 

Under equilibrium conditions, the Gibbs free energy of adsorbate and adsorptive 

is equal. Isosteric heat of adsorption can be calculated by using the adsorption isotherms 

and Clausius-Clapeyron relation by neglecting the difference of the heat capacity of 

adsorbate in two phases. 

 

dlnP

d( 1/T)
= 

∆H

R
=
q
st

R
 

 

Where P is the pressure, T is the temperature, -ΔH is the heat released during the 

adsorption and is called as isosteric heat of adsorption, qst, and R is gas constant.  

According to the ideal Langmuir relationship, the heat of adsorption is 

independent of adsorbate amount when the adsorption sites are energetically 

homogenous and when there is no interaction between adsorbates. However, it is not 

logical to ignore the surface heterogeneity and the interactions between adsorbates in 

real systems. In many systems, the heat of adsorption decreases with the increasing 

surface coverage. Due to the application area, the desired value of heat of adsorption 

changes. For instance, while high heat of adsorption is desired for heating applications, 

low value of heat of adsorption is generally preferred for cooling purposes.  

 

3.3. Experimental Techniques to Determine Adsorption Isotherm and 

Differential Heat of Adsorption 

 

In the selection of the appropriate working pair for an energy recovery system, 

the adsorption equilibrium should be well defined. From the adsorption equilibrium 

data, the maximum adsorption capacity and heat of adsorption can be derived. The 

adsorption isotherm can be determined by using different experimental techniques as a 

function of pressure at constant temperature. Thus, the amount of adsorption of working 

pairs at various temperatures and pressures should be measured. Volumetric, 

gravimetric and calorimetric methods are three common techniques to obtain adsorption 

isotherm and heat of adsorption. 

(3.19) 
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3.3.1. Volumetric Method 

  

The volumetric method which is also known as manometry is the most common 

technique in measuring adsorbed amount. In this method, the pressure changes before 

and after adsorption in a closed system are measured. In calculation of adsorbate 

amount on adsorbent, the equation of ideal gas relationship is generally used.  

Basic set up of the volumetric system is shown in Figure 3.3. A volumetric 

system mainly consists of an adsorption vessel, a gas storage vessel and a vacuum pump 

in order to study at low pressure.  

 

 
 

Figure 3.3. Basic set up for volumetric system 

 

Kim et al. (2003) studied the adsorption equilibrium of alumina, zeolite 13X and 

zeolite x/activated carbon composite and water pairs with volumetric system. They 

determined the physical properties of the adsorbents by micromeritics (ASAP 2010), 

using nitrogen as adsorbate at 77 K. Ng et al. (2001), Chua et al. (2002) and Wang et al. 

(2004) also used ASAP 2010 device to characterize the silica gel and measured 

adsorbed amount of water vapor on silica gel by a volumetric system. Özkan (1991) 

used a volumetric measurement device, Coulter Omnisorp 100 CX, in order to 

determine the adsorption properties of clinoptilolite-water pair. Furthermore, Ülkü et al. 

(1998) obtained the adsorption and desorption isotherms of water vapor for wool and 

Balköse et al. (1998) carried out a study water vapor adsorption on humidity-indicating 

silica gel by Coulter Omnisorp 100 CX. 
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3.3.2. Gravimetric Method 

 

Gravimetric technique in adsorption processes is used to characterize porous 

media, to determine adsorption equilibria and to investigate adsorption kinetics. In 

gravimetric system, the amount of the adsorbed is directly determined by measuring the 

weight change of adsorbent as a function of time by using a microbalance system. The 

pressure of the adsorbate is kept constant in the gravimetric method. It is possible to 

observe the approach to equilibrium during the adsorption process at the displayer in the 

gravimetric method, which is the main advantage compared to volumetric method. The 

setup of gravimetric analyzer is given in Figure 3.4.  

 

 
 

Figure 3.4. Schematic view of gravimetric analyzer 

 

Several studies have been reported on estimation of adsorption equilibrium and 

kinetics gravimetrically by using thermo-gravimetric analyzer (TGA), magnetic 

suspension balance. For instance, in addition to volumetric method Ülkü et al. (1998) 

obtained the adsorption and desorption isotherms of water vapor for wool by 

gravimetric method employing a Cahn 2000 electronic microbalance. Ryu et al. (2001) 

determined the adsorption isotherm of zeolite 13X-water pair and observed that the 

isotherm was well fitted with the Freundlich-Langmuir model. Aristov et al. (2006) 

studied kinetics of Fuji RD silica gel-water pair by using CAHN 2000 thermobalance in 

the temperature range of 29-64°C and pressure range of 6.5-34 mbar. Cakıcıoglu-Ozkan 

and Ulku (2008) performed a study to measure the kinetics of water adsorption on 

clinoptilolite. Another study was conducted by Cortes et al. (2010). They studied water 

adsorption on zeolite 13X and compared thermo-gravimetry by mass spectroscopy. 
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3.3.3. Calorimetric Method 

 

Calorimetric method is based on the measuring heat which might be generated 

(exothermic process), consumed (endothermic process) or simply dissipated by a 

sample. There are several calorimetric techniques mentioned in literature. The main four 

categories which are used in physisorption systems are adiabatic calorimeters, 

diathermal conduction calorimeters, diathermal compensation calorimeters and 

isoperibol calorimeters (Rouquerol et al. 1999). 

In adiabatic calorimeters, in order to prevent any exchange of thermal energy 

between sample and surrounding, the sample temperature is followed by surrounding 

temperature. In diathermal-conduction calorimeters, by using either a heat flowmeter or 

a phase change detection system, sample temperature follows surroundings temperature 

by simple conduction. Due to the complexity of the systems and uncertainty, the 

diathermal compensation calorimeters and the isoperibol calorimeters are not used 

today. 

In all calorimetric techniques, Tian-Calvet calorimetric system which is a type 

of diathermal-conduction calorimeters is the most suited system for studying the 

relatively slow thermal process associated with gas adsorption in isothermal 

microcalorimetry. Tian-Calvet microcalorimetry consists of three main components 

which are sample bed, heat sink and thermopile (Figure 3.5). The sample cell is placed 

into the sample bed. Thermopile which is made from thermocouples and connected in 

series covers the sample bed. The functions of the thermopile are to release heat from 

sample cell to heat sink block during adsorption and to generate signal. The signal is 

received as mW versus time by software.  The differential heat of adsorption is obtained 

by integrating the curve (Demir, 2008). 

Dunne et al. (1996) measured isosteric heat of adsorption and adsorption 

isotherms for a series of gases increasing size and magnitude of quadrupole moment 

(Ar, O2, N2, CH4, C2H6, SF6, CO2) on adsorbents of varying pore structure and ion type 

(NaX, H-ZSM-5, Na-ZSM-5) by Tian-Calvet calorimetry. Also, Spiewak and Dumesic 

(1997) measured differential heat of adsorption on reactive catalysis surfaces. 
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Figure 3.5. Schematic View of Tian-Calvet Calorimetry 

 

A study was performed by Ertan (2004) in order to determine N2, CO2 and Ar 

adsorption on zeolite 5A and 13X at 25°C. Ülkü et al. (2006) investigated the 

adsorption of water vapor on zeolitic tuff and zeolite 4A to evaluate the availability of 

substitution of zeolitic tuff with zeolite 4A in air drying and heat pumps. Demir et al. 

(2011) studied the adsorption of silica gel-water pair by and also determined the 

differential heat of adsorption of this pair.  
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CHAPTER 4 

 

ADSORPTION KINETICS 

 

4.1. Mass Transfer in and Through an Adsorbent Particle 

 

To design an adsorption heat pump, the kinetic performance of the working pair 

should be known in addition to the adsorption equilibria. The understanding of the 

adsorption dynamics and determination of the adsorption rate of the system is important 

in the estimation of the response time for the process.  

Adsorption dynamics can be explained by the movement of the working fluid in 

and through the adsorbent particle and occurs in five steps as shown in Figure 4.1. In 

the first step, the fluid is transferred from bulk solution to the external surface of the 

particle (1-2) which has porous structures and the adsorbate molecules diffuse through 

the pores of the adsorbent (2-3). If the adsorbent has a microporous structure, the 

adsorbate also diffuses into the micropores (3-4). As mentioned before, adsorption 

occurs due to the physical or chemical interactions between the fluid and the solid states 

(4-5). In the last step, diffusion of the adsorbed molecules in the sorbed state occurs (5-

6). 

 
 

Figure 4.1. Adsorption steps 

For a biporous adsorbent, although the resistances related to all these steps 

(diffusional resistance in bulk fluid, diffusional resistance in laminar fluid film, skin 

resistance at the surface of the particle, diffusional resistance in the meso and 
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macropores, a possible barrier to mass transfer at the external surface of the 

microparticle, and diffusional resistance in the micropores within the microparticles) are 

quite effective, one of these steps may control the transport process.  

When the diffusional resistance in the macropores controls the adsorption rate, 

the rate depends on the particle size of the adsorbent and there is a concentration 

gradient through the macropores. On the other hand, in the case of diffusional resistance 

in micropore control, the adsorption rate depends on the crystal size instead of particle 

size of the adsorbent. Also, the concentration through the particle is uniform. 

 

4.1.1. Diffusion in Micropores 

 

Since the adsorbate molecules and the micropores are nearly equal in size, the 

interactions between the fluid and the pore wall in microporous adsorbents are became 

dominated. In such systems, the adsorbate molecules cannot escape from the pores and 

the diffusion occurs with a random jump of the adsorbate molecules from one site to 

next site. It is difficult to distinguish the fluid phase and solid phase in micropores 

because of the strong interactions and these phases are considered as a single phase. So, 

the diffusion can be defined as the “intracrystalline diffusion” or “micropore diffusion”. 

As mentioned above, diffusion through micropores is independent from the 

particle size. For a spherical and microporous particle, the mass transfer equation can be 

written by Fick’s second law: 

 

 q

 t
=

1

r2
 

 r
(r2Dc

 q

 r
) 

 

Where r is the pore radius, Dc is the intracrystalline diffusivity and q(r,t) is the 

adsorbed phase concentration.  

Based on the Fick’s law, simplified models were derived to calculate the 

micropore diffusion from the uptake curves (Boyd et al. 1947; Carman and Haul 1954; 

Crank 1975; Karger and Ruthven 1992). These models which are used for isothermal 

systems are summarized in Table 4.1.  

 

 

(4.1) 
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4.1.2. Diffusion in Macropores 

 

During the adsorption on a porous particle, the adsorptive molecules diffuse 

through the pores of the adsorbent. The transfer of the molecules through these pores is 

controlled by three different mechanisms due to the relationship between the mean free 

path of molecules and pore diameter. These mechanisms are; Knudsen diffusion, 

molecular diffusion and surface diffusion. 

When the mean free path is larger than the pore diameter, the collisions between 

molecules and solid surface occur. This type of diffusion is called as Knudsen diffusion 

(Figure 4.2a.). Knudsen diffusivity changes only with temperature, and it is independent 

from pressure since the mechanism does not depend on intermolecular collisions as 

shown in Equation 4.2; 

 

Dkn=97r√
T

M
 

 

Where r is the radius of the pore, T is temperature and M is the molecular weight 

of the adsorptive.  

If the pore diameter is larger than the mean free path of the molecule, the 

collisions occur between molecules instead of collisions between molecules and solid 

surface (Figure 4.2b.). This type of diffusion is known as molecular diffusion. The 

equation of molecular diffusion can be written as; 

 

Dm=
1

3
√
8kT

 M

kT

√2  2P
 

 

Where k is Boltzmann constant,   is the collision diameter, P is pressure, T is 

temperature and M is the molecular weight of the adsorptive. 

The diffusion in the pores and the diffusion in the fluid phase can be explained 

by Knudsen or molecular diffusion mechanisms. However, the diffusion through the 

physically adsorbed phase cannot be explained by these mechanisms. Although the 

mobility of the adsorbed phase is less than the gas phase mobility, there is an additional 

(4.2) 

(4.3) 
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flux in the cases of the high concentration of the adsorbed phase and the appreciable 

thickness of the adsorbed layer. Therefore, the diffusivity, which is known as surface 

diffusion, is given by the sum of the pore and surface contributions (Figure 4.2c.). The 

effective diffusivity for a single particle can be defined as; 

 

Deff=Dkn (
1  p

 p
)KDs 

 

Where Ds is the surface diffusivity and Dp is the contributions of Knudsen and 

molecular diffusion.  

 

 
 

Figure 4.2. Macropore diffusion mechanisms a) Knudsen diffusion b) Molecular 

diffusion c) Surface diffusion 

 

In contrast to the micropore diffusion, the macropore diffusion depends on the 

particle size of the adsorbent. The most significant property of the macropore diffusion 

is the dependence of the uptake rate to the micropore capacity since the accumulation of 

the adsorbate occurs in the micropores (Karger and Ruthven 1992). For a spherical 

particle the mass transfer equation for macropore can be written as;  

 

(1  p)
 q

 t
  p

 c

 t
= pDp (

 
2
c

 R2
 

2

R

 c

 R
) 

 

Where Dp is the pore diffusivity,  p is the porosity of the adsorbent particle, R is 

the particle radius. It is assumed that the pore diffusivity is independent from 

concentration which is generally valid for Knudsen diffusion mechanism. 

 

(4.4) 

(4.5) 
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4.2. Adsorption Kinetics Models 

 

The determination of the kinetics of the adsorption is important in evaluation of 

the performance of an adsorption system. Several simplified models have been derived 

to illustrate the adsorption kinetics (Boyd et al. 1947; Ho and McKay 1998; Qui et al. 

2009). The adsorption kinetics data can be defined by reaction based and diffusion 

based models which are different in nature. While diffusion in fluid film, pores and 

sorbed state are considered individually in diffusion based models, the physical and 

chemical interactions at the solid surface are considered at reaction based models.  

 

4.2.1. Reaction Based Models 

 

4.2.1.1. Pseudo First Order Rate Equation 

 

The pseudo first order rate equation is derived by Lagergren in 1898 to describe 

the process of liquid-solid phase adsorption of oxalic acid and malonic acid on charcoal 

(Ho et al. 2000). The equation, which is given as in Equation 4.6, is believed to be the 

earliest rate equation based on the adsorption capacity. 

 

dq
t

dt
=k1(qe

 q
t
) 

 

Where qe and qt are the sorption capacities at equilibrium and at time t, 

respectively, and k1 is the rate constant of the pseudo first order sorption. In adsorption 

kinetic analysis, Equation 4.6 is transformed into its linear form; 

 

log (q
e
 q

t
)=log(q

e
) 

k1

2.303
t 

 

The main disadvantages of the pseudo first order equation are that the linear 

equation (Equation 4.7) does not give theoretical qe values that agree with experimental 

qe values, and the plots are only linear approximately in the first 30 min. 

(4.6) 

(4.7) 
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4.2.1.2. Pseudo Second Order Rate Equation 

 

The pseudo second order rate equation is used to describe the rate of sorption of 

a second order mechanism, and is given as (Ho and McKay 1998): 

 

dq
t

dt
=k2(qe

 q
t
)
2
 

 

Where qe and qt are the sorption capacities at equilibrium and at time t, 

respectively, and k2 is the rate constant of the pseudo second order sorption In 

developing mathematical model to describe the sorption process, it is assumed that the 

sorption follows the Langmuir relationship.  

When Equation 4.8 is integrated at boundary conditions t=0 to t=t and qt=0 to 

qt=qt, the linearized form can be obtained as: 

 

t

q
t

=
1

k2qe
2
 

1

q
e

t 

 

4.2.1.3. Elovich Model Equation 

 

The adsorption rate may decrease by time due to an increase in the surface 

coverage of the reactions involving chemisorption of gases on solid surfaces without 

desorption of adsorbents. Elovich model equation was derived by Elovich and Zhabrova 

in 1939 in order to investigate the H2 and C2H4 adsorption on nickel. It is used to 

describe such chemisorption systems and can be expressed as (Taylor and Thon 1951; 

Juang and Chen 1997): 

 

dq

dt
=  exp (  q) 

 

Where q is the amount of solute adsorbed at time t, and   and   are constants 

during any experiment. In linearized form (Equation 4.11) to simplify the Elovich 

equation it is assumed that a t >> 1 at boundary conditions q=0 at t=0 and q=q at t=t; 

(4.8) 

(4.9) 

(4.10) 
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q= ln(  )  [ ln (t)] 

 

4.2.1.4. Ritchie Equation 

 

Ritchie (1977) enhanced a model for gas-solid adsorption processes which is 

alternative to Elovich’s equation. Ritchie (1977) assumed that the rate of adsorption 

depends solely on the fraction of sites which are unoccupied at time t, then 

 

d 

dt
= (1  )n 

 

Where   is the fraction of surface sites which are occupied by adsorbed gas, n is 

the number of surface sites occupied by each molecule of adsorbed gas and   is the rate 

constant. 

It is assumed that no site is occupied at t=0. When q is the amount of adsorption 

at time t: 

 

q
∞
n 1

(q
∞
 q)

n 1
=(n 1) t 1 

 

Where q∞ is the amount adsorbed after infinite time. If the reaction is second 

order (n=2), Equation 4.13 becomes: 

 

q
∞

(q
∞
 q)

= t 1 

 

The linearized form of Equation 4.14 is:  

 

1

q
=

1

 q
∞
t
 

1

q
∞

 

 

 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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4.2.2. Diffusion Based Models 

 

Since the adsorption rate at the surface is generally rapid, the overall rate of 

adsorption is generally controlled by heat and mass transfer resistances instead of 

intrinsic sorption kinetic. The diffusion of an adsorbate molecule consists of two main 

steps: the diffusion outside the particle and diffusion inside the particle. The diffusion 

outside the particle occurs in the fluid film and according to the pore structure of the 

adsorbent, the intraparticle diffusion occurs inside the particle. One or sometimes more 

than one mechanism becomes dominated in controlling adsorption rate.  

 

4.2.2.1. Fluid Film (External) and Surface (Skin) Diffusion Models 

 

When there is more than one component in the fluid, external resistance related 

to molecular diffusion through the laminar fluid film surrounding the particle occurs. 

The film resistance depends on the hydrodynamic conditions around the adsorbent 

particles in the bed, the properties of the fluid, the particle size and particle surface 

roughness. 

The external resistance through the laminar fluid film can be correlated by the 

following the equation (Karger and Ruthven 1992): 

 

dq̅

dt
=kfa(C C

 
) 

 

Where kf is the film mass transfer coefficient,   is specific external area, C is the 

adsorptive concentration in bulk phase and C
*
 is the adsorptive concentration at 

equilibrium with adsorbent phase concentration at the particle surface. When the 

equilibrium relationship is linear (q*=KC), Equation 4.17 becomes: 

 

dq̅

dt
=

3kf

KRp

(q  q̅) 

 

Where q* is the final equilibrium adsorbed phase concentration. For a step 

change in concentration at time zero, the boundary conditions are; 

(4.17) 

(4.18) 
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t 0,         C=q=0 

 

t>0,        C=C∞= q
∞

K⁄  

 

The integrated form of Equation 4.18 can be given as  

 

q̅

q
∞

=1 exp [ 
3kft

KRp

] 

  

Equation 4.19 can also be written as Equation 4.20, which has the same form 

with pseudo-first order equation (Boyd et al. 1947);  

 

log (1 F)= 
R

2.303
t 

 

Where R is defined as 3Dl r0∆r0 ⁄  and F is fractional attainment of equilibrium 

and can be given as; 

 

F=
q

q
∞

 

 

In order to distinguish the fluid film diffusion and pseudo first order rate 

equation, log(1-F) versus t graph should be plotted. If pseudo first order rate equation is 

rate controlling, the slope is independent from particle size, film thickness or 

equilibrium coefficient.  

Except nonporous adsorbents, it is a good approximation to neglect the fluid 

film resistance since diffusion through the particle is generally slower. On the other 

hand, due to the constriction of the pore mouth, blockage of the large pores near the 

surface of the particle or from the deposition of the extraneous materials at the crystal 

surface, the surface (skin) resistance may be observed (Ruthven et al. 2010). 

Mathematically, the surface resistance has a very similar solution with fluid film 

diffusion equation (Equation 4.19). 

 

(4.18a) 

(4.18b) 

(4.19)

9) 

(4.20) 

(4.21) 
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dq̅

dt
=
3ks

Rp

(q  q̅) 

 

q̅

q
∞

=1 exp [ 
3kst

Rp

] 

 

Where ks=Ds/ is the ratio of the effective diffusivity and the thickness of the 

solid surface film (Karger and Ruthven 1992). 

 

4.2.2.2. Intraparticle Diffusion Model 

 

Since adsorbents have a porous structure in general, it is not a realistic approach 

to neglect the intraparticular diffusion. The pore structure and the interactions between 

the adsorbate and the solid surface affect the intraparticle diffusion rate, so it becomes 

system dependent. It is important to select the appropriate intraparticular diffusion 

model since the models have different assumptions and boundary conditions. 

Boyd et al. (1947) derived particle diffusion model to define the diffusion in and 

through the adsorbent particle. In this model, it is assumed that the initial concentration 

of adsorbate and diffusivity is constant. The equilibrium relationship is considered to be 

linear where C
s
= C

l
. Boyd et al. (1947) gives the diffusion equation for u=C

s
r as: 

 

 

 u

 t
=Di (

 
2
u

 r
2
) 

 

Where r is the radius of the spherical surface of concentration C
s
 in the solid and 

D
i
 is the internal diffusion coefficient. Equation 4.24 is solved with the initial boundary 

conditions: 

u=0   at r=0  for  t 0 

 

u=r C
l
  at r=r0  for  t 0 

 

u=rC0
s
  at  t=0  for  0 r r0 

(4.22) 

(4.23) 

(4.24) 

(4.24a) 

(4.24b) 

(4.24c) 
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With the assumption of a constant initial concentration in the solid, Boyd and et 

al. (1947) derived the fractional attainment to equilibrium in and through particle: 

 

F=1 
6

 2
∑

1

n2
exp( 

Di 2n2t

r0
2

)

∞

n=1

 

For small times, Equation 4.25 becomes:  

 

F= q q
∞
=

6

r0
√
Dt

 
⁄  

 

Crank (1975) summarized diffusion models for different particle shapes. 

Although most of the researchers represent the Equation 4.25 as Crank’s model 

(Equation 4.27), the first derivation of the fractional attainment of equilibrium was 

made by Barrer (1941) and Boyd et al. (1947) as mentioned above.  

 

mt

m∞

=
q̅ q

0

q
∞
 q

0

=1 
6

 2
∑

1

n2
exp( 

n2 2Dct

rc
2
)

∞

n=1

 

 

Ruthven (1984) categorizes diffusion in and through adsorbent as micropore 

diffusion control and macropore diffusion control (Table 4.1). In gas adsorption 

processes, the equilibrium constant is generally large and effective diffusivity is too 

small compared with pore diffusivity. Therefore, Karger and Ruthven (1992) suggest 

that the controlling resistance cannot be presumed from the magnitude of the effective 

diffusivity. In addition, the value of equilibrium constant of Henry’s relationship, K, 

will decrease with concentration for a system that has type I isotherm. Therefore, an 

increasing trend of effective diffusivity with concentration, which is also observed in 

micropore diffusion control, occurs. 

Weber and Morris also have derived an intraparticular diffusion model (Malash 

and El-Khaiary 2010) and claim that if the rate controlling mechanism is intraparticular 

diffusion, a plot of adsorbate amount against square root of time should yield a straight 

line passing through the origin (Table 4.1). The model of Weber and Morris is the most 

widely used diffusion model for intraparticular diffusion especially for biosorption 

systems (Gerente et al. 2007). 

(4.25) 

(4.26) 

(4.27) 
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Linear Driving Force (LDF) Model  

 

Linear driving force model, which was derived for adsorption chromatography 

by Glueckauf et al. (1955), is one of the most important and the earliest intraparticular 

mass transfer rate equation. While derivation of the equation Glueckauf et al. (1955) 

assume that the mean internal concentration rate is directly proportional to the 

difference between the surface concentration and the mean internal concentration. Also, 

the temperature of the particle is considered to be uniform. Linear driving force model 

can be given as (Glueckauf 1955):  

 

dq̅

dt
=
15D

r2
(q q̅) 

 

Actually, in the first derivation of the linear driving force model, the 

dimensionless LDF coefficient is set equal to the 14, however Glueckauf (1955) 

indicates that the value of 15 should be applied when dimensionless time (Dt/r
2
) is 

bigger than 0.1. 

The LDF model can be applied to the studies of fixed bed adsorber dynamics 

and various adsorption processes such as breakthrough behavior, simulated moving bed 

systems, and pressure swing adsorption (Li and Yang 1999). 

In 1953, Vermeulen proposed a quadratic approximation for a step-function 

change in concentration as following (Glueckauf 1955): 

 

 q̅

 t
=
 2D

r2
q2 q̅2

2q̅
 

 

This equation is superior to the LDF model when the adsorption isotherm is very 

steep, in other words when the Langmuir constant approaches an irreversible isotherm 

(Ryu et al. 2001). 

An alternative solution to LDF model is obtained by Liaw et al. (1979) by the 

consideration of the parabolic concentration profile. The solution of the model gives 

exactly the same equation with Glueckauf solution (Table 4.1).  

Due to the limitation in the dimensionless time of the LDF model, researchers 

made alternative derivations to the LDF model. For instance, for the rapid adsorption-

(4.28) 

(4.29) 
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desorption cycles such as those encountered in pressure swing adsorption (PSA), 

application of the LDF model becomes dubious (Suzuki 1990). Nakao and Suzuki 

(1983) compared the LDF model with the numerical solution of the diffusion equation 

and proposed a graphical correlation from which the LDF coefficient can be determined 

as a function of the dimensionless cycle time (Chihara and Suzuki 1983). Do et al. 

(1986) indicate that the parabolic concentration profile also give large errors for short 

cycle times and derived a fourth degree approximation (Serbezov and Sotirchos 2001).  

 

Shrinking Core Model 

 

The diffusion models, which are derived from the Fick’s law and based on the 

assumption of the linear equilibrium isotherm and constant diffusivity, are not valid for 

a large concentration change. When the isotherm is favorable type I isotherm (Langmuir 

isotherm), it can be approximated as rectangular (irreversible) isotherm which has an 

analytical solution for the uptake curve (Karger and Ruthven 1992). 

 

c=0,     q =0,              c>0,      q =q
s
 

 

In shrinking core model, all adsorption occurs at the adsorption front (shock 

front) where R=Rf and intracrystalline diffusion is assumed to be sufficiently rapid to 

maintain sorbate concentration uniform through microparticle (Figure 4.3).  

 

 
 

Figure 4.3. Schematic diagram showing the form of the concentration profiles within 

the fluid phase (c) and adsorbed phase (q) for irreversible adsorption in a 

spherical particle 

(4.30) 
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In the model, it is assumed that the flow of sorbate through pores is constant in 

the region of Rp > R > Rf and the uptake curve for sphere is given by; 

 

6 =1 2 (1 
mt

m∞

)  3 (1 
mt

m∞

)
2 3⁄

 

 

The expression of  represents the time required for the (shock) front to 

penetrate to the center of the sphere. These expressions are only valid for the constant 

pressure systems due to the constant boundary conditions (Karger and Ruthven 1992).  

 

 =
 pDp

Rp
2

c0

q
s

t 

 

4.2.3. Calculation of Diffusion Coefficient 

 

The determination of the diffusion coefficient for an adsorption system is 

difficult, especially due to the change in the boundary conditions and assumptions. 

There are several theoretical models derived to calculate the diffusivity. The diffusivity 

constant is calculated by matching experimental curve with a theoretical model curve 

for the relevant boundary conditions and assumptions. The most popular equations 

which are based on Fick’s second law and used for adsorption processes are shown in 

Table 4.1. The general assumptions used in derivation of these models are; 

 The shape of the particle is spherical 

 The initial concentration of adsorbate in the solution is constant 

 The initial concentration in the solid is zero 

 The system is isothermal 

(4.32) 

(4.31) 
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Table 4.1. Models for Diffusion Calculation 

 

INTRAPARTICLE DIFFUSION FOR AN INFINITE SYSTEM VOLUME (CONSTANT BOUNDARY CONDITIONS) 

ASSUMPTIONS 

 General assumptions are involved 

 Adsorption equilibrium relationship is linear 

 Mass transfer equation is based on the Fick’s law 

 Diffusivity is constant 

RESEARCHER & 

YEAR 
SPECIFICATIONS EQUATION 

BOUNDARY 

CONDITIONS 

WORKING 

PAIRS 

Karger and Ruthven 

(1992) 

*The diffusional resistance 

in micropores is rate 

controlling mechanism 

*Uptake rate is independent 

from particle size 

*The concentration at the 

surface of the solid is 

constant, q∞ 

mt

m∞

=
q̅ q

0

q
∞
 q

0

=1 
6

 2
∑

1

n2
exp ( 

n2 2Dct

rc
2
)

∞

n=1

 

For small times;     (
mt

m∞

 0.3) 

mt

m∞

=6 (
Dct

rc
2
)
1/2

[
1

√ 
 2∑ i erfc (

nrc

√Dct
)

∞

n=1

 3
Dct

rc
2
] 

For long times; (
mt

m∞

>0.7) 

mt

m∞

=1 
6

 2
exp( 

 2Dct

rc
2
) 

t<0, C=C0, q=q0 

(independent of r and t) 

t 0, C=C∞, q(rc, t)=q∞ 

(
 q

 r
)
r=0

=0 for all t 

*Silica gel-water 

*Zeolite-water 

 

 

(cont. on next page) 
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Table 4.1 (cont.) 

Karger and Ruthven 

(1992) 

*Diffusional resistance in 

macropores is rate 

controlling mechanism 

*Uptake rate depends on 

the particle size 

*There is a concentration 

gradient through the 

macropores 

*Pore diffusivity is 

independent from 

concentration 

 c

 t
=

 pDp

 p (1  p)K
(
 
2
c

 R2
 

2

R

 c

 R
) 

K=K0e
 ∆H/RT 

Deff=
 pDp

 p (1  p)K
 

mt

m∞

=
q̅ q

0

q
∞
 q

0

=1 
6

 2
∑

1

n2
exp ( 

n2 2Dct

rc
2
)

∞

n=1

 

For small times ; (
mt

m∞

 0.3) 

mt

m∞

=6 (
Defft

R2
)
1/2

[
1

√ 
 2∑ i erfc (

nR

√Defft
)

∞

n=1

 3
Defft

R2
] 

c(R,0)=c0,    q(R,0)=q
0
 

c(Rp,t)=c∞   q(Rp,t)=q∞
 

(
 c

 t
)
R=0

= (
 q

 t
)
R=0

=0 

*Silica gel-water 

 

ASSUMPTIONS 

 General assumptions are involved 

 Adsorption equilibrium relationship is nonlinear, Langmuir system 

 Mass transfer equation is based on the Fick’s law 

 Diffusion coefficient depends on the concentration 

Garg and Ruthven 

(1973) 

*Diffusional resistance in 

macropores is controlling 

the uptake rate 

 

 q̅

 t
=

 p

w(1  
p
)

Dp

R2

 

 R
(R2  c̅

 R
) 

 c̅

 q̅
=
(1 bc̅)2

bq
s

=
b

q
s

1

(1 q̅ q
s

⁄ )
2
 

 q̅

 t
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w(1  
p
)

Dp

bq
s

1

R2

 

 R
(

R2

(1 q̅ q
s

⁄ )
2

 q̅

 R
) 

De=
 p

w(1  
p
)

Dp

bq
s
(1 q̅ q

s
⁄ )

2
 

t=0:  q̅(R,0)=0 

q̅(Rp,t)=
q
s
bc

1 bc
 

 

 q̅

 R
|
R=0

=0 

*Hydrocarbons-5A 

molecular sieve 

pellet (Ruthven & 

Derrah, 1972) 

(cont. on next page) 
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Table 4.1 (cont.) 

Ruthven (1984) 

*Diffusional resistance in 

micropores is rate 

controlling mechanism 

Dc=D0 (1 
q

q
s

)

 1

 

 q

 t
=
D0

r2
 

 r
(

r2

(1 q q
s

⁄ )

 q

 r
) 

For small concentrations 

mt

m∞

=
q̅ q

0

q
∞
 q

0

=1 
6

 2
∑

1

n2
exp ( 

n2 2Dct

rc
2
)

∞

n=1

 

q(r,0)=q
0
  

q(rc,t)=q0
 

(
 q

 r
)
r=0

=0 

*zeolite 4A-ethane 

Liaw et al. (1979) 

*Concentration profile is a 

parabola 

 

 q

 t
=

1

r2
 

 r
(r2Dc

 q

 r
) 

q(t,r)=A(t) B(t)rn 

A(t)=q(t,Rp) 
(2n 1)

(2n 2)
[(q

t
(t,Rp) qt̅

)] 

B(t)=
5

nRp
n [(qt

(t,Rp) qt̅
)] 

[
 q

t

 r
]
r=Rp

=nB(t)Rp
n 1=

5

Rp

[(q
t
(t,Rp) qt̅

)] 

 q
t̅

 t
=
15D

Rp
2
(q

i
  q

t̅
) 

 

*Silica Gel Type 

RD- Water 

*Hydrocarbons on 

activated carbon and 

silica gel 

 

(cont. on next page) 
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Table 4.1 (cont.) 

Malash and El-Khaiary 

(2010) 

(Weber-Morris model) 

*The film diffusion model 

is not significant or 

significant for a short 

period 

q=kit
0.5  

p-chlorophenol- 

activated carbon 

INTRAPARTICLE DIFFUSION FOR AN FINITE SYSTEM VOLUME 

ASSUMPTIONS 

 General assumptions are involved 

 Adsorption equilibrium relationship is linear 

 Mass transfer equation is based on the Fick’s law 

 Diffusivity is constant 

Carman and Haul 

(1954) 

*The sorbate is pure gas or 

vapor,  C is measured by 

the pressure 

λ=
(P∞ P1)

(P2 P∞)
 

1 
mt

m∞

=
(P P∞)

(P2 P∞)
 

1 
mt

m∞

=∑
6λ(1 λ)exp (Dq

n
2t r2⁄ )

9(1 λ) λ2
q
n
2

∞

n=1

 

For small times; 

1 
mt

m∞

=(1 λ) [
 
1

 
1
  

2

e erfc
3 

1

λ
√  

 
2

 
1
  

2

e erfc 
3 

2

λ
√ ]  λ 

 

Where 

 =
Dt

a2
 

Initial Condition 

C=C2, q=0 at 0<r<a when 

t=0 

Boundary Condition 

  

  
   at r=a for all t 

q= C at r=0 t > 0 

Vg

2A

dC

dt
=D

 q

 r
 at x=0, t>0 

 

*butane-silica gel 

*zeolite molecular 

sieves-hydrocarbons 

(Karger&Ruthven, 

1992) 

(cont. on next page) 
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Table 4.1 (cont.) 

Ma and Lee  (1976) 

*A homogeneous solid with 

both macropores and 

micropores 

*Adsorption equilibrium is 

reached at the boundary 

surface of the crystals 

 
3(1  p)

rc
Dc (

 q

 r
)
r=rc

 
 pDp

R2

 

 R
(R2  c

 R
)= p

 c

 t
 

V
 C

 t
= N pDp4 R

2  c

 R
 

t=0    c=c0 

t>0    c=c(t) 

(
 c

 R
)
R=0

= (
 q

 r
)
r=0,,R=R

 

r=rc   q=Kc 

For bulk solution; 

t=0    C=C0 

n-butane, isobutene 

and 1-butane in 

Davison CaX(Na) 

sieve 

EXTERNAL FLUID FILM OR SKIN RESISTANCE FOR AN INFINITE SYSTEM VOLUME 

Karger and Ruthven 

(1992) 

*Laminar fluid-film 

diffusion is rate controlling 

mechanism 

*There is no concentration 

gradient through the 

particle 

*There is an equilibrium 

between the adsorbed phase 

and the fluid phase 

concentrations at the 

surface 

*The adsorption 

equilibrium relationship is 

linear 

dq̅

dt
=

3kf

KRp

(q  q̅) 

q̅

q
∞

=1 exp [ 
3kft

KRp

] 

t<0,  C=q=0 

t>0, C=C∞=q∞/K 

*b-promophenol- 

Active Carbon 

*phenol-activated 

carbon 

*alkali metal 

cations-resinous 

zeolite (Boyd, 

Adamson et al., 

1947) 

(cont. on next page) 
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Table 4.1 (cont.) 

Karger and Ruthven 

(1992) 

*Skin resistance at the solid 

surface is the rate 

controlling mechanism 

*The adsorption 

equilibrium is linear 

*The diffusivity is constant 

dq̅

dt
=
3ks

Rp

(q  q̅) 

q̅

q
∞

=1 exp [ 
3kst

Rp

] 

Where ks=Ds  ⁄  

 
*n-decane-NaMgA 

zeolites 

DUAL RESISTANCES FOR AN INFINITE SYSTEM VOLUME 

Ruthven  (1984) 

*Diffusional resistance in 

both micropores and 

macropores controls the 

adsorption rate 

*A step change 

concentration at the 

external surface of the 

macroparticle 

mt

m∞

=1 
18

  3 
∑∑(

n2 2

p
n,m
4
)

e
 p2

n,m
Dct/rc

2

{  
 
2
[1 

cot p
n,m

p
n,m

(p
n,m

cot p
n,m

 1)]}

∞

n=1

∞

m=1

 

Where 

 p
n,m

2 n2 2= (p
n,m

cot p
n,m

 1) 

 = (
Dc

rc
2
) /(

Dp

Rp
2
) 

    (    )        

Micropore; 

 q

 r
(0,t)=0 

q(rc,t)=Kc(R,t) 

Macropore; 

 c

 R
(0,t)=0 

c(Rp,t)=c0 

q(r,0)=c(R,0)=0 

 

(cont. on next page) 
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Table 4.1 (cont.) 

Karger and Ruthven 

(1992) 

*Both micropore and 

external fluid film 

resistances control the 

uptake rate 

*The equilibrium 

relationship is linear 

D
 q

 r
|
rc

=kf(C∞ cs)=
kf

K
(q

∞
 q|rc) 

mt

m∞

=
q̅ q

0

q
∞
 q

0

=1 ∑
6L2exp (  

n

2
Dct rc

2⁄ )

 
n

2[ 
n

2
 L(L 1)]

∞

n=1

 

Where L= kfrc KDc⁄  

 
n
cot 

n
 L 1=0 

t 0, C=C∞, q(rc, t)=q∞ 

 
 

Karger and Ruthven 

(1992) 

*Both macropore and 

external fluid film 

resistances control the 

uptake rate 

*The equilibrium 

relationship is linear 

 pDp

 q

 r
|
Rp

=kf(C∞ cs) 

mt

m∞

=
q̅ q

0

q
∞
 q

0

=1 ∑
6L2exp (  

n

2
Dpt Rp

2⁄ )

 
n

2[ 
n

2
 L(L 1)]

∞

n=1

 

L= kfRp  pDp
⁄  

 

 
 



 

59 

 

4.3. Previous Studies for Adsorption Kinetic Models 

 

The previous studies on adsorption kinetics date back to 1940s. Barrer (1941) 

summarized the diffusion in and through solids. Boyd et al. (1947) derived fractional 

attainment to equilibrium equation with the same assumptions of Barrer (1941). In 

Table 4.2, the performed studies for both reaction and diffusion based models are 

presented. 
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Table 4.2. Previous Studies for Adsorption Kinetics 

 
Year Researcher Adsorption Kinetic Process Model 

1947 Boyd et al. Diffusion based 
Adsorption of alkali metal cations by 

resinous zeolite 

Fluid film diffusion (≤0.003 M) 

Particle diffusion ( 0.1M) 

1953 Reichenberg Diffusion based 
sodium-hydrogen exchange on 

sulfonated cross-linked polystyrenes 

Fluid Film diffusion (<0.05 N) 

Particle diffusion (>1 N) 

1955 Glueckauf Diffusion based - Linear diriving force model 

1966 Hall et al. Diffusion based - Pore and Solid diffusion model 

1974 Letterman et al. Diffusion based 
Sorption of phenol from aqeous solution 

by activated carbon 
Fluid film diffusion model 

1977 Mathews and Weber Diffusion based 
Phenol, p-bromophenol, p-toluene 

sulfonate-activated carbon 

Fluid film diffusion model (for initial 

period) 

1977 Ritchie Reaction based 

*Hydrogen-graphon 

*H2 on MoS2 + Al2O3 catalyst                    

*Water vapor-vycor fibre 

Ritchie Equation 

1979 Liaw et al. Diffusion based - 
Linear Driving Force Model 

(parabolic concentration profile) 

1984 Yoshida et al. Diffusion based 
R-Na

+
+Zn

2+
(NO3

-
)2 

R-Na
+
+Ce

3+
(NO3

-
)3 

Fluid film+solid diffusion model 

1986 Sakoda and Suzuki Diffusion based Water vapor- Fuji Type A silica gel 
Surface Diffusion (Linear Driving 

Force Model) 

1992 Gray and Do Diffusion based n-butane-activated carbon Pore diffusion model 

(cont. on next page) 
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Table 4.2 (cont.) 

1997 Malek and Farooq Diffusion based 
Hydrocarbons- silica gel and activated 

carbon 

Particle diffusion (Linear driving 

force model) 

1997 Juang and Chen Reaction based 

Sorption of metal ions (Fe(III), Co(II), 

Ni(II), Cu(II), and Zn(II)) from sulfate 

solution with resin 

Elovich’s equation 

1998 Ho and McKay Reaction based 
Sorption of basic dyes from aqueous 

solution by sphagnum moss peat 
Pseudo second order 

1999      Li and Yang Diffusion based N2-zeolite 4A Parabolic concentration profile 

1999 Valsaraj and Thibodeaux Diffusion based 

Sorption kinetics of hydrophobic 

organic compounds on suspended 

sediments in the water column 

Linear driving force model 

2000 Cheung et al. Reaction based 
removal of cadmium ions from water 

by sorption onto bone char 
Elovich’s equation 

2000 Chahbani and Tonduer Diffusion based 
Pressure swing adsorption of binary 

mixture and activated carbon 

Pore diffusion and corrected solid 

diffusion 

2000 Ho and McKay Reaction based 
Divalent metal ions from aqeous 

solution by sphagnum moss peat 
Pseudo second order 

2000 Ruthven Diffusion based - Shrinking core model 

2001 Chen et al. Diffusion based Dyes-pith Pore-surface diffusion model 

2001 Ko et al. Diffusion based 
Copper and Cadmium ions onto bone 

char 
Film-pore diffusion model 

(cont. on next page) 
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Table 4.2 (cont.) 
2001 Ryu et al. Diffusion based Water-zeolite 13X Nakao and Suzuki model 

2002 Ko et al. Diffusion based Acid dyes-activated carbon Branched pore model 

2003 Cheung et al. Reaction based Copper ions-chitosan Comparison (Elovich’s) 

2003 Sun and Yang Comparison 
Sorption of basic dyes from aqeous 

solution by modified peat resin 
Intraparticular diffusion 

2003 Hui et al. Diffusion based 
Basid blue dye 69 and Acid blue dye 25 

onto peat and wood 
Pore-surface diffusion model 

2004 Choy et al. Diffusion based Metal ions onto bone char 
Fluid Film diffusion (250-500µm) 

Intraparticular diffusion (500-710µm) 

2004 Chua et al. Diffusion based Silica gel-water Linear driving force model 

2004 Hamadi et al. Reaction based 
Paraquat dichloride from aqueous 

solution by activated carbon 
Pseudo second order 

2004 Aristov et al. Diffusion based Fuji type RD silica gel-water Pore diffusion model 

2007 Cheung et al. Diffusion based Acid dye- chitosan Intraparticular diffusion 

2007 Gerente et al. Comparison 
Remove of metals from waste water by 

chitosan 
- 

2007 Zhang and Qu Diffusion based 
Moisture transport on silica gel-calcium 

chloride comporsite adsorbent 
Crank diffusion model 

2009 Qui et al. Comparison - - 

2010 Fujiki et al. Diffusion based p-nitrophenol-granular activated carbon 
Fluid film diffusion model 

+ 

Intraparticular diffusion model 

2010 Ruthven et al. Diffusion based Methanol-ferrierite Surface (Skin) diffusion model 
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CHAPTER 5 

 

MATERIALS AND METHODS 

 

In a design of an adsorption heat pump, the selection of appropriate working pair 

is quite important. The adsorption equilibrium and kinetics of the pair should be well 

known. The detailed information about the adsorption equilibria and kinetics were given 

in chapter 3 and chapter 4.  

In addition to the high adsorption capacity and high mass diffusivity of the pair, 

the temperature dependence of the pair should also be determined when dealing with 

energy storage systems since the energy density of the pair highly depends on the 

operating conditions of adsorption and desorption steps.  

In order to understand the nature of the adsorbents, firstly, the textural 

characterization was performed. Then, two volumetric systems were constructed and 

adsorption experiments were conducted for different adsorption and desorption 

temperatures. The materials used and the experimental procedure are explained in 

details in this chapter.  

 

5.1. Materials 

 

In this study, zeolite 13X supplied from Sigma-Aldrich Co. (4-8 mesh) and Type 

RD silica gel supplied from Fuji Silysia Chemical Ltd. (8-14 mesh) were used as 

adsorbent, and water was used as adsorptive.  

 

5.1.1. Characterization of Adsorbents 

 

The textural properties (pore size distribution, specific surface area and pore 

volume) of both Type RD silica gel and zeolite 13X were analyzed by ASAP 2010M 

micromeritics. The analyses were conducted by N2 at its normal boiling temperature of -

196°C. The type RD silica gel was degassed at 100°C under vacuum pressure of 6*10
-3

 

mbar and zeolite 13X was degassed at 300°C under vacuum pressure of 6*10
-3

 mbar. 
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Thermogravimetric analysis (TGA) of type RD silica gel and zeolite 13X were 

performed by thermal gravimetric analyzer (Shimadzu TGA-51). The analyses of the 

adsorbents were carried out at a heating rate of 2°C/min, under 40 mL/min N2 flow. 

While the analyze of zeolite 13X was performed up to temperature of 800°C, the type 

RD silica gel analyze was performed up to temperature of 400°C. 

The elemental composition of zeolite 13X was determined using energy 

dispersive x-ray spectroscopy (EDX) on the particle. The data was collected for the 

external surface and cross section of the particle. The energy of the beam was 8 kV.  

 

5.2. Experimental 

 

5.2.1. Volumetric Adsorption Systems 

 

The setup constructed for type RD silica gel-water pair is shown in Figure 5.1. 

The main components are three vessels, pressure (vacuum) transducer, vacuum pump, 

three manual valves, data logger, and temperature controller.  

Vessel 1 (500 mL) contained water in liquid phase and vessel 2 (500 mL) stored 

water vapor, which was vaporized in the vessel 1. Adsorbent particles were placed in 

Vessel 3 (50 mL). As seen in Figure 5.1, there were three manual valves to manipulate 

the flow of the water vapor between vessels.  

The pressure of the system was measured by a MKS Series 902P vacuum 

transducer which was connected to the vapor vessel. The measuring pressure range and 

operating temperature range of the transducer was 0.1-1000 Torr (0.13- 133 kPa) with 

an accuracy of 1% of reading and 0-50°C, respectively. 

Pressure transducer was connected to a digital scanning and controlling device 

(MKS Series PDR 900-1 controller) which had a display range of 10
-10

-1500 Torr. It 

was connected to the computer having software of MKS Series in order to collect the 

data. The pressure was scanned at adjusted time intervals and logged to a Microsoft 

Excel worksheet.  

The evacuation of the system and regeneration of adsorbent particles were 

performed by using a Varian – Turbo-V 70 SH100 vacuum pump with 50m
3
/h pumping 

and 1425 rpm operating speeds. The operating range of the pump was 760-10
-3

 torr.  
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Adsorption is a temperature dependent process. Therefore, the temperature of 

the entire system should be homogeneous and must be kept constant. Cole Parmer 

flexible heating cords were used in order to provide constant temperature distribution. 

The heating cords were connected to PC441 type PID controller manufactured by 

ORDEL. The desired temperature and heating time were set to the controller. The K-

type thermocouples were used to control the temperature of the system. Also, Cole-

Parmer Digi-Sense scanning thermometer was used as data logger. The temperatures 

were recorded for every 5 minutes by using the K-type thermocouples located to 

different points of the system.  

 

 
 

Figure 5.1. Schematic view of experimental setup for silica gel 

 

The system constructed for zeolite 13X-water pair experiments was a bit 

different from the system of silica gel-water pair (Figure 5.2). Since zeolite 13X can 

adsorbed water vapor at very low concentration (pressure) and it requires higher 

desorption temperatures for complete regeneration, the system was improved. First, the 

design of the adsorbent bed (vessel 3) was changed. The heating of the adsorbent bed 

was made by screw clamp heater. In addition, four globe valves were used in this 

system.  

The vacuum pump used in zeolite 13X-water pair system was the nXDS10i 

Scroll Pump manufactured by Edwards Ltd. The pumping speed was 11.4 m
3
/h. The 

pump ultimate was 7*10
-3

 mbar, and the nominal rotational speed was 1800 rpm. 
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Both the silica gel-water pair and zeolite 13X-water pair systems were insulated 

by fiberglass materials in order to prevent the condensation and provide homogeneous 

temperature distribution along the system. 

 

 
 

Figure 5.2. Schematic view of experimental setup for zeolite 13X-water pair 

 

5.3. Experimental Procedure 

 

The adsorption experiments were performed at pressure range of 0-6000 Pa. The 

air leakage into the system from the environment should be prevented. It is especially 

important for zeolite 13X experiments. The leakage tests of the setups for both Type RD 

silica gel-water and zeolite 13X-water pairs were performed as a first step of the 

experiments. 

The condensation tests were performed as a second step of the experiments. 

Since the adsorbate concentration was calculated using the pressure change in the 

system, it should be ensured whether the condensation reduced the pressure or the 

adsorption occurred. The condensation test was done before the placement of the 

adsorbent particles into adsorbent vessel. Leakage and condensation test results are 

presented in Appendix D. Leakage rates for type RD silica gel-water and zeolite 13X-

water pair systems were found as 0.35 Pa/min and 0.02 Pa/min, respectively. 

After completion of condensation and leakage tests, the adsorption experiments 

were started. The Type RD silica gel-water pair experiments were performed to 
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determine the adsorption capacity and diffusivity at different adsorption temperatures of 

45°C and 60 °C for constant regeneration temperature of 90°C (Table 5.1). The 

experimental steps for Type RD silica gel-water pair were: 

1) All the three valves were closed 

2) Temperature and pressure loggings were on,  

3) Temperature controllers connected to vessel 2 and vessel 3 were set to 90 °C 

desorption temperature and run,   

4) Vacuum pump was turned on,  

5) V3 and V2 were opened, 

6) Evacuation was continued for 30 hours at 90 °C,  

7) After 30 hours the temperature controllers were set to the experiment 

temperature while evacuation continued,  

8) When the temperature of the system reached to the experiment temperature, V2 

and V3 were closed,  

9) Vacuum pump was closed,  

10) V1 was opened for approximately 5 minutes and then closed,  

11) Pressure change in pipes and vapor vessel was observed for 5 minutes 

12) If no pressure drop was observed, V2 was opened until equilibrium pressure was 

reached and then it was closed. 

The adsorption capacity and effective diffusivity of zeolite 13X-water pair were 

determined for different adsorption and desorption temperatures (Table 5.1). 

Experimental steps for zeolite 13X-water pair were almost the same with Type RD 

silica gel-water pair:  

1) All four valves were closed 

2) Temperature and pressure loggings were on,  

3) Temperature controllers connected to vessel 2 and vessel 3 were set to the 

desired desorption temperature and the temperature controller connected to the 

pipes was set to the 50°C. 

4) Vacuum pump was turned on,  

5) V2, V3 and V4 were opened, 

6) Evacuation was continued for a week at selected regeneration temperature,  
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7) After a week, the temperature controllers were set to the desired adsorption 

temperature while evacuation continued,  

8) When the temperature of the system reached to the adsorption temperature and 

come to equilibrium, V3 and V4 were closed,  

9) Vacuum pump was closed,  

10) V1 was opened to send some amount of vapor to the vessel 2 and closed, 

11) Pressure change in pipes and vapor vessel was observed for 15 minutes 

12) If no pressure drop was observed, V3 was opened until the equilibrium pressure 

was reached and then closed. 

 

Table 5.1. Performed Experiments 

 

Working Pair 

Desorption 

Temperature 

(°C) 

Adsorption 

Temperature 

(°C) 

Initial 

Adsorptive 

Pressure (Pa) 

Type RD silica gel-water 90 
45 

Increasing 
90 

Zeolite 13X-water 

60 35 Increasing 

90 

35 

Increasing 

2000 

980 

45 
Increasing 

60 

120 

35 

Increasing 

2000 

150 
Increasing 

2000 

200 Increasing 

 

During desorption of the system, the evacuation of the liquid vessel was also 

provided. The evacuation procedure of the liquid vessel was;  

1) V2 and V3 were closed,  

2) V1 was opened for a while, 
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3) V1 was closed,  

4) V2 and V3 were opened again. The effect of evacuation of liquid vessel is 

shown in Appendix E. 

The steps 10 to 12, which were defined above, were repeated for both type RD 

silica gel-water and zeolite 13X-water pair until the maximum adsorption capacity was 

reached. The amount of adsorbate was calculated from the pressure changes between 

step 10 and step 12. The verification of the experiments for each temperature was made 

by repeating the experiment two times. The sample calculations are given in Appendix 

C. 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

The characterization of adsorbents performed by TGA, EDX and volumetric 

adsorption system are given in this chapter. The effect of adsorption and desorption 

temperatures on adsorption equilibrium and kinetics of type RD silica gel-water and 

zeolite 13X-water pairs are presented and discussed in this chapter.  

 

6.1. Characterization of Adsorbents 

 

The textural properties of type RD silica gel and zeolite 13X obtained by 

volumetric analyzer are presented in Table 6.1. Since N2 cannot introduce into small 

pores of the zeolite 13X, the real values of pore size distribution are not obtained.  

 

Table 6.1. Textural Properties of Adsorbents 

 
Property Type RD silica gel Zeolite 13X 

Single point surface area (m
2
/g) 991.99 654.68 

BET surface area (m
2
/g) 1004.4 643.14 

Langmuir surface area (m
2
/g) 1428.4 942.30 

Micropore area (m
2
/g) 215.4 602.12 

External surface area (m
2
/g) - 41.01 

Single point total volume (cm
3
/g) 0.58 0.29 

Micropore volume (cm
3
/g) 0.13 0.31 

Average pore diameter (4V/A by BET) (Å) 22.9 17.75 

Maximum pore volume (HK model) (cm
3
/g) 0.42 0.33 

Median pore diameter (Å) 7.22 6.05 

Micropore surface area (D-A model) 1194.18 1335.13 

Limiting micropore volume (D-A model) (cm
3
/g) 0.60 0.35 

Mean equivalent pore diameter (D-A) (Å) 20.13 10.41 

 

The elemental composition of zeolite 13X was obtained from the EDX results 

(Table 6.2). The chemical analysis revealed the Si/Al ratio of 1.55 and 1.65 at cross 
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section and external surface, respectively. This ratio is given for zeolite X in the range 

of 1-1.5 in the literature (Breck 1974; Rouquerol et al. 1999).  

 

Table 6.2. Elemental compositions of zeolite 13X 

 

Element Cross Section (wt%) External Surface (wt%) 

O 46.50 46.13 

Na 11.36 12.38 

Mg 1.64 1.94 

Al 15.21 13.85 

Si 23.57 22.84 

P 0.55 0.75 

S - 0.50 

K - 0.30 

Ca 0.40 0.44 

Fe 0.77 0.88 

 

The weight percent losses of the zeolite 13X and type RD silica gel were 

determined by thermogravimetric analysis (TGA). The TGA curve of zeolite 13X is 

shown in Figure 6.1. The water content in the structure of zeolite can be classified in 

three categories; external water, loosely bound water and tightly bound water. 

Therefore, the dehydration of the zeolite 13X takes place in three steps. Up to 65°C, the 

externally bound water which was ≈3% of the sample mass was removed. The loosely 

bound water (≈7%) was then removed until 130°C. After 130°C, slow desorption of 

tightly bound water (≈10%) took place and desorption of zeolite 13X was completed at 

440°C. At 630°C, there was an interruption in the TGA curve which led to the 

deterioration in the framework of the zeolite 13X.   

The TGA curve for type RD silica gel is presented at Figure 6.2. It was seen that 

the dehydration of type RD silica gel was occurred at 60°C. In the temperature interval 

of 25 to 140°C the water in macropores, mesopores and micropores of type RD silica 

gel was completely removed. After 140°C, the removal of hydroxyl groups from 

strained silanol groups [SiO2.(OH)] started (Cabello et al., 2008; El-Naggar 2013).  
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Figure 6.1. TGA curve of zeolite 13X 

 

 
 

Figure 6.2. TGA curve of type RD silica gel 

 

6.2. Adsorption Equilibria  

 

6.2.1. Type RD Silica Gel-Water Pair 

 

Adsorption of water vapor on type RD silica gel, which was dehydrated at 

temperature of 90°C, was performed at 45 and 60°C.  Figure 6.3 is a representative 

diagram for the change of pressure and temperature with time at 60°C (See also 

Appendix E). As seen from Figure 6.3, nine pulses are done and for each pulse, the 

pressure drops to the equilibrium pressure which does not change with time until the 
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next pulse. Moreover, the adsorbent bed temperature is kept constant during the 

experiment (Figure 6.3).   

 

 
 

Figure 6.3. Pressure and temperature changes of adsorption of type RD silica gel-water 

pair at 60°C (Treg=90°C) 

 

The amount of adsorbate was calculated by using the ideal gas law (see also 

Appendix C) and adsorption isotherms were obtained at different temperatures. The 

effect of adsorption temperature on adsorption capacity can be seen in Figure 6.4 at 

temperatures of 35°C (Yıldırım 2011), 45°C and 60°C. It revealed that the adsorption 

capacity was decreased when the temperature was increased. At the pressure of 3000 

Pa, the adsorption capacities at 35, 45 and 45°C were 28%, 17% and 9%, respectively.  

 

 
 

Figure 6.4. Adsorption isotherms of type RD silica-water pair at temperature of 35, 45 

and 60°C 
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According to the IUPAC classification, type II isotherm which indicated the 

microporous structure of the adsorbent was observed for type RD silica gel-water pair. 

According to Leppäjärvi et al. (2012), the temperature dependency of the 

adsorption equilibria can be represented by using saturation pressure especially for 

water adsorption on zeolites. Since the saturation capacity, qm
sat

, is independent from 

temperature and the dimensionless parameter n, which relates to the heterogeneity of the 

of the surface, is constant for the adsorbate-adsorbent pair at different temperatures (See 

Chapter 3), Leppäjärvi et al. (2012) indicated that the isotherms at different 

temperatures overlap when they are plotted as a function of relative pressure. In order to 

observe the applicability in type RD silica gel-water system, the amount of adsorbate vs. 

relative pressure plots is drawn for three temperatures (Figure 6.5). It was seen that the 

curves overlapped which meant that the amount of adsorbate was the same for different 

temperatures at the constant relative pressure. Thus, adsorption behavior of the working 

pair can be determined for different adsorption temperatures based on the adsorption 

data at only one temperature. 

 

 
 

 Figure 6.5. Adsorption isotherms of type RD silica gel-water pair as a function of P/P
sat

 

 

The isosteric heat of adsorption was also determined by using adsorption 

isotherms of type RD silica gel-water pair (Equation 3.19). The Clausius-Clapeyron 

diagram drawn for concentrations of 2, 4, 6, 8 and 10 (% kg/kg) was used to find the 

isosteric heat of adsorption value (Figure 6.6). The slope of LnP versus -1/T graph gave 

the qst/R value (Equation 6.1). The change of isosteric heat of adsorption of type RD 
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silica gel-water pair by adsorbate loading is given in Figure 6.7.  By means of the 

isosteric heat of adsorption value, the coefficient performance of an adsorption heat 

pump can be evaluated.  

 

 
 

Figure 6.6. Clausius-Clapeyron diagram of type RD silica gel-water pair; ♦10%; ■8%; 

▲6%; ○4%; □ 2% 
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Figure 6.7. Change of isosteric heat of adsorption with adsorbate loading for type RD 

silica gel-water pair 

 

6.2.2. Zeolite 13X-Water Pair 

 

The results of the adsorption equilibria of zeolite 13X-water pair at different 

adsorption and desorption temperatures are illustrated in this part. The adsorption 

isotherm of zeolite 13X, which was regenerated at 90°C was obtained at 35, 45 and 

60°C. The representative pressure and temperature change curve for 35°C are illustrated 

in Figure 6.8 (See also Appendix E). The water vapor adsorption of zeolite 13X at low 

adsorptive concentration can be understood clearly.  

 

 
 

Figure 6.8. Pressure and temperature changes of zeolite 13X-water pair (Treg=90°C) 
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Figure 6.9 presents the adsorption isotherms of zeolite 13X-water pair at 35, 45 

and 60°C. The adsorption capacities of zeolite 13X-water pair were approximately 23%, 

21% and 19% (kg/kg) for the adsorption temperatures of 35, 45 and 60°C at the 

pressure of 1500 Pa, relatively.  It was observed that zeolite 13X adsorbed water vapor 

more than type RD silica gel at the same temperature and pressure.  

 

 
 

Figure 6.9. Adsorption isotherms at different adsorption temperatures (Treg=90°C) 

 

The adsorption equilibria is also presented by the plot of P/P
sat

 versus amount of 

water vapor adsorbed on zeolite 13X (Figure 6.10). By means of Figure 6.10, the 

adsorption isotherm of zeolite 13X-water pair at 25°C was produced (Figure 6.11). It 

was found that the adsorption capacity was 24% (kg/kg) at 1500 Pa.  

 

 
 

Figure 6.10. Adsorption isotherms of zeolite 13X-water pair as a function of P/P
sat
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Figure 6.11. Adsorption isotherm of zeolite 13X-water pair at 25°C 

 

The isosteric heat of adsorption of zeolite 13X-water pair which was regenerated 

at 90°C (Figure 6.12) was calculated by using Clausius-Clapeyron diagram for the 

adsorbate concentrations of 2, 5, 10, 14 and 19 (%kg/kg). The equations obtained from 

the diagram for each adsorbate concentration are presented at equation 6.2. The average 

isosteric heat of adsorption was found as 4087 kJ/kg which was compatible with the 

values given in literature (Ülkü and Mobedi 1989). 
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Figure 6.12. Isosteric heat of adsorption for zeolite 13X-water pair (Treg=90°C) 

 

For the effect of desorption temperature on adsorption equilibria, zeolite 13X 

was regenerated at different temperatures of 60, 90, 120, 150 and 200°C and adsorption 

was run at 35°C. According to the TGA results, the increase in adsorption capacity was 

expected up to the desorption temperature of 440°C. The experimental results for 

different regeneration temperatures are shown in Figure 6.13 for the pressure range of 

0-1500 Pa at the adsorption temperature of 35°C. Although the adsorption capacity 

increased with the increase in desorption temperature, there was no significant change 

in adsorbate amount between temperatures of 150-200°C. Type I isotherm was observed 

for all desorption temperatures.   

 

 
 

Figure 6.13. Adsorption isotherms of zeolite 13X-water pair at 35°C for different 
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The equilibrium data were analyzed by using the linear form of Langmuir 

relationship given in Equation 6.3. The equation parameters, qm and b, were found by 

means of the plot of P/q versus P graph. The values of Langmuir relationship constants 

and the correlation coefficient (R
2
) are illustrated in Table 6.3.  

The Langmuir relationship constants were also calculated from the graph of 

P/P
sat

 (Figure 6.10). The monolayer capacity and parameter b, which was dimensionless 

was calculated as 0.24 (kg/kg) and 231, respectively.  

  

Table 6.3. Parameters of Langmuir Relationship 

 

Desorption 

Temperature 

(°C) 

Adsorption 

Temperature 

(°C) 

qm(kg/kg) b (Pa
-1

) R
2
 

60 35 0.199 0.177 0.998 

90 

35 0.224 0.070 0.998 

45 0.223 0.029 0.997 

60 0.213 0.011 0.990 

120 

35 

0.229 0.089 0.998 

150 0.233 0.137 0.998 

200 0.241 0.101 0.999 

 

6.3. Adsorption Kinetics 

 

The representative uptake curves of type RD silica gel-water and zeolite 13X-

water pairs for successive runs with adsorptive concentration (pressure) change are 

illustrated in Figure 6.14 and Figure 6.15, respectively (See also Appendix F). The data 

of Figure 6.14 was collected at time intervals of 5 seconds and the data of Figure 6.15 

was collected at time intervals of 60 seconds. The number given in parenthesis at the 

legends of the Figure 6.14 and Figure 6.15 indicates the pressure range of each pulse. It 

was observed that zeolite 13X-water pair was reached equilibrium faster than type RD 

silica gel-water pair under the same conditions. According to Ruthven (2012), the rapid 

initial uptake followed by a slow approach to equilibrium relates to the effect of heat 

transfer resistance. Furthermore, the shape of the curves changed which might be the 

reason of the effect of surface resistance control. 
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Figure 6.14. Uptake curves of type RD silica gel-water at 45°C (Treg=90°C) 

 

 

 
 

Figure 6.15. Uptake curves of zeolite 13X-water at 45°C (Treg=90°C) 
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The representative uptake curves for successive runs with constant adsorptive 

concentration at logarithmic scale were also drawn in order to determine the controlling 

mechanism of the adsorption (Figure 6.16). It was observed that the controlling 

mechanism changed with successive runs. According to the Karger and Ruthven (1992), 

the possibility of redistribution of cations among energetically sites is higher for zeolite 

X than zeolite A. Therefore, the change in controlling mechanism might be explained 

by the hydration and migration of cations in the structure of zeolite 13X. 

 

 
 

Figure 6.16. Uptake curve of zeolite13X-water pair at logarithmic scale for adsorption 

temperature of 35°C (Treg=90°C) 

 

The diffusivity of zeolite 13X-water pairs was calculated for both infinite system 

volume (constant boundary conditions) and finite system volume. Long term solution 

(Mt/M∞>0.7) of Equation 4.27 (Table 4.1) was used to obtain diffusivity of water vapor 

for the assumption of infinite system volume. The plot of ln(1-Mt/M∞) versus time was 

plotted for each pulses. In a such plot, the slope gives – 
2
Deff/r

2
 and the intercept gives 

ln(-6/ 
2
) when the intraparticle diffusion is a rate controlling mechanism. On the other 

hand, if the plot passes through the origin, it shows the surface resistance (Karger and 

Ruthven 1992). The representative linear curve at the 16
th

 pulse is presented at Figure 

6.17 for zeolite 13X-water pair which was regenerated at 90°C (See also Appendix F). 

It was observed that the experimental data fitted the intraparticle diffusion better than 

surface resistance in the long time period. The effective diffusivities for short time 

period (Mt/M∞<0.5) and long time period (Mt/M∞>0.75) was also calculated. In order to 

0.001

0.01

0.1

1

0 200 400 600

1
-(

M
t/

M
∞

) 

Time (sec) 

P-8 (2005-0)

P-11 (1995-0)

P-14 (2037-11)

P-16 (2005-27)

P-19 (2091-123)



 

83 

 

obtain short time period data, the pressure data was collected at time interval of 1 

second. The effective diffusivity for the short time period was found from the slope of 

Mt/M∞ versus t
0.5

. Figure 6.18 is the representative fractional approach to equilibrium 

curve at 11
th

 pulse of the adsorption of zeolite 13X-water pair, which was regenerated at 

120°C. It was observed that the experimental data was represented better by the 

theoretical data calculated from Equation 4.27 by short time period effective diffusivity. 

 

 
 

Figure 6.17. Linear curve of zeolite 13X-water pair at 35°C (Treg=90°C) ─ 

experimental; …. Long term intraparticle diffusion; ---- surface 

resistance 

 

 
 

Figure 6.18. Experimental and theoretical amount of fractional approach to equilibrium 

of zeolite 13X-water pair at 35°C (11
th

 pulse) 
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The diffusivity of water vapor for the assumption of finite system volume was 

calculated by the analytical solution given by Carman and Haul (1954) and is 

represented in Table 4.1. Although the experiments were performed in a finite volume 

system, the fraction of the adsorbate added in the step, λ, was generally closed to zero 

for the zeolite 13X-water pair especially at high desorption temperatures. Carman and 

Haul (1954) indicate that when λ is zero it corresponds to sorption from limited volume 

of fluid to a solid of infinite extent. The representative curves of infinite volume system 

and finite volume system are shown in Figure 6.19a and Figure 6.19b for desorption 

temperatures of 90°C and 120°C, respectively. The fraction of adsorbate added in the 

step was 0.095 in the pressure range of 4680-641 Pa for regeneration temperature of 

90°C and the effective diffusivities for infinite and finite systems were 2.13x10
-9

 m
2
/s 

and 9.56x10
-10

 m
2
/s, respectively.  For the desorption temperature of 120°C, the fraction 

of adsorbate added in the step was 0.037 in the pressure range of 4370-250 Pa and the 

diffusivities were 1.81x10
-9 

m
2
/s for infinite system volume and 3.19x10

-10
 m

2
/s for 

finite system volume.  

 

 
 

Figure 6.19. Experimental and theoretical uptake curves; a) Treg=90°C; b) Treg=120°C 
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Figure 6.19 (cont.) 

 

The concentration dependence of diffusivity was studied by several researchers 

(Özkan, 1991; Karger and Ruthven 1992; Beyhan, 2011; Ruthven, 2012). Özkan (1991) 

performed a study with clinoptilolite-water pair and found that the diffusivity decreased 

with the increasing adsorbate concentration at the linear part of the isotherm. Karger 

and Ruthven (1992) explained the unusual pattern of concentration dependence of 

diffusivity, which was resulted from the increasing significance of heat transfer 

resistance at higher concentration levels, of X and Y zeolites. Ruthven (2012) 

reevaluated his previous studies on the adsorption of propane and n-butane in zeolite 

5A. He stated that the regeneration procedure greatly influenced the uptake rate and 

diffusion coefficient. Even, observed controlling resistance change from intraparticle 

diffusion control to surface resistance control.  

The change of effective diffusivity with amount of adsorbate for different 

desorption temperatures and for increasing initial adsorptive concentration are presented 

in Figure 6.20 (See also Appendix F).  The effective diffusivity of water vapor on 

zeolite 13X was in the range of 7x10
-10

-1x10
-8

 m
2
/s and decreased with increasing 

amount of water vapor adsorbed on zeolite 13X which may arise from heat transfer 

resistance and surface resistance effect or the interactions between cations and water 

vapor molecules. Furthermore, the diffusion was affected from the regeneration 

conditions such as regeneration temperature, vacuum conditions and the heating rate. 
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resulted from the regeneration conditions and the regeneration conditions should be 

analyzed carefully.  

In addition to the regeneration conditions, the initial adsorptive concentration 

(pressure) is another factor that affects the effective diffusivity. The adsorption 

experiments at 35°C were performed at initial adsorptive pressure of ≈ 2000 Pa for 

regeneration temperatures of 90, 120 and 150°C and at initial adsorptive pressure of ≈ 

980 Pa for regeneration temperatures of 90°C. It was observed that the maximum 

adsorption capacity was not affected from the initial pressure of pulses. However, the 

time required in order to reach maximum adsorption capacity and the effective 

diffusivity was depends on the initial adsorptive concentration. The representative curve 

of effect of initial adsorptive concentration on effective diffusivity for desorption 

temperature of 90°C was illustrated in Figure 6.21. The change of effective diffusivity 

with adsorbate concentration at constant initial adsorptive concentration for different 

regeneration temperatures are illustrated in Figure 6.22. The pressure data were 

collected at time interval of 60 seconds for the desorption temperature of 90°C and at 

time interval of 1 second for the desorption temperatures of 120 and 150°C. The sharp 

decrease in effective diffusivity was observed below adsorption capacity of 10% (kg/kg) 

for the regeneration temperature of 150°C. 

 

 
 

Figure 6.20. The change of effective diffusivity with amount of water vapor adsorbed 

on zeolite 13X at 35°C for different regeneration temperatures 
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Figure 6.21. Effect of initial adsorptive concentration on the effective diffusivity 

(Treg=90°C) 

 

 
 

Figure 6.22. The change of effective diffusivity with amount of water vapor adsorbed 

on zeolite 13X at 35°C for different regeneration temperatures 
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Additionally, the increasing adsorptive concentration have significant effect zeolite 

13X-water pair rather than type RD silica gel-water pair. 

 

 
 

 

 
 

Figure 6.23. The change of effective diffusivity with adsorbate concentration a) Type 

RD silica gel-water pair; b) Zeolite 13X-water pair (Treg=90°C) 
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CHAPTER 7 

 

CONCLUSIONS 

 

The adsorption technology for energy recovery systems has gained attention due 

to the demand for environmentally friendly systems. In this study, the working principle 

and of the adsorption heat pumps were explained in detail. The selection of the working 

pair for these systems has become crucial. However, it is still under investigation since 

the special pair hasnot been improved, yet. The common working pairs used in energy 

recovery and storage systems such as silica gel-water, active carbon-methanol and 

zeolite-water were discussed. 

In selection of the pair, the structural and thermal properties of the adsorbent 

should be known. Thus, the textural properties such as surface area, pore volume and 

pore size distribution and thermal stability of adsorbents were investigated. In addition 

to the structural and physical properties of the adsorbent, the equilibrium conditions and 

adsorption kinetics should be well defined in order to determine the appropriate 

adsorbate-adsorbent pair. The eqilibrium relationships and the experimental methods in 

order to obtain the adsorption isotherm were explianed in details. Furthermore, the 

adsorption kinetic models for different boundary conditions and assumptions were 

summarized.   

According to the performed investigations, the following remarks can be 

concluded; 

 The attractiveness of adsorption heat pump is mainly based on the energy 

recover, storage and density of the pair which depends on the operating 

conditions of the adsorption and desorption steps such as minimum and 

maximum temperatures of the cycle, net amount of adsorbate cycled in 

the system. Thus, the characterization and behavior of adsorbents for the 

specific adsorptive should be investigated in order to determine the 

operation conditions of the adsorption heat pump. 

 Since the adsorption is a temperature dependence process, the thermal 

stability of the adsorbent should also be well known,  



 

90 

 

 The adsorption capacity depends on both adsorption and desorption 

temperatures, and pressures. Thus, the assumptions and the operation 

conditions of the derived models for adsorption equilibria should be 

analyzed while comparing the suitable model for the working pair  

 In addition to equilibrium conditions, the adsorption kinetics should be 

known to determine the response time of the adsorption-desorption cycle,    

The experimental study was performed by volumetric setups in order to 

determine the adsorption capacity and kinetics of type RD silica gel-water and zeolite 

13X-water pairs. The effective diffusivity of water vapor was also calculated for these 

pairs individually.  

The adsorption experiments were run at 45 and 60°C for type RD silica gel-

water pair which were regenerated at 90°C. The adsorption experiments for zeolite 13X-

water pair were consisted of two parts. In the first part, the adsorption at different 

temperatures (35, 45 and 60°C) at constant regeneration temperature was performed. In 

the second part, the adsorption temperature was kept constant at 35°C and the 

experiments were done for different regeneration temperatures such as 60, 90, 120, 150 

and 200°C. 

The remarks for adsorption equilibria of type RD silica gel-water pair that could 

be concluded from the experimental studies are: 

 According to the IUPAC classification, type RD silica gel-water pair 

showed type II isotherm,  

 The maximum adsorption capacity of type RD silica gel-water pair for 

the adsorption temperatures of 35, 45 and 60°C were %28, %17 and %9, 

respectively, 

 The temperature dependency of adsorption of the working pair can be 

described by using the saturation vapor pressure since the saturation 

capacity of the pair is independent from temperature,  

 The average heat of adsorption of type RD silica gel-water pair was 2980 

kJ/kg, 

The remarks for adsorption equilibria of zeolite 13X-water pair that could be 

concluded from the experimental studies are: 
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 Zeolite 13X-water pair showed type I isotherm according to the IUPAC 

classification,  

 The adsorption capacity of zeolite 13X-water pair which was regenerated 

at 90°C were %23, %21 and %19 for temperatures of 35, 45 and 60°C at 

1500 Pa, respectively, 

 The adsorption capacity of zeolite 13X-water pair was higher than type 

RD silica gel-water pair at the same temperature and pressure, 

 The average heat of adsorption of zeolite 13X-water pair was found as 

4087 kJ/kg, 

 The adsorption capacity of zeolite 13X-water increased from %21 

(kg/kg) to %24 (kg/kg) at 1000 Pa when the desorption temperature was 

increased from 90°C to 200°C. 

 The theoretical calculated adsorption capacity from the experimental 

data using Langmuir relationship was 0.224, 0.223 and 0.213 (kg/kg) for 

the adsorption temperatures, 35,45 and  60°C, respectively, 

 The theoretical calculated adsorption capacity from the experimental 

data using Langmuir relationship increased from 0.199 (kg/kg) to 0.241 

(kg/kg) when the desorption was increased from 60°C to 200°C, 

 The Langmuir constants, qm and b, was found as 0.24 kg/kg and 231, 

respectively for the monolayer capacity. 

The following remarks for adsorption kinetics were concluded from the 

experimental studies; 

 Zeolite 13X adsorbed water vapor faster than type RD silica gel, 

 The operation conditions such as regeneration time and initial adsorptive 

concentration affected the diffusivity of the pair, 

 The effect of different mechanisms changed with succesive runs, 

 In the long time period (Mt/M∞>0.7), the diffusivity was not effected 

from the adsorption temperature for both working pairs, 

 The effective diffusivity of water vapor on zeolite 13X was in the range 

of 7x10
-10

-1x10
-8

 m
2
/s at 35°C for increasing initial adsorptive 

concentration at different regeneration temperatures, 
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 The long time period effective diffusivity of zeolite 13X-water pair for 

constant initial adsorptive pressure of 2000 Pa was in the range of 10
-9

-

10
-8

 m
2
/s for the regeneration temperatures of 90, 120 and 150°C,  

 The short time period effective diffusivity (Mt/M∞<0.5) of zeolite 13X-

water pair was almost constant (2x10
-8

-9x10
-9

 m
2
/s) for the constant 

initial adsorptive pressure of 2000 Pa for the regeneration temperatures 

of 120 and 150°C,  

 The long time period effective diffusivity of zeolite 13X, which was 

regenerated at 90°C, for constant initial adsorptive pressure of 980 Pa 

was in the range of 1x10
-7

-7x10
-9

 m
2
/s,  

 The experimental data was better represented with the theoretical data 

calculated by short time period effective diffusivity, 

 The decrease in effective diffusivity with adsorbate loading might be 

arised from heat transfer resistance and surface resistance effect or the 

migration and hydration of the cations, 

 The previous studies on adsorption kinetics should be reevaluated by 

taking, initial water concentration, cation migration and hydration, and 

surface resistance into account. 
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APPENDIX A 

 

PHYSICAL FORCES INVOLVED IN ADSORPTION 

PROCESSES 

 

As indicated before, adsorption occurs due to the interactions between adsorbate 

and adsorbent molecules. Van der Waals forces control the non-chemical interactions 

between atoms and molecules.   

Due to either to a formal charge separation or differences in the 

electronegativities of the atoms forming a covalent bond, an unsymmetrical distribution 

of electron density within a molecule occurs which causes a dipole. Van der Waals 

forces can be classified in three types of atomic and molecular interactions which are 

permanent dipole, induced dipole and London forces. The molecules can be polar in 

nature with permanent dipole or they can be polarized by the influence of the 

neighboring electric field producing induced dipole.  

 When two polar molecules are near to each other, a dipole-dipole interaction 

occurs between the magnets. On the other hand, there will occur a dipole- induced 

dipole interaction if there is a polar and a nonpolar molecule (Figure A.1).  

 

 
 

Figure A.1. a) dipole-dipole interaction b)dipole-induced dipole interaction 
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In the adsorption processes, the most significant force is the London dispersion 

force that arises from rapid fluctuation in electron density within each atom which 

causes attraction between two atoms by inducing electrical moment in a near neighbor. 

The characteristics of dispersion force are (Myers 1999); 

 They have long range action that their effect is extending in the range of 

0.2-10 nm compared to covalent bonds which is in the range of 0.1-0.2 

nm. 

 They can be attractive or repulsive. 

Due to the fluctuating dipoles, the London dispersion forces are considered as 

quantum mechanical in nature. Basically, the dispersion force can be described by the 

following way. Due to the movement of electrons in a molecule or atom, there may 

have an instantaneous dipole moment. As a result of this instantaneous dipole, a short-

lived electrical field will be introduced and then polarized the neighboring atom or 

molecule by inducing a dipole in neighbor (Figure A.2).  

 

 
 

Figure A.2. Schematic illustration of dispersion force  

 

By using the quantum mechanical perturbation theory, potential energy equation 

of two isolated atoms at distance ‘r’ was derived by London for dispersion and short-

range repulsive forces (Gregg and Sing 1982). The sum of the dispersion and repulsive 

interactions give the total potential value which is also known as Lennard-Jones 

potential as given in Equation A.1.    

 

∆G=∆Grep ∆Gatt=
B

r12
 
C

r6
 

 

(A.1) 
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Where C is dispersion constant associated with the dipole-dipole interaction and 

B is an empirical constant. The negative sign for C indicates the attraction. Gregg and 

Sing (1982) denoted that since the number of atoms at a given distance from the gas 

atom increases when the solid becomes more compacted, the interaction potential 

becomes larger as the solid particles become larger.  

Kiselev (1965) was classified adsorption of molecules on surfaces according to 

their specific and non-specific interaction capacities to explain the effect of polarity in 

improvement of interaction energy. While only dispersion and repulsive forces are 

involved in non-specific interactions, coulombic forces are also involved in specific 

interactions. Hydrogen bond is an example of the specific interactions.  

 

Hydrogen Bonding 

 

The term of “hydrogen bonding” has been discussed for a long time. While 

some researchers claim that the hydrogen bond is electrostatic which is caused from the 

dipole-dipole interactions, others say that it is also a partial covalent in nature. The 

classical definition of the hydrogen bond is that it is present between molecules where 

hydrogen atom (H) is connected to fluorine (F), oxygen (O) or nitrogen (N) atoms 

(Figure A.3). The shared electrons of fluorine, oxygen and nitrogen which have high 

ionization energies are tightly held to hydrogen. As a result the fluorine, oxygen and 

nitrogen atoms become negative charged while hydrogen atom has a small positive 

charge. When the positively charged hydrogen atom interacts with a free electron pair 

on the negatively charged fluorine, oxygen or nitrogen, the hydrogen bond occurs.  

Conversely, some researchers point out the partial covalent nature of the 

hydrogen bond and they indicate that it is not enough to define the hydrogen bonding in 

several experiments only with electrostatic forces. Buckingham et al. (2008) defined the 

hydrogen bond as an attraction between proton donor X-H and a proton acceptor Y. 

Arunan et al. (2011) stated that X could be any element having electronegativity larger 

than that of H (F, N, O, C, P, S, Cl, Se, Br and I) and Y could be any of these elements 

and also  -electrons.  

The hydrogen bond has contribution of different interactions. Due to the 

variations in donor, acceptor and environment, hydrogen bond can transform to pure 
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van der Waals interaction, covalent bond, purely ionic interaction and cation-  

interaction (Steiner 2002).  

 

 
 

Figure A.3. Hydrogen bonding between a) HF b) NH3 c) H2O molecules 

 

Jeffrey (1997) classified the hydrogen bond in three categories as weak, 

moderate and strong. While the covalent properties are increased in strong hydrogen 

bonds, electrostatic interactions and dispersion forces are more feasible in weak 

hydrogen bonds (Steiner 2002).  
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APPENDIX B 

 

PHYSICAL PROPERTIES OF MATERIALS 

 

Table B.1. Thermophysical properties of silica gel  

(Source: Chua et al. 2002) 

 

Property Type A Type RD 

BET/N2 Surface Area (m
2
/g) 716 (±3.3) 838 (± 3.8) 

BET constant 293.8 258.6 

BET volume STP (cm
3
/g) 164.5 192.5 

Pore size (nm) 0.8-5 0.8-7.5 

Porous volume (cm
3
/g) 0.28 0.37 

Micropore volume (%) 57 49 

Mesopore volume (%) 53 51 

Particle bulk density (kg/m
3
) 1306 1158 

Surface area (m
2
/g) 650 720 

Average pore diameter (nm) 2.2 2.2 

Apparent density (kg/m
3
) 730 700 

Mesh size 10-40 10-20 

Specific heat capacity (kJ/kg.K) 0.921 0.921 

Thermal conductivity (W/m.K) 0.174 0.198 

 

Table B.2 Thermophysical Properties of Water 

 

Molecular Weight (g/mol) 18.015 

Critical Temperature (K) 647.1 

Critical Pressure (bar) 220.55 

Critical Volume (cm
3
/mol) 55.9 

Normal Boiling Point (K) 373.15 

Kinetic Diameter (Å) 2.641 

Polarizability x10
-25

 (cm
3
) 14.50 

Dipole moment x10
18 

(esu cm) 1.87 
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Table B.3. Physical properties of zeolites  

(Source: Perry and Green 1997) 

 

Properties 13X 4A 

Internal porosity ≈ 0.38% ≈ 0.32% 

Bulk density (kg/m
3
) 580-640 610-670 

Average pore diameter 

(nm) 
1 0.4 

Surface area (m
2
/g) ≈600 ≈700 

Sorptive capacity (kg/kg) 0.25-0.36 0.22-0.26 
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APPENDIX C 

 

SAMPLE CALCULATIONS 

 

The procedure for calculation of the adsorbed amount for type RD silica gel-

water pair at the temperature of 60°C is given below; 

PV=mRT 

 For the first pulse; 

Vvapor = 500ml+4ml = 504 ml = 0.504x10
-3

 m
3
 (volume of vapor vessel + pipes)  

 

R = 0.461 m
3
Pa/gK 

T= 331 K 

Pinitial=2479.8 Pa  

mvapor=
2479.8 0.504 10

 3

0.461 331
=8.17 10

 3
 g 

 

Vtotal=500 mL+4 mL+50 mL=554 mL = 0.554x10
-3

 m
3
(volume of vapor 

vessel+pipes+adsorbent vessel) 

Peq=298.6 Pa 

mtotal1=
298.6 0.554 10

 3

0.461 331
=1.08 10

 3
 g 

 

mads=mvapor mtotal1 

 

mads=(8.17 1.08) 10
 3
=7.09 10

 3
g 

 

q
1
=

mads

msilica gel

=
7.09 10

 3

0.3
 100=2.36% kg water/kg silica gel  

 For the second pulse the procedure is a bit different; 

Vvapor = 500ml+4ml = 504 ml = 0.504x10
-3

 m
3
 (volume of vapor vessel + pipes)  
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R = 0.461 m
3
Pa/gK 

T= 331 K 

Pinitial=2673.2 Pa  

mvapor=
2673.2 0.504 10

 3

0.461 331
=8.81 10

 3
 g 

Peq=843.9 Pa 

At previous pulse, the equilibrium pressure was 298.6 Pa in the vapor and 

adsorbent vessels which means that the vapor was not adsorbed. The remaining vapor 

amount is; 

 Vremain = 50ml+4ml = 54 ml = 0.054x10
-3

 m
3
 (volume of adsorbent vessel + 

pipes) which is nearly one-tenth of the total volume 

mremain=
mtotal1

10
=1.08 10

 4
g 

 

Vtotal=500 mL+4 mL+50 mL=554 mL = 0.554x10
-3

 m
3
(volume of vapor 

vessel+pipes+adsorbent vessel) 

Peq=843.9 Pa 

mtotal2=
843.9 0.554 10

 3

0.461 331
=3.05 10

 3
 g 

 

mads=(mvapor mremain) mtotal 

 

mads=[8.81 10
 3
 1.08 10

 4
 3.05 10

 3]=5.86 10 3
g 

 

q
2pulse

=
mads

msilica gel

=
5.86 10

 3

0.3
=0.0195 kg water/kg silica gel  

 

q
2
=q

1
 q

2pulse
=(0.0236 0.0195) 100=4.31% kg water/kg silica gel  

 

This calculation procedure was repeated for all pulses. After calculation of 

adsorbed amount for each pulse, adsorption isotherm was obtained.  

The effective volume of the systems was 631 mL and 676 mL for type RD silica 

gel-water and zeolite 13X-water pairs, respectively. 
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APPENDIX D 

 

PLOTS OF LEAKAGE AND CONDENSATION TESTS 

 

 
 

Figure D.1. Leakage test for type RD silica gel-water pair 

 

 
 

Figure D.2. Leakage test for zeolite 13X-water pair 
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Figure D.3. Condensation test for zeolite 13X-water pair 
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APPENDIX E 

 

PRESSURE AND TEMPERATURE CHANGES DURING 

THE EXPERIMENTS 

 

 
 

Figure E.1. Pressure and temperature changes during the experiment of type RD silica 

gel-water at 45°C 

 

 
 

Figure E.2. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 60°C 
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Figure E.3. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 90°C 

 

 
 

Figure E.4. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 120°C 
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Figure E.5. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 150°C 

 

 
 

Figure E.6. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 200°C 

 

20

25

30

35

40

45

50

55

60

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000

Te
m

p
e

ra
tu

re
 (
°C

) 

P
re

ss
u

re
 (

P
a)

 

Time (min) 

20

25

30

35

40

45

50

55

60

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000

Te
m

p
e

ra
tu

re
 (
°C

) 

P
re

ss
u

re
 (

P
a)

 

Time (min) 



 

118 

 

 
 

Figure E.7. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 120°C for constant initial pressure 

 

 
 

Figure E.8. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 150°C for constant initial pressure 
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Figure E.9. Pressure and temperature changes during the experiment of zeolite 13X-

water regenerated at 90°C for constant initial pressure 

 

The importance of evacuation of liquid vessel was mentioned in chapter 5. The 

effect of evacuation of liquid vessel is shown in Figure E.10. Both experiments were 

run at 35°C which was regenerated at 90°C under vacuum. Although zeolite 13X has 

ability to adsorb water vapor at low pressures, it cannot be observed due to the air inside 

the system. 

 

 
 

Figure E.10 The effect of evacuation of liquid vessel 
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APPENDIX F 

 

RAW DATA FOR EXPERIMENTAL STUDY 

 

Table F.1. Raw Data of experimental study of Type RD silica gel-water pair 

 

Tads=35°C 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) 
Deff (m

2
/s) 

(Mt/M∞>0.7) 

1 1271.90 10.67 1.49 1.02E-09 

2 1351.90 79.99 2.98 5.63E-10 

3 1646.50 202.60 4.67 4.74E-10 

4 2319.80 410.60 6.91 3.36E-10 

5 2955.70 715.90 9.52 3.06E-10 

6 3346.30 982.60 12.29 1.97E-10 

7 3976.90 1346.50 15.37 1.88E-10 

8 4090.30 1651.80 18.23 1.68E-10 

9 4351.60 1955.80 21.04 1.58E-10 

10 4404.90 2255.80 23.57 1.58E-10 

11 4511.50 2495.80 25.95 1.58E-10 

12 4516.90 2806.40 27.97 1.97E-10 

Tads=45°C 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) 
Deff (m

2
/s) 

(Mt/M∞>0.7) 

1 2691.70 154.70 2.82 8.41E-10 

2 2774.10 513.30 5.38 4.73E-10 

3 3035.70 950.60 7.74 2.9E-10 

4 3202.30 1378.90 9.80 2.22E-10 

5 3309.00 1758.50 11.56 2.03E-10 

6 3298.30 2053.10 12.98 1.93E-10 

7 3357.00 2293.10 14.20 1.93E-10 

8 3373.00 2490.40 15.22 1.93E-10 

9 3431.70 2651.70 16.13 1.64E-10 

(cont. on next page) 
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Table F.1 (cont.) 

10 3426.30 2779.70 16.90 1.64E-10 

11 3378.50 2870.40 17.51 1.64E-10 

Tads=60°C 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) 
Deff (m

2
/s) 

(Mt/M∞>0.7) 

1 2501.10 336.00 2.34 9.18E-10 

2 2993.00 987.90 4.48 5.03E-10 

3 3437.00 1699.80 6.32 2.96E-10 

4 3683.60 2319.80 7.77 2.57E-10 

5 3838.30 2811.70 8.87 2.27E-10 

6 3976.90 3197.00 9.72 1.97E-10 

7 4008.90 3463.70 10.33 1.97E-10 

8 4030.30 3657.00 10.76 1.97E-10 

9 4223.60 3848.90 11.19 2.17E-10 

 

Table F.2. Raw data of experimental study of zeolite 13X-water pair for different 

adsorption temperatures 

 
Tads=35°C 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 1271.90 10.67 1.49 1.02E-09 

2 1351.90 79.99 2.98 5.63E-10 

3 1646.50 202.60 4.67 4.74E-10 

4 2319.80 410.60 6.91 3.36E-10 

5 2955.70 715.90 9.52 3.06E-10 

6 3346.30 982.60 12.29 1.97E-10 

7 3976.90 1346.50 15.37 1.88E-10 

8 4090.30 1651.80 18.23 1.68E-10 

9 4351.60 1955.80 21.04 1.58E-10 

10 4404.90 2255.80 23.57 1.58E-10 

11 4511.50 2495.80 25.95 1.58E-10 

12 4516.90 2806.40 27.97 1.97E-10 

Tads=45°C 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 2691.70 154.70 2.82 8.41E-10 

2 2774.10 513.30 5.38 4.73E-10 

(cont. on next page) 
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Table F.2 (cont.) 

3 3035.70 950.60 7.74 2.9E-10 

4 3202.30 1378.90 9.80 2.22E-10 

5 3309.00 1758.50 11.56 2.03E-10 

6 3298.30 2053.10 12.98 1.93E-10 

7 3357.00 2293.10 14.20 1.93E-10 

8 3373.00 2490.40 15.22 1.93E-10 

9 3431.70 2651.70 16.13 1.64E-10 

10 3426.30 2779.70 16.90 1.64E-10 

11 3378.50 2870.40 17.51 1.64E-10 

Tads=60°C 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 2501.10 336.00 2.34 9.18E-10 

2 2993.00 987.90 4.48 5.03E-10 

3 3437.00 1699.80 6.32 2.96E-10 

4 3683.60 2319.80 7.77 2.57E-10 

5 3838.30 2811.70 8.87 2.27E-10 

6 3976.90 3197.00 9.72 1.97E-10 

7 4008.90 3463.70 10.33 1.97E-10 

8 4030.30 3657.00 10.76 1.97E-10 

9 4223.60 3848.90 11.19 2.17E-10 

Tads=25°C 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 603.90 0.00 0.29 2.09E-07 

2 951.90 0.00 0.75 1.15E-07 

3 989.20 0.00 1.23 7.97E-08 

4 967.90 0.00 1.70 5.99E-08 

5 962.60 0.00 2.17 4.91E-08 

6 967.90 0.00 2.64 4.02E-08 

7 973.20 0.00 3.11 3.42E-08 

8 973.20 0.00 3.58 2.95E-08 

9 978.60 0.00 4.06 2.63E-08 

10 978.60 0.00 4.53 2.24E-08 

11 973.20 0.00 5.00 2.01E-08 

12 1031.90 0.00 5.50 1.81E-08 

13 967.90 0.00 5.97 1.70E-08 

14 983.90 0.00 6.45 1.61E-08 

15 983.90 0.00 6.93 1.48E-08 

(cont. on next page) 
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Table F.2 (cont.) 

16 999.90 0.00 7.41 1.38E-08 

17 973.20 0.00 7.88 1.29E-08 

18 978.60 0.00 8.36 1.20E-08 

19 973.20 0.00 8.83 1.11E-08 

20 989.20 0.00 9.31 1.05E-08 

21 983.90 0.00 9.79 9.79E-09 

 

Table F.3. Raw data of experimental study of zeolite 13X-water pair for different 

desorption temperatures 

 
Treg=60°C; Regeneration time=10300 min; Increasing initial pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 662.60 0.00 0.31  

2 989.20 0.00 0.77  

3 1159.90 0.00 1.32  

4 1326.50 0.00 1.94  

5 1754.50 0.00 2.76  

6 2294.40 0.00 3.84  

7 2497.10 0.00 5.01  

8 2534.40 0.00 6.20  

9 2615.70 0.00 7.43  

10 2621.10 0.00 8.66 7.63E-09 

11 2653.10 0.00 9.90 4.1E-09 

12 2669.10 5.33 11.15 3.97E-09 

13 2685.10 10.67 12.41 2.39E-09 

14 2701.10 21.33 13.66 1.87E-09 

15 2717.10 42.66 14.92 1.84E-09 

16 2722.40 90.66 16.15 1.75E-09 

17 2733.10 192.00 17.34 2.59E-09 

18 2727.70 346.60 18.45 2.36E-09 

19 2733.10 593.30 19.44 2.23E-09 

20 2733.10 935.90 20.27 1.58E-09 

Treg=90°C; Regeneration time=10002 min; Increasing initial pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 909.20 0.00 0.43  

2 1106.60 0.00 0.95  

3 1310.50 0.00 1.56  

(cont. on next page) 
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Table F.3 (cont.) 

4 1550.50 0.00 2.29  

5 1775.80 0.00 3.12 1.02E-08 

6 2026.50 0.00 4.07 7.72E-09 

7 2129.10 0.00 5.07 4.94E-09 

8 2706.40 5.33 6.34 4.36E-09 

9 3706.30 16.00 8.07 4.98E-09 

10 3791.60 16.00 9.84 1.16E-09 

11 3802.30 26.66 11.61 4.43E-09 

12 3835.60 26.66 13.40 1.68E-09 

13 4006.30 48.00 15.25 1.03E-09 

14 4070.30 95.99 17.11 1.39E-09 

15 4428.90 256.00 19.07 2.39E-09 

16 4680.90 641.30 20.94 2.13E-09 

17 4926.20 1497.20 22.52 1.26E-09 

18 4990.20 2610.40 23.59 6.79E-10 

19 4990.20 3541.00 24.23 7.43E-10 

Treg=120°C; Regeneration time=9027 min; Increasing initial pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 694.60 0.00 0.33  

2 833.30 0.00 0.72  

3 957.20 0.00 1.17  

4 1646.50 0.00 1.94  

5 1722.50 0.00 2.75 7.11E-09 

6 1845.10 0.00 3.61  

7 2123.80 0.00 4.61 8.24E-09 

8 2573.10 0.00 5.81 3.17E-09 

9 3283.70 5.33 7.35 5.59E-09 

10 3374.30 10.67 8.93 4.36E-09 

11 3455.70 21.33 10.54 3.55E-09 

12 3717.00 16.00 12.28 1.45E-09 

13 3990.30 21.33 14.14 1.07E-09 

14 3915.60 48.00 15.95 1.75E-09 

15 4102.30 95.99 17.83 1.07E-09 

16 4370.20 250.60 19.76 1.81E-09 

17 4460.90 609.30 21.55 1.65E-09 

18 4776.90 1411.90 23.09 1.10E-09 

19 4787.50 2427.80 24.16 7.43E-10 

(cont. on next page) 
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Table F.3 (cont.) 

Treg=150°C; Regeneration time=10100 min; Increasing initial pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 625.30 0.00 0.29  

2 833.30 0.00 0.69  

3 1197.20 0.00 1.25  

4 1470.50 0.00 1.94  

5 1887.80 0.00 2.83  

6 2417.10 0.00 3.97  

7 2433.10 0.00 5.11  

8 2529.10 0.00 6.30  

9 2679.70 0.00 7.56 8.34E-09 

10 2845.00 0.00 8.90 6.40E-09 

11 2962.40 5.33 10.29 4.59E-09 

12 3214.30 10.67 11.80 4.49E-09 

13 3413.00 16.00 13.40 2.17E-09 

14 3455.70 21.33 15.02 1.42E-09 

15 3461.00 37.33 16.63 1.55E-09 

16 3498.30 63.99 18.24 1.03E-09 

17 3503.60 149.30 19.82 2.10E-09 

18 3498.30 330.60 21.30 2.49E-09 

19 3487.70 651.90 22.62 2.00E-09 

20 3493.00 1165.20 23.70 1.29E-09 

Treg=200°C; Regeneration time=11400 min; Increasing initial pressure  

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 545.30 0.00 0.26  

2 1170.50 0.00 0.80  

3 1278.50 0.00 1.40  

4 1406.50 0.00 2.06  

5 1657.20 0.00 2.84  

6 1919.80 0.00 3.74  

7 2235.80 0.00 4.79 6.92E-09 

8 2369.10 0.00 5.90 5.53E-09 

9 2470.40 5.33 7.06 6.92E-09 

10 3075.70 5.33 8.50 3.55E-09 

11 3535.60 10.67 10.15 3.30E-09 

12 3669.00 16.00 11.87 3.59E-09 

13 3695.60 21.33 13.59 2.36E-09 

(cont. on next page) 
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Table F.3 (cont.) 

14 3706.30 26.66 15.31 1.29E-09 

15 3706.30 42.66 17.03 1.26E-09 

16 3690.30 74.66 18.73 1.00E-09 

17 3717.00 176.00 20.38 2.04E-09 

18 3706.30 394.60 21.93 2.88E-09 

19 3701.00 795.40 23.28 2.07E-09 

20 3701.00 1401.20 24.33 1.29E-09 

Treg=90°C; Regeneration time=9142 min; Constant initial adsorptive pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 1994.50 0.00 0.94  

2 1999.80 0.00 1.87  

3 1999.80 0.00 2.81  

4 2031.80 0.00 3.76  

5 2026.50 0.00 4.72  

6 1999.80 0.00 5.65  

7 2010.50 0.00 6.60  

8 2005.10 0.00 7.54 9.86E-09 

9 2005.10 0.00 8.48 8.56E-09 

10 2010.50 0.00 9.42 7.14E-09 

11 1994.50 0.00 10.36 5.24E-09 

12 2005.10 0.00 11.30 4.01E-09 

13 2031.80 5.33 12.25 4.23E-09 

14 2037.10 10.67 13.20 3.68E-09 

15 1994.50 16.00 14.13 3.01E-09 

16 2005.10 26.66 15.05 2.52E-09 

17 1999.80 42.66 15.97 2.62E-09 

18 2010.50 69.33 16.88 2.23E-09 

19 2090.50 122.70 17.80 2.59E-09 

20 2021.10 202.60 18.65 2.78E-09 

21 2037.10 304.00 19.46 2.49E-09 

22 2021.10 444.00 20.19 2.04E-09 

Treg=120°C; Regeneration time=11400 min; Constant initial adsorptive pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 1999.80 0.00 0.94 1.23E-08 

2 1999.80 0.00 1.88 1.03E-08 

3 1999.80 0.00 2.81 9.31E-09 

4 1999.80 0.00 3.75 8.31E-09 

(cont. on next page) 
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Table F.3 (cont.) 

5 2010.50 0.00 4.70 7.53E-09 

6 2042.50 0.00 5.65 6.66E-09 

7 2010.50 0.00 6.60 5.88E-09 

8 2005.10 5.33 7.54 6.2E-09 

9 2037.10 5.33 8.49 5.36E-09 

10 2010.50 10.67 9.43 5.53E-09 

11 2010.50 10.67 10.37 4.75E-09 

12 1994.50 16.00 11.29 4.91E-09 

13 2015.80 21.33 12.23 4.72E-09 

14 1999.80 21.33 13.16 3.88E-09 

15 2026.50 26.66 14.10 3.62E-09 

16 2037.10 37.33 15.03 3.94E-09 

17 2015.80 48.00 15.96 3.68E-09 

18 2015.80 58.66 16.87 3.04E-09 

19 2037.10 79.99 17.79 2.81E-09 

20 2005.10 122.70 18.67 2.81E-09 

21 2015.80 186.60 19.53 2.65E-09 

Treg=150°C; Regeneration time=11900 min; Constant initial adsorptive pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 1962.50 0.00 0.92 5.69E-08 

2 2010.50 0.00 1.87 3.91E-08 

3 2015.80 0.00 2.82 2.97E-08 

4 2015.80 0.00 3.77 2.39E-08 

5 2015.80 0.00 4.72 2.03E-08 

6 2005.10 0.00 5.66 1.77E-08 

7 2031.80 0.00 6.62 1.52E-08 

8 2042.50 0.00 7.58 1.34E-08 

9 2015.80 0.00 8.53 1.18E-08 

10 2021.10 0.00 9.48 1.05E-08 

11 2015.80 0.00 10.43 9.15E-09 

12 2010.50 0.00 11.37 7.98E-09 

13 2079.80 0.00 12.35 6.66E-09 

14 2026.50 0.00 13.30 5.17E-09 

15 2015.80 5.33 14.25 4.98E-09 

16 2015.80 10.67 15.19 4.62E-09 

17 2015.80 16.00 16.13 3.78E-09 

(cont. on next page) 
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Table F.3 (cont.) 

18 2047.80 26.66 17.09 3.43E-09 

19 2085.10 42.00 18.05 3.04E-09 

20 2010.50 69.33 18.96 3.10E-09 

21 2015.80 122.70 19.85 3.33E-09 

22 2015.80 197.30 20.70 3.07E-09 

Treg=90°C; Regeneration time=9180 min; Constant initial adsorptive pressure 

Pulse number P1 (Pa) P2 (Pa) q (% kg/kg) Deff (m
2
/s) 

1 957.20 0.00 0.45 1.39E-07 

2 978.60 0.00 0.91 8.71E-08 

3 957.20 0.00 1.36 6.65E-08 

4 978.60 0.00 1.82 5.03E-08 

5 1021.20 0.00 2.30 3.80E-08 

6 978.60 0.00 2.75 3.24E-08 

7 962.60 0.00 3.21 2.74E-08 

8 994.60 0.00 3.67 2.37E-08 

9 978.60 0.00 4.13 2.08E-08 

10 978.60 0.00 4.59 1.87E-08 

11 973.20 0.00 5.05 1.66E-08 

12 978.60 0.00 5.51 1.52E-08 

13 983.90 0.00 5.97 1.39E-08 

14 978.60 0.00 6.43 1.26E-08 

15 978.60 0.00 6.89 1.17E-08 

16 978.60 0.00 7.34 1.08E-08 

17 978.60 0.00 7.80 1.01E-08 

18 983.90 0.00 8.27 9.31E-09 

19 1010.60 0.00 8.74 8.60E-09 

20 994.60 0.00 9.21 8.11E-09 

21 999.90 0.00 9.68 7.53E-09 

 



 

129 

 

 
 

Figure F.1. Uptake curves of type RD silica gel-water pair at 60°C;  

 

 
 

Figure F.2. Uptake curves for zeolite 13X-water pair at 60°C (Treg=90°C) 
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Figure F.3. Uptake curves of zeolite 13X at 35°C a) Treg=60°C; b)Treg=120°C; 

c)Treg=150°C (increasing initial adsorptive concentration) 
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Figure F.4. Uptake curves of zeolite 13X-water pair at 35°C; a) Treg=90°C; b)120°C; 

c)150°C (Constant initial adsorptive pressure of 2000 Pa) 
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Figure F.5. Uptake curves of zeolite 13X-water pair at 35°C; a) Treg=90°C (constant 

initial pressure of 980 Pa) 
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Figure F.6. Linear curves of type RD silica gel at 35°C for long term intraparticle 

diffusion  
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(cont. on next page) 
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Figure F.6 (cont.) 
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Figure F.6 (cont.) 
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Figure F.7. Linear curves of zeolite 13X-water pair (Treg=60°C); ─ experimental; …. 

Long term intraparticle diffusion; ---- surface resistance  
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136 

 

 

Figure F.7 (cont.) 
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Figure F.8. Linear curves of zeolite 13X-water pair (Treg=90°C) ─ experimental; …. 

Long term intraparticle diffusion; ---- surface resistance  
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Figure F.8 (cont.) 
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Figure F.8 (cont.) 
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Figure F.9. Linear curves of zeolite 13X-water pair (Treg=120°C) ─ experimental; …. 

Long term intraparticle diffusion; ---- surface resistance  

(cont. on next page) 
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Figure F.9 (cont.) 

(cont. on next page) 
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Figure F.9 (cont.) 

 

 

 

 
 

Figure F.10. Linear curves of zeolite 13X-water pair (Treg=150°C) ─ experimental; …. 

Long term intraparticle diffusion; ---- surface resistance  

(cont. on next page) 
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Figure F.10 (cont.) 

(cont. on next page) 
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Figure F.10. (cont.)  

 

 
 

    
 

Figure F.11. Linear curves of zeolite 13X-water pair (Treg=90°C, constant initial 

pressure of 2000) ─ experimental; …. Long term intraparticle diffusion; -

--- surface resistance  

(cont. on next page) 
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Figure F.11 (cont.) 

(cont. on next page) 
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Figure F.11 (cont.) 

(cont. on next page) 
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Figure F.12. Long term linear curves of zeolite 13X-water pair (Treg=120°C, constant 

initial pressure of 2000) ─ experimental; …. Long term intraparticle 

diffusion; ---- surface resistance  

(cont. on next page) 
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Figure F.12 (cont.) 

(cont. on next page) 
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Figure F.12 (cont.) 

(cont. on next page) 
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Figure F.12. (cont.) 
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Figure F.13. Long term linear curves of zeolite 13X-water pair (Treg=150°C, constant 

initial pressure of 2000 Pa) ─ experimental; …. Long term intraparticle 

diffusion; ---- surface resistance  

(cont. on next page) 
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Figure F.13 (cont.) 

(cont. on next page) 
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Figure F.13 (cont.) 

(cont. on next page) 
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Figure F.13. (cont.) 
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Figure F.14. Long term linear curves of zeolite 13X-water pair (Treg=90°C, constant 

initial pressure of 980 Pa) ─ experimental; …. Long term intraparticle 

diffusion; ---- surface resistance  

(cont. on next page) 

y = -0.4286x + 0.0854 
R² = 0.965 

y = -0.3554x - 0.4967 
R² = 0.933 

y = -0.4179x 
R² = 0.9643 

-6

-5

-4

-3

-2

-1

0

0 5 10 15

ln
 (

1
-m

t/
m
∞

) 

Time (sec) 
1st pulse 

y = -0.2058x - 0.559 
R² = 0.982 

y = -0.2104x - 0.4967 
R² = 0.9814 

y = -0.2469x 
R² = 0.9362 

-6

-5

-4

-3

-2

-1

0

0 10 20 30

ln
 (

1
-m

t/
m
∞

) 

Time (sec) 
3rd pulse 

y = -0.1175x - 0.9149 
R² = 0.9837 

y = -0.1382x - 0.4967 
R² = 0.9463 

y = -0.1628x 
R² = 0.8048 

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40

ln
 (

1
-m

t/
m
∞

) 

Time (sec) 
5th pulse 

y = -0.2694x - 0.408 
R² = 0.9842 

y = -0.2614x - 0.4967 
R² = 0.9832 

y = -0.3058x 
R² = 0.963 

-6

-5

-4

-3

-2

-1

0

0 5 10 15 20

ln
 (

1
-m

t/
m
∞

) 

Time (sec) 
2nd pulse 

y = -0.1555x - 0.6294 
R² = 0.9811 

y = -0.1632x - 0.4967 
R² = 0.9783 

y = -0.192x 
R² = 0.9166 

-6

-5

-4

-3

-2

-1

0

0 10 20 30

ln
 (

1
-m

t/
m
∞

) 

Time (sec) 
4th pulse 

y = -0.1003x - 0.9359 
R² = 0.9848 

y = -0.1195x - 0.4967 
R² = 0.9395 

y = -0.1411x 
R² = 0.7792 

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40

ln
 (

1
-m

t/
m
∞

) 

Time (sec) 6th pulse 



 

155 

 

 

 

 

 

 
 

Figure F.14 (cont.) 

(cont. on next page) 
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Figure F.14 (cont.) 

(cont. on next page) 
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Figure F.14. (cont.) 
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Figure F.15. Short term linear curves of zeolite 13X-water pair (Treg=120°C, constant 

initial adsorptive concentration) ─ experimental; --- Short term 

intraparticle diffusion 

(cont. on next page) 
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Figure F.15 (cont.) 

(cont. on next page) 

y = 0.2506x + 0.0024 
R² = 0.9951 

y = 0.252x 
R² = 0.995 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3

m
t/

m
∞

 

t0.5(sec0.5) 
7th pulse 

y = 0.2307x - 0.0179 
R² = 0.9774 

y = 0.2197x 
R² = 0.9744 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3

m
t/

m
∞

 

t0.5(sec0.5) 
9th pulse 

y = 0.2175x - 0.0541 
R² = 0.9462 

y = 0.1896x 
R² = 0.9267 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3

m
t/

m
∞

 

t0.5(sec0.5) 
11th pulse 

y = 0.2339x - 0.0486 
R² = 0.9321 

y = 0.2067x 
R² = 0.916 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3

m
t/

m
∞

 

t0.5(sec0.5) 
8th pulse 

y = 0.2085x - 0.0361 
R² = 0.9399 

y = 0.1908x 
R² = 0.9315 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3

m
t/

m
∞

 

t0.5(sec0.5) 
10th pulse 

y = 0.2136x - 0.0136 
R² = 0.9896 

y = 0.206x 
R² = 0.988 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3

m
t/

m
∞

 

t0.5(sec0.5) 
12th pulse 



 

160 

 

 

 

 

 

 
 

Figure F.15 (cont.) 

(cont. on next page) 
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Figure F.15. (cont.) 
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Figure F.16. Short term linear curves of zeolite 13X-water pair (Treg=150°C, constant 

initial adsorptive concentration) ─ experimental; --- Short term 

intraparticle diffusion  

(cont. on next page) 
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Figure F.16 (cont.) 

(cont. on next page) 
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Figure F.16. (cont.) 
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