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A B S T R A C T  

 

DESIGN OF NONLINEAR OBSERVER FOR CHAOTIC 

MESSAGE TRANSMISSION 

 

Chaos is  an interesting nonlinear phenomena that  occurs in wide 

variety of fields. A significant amount of research was devoted to 

understanding chaos and its properties. After that, researchers focused 

on searching for possible application a reas for chaos to utilize its  

properties. The need to increase the security of a communication system 

is considered as a perfect match for chaos and its several  properties , 

yielding chaotic communication.  

In this thesis, chaotic communication is approache d from a control  

theory perspective.  Specifically,  three nonlinear observers are designed 

to extract message encrypted in a chaotic  communication signal. The 

design and stability analysis is presented for the first observer, and the 

other observers are presented as modifications to  the first one.   

Extensive numerical  simulations are performed to demonstrate the 

viability of the proposed observers. Robustness of the observers to noise, 

additive disturbances, and parametric mismatch, and security of the 

observers are demonstrated numerically.   

 

 

  



 

iv 

 

Ö ZE T  
 

KAOTİK MESAJ İLETİMİ İÇİN DOĞRUSAL  OLMAYAN 

GÖZLEMCİ TASARIMI  

 

Kaos, çok geniş ve çeşitli  alanda varlık gösterebilen, ilgi çekici 

lineer olmayan bir olaydır.  Kaosu ve onun özelliklerini anlamak için 

dikkat çekici sayıda araştırma bu konuya adanmıştır. Daha sonra, 

araştırmacılar kaosun özell iklerinden faydalanabilecekleri muhtemel 

uygulama alanlarını  tespit etmeye odaklanmışlardır.  Haberleşme 

sistemlerinin güvenliğini sağlamak adına kaos üreteçlerinin kullanılması ,  

kaosun özelliklerinin pratik hayata geçiri lmesi için çok önemli bir fırsat  

oluşturmuştur .   

Bu tezde,  kaotik haberleşme konusuna kontrol teorisi açısından 

yaklaşılmıştır. Özell ikle, kaotik sinyallerle şifrelenmiş mesajın tekrar 

ortaya çıkarılması için üç adet lineer olmayan gözlemci tasarlanmıştır.  

İlk gözlemci için tasarım ve kararlıl ık  analizi detaylıca verilmiş, diğer 

gözlemciler için ise i lk gözlemci ile arasındaki değişiklikler 

belirtilmiştir.  

Önerilen  gözlemcilerin başarımlarının doğrulanması amacıyla  çok 

sayıda simülasyon yapılmıştır. Ayrıca gözlemcilerin gürültüye, ek 

bozulmalara ve parametre hatalarına karşı direnci ve güvenlik analizleri  

ispat edilmiştir.  
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C HA PT E R  1  

 

I N T R OD U C TI ON  

 

Security and privacy of personal information is becoming an 

extremely important subject day by day. Growth in using mobile 

communication devices and the internet for personal communications 

make data encryption and security indispensable [1],  [2]. The main 

reason for this is that the information being sent from a transmitter has 

to be ensured to be free of listening by unwanted listeners. While 

classical cryptology systems are being used  for security and privacy, the 

pioneering works by Pecora and Carroll introduced the possibility of 

synchronization and control of chaotic systems  which resulted in  using 

chaotic signals for secure and private communication [3], [4], [5], [6], 

[7],  [8].  

Before discussing chaotic communication, we would to like give 

brief information about Chaos.  Chaos, which comes from Greek word 

khaos  meaning “abyss, that which gapes wide open, is vast and empty”, 

is a very popular, universal and robust phenomenon in many nonlinear 

systems.  The first  note about the possibility of existence of chaotic 

behavior in mechanical systems was put into words by the great 

Mathematician Poincaré  in 1892 [9]. After Lorenz published his paper  

[10], chaos came into prominence among the researchers. 

Misunderstanding between chaos and noise in engineering community 

resulted in losing about twenty years [11], and the first studies on chaos 

started nearly 1980s.   

Chaos is  commonly used in a wide variety of fields  such as 

meteorology, aerodynamics and turbulence modeling, chemical reactions 

(Belousov-Zhabotinskii reaction),  nonlinear electronic circuits (Van Der 

Pol Oscillators, Chua’s Circuit), ecology, biology and population 

evolution, observed time series like electrocardiogram, 

electroencephalogram, and financial  data  [12].  



 

2 

 

There are three basic fundamentals for chaotic systems;  

 Dependency on the initial conditions:  Chaotic systems  are 

sensitively dependent on the initial conditions.  

 Long term unpredictabili ty: They are quite complex and it is 

usually impossible to predict the signal over longer times.  

 Condition of not being random: In spite of impossible 

prediction, there is an arrangement in itself.   

Besides complexity and sensitivity on the initial conditions , 

chaotic systems are wideband, noise -like, irregular, a-periodic, and 

uncorrelated (i.e.  orthogonal) . And despite these,  chaos can be observed 

in rather simple dynamical systems  [13].  

Chaotic systems are dynamical systems which defy or resist  

synchronization [14] . Uncorrelation between two identical autonomous 

chaotic systems ’  t rajectories can be observed to be deviating 

significantly even if  they start  from very close init ial values. That shows 

us that it  is quite tough to set up identical  and synchronized chaotic 

systems in laboratory [3]. The seminal works by Pecora and Carroll 

demonstrate that there is  a way to achieve synchronization and  control of 

the chaotic systems  [3]. They achieved this by linking two chaotic 

systems via a common signal or signals  [3].  

Based on Pecora and Carrol’s works, a chieving synchronization is 

possible for a transmitter-receiver system. As can be seen in Figure 1, a 

transmitter-receiver system commonly consists of two main parts  where 

the first part is the drive system that generates the chaotic signals, and 

the second part  is the response system which receives the transmitted 

signals.  The usually preferred way of synchronizing two systems is 

achieved by generating an input signal via the drive system, and then 

sending signal as an input to the receiver part.  To make the information 

crypted, the information is transformed by the drive system in such a 

way that is specific for this system, and the response system, which is an 

authorized one, converts the transmitted signal to the original message 

signal provided the prior knowledge of the specific transmission 

parameters of the drive system. The level of the difficulty encountered 



 

3 

 

by the unwanted listeners , who try to decode the information signal ,  

classifies the security of the information.   

 

Figure 1. A general block diagram of chaotic oscil lator in a secure 

                communication system 

 

Despite being a relatively new field ,  a significant amount of 

research was devoted to chaos communication , mostly to use it  

effectively in a wide variety of areas. Since chaotic based secure 

communication is relatively simpler in view of practicing i ts hardware 

implementation [15] and it is highly unpredictable  than the conventional  

schemes (i.e. , it  has higher security) , several aspects of  chaotic schemes 

are being investigated [16].  Using chaotic signals for secure 

communication also increases the performance of the communication 

system; see [17].  There are several  approaches in the literature for th e 

security of the communication . Most of these approaches are based on 

conventional encryption and security schemes . However, hardware 

implementations of these approaches are usually very complicated for 

the conventional communication schemes  [15], [16], [18].  In  addition to 

ensure the privacy of a system, the integrity of the transmitted message 

must be ensured by secure communication.  

A comparison between the Chaotic Property and Cryptographic  

Property is listed in the Table 1  [19]. Both chaotic systems and 

cryptographic systems have nonlinear transformation but though 

cryptographic systems have finite number of state and iterations,  chaotic 
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systems have infinite.  Both systems are so sensitive to the initial 

conditions or secret key.  

 

Chaotic property Cryptographic property Description 

Chaotic system: 

Nonlinear transformation 

Infinite number of state  

Infinite number of 

iterations 

Pseudo-chaotic system: 

Nonlinear transformation 

Finite number of state 

Finite number of 

iterations  

 

Ergodicity Confusion 

The output has the 

same distribution 

for any input  

Sensitivity to initial  

conditions/control 

parameter  

Diffusion with a small 

change in the 

plaintext/secret  key 

A small  deviation 

in the input can 

cause a large 

change at  the 

output  

Mixing property 

Diffusion with a small 

change in one plain-block 

of the whole plain text  

A small  deviation 

in the local  area 

can cause a large 

change in the 

whole space 

Structure complexity 

Algorithm (attack) 

complexity 

A simple process 

has a very high 

complexity 

 

Table 1.  Comparison between chaos and cryptography properties   

 

Privacy of the communications is approached by using chaotic 

signal masking technique which was introduced in [20] and [21]. Besides 

the chaotic signal masking (CM) there are three more modulation 

schemes in the l iterature such as Chaos On-Off Keying (COOK), Chaos 



 

5 

 

Shift Keying (CSK) and Differential  Chaos Shift Keying (DCSK). We 

will give brief information about these schemes later on.  

Although there are numerous circuits which are developed for 

chaotic scenarios, the most investigated and implemented autonomous 

systems are Chua oscillator, Rössler Oscillator and Lorenz Chaotic 

System. These systems’ chaotic dynamics are well  known  [22].  

Implemented Chua circuit and also Lorenz based circuit models has the 

abili ty to transmit either analog or digital forms of the signals. Chua 

circuit is a commonly used circuit in the literature but if we compare the 

performance of Lorenz based circuit with Chua’s circuit , it  will be 

observed that  Lorenz’s circuit is better  in performance [23].  

Broadband chaotic oscillations can be produced by Lorenz Chaotic  

System and all the properties of chaotic systems such as being noise -

like, and dependence on the initial cond itions and system parameters,  

being difficult to estimate are obtained.  As a result, we can use Lorenz 

System for secure communication. In this system, the synchronization is 

highly robust to perturbations in  the drive signal as shown numeri cally 

in [24].  

This thesis focuses on designing observers for message extracting 

from chaotic communication systems. Specifically, we propose three new 

nonlinear observers for chaotic communication systems and apply these 

ideas to the Lorenz Chaotic System. This system was proposed 40 years 

ago for modeling two-dimensional fluid convection by Edward Lorenz of 

the Massachusetts Institute of Technology, Massachusetts ,  MA, USA 

[10]. The stability analysis of t he first observer is examined by 

Lyapunov’s stability theorem (Lyapunov’s Direct Method) which states 

if we measure the system’s total energy, and if the rate of the change of 

the energy is decreasing, then the system’s states will finally reach an 

equilibrium point [25]. Although i t  has been always tough to analyze 

nonlinear systems, the most flexible,  intuitive, and powerful way is 

provided by Lyapunov based design techniques. The most important step 

of the analysis is to define the Lyapunov function whose time derivative 

will be evaluated.  



 

6 

 

This thesis is organized as follows. Chapter 1 introduces some 

basic knowledge about chaos and communication and relationship 

between chaos and cryptography. Chapter 2 gives detailed informati on 

about chaos communication and its requirements. Chapter 3 presents our 

proposed nonlinear observer for chaotic message transmission. Finally,  

the thesis is summarized in Conclusion chapter and future works are 

determined.  

The contributions of this thes is are:  

 A nonlinear observer utilizing the integral of the signum of the 

observer error terms is designed for message extraction in a 

chaotic system. According to our best knowledge, the integral  

of the signum of the observer error terms was not utilized f or 

message extraction in a chaotic communication system before.  

 The second observer is obtained by replacing the signum term 

in the first  observer with hyperbolic tangent function. This 

observer is utilized for message extraction from a chaotic 

communication system for the first time in the li terature.  

 The third observer is  designed by replacing the signum function 

in the first  observer with saturation function. This is a novel 

observer.   
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C HA PT E R  2  

 

W HA T  I S  C HA OS  C OM M U N I C A T I ON?  

 

Studies on chaotic dynamical systems introduced the question 

“How can chaos be used in different fields?” At the beginning of the 

1990s, the answer was given as chaos communication . The main reason 

is that  despite the fact  that the dynamical system representations of 

chaotic systems are fairly simple the resulting/obtained chaotic behavior 

is complex. Other characteristics of chaotic signals ,  such as being 

irregular, aperiodic,  noise -like, uncorrelated, broadband, and long-term 

predictabili ty make them suitable for sub-fields of  communication 

systems like spread-spectrum communications, for multi -user 

communications, and especially for secure communications (i.e. , 

cryptography) [24],  [26].  

One of the main research problems chaotic communications is the 

synchronization of the transmitter and the receiver. The pioneering 

works of Pecora and Carroll [3], [4] which were the milestones of the 

synchronization problem, attracted several researchers to work on 

synchronization and also on control  of chaotic systems in various fields.  

 

 C o m m u n i c a t i o n  F u n d a m e n t a l s  a n d  S c h e m e s  2.1.

 

In this section, communication requirements and resources , and 

also potential of chaos in communication systems are discussed.  

The general structure of communication scheme is demonstrated in 

Figure 2. Source decoding, decryption, and channel decoding,   

demodulation have to be performed at  the receiver side to the received 

message to obtain the original (transmitted) message.  
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Figure 2. General  Structure of a communication scheme  

 

 C o m m u n i c a t i o n  R e q u i r e m e n t s  a n d  2.1.1.

R e s o u r c e s  

 

This subsection provides information about requirements of a 

communication channel and its limitations.  

 

2 . 1 . 1 . 1 .   R e q u i r e m e n t s  

 

In a communication system, there is a transmitter which transmits 

the message/information to a receiver or a recipient.  Transmitter and 

receiver are usually located in different places. The message is 

transmitted by a physical media (i.e. , the communication channel). This 

channel has to have the  standard requirements such as being efficient,  

secure and robust .  Different blocks of a communi cation scheme 

implement these three requirements.  

 

2 . 1 . 1 . 1 . 1 .   E f f i c i e n c y   

 

Analog signals (such as sound, picture, and video signals) usually 

have a lot of redundancy. Uncompressed digital signals (such as text,  
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sound or images) may be redundant as well. This redundancy can be 

cancelled by omitt ing unnecessary content from the information. 

Removing the unnecessary content of the signal before the transmission 

(i.e., forming an almost redundancy-free message) is achieved by a 

process called source encoding [27]. Analog schemes are not suitable for 

this encoding because it is a digital procedure and only digital data is 

suitable for this.  

 

2 . 1 . 1 . 1 . 2 .  S e c u r i t y   

 

The physical media,  which we transmit the signal over (i.e. , t he 

communication channel), is usually public which  means it  is  accessible 

by many receivers. If  the sender wants to prevent the message from 

unwanted listeners for security or privacy reasons,  cryptography will  be 

a solution. Encryption is applied to messa ge before the transmission so 

that  the message is aimed to be totally protected from unwanted listeners  

[28].  

 

2 . 1 . 1 . 1 . 3 .  R o b u s t n e s s   

 

The message is usually not transmitted over the transmission 

channel or the physical media directly.  Fo r example, al though the 

frequency of a speech signal is in the kilohertz region, one cannot 

transmit it  over a radio channel which is in megahertz region. So, t he 

message is mapped to signals  which can pass the given physical channel.  

This process is called modulation. It  has to be mentioned that  in general  

the transmitted and the received signals  are not same. Specifically,  the 

received signal is  corrupted because of filtering, nonlinear distortions, 

and interference from other signals  in the communication medium. In 

conclusion, the transmission should be robust to all anticipated channel 

distortions.  The first  method to increase robustness is  to choose a proper 

modulation scheme. Another way is to add a redundant signal to  the 
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transmit ted signal in a controlled way. This second method is called 

channel encoding and is one of the digital communication methods  [26].  

 

2 . 1 . 1 . 2 .  R e s o u r c e  S h a r i n g   

 

There are always various limitations to signal transmission 

because of the restrictions of the physical channel.  These are detailed 

below.  

 Bandwidth Limitation: Bandwidth limitation is caused by the 

physical communication channel. Although the channel can 

provide a bandwidth physically, there may be some 

restrictions due to technical or administrative constraints.  

 Imperfections: The received signal  is usually distorted 

because of attenuations,  multipath propagation and delays 

due to linear or nonlinear filtering, noise caused by nature 

or technical sources , and also interference from other 

received signals.  

 Publicity: Most of the physical channels are unsecure, thus 

the signals transmitted over these channels can be received 

by unwanted listeners.  

We can say that, while transmitting messages over a physical  

channel, there is always a limitation for capacity which means that the 

resources are limited. The communication system design has to provide 

an optimized model for these limited resources. Utilizing orthogonal 

signals is one way for this optimization. Thi s is done by assigning an 

orthogonal signal to each user of the physical communication channel.  

Another advantage of utilizing orthogonal signals is that one can 

separate the signals  that belong to different users easily.  For example,  

consider    and    which are orthogonal  if  

∫      
 

  

  
           (1) 
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where superscript * denotes complex conjugation.  Equation (1) implies a 

vanishing cross-correlation of    and   .  Fourier representations of these 

signals are given by 

       ∫                
 

  

 (2) 

 

for i=1, 2.  From Parseval’s  Theorem [29] ,  we can obtain  

∫      
 

  

  
        

 

  
∫        

       
 

  

 (3) 

 

From the duality property,  orthogonality in the time domain implies  

orthogonality in the frequency domain.  There are some ways to achieve 

orthogonality property in multi -user environments.  

 Signals disjoint in time:  Time Division Multiple Access 

(TDMA) is one way when one of the signals (i.e., either    

or   ) is equal to zero at any time.  

 Signals disjoint in frequency:  Frequency Division Mul tiple 

Access (FDMA) is another way to obtain orthogonality.  The 

expression in (3) is equal to zero if any of the Fourier 

representations of the signals  (        or       ) vanishes.  

 Uncorrelated signals:  Aside from TDMA and FDMA, Code 

Division Multiple Access (CDMA) is another way to use 

orthogonality. In CDMA, there is no obliga tion for signals 

to be disjoint  neither in time nor in frequency. 

 

 P o t e n t i a l  o f  C h a o s  i n  C o m m u n i c a t i o n  2.2.

 

After significant improvements in nonlinear dynamical systems, 

the chaotic communication applications have been understood more 

precisely.  These improvements motivate researchers for practical 

solutions and applications. There are three  main potential application 

areas. These three areas create three different behavioral  aspects  of 

chaotic signals.  
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 B r o a d - B a n d  A s p e c t   2.2.1.

 

As we mentioned before, chaotic signals are aperiodic because of 

their nature and they also have a continuous spectrum. Often, the 

spectrum shows significant strength over a wide  range of frequencies,  

i .e.,  the signals are broad band.  These spectral  properties let us design 

models for chaotic signals  [30].  

 It  should be noted that, one way to deal with channel 

imperfections is using broadband signals in communications . So that  

chaotic signals are appropriate candidates for spread -spectrum 

communications [1].  

 

 C o m p l e x i t y  A s p e c t   2.2.2.

 

As commonly stated in the literature chaotic signals are irregular 

and have a complex structure. When there is a minimal change in the 

initial conditions of a chaos generator ,  its output trajectory will be 

totally different. It is a good feature for secure communication because ,  

after longer time intervals , predicting the signals and guessing the 

structure of the generator become extremely difficult.  

As a result, cryptographic applications , which classically use 

highly complex and hard-to-predict signals, is considered as a potential  

application for chaos  [31], [32].  

 

 O r t h o g o n a l i t y  A s p e c t  2.2.3.

 

The autocorrelation functions of chaotic signals usually vanish so 

fast since they are aperiodic. They can  thus be assumed uncorrelated 

(i.e.,  orthogonal) when the signals are generated by different chaos 

generators or same generator with dif ferent init ial  conditions.  

Due to the orthogonality property,  the third potential application 

field for chaos is  multi -user communication applications.  Chaos-based 

solutions for conventional CDMA systems which use chaos generators 
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for the generation of spreading codes are better in the manner of 

performance then classical  approaches.  

 

 C h a o s  M o d u l a t i o n  S c h e m e s   2.3.

 

As we mentioned in the Introduction, there are four different chaos 

modulation schemes. Although Chaotic Masking scheme is  investigated 

in this thesis, brief information about other three schemes which are 

Chaos On-Off Keying, Chaos Sift Keying, and Differential Chaos Shift  

Keying will be given.  

 

 C h a o t i c  M a s k i n g  2.3.1.

 

The chaotic masking scheme is composed of  two identical chaotic  

systems. One of them is at  the receiver part and the other one is at the 

transmitter part . As demonstrated in Figure 3,  the transmitted message 

     is obtained by adding the chaotic mask signal to the message signal 

    .  The copy of the chaotic mask signal  ̂    is  produced by another but 

identical  chaotic system at the receiver part. When the difference 

between the transmitted signal      and chaotic mask signal  ̂    is zero,  

the recovered message signal  ̂    is equal to     .  

 

Figure 3. Chaotic Masking 
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If the channel is noise-free and the synchronization is perfect 

between the two systems then           .  When the difference between 

     and  ̂    is zero then  ̂        .  Finally,  we can conclude that  

 ̂         .   

 

 C h a o s  S h i f t  K e y i n g  2.3.2.

 

In Chaos Shift Keying (CSK) scheme, there are two statist ically 

similar attractors at  the transmitter part. These two systems with the 

same structure but different parameters generate two different chaotic 

signals which are       and      ,  respectively. In this scheme, the 

message signal should be digital signal.  Determination  output of which 

chaotic signal will be sent depends on the message si gnal’s bit which can 

be 0 or 1 [11],  [33].  

At the receiver end, correlation between the received signal and 

the reproduction of any of the two chaotic signals used in the transmitter 

is obtained. The synchronization e rror is used for recovering the message 

signal by low-pass filtering and thresholding. The block diagram model  

of this scheme is shown in  Figure 4.  
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Figure 4. Chaos Shift Keying 

 

 C h a o s  O n - O f f  K e y i n g  2.3.3.

 

Chaos On-off Keying (COOK) is another communication scheme 

which is very similar to CSK structurally.  Difference betwee n CSK and 

COOK is that  COOK uses only one chaotic signal while CSK uses two 

different chaotic signals. In COOK, the second signal is equal to 0. If the 

message signal is equal to 1 then the chaotic signal is transmitted, else 

no signal is transmitted. Demodulation procedure is same with CSK as 

shown in Figure 5.  
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Figure 5. Chaos On-Off Keying 

 

 D i f f e r e n t i a l  C h a o s  S h i f t  K e y i n g  2.3.4.

 

In this scheme, there are two sample functions which represent the 

bit to be transmitted . Reference signal is the first sample function and 

information signal is carried by the second sample function. If the 

reference signal is transmitted twice in successively, it  means that the 

message bit is 1. If  inverted copy of the chaotic signal is  transmitted 

after the original  chaotic signal then the message bit  is  0. In the 

receiver, these two sample functions’ correlation is used  with the help of 

a level comparator for decision.  

As we previously discussed, there should be a synchronization 

signal between the receiver and the transmitter in the first three chaos 

modulation schemes. On the contrary Differential  Chaos Shift Keying 

(DCSK) does not need a synchronizat ion signal.  So that we do not need a 

chaotic system at the receiver part . The same chaotic signal generated at 

the transmitter part  is used for transmitting and demodulating the 

message signal at the receiver part which is shown in Figure 6.  
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Figure 6. Differential Chaos Shift Keying  

 

 A d v a n t a g e s  a n d  D i s a d v a n t a g e s  o f  C h a o s -2.4.

b a s e d  E n c r y p t i o n  S c h e m e s  

 

In this sub-section, a comparison between the chaos based 

encryption schemes and traditional encryption schemes are listed. As we 

discussed earlier, chaos based encryption has more advantages than 

conventional encryption methods which are shown below [34]:  

 Although there is a requirement of digitizing the message in 

traditional encryption schemes because of being defined over 

integer number field,  chaos based encryption schemes can be 

used without this requirement since they can be defined over 

continuous number field. Because of being defined over 

continuous number field, chaos based encryption schemes can 

be used for encryption with more variety of functions.  

 The chaos based encryption schemes can be realized directly by 

hardware implementation of high speed analog compon ents but 

digital hardware must be used for implementation of traditional 

encryption schemes.  
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 There must be two circuits in traditional encryption scheme. 

The first one is for digital  encryption, the second one is for 

broadband modulation which is obtained form an analog circuit. 

But in chaos based encryption scheme, a single circuit is 

enough for both encoding and broadband modulation.   

 We need to mask a message with either non-periodic pseudo 

random waveforms which are generated by chaotic dynamics or 

pseudo-random sequences generated by traditional encryption 

schemes. The handicap of using pseudo-random sequences 

generated by traditional schemes is that  they will be periodic 

eventually (because of being implemented using digital 

hardware) since the periodicity of these sequences are limited 

by the number of bits which are generated by the state of the 

pseudo number sequence generator.  

The disadvantages of chaotic encryption schemes are as follows: 

 Since chaotic encryption is a relatively new field of res earch, 

its security is not proven totally.   

 Traditional communication schemes are better in the power 

efficiency, bandwidth efficiency and bit error rate performance 

than the chaos based efficiency.  

 

 S u m m a r y  2.5.

 

In this chapter, a survey of communication fundamentals, potential 

of chaos communication, and chaos modulation schemes are presented. 

The requirements of a communication channel and limitations because of 

the physical  channel are also provided.  
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C HA PT E R  3  

 

D E S I GN  OF N ON L I N E A R  OB S E R V E R S  FOR  

C HA OT I C  M E S S A GE  T R AN S M I S SI ON  

 

In this chapter, firstly, general Lorenz Chaotic System will be 

deeply investigated with some simulation results . Secondly,  novel 

nonlinear observers will be proposed. The design and the associated 

stability analysis will be given in detail for the first one, while the other 

two of them will  be presented as extensions to the first  one.  

 

 G e n e r a l  L o r e n z  S y s t e m  3.1.

 

General Lorenz chaotic system is defined by the following system 

of ordinary differential equations . Extensive numerical  simulations will  

also be presented to demonstrate the effectiveness of proposed observers. 

Finally,  security of our algorithm will be discussed briefly.  The 

governing equations of the system are;   

 

 ̇                 (4) 

                           ̇                        (5) 

     ̇                   (6) 

 

where     ,       and      are system states,  ,     and   are system 

parameters that define the Lorenz system.  

Typical parameters that  generates chaotic dynamics for this system 

are   = 10,   = 28 and   = 8/3. In Figure 7, waveforms of the system 

states are given for the above parameter and initial conditions  of      = 

10,      = 10 and      = 1,  and the attractors generated the signals shown 

in Figure 8.  
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Figure 7.      ,       and       
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(a)  

(b)  

(c)  

Figure 8. Chaotic attractors of Lorenz fo r given parameters. a) xy-plane 

              b) yz-plane c) xz-plane 
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 T h e  E f f e c t  o f  t h e  I n i t i a l  C o n d i t i o n s  3.1.1.

 

As mentioned before, chaotic systems are extremely sensitive to 

their initial conditions. If two identical  chaotic systems start with a 

small difference between their initial conditions, they will diverge from 

each other. This special feature is simulated for the Lorenz system  in (4) 

- (6). Initial conditions are now chosen as      = 10.001,      = 10 and 

     = 1.  Since the initial value of      was 10 and now chosen as 10.001,  

it  is only changed by 0.001, while keeping the initial values of      and 

     same. The states of      are demonstrated in Figure 9. It  is  trivial  

that a small difference in the initial conditions caused dramatic changes 

at the trajectory of      after the 30
t h

 second.  

 

 

Figure 9. The above trajectory is for      = 10 and the below one is for  

                    = 10.001.  
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 T h e  E f f e c t  o f  t h e  S y s t e m  P a r a m e t e r  3.1.2.

 

There is a hypercube in the parameter space where the system is in 

the chaotic regime. When in the chaotic regime,  systems are sensitively 

dependent on the system parameters.  Making a change at a specific 

parameter can significantly affect  the chaotic behavior.  

In Figure 10, comparative simulation results for   = 28 and   = 35 

are shown. As you can see , a change in the “ ” parameter makes the 

chaotic behavior totally different .  

 

 

Figure 10. The Effect of the System Parameter . The above figure is  for    

                 = 28 is above and the below figure is for    = 35 

 

 N o n l i n e a r  O b s e r v e r  D e s i g n  3.2.

 

In this section, firstly, the dynamic model of the Lorenz System is 

given, secondly, the observer  design is investigated, and finally, stability 

analysis for this system is showed in detail. The simulation results based 

on these analys is are illustrated in Figures.  
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 D y n a m i c  M o d e l  o f  t h e  L o r e n z  S y s t e m  3.2.1.

 

In the case of chaotic masking, the dynamic model of the chaotic 

Lorenz system is given by following equations  

 

                     ̇                        (7) 

            ̇                          (8) 

  ̇              
 

 
     (9) 

 

where      is  the message signal .  For the Lorenz System      is 

considered as the output and it is the only signal that is available for use 

in the observer design. (i.e., it  is the only signal that is transmitted to 

the receiver part .) Similar to the previous studies in the l iterature, we 

assume that we know the structure of the Lorenz system (i .e., we know 

all the constant parameters).  In the observer design part,  the initial  

conditions of the drive system are not known.  We will design observers 

for     ,       and     .  Since the message signal is hidden –crypted–  in 

chaotic signal     ,  our overall objective is  to reconstruct the message 

signal      online from     .  

 

 O b s e r v e r  D e s i g n  3.2.2.

 

Based on the subsequent stabil ity analysis, we design the 

following nonlinear observer 

           ̇̂           ̂    ̂    (10) 

  ̇̂        ̂    ̂ (11) 

    ̇̂    ̂   
 

 
 ̂ (12) 

 

where  ̂   ,   ̂   ,   ̂    are the observer signals for          ,      ,  

respectively,  and  ̂    is the observed signal  that will  be designed 

subsequently.  It should be noticed that since      is available then we 
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used i t in the designs of  ̇̂   ,   ̇̂    and  ̇̂(t),  and did not utilize neither      

nor      in our observer design.  

To quantify the mismatch between the actual signals and the 

corresponding observer signals , we define observer errors  

  ̃       ̂ (13) 

  ̃      ̂ (14) 

   ̃      ̂.  (15) 

  

The observed message is designed as  [35]  

 ̂         [ ̃      ̃    ∫  ̃     
 

 

]         (16) 

 

where   and   are positive observer gains and      is a filter signal 

updated according to  

 ̇       ( ̃   ) with        (17) 

with    (.) being the standard signum function .  

 

 S t a b i l i t y  A n a l y s i s  3.2.3.

 

The stability analysis is conducted in two parts. In the first part, 

we will  prove the convergence of   ̃and  ̃ to zero, and in the second part, 

we will prove the convergence of  ̃ to zero and then conclude with 

proving the convergence of  ̂    to      (i .e.,   ̂          ).  

The time derivative of the observer error   ̃ is obtained as  

 ̇̃    ̇    ̇̂ 

           ̃    ̃  
(18) 

 

where (8) and (11) were utilized. The t ime derivative of the observer 

error  ̃ is obtained as  

 ̇̃    ̇    ̇̂ 

            ̃   
 

 
 ̃    

(19) 

where (9) and (12) were utilized.  

We now define a Lyapunov function, denoted by     ̃  ̃    ,  as  
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    ̃  ̃   
 

 
 ̃   

 

 
 ̃  (20) 

 

It  should be noted that     ̃  ̃       ̃  ̃.  The time derivative of    is 

obtained as  

 ̇    ̃ ̇̃   ̃ ̇̃ (21) 

and after substituting (18) and (19), we obtain  

  ̇     ̃
  

 

 
 ̃   

      ̃    ̃   

             (22) 

where (20) was utilized to obtain the last  line.  

After solving the above linear differential  inequality,  we can 

conclude that  ̃ and  ̃ goes to 0 exponentially fast.  After utilizing the fact  

that       is  a bounded function of time, we can conclude that  ̃     ̃    

 ̇̃     and  ̇̃    are bounded functions of time. From (22), it  is  clear that  

 ̃     and  ̃    are square integrable  functions. This concludes the first part 

of the proof.  

We now define an auxiliary error-like signal, denoted by       , 

as  

    ̇̃   ̃.  (23) 

 

We will  now obtain the dynamics of     .  If  we take the time 

derivative of (13), we obtain 

 ̇̃    ̇    ̇̂  

 
(24) 

and after substitut ing (7) and (10) then we get  

 ̇̃      ̃      ̂.  (25) 

 

The time derivative of the auxiliary error-like signal      is  obtained as  

 ̇    ̈̃   ̇̃.  (26) 

 

Since   ̇̃      ̃ and using the time derivative of  ̇̃ (i .e. ,   ̈̃), we obtain the 

time derivative of      as 
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 ̇     ̇̃    ̇    ̇̂     ̃.  (27) 

 

since the time derivative of the observed message is required for (27), 

we obtain from (16) and (17) that  

  ̇̂                ̃  (28) 

where (23) was utilized.  Substituting (28) into (27) results in  

 ̇     ̇̃    ̇            ̃   ̃.  
(

(29) 

Before start ing the Lyapunov–based analysis, we introduce an 

auxiliary function, denoted by       ,  that will be utilized in the 

Lyapunov function 

       ∫     [ ̇         ( ̃   )]
 

 

    (30) 

 

where       is  a nonnegative constant .  It  can be shown that           

[36].  

Consider the following Lyapunov function  

    
 

 
 ̃  

 

 
    .  (31) 

 

Since           then        .  If  we take the derivative of this function, 

we get  

  ̇    ̃ ̇̃     ̇   ̇ 

     ̃          ̇̃ 
(32) 

 

where (23), (27) and time derivative of (30) were utilized.  

 

If  we recall  the equation (18) 

 ̇̃    ̃    ̃.    

 

Note that ,      is bounded since the original system is a modified chaotic 

system with       ̇   ,  and  ̈    being bounded. We also know that  ̃    

and    ̃    are square integrable.  These could be utilized along with the 
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right-hand side of (32) to show that   ̃̇     is  a square integrable.  

Mathematically,   

∫  ̇̃       
 

 

         (33) 

 

where        is a positive bounding constant.  

Utilizing the fact that           ,  we can obtain the following 

     ̃̇          ̃̇  .   (34) 

 

If  we use (34) along with (32), we get  

  ̇    ̃              ̃̇  .  

 
(35) 

If we rearrange the above expression, we obtain 

 ̃               ̇     ̃̇
 .  (36) 

 

After integrating the above expression from 0 to t , we obtain  

∫  ̃      
 

 

      ∫        
 

 

  ∫   ̇     
 

 

  ∫   ̃̇       
 

 

 (37) 

 

We know that  ∫   ̇     
 

 
              ,  and after substitut ing this fact  

into (37), we obtain  

∫  ̃      
 

 
      ∫        

 

 
                 .  (38) 

 

Since       is  a positive function                     is always true, 

then 

∫  ̃      
 

 
      ∫        

 

 
             .  (39) 

 

We can separate (39) into two parts,  where the first  one is  

∫  ̃      
 

 

             (40) 

 

and the second one is  
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∫        
 

 

   
 

     
             (41) 

 

where     is required.  

As we can see from (40) and (41) it  is  clear that,   ̃    and      are 

square integrable . Since  ̃     and      are bounded and then from  (23), 

 ̇̃    is bounded as well.  Finally we can show that  ̇̃     ̇    are bounded. 

Thus, from Barbalat’s Lemma  [37],    ̃    and        as       .  Given 

the definition of     ,  we can conclude that   ̇̃      as       .  

Recall  the definition of  ̇̃    as in (25) 

 

 ̇̃     ̃      ̂ 

 

and since  ̇̃   ,   ̃      then i t is clear that       ̂    as       ,  thus 

reaching the objective.  

 

 S i m u l a t i o n  R e s u l t s  3.2.4.

 

In this section, we will provide numerical  simulation results. We 

choose the message as       
 

 
        

   

 
  where T = 10 seconds.  

Observer gains   and   are tuned by using self-tuning the algorithm 

proposed in [38],  [39]  and found as    13,0868 and    19,5921. Here 

we would like to note that the simulations were run for different values 

of   and  ,  and in all those runs, satisfactory performance was obtained.  

The numerical solutions were run for 4 different cases. In Case 1,  

perfect communication channel between the transmitter and the receiver 

is assumed (i .e., no distortions). In Case 2, the transmitted chaotic signal 

     is  considered to be subject to additive noise with an SNR of 10 dB. 

In Case 3, the transmitted chaotic signal      is considered to be 

perturbed by an additive sinusoidal disturbance. Finally in Case 4, a 

parametric uncertainty is considered by changing one parameter of the 

Lorenz System at  the receiver part.    



 

30 

 

Case 1:  The result of this simulation is shown in Figures 11-15. 

The message signal       is shown in  Figure 11, and the chaotic signal 

     is  demonstrated in  Figure 12.  Figure 13 shows       versus      and 

     versus     .  In Figure 14,  ̃    is shown which goes to 0 fast. The 

message signal      ,  recovered message signal   ̂    and the difference 

between original  message and recovered message   ̃    are shown in 

Figure 15. As can be seen in Figure 15(c) which is  ̃,  we recovered the 

message with reasonable accuracy. Also we can see from the result  ̃ 

goes to 0 so fast.  

 

Figure 11. Case 1:  The message signal       

 

 

Figure 12. Case 1:       
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Figure 13.  Case 1: Chaotic attractors of Lorenz System. The above  

                 attractor is x versus y,  and the below one is y versus z.  
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Figure 14. Case 1:   ̃     

 

Figure 15. Case 1:      ,   ̂    and  ̃    for signum function  
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We simulated the system for 100 seconds . Although we showed 

     and      for 100 seconds to emphasize the a -periodicity of      and 

also how accurate  ̂    is,   ̃    is shown for 4 seconds to make i t clear 

how fast   ̃    goes to zero.  

We can show that our nonlinear observer works for high frequency 

sinusoidal signals.  If we do the simulation for the message signal as 

      
 

 
        

    

 
  where T = 10 seconds. Observer gains  are chosen as 

   97,0341 and    23,1679.  The message signal     ,  recovered 

message signal  ̂    and the difference between original  message and 

recovered message  ̃    are shown in the Figure 16.  

 

Figure 16. Case 1:    ,   ̂    and  ̃    for high frequency signum function  

 

Case 2: It was assumed that the transmission channel was noise -

free case 1. In this section, the message signal is transmitted to the 

receiver via a noisy channel.  The channel type is Additive White 

Gaussian Noise (AWGN) which adds white Gaussian noise to the signal 

that passes through i t.  The relative power of noise in an AWGN channel 

is described by a Signal -to-Noise Ratio (SNR) value. It  is assumed that 
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SNR value is 10 dB for this channel. The same observer gains are used 

for this simulation. Simulation results are shown in Figure 17 and Figure 

18. In Figure 17, the observer error for      ( i .e.,   ̃   ) and, in Figure 18, 

the transmitted message, the recovered message and the message 

observer error are given. As you can see from the Figures, while there is 

an increase at the error signal, the message signal is recovered within a 

good precision. However if SNR value increases then it  would be tough 

to detect the message signal .   

 

Figure 17. Case 2:   ̃    for AWGN channel  
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Figure 18. Case 2:      ,   ̂    and  ̃    for AWGN channel  

 

Case 3:  In this case, the transmission channel is assumed to 

impose an addit ive sinusoidal disturbance as         
   

 
  where T = 30 

seconds. After the transmitted signal      is sent to the receiver part , it  is  

summed by this disturbance (i. e.,      obtained at the receiver part is 

equal to              
   

 
 ).  The simulation results are shown in Figure 19 

and Figure 20. In Figure 19, the observer error  ̃    and, in Figure 20, the 

transmitted message, the recovered message and the message observer 

error are given. As you can see from the Figures, while there is an 

increase at the error signal, the message signal is recovered within a 

good precision. However if the amplitude of the sinusoidal disturbance 

increases then it would be tough to detect  the message signal.  
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Figure 19. Case 3:   ̃    for additive noise channel

Figure 20.  Case 3:      ,   ̂    and  ̃    for additive noise channel  
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Case 4:  Besides noise and additive disturbances , there can also be 

uncertainty at the system parameters.  As mentioned  before,  the system 

parameters were  chosen as   = 10,   = 28 and   = 8/3.  We now change 

one of the system parameters at the receiver part by choosing   = 10.5. 

The simulation results for this scenario are shown in Figure 21 and 

Figure 22. In Figure 20, the observer error  ̃    and, in Figure 21, the 

transmitted message, the recovered message and the message observer 

error are given. As you can see from the Figures, while there is an 

increase at the error signal, the message signal is recovered within a 

good precision. However if the change at  the parameters increases or all 

three system parameters are quite d ifferent then it would be tough to 

detect the message signal.  

 

Figure 21. Case 4:   ̃    for parametric uncertainty case  
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Figure 22. Case 4:      ,   ̂    and  ̃    for parametric uncertainty case  

 

 H y p e r b o l i c  T a n g e n t  V e r s i o n  o f  t h e  3.3.

O b s e r v e r  i n  S e c t i o n  3 . 2  

 

Recall  that  in the design of  ̂    we used       ̃ .  As extensively 

discussed in the literature,  hyperbolic tangent function is an 

approximation of the signum function. See  Figure 22 for signum and 

tangent hyperbolic functions. Mathematically, it  is possible to say that , 

hyperbolic tangent function for large   is  a smooth approximation of the 

signum function is in the sense that  

 

     ̃          ̃ .  (42) 
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(a)                                                 (b)   

Figure 23. (a) Signum Function, (b) Tanh Function for  =1 

 

This motivated us to design hyperbolic tangent function version of 

the observer as  

 ̂         [ ̃      ̃     ∫  ̃     
 

 
]    ∫     

 

 
  ̃        (43) 

 

where  ̃   ,   ̃    and  ̃    were designed the same as the signum observer  

(13), (14) and (15). Notice that the        ̃  term in our new observer is 

not a close approximation of the      ̃  as the constant multiplying  ̃ in 

     () is equal to 1.  This causes the need for stability analysis to be 

modified for this new observer.   

Specifically,  we need to modify      in (30) as 

        ∫     [ ̇            ̃    ]
 

 
   (44) 

and nonnegativeness of this term must be ensured. In  [40], it  was proven 

that , after satisfying a high gain condition by  ,  and when | ̃   |       for 

some small      ,  then        and when | ̃   |      then        is not 

valid anymore. As a result  it  is  possible to drive  ̃ to a small  value.  A 

comprehensive analysis was given in [40] . 

The observer gains    and   are tuned by using the algorithm 

proposed in  [41] and found as   = 13,2245 and   = 18,1966. If we 

simulate our system with the new observer in (43) (i.e.,  hyperbolic 

tangent function) we obtain  ̃    as in Figure 24, and     ,   ̂    and  ̃    

for hyperbolic tangent function are shown in Figure 25.  
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Figure 24. Tanh observer:  Case 1:   ̃     

 

Figure 25. Tanh observer:  Case 1:    ,   ̂    and  ̃     
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As can be seen from the Figures 24-25, changes at  the observer 

that  is done resulted in no difference at the simulation results.  

Simulation results for AWGN channel,  additive noise channel and 

parametric uncertainty cases are shown in following Figures.  

 

Figure 26. Tanh observer:  Case 2:      ,   ̂    and  ̃     
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Figure 27. Tanh observer:  Case 3:       ,   ̂    and  ̃    

 

Figure 28. Tanh observer:  Case 4:      ,   ̂    and  ̃     
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 S a t u r a t i o n  F u n c t i o n  V e r s i o n  o f  t h e  3.4.

O b s e r v e r  i n  S e c t i o n  3 . 2  

 

Alternatively,      ̃  can be approximated by the function 

saturation      ̃  in the design of   ̂   .  As broadly discussed in the 

literature, saturation function is another approximation of the signum 

function. See Figure 29 for signum and saturation functions .  There is a 

smooth approximation of the saturation function for small    

 

     ̃       ̃   .  (45) 

 

The new observer design is given as  

 ̂         [ ̃      ̃     ∫  ̃     
 

 

]    ∫     
 

 

 ̃         (46) 

 

where   = 1,  and  ̃   ,   ̃    and  ̃    were designed the same as  (13),(14)  

and (15).  

The observer gains   and   are tuned by using a similar  algorithm 

to that of [41] and found as   = 13,2038 and   = 19,2507. If we simulate 

our system with these new observer in (46)  (i.e. , saturation function) ,  

we obtain  ̃    as in Figure 30-34. Simulation results for AWGN channel, 

additive noise channel and parametric uncertainty cases are shown in 

following Figures.  

 

 

(a)                                                 (b)   

Figure 29. (a) Signum Function, (b) Saturation Function  where   = 1 
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Figure 30. Sat observer: Case 1:  ̃    

 

Figure 31. Sat observer: Case 1:      ,   ̂    and  ̃     
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Figure 32. Sat observer: Case 2:      ,   ̂    and  ̃   

Figure 33. Sat observer: Case 3:      ,   ̂    and  ̃     
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Figure 34. Sat observer: Case 4:      ,   ̂    and  ̃     

 

Finally,  we compare these three novel nonlinear observers  by 

calculation the squared error during the simulation run via the formu la;  

∫  ̃    
   

 

    (47) 

The observers are compared for case 2 where  the transmission channel is 

disturbed by AWGN with 10 dB SNR. When above expression yielded  

28.1321, 28.0289, and 28.0244, for the signum function, tanh function, 

sat function based observers, respectively .  It  is  clear that all  three 

observers performed similarly.   

 

 N u c l e a r  S i m u l a t i o n  3.5.

 

In [42], it  is stated that [direct quote] “Secure long-distance 

monitoring of plant data is  becoming inc reasingly important for safe and 

efficient operation of nuclear power plants.”  Instead of using a 

sinusoidal  signal of the form       
 

 
        

   

 
  as the message signal ,  
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we take a signal from the following reduced-order Boiling Water Reactor 

model [42] is considered as an example of MOS:  

 

[
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 (48) 

 

as the message signal. In (48),      is excess neutron population 

normalized to the steady-state neutron density and is chosen as the 

message signal to be encrypted. Other states are     ,      ,       and     .  

Model parameters of the reactor are given in Table 2.   

 

Model Parameters  Values Model Parameters  Values 

   25.04   -2.52 x 10
-5  

   0.23   0.0056 

   2.25    4 x 10
-5  

   6.82   0.08 

   4.2 x 10
-3  

  

Table 2.  Model Parameters for Nuclear Simulation [43]  

 

Firstly,  by utilizing the information in [43], we tried to obtain a replica 

of the results in [42]. As can be seen in  

Figure 35, the message signal of      obtained in Matlab Simulink is 

exactly same shown as the one in [42].  
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Figure 35. The message signal   (t), obtained from Matlab (top) and from  

                [42] (bottom). 

 

After obtaining the  signal     ,  it  is  used as the message signa l for 

our Lorenz Chaotic System. Simulations are run for all three observers ,  

separately.  The observer gains were same as the previous values.   
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Figure 36. Nuclear simulation for the signum observer: The above figure  

                is      (where          ),   ̂    and the below one is   ̃    for 

                signum function  

 

As can be seen at the Figure 36(c) the difference between the 

transmitted message and the received message goes zero fast.   
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Figure 37. Nuclear simulation for the tanh observer:  The above figure is   

                     (where          ),   ̂    and the below one is   ̃    
 

Nuclear simulation is run with the hyperbolic tangent function 

version and the results are shown in Figure 37. As can be seen in Figure 

37(c),  ̃    goes zero fast .   
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Figure 38. Nuclear simulation for saturation function. The above figure  

                is      (where          ),   ̂    and the below one is   ̃   .  
 

Nuclear simulation is run for the last observer which is saturation 

function version, and  ̃    goes zero fast  for this observer,  as can be seen 

from Figure 38(c).  

 

 S e c u r i t y  A n a l y s i s  o f  O u r  S y s t e m  3.6.

 

In his book [44], Tao-Yang defines the relationship and difference 

between classical cryptography and chaotic cryptography as [direct  

quote] “In classical cryptology, the cryptography is a systematic science 

with well-established analytical and synthetic principles, and the 

cryptanalysis is rather like  an art depending heavily on intuition and 

experience than a science. Also, chaotic cryptography has been 

developed rapidly in recent years while chaotic cryptanalysis is still  at  

its beginning with very few results lit tered among a huge ocean of 

chaotic cryptography literature.”  In this point of view, the differences 
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and the similarities between classical cryptography and chao tic 

cryptography, and also advantages and disadvantages between them are 

going to be analyzed in this section. Detailed information about 

cryptography can be found in [45], [46].  It is  possible to find numerous 

papers in the l iterature about cryptanalysis of chaos -based 

communication methods  [19], [47], [48], [49], [50], [51],  [52], [53],  

[54], [55], [56].  

There are mainly three possible ways to break a cryptosystem;  

 Transmitted ciphertext signal is  used for re -assembling the 

message signal.  

 The message signal can be recovered by extracting the 

chaotic carrier signal by the difference between transmitted 

ciphertext signal and extracted chaoti c carrier signal.  

 Transmitted signal is used for estimating the key (or secret) 

parameters.  [19]  

Although chaotic communication is  considered as  secure,  there are 

some ways to decode the message signal despite the lack of parameter 

values, keys or exact knowledge of the system that is used. Specifically,  

in [49], two different algorithms to break the cryptosystems using 

Lorenz’s attractors are presented. These algorithms, namely Power 

Analysis Attack and Generalized Synchronization Attack, are used to 

examine the security our observer design. 

 

 P o w e r  A n a l y s i s  A t t a c k  3.6.1.

 

The Lorenz System in [49] is simulated and obtained that the 

algorithm breaks the chaotic system as shown in Figure 39. The 

algorithm starts by squaring the ciphertext signal      ,  then low pass-

filtering of this squared ciphertext signal, and finally, binary 

quantization is applied to this signal. The low-pass filter is a four pole 

Butterfly filter with a cutoff frequency of 0.5 Hz. Smith-Trigger is then 

used as a quantizer with switch on point at 85 and switch off point at 5. 

These points are different from [49] to obtain better recovered plaintext.  
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As you can see in the Figure 39, the plaintext is recovered (with some 

shift on the time domain) without the knowledge of the kind of the 

system [49]  that was used for encryption, and neither  its parameters and 

nor its keys.   

If  we apply the same scheme to signum function observer , we get 

the results in Figure 40. As you can see, the recovered message signal 

(plaintext) is not the t ime shifted version of the original message. 

Although we change switch point s, we do not get the transmitted 

plaintext as  the recovered plaintext. Th is shows that the algorithm break 

the system in [49] does not work for our system.  

 

 

Figure 39. Message signal (plaintext) ,      (ciphertext),        (squared 

                ciphertext signal),  low-pas filtered      ,  recovered plaintext  

                from above to below.  
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Figure 40. Power Analysis Attack applied to our signum function  

                observer system. Message signal (plain text ),       (ciphertext  

                of our system),       (squared ciphertext signal), low-pas  

                filtered      ,  recovered plaintext from above to below.  

 

 G e n e r a l i z e d  S y n c h r o n i z a t i o n  A t t a c k  3.6.2.

 

In [49], the second way of breaking a chaotic communication system 

is based on the knowledge of the kind of chaotic system is used for 

encryption, but sti ll  lack of knowing neither its parameters nor initial 

condition values. This algorithm starts with calculating the d ifference 

between      and  ̂   ,  second step is multiplying      by  ̃      ̂        ,  

then multiplied signal is low-pass fi ltered and, finally,  a binary 

quantizer is used to re -generate the original  message signal  (plaintext). 

Switch on point  was at 11, switch off po int was at 9 for this attack. The 

simulation results for the given system are shown in Figure 41. 
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Figure 41. Message signal (plain text),      (ciphertext),       multiplied  

                by  ̃   ,  low-pass filtered version of the multiplied signal,  

                recovered plaintext from above to below.  

 

As can be seen in Figure 41, recovered plaintext is time shifted version 

of the original plaintext. So the algorithm works for this system. If we 

apply this security algorithm to our system and make the simulations 

again, we get the Figure 42.  
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Figure 42. Generalized Synchronization Attack  for our signum function  

                observer system. Message signal (plain text),       (ciphertext),  

                     multiplied by  ̃   ,  low-pass filtered version of the  

                multiplied signal, recovered plaintext from above to below.  

 

As shown in Figure 42 the recovered message signal (plaintext) is 

not similar the original message. Although we change switch point s, we 

do not get the transmitted plaintext as  the recovered plaintext. That 

shows us this algorithm to break the system does not work for our 

system.  

Although these two algorithms did not break our observer design, 

we believe that our system must be tested extensively by other 

algorithms in the literature.   

 

 S u m m a r y  3.7.

 

In this  chapter, after giving the General  Lorenz System, we 

proposed a nonlinear observer for the Lorenz Chaotic System described 

in Section 3.2. Observer design and stability analysis of this system are 
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provided and also we presented our simulation results via Matlab 

Simulink where robustness to the channel imperfections were also 

demonstrated. In Sections 3.3 and 3.4, we change our observer design by 

replacing the signum function with hyperbolic tangent and saturation 

functions, respectively. In Section 3.5,  we showed that our observer 

works not only for a sinusoidal message signal but also a signal 

generated by a dynamical system (i.e. ,  a nuclear reactor model) via 

simulations. In section 3.6,  we applied some decryption methods from 

the literature to our observer and tested i ts security.   
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C HA PT E R  4  

 

C ON C L U S I ON  

 

In this thesis, chaotic communication was studied. An observer -

based approach was followed to extract message encrypted in a chaotic 

signal. Specifically, a message signal was considered to be added to the 

dynamics of the Lorenz chaotic system which served as  the transmitter.  

The output of the transmitter was considered as the input to the receiver 

which was a replica of the Lorenz chaotic system on the transmitter side.  

An observer was designed to obtain the states of the Lorenz chaotic 

system and a novel nonlinear observer was designed to estimate the 

message signal. Stability of the closed -loop system was investigated via 

Lyapunov-based arguments and convergence of the error signals to zero 

was proven.  In addition, after modifications to the nonlinear argum ent 

in the message observer, two nonlinear observers were proposed.  

To demonstrate the performance of the proposed observers,  

extensive numerical simulations were performed. Robustness to 

imperfectnesses such as additive noise, additive perturbations and 

parametric uncertainties were shown numerically. For a real -world 

scenario, we considered the dynamic model of a BWR and one of its 

states was treated as the message signal to be encrypted. This case was 

also simulated and satisfactory performance was obta ined.  

Finally,  we investigated the security level of our observer.  Two 

algorithms designed for a Lorenz chaotic system were considered. These 

algorithms were tried to break the cryptosystem in our observer. After 

several numerical tries our observer was not to broken.  

There is much to be considered as future work. The main 

difference of the observer design in this thesis from the existing 

literature is that it  is Lyapunov-based. As a result, the analysis can be 

fused with adaptive algorithms to enhance ro bustness to parametric 
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uncertainties. Generalizing the observer in this thesis to be applicable to 

various other chaotic systems may also be an interesting future work.  
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