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ABSTRACT 

 
DEVELOPMENT OF GENETIC ALGORITHMS BASED 

MULTIVARIATE CALIBRATION MODELS FOR THE 

DETERMINATION OF LUBRICATING OIL COMPOSITIONS USING 

FOURIER TRANSFORM INFRARED SPECTROSCOPY 

 
Engine oils consist of base oils and additives. There have been a number of 

changes in the composition of engine oils depending on the time and using conditions 

like the decrease in the aditive amounts and increase in the amount of oxidation 

products. Although there are many physical and chemical standard test methods for the 

determination of oil quality, none of these methods alone can be used to determine the 

whole composition of engine oils. The main objective of this work, is to develop a 

single anlytical method that is simple, rapid and accurate for the quantitative 

determination of lubricating oil compositions using Fourier transform infrared (FTIR) 

spectroscopy combined with chemometric multivariate data analysis. For this study, a 

number of most intensively produced engine oils are chosen in an industrial lubrication 

oil plant and then synthetic mixtures of oil components were prepared in order to 

develop multivariate calibration models. The FTIR spectra of these samples were 

recorded using a three reflection attenuated total reflectance (ATR) accessory. The 

collected spectral data and the reference concentration values of the samples are then 

used in multivariate calibration modelling step using a genetic algorithm based inverse 

leaast squares (GILS) calibration method. It was observed that the correlation 

coefficients between the reference concentration values and the GILS predicted 

concentrations were around 0.99. As a result, FTIR spectroscopy combined with 

multivariate calibration can be a rapid method for the quaantitative determination of 

engine oil compositions. 
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ÖZET 

 
FOURIER DÖNÜŞÜMLÜ KIZILÖTESİ SPEKTROSKOPİSİ 

KULLANILARAK MADENİ YAĞ İÇERİKLERİNİN BELİRLENMESİ 

İÇİN GENETİK ALGORİTMALARA DAYALI ÇOK DEĞİŞKENLİ 

KALİBRASYON MODELLERİNİN GELİŞTİRİLMESİ 

 
Motor yağları, baz yağı ve katkılardan oluşur. Yağların kullanımı esnasında 

kullanım koşulları ve süresine bağlı olarak oksidasyon ürünlerinin artması ve katkıların 

miktarlarının azalması gibi yağ kompozisyonlarında bazı değişimler meydana 

gelmektedir. Yağ kalitesinin belirlenmesine yönelik çeşitli fiziksel ve kimyasal 

testlerden oluşan bir çok standart metod olmakla beraber, bu yöntemlerin hiçbiri tek 

başına yağların kompozisyonunun tamamını tespit etme imkanı sunamamaktadır. Bu 

çalışmada, madeni yağların kantitatif olarak içeriklerinin belirlenmesi amacıyla Fourier 

dönüşümlü kızılötesi (FTIR) spektroskopisine  ve kemometrik çok değişkenli veri 

analizine dayalı hızlı ve uygulama kolaylığı olan bir yöntem geliştirilmesi 

hedeflenmiştir. Bu amaçla, işletmede yoğun olarak üretimi gerçekleştirilen  bazı ürün 

gamları belirlenerek bu ürünlere yönelik çoklu karışımlar hazırlanmış ve bu örneklerin 

FTIR spektrumlar kaydedilmiştir. Elde edilen spektral veriler ile referans konsantrasyon 

değerleri bir genetik algoritma temelli ters en küçük kareler (GILS) metodu yardımı ile 

analizlenmiş ve kemometrik çok değişkenli kalibrasyon modeli oluşturulmuştur. 

Geliştirlen modeller ile hesaplanan bileşen konsantrasyon değerleri ile referans 

konsasntrasyon değerleri arasında 0.99 oranında bir uyum olduğu görülmüştür. Sonuç 

olarak, FTIR spektroskopisi ve çok değişkenli kalibrasyon ile madeni yağların 

kompozisyonlarının kantitatif olarak tayin edilebileceği tespit edilmiştir. 
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CHAPTER 1 

INTRODUCTION 

 
Engine oil is a kind of lubricants and it is mostly used for reducing the friction 

between the moving parts in engines. In these powerful machines (e.g. internal 

combustion engines, compressors, turbines, aircrafts, cars, boats and electrical 

generators), there are lots of moving components and when they are in contact relative 

to each other, the force of friction tends to prevent this relative motion. Then friction 

converts the kinetic energy to heat. This property can cause striking effects such as 

decline in the performance of engine and enlargement of fuel consumption. At this 

point, engine oil creates a thin, separating film between moving surfaces to minimize 

direct contact between them, transfers the heat caused by friction and protects the 

engine. There are also a vast number of other applications of lubricants so between 5000 

and 10000 different formulations are necessary to satisfy more than 90% of all 

requirement. 

Engine oils are made from heavier, thicker petroleum hydrocarbon bases derived 

from cruide oil and many additives to improve certain properties. The bulk of a typical 

engine oil has hydrocarbons with between 18 and 34 carbon atoms per molecule. On 

average, engine oils consist of about 90% base oils (hydrogenated polyolefins, esters, 

silicones, fluorocarbons and many others) and 10% chemical additives (mostly salts of 

organic acids and such metallic ions as zinc, barium, magnesium or calcium) [1]. 

During lubricant use, contamination, loss of additive performance and an 

increase in oxidation products can occur. The lubricants could have an unlimited 

lifetime if they are not contaminated by any kind of agents. The quality control of 

lubricating oil is essential for preservation of the longevity and the performance of 

industrial machines, automotives, and equipment which depends on hydraulic fluids. 

Based on this, changes in oil quality need to be detected and potential problems fixed 

before they become serious. Analysis of oils during use can also help to prevent 

unnecessary replacement of oil and premature engine overhauls [2]. 

In lubricants industry, many standard primary chemical methods that American 

Society for Testing and Materials (ASTM) approved are employed for the determination 
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of lubricants quality. The analyses that generally employed in engine oil quality control 

are viscosity, total acid number (TAN) , total base number (TBN), water and fuel 

contamination and oxidation. The viscosity is the most important parameter to be 

monitored in quality control, because an increase in viscosity can indicate the presence 

of insolubles, oxidation products, replacement by degraded oil or water. On the other 

hand, a decrease can indicate the presence of fuel, replacement by a different oil and 

additive breakdown. Table 1.1 shows some of these ASTM methods : 

 

Table 1.1. Several ASTM Methods Used for Quality Control of Lubricants 

Method ASTM Description 

ASTM D 97 Pour Point of Petroleum Products 

ASTM D 445 Kinematic Viscosity of Transparent and Opaque Liquids 

ASTM D 664 Acid Number of Petroleum Products by Potentiometric Titration 

ASTM D 4739 
Base Number of Petroleum Products by Potentiometric Perchloric Acid 

Titration 

ASTM D 129 Sulfur in Petroleum Product (General Bomb Method) 

ASTM D 240 Heat of Combustion of Liquid Hudrocarbon Fuels by Bomb Calorimeter 

ASTM D 972 Evaporation Loss of Lubricating Oils 

ASTM D 5185 
Additive Elements ,Wear Metals and Contaminants in Used Oils by ICP-

AES 

ASTM D 4294 Phosphorus, Sulfur, Calcium, and Zinc in Lubrication Oils by ED-XRF 

 

 

The ASTM standard methods mentioned above are generally based on the 

titration of all the basic constituents in an engine oil with standardized acid to a fixed 

endpoint, the titer, however, being expressed in terms of base number (mg KOH/g oil). 

As is often the case with solvent-based titrimetric methods, such methods are fine in 

theory, but problematic in practice. Aside from the time-consuming and labor-intensive 

nature of the analysis itself, a major drawback is the need for substantial volumes of 

organic solvents and corrosive reagents that are hazardous and difficult to dispose of. 

Even with automated potentiometric titration versions of the ASTM methods, the 

analysis is still time-consuming. Generally, these tests mentioned above are in general 

slow, time-consuming and they give information only about the partial properties of the 

lubricants so they are not capable of determining the composition of an oil [3]. 
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The aim of this study, is to develop a fast, simple and accurate procedure for the 

determination of lubricating oil composition based on the use of the FTIR spectroscopy 

along with multivariate calibration. In industry, particular lubricating oil mixtures are 

prepared by technicians and after that they are produced in larger scales, by tones 

everyday. However, there is no analytical technique to confirm the content of the oils 

correctly for quality control of lubricants. If personal errors result from the carelessness 

or inattention occur during preparation of oil mixtures, improper oil produced will reach 

the customer. In some cases, this may result in loss of the company's profits. To 

overcome this problems, in this study, the determination of base oils and additive 

components in engine oils is presented with the aim of developing a fast, simple and 

accurate procedure based on the diffuse-reflectance mid infrared spectroscopy along 

with multivariate calibration methods for the routine analysis in engine oil industry. All 

the oils produced in engine oil industry can be checked using this new method before 

they reach the customer. For a chemometric point of view, several chemometrical 

methods with IR spectroscopy were proposed in the literature for analysis of complex 

engine oil blends. Felkel et al. [4] developed partially least squares (PLS) model for the 

determination of total acid number (TAN) using IR data measured from monograde 

mineral gas engine oils. In another study, Al-Ghouti et al. [5] performed PLS, classical 

least squares (CLS) and principal component regression (PCR) as an alternative way of  

ASTM D 2896 and ASTM D 445 for the determination of total base number (TBN) and 

kinematic viscosity. In a comparative study, Borin et al used [6] principal component 

analysis (PCA) with FTIR data to identify the condition of engine oils based on 

viscosity. Also, Blanco et al. [7] used partial least squares regression (PLSR) and 

multiple linear regression (MLR) with mid-infrared (MIR) and near infrared (NIR) data 

to determine water in lubricating oils which consist of highly additive that introduce 

large errors by the Karl-Fischer and hydride methods. However, it should be 

emphasized again that there is not any alternative methods for quantitative 

determination of lubricants in the literature so this new method will be a significant 

improvement for the industry. 
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CHAPTER 2 

INFRARED SPECTROSCOPY 

2.1. Infrared Region 

Infrared (IR) Spectroscopy is a popular technique used for compound 

identification. Simply, it is the absorption measurement of different IR frequencies by a 

sample positioned in the path of an IR beam. Different functional groups in sample 

absorb different frequences of infrared radiation and these characteristic frequencies are 

used to determine chemical structures. Generally, almost any solid, liquid or gas sample 

can be analyzed and it is an important method which has a wide variety of applications 

such as scientific, industrial, medical, military and forensic analysis [8]. 

The infrared region of the electromagnetic spectrum is classified  into three 

groups; the near-, mid- and far- infrared, named for their relation to the visible 

spectrum. The higher-energy near-IR, approximately 12800–4000 cm
−1

 (0.78–2.5 μm 

wavelength) can excite overtone or harmonic vibrations. The mid-infrared, 

approximately 4000–200 cm
−1

 (2.5–50 μm) may be used to study the fundamental 

vibrations and associated rotational-vibrational structure. The far-infrared, 

approximately 200–10 cm
−1

 (50–1000 μm), lying adjacent to the microwave region, has 

low energy and may be used for rotational spectroscopy [9].  

According to the literature, chemists divide the IR region into two parts : The 

region from 4000 cm
−1

 to approximately 1500 cm
−1

 is named as ‘Peak ID Region’ 

because it is especially useful for correlating peak location with bonds. Secondly, the 

region from 1500 to 600 cm
−1

 is typically very busy and is not as useful for such 

correlation but it remains very useful as the molecular fingerprint. For this reason, this 

region is called as ‘Fingerprint Region’. This means that this region can still be used for 

peak-for-peak matching with a known spectrum from a library of known spectra. Figure 

2.1 shows the Peak ID and the Fingerprint Regions of the IR spectrum [10]. 

 



5 

 

 
 

Figure 2.1. The Peak ID and Fingerprint Regions of the IR spectrum [10] 

2.2. Infrared Instruments 

Generally, an IR instrument contains a source of infrared radiation, a sample 

container which should be infrared transparent, a wavelength selecting device, a 

detector and a signal processor, consecutively. The common radiation source for the IR 

spectrometer is an inert solid heated electrically to 1000 to 1800 °C. Three mostly used  

sources are Nernst glower (constructed of rare-earth oxides), Globar (constructed of 

silicon carbide), and Nichrome coil. As a sample holder, quartz cells are used in the 

NIR region and in the MIR and FIR region potassium bromide (KBr) is used. 

Wavelength selecting devices are used to disperse a broad spectrum of radiation. Other 

component, detector used in IR spectrometers can be categorized into two classes: 

thermal detectors and photon detectors. Thermal detectors include thermocouples, 

thermistors, and pneumatic devices (Golay detectors). Photon detectors rely on the 

interaction of IR radiation and a semiconductor material. Lastly, a signal processor 

amplifies the signal from the detector [11]. 

Measurement of IR absorption can be made using three types of instruments 

such as dispersive spectrometers with a grating monochromator, fourier transform 

spectrometers with an interferometer and nondispersive photometers using a filter or an 

absorbing gas that are used for analysis of atmospheric gases at specific wavelengths 

[10]. 
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2.2.1. Dispersive Infrared Instruments 

A typical dispersive IR instrument consists of a monochromator which disperse 

the radiation into component frequencies after it comes from the source and passes 

through the sample and reference path. Then the wavelengths of light are seperated in 

the spectral range and each wavelength is individually transferred to the detector, which 

generates an electrical signal and results in a recorder response. Most of the dispersive 

spectrometers have a double-beam design. A representative figure for a dispersive 

instrument is shown in Figure 2.2 [12]. 

 

 
 

Figure 2.2. A schematic representation for an Dispersive Infrared instrument [12] 

2.2.2. FTIR Instruments 

A FT system consists of three main spectrometer components: source, 

interferometer and detector. The same types of sources are used for both dispersive an 

fourier transform spectrometers. On the contrary of dispersive instruments, the 

monochromators are replaced by interferometers in. FT spectrometers. The most 

commonly used interferometer is a Michelson interferometer. It consists of three active 

components: a moving mirror, a fixed mirror, and a beamsplitter. The two mirrors are 

perpendicular to each other. Figure 2.3 shows parts of a typical FT instruments [8]. 
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Figure 2.3. A schematic representation for an FT instrument [12] 

 

 

Collimated light from a broad-band infrared source comes to the beamsplitter 

which is made from a thin film of germanium. Nearly 50% of the light passes through 

the film and is reflected back by a fixed mirror, where half of the light intensity (25% of 

the original light intensity) is reflected by the beamsplitter through the sample cell to the 

detector. The other 50% of the original light intensity is reflected to the moving mirror. 

Then half of this light is transferred to the detector  after passes through the sample. 

Finally, 50% of the original light reaches to the detector [10]. 

FTIR spectrometers are more preferable than dispersive spectrometers because 

FTIR spectrometers provide the data collection faster and also , in a FTIR spectrometer 

there are fewer mirror surfaces so there will be less reflection losses and signal-to-noise 

ratio will be higher in the spectrum [10]. 

2.3. Attenuated Total Reflectance Fourier Transform Infrared (ATR -

FTIR) Spectroscopy 

Mid-Infrared spectroscopy is a popular and trustable fingerprinting method by 

scientists for the  characterization and also quantification of the substances. Mostly 

preferrable way of obtaining mid-infrared spectra is the transmission technique of 

sampling, although it has many disadvantages. One of the disadvantages is the 

‘‘thickness problem’’. Samples thicker than 20 microns absorb too much infrared 

radiation so it will be not possible to get a spectrum. Also, if the sample is thinner than 
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1 micron,  its absorption will be so weak that can not be detected. Another disadvantage 

is that the sample preparation is time consuming because of the melting, squishing or 

diluting requirements so that it transmits the appropriate amount of light. For these 

reasons, reflectance techniques can be more preferrable than transmission ones to obtain 

mid-infrared spectra. Reflectance techniques has no thickness problem so there is no 

need to worry about the thickness or the concentration of the sample and it is not 

necessary to spend much time during the sample preparation. This means the sample 

preparation for reflectance samples is faster and easier than for transmittance samples. 

A final advantage of some reflectance techniques is that they are nondestructive. The 

sample is left intact after its spectrum is obtained , which means the sample can be used 

for other analyses [13]. 

The attenuated total reflectance (ATR) technique is a kind of reflectance 

technique used with mid-infrared spectroscopy and it is used to obtain the spectra of 

solids, liquids, semi solids, and thin films. It is a fast method and also it  gives strong 

signals although the samples are in nanogram quantities [12,14]. 

The ATR-FTIR spectroscopy is performed using an accessory which is placed 

onto the sample compartment of an FTIR instrument. Accessory consists of a crystal 

which is made of infrared transparent material with high refractive index and also 

mirrors which bring the IR radiation to a focus on the face of the crystal. Infrared 

radiation passes through the crystal and reaches to its top surface. At this point, if the 

crystal has the proper refractive index and the light has the proper angel of incidence, 

the infrared radiation  and reflects off the crystal surface rather than leaving it. That is 

called total internal reflection. Infrared beam reflects off the crystal surface three times 

before leaving the crystal. This procedure is shown in the schematic diagram of an ATR 

accessory in Figure 2.4. 
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Figure 2.4. A schematic diagram of an ATR accessory [13] 

 

 

Total refractive index only occurs where the wave travels from a medium with a 

higher refractive index to one with a lower refractive index. There are several internal 

total reflections occur within the crystal until the beam reaches the end. The IR radiation 

reflects with a critical angle,   , depends on the refractive index of the crystal   , and of 

external medium,   , can be presented as: 

 

            (2.1) 

 

In addition, when the radiation is inside the crystal, a transmitted wave of 

radiation is formed which is called evanescent wave. The evanescent wave is made 

weaker by the sample’s absorbance. Evanescent wave is characterized by its amplitude 

which is rapidly growing with the distance from the interface represented as: 

 

     
 

 
   (2.2) 

 

where    represents the time averaged electric field intensity at the interface,   

is the time averaged field intensity at a distance   from the interface in the rarer medium 

and    is the penetration depth of the evanescent field which is given by: 

 

   
  

            
     

 (2.3) 

 

where    =  /   and     =   /  . The larger   or the smaller  , the larger the 

penetration depth [12, 15]. 
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2.4. Quantitative Analysis 

Infrared spectroscopy is a reliable and mostly preferred method not only for 

qualitative analyses but also quantitative analyses without consumption or destruction 

of the sample. The development of FTIR instruments and strong chemometrical data 

processing methods improve the performance of quantitative IR work. The main point 

of the quantitative analysis of absorption spectrometry is Beer’s law. For a single 

compound in a homogeneous medium, the absorbance at any frequency is expressed as 

 

      (2.4) 

 

where   is the measured absorbance of the sample at the given frequency,   is 

the molecular absorptivity at the frequency,   is the path length of source beam in the 

sample, and   is the concentration of the sample. This law genarally expresses that the 

intensities of absorption bands are linearly proportional to the concentration of each 

component in a homogeneous mixture or solution. For a simple two-component 

mixture, the total absorbance,   , of the mixture at a given frequency is the sum of the 

absorbance of two component compounds, x and y, at the specified frequency: 

 

                     (2.5) 

 

Using matrix algebra it is possible to extend this technique to mixtures 

containing more than two components. The absorbance of a mixture of n independently 

absorbing components at a particular frequency n may be expressed in the following 

equation: 

 

                       (2.6) 

 

where    is the total absorbance of the sample at the frequency n,    is the 

absorptivity of component j at the frequency n (j = 1, 2, ..., n),    is the concentration of 

component j, and b is the sample path length [10]. 
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CHAPTER 3 

MULTIVARIATE CALIBRATION METHODS 

3.1. Overview 

Calibration is a very important part of all analytical procedures and it determines 

the relationship between the analytical response and the analyte concentration. The 

simplest form of a linear calibration model is univariate calibration and it is shown in 

Equation 3.1.  

 

           (3.1) 

 

where    represents the concentration of the i
th

 calibration sample,    denotes the 

corresponding instrument reading,    symbolizes the calibration coefficient (slope of 

the fitted line), and    signifies the error associated with the i
th

 calibration sample. A 

single instrument response, e.g., absorbance at a single wavelength, is measured for 

each calibration sample.  

It should be noted that while other constituents can be present in the calibration 

samples, the selected wavelength must be spectrally pure for the analyte, i.e., other 

constituents do not respond at the wavelength. Additionally, matrix effects must be 

absent at the selected wavelength, i.e., inter- and intramolecular interactions are not 

present. Values in y and x are used to estimate the model parameter    by the least 

squares procedure. This least-squares estimate,  ̂ , is computed by; 

 

 ̂             (3.2) 

 

In Equation 3.2, the symbol  ̂  is used to emphasize its role as an estimate of   . 

The resulting calibration model is used to predict the analyte concentration for an 

unknown sample, is expressed by; 

 

 ̂         ̂  (3.3) 
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where      represents the response for the unknown sample measured at the 

calibrated wavelength. This kind of calibration is called univariate calibration because 

only one response variable is used [16]. 

Hovewer, it is not possible to analyze multiple components in a sample 

simultaneously. When univariate method is used, there has to be one measurement for 

each component and more time will be spent. Also, univariate calibration causes wrong 

prediction of concentration of analyte because of the presence of interferences. To 

prevent this problem, physical separation of analyte from interfering material or using 

selective measurements is needed and this means necessity of a great effort. At this 

point, multivariate calibration will be better alternative because it has fault-detection 

capabilities and unknown interferences in the sample can be overcome by multivariate 

calibration.  

Multivariate calibration develops the equations in two ways as classical 

calibration case and inverse calibration case. According to first one, absorbance is a 

function of concentration and second one is that concentration is a function of 

absorbance. Differently from univariate calibration, absorbance values in the full 

spectrum of one sample are used. For this reason, the absorbance vector in univariate 

calibration becomes a matrix. Also, concentration matrix is a matrix because more than 

one component can be used [17]. 

In this study, a hybrid method of genetic algorithm and inverse least squares, 

genetic inverse least squares method is used. Before discussing this method, it is 

necessary to explain classical least squares and inverse least squares methods as an 

introduction to the multivariate calibration methods. 

3.2. Classical Least Squares (CLS) 

Classical Least Squares is also known as K-matrix method or Beer’s Law 

method and is modeled by the following equation: 

 

         (3.4) 

 

where   is the matrix which consists of absorbance values of the samples at 

different wavelengths,   is the matrix which consists of concentrations of multi-

component samples   is the matrix of absorptivity coefficients multiplied by path 
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length and    is the matrix of spectral errors or residuals not fit by the model. Here   

matrix represents the first order estimates of the pure component spectra at unit 

concentration and unit path length.   matrix can be determined by the following 

formula: 

 

 ̂             (3.5) 

 

Then the concentrations of unknown sample can be predicted in the following 

equation; 

 

 ̂    ̂ ̂     ̂  (3.6) 

 

where   is the spectrum of the unknown sample and c is the vector of the 

predicted component concentrations. Lastly, the residual is the difference between the 

reference and predicted concentration values; 

 

     ̂ (3.7) 

 

As a result, CLS is a very popular method because it can be applied to simple 

systems where all of the pure-component spectra can be measured. Hovewer, it has the 

disadvantage of requirement that all interfering chemical components must be known 

and if there is another components which we ignore in the sample, this method will fail 

[18]. 

3.3. Inverse Least Squares (ILS) 

Inverse Least Square or P Matrix method applies the inverse of Beer’s Law and 

assumes that component concentration is a function of absorbance as shown in the 

following equation: 

 

         (3.8) 

 

where   is the concentration matrix,   is the absorbance matrix and    is the 

matrix of errors in the concentrations not fit by the model as in CLS. Model error is 

assumed to derive from error in the measurement of component concentration, whereas 

no error is assumed to be inherent in the absorbance values. The matrix   involves the 
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unknown calibration coefficients relating component concentrations to the spectral 

intensities and can be determined by: 

 

 ̂              (3.9) 

 

The greatest advantage of ILS is that the Equation 3.8 can be reduced for the 

analysis of a single component at a time and this reduced model is shown in the 

following equation; 

 

        (3.10) 

 

Lastly, A predicted concentration of a multi-component sample can be obtained 

by; 

 

 ̂      ̂ (3.11) 

 

where  ̂ is the scalar estimated concentration of component that is being 

analyzed,  ̂ is the vector of calibration coefficients and a is the spectrum of unknown 

sample. 

An ILS model has a significant advantage in that it does not need to know and 

include all components in the calibration set. This means that ILS assumes that the 

intensities for each measured variable in the analysis all behave perfectly independently. 

Additionally, you are restricted from using all of the spectral channels in making the 

model. The number of channels of spectral information used cannot exceed the number 

of calibration standards. Precision will be reduced if more channels are included than 

the number of independent sources of variation in the data. [19]. 

3.4. Genetic Inverse Least Squares (GILS) 

Genetic inverse least squares (GILS) is an important form of a genetic 

algorithms (GA). It is used for selecting wavelengths to build multivariate calibration 

models with reduced data set. GA are global search and optimization methods based on 

the principles of natural evolution and selection as developed by Darwin [20]. 

According to Darwin’s theory; variation is a feature of natural populations and every 

population produces offspring. The consequences of this overproduction is that those 
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individuals with the best genetic fitness for the environment will produce offspring that 

can more successfully compete in that environment. Thus the later generation will have 

a higher representation of these offspring and the population will have evolved [21]. 

In the last several years there has been widespread interaction among researchers 

studying various evolutionary computation methods. In the 1950s and the 1960s, several 

computer scientists independently started to study  evolutionary systems with the idea 

that evolution could be used as an optimization tool for engineering problems. The idea 

in all these systems was to evolve a population of solutions to a given problem, using 

operators inspired by natural genetic variation and natural selection. Box 1957, 

Friedman 1959, Bledsoe 1961, Bremermann 1962, and Reed, Toombs, and Baricelli 

1967 all worked in the 1950s and the 1960s to develop evolution−inspired algorithms 

for optimization and machine learning. In addition, a number of evolutionary biologists, 

Baricelli 1957, 1962; Fraser 1957, Martin and Cockerham 1960 used computers to 

simulate evolution for the purpose of controlled experiments. Genetic Algorithms (GAs) 

were invented by John Holland in the 1960s and were developed by Holland and his 

students and colleagues at the University of Michigan in the 1960s and the 1970s. In 

contrast with evolution strategies and evolutionary programming, Holland's original 

goal was not to design algorithms to solve specific problems, but rather to formally 

study the phenomenon of adaptation as it occurs in nature and to develop ways in which 

the mechanisms of natural adaptation might be imported into computer systems. Over 

the years, GA were used for wavelength selection in many applications especially in 

chemometrics [22]. 

Genetic algorithms (GA) have five basic steps including  initialization of a gene 

population, evaluation of the population, selection of the parent genes for breeding and 

mating, crossover and mutation and replacing parents with their offspring. These steps 

have taken their names from the biological foundation of the algorithm. GILS has the 

same steps namely initialization, breeding, mutation and evaluation as other GAs to 

select a subset of wavelengths. In contrast to other methods, only GILS  encodes genes. 

Figure 3.1 shows the steps of a typical GA. 
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Figure 3.1. Flow chart of genetic algorithm used in GILS 

 

 

A gene represents a  potential solution to a given problem and  here, this term is 

used to describe the randomly selected collection of instrumental response at the 

wavelength or wavenumber range given in the data set. The collection of individual 

genes in the current generation is called as ‘population’. In the population, a gene 

consists of absorbance values at randomly chosen wavelengths or wavenumber between 

a predefined lower and upper limit. A gene is shown as the following : 

 

                  (3.12) 

 

where   is so-called a gene,   is the absorbance measured at the indicated 

wavelength. In the ‘initialization of gene population’ step, many solutions are randomly 

generated to form an initial population. The population size depends on the nature of the 

problem, but typically contains several hundereds or thousands of possible solutions. 

These solutions are the genes of the first generation. The total number of genes in the 

population should be even in order to allow breeding of each gene in the population. 

Once the initial gene population is created, the next step is to evaluate and rank the 
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genes in order to evaluate each gene’s success using a fitness function such as the 

reciprocal of Standard Error of Calibration with cross Validation (    ).      is 

calculated from the following equation; 

 

     √
∑      ̂    

   

   
 (3.13) 

 

where    is the reference and  ̂  is the predicted values of concentration of ith 

sample and m is the number of samples. Degrees of freedom is     because when a 

linear model is assumed, there are only two parameters to be extracted which are the 

slope of the actual vs. reference concentration plot and the intercept. In each step, 

increase in the fitness value is targeted. In the next step, for each successive generation, 

a proportion of the parents with high fitness function are selected to breed a new 

generation. The goal is that only the best performing members of the population will 

survive in the long run. Here, it is expected that the genes better suited for the problem 

will generate better off-springs. The genes with low fitness values will be given lower 

chance to breed and hence most of them will be unable to survive [20]. There are lots of 

selection methods such as top down method, roulette wheel method and tournament 

selections. The one which is used in GILS is the roulette wheel selection method. In this 

method, each gene is represented as different parts on the wheel.  The gene with the 

highest fitness has the slot that has the largest area and the gene with the lowest fitness 

has the slot that has the smallest area. Therefore, when the wheel is rotated, there is a 

higher chance of selection for a gene with high fitness than for a gene with a low 

fitness. There will also be the genes which are selected multiple times and some of the 

genes will not be selected at all and will be thrown out from the gene pool. After all the 

parent genes are selected, they are allowed to mate top-down, whereby the first gene    

mates with the second gene   ;    with    and so on until all the genes mate. In the 

‘crossover and mutation step’, the genes are broken at random points and the offspring 

genes are formed by cross-coupling.  

Consider    and    are parent genes which are to breed;    and    are their 

corresponding off-springs shown in the following example: 

 

Parents 
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The points where the genes are cut for mating are indicated by #. 

 

Offspring 

                                                  

                             

 

where       represents the instrument response at the wavelength given in 

subscript. Here    and    are the first and second parent genes . Also,    and    are the 

offspring. Parent genes are broken at the points indicated by #. The first part of    

combines with the second part of the    and create the first offspring (  ).  Then the rest 

of the parent genes gather and other offspring (  ) is formed. This process is called the 

single point crossover and is common in GILS.  

After crossover, the parent genes are replaced by their off-springs. The ranking 

process based on their fitness values follows the evolution step. Then the selection for 

breedingand mating starts again. This is repeated until a predefined number of iterations 

arevreached. At the end, the gene with the lowest SECV (highest fitness) is selected for 

model building. This model is used to predict the concentrations of component being 

analyzed in the independent validation set. The success of the model in the prediction of 

the independent validation set is evaluated using Standard Error of Prediction (SEP) 

which is calculated as: 

 

    √
∑      ̂    

   

 
 (3.14) 

 

where   is now, the number of independent validation samples. At the end of 

the process, the termination of the algorithm is done by setting predefined iteration 

number for the number of breeding/mating cycles. Then, the gene with the lowest SECV 

(this means it has highest fitness) is selected for the model building and this model is 

used to predict the concentrations of component being analyzed in the prediction (test) 

sets. The success of the model in the prediction of the test sets is evaluated using 

standard error of prediction (SEP) [23]. 
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CHAPTER 4 

EXPERIMENTATION & INSTRUMENTATION 

4.1. Experimentation 

Firstly, the engine oil which is mostly sold by Opet Fuchs Madeni Yağ Sanayi 

ve Ticaret A.Ş was determined. It was coded as ‘Engine Oil 1’ not to disclose its real  

name because of the confidentiality requirement. Then in our laboratory, according to 

the original engine oil (Engine Oil 1) formulation, a training set of 60 samples were 

prepared mixing the components which were supplied by Opet Fuchs Madeni Yağ 

Sanayi ve Ticaret A.Ş. In the training samples, concentrations of the components are not 

the same as in the original formulation but they are very close with real ones. 

Components and their concentration ranges used in training samples are shown in Table 

4.1. All concentrations are given in grams. 

 

Table 4.1. Components and their concentration ranges (w/w %) used in training set of 

‘Engine Oil 1’ 

 

Name of the Component (w/w %) (g/g) 

Base Oil 1 34.62 – 47.26 

Base Oil 2 23.60 – 31.87 

Additive 1 10.60 – 25.80 

Additive 2 0.34 – 1.34 

Additive 3 0.11 – 0.58 

Additive 4 6.89 – 18.56 

 

 

According to the original formulation of ‘Engine Oil 1’ , major components 

Base Oil 1 and Base Oil 2 are base oils and minor components Additive 1, Additive 2, 

Additive 3 and Additive 4 are the additives. Although base oils are used in larger 

amounts than additives , the most important characteristics of engine oils are provided 

by additives. Table 4.2. illustrates the concentrations (w/w%) of the components in the 

set of ‘Engine Oil 1’. 
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Table 4.2. Concentration profile of the samples in the set of ‘Engine Oil 1’ 

 

Sample # Base Oil 1 Base Oil 2 Additive 1 Additive 2 Additive 3 Additive 4 

1 9.2254 7.4621 4.7447 0.1649 0.048 3.4909 

2 10.0102 7.1574 4.7247 0.3377 0.033 2.8824 

3 10.1811 7.5935 4.0156 0.2685 0.107 2.9318 

4 9.6063 7.2268 4.6145 0.2495 0.049 3.2981 

5 9.9166 6.7889 5.3365 0.1761 0.034 2.7623 

6 10.4132 6.4767 5.78 0.2037 0.076 2.0868 

7 10.304 6.34 4.7064 0.2297 0.099 3.471 

8 9.6606 7.4597 4.8417 0.2658 0.102 2.6552 

9 9.9391 7.1432 5.9693 0.1339 0.073 1.7222 

10 9.3627 7.1332 6.2235 0.1563 0.048 2.1222 

11 10.3296 7.0069 4.1349 0.1894 0.077 3.4109 

12 10.4108 6.7548 4.8433 0.1736 0.032 2.8761 

13 10.4455 7.3655 4.1986 0.2232 0.053 2.7341 

14 9.4052 6.5819 6.3364 0.1553 0.041 2.8681 

15 10.4456 7.1959 3.3084 0.2364 0.066 4.0505 

16 9.8548 6.3782 5.1557 0.161 0.085 3.3799 

17 9.2093 7.2616 6.256 0.1762 0.057 2.0546 

18 10.4055 6.6892 4.2762 0.182 0.095 3.4734 

19 9.1211 6.3085 4.6848 0.1702 0.1 4.6468 

20 10.5853 6.6879 3.4046 0.1973 0.05 4.0031 

21 9.0215 6.9363 4.7956 0.2689 0.103 3.9901 

22 9.5328 7.203 5.1415 0.2169 0.036 2.8845 

23 11.7258 6.3906 2.648 0.1561 0.109 3.9473 

24 11.8441 6.1288 3.7853 0.2281 0.064 3.0121 

25 9.8891 7.2243 4.7307 0.1233 0.089 2.9681 

26 9.5332 6.8864 5.6667 0.1376 0.087 2.7139 

27 9.1791 7.1447 5.8633 0.2544 0.072 2.7952 

28 9.5928 6.7011 5.5615 0.16 0.046 2.8463 

29 10.1335 6.9841 4.0035 0.2393 0.035 3.5575 

30 10.8089 7.3128 2.7146 0.1977 0.048 3.8637 

31 10.2625 6.2877 5.5932 0.1666 0.088 2.7624 

32 10.3626 7.9904 4.5608 0.1691 0.052 1.935 

33 10.1865 6.7952 5.8529 0.218 0.052 1.9442 

34 9.5 7.4416 5.379 0.2245 0.036 2.6404 

35 9.4448 7.3483 3.9993 0.2304 0.102 3.9887 

36 9.971 6.7067 4.6857 0.2175 0.081 3.6352 

37 10.7543 7.4237 2.8475 0.2574 0.073 3.7071 

 

 

(cont. on next page) 
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Table 4.2 (cont.) 

 

38 9.5284 7.1994 5.2233 0.212 0.043 2.9615 

39 9.3813 7.1669 5.649 0.0859 0.045 2.8079 

40 10.4396 5.9521 6.5059 0.1868 0.082 2.0515 

41 10.8096 6.716 4.2062 0.2015 0.046 2.9243 

42 10.2879 6.8987 3.4693 0.2466 0.066 4.127 

43 10.3423 7.208 4.4162 0.2417 0.053 2.9217 

44 11.8253 6.7656 4.1847 0.1827 0.05 2.4859 

45 10.4835 6.3613 5.6059 0.2661 0.059 2.2247 

46 9.6576 7.6295 3.0499 0.2006 0.038 4.6325 

47 10.624 6.5913 3.7298 0.2604 0.072 4.2318 

48 8.7276 6.6579 5.8894 0.1138 0.051 3.7662 

49 10.1093 7.5459 4.7382 0.2361 0.139 2.6324 

50 11.0442 6.5534 4.0698 0.2551 0.116 3.366 

51 9.7463 6.0609 5.8073 0.2186 0.115 3.3888 

52 9.5434 7.2465 5.5722 0.1718 0.146 2.6833 

53 9.812 6.0661 5.488 0.2622 0.078 3.4827 

54 9.625 6.8756 5.8961 0.1894 0.113 2.3744 

55 9.9635 7.2987 3.788 0.1846 0.042 3.7417 

56 10.007 7.1177 3.9044 0.2634 0.145 3.695 

57 9.8796 7.0887 4.0905 0.2617 0.09 3.886 

58 9.3069 7.4482 5.8001 0.2204 0.116 2.4468 

59 9.8284 6.5569 5.3451 0.2595 0.027 2.9701 

60 10.3265 6.9158 4.7018 0.2759 0.062 3.0492 

 

 

During the preparation period, components were weighed according to the 

engine oil formulation and put into a glass beaker . Base oils were flowing liquid with 

very low viscosity but dditives were very thick liquidss with high viscosity so after the 

components were added into the glass beakers , each beaker was heated , sample was 

mixed using a magnetic stirring bar and  homogeneous mixtures were had .Then 

samples were poured into the plastic falcon tubes. They were stored in a dark and dry 

cupboard.  

In the second part of this project, a new training set of another engine oil which 

contains 50 new training samples were prepared in the laboratory. This new engine oil 

was coded as ‘Engine Oil 2’. In contrast, this new original oil has 5 components and 

formulation is distinctly different from ‘Engine Oil 1’. Table 4.3 shows components and 

their concentration ranges used in 50 training sample. (All concentrations are given in 

grams.) 
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Table 4.3. Components and their concentration ranges (w/w %) used in training set of 

‘Engine Oil 2’ 

 

Name of the Component (w/w%) (g/g) 

Base Oil 1 3.37 - 18.90 

Base Oil 2 58.07 - 81.27 

Additive 1 0.32 - 11.84 

Additive 2 8.98 - 22.46 

Additive 2 0.03 - 0.40 

 

 

In the Table 4.3. shown above, Base Oil 1 and Base Oil 2 are base oils and 

Additive 1, Additive 2 and Additive 3 are the additives. In both training sets, samples 

were categorized into two classes, calibration and independent validation sets. The first 

set of 60 samples has 45 calibration, 15 independent validation and the second set of 50 

samples has 38 calibration, 12 independent validation samples. 

4.2. Instrumentation 

Mid-Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR 

Spectrometer (PerkinElmer Inc., MA, USA)  equipped with a three reflection diamond 

ZnSe ATR accessories, tungsten lamp as the source and FR-DTS (fast recovery 

deuterated triglycine sulfate detector) as the detector. Data was collected in the 

absorbance mode in the range of  4000-600 cm
-1

 by taking air as the background. 

Samples were delivered onto the ZnSe crystal using Pasteur pipettes individually. 

Resolution was fixed to 4, 16 and 32 cm
-1

 for the first training set and for the second 

training set  it was optimized to only 4 cm
-1

.Also, during the measurements scan 

number was 4. At the end, totally 3401 data points gathered for each samples. 

4.3. Data Analysis 

The spectra were saved as ASCII file format and then transferred to another PC 

after collection on the FTIR instrument . Then the text files were arranged using MS 

Excel (Microsoft Office Excel 2003) .After that, these text files were used to construct 

models with GILS by the Matlab 7.0 (MathWorks Inc, Natick, MA) to predict the 
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unknown concentrations of the components in the training sets. Also, for making a 

statistical comparison, another chemometric method, Partial Least Square (PLS) was 

performed by the Minitab 15 (Minitab Statistical Software, Release 15 for Windows, 

State College, Pennsylvania).  

PLS has the approach to factor construction that provides the description of 

available data using minimum number of adjustable parameters and, consequently, 

maximum precision and stability of regression model. However, inclusion of excessive 

factors in the model increases the accuracy of description but may decrease the 

predictivity as model starts to represent not just the true pattern of relation between 

descriptors and activity but also random noise and individual features of the training set. 

Because of this, during construction of the model its predictivity is monitored after 

including each successive factor by means of cross-validation procedure.Due to the 

need of using cross validation, in this study, this procedure was used for PLS and the 

optimal number of PC’s was fixed to15 for each model. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 
All samples were analyzed by FTIR-ATR and the data were collected to predict 

the concentrations of the components in sets of engine oils. Each set was divided into 

two groups as calibration set and independent validation (prediction) set. The set of 

‘Engine Oil 1’ has 45 calibration samples and 15 independent validation samples. Also, 

the set of ‘Engine Oil 2’ has 38 calibration and 12 independent validation samples. The 

samples in calibration or independent validation set were chosen randomly. Then the 

concentrations of all constituents were predicted using GILS. Also, PLS was used to 

make a statistical comparison between the results at the end of the study. 

5.1. ‘Engine Oil 1’ Results 

In FTIR spectral region, it is possible to verify that similarities are obviously 

seen in the spectra of six components of ‘Engine Oil 1’ but they have noticeable 

differences in the wavelength range of 1800-600 cm
-1

, mainly due to the absorption 

bands related to the additives and to hydrocarbons.  The Figures 5.1 to 5.3 show the 

spectra of six components, Base Oil 1, Base Oil 2, Additive 1, Additive 2, Additive 3 

and Additive 4 at resolutions 4, 16 and 32 cm
-1

.  

The reason for analysing all the samples in the set of ‘Engine Oil 1’ at different 

resolutions is able to determine if there is any difference in success of the models at 

different resolutions. Because better resolution means richer the spectral information but 

longer analysis time to collect the spectra. At lower resolution, spectra collection is 

made in a quicker way but narrow peaks on the spectrum may be lost. This prevents to 

get information about the small peaks on the spectrum of the components. Because of 

this, after the models were developed by GILS, using a statistical test method of 

ANOVA (Analysis of Variance) with single factor, a decision was made whether the 

results are different or not at different resolutions for each component. 

In Figures 5.1 to 5.3, it is clearly observable that the components of ‘Engine Oil 

1’ have high absorbance values in the range of 3100-2800 cm
-1

 and 1500-600 cm
-1

. In 
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the range of 1500-600 cm
-1

, we can observe absorptions due to hydrocarbons and from 

Zn, Ca and Mg salts of organic acids, such as alkylthiophosphate, sulphonate, 

phenolate. In the region of 2800 to 3000 cm
-1

, the spectra of all the components show 

consistency with each other because they consist of strong C–H and C–C vibrations . 

However, the additives most typically used are calcium or magnesium sulphonates, 

phenates and salicylates have differentiated peaks in the 1500 and 600 cm
-1

 region of 

the infrared spectrum based on their different chemical structures. There is a peak 

around 3300 cm
-1

 which belongs to Additive 2. It is an antioxidant additive and contains 

amine so a peak of N-H vibrations is seen at this wavelength. Also, water, ethylene 

glycol and butylated hydroxy toluene (BHT), commonly used antioxidant additive 

components, all absorb light in the 3600 to 3400 cm
-1

 region due to the O-H functional 

group present in each molecule. On the spectra, it is not possible to get information 

about components in the range of 1800-2000 cm
-1

 because ZnSe masks this small part 

of mid-infrared spectra. This is only disadvantage of ZnSe crystal. Also, there are 

baseline shifts in the absorbance scale. This type of baseline shifts is common in 

reflectance spectroscopy and it occurs because of the thickness diffenerences of the 

components. Lastly, it is evident that the absorption values get lower when the 

resolution gets higher from Figures 5.1 to 5.3. Spectral resolution is a measure of how 

well a spectrometer can distinguish closely spaced spectral features. In a 4 cm
-1

 

resolution spectrum, spectral features only 4 cm
-1

 apart and when the resolution is 

increased, spectral features will be more apart can be distinguished and data matrix can 

be thought as smaller. When resolution goes from 4 cm
-1

 to 32 cm
-1

, resolution 

decreases and some information will be lost on spectrum. Figures 5.1 to 5.3 are shown 

below illustrate the spectra of six components at resolutions 4, 16 and 32 cm
-1

.  
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Figure 5.1. FTIR-ATR spectra of six components of ‘Engine Oil 1’ samples (Res=4) 

 

 

 

 
 

Figure 5.2. FTIR-ATR spectra of six components of ‘Engine Oil 1’ samples (Res=16) 
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Figure 5.3. FTIR-ATR spectra of six components of ‘Engine Oil 1’ samples (Res=32) 
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determination of base oils and additives in two different engine oil  mixtures using the 

FTIR-ATR spectroscopic technique. 

5.1.1. GILS Results 
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2
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to 32 cm
-1

. This is an expected outcome  because there were more data points for 

resolution 4 cm
-1 

than others and this provided a more successful model for the 

prediction. 

 

  

 
 

Figure 5.4. Reference vs. FTIR-ATR predicted ‘Base Oil 1’ contents for the data set of  

‘Engine Oil 1’, when resolution was (a) 4 cm
-1

, (b) 16 cm
-1

, (c) 32 cm
-1 
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g/g (w/w%), 0.779 g/g (w/w%) and 1.468 g/g (w/w%). As it was stated in previous 

paragraph, for Base Oil 1, when resolution decreases, the prediction ability of the model 

decreases because of the loss of some of the information in the finger print region. The 

R
2
 values of regression lines for Base Oil 2 were 0.933, 0.860 and 0.767 for the 

resolutions 4 cm
-1

, 16 cm
-1

 and 32 cm
-1

. SECV and SEP values became higher normally 

when the resolution got higher and thus regression became smaller. For this component,  

SECV and SEP values are still comparable but they are not so good. The main reason is 

that the FTIR spectra of base oils are generally exhibits numerous bands, many of which 

overlap extensively. Thus, few of acidic or basic constituents that may be present in 

Base Oil 2 will give rise to readily identifiable bands in its spectrum so directly 

developing of models for the prediction is difficult. 

 

 

  
 

Figure 5.5. Reference vs. FTIR-ATR predicted ‘Base Oil 2’ contents for the data set of 

‘Engine Oil 1’, when resolution was (a) 4 cm
-1

, (b) 16 cm
-1

, (c) 32 cm
-1

  

 

 

 

 

 

 

 

 

(cont. on next page) 
 

y = 0.9332x + 1.8383

R
2
 = 0.933

(a)

22

24

26

28

30

32

22 24 26 28 30 32

Actual Base Oil 2 (w/w %)

P
re

d
ic

te
d

 B
a

s
e

 O
il 

2
 (

w
/w

 %
)

Calibration

Validation

y = 0.8599x + 3.8575

R
2
 = 0.860

(b)

22

24

26

28

30

32

22 24 26 28 30 32

Actual Base Oil 2 (w/w %)

P
re

d
ic

te
d

 B
a

s
e

 O
il 

2
 (

w
/w

 %
)

Calibration

Validation



30 

 

 
 

Figure 5.5. (cont.) 

 

 

Figure 5.6 shows the reference versus predicted concentrations of Additive 1 

content in ‘Engine Oil 1’ data set. The SECV values that are calculated for Additive 1 

were 0.613 g/g (w/w%), 0.680 g/g (w/w%) and 0.477 g/g (w/w%). The SEP values for 

the same component were 0.697 g/g (w/w%), 0.635 g/g (w/w%) and 0.375 g/g (w/w%). 

R
2
 values were 0.992, 0.970 and 0.985. Although Additive 1 has a very similar 

spectrum with the base oils spectra, its model are better than models of the base oils and 

generally accuracy for the Additive 1 independent validation samples are high enough 

at all resolutions. In fact, Additive 1 shows many different characteristic bands than 

base oils on FTIR-ATR spectra and this differentiation provides a fit model with high 

R
2
 for Additive 1 content. 
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Figure 5.6. Reference vs. FTIR-ATR predicted Additive 1 contents for the data set of 

‘Engine Oil 1’, when resolution was (a) 4 cm
-1

, (b) 16 cm
-1

, (c) 32 cm
-1
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each components individually. For developing beter models , these three components 

were combined to a single one and a new model was developed. Figure 5.7 below 

shows the new model developed at different resolutions. The SECV values were found 

as 0.303 g/g (w/w%), 0.321 g/g (w/w%), 0.231 g/g (w/w%) and the SEP values were 

calculated as 0.424 g/g (w/w%), 0.443 g/g (w/w%) and 0.286 g/g (w/w%), respectively. 

Also R2 regression values were found as 0.989, 0.987 and 0.994. It is clearly seen that 

this new model (combination of Base Oil 1 , Base Oil 2 and Additive 1 contents ) made 

better predictions for the concentration than individual ones. In Figure 5.7, B1 

represents Base Oil 1, B2 represents Base Oil 2  and A1 represents Additive 1. 

 

 

  
 

Figure 5.7. Reference vs. FTIR-ATR predicted B1B2A1 contents for the data set of 

‘Engine Oil 1’, when resolution was (a) 4 cm
-1

, (b) 16 cm
-1

, (c) 32 cm
-1
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Figure 5.7. (cont.) 

 

 

Figure 5.8 shows the actual versus predicted concentrations belongs to the forth 

component, Additive 2. The SECV values were 0.013 g/g (w/w%), 0.010 g/g (w/w%), 

0.009 g/g (w/w%) and SEP values were 0.015 g/g (w/w%), 0.015 g/g (w/w%), 0.024 

g/g (w/w%). R
2
 values were found as 0.996, 0.998 and 0.998. When these results were 

compared to other components, the prediction ability of the models for this component 

are better than others with lowest SECV-SEP and highest regression coefficients. This 

component, Additive 2 is a an antioxidant additive used in engine oils to prevent the oil 

from oxidizing. This kind of aminic antioxidants have noticeable absorbance bands in 

select regions (especially between 1600-1200 cm
-1

 and around 3300 cm
-1

) of the 

infrared spectrum, thus enabling FTIR spectroscopy to be an ASTM method preferred 

means of measurement. These bands are so characteristic, they are often called 

fingrerprint  bands of antioxidant additives and its functional groups are automatically 

detected by the FTIR-ATR spectrometer and modeled successfully by GILS. Also, other 

reason of this best- fit model is that accurate results are achievable if a carefully 

preparation of training samples has been used to develop the model. 
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Figure 5.8. Reference vs. FTIR-ATR predicted Additive 2 contents for the data set of 

‘Engine Oil 1’, when resolution was (a) 4 cm
-1

, (b) 16 cm
-1

, (c) 32 cm
-1
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prediction (SEP) 0.035 g/g (w/w%), 0.017 g/g (w/w%) and 0.017 g/g (w/w%) for 

independent test set, respectively. The R
2
 values of regression lines for Additive 3 were 

0.967, 0.982 and 0.970. 

This component was coded as Additive 3 and it is a pour point depressant. It is a 

critical components that prevent wax fractions in the base oil from forming large crystal 

networks which inhibit lubricant flow at cold temperatures. Basically, it is a kind of 

additive which modifies viscosity of engine oil . It is very affective additive although it 

was used in very small quantities differently from other components. For this reason, 

the range of concentration (w/w %) is narrower for Additive 3 than others. This makes 

prediction harder. However, a successful model was obtained with very low SEP values. 

 

  
 

Figure 5.9. Reference vs. FTIR-ATR predicted Additive 3 contents for the data set of 

‘Engine Oil 1’, when resolution was (a) 4  cm
-1

, (b) 16 cm
-1

, (c) 32 cm
-1
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Figure 5.9. (cont.) 

 

 

For the last component, Additive 4 actual versus predicted concentrations were 

shown in Figure 5.10. Using by GILS, the standart errors of calibration with cross 

validation (SECV) were found as 0.306 g/g (w/w%), 0.451 g/g (w/w%), 0.308 g/g 

(w/w%) and standard errors of prediction (SEP) were calculated as 0.251 g/g (w/w%), 

0.311 g/g (w/w%) and 0.334 g/g (w/w%). The R
2
 values of regression lines for Additive 

4 were 0.988, 0.975 and 0.988 based on the resolution values. The results are good 

enough to make successful predictions of Additive 4 concentrations. 

Additive 4 is one of the most important component used in engine oil 

formulations because total base number (TBN) of hydrocarbon lubricating oils are 

determined based on the Additive 4 content by spectroscopically. It represents the 

overall alkalinity contributed to an oil. It contains characteristic bands from strong C-H 

and C-C vibrations in the range of 1600-1500 cm
-1

 and 1100-800 cm
-1

. The good results 

showed that this simple method is a successful alternative for the ASTM methods for 

the determination of the alkalinity of engine oils in routine oil condition monitoring and 

it can be used for the  improvement over many methods presently available. 
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Figure 5.10. Reference vs. FTIR-ATR predicted Additive 4 contents for the data set of 

‘Engine Oil 1’, when resolution was (a) 4 cm
-1

 (b) 16 cm
-1

 (c) 32 cm
-1 
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select while for Base Oil 2 content, around 2800 and 3000 cm
-1

, for Additive 1 content 

600 cm
-1

 is the most frequently selected region. However, for B1B2A1 content , 

selection was made in a wide range of wavenumbers. Also, the wavelength region 

around 1500 cm
-1

 for Additive 2 content indicates a strong tendency for GILS method 

to select while for Additive 3 and Additive 4 contents there is no strong tendency for 

selection. 

 

 

 

 

 

Figure 5.11. Frequency distribution of GILS selected FTIR-ATR wavelengths for (a) 

Base Oil 1, (b) Base Oil 2, (c) Additive 1, (d) B1B2A1, (e) Additive 2, (f) 

Additive 3, (g) Additive 4 contents of ‘Engine Oil 1’ samples when the 

resolution was 4 cm
-1
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Figure 5.11. (cont.) 

 

 

Figure 5.12 illustrates the frequency distribution of selected wavelengths in 100 

runs with 30 genes and 50 iterations for the ‘Engine Oil 1’ data set when resolution was 

16 cm
-1

. As can be seen from Figure 5.12 the regions where selection frequencies 

observed are very high except for Additive 4 and B1B2A1. The wavelength region 

around 3000 cm
-1

, 1500 cm
-1

 and 700 cm
-1

 for Base Oil 1 content indicates a strong 

tendency for GILS method to select while for Base Oil 2 content, around 3000 and 1500 

cm
-1

, for Additive 1 content 700 cm
-1

 is the most frequently selected region. However, 

for Additive 4 and B1B2A1 contents, selection was made in a wide range of 

wavenumbers. Also, the wavelength region around 1300 cm
-1

 and 1000 cm
-1

 for 

Additive 2 and lastly for Additive 4 content 1200 cm
-1

 indicates a strong tendency for 

GILS method to select the regions where the selection frequences observed for all the 

components showed differences from that in Figure 5.11 based on the difference in 

resolution. 
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Figure 5.12. Frequency distribution of GILS selected FTIR-ATR wavelengths for (a) 

Base Oil 1, (b) Base Oil 2, (c) Additive 1, (d) B1B2A1, (e) Additive 2, (f) 

Additive 3, (g) Additive 4 contents of ‘Engine Oil 1’ samples when the 

resolution was 16 cm
-1
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Figure 5.12. (cont.) 

 

 

Figure 5.13 illustrates the frequency distribution of selected wavelengths in 100 

runs with 30 genes and 50 iterations for the ‘Engine Oil 1’data set when resolution was 

32 cm
-1

. According to the Figure 5.13, the regions of selection frequencies are more 

noticable than that in the Figure 5.12. The wavelength region around 700 cm
-1

 for Base 

Oil 1 content indicates a strong tendency for GILS method to select while for Base Oil 2 

content, around 3100, 2000 and 700 cm
-1

, for Additive 1 content 700 cm
-1

 is the most 

frequently selected region. Also, for B1B2A1 content, selection was made mostly 

around 1200 cm
-1

. The wavelength region around 1300 cm
-1

 for Additive 2 content and 

1200 cm
-1

 for Additive 3 indicates a strong tendency for GILS method to select while 

for Additive 4 contents there is no strong tendency for selection. 
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Figure 5.13. Frequency distribution of GILS selected FTIR-ATR wavelengths for (a) 

Base Oil 1, (b) Base Oil 2, (c) Additive 1, (d) B1B2A1, (e) Additive 2, (f) 

Additive 3, (g) Additive 4 contents of ‘Engine Oil 1’ samples when the 

resolution was 32 cm
-1
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Figure 5.13. (cont.) 

 

 

After  GILS was performed for all the components at different resolutions, one-

way ANOVA (Analysis of Variance) was used ta make a comparison between the GILS 

models. ANOVA is a statistical test of whether or not the means of several groups are 
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there are two possible way. The first one is the null hypothesis and it says that the 

means are equal: H0: Mean1 = Mean2 = Mean3. The other way is the alternative 

hypothesis which is that at least one of the means are different: Ha: At least one of the 

means is different. A test result (calculated from the null hypothesis and the sample) is 

called statistically significant if it is deemed unlikely to have occurred by chance, 

assuming the truth of the null hypothesis. A statistically significant result (when a 
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of the null hypothesis. Table 5.1 shows the ANOVA results for the data set of ‘Engine 

Oil 1’. 

 

Table 5.1. ANOVA Results for the data set of ‘Engine Oil 1’ (α =0.05) 

Name of the 

Component 
F P-value Fcrit 

Base Oil 1 0.05 0.99 2.77 

Base Oil 2 0.10 0.96 2.77 

Additive 1 0.02 1.00 2.77 

B1B2A1 0.01 1.00 2.77 

Additive 2 0.01 1.00 2.77 

Additive 3 0.04 0.99 2.77 

Additive 4 0.01 1.00 2.77 

 

 

According to AVOVA results, F < Fcrit and P-value > α for the components so 

it is unable to reject the Null Hypothesis and the means are same. This means that there 

is not a significant difference between the data for any component at different 

resolutions. 

5.1.2. PLS Results 

PLS is a kind of factor based methods that combines ILS approach using factor 

data. PLS assumes that the error can be derived from both absorbance readings and 

from the measurement of component concentration. Like ILS, PLS does not require the 

user to prepare a calibration standard where all of the interfering species are known. 

Also, it tries to find the factors which have the greatest relevance for prediction.  

In this study, PLS was performed for both sets of ‘Engine Oil 1’ and ‘Engine Oil 

2’ using the data in the range of 4000-600 cm
-1

,  1500-600 cm
-1

 and  1300-800 cm
-1

. 

The aim for selecting these regions is to determine the region that provides the most 

successful model for  the prediction of concentrations. Figure 5.14 illustrates PLS 

results for the set of ‘Engine Oil 1’ in the range of 4000-600 cm
-1

 when resolution was 4 

that was shown below. According to Figure 5.14, the models for B1B2A1 and Additive 

4 have high prediction ability of concentrations with high regression coefficients. 

However, for other components the models are suffering from high collinearity and 
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cannot be trusted for producing a high calibration quality and for making prediction of 

concentrations in the independent validation samples. 

 

  

  

 

Figure 5.14. PLS Results for the set of ‘Engine Oil 1’ in the range of 4000-600 cm
-1

 

(Res=4)  
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Figure 5.14. (cont.) 
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subtraction is required to eliminate the collinearity and unwanted information that 

would prevent the useful calibration. For this reason, the models shown below were 

obtained using the subtracted spectra in the range of 1500-600 cm
-1

 for the set of the 

‘Engine Oil 1’. 

In the mid infrared region, the wavenumber range of 1500-600 cm
-1

 consists of 

many characteristic bands of lubricating oils especially belongs to the additives such as 

calcium or magnesium sulphonates, phenates and salicylates. In this spectral region, 

PLS was used to examine the prediction ability of the models. Figure 5.15 shows the 

models developed for the components in ‘Engine Oil 1’ using the subtracted data in mid 

infrared region . 

 

  
 

Figure 5.15. PLS Results for the set of ‘Engine Oil 1’ in the range of 1500-600 cm
-1
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Figure 5.15. (cont.) 
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Figure 5.15. (cont.) 
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-1
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-1
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Figure 5.16. PLS Results for the set of ‘Engine Oil 1’ in the range of 1300-800 cm
-1
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Figure 5.16. (cont.) 
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with high correlation coefficient, R
2
. This shows that although the wavenumber region 

got narrower, the characteristic peaks for developing models for the additives did not  

get lost. The region of 1300-800 cm
-1

 is also capable of predicting concentration of 

Additive 2, Additive 3 and Additive 4 contents. 

For making a comparison between PLS and GILS , SECV, SEP and R
2  

values 

are given for the data set of ‘Engine Oil 1’ in Table 5.2 below. 

 

 

Table 5.2. Calibration summary for the data set of ‘Engine Oil 1’ (Res=4) 

 

Engine Oil 1 
PLS GILS 

SECV  g/g 

(w/w%) 

SEP g/g 

(w/w%) 
R

2
 

SECV g/g 

(w/w%) 

SEP g/g 

(w/w%) 
R

2
 

N
a
m

e 
o
f 

th
e 

C
o
m

p
o
n

en
t 

Base Oil 1 2.006 2.388 0.205 0.616 1.038 0.943 

Base Oil 2 1.587 1.876 0.005 0.478 1.364 0.933 

Additive 1 2.076 2.107 0.809 0.613 0.699 0.992 

B1B2A1 0.612 0.528 0.969 0.303 0.424 0.989 

Additive 2 0.153 0.165 0.588 0.013 0.015 0.996 

Additive 3 0.148 0.127 0.002 0.022 0.035 0.967 

Additive 4 0.590 0.445 0.970 0.306 0.251 0.988 

 

 

For the data set of ‘Engine Oil 1’, the results for PLS and GILS are very 

different from each other. Although PLS results are suffering from lower R
2
  and higher 

SECV and SEP values for all the components, GILS provided more successful models 

with accurate results to predict the concentrations of the components in ‘Engine Oil 1’ 

samples. Also, PLS is more time-consuming method than GILS because of its 

computational requirements. Thus, when a comparison is made, GILS is capable of 

determining the engine oil compositions quaantitatively. 

5.2. ‘Engine Oil 2’ Results 

In this study, second set contains samples of the second engine oil coded as 

‘Engine Oil 2’. This is the secondly preferred engine oil which is sold by OpetFuchs 

Company. They were analysed by FTIR-ATR when the resolution was only 4 cm
-1

 and 

then for each component models were developed by GILS. They were shown in Figure 

5.18 below. 
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5.2.1. GILS Results 

According to the Figure 5.17, SECV values were found as 0.623 g/g (w/w%) for 

the first component, Base Oil 1. For the Base Oil 2, it was calculated as 0.674 g/g 

(w/w%) , 0.4029 g/g (w/w%) for the Additive 1, 0.206 g/g (w/w%) for the Additive 2 

and 0.023 g/g (w/w%) for the last component, Additive 3. Also, after making prediction 

of concentration  for the independent validation samples, standart error of prediction 

(SEP) values were calculated. For Base Oil 1, SEP was 0.768 g/g (w/w%). It was found 

as 0.579 g/g (w/w%) for Base Oil 2, 0.378 g/g (w/w%) for Additive 1, 0.519 g/g 

(w/w%) for Additive 2 and 0.022 g/g (w/w%) for Additive 3. Lastly, regression 

coefficients were found as 0.972, 0.982, 0.989, 0.996 and 0.943 for Base Oil 1, Base Oil 

2, Additive 1, Additive 2 and Additive 3 respectively. 

When these results were compared to the results of the ‘Engine Oil 1’ samples at 

the same resolution, 4 cm
-1

, it is clearly seen that a better prediction was made for Base 

Oil 2, Additive 1 and Additive 3 in the set of ‘Engine Oil 2’. For other components of  

‘Engine Oil 2’ samples, Base Oil 1 and Additive 2 predictions are not good enough as in 

‘Engine Oil 1’. However, all these GILS results for all the components of ‘Engine Oil 2’ 

and ‘Engine Oil 1’ sets showed that the GILS method is able to model engine oil 

additives and base oil concentrations successfully using FTIR spectra of the process 

samples. Multivariate calibration models that are generated with GILS were component 

specific as observed from selection frequency plots indicating that with all the 

overlapping and complex nature of the FTIR spectra of the multicomponent mixtures, 

the GILS algorithm only focuses on the regions where the most concentration related 

information is contained. Also, it was very effective to extract necessary information 

while constructing multivariate calibration models resulting in a robust component 

specific modeling despite all the overlapping features in the spectra. 
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Figure 5.17. Reference vs. FTIR-ATR predicted (a) Base Oil 1, (b) Base Oil 2, (c) 

Additive 1, (d) Additive 2, (e) Additive 3 contents for the data set of 

‘Engine Oil 1’, when resolution was 4 cm
-1
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Figure 5.17. (cont.) 

 

 

Figure 5.18 illustrates the frequency distribution of selected wavelengths in 100 

runs with 30 genes and 50 iterations for the ‘Engine Oil 2’ data set. As can be seen from 

Figure 5.18 there are a number of regions where selection frequences are very high 

compared to the rest of the spectrum. The wavelength region around 2900 cm
-1

 for Base 

Oil 1 content indicates a strong tendency for GILS method to select while for Base Oil 2 

content around 300 cm
-1

, for Additive 2 content around 1200 cm
-1

, for Additive 1 

content around 700 cm
-1

 and for Additive 3 content around 1000-1200 cm
-1

 are the most 

frequently selected regions. 
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Figure 5.18. Frequency distribution of GILS selected FTIR-ATR wavelengths for (a) 

Base Oil 1,(b) Base Oil 2, (c) Additive 1, (d) Additive 2, (e) Additive 3, 

contents of ‘Engine Oil 2’ samples, when the resolution was 4 cm
-1
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5.2.2. PLS Results 

PLS was performed for the set of ‘Engine Oil 2’ using the data in the range of 

4000-600 cm
-1

, 1500-600 cm
-1

 and 1300-800 cm
-1

. Figure 5.19 illustrates PLS results 

for the set of ‘Engine Oil 2’ in the range of 4000-600 cm
-1

 when resolution was 4 that 

was shown below. According to Figure 5.19, only one model for Additive 2 have high 

prediction ability of concentrations with high regression coefficients. However, for 

other components the models are suffering from high collinearity and cannot be trusted 

for producing a high calibration quality and for making prediction of concentrations in 

the independent validation samples. 

 

  
 

Figure 5.19. PLS Results for the set of ‘Engine Oil 2’ in the range of 4000-600 cm
-1
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Figure 5.19. (cont.) 
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-1
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magnesium sulphonates, phenates and salicylates. In this spectral region, PLS was used 

to examine the prediction ability of the models. Figure 5.20 shows the models 

developed for the components in ‘Engine Oil 2’ using the subtracted data in mid 

infrared region. 
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Figure 5.20. PLS Results for the set of ‘Engine Oil 2’ in the range of 1500-600 cm
-1
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Figure5.20. (cont.) 

 

 

Performing PLS to only 1500-600 cm
-1

 spectral region gave better results for all 

the components than the results for all the spectrum but still the models are suffering 

from collinearity except the model for Additive 2. 

In the last part of the study, PLS was used to develop models for the components 

in ‘Engine Oil 2’ samples in a different wavenumber region, 1300-800 cm
-1

. Figure 5.21 

illustrates the PLS results for each component in this spectral region that was shown 

below. Like the range of 1500-600 cm
-1

, the spectral region of 1300-800 cm
-1

 also 

consists of different characteristic bands belong to the additives so it was expected to 

develop more successful models. Figure 5.21 shows the models developed for the 

components in ‘Engine Oil 2’ using the wavenumber range of 1300-800 cm
-1

 in mid 

infrared region. For the set of ‘Engine Oil 2’ the best models were obtained using the 

data in this spectral range with highest R
2
. 
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Figure 5.21. PLS Results for the set of ‘Engine Oil 2’ in the range of 1300-800 cm
-1
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Figure 5.21. (cont.) 

 

 

For making a comparison between the results of two statistical methods, PLS 

and GILS; SECV, SEP and R
2
 values are given for the data set of ‘Engine Oil 2’ in 

Table 5.3 below. 

 

Table 5.3. Calibration summary for the data set of ‘Engine Oil 2’ (Res=4) 
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PLS and GILS are very different from each other. Although PLS results are suffering 
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2
 and higher SECV and SEP values for all the components, GILS provided 

more successful models with accurate results to predict the concentrations of the 

components in ‘Engine Oil 2’ samples. Also, PLS is more time-consuming method than 

GILS because of its computational requirements. Thus, when a comparison is made , 

GILS is capable of  determining the engine oil compositions quantitatively.  
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CHAPTER 6 

CONCLUSIONS 

 
In this study, some calibration models were developed for two engine oils by the 

combination of FTIR-ATR spectroscopy and multivariate calibration methods. Samples 

were analyzed in mid-infrared region by the technique of FTIR-ATR spectroscopy at 

different resolution values, 4, 16 and 32 cm
-1

. GILS was used as the multivariate 

calibration method when the calibration models were developed for each component for 

both engine oil sets. Reliability of the calibration models were determined by SECV and 

SEP values as well as with the R2 values from the reference vs. predicted content plots. 

Then the models for each components at different resolutions were compared by a 

statistical technique of ANOVA. According to ANOVA, there is no significant 

difference between the results obtained at different resolutions for each components. 

From the results, it is seen that successful calibration models can be constructed by 

using the methods mentioned to provide fast and nondestructive determination of base 

oils and additives in lubricating oils. This might provide an alternative method in 

lubricants industry instead of time-consuming and destructive ASTM methods. 

Also, for making a chemometric comparison between the results, PLS was used. 

It was performed for all the components using the whole spectra, then only for the range 

of 1500-600 cm
-1

 and lastly for the range of 1300-800 cm
-1

. According to this 

technique, the results showed that subtracted data gave more successful models. Unlike 

ILS, there is no variable selection necessary, and there is less of a tendency to overfit 

the data due to noise. 

At the end of the chemometric study, the noticeable differences can be 

summarized between the results for PLS and GILS. PLS has a significant advantage that 

it models data in a more compact form and, because it organizes the data based on the 

similarity of information content, it can also aid in chemical interpretation of the 

system. However, multivariate calibration models that are generated with GILS use 

selection frequency plots indicating that with all the overlapping and complex nature of 

the FTIR spectra of the multicomponent mixtures because GILS algorithm only focuses 

on the regions where the most concentration related information is contained. This 
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provides to increase the prediction ability of the models for each components in 

complex mixtures. When we compare GILS models with PLS models developed in this 

study, it was clearly showed that GILS models had better prediction performance than 

PLS models for all the components studied. Also, quantitative determination of the 

components based on FTIR spectroscopy coupled with multivariate calibration offers a 

much faster analysis that could allow continuous monitoring of quality control process 

of the lubricants. 
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