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ABSTRACT 

 
INVESTIGATIONS ON THE EFFECTS OF CARBON SOURCES  

AND pH ON EXO-POLYGALACTURONASE PRODUCTION BY 

Aspergillus sojae 

 
Pectinases are a group of enzymes that are responsible for degredation of pectic 

substances. Pectinases are produced by many organisms including plants, bacteria and 

fungi. 

The aim of this study was to investigate the effect of different carbon sources 

and pH on pectinase production by a group of flamentous fungi. For this purpose, 

Aspergillus niger, Rhizopus oryzae ATCC 4858, Aspergillus sojae ATCC 2035 (A. 

sojae WT) and its mutant type Aspegillus sojae MT (A. sojae MT) grown in orange peel 

containing media were evaluated in terms of exo-polygalacturonase (exo-PG), pectin 

lyase (PL), pectin methyl esterase (PME), and also xylanase and cellulase activities. A. 

sojae WT and A. sojae MT were found to be as exo-PG producers. Maximum exo-PG 

activities were 47.84 U/ml and 108.02 U/ml, respectively. 

Exo-PG production by A. sojae WT and A. sojae MT was evaluated using the 

medium containing glucose, pectin, pectin/glucose, pectin/fructose and pectin/sucrose 

as substrate. Additional supply of glucose to the pectin media was found to be more 

effective than fructose or sucrose. The fermentations in which pH was not maintained, 

the use of glucose, pectin and pectin/glucose resulted in superior enzyme activities 

compared to ones obtained with other media compositions. 
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ÖZET 

 
KARBON KAYNAKLARININ VE pH’NIN Aspergillus sojae İLE EKZO-

POLİGALAKTURONAZ ÜRETİMİNE ETKİLERİ ÜZERİNE 

ARAŞTIRMALAR 

 
Pektinazlar bitkiler, bakteriler ve mantarları da içeren birçok organizma 

tarafından üretilebilen, pektik bileşiklerin degredasyonundan sorumlu olan enzim 

grubudur. 

Bu çalışmanın amacı karbon kaynaklarının ve pH’nın pektinaz üretimine 

etkilerinin belirlenmesidir. Bu amaçla Aspergillus niger, Rhizopus oryzae ATCC 4858, 

Aspergillus sojae ATCC 2035 (A. sojae WT) ve Aspegillus sojae mutantı (A. sojae MT) 

portakal kabuğu içeren sıvı ortamda büyütülerek ekzo-poligalakturonaz (ekzo-PG), 

pektin liyaz (PL), pektin metil esteraz (PME), ksilanaz ve selülaz üretimleri 

incelenmiştir, sadece Aspergillus suşlarının Ekzo-PG üreticisi olduğu bulunmuştur, A. 

sojae WT ve A. sojae MT için sırasıyla 47.84 U/ml ve 108.02 U/ml olarak 

belirlenmiştir. 

Farklı karbon kaynaklarının ekzo-PG üretimi üzerine etkisi, substrat olarak 

glukoz, pektin ve pektin/glukoz, pektin/fruktoz ya da pektin/sukroz içeren ortamlar 

kullanılarak incelenmiştir. Ekzo-PG üretimi sırasında substrat tüketim hızı, pH değişimi 

ve küf morfolojisi incelenmiştir. En yüksek aktivite değerleri pectin/glukoz içeren 

ortamda elde edilmiştir. Düşük pH değerlerinde exo-PG üretiminin daha fazla olduğu 

belirlenmiştir. Başlangıç pH’sinin enzim üretimi üzerinde büyük etkiye sahip olduğu, 

ancak fermentasyon sırasında ortam pH’sine müdahale edilmesi durumunda aktivitenin 

düştüğü gözlemlenmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

Pectin is a complex polysaccharide found mainly in the middle lamella and the 

primary call walls of higher plants (Kashyap et al., 2001) and it constitutes the  35% of 

primary walls in plants (Caffall et al., 2009). 

Pectolytic enzymes, or pectinases are a heterogeneous group of related enzymes 

that degrades the pectic substances by means of de-polymerization, trans-elimination, or 

de-esterification. This pectolytic enzymes group mainly consists of exo-

polygalacturonase and endo-polygalacturonase, pectin lyase and pectin methylesterase 

enzymes (Fontana et al., 2012). 

Pectinases are commercially important enzymes, owing to have share of almost 

5% of enzyme sales around the world (Alimardani-Theuil et al., 2011). This information 

indicates that pectinases are widely used in industrial applications (Jayani, Saxena et al. 

2005), mainly in food industry by the share of 25% in the global sales of the food 

enzymes, and then textile industry and wastewater treatment due to their ability to 

degrade pectic substances (Kashyap et al., 2001; Jayani et al. 2005; Fontana et al., 

2012). 

Pectinases are naturally produced by many organisms including plants, bacteria 

and fungi (Malvessi et al., 2004). Among these natural producers, fungi have preference 

over any other organism, because of the feasibility for industrial productions. Fungi 

have long been used in commercial productions of many valuable products, this may 

attribute to their easy compatibility to large scale operation modes, safety for human 

health (Reading et al., 2003; Posch et al., 2013). 

In industrial applications, filamentous fungi belonging to the genus Aspergillus 

are widely used (Heerd et al., 2012), especially Aspergillus niger is most preferred 

specie in many productions (Rodríguez-Fernández et al., 2011) by not only submerged 

processes but also solid-state processes (Fontana et al., 2012). Recently another specie 

of Aspergillus genus was found to be as a good  producer of pectinases, Aspergillus 

sojae (Tari et al., 2008). 
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It is known that the regulation of pectinolytic enzymes depends on many 

fermentation conditions like pH, carbon source, growth stage, etc. (Peñalva et al., 2008), 

but this regulation has not been deeply investigated and characterized yet. Previous 

published studies suggest that in fungi, pectinase production is regulated depending on 

mostly pH and carbon source (Malvessi et al., 2004; Fontana et al., 2012).  

The aim of this study was to investigate some fungal strains with respect to 

regulation of pectinase biosynthesis by means of the influence of carbon source and pH. 

For this purpose, pectinase producing strains were firstly determined, and examined 

under different culture conditions. The effects of different types and concentrations of 

carbon sources were evaluated. Additionally, the effect of pH on enzyme production 

was evaluated using variation of the culture media pH. Enzyme activity and fungal 

morphology were observed as responses though the fermentation. 
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CHAPTER 2 

 

LITERATURE VIEW 

 

2.1.   The Significance of Fungi in Industry 

 

In the last decades, as a result of great progress in genetic engineering, 

biotechnology had a great importance almost in every process which generates valuable 

products as antibiotics, drugs, agricultural regulators, vitamins and enzymes (Reading et 

al., 2003). 

Fungi have long been used in many industrial processes, not only as a food but 

also processing the food. Moreover, fungi have a great significance in biotechnology as 

‘biologic agents’. Fungi, furthermore, can be used in textile, waste water treatment 

industries, and biotransformation of some economically valuable compounds (Sharma 

et al., 2013). 

Aspergillus niger has been used for industrial productions of many enzymes for 

a long time, not only in submerged fermentations but also solid state fermentations. This 

fungus has an advantage that is the possession of GRAS (Generally Regarded A Safe) 

status, which means that the metabolites of this fungus can be used in the food industry 

(Naidu et al., 1998). 

 

2.1.1. Fungal Enzymes 

 

Among the usage of fungi in biotechnological processes, the most important use 

is the production of enzymes due to their economic significance (Jayani et al., 2005).  

Enzymes are extremely efficient and highly specific biocatalysts, which were 

discovered in the second half of nineteenth century (Hoondal et al., 2002). Hence they 

have considerable importance in industry. As a matter of convenience, they can replace 

many other harmful processes by providing benefits in processes owing to their 

operation conditions, unlike chemical reaction processes, enzymatic reactions do not 
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require, for example high pressure operation conditions or  do not cause any side 

reactions (Reading et al., 2003). 

Both extracellular and intracellular enzymes can be produced by fungi. 

However, extracellular enzymes are more commercially important than intracellular 

enzymes. Fungal enzymes are better than other origins due to the absence of some 

contaminating enzymes and have easier downstream processing (Reading et al., 2003). 

 

2.2.  Pectin 

 

Cellulose, hemicellulose, lignin and pectin are the main components of plant cell 

wall (Ramos et al., 2010). Pectin is a complex polysaccharide found mainly in the 

middle lamella and the primary call walls of higher plants (Kashyap et al., 2001). It 

constitutes the  35% of primary walls in plants (Caffall et al., 2009). 

 

 

 

Figure 2.1. The structure of pectin  

(Source: Yadav et al., 2009) 

 

 

The basic unit in pectic substances is galacturonan (α-D-galacturonate). Pectic 

substances are divided into two types; homogalacturonan ,n which the main polymer 

chain consist of  α-D-galacturonate units linked by (1→4) glycosidic bonds and 

heterogalacturonan (rhamnogalacturonan) in which the primary chain consist of (1→4) 
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linked α-D-galacturonates and L-rhamnose units that are β(1→2) and  β(1→4) linked to 

D-galacturonate units (Caffall et al., 2009). 

 

2.2.1. Pectinases and Their Applications 

 

Efficient biodegradation of pectin requires a wide range of enzymes, including 

enzymes that act on the main chain as well as enzymes acting on the side chains. 

Classification (Table 2.3), biochemical and physical properties (Table 2.4) of some 

fungal pectinases are given below. 

Pectinases steal market share in many industry according to their action of 

mechanism, by products or physicochemical properties (Kashyap et al., 2001; Jayani et 

al., 2005). However, pectinases are classified into two types according to industrial 

apptication area, as acidic and alkaline pectinases. For example, alkaline pectinases are 

not compatible to be used in fruit juice industry known as the main application area of 

pectinases, because of acidic pH of fruit juices (Yadav et al., 2009). But, they have a 

great demand in textile industry (Kashyap et al., 2001). The paper making, coffee and 

tea fermentations are some of the application areas of those enzymes (Hoondal et al., 

2002). Industrial applications of pectinases can be summarized as given below (Table 

2.1). 

Pectinases are commercially available at the market, and some of producers are 

given below (Table 2.2). With an exception of highly purified forms for analytical 

analysis, commercial pectinase preperations are generally sold as crude forms, including 

contaminating agents from fermentation broth and other enzymes like cellulose, 

xylanase etc. However, pectinase enzyme preparations are generally consist of 

polygalacturonase, pectin methyl esterase and pectin lyase (May et al., 1990; Gummadi 

et al., 2003). 

Polygalacturonases (PG); are divided into two groups as endo- and exo-

polygalacturonases based on the nature of reaction. Endo-PG cleaves the substrate 

randomly while Exo-PG cleaves in end-wise fashion (Gummadi et al., 2003). PGs are 

known to play a major role in pectin breakdown by cleaving main chain of pectin. PG is 

a depolymerising enzyme that hydrolysis homogalacturonan or polygalacturonic acid 

into galacturonic acid monomers by breaking the α-1,4-linkages (Dogan et al., 2008). 
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Due to its wide range of use, PG enzymes have a great demand in industrial 

applications. 

 

Table 2.1. Industrial applications of pectinases 

(Source: May et al., 1990; Hoondal et al., 2002) 

Application Purpose Reference 

Claud stabilization To precipitate hydrocolloid matter 

present in fruit juices 

Rebeck, 1990; Grassin and 

Fauquembergue, 1996 

Fruit juice clarification Degredation of cloud forming 

pectic substances. Hence, the juice 

can be easily filtered and processed 

Rombouts and Pilnik, 1986; 

Alkorta et al., 1998 

Extraction of juice and 

oil 

To overcome the difficulty in 

pressing fruit pulp to yield juice 

and oil 

Kilara, 1982; Pilnik and 

Voragen, 1993 

Maceration  To break down the vegetable and 

fruit tissues to yield pulpy products 

used as base material for juices, 

nectar as in the case of baby foods, 

pudding and yogurt 

Fogarty and Kelly, 1983 

Liquefaction  To break down fermentable plant 

carbohydrates to simple sugars 

Beldman et al.,1984 

Gelation  To use in gelling low-sugar fruit 

products 

Spiers et al., 1985 

Wood preservation To prevent the wood from infection 

by increasing the permeability of 

wood preservative  

Fogarty and Ward, 1973 

Retting of fiber crops To release  fiber from the crops by 

fermenting with microorganisms, 

which degrade pectin 

Henriksson et al., 1999 

Degumming of fiber 

crops 

To remove the remie gum of remie 

fiber 

Grucharanam and Deshpande, 

1986; Zheng et al., 2001 

Waste water treatment To degrade pectic substances in 

waste water from citsus processing 

industries 

Peterson, 2001; Tanabe et al., 

1987 

Coffee and tea 

fermentation 

To remove the mucilage coat in 

coffee bean. To enhance the the tea 

fermentation and foam forming 

property of tea 

Carr, 1985; Godfrey, 1985 

 

 

Pectin methylesterase (PME); acts on pectin by removing methoxyl group 

from pectin or partially esterified homogalacturonan (Niture et al., 2008). In detail 

PMEs catalayze pectin deesterification by hydrolysis of the ester bond of methylated α-

(1→4)-linked D-galacturonosyl units, producing negatively charged polymer and 

methanol. 

Pectin lyases (PL); are one of the pectin degrading enzymes which are able to 

degrade highly esterified pectin into small compounds via β-elimination mechanism 

without producing a toxic component like methanol, in contrast with the combination of 
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PG and PE, which are normally found in commercial enzyme preparations (Whitaker et 

al., 1990). Pectin lyase is one of the commercially important pectinase, especially fruit 

juice industry due to esterified pectins found mainly in fruits (Gummadi et al., 2003). 

Pectin lyases are classified into two according to action mechanism, as Endo-PL that 

degrades pectic substances in a random fashion yielding 4:5 unsaturated 

oligomethylgalacturonates and Exo-PL that has not been certainly indentified in terms 

of action mechanism yet (Yadav et al., 2008; Yadav et al., 2009). 

 

 

Table 2.2. Commercial Pectinases  

(Source: Kashyap et al., 2001) 

Supplier  Location  Brand Name 

   

C. H. Boehringer Sohn Ingelheim, West Germany Panzym 

 

Ciba-Geigy, A. G. Basel, Switzerland Ultrazyme 

 

Grinsteelvaeket  Aarthus, Denmark Pectolase 

 

Kikkoman Shoyu, Co. Tokyo, Japan Sclase  

 

Schweizerische Ferment, A. G. Basel, Switzerland Pectinex  

 

Societe Rapidase, S. A. Seclin, France Rapidase,  

Clarizyme 

 

Wallerstein, Co. Des Plaines, USA Klerzyme 

 

Rohm, GmbH Darmstadt, West Germany Pectinol, Rohament 
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Table 2.3. Classification of pectolytic enzymes  

(Source: Jayani et al., 2005; Yadav et al., 2009)

Enzyme  E. C. 

no. 

Modified EC Systematic Name Action 

Mechanism 

Action 

Pattern 

Primary 

Substrate 

Product(s) 

Esterase       

1. Pectin methyl esterase 3.1.1.11  Hydrolysis Random Pectin Pectic acid + methanol 

2. Pectin acetyl esterase 3.1.1.6  Hydrolysis   Pectin  Pectic acid + methanol 

Depolymerizing enzymes       

a. Hydrolases       

1. Protopectinases   Hydrolysis Random Protopectin Pectin  

2. Endopolygalacturonase 3.2.1.15 Poly-(1-4)-α-D-galactosiduronate 

glycanohydrolase 

Hydrolysis Random Pectic acid Oligogalacturonates 

3. Exopolygalacturonase 3.2.1.67 Poly-(1-4)-α-D-galactosiduronate 

glycanohydrolase 

Hydrolysis Terminal Pectic acid Monogalacturonates  

4. Exopolygalacturonan-

digalacturono hydrolase 

3.2.1.82 Poly-(1-4)-α-D-galactosiduronate 

digalacturonohydrolase 

Hydrolysis Penultimat

e bonds 

Pectic acid Digalacturonates  

5. Oligogalacturonate 

hydrolase 

  Hydrolysis  Terminal  Trigalacturonate  Monogalacturonate  

6. Δ4:5 Unsaturated 

oligogalacturonate 

hydrolysis 

  Hydrolysis  Terminal  Δ4:5 

(Galacturonate)n 

Unsaturated 

monogalacturonates & 

saturated (n-1) 

7. Endopolymethyl-

galacturonases 

  Hydrolysis  Random  Highly esterified 

pectin 

Oligomethylgalacturonates  

8. Endopolymethyl-

galacturonases 

  Hydrolysis Terminal Highly esterified 

pectin 

Oligogalacturonates  

b. Lyases        

1. Endopolygalacturonase 

lyase 

4.2.2.2 Poly-(1-4)-α-D-galactosiduronate 

lyase 

Trans-elimination Random  Pectic acid 

 

Unsaturated 

oligogalacturonates 

2. Exopolygalacturonase 

lyase 

4.2.2.9 Poly-(1-4)-α-D-galactosiduronate 

exolyase 

Trans-elimination Penultimat

e bond 

Pectic acid Unsaturated 

digalacturonates 

3. Oligo-D-galacturonate 

lyase 

4.2.2.6 Oligo-D-galacturonate lyase Trans-elimination Terminal  Unsaturated 

digalacturonates 

Unsaturated 

monogalacturonates 

4. Endopolymethyl-D-

galactosiduronate lyase 

4.2.2.10 Poly(methyl galactosiduronate) 

lyase 

Trans-elimination Random  Unsaturated poly-

(methyl-D-

digalactorunates) 

Unsaturated 

methyloligogalacturonates 

5. Exopolymethyl-D-

galactosiduronate lyase 

  Trans-elimination Terminal  Unsaturated poly-

(methyl-D-

digalactorunates) 

Unsaturated 

methylmonogalacturonates 

8
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Table 2.4. Biochemical and physicochemical properties of some pectolytic enzymes from Aspergillus sp. 

   (I) endopolygalacturonate lyase (EndoPGL, E.C. 4.2.2.2); (II) exopolygalacturonate lyase (ExoPGL, E.C. 4.2.2.9). 

 

Source of 

enzyme 

Nature  Molecular 

weight 

(kDa) 

pI Specific 

activity  

(U mg
-1

) 

Km  Optimum 

temperature 

( ) 

Optimu

m pH 

Temperature 

stability 

pH 

stability 

Reference  

Aspergillus 

japonicus 

Endo-PG 

Endo-PG 

PMGL 

PE 

38 (PG I) 

65 (PG II) 

- 

46 (PE I) 

47 (PE II) 

5.6 

3.3 

7.7 

3.8 

3.8 

- 

- 

- 

- 

- 

- 

- 

0.16 

- 

- 

30 

30 

55 

- 

- 

4.0-5.5 

4.0-5.5 

6.0 

4.0-5.5 

4.0-5.5 

- 

- 

- 

50 

50 

- 

- 

- 

- 

- 

(Hasunuma  et al.,. 

2003) 

Aspergillus 

niger 

Endo-PG 

Exo-PG 

PE 

61 (PG I) 

32 (PG I) 

- 

- 

7.6 

- 

982 

186 

- 

0.12 

0.8 

1.01 

43 

35 

45 

3.8-4.3 

5.0 

5.0 

50 

50 

- 

- 

- 

- 

(Singh et al., 2002, 

Gummadi  et al., 2003; 

Fahmy et al., 2008) 

Aspergillus 

awamori 

EndoPG 41 6.1 487 - 40 5.0 50 4.0-6.0 (Nagai  et al., 2000) 

Aspergillus 

sojae 

PL 32 - - - - 5.5 - - (Yadav et al., 2009) 

Aspergillus 

oryzae 

PL 34 - - 1.36 40 8.5 - - (Yadav et al., 2009) 

Aspergillus 

flavus 

PL 38 - - 0.59 50 8.0 - - (Yadav et al., 2008) 

Aspergillus 

ficuum 

PL 31.6 - - 0.60 50 5.0 - - (Yadav et al., 2008) 

9
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2.3.  Regulation of Pectinase Production in Fungi 

 

Pectinase synthesis is regulated in different organisms depending on species, 

then fermentation and operation conditions, also carbon source and pH have a 

significant effect on the enzyme production (Fontana et al., 2012). 

It has been reported in the literature that there are a group of genes identified 

(pelA, plyA, pgaA, pmeA, pgaI, pgaII, and pgaC) encoding pectinases. The expression 

of these genes depends on various fermentations conditions, and also different 

expression levels were observed for various genes in the same conditions (Denison et 

al., 2000; de Vries et al., 2002). 

Aspergillus species are widely used to produce enzymes. Hence this specie, 

especially Aspergillus niger, in which the pectinolytic system has been studied in most 

detail. Many of A. niger enzymes that are involved in pectin degradation have been 

identified. The expression levels of 26 pectolytic enzymes were studied under different 

growth conditions (de Vries et al., 2002). The study demonstrated that the gene clusters 

which are responsible for the synthesis of different pectolytic enzymes, response 

differently for various growth conditions (Akimitsu et al., 2004; Martínez-Trujillo et al., 

2009). 

As against genetic factors, fermentation conditions also have significant effect 

on the production of enzymes. Studies on the determination of optimum conditions for 

pectinase production were made by several workers. With respect to the selection of 

strains which are the best producers of pectinases, the decision of the fermentation 

system submerged fermentation (SmF) or solid state fermentation (SSF), media 

composition, and environmental and operational conditions like pH, temperature, 

aeration rate, etc. all these parameters regulates the production of pectinases, in terms of 

both biochemical and physiological aspects of the synthesis of the metabolite. 

The regulatory phenomena, among many parameters involved in fermentation 

conditions, mainly based on pH and carbon source. The productivity of pectinases could 

be expounded as a function of initial pH and the carbon source in the culture media 

(Martínez-Trujillo et al., 2008). That can be attributed to their induction-repression or 

activation-inhibition significant effects on enzyme productions. 

 

 



  

 

11 

 

2.3.1. pH-Dependent Regulation of Pectinase 

 

Previous studies on the influence of pH on the biosynthesis of pectinases from 

various microorganisms suggest that pectinase production is associated with the pH of 

culture medium (Denison et al., 2000; Akimitsu et al., 2004; Fontana et al., 2012). 

The studies on the expressions of genes encoding pectinases indicated that there 

are possibilities of coordinated expression among these genes, and also a coordination 

with PacC gene which is responsible for pH-dependent expression (Panda et al.,2004). 

The initial pH influences the growth of microorganism as well as the production 

of primary or secondary metabolites (Martínez-Trujillo et al., 2009). It has been 

demonstrated in the previous studies on  the production of PG by A. oryzae, pH values 

close to 4 stimulate the fungal growth since pH values close to 3 stimulate endo- and 

exo-PG production, however at pH values under 3 resulted in less fungal growth  

(Malvessi et al., 2004). 

The study made by Martinez-Trujillo et al. demonstrated that groth and enzyme 

production were strongly affected by the initial pH. But, the effect of the initial pH also 

differs depending on the substrate; glycerol, xylose and polygalacturonizc acid medias 

resulted in approximately same µmax values in any case of the initial pH, since the µmax 

values at glucose rhamnose and pectin medias were strongly affected by the initial pH   

(Martínez-Trujillo et al., 2008). 

 

2.3.2. Carbon Source-dependent Regulation Pectinase 

 

In order to investigate the regulation of pectolytic enzymes, there are several 

papers, mainly concerns with various carbon sources and nitrogen sources as well as 

agricultural wastes as inducers for pectolytic enzymes by Aspergillus species and the 

other fungal and bacterial species. Through the experimental studies with 

microorganisms, all assays demonstrated that the enzyme synthesis is correlated with 

the quality and concentration of the carbon sources. 

Studies on the production of polygalacturonase by Candida sp. and Aspergillus 

sp. were showed that exopolygalacturonase production is induced by the addition of 

galactopyronic acid to pectin (Stratilová, Breierová et al., 1996), also pectic acid have 

an inducer effect on the production of pectic anzymes since it is used as a carbon source 
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in the production media (Naidu  et al., 1998). It can be concluded that pectin and some 

of its derivatives induces pectinase production (Nair et al.,. 1995). 

The concentrations of carbon sources have a significant effect on the activities 

of pectolytic enzymes as well as the quality. When high concentrations of pectic acid, 

glucose or saccharose exist in culture media, exhibited a repression effect on the 

pectolytic enzymes (Teixeira et al., 2000). The same study demonstrates that 

Aspergillus japonicus shows the lowest endopolygalacturonase activity when pectin is 

used as the only carbon source. However, in case pectin supplemented with glucose or 

saccharose, polygalacturonase activities were higher than pectin, glucose or saccharose 

alone. The presence of glucose with high concentrations of pectin stimulates the 

production of exopolygalacturonase, but in the cultures without pectin the 

exopolygalacturonase activity significantly decreased during the growth (Teixeira et al., 

2000). 

The studies on the influence of carbon sources on pectinolytic enzyme synthesis, 

show that it is repressed by glucose and saccharose. When these monosaccharides are 

used over a certain concentration, they have a repression effect on the production of 

pectolytic enzymes named catabolic repression (Teixeira et al., 2000; Akimitsu et al., 

2004). 
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CHAPTER 3 

 

 MATERIALS AND METHODS 

 

3.1.  Chemicals 

 

The chemicals used in the study were all analytical grade and listed in Appendix 

A. 

 

3.2.  Microorganisms 

 

Aspergillus niger, Rhizopus oryzae ATCC 4858 and two strains of Aspergillus 

sojae were kind gifts of Proffesor Canan Tarı from IZTECH Department of Food 

Engineering . The second strain, A. sojae MT (mutant type) is one of mutant types of 

this strain, randomly mutated using ultraviolet light exposure at Jacobs University 

gGmbH, Bremen. It was a kind gift from Professor M. Fernandez Lahore. 

 

3.3.  Spore Propagation and Inoculum Preparation 

 

The spore propagation was done in petri dishes of molasses agar containing  

glycerol (45  g/l), peptone (18 g/l), molasses (45 g/l), NaCl (5 g/l), FeSO4.7H2O (15 

mg/l), KH2PO4 (60 mg/l), MgSO4 (50 mg/l), CuSO4.5H2O (12 mg/l), MnSO4.H2O (15  

mg/l) and agar (20 g/l) (Dogan and Tari 2008), using stock cultures which were 

prepared with 20% (w/v) glycerol-water and stored at -80 . 

The spores used as inoculum were collected from the molasses agar slants 

incubated at 30  for one week. Spores were harvested with approximately 5 ml Tween 

80 solution, which contained 0.01% (w/v) Tween 80 and distilled water. The spore 

suspensions were filtered through a glass funnel loosely packed with cotton wool in 

order to get rid of agar and mycelia residues. Spores were counted in a counter chamber, 

Thoma bright line heamocytometer (Marienfield, Germany). The spore suspension was 

collected in a sterile tube and stored at 4  until inoculation, for maximum two weeks. 
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3.4.  Production Media 

 

The culture media containing different carbon sources were tested for the 

production of pectinases. In addition to the carbon sources some mineral salts which 

were needed for fungal growth were included in the media, the composition of the 

media are listed in Table 3.1. 

It was reported by Vishniac and Santer (1957) that the Vishniac trace element 

solution had a positive effect on fungal growth. Therefore the trace element solution 

was added into the medium, after it has been proved by our previous experiments that it 

is also had a positive effect on Exo-PG activity. Each flask was inoculated to a final 

inoculums concentration of 8x10
4
 spore/ml which was optimized in our previous 

studies. 

Cultivations were carried out 5 to 7 days at 30  with 200 rpm stirring rate. 

Samples were collected daily for enzyme activity assays, and every 12 hours for sugar 

analysis and pellet morphology determination. Indeed change in pH values were 

measured daily. 

 

 

Table 3.1. Medium compositions used in the study. 

 

Ingredients Concentration (g/l) 

Glucose 

Glucose 20 

KH2PO4 1.5 

MgSO4.7H2O 0.5 

(NH4)2SO4 5 

Vishniac trace element solution 1 (ml) 

Pectin 

Pectin 20 

KH2PO4 1.5 

MgSO4.7H2O 0.5 

(NH4)2SO4 5 

Vishniac trace element solution 1 (ml) 

 

 

 

(cont. on next page) 
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Table 3.1. (cont.) 

Pectin + Glucose  

Pectin 10 

Glucose 10 

KH2PO4 1.5 

MgSO4.7H2O 0.5 

(NH4)2SO4 5 

Vishniac trace element solution 1 (ml) 

Pectin + Fructose  

Pectin 10 

Fructose 10 

KH2PO4 1.5 

MgSO4.7H2O 0.5 

(NH4)2SO4 5 

Vishniac trace element solution 1 (ml) 

Pectin + Saccharose  

Pectin 10 

Saccharose 10 

KH2PO4 1.5 

MgSO4.7H2O 0.5 

(NH4)2SO4 5 

Vishniac trace element solution 1 (ml) 

 

 

3.5.  Batch Fermentations 

 

3.5.1. Shake Flask Cultures 

 

The shake flask cultures were conducted in the 250 ml and 500 ml Erlenmeyer 

flasks containing 75 ml and 150 ml of medium, respectively. Production was carried out 

in a rotary shaker at 200 rpm, 30  for up to 7 days. Samples were collected daily for 

enzyme activity and sugar analysis. 
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50% (w/v) glucose solution was used for stepwise addition to the culture madia 

when glucose was totally consumed. Glucose consumption was followed every 12 hours 

by HPLC analysis. 

 

3.5.2. Bioreactor Cultures 

 

In order to investigate the effect of pH on Exo-PG of A. sojae MT, glucose 

medium was tested in 1 liter-bioreactor with 0.6 liter of working volume at 30 , 300 

rpm, and 0.5 vvm aeration rate. The bioreactors were equipped with acid and base 

pumps to automatically maintain pH during the fermentation. To prevent foaming an 

anti-foaming agent (Sigma Antifoam A, St. Luis, MO, USA) was used. 

The experiments were done with duplicates for each condition. The initial pH 

for all bioreactors was adjusted to 5.0 with 2M KOH before inoculation. The bioreactors 

were inoculated with fungal pellets. The pellets were obtained by germination from 

spores suspended in 250 ml shake flasks containing 50 ml glucose medium with 

8x10
4
spores/ml, within a rotary shaker at 250 rpm, 30  for 48 h. 

The first two bioreactors were used without pH control, and the other bioreactors 

the pH was allowed to drop to the set value. By the time the pH dropped to the set value 

pH control was initiated and pH was maintained at 3 and 4 by automatic addition of 2M 

KOH or 2M H2SO4. 

 

3.6.  Biomass Determination 

 

The biomass was determined by gravimetric method as dry cell weight (g/L). A 

certain volume of the fermentation broth was filtered through Whatman No.1 filter 

paper, and then dried to constant weight at 45  for approximately 24 hours. 
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3.7.   Analytical Methods 

 

3.7.1. Determination of Reducing Sugar 

 

The reducing sugar assay was performed according to the Nelson-Somogyi 

method (Somogyi, 1952). The Nelson-Somogyi method depends on the oxidation of 

reducing sugar (i.e. glucose) by the reduction of the Cu(II) ion to Cu(I), thereafter Cu(I) 

ions are oxidized back to Cu(II) through the reaction with a colourless hetero-

polymolybdate complex. Arsenomolybdate is used for this purpose which is the output 

of the reaction among ammonium molybdate, sodium arsenate and concentrated sulfuric 

acid. Arsenomolybdate is responsible for the characteristic color of the mixture, and the 

absorption changes according to the amount of the reducing sugar present in the 

reaction mixture. In this study, Varian Cary Bio 100 UV-Visible spectrophotometer was 

used to measure the absorbance at necessary wave length against water, and the known 

concentration of reducing sugar was used to draw calibration curve to calculate the 

exact amount of reducing sugar. 

 

3.7.2. Enzyme Assays 

 

3.7.2.1.  Exo-polygalacturonase Assay 

 

Exo-Polygalacturonase (Exo-PG) activity was  assayed  according to modified 

procedure based on Nelson-Somogyi reducing sugar assay, adapted by Panda et al. 

(1999) using 0.4 mL of 2.4 g/L of polygalacturonic acid in sodium acetate buffer pH 4.8 

as substrate and 0.1 mL of crude enzyme. The reaction was performed at 40  for 30 

minutes. The absorbance was read on Varian Cary Bio 100 UV-Visible 

spectrophotometer at 500 nm. Galacturonic acid was used as standard for the calibration 

curve of PG activity. Calibration curve was prepared using different concentrations of 

galacturonic acid. 

One unit of enzyme activity was defined as the amount of enzyme that catalyses 

the release of 1 micromole of galacturonic acid per unit volume of culture filtrate per 

unit time at standard assay conditions. 
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3.7.2.2.  Pectin Methylesterase Assay 

 

Pectin methylesterase (PME) activity was assayed according to Hagerman and 

Austin (1986) procedure, modified by Yemenicioğlu et al. (1999) using 2.3 mL of 0.3 

% (w/v) pectin solution prepared in 0.1 M NaCl (pH 7.5), 0.5 mL of  0.01 % (w/v) 

0.003 M sodium phosphate buffer pH 7.5 and 0.1 mL crude enzyme. The decrease in 

absorbance at 620 nm was monitored by using Varian Cary Bio 100 UV-Visible 

spectrophotometer equipped with a constant temperature cell holder working at 30 . 

The enzyme activity was determined from the slope of the initial linear portion 

of absorbance versus time curve and one unit of enzyme activity was defined as the 

amount of enzyme that caused 0.001 changes in absorbance in 1 minute. 

 

3.7.2.3.  Pectin Lyase Assay 

 

Pectin lyase (PL) activity was assayed according to modified Albersheim (1966) 

procedure, using 0.9 mL of 0.25% (w/v) citrus pectin in 0.1 M Tris-HCl buffer pH 8.0 

as substrate and 0.1 mL of crude enzyme. Mixture incubated at 40 . The absorbance 

was read on Varian Cary Bio 100 UV-Visible spectrophotometer at 235 nm at the 

beginning and after 1 hour. 

The increase in absorbance is a measure of PL activity. One unit of enzyme 

activity was defined as that amount of enzyme which increases the optical density at 

235 nm by 1 in 1 hour under assay conditions. 

 

3.7.2.4.  Xylanase Assay 

 

Xylanase activity was assayed according to modified procedure based on 

Nelson-Somogyi reducing sugar assay and the procedure of Lever et al. (1972), using 

0.5 mL of 2.5 % (w/v) xylan in 0.1 M sodium acetate buffer as substrate, 1.5 mL of 

sodium acetate buffer pH 4.5 and 0.5 Ml of crude enzyme. The reaction was performed 

at 37  for 60 minutes. The absorbance was read on Varian Cary Bio 100 UV-Visible 

spectrophotometer at 500 nm. The standard curve prepared by plotting the absorbance at 

500 nm versus milligrams of glucose. 



  

 

19 

 

One unit of enzyme activity was defined as 1.0 mg of reducing sugar from xylan 

(measured as glucose) per minute at pH 4.5 at 37 . 

 

 

          
              

        
            

 

Where, 60 is the reaction time (min), 0.5 is the amount of enzyme in the reaction 

mixture (ml) and df is the dilution factor of crude enzyme. 

 

3.7.2.5.  Total Cellulase Assay 

 

Total cellulose activity was assayed according to the modified procedure of 

Adney and Baker (1996), using 50 mg of Whatman No:1 filter paper (1.0 x 6.0 cm) as 

substrate with 1 mL of 100 mM sodium acetate buffer pH 4.8 and 0.5 mL of crude 

enzyme. The reaction was performed at 45  for 60 minutes. The absorbance was read 

on Varian Cary Bio 100 UV-Visible spectrophotometer at 500 nm. The standard curve 

prepared by plotting the absorbance at 500 nm versus milligrams of glucose. 

 

 

    
    

[      ]                         
          

 

                                      

                      
       

   

   
    

 

The enzyme unit is called as filter paper unit (FPU) and one unit of enzyme 

activity was defined as the enzyme that causes the release of 2 mg of glucose.

(3.1) 

(3.2) 

(3.3) 
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3.7.3. HPLC Analysis 

 

Sugar consumptions of wild and mutant type of A. sojae grown in different 

medium compositions were followed daily by the sugar analysis with High Performance 

Liquid Chromatography (HPLC) by using The Perkin Elmer Series 200 HPLC system 

with auto-injector (20 µl), column oven, refractive index detector (RID) and Aminex 

HPX-87H (1,300 x 7.8 mm, 9µm) column. The standard sugar analysis method which 

was isocratic at 0.6 ml/min flow rate with 5 mM H2SO4 as mobile phase at 65  column 

temperature was used. The serial concentrations of monosaccharides (0.125 to 2 g/l) 

were used to draw calibration curves.  

In consequence of polysaccharides could not be analyzed by HPLC directly, in 

order to quantify pectin amount a method reported by Rumpunen et. al. (2002) was used 

after minor modifications. The enzymatic degradation method was validated for citrus 

pectin degredation into galacturonic acid using 400 µl of commercial pectinase 2% (v/v) 

in water and 100 µl of fermentation broth containing pectin. A direct proportion was 

observed between pectin and galacturonic acid, thus serial concentrations of pectin 

(0.125 to 2 g/l) were degraded by pectinase and used for standard curve. The pectin 

amount was measured via the standard curve drawn for pectin versus galacturonic acid. 
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CHAPTER 4 

 

PRELIMINARY INVESTIGATIONS 

 

4.1.  Selection of Media for Spore Propagation 

 

The first step in this study was the determination of the best medium for spore 

propagation. It has been proved that spore production medium has a significant effect 

on productivity of the processes (Gögus et al., 2006; Krullet al., 2013). 

In order to investigate the best effective medium for spore propagation, the 

fungal strains were grown on different media, molasses agar medium, yeast malt extract 

agar medium (Gögus et al., 2006), and also potato dextrose agar medium in petri dishes. 

The incubation was performed at 30  until well sporulation, approximately 1 week.  

The final sporulation of fungi was evaluated visually. The sporulation was better 

on molasses agar medium for A. sojae than other media as indicated in the study of 

Gogus et al. (2006), also molasses agar medium provided well sporulation for the other 

fungal strains. Based on this results molasses agar medium was used for both activation 

and propagation of fungi. 

 

4.2.  Medium for Screening Pectinase Producing Fungi 

 

Pectinases are a group of enzymes which includes endo- and exo-

polygalacturonase, pectin lyase, pectin methylesterase, etc. Furthermore due to the more 

stable character of a crude enzyme than a purified enzyme (Tari et al., 2008), most of 

the commercial pectinases generally includes cellulose, xylanase, protease, etc. (Moyo 

et al., 2003; Heerd et al., 2012). 

In this study, a number of strains of fungi were examined for Exo-PG, PME, PL, 

cellulase, and xylanase activities. The shake flask cultures were used in order to 

determine pectinase producing fungal strains. The media which included 40 g/l of 

orange peel and 2.75 g/l (NH4)2SO4 was used with 2.8x10
3
 spore/ml final spore 
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concentration. The culture incubated at 30  for one week with 200 rpm stirring rate. 

Samples collected daily for enzyme activity assays. 

The results have shown that only the wild and mutant types of A. sojae were 

able to produce only exo-PG under this growth condition. As expected, the mutant type 

showed more than two-fold activity compared to the wild type. The results were 

summarized in Table 4.1 and pellet morphologies given by the Figure 4.1. 

 

 

Aspergillus sojae ATCC 20225 

 

Aspergillus sojae MT 

 

Aspergillus niger 

 

Rhizopus oryzae ATCC 4858 

 

Figure 4.1. Fungal pellet morphologies grown in orange peel medium, images taken at 

the third day of fermentation. 

 

 

 

Table 4.1. Maximum Exo-PG activities of different fungi in OP medium. 

                           Fungal Strains 

 A. sojae MT A. sojae ATCC 

20235 

A. niger ATCC R. orayzae 

ATCC 

4858 

Exo-PG   108.02 ±0.62 47.84 ±0.49 NF* NF* 

PL NF* NF* NF* NF* 

PME NF* NF* NF* NF* 

Xylanase NF* NF* NF* NF* 

Cellulase NF* NF* NF* NF* 

* NF: Not found 
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4.3.  Determination of Optimum Initial Spore Concentration 

 

The pellet formation of filamentous fungi grown in submerged cultures show 

various growth morphologies as freely suspended mycelia, pellet or clumps depending 

on fungal strain, the inoculum type, the medium composition and pH, and many other 

environmental factors  (Casas López et al., 2005; Posch et al., 2013). Many publications 

have reported that the pellet morphology effect the reology of fermentation medium and 

hence the productivity (Rodríguez Porcel et al., 2005; Posch et al., 2013). 

In order to determine the pellet diameter concurrently with the maximum exo-

PG activity, glucose medium was used to produce pectinase by A. sojae MT with 

different final spore concentrations ranging from 5x10
3
 to 1.8x10

5
 sp/ml. 

The pellet photographs were taken using a digital photo camera (Eastman Kodak 

M320) and the diameters were measured manually. The average pellet diameters for 

various final spore concentrations are shown in Figure 4.3. The minimum pellet 

diameter was observed at 8x10
4 

sp/ml final spore concentration. 

According to the results of enzyme activity assays, it has been shown that the 

initial spore concentration of 8x10
4
 sp/ml provided not only the minimum pellet 

diameter but also the maximum Exo-PG activity. It has been reported before that there 

is a correlation between the filament ratio and productivity, because of the effect of 

filaments on rheological properties (Casas López et al., 2005). This means that 

minimum ratio of peripheral filamentous region over central compact region also 

provides higher enzyme activity in many cases. 

Furthermore, as mentioned before pH has a major importance on pectinase 

production as well as on many other processes (Malvessi et al., 2004). In this study, the 

pH changes were followed during the fermentation for all spore concentrations. 

However, a significant difference was not observed among the fermentations. At all 

final spore concentrations it was observed that pH dropped to 2.0 in four days. 
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Figure 4.2. The pellet diameters according to the final spore concentrations, exo-PG 

activities are given in the text boxes.  
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

5.1.  Effect of Carbon Source on Exo-PG Production by A. sojae  

 

The aim of this study was to investigate the influence of carbon source and pH 

on the production of pectinase from some fungal strains. Four strains of fungi were 

investigated in terms of pectinase production. According to our preliminary works 

(Chapter 4), only A. sojae WT and MT were found as exo-PG producers among the 

other fungal strains. Exo-PG activities from A. sojae WT and A. sojae MT grown in 

orange peel media were 47.84 U/ml and 108.02 U/ml, respectively. Based on these 

results, exo-PG activity is higher with A. sojae MT than A. sojae WT when orange peel 

was used as carbon source.  

A. sojae WT and MT could produced exo-PG in glucose, pectin, pectin/glucose, 

pectin/fructose and pectin saccharose media, varied in a wide range from 1 to 25 U/ml. 

Results indicated that orange peel was a better inducer than citrus pectin or other 

purified carbohydrates. The complex structure of orange peel may have provided extra 

nutrients necessary for enzyme synthesis. 

 

5.1.1. Exo-PG Production by A. sojae WT 

 

5.1.1.1.  Effect of Different Carbon Sources on pH 

 

Change in pH values during the exo-PG production by A. sojae WT grown in 

various carbon sources are shown in Figure 5.1. The initial pH of the fermentation 

broths were around 5.0 and decreased down to pH 2.0, in 48 to 96 h depending on 

carbon source with exception of the presence of pectin alone.  

In glucose media pH decreased to 2.5 in 48 h, and decreased to 2.0 in 72 h 

where it stayed at this value until the end of the fermentation. In pectin/glucose media 

pH decreased to 2.4 in 72 h, where it stayed at this pH value. In pectin/fructose and 



  

 

26 

 

pectin/saccharose media pH decreased to 2.1 in 96 h, and then started to increase after 

120 h. The results demonstrated that during the fermentation pH profiles were showed 

similar trends, except in the pectin medium. In pectin media pH decreased to 4.0 in 48 

h, however after 48 h the pH increased up to 8.0. Such a pH profile has been reported 

for A. oryzae in pectin and glucose media by Fontana et al. (2009). 

The increasing pH values were also observed by other research groups. Previous 

studies demonstrated that increasing pectin concentrations in the culture media resulted 

in extended increase in pH (Malvessi et al., 2004; Fontana et al., 2012). Fungal 

metabolism may have been associated with this pH trend, production or consumption of 

organic acids, absorption of nitrogen source and release of H
+
 ions. According to the 

study made by Torrado et al. the intake rates of oxidized and reduced forms of nitrogen 

acted as a regulator of pH in the range of 4 to 7 (Torrado et al., 1998). 

 

 

 

Figure 5.1. Change in pH values during the exo-PG production by A.  sojae WT grown 

in different media conditions. 
 

 

5.1.1.2.  Effect of Different Carbon Sources on Exo-PG Activity 

 

The effect of different carbon sources on exo-PG production are shown in Figure 

5.2. The pectin/glucose media provided the highest exo-PG activity (21.54 U/ml) 

compared to the other carbon sources. 
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Figure 5.2. Exo-PG activity by A. sojae WT grown in submerged culture on various 

carbon sources. 

 

Pectin/glucose, pectin/fructose and pectin/saccharose yielded 21.54 U/ml, 5.54 

U/ml and 10.70 U/ml exo-PG activities, respectively. Due to the fact that pectinase 

enzymes are known as inducible enzymes (Malvessi et al., 2004; Martínez-Trujillo et 

al., 2008; Fontana et al., 2012), it was expected that pectin containing media provided 

more activity. In addition to this, simple sugars may have contributed to the utilization 

of the complex sources more efficiently. The highest exo-PG activity was observed in 

pectin/glucose media, which may have been due to the better support of glucose on 

fungal growth than other sugars.  

On the other hand, 1.55 U/ml exo-PG acitivty was observed in the presence of 

pectin alone. Due to low pH values were necessary to induce exo-PG production, the 

increase in pH value of pectin media may have caused to low pectinase activity 

compared to the other media compositions. 

When glucose media was not supported with pectin, it yielded 16.77 U/ml exo-

PG activity. It may have been as a result of positive effect of low pH values on the exo-

PG production (Figure 5.1). The decrease in exo-PG activity after 96 h could be 

attributed to negative effect of low pH values on the stability of exo-PG. This also 

proved that A. sojae WT is a exo-PG producer even if it grew in a simple sugar which 

was not the substrate of exo-PG. 
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5.1.1.3.  Sugar Consumption 

 

A. sojae WT was able to metabolize all carbon sources in the culture medium 

and it metabolized pectin rapidly as well as glucose. This may be due to the other 

enzymatic activities such as endo-PG. Sugar consumption trends of A. sojae WT in 

glucose, pectin and pectin/glucose are shown in Figures 5.3, 5.4 and 5.5, respectively. 

As mentioned before the highest exo-PG activity (21.54 U/ml) was obtained in 

pectin/glucose media. 

In glucose medium, the concentration of glucose was 20 g/l at the beginning of 

the fermentation, after 56 h of incubation almost all glucose was consumed 

corresponding to utilization rate of 0.36 g/l/h (Figure 5.3). pH dropped to 2.0 in 72 h, at 

which time all glucose was consumed. Low pH may have resulted in an increased exo-

PG production. However, after 96 h exo-PG activity began to decrease. The decrease in 

exo-PG activity could be explained by the depletion of carbon source, besides low pH 

value may have had a negative effect on the stability of exo-PG (Fahmy et al., 2008; 

Tari et al., 2008). 

In the presence of pectin in sole carbon source, the concentration of pectin was 

20 g/l at the beginning of the fermentation. After 48 h of incubation pectin was 

consumed totally corresponding to utilization rate of 0.42 g/l/h (Figure 5.4). The 

utilization rate of pectin was higher than glucose. It may have been attributed to 

function of other pectinases such as endo-PG. 

The highest level of exo-PG activity (1.55 U/ml) was detected after 48 h when 

pectin was used as carbon source alone. The of growth A. sojae in pectin media, 

resulted in an increase in pH starting after 48 h, while simultaneous decrease in exo-PG 

production was observed. The pH decreased to 4.0 in 48 h, where pectin was consumed 

totally. However after 48 h the pH increased up to 8.0., and exo-PG activity had begun 

to decrease after 48 h of fermentation. The increase in pH could be explained by 

autolysis of the cells in the absence of carbon source. Lower exo-PG levels could be 

also attributed to absence of carbon source and high pH values. 
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Figure 5.3. Glucose consumption by A. sojae WT in glucose media. 

 

 

   

    Figure 5.4. Pectin consumption by A. sojae WT in pectin media. 

 

In the pectin/glucose medium the initial concentrations of both pectin and 

glucose were 10 g/l. Glucose was consumed in 36 h of incubation corresponding to 

utilization rate of 0.28 g/l/h, and pectin was not consumed totally even after 168 h. The 

presence of glucose prevented the first utilization of pectin. After seven days of 

incubation 1.74 g/l pectin remained corresponding to a substrate utilization rate of 0.05 

g/l/h (Figure 5.5).  
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The highest level of exo-PG activity was detected (21.54 U/ml) when 

pectin/glucose was used as carbon source. During growth in that medium, A. sojae 

acidified the culture media, pH dropped to 2.4 in 72 h where it stayed at this pH value. 

Although pH was low, A. sojae continued to utilize remaining pectin albeit at a low rate. 

 

 

Figure 5.5. Pectin and glucose consumptions by A. sojae WT grown in pectin/glucose 

media. 
 

 

5.1.2. Exo-PG Production by A. sojae MT 

 

5.1.2.1.  Effect of Different Carbon Sources on pH 

 

The trend of pH values during the exo-PG production by A. sojae MT grown in 

various carbon sources are shown in Figure 5.6. The initial pH of the fermentation 

broths were around 5.0 and decreased to at least pH 2.0, varied in 48 to 96 h depending 

on carbon source with exception of the presence of pectin alone. 

In glucose media pH decreased to 2.0 in 48 h, where it stayed at this value until 

the end of the fermentation. In pectin/glucose media pH decreased to 2.6 in 48 h, and it 

stayed at this pH value thereafter. In pectin/fructose and pectin/saccharose media pH 

decreased to 2.1 in 96 h, and then increased to 2.3 at 120 h. The results demonstrated 

that during the fermentation pH profiles showed similar trends, except the pectin 
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medium. In pectin media pH decreased to 3.8 in 24 h, however after 24 h the pH 

increased up to 8.1. 

 

 

Figure 5.6. Change in pH values during the exo-PG production by A. sojae MT grown                                                    

in different media conditions. 
 

 

5.1.2.2.  Effect of Different Carbon Sources on Exo-PG Activity 

 

Pectin/glucose, pectin/fructose and pectin/saccharose yielded 18.35 U/ml, 5.55 

U/ml and 10.01 U/ml exo-PG activities, respectively (Figure 5.7). The highest exo-PG 

activity was observed in pectin/glucose media, it may have been due to the better 

support of glucose on fungal growth than other sugars. 

In the presence of pectin alone, 1.86 U/ml exo-PG acitivty was obtained. Since 

low pH values were necessary to induce exo-PG production, the increase in pH value of 

pectin media may have caused lower exo-PG activity compared to ones obtained with 

other media compositions. 

When glucose media was not supported with pectin, it yielded 12.6 U/ml exo-

PG activity. It may have been as a result of positive effect of low pH values on the exo-

PG production. The decrease in exo-PG activity after 96 h may have attributed to 

negative effect of low pH values on the stability of exo-PG. 
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Figure 5.7. Exo-PG activity by A. sojae MT grown in submerged culture on various 

carbon sources. 
 

 

5.1.2.3.  Sugar Consumption 

 

A. sojae MT was able to metabolize all carbon sources in the culture medium 

similar to the case of A. sojae WT. 

A. sojae MT was able to metabolize all carbon sources in the culture medium 

and it metabolized pectin rapidly as well as glucose. This may be due to the other 

enzymatic activities such as endo-PG. Sugar consumption trends of A. sojae MT are 

shown in Figure 5.8, 5.9 and 5.10, glucose, pectin and pectin/glucose, respectively. As 

mentioned before the highest exo-PG activity (18.35 U/ml) was obtained in 

pectin/glucose media. 

The concentration of glucose was 20 g/l at the beginning of the fermentation, 

after 56 h of incubation glucose was consumed totally corresponding to utilization rate 

of 0.36 g/l/h (Figure 5.8). During growth in glucose media, pH dropped to 2.0 in 48 h, 

where 0.07 g/l glucose was present in the fermentation broth.  Due to A. sojae acidified 

the media, it resulted in an increased exo-PG production. However, after 96 h exo-PG 

activity began to decrease. In fact, the decrease in exo-PG activity could be explained 

by the absence of carbon source and high pH value had a negative effect on the stability 

of exo-PG. 
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Figure 5.8. Glucose consumption by A. sojae MT in glucose media. 
 

 

The concentration of pectin was 20 g/l at the beginning of the fermentation, after 

48 h of incubation pectin was consumed totally corresponding to utilization rate of 0.42 

g/l/h (Figure 5.9). The utilization rate of pectin was higher than glucose which was a 

simple sugar. It may have been attributed to function of other pectinases such as endo-

PG. 

The highest level of exo-PG activity (1.8 U/ml) was detected after 72 h when 

pectin was used as carbon source alone. During growth in pectin media, A. sojae caused 

an increase in pH after 24 h. Exo-PG activity decreased after 72 h. The pH decreased to 

3.8 in 24 h. However after 24 h the pH increased up to 8.0., and exo-PG activity had 

begun to decrease after 72 h of fermentation where pH reached to over 7.5.  This 

showed that due to enzyme stability problems, pH values over 7.0 caused to decrease 

exo-PG activities. The increase in pH could be explained by autolysis of the cells in the 

absence of carbon source. 
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Figure 5.9. Pectin consumption by A. sojae MT in pectin media. 
 

 

In the pectin/glucose media the initial concentrations of both pectin and glucose 

were 10 g/l. Glucose was consumed in 36 h of incubation corresponding to utilization 

rate of 0.28 g/l/h, and pectin was not consumed totally in 168 h. After seven days of 

incubation 3.04 g/l pectin remained corresponding to a substrate utilization rate of 0.04 

g/l/h (Figure 5.5).  

The highest level of exo-PG activity was detected (18.35 U/ml) when 

pectin/glucose was used as carbon source. During growth in that medium, A. sojae 

acidified the culture media, pH dropped to 2.5 in 72 h where it stayed at this pH value. 

Although pH was low, A. sojae continued to utilize remaining pectin albeit at a low rate,  

 

 
Figure 5.10. Pectin and glucose consumptions by A. sojae MT in pectin/glucose media. 
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5.2.  Comparison Beetwen A. sojae WT and A. sojae MT with Respect 

to Exo-PG Production and Growth 

 

A comparison was made between the two fungal strains, A sojae WT and A. 

sojae MT, according to their growth dynamics in glucose, pectin and pectin/glucose 

media. Maximum exo-PG activities under different medium conditions are presented in 

Table 5.2. 

Pectin/glucose medium provided the highest activity for both WT and MT types 

of A. sojae, while A. sojae WT showed higher activity than A. sojae WT almost in all 

defined media conditions. 

In spite of the fact that A. sojae MT showed higher exo-PG activity in the 

medium with orange peel as complex carbon source, it showed lower activity in defined 

medium than A. sojae WT. That may be due to different inducing effect of pectin on 

exo-PG on two strains. On the other hand, the orange peel is a part of the plant biomass 

and contains lots of nutrients such as, vitamins, minerals, proteins, etc. in it (Thakur, 

Singh et al. 1997). Moreover, there are studies showing that even the source of pectin 

also effected the pectinase production (Pashova, Slokoska et al. 1999). In fact, due to 

the use of commercial citrus pectin as carbon source in defined media, it has been 

reported that pectinase activity is highly effected by the type of pectin whether citrus, 

apple or another source. 

It was demonstrated that both A. sojae strains were able to metabolize all carbon 

sources under discussion within approximately 48 h, and generally both showed similar 

responses under different media conditions in terms of pH profile, sugar consumption 

rate and growth. The activity of Exo-PG was highest on pectin/glucose, whereas the 

lowest activity was observed on pectin media. 

The growth-pH, growth-exo-PG production and growth-sugar consumption 

interactions for A. sojae WT and MT grown in glucose media were shown in Figure 

5.11. A. sojae WT biomass concentration was 9 g/l after 72 h, while A. sojae MT 

biomass concentration was 7g/l at the same time. This demonstrated that A. sojae WT 

had higher biomass yield (YX/S= 0.45 g dried biomass/ g substrate) than A. sojae MT 

(YX/S= 0.35 g dried biomass/ g substrate) in glucose media. 

The growth-pH, growth-exo-PG production and growth-sugar consumption 

interactions for A. sojae WT and MT grown in pectin media were shown in Figure 5.12. 
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A. sojae WT biomass concentration was 5.5 g/l after 48 h, while A. sojae MT biomass 

concentration was 6.5 g/l at the same time. This demonstrated that A. sojae MT had 

higher biomass yield (YX/S= 0.275 g dried biomass/ g substrate) than A. sojae MT 

(YX/S= 0.325 g dried biomass/ g substrate) in pectin media. 

 

 

Table 5.2. Comparison of wild and mutant types of A. sojae grown on various carbon 

sources according to the maximum exo-PG activities. 

 Maximum Exo-PG Activity (U/ml) 

 Fungi 

Carbon Source A. sojae 20235 A. sojae MT 

Glucose 16.77 ±3.25 12.60 ±1.73 

Pectin 1.55 ±1.16 1.86 ±0.33 

Pectin and Glucose 21.54 ±0.78 18.35 ±0.74 

Pectin and Fructose 5.54 ±0.11 5.55 ±0.84 

Pectin and Saccharose 10.70 ±0.72 10.01 ±0.12 

 

 

The growth-pH, growth-exo-PG production and growth-sugar consumption 

interactions for A. sojae WT and MT grown in pectin/glucose media were shown in 

Figure 5.13. It was observed that A. sojae WT biomass concentration was 6 g/l after 72 

h, while A. sojae MT biomass concentration was 5.7 g/l at the same time. Two growth 

peaks indicated diauxic growth which occurred due to grown in media containing two 

types of carbon source (Naidu et al., 1998). First A. sojae metabolized glucose, and 

grew fast, when all glucose had been consumed the fungus started to express the genes 

to utilize the pectin. Catabolic repression by glucose could be the reason of pectin was 

not utilize in the first 36 h. It has been known that glucose when added to the media in 

high concentrations have a repression effect on the exo-PG activity (Teixeira et al., 

2000). 
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Figure 5.11. Fungal growth (-■-) in glucose media with enzyme activity (--), sugar consumption (--) and pH (--). 

0

5

10

15

20

25

0

1

2

3

4

5

6

7

8

9

10

0 24 48 72 96 120

E
x
o

-P
G

 A
ct

iv
it

y
 (

U
/m

l)
 

B
io

m
a

ss
 (

g
/L

) 

Time (h) 

0

1

2

3

4

5

6

7

8

9

10

0

5

10

15

20

25

0 24 48 72 96 120

B
io

m
a

ss
 (

g
/L

) 
 

G
lu

co
se

  
(g

/L
) 

Time (h) 

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

10

0 24 48 72 96 120

p
H

 

B
io

m
a

ss
 (

g
/L

) 

Time (h) 

0

2

4

6

8

10

12

14

0

1

2

3

4

5

6

7

8

0 24 48 72 96 120

E
x
o

-P
G

 A
ct

iv
it

y
 (

U
/m

l)
 

B
io

m
a

ss
 (

g
/L

) 

Time (h) 

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

0 24 48 72 96 120

B
io

m
a

ss
 (

g
/L

) 

G
lu

co
se

 (
g

/L
) 

Time (h) 

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

0 24 48 72 96 120

p
H

 

B
io

m
a

ss
 (

g
/L

) 

Time (h) 

3
7

 

 

 

 



  

 

38 

 

A
. 

so
ja

e
 W

T
 

   

A
. 
so

ja
e
 M

T
 

 
  

Figure 5.12. Fungal growth (-■-) in pectin media with enzyme activity (--), sugar consumption (--) and pH (--).
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Figure 5.13. Fungal growth (-■-) in pectin/glucose media with enzyme activity (--), sugar consumption (--) and pH (--).
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5.3.  Effect of Culture pH on the Exo-PG Production 

 

A. sojae MT was grown in glucose media in bioreactors under controlled or 

uncontrolled pH values by automatic maintenance on pH during growth. Exo-PG 

activity values at pH 3.0 and pH 4.0, and uncontrolled pH experiments were given in 

Figure 5.14. The highest exo-PG activity was observed in uncontrolled pH conditions 

(20 U/ ml). 

During the exo-PG production by A. sojae, pH rapidly decreases to pH 2.0 

approximately in 48 h. Low pH values can inhibit growth of the microorganism, hence 

also may inhibited the enzyme production or caused to decrease of exo-PG activity due 

to negative effect of low pH on enzyme stability. Due to the continuous decrease of pH, 

continuous addition of KOH solution was required during fermentation. This may had a 

negative effect on enzyme production as well as enzyme stability. 

 

 

Figure 5.14. Effect of culture pH on the Exo-PG production by A. sojae MT. 
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filamentous fungus, and there is a correlation with pellet morphology and enzyme 

activity (Casas López et al., 2005). Based on these results depending on bioreactor 

experiments, it can be concluded that A. sojae MT provided higher exo-PG activity with 

the pellet morphology that has more compact core and less hairy region. 

 

 

 

Figure 5.15. Pellet morphologies of A. sojae MT grown in bioreactors with different pH 

values. The right and left columns are replicates of bioreactors. 
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5.4.  Effect of Glucose on the Production of Exo-PG 

 

In order to investigate the effect of the glucose addition on Exo-PG from A. 

sojae WT and A. sojae MT, shake flask experiments were done. The effect of glucose 

was studied by adding a definite amount of sterilized 50% (w/v) glucose solution into 

the culture broth at a stage of when the glucose in the broth was consumed and exo-PG 

production was in progress. 

Glucose concentration was 20 g/l at the beginning of fermentation, and totally 

consumed in 56 h corresponding to a utilization rate of 0.36 g/l/h (Figure 5.16). Glucose 

was added at a concentration of 20 g/l to the media was consumed at a slow rate and, 

8.76 g/l glucose remained after 192 h. It was corresponded to a utilization rate of 0.09 

g/l/h.  

Despite the fact that glucose has repression effect on synthesis of several 

enzymes (Teixeira et al., 2000), in this study it was observed that glucose provided 

higher enzyme activity than pectin which had been considered as an inducer of 

pectinase synthesis. However, addition of glucose to the broth at 72 h caused to stop 

exo-PG production by A. sojae WT and MT for a short time. Thereafter, exo-PG 

activities increased to maximum values 26.8 U/ml and 24.3 U/ml after 96 h by A. sojae 

WT and MT, respectively.  However, after that time point, it had begun to decrease 

rapidly (Figure 5.16-17). These observations confirmed the repression effect of glucose 

on exo-PG production. Similarly, there are other reports suggested that addition of 

glucose caused repression of some pectolytic enzymes by Aspergillus sp. (Nair et al., 

1995; Panda et al., 2004).  
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Figure 5.16. Exo-PG production and glucose consumption by A. sojae WT with addition 

of glucose to the broth. 

 

 

Figure 5.17. Exo-PG production and glucose consumption by A. sojae MT with addition 

of glucose to the broth. 
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amount of sterilized 50% (w/v) glucose solution before glucose was depleted and exo-

PG production was in progress. At the same time, in order to eliminate the negative 

effect of low pH on growth and exo-PG production, pH was manually adjusted to 4.0 by 

the time pH drops to 2.0 (Figure 5.18-19). 

Fungal strains were able to metabolize all glucose in 132 h, and low exo-PG 

activities were observed (Figure 5.20-21) compared to single addition of glucose 

without pH control. One potential reason for this was negative effect of increased pH. 

As it demonstrated in previous sections of the study, it was observed that pH control 

had negative effect in all experiments. 

 

 

 
Figure 5.18. Exo-PG production and pH trend of A. sojae WT with the stepwise 

addition of glucose into the broth. 

 

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

0 24 48 72 96 120 144

p
H

 

E
x
o

-P
G

 A
ct

iv
it

y
 (

U
/m

L
) 

Time (h) 

Exo-PG

pH



  

 

45 

 

 

Figure 5.19. Exo-PG production and pH trend of A. sojae MT with the stepwise addition 

of glucose into the broth. 

 

 

Glucose utilization rates in for each addition step were 0.31, 0.69 0.64 and 0.55 

g/l/h for A. sojae WT; and 0.27, 0.65, 0.61 and 0.67 g/l/h for A. sojae MT, respectively. 

In early hours of fermentation glucose was consumed and used for mainly biomass, 

when first glucose added to the broth utilization rate increased and glucose was used for 

fungus metabolism itself. After second and third addition of glucose, it was observed 

that utilization rate had decreased due to slow fungal metabolism at stationary phase of 

growth. 

 

 

 

Figure 5.20. Exo-PG production and glucose consumption by A. sojae WT with the 

stepwise addition of glucose into the broth. 
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Figure 5.21. Exo-PG production and glucose consumption by A. sojae MT, the stepwise 

addition of glucose into the broth. 
 

 

5.6.  Effect of Glucose on the Production of Exo-PG Activity in 

Pectin/Glucose Medium 
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Figure 5.22. Exo-PG production and pH trend of A. sojae WT the addition of glucose to 

the broth. 
 

 

 

Figure 5.23. Exo-PG production and pH trend of A. sojae MT the addition of glucose to 

the broth. 
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corresponding to a utilization rate of 0.1 g/l/h. Glucose which presented in broth may 

have had a supporting role on the utilization of pectin the complex carbon source. 

 

 

 

Figure 5.24. Exo-PG production and sugar consumption by A. sojae WT the addition of 

glucose to the broth. 
 

 

 

 

Figure 5.25. Exo-PG production and sugar consumption by A. sojae MT the addition of 

glucose to the broth. 
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U/ml at 120 h exo-PG activities. It has been observed that addition of glucose positively 

effects exo-PG production by only A. sojae MT without pH control. This fact showed 

that glucose had a drastic effect on exo-PG production by A. sojae, but the effect was 

different for A. sojae WT and MT (Figure 5.24-25). 

Also both fungal strains were able to consume all pectin in broth. It was possible 

that glucose could be utilized in aiding cell growth as it was more easily utilizable 

carbon source, while pectin could act as an inducer in the synthesis of exo-PG when 

both are present in the media. 

 

5.7.   Cooperative Effect of Glucose and pH on the Production of Exo-

PG Activity in Pectin/Glucose Medium 

 

The effects of glucose and pH on exo-PG production by A. sojae WT and A. 

sojae MT were spontaneously investigated similar to previous section. Also pH was 

adjusted to 4.0 by manually when pH dropped to 2.0 (at 48 h). 

In order to eliminate the adverse effect of low pH values, pH was increased to 

4.0. After the maintenance of pH, pH dropped to 2.4 at 72 h after which time it stayed at 

this value (Figure 5.27-28). The decrease in pH after maintenance demonstrated that 

utilization of carbon source was in progress as well as exo-PG production. Maximum 

exo-PG activities of A. sojae WT and A. sojae MT were 15.8 and 16.4 U/ml in 96 h, 

respectively. 

 

 
Figure 5.27. Exo-PG production and pH trend of A. sojae WT the addition of glucose 

into the broth. 
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Figure 5.28. Exo-PG production and pH trend of A. sojae MT the addition of glucose 

into the broth. 

 

Sugar consumptions were shown in Figures 5.29 and 5.30. Based on these 

observations, glucose addition and pH maintenance provided to utilize all carbon 
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identical to previous experiment which was done without pH control. This demonstrated 

that substrat utilization rates were not affected by pH maintenance. Exo-PG production 

by A. sojae WT increased from 6.3 to 15.8 U/ml as a result of pH maintenance, while 

exo-PG production by A. sojae MT decreased from 23.9 to 16.4 U/ml. Thus, it can be 

concluded that two strains of A. sojae differently responded to not only glucose addition 

but also pH maintenance at the same time glucose addition. This could be attributed to 

differences in their enzyme synthesis metabolisms, although they gave very similar 

results in terms of sugar consumption and pH trend. 
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Figure 5.29. Exo-PG production and sugar consumption by A. sojae WT the addition of 

glucose into the broth. 
 

 

 

 

Figure 5.30. Exo-PG production and sugar consumption by A. sojae MT the addition of 

glucose into the broth. 
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5.8.   Effect of Pectin on the Production of Exo-PG Activity from Pectin 

Medium 

 

The effect of pectin was studied by addition of a defined amount of sterilized 

pectin solution into the broth at which time all pectin was consumed. The time was 

determined by previous studies as approximately in 48h. 

Addition of pectin to the broth caused a decrease in pH at 48 h due to the acidic 

character of citrus pectin. The pH trends of A. sojae WT and MT were shown in Figures 

5.31 and 5.32, respectively. After 48 h pH began to increase up to 8.0. High pH values 

may have adverse effect on production and stability of exo-PG, hence this could inhibit 

to reach higher activities during the fermentation. 

 

 

 

Figure 5.31. Exo-PG production and pH trend of A. sojae WT the addition of pectin into 

the broth. 
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Figure 5.32. Exo-PG production and pH trend of A. sojae MT the addition of pectin into 

the medium. 

 
 

In pectin medium the initial concentration of pectin was 20 g/l at the beginning 

of the fermentation, and pectin was consumed in 48 h corresponding to a utilization rate 

of 0.41 g/l/h. When all pectin was consumed, a defined amount of pectin solution was 

added to culture broth. Pectin added to the broth was consumed after 72 h 

corresponding to a utilization rate of 0.07 g/l/h. In fact, the slow utilization of pectin 
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whereas exo-PG activity by A. sojae MT increased from 1.86 to 4.7 U/ml compared to 

previous exo-PG production in pectin media without pectin addition. The inducing 

effect of pectin clearly observed for A. sojae MT based on 2.5 fold increase of exo-PG 

activity. 
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Figure 5.33. Exo-PG production and pectin consumption by A. sojae WT the addition of 

pectin to the broth. 
 

 

 

 

Figure 5.34. Exo-PG production and pectin consumption by A. sojae MT the addition of 

pectin to the broth. 
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5.9.   Cooperative Effect of Pectin and pH on the Production of Exo-PG 

Activity from Pectin Medium 

 

The interaction between pectin consumption and pH on exo-PG from A. sojae 

WT and A. sojae MT was investigated. The effects of glucose and pH were studied by 

adding a defined amount of sterilized pectin stock solution into the broth at which time 

all pectin was consumed, also pH was adjusted to 4.0 when pH dropped to 2.0 (Figure 

5.35-36). 

In pectin medium the initial concentration of pectin was 20 g/l at the beginning 

of fermentation, all pectin was consumed after 48 h and at which time a defined amount 

of pectin solution was added to broth. Due to the utilization rates of substrates were 

equal to the previous experiment pectin addition without pH control, it could be 

concluded that pH maintenance had no effect on pectin metabolism. 

 

 

 

Figure 5.35. Exo-PG production and pH trend of A. sojae WT the addition of glucose 

into the medium. 
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Figure 5.36. Exo-PG production and pH trend of A. sojae MT the addition of glucose 

into the medium. 
 

 

Results demonstrated that pectin addition caused an increase on the exo-PG 

activity not only with pH control but also without pH control for of A. sojae (Figure 

5.37-38). It could be concluded that pectin had an inducer effect on exo-PG production 

by A. sojae. On the other hand, A. sojae WT and A. sojae MT responded differently to 

pH control also in pectin media. Exo-PG activity by A. sojae WT increased from 1.8 to 

8.6 U/ml, whereas exo-PG activity by A. sojae MT decreased from 4.7 to 4.5 U/ml after 

96 h, compared to previous experiment pectin addition without pH control. While the 

control of pH had a positive effect on exo-PG production by A. sojae WT, A. sojae MT 

showed lower activity under pH control. 

 

 

Figure 5.37. Exo-PG production and pectin consumption by A. sojae WT the addition of 

pectin into the medium with pH control. 
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Figure 5.38. Exo-PG production and pectin consumption by  A. sojae  MT the addition 

of pectin into the medium with pH control. 
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CHAPTER 6 

 

 CONCLUSIONS 

 

Due to little is known about the regulation of pectinase production by 

Aspergillus sp. and it has not been clearly identified especially for A. sojae, this study is 

an important study demonstrating the influence of carbon source and pH on the 

production of exo-PG by A. sojae.  

 As previously maintained for different filamentous fungal species including A. 

sojae species, the results presented in this study supported that carbon source and the 

variation of pH during the fermentation are important factors influencing the synthesis 

of exo-PG production. 

It can be also concluded that pH maintenance during the fermentation have 

negative effect on the process in terms of exo-PG production. In large scale 

applications, it will not require pH control reducing the demand for acid and base 

additions. Hence, this prevents the contamination problems, and also the operational 

and raw material cost will be significantly reduced. 

The lowest exo-PG activity and growth were observed in citrus pectin media. 

This can be attributed to pH trend in pectin media, and the reduction of flow dynamics 

as a consequence of the hardening of the medium caused by the excess of pectin.  

The results indicate that, additional supply of glucose was found to be more 

effective than fructose or saccharose to the pectin media. It has been known that high 

pectin concentrations also induce the pectinase production by Aspergillus sp., however 

high pectin concentration causes reological prolems in culture due to gelatinization 

property of pectin causing high viscosity values of pectin solutions. Fed-batch operation 

systems can be used for the production of pectinases, with continuously addition of 

glucose to get rid of the catabolic repression of glucose or continuously addition of 

pectin to avoid viscosity problems caused by higher pectin concentrations. The 

optimization of the large scale production of exo-PG by A. sojae are needed to be 

elucidated by further studies. 
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APPENDIX A  

 

CHEMICALS USED IN THE STUDY 

 

 

Table A.1. List of the chemicals used in the study. 

NO CHEMICAL CODE 

1 Ammonium molybdate tetrahydrate Sigma 31402 

2 Ammonium sulfate Sigma 31119 

3 Bacteriologycal Agar BD 214010 

4 Calcium carbonate Sigma 12010 

5 Carboxymethyl cellulose (CMC) Aldrich 41928 

6 Cobalt(II)chloride hexahydrate Riedel-De Haën 12914 

7 Copper(II)chloride dihydrate Riedel-De Haën 12914 

8 Copper(II)sulfate pentahydrate Sigma 12849 

9 D-(+)-Glucose monohydrate Sigma 16301 

10 D-(-)-Salicin Sigma S0625 

11 D-(+)-Galacturonic acid Fluka 48280 

12 Ethanol 96% Merck 1.00971 

13 Glycerol Sigma G5516 

14 Iron(II)sulfate heptahydrate Riedel-De Haën 12354 

15 Magnesium sulfate heptahydrate Sigma 63140 

16 Malt extract BD 218630 

17 Maltrin 
Cargill Starch & 

Sweeteners 

18 Manganese(II)sulfate monohydrate Riedel-De Haën 13255 

19 Molasses 
Pakmaya Kemalpaşa 

Üretim Tesisi 

20 Pectin, from citrus peel Sigma P9135 

21 Peptone BD 211677 

 
(cont. on next page) 
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Table A.1. (cont.) 

22 Polygalacturonic acid Sigma P3850 

23 Potassium hydroxide AppliChem A3871 

24 Potassium chloride Riedel-De Haën 31248 

25 Potassium phosphate monobasic Sigma 04243 

26 Potato dextrose agar Merck 1.10130 

27 Potato dextrose broth BD 254920 

28 Potassium sodium tartrate tetrahydrate Merck 1.08087 

29 Sodium acetate trihydrate Sigma 25022 

30 Sodium arsenate dibasic heptahydrate Sigma A6756 

31 Sodium bicarbonate Sigma 31437 

32 Sodium carbonate Sigma 13418 

33 Sodium carboxymethyl cellulose (CMC) Aldrich 419311 

34 Sodium chloride Riedel-De Haën 13423 

35 Sodium hydroxide Panreac 141687 

36 Sodium dihydrogen phosphate monohydrate Fluka 71507 

37 Sodium phosphate dibasic dihydrate Riedel-De Haën 04272 

38 Sodium sulfate Sigma 13464 

39 Sulfuric acid 98%  

40 Xylan, from beechwood Sigma X4252 

41 Yeast extract Merck 1.03753 
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APPENDIX B 

 

REAGENTS FOR ENZYME ACTIVITY ASSAY 

 

 

Table B.1. The chemical ingredients of copper reagent. 

SLOLUTION A* 

Chemical Concentration (g/l) 

Na2CO3 25 

NaHCO3 20 

C4H4KNaO6
.
4H2O 33.56 

Na2SO4 200 

SOLUTION B* 

Chemical Concentration (g/l) 

CuSO4.5H20 150 

H2SO4 1ml 

*Mix solutions A and B (25:1)  

 

 

Table B.2. The chemical ingredients of arsenomolybdate reagent. 

Chemical Amount 

(NH4)6Mo7O24
.
7H2O 25g in 350ml water 

H2SO4 21ml 

AsHNa2O4
.
7H2O 3g in 125ml water 

*Mix solutions and incubate at 37  for 24h. 
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APPENDIX C 

 

CALIBRATION CURVES FOR ENZYME ACTIVITY 

 

 

 

Figure C.1. Calibration curve of galacturonic acid for pectinase activity. 

 

  

Figure C.2. Calibration curve of glucose for reducing sugar assay.
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APPENDIX D 

 

CALIBRATION CURVE FOR PECTIN AMOUNT 

 

 

 

 

Figure D.1. Calibration curve for pectin amount.
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APPENDIX E 

 

IMAGES TAKEN BY SCANNING ELECTRON 

MICROSCOPE 

 

 

Aspergillus sojae ATCC 20225 Aspergillus sojae 20225 MT 

Aspergillus niger Rhizopus oryzae ATCC 4858 

 

Figure E.1. Fungal spore images taken by scanning electron microscope (Philips XL 

30S FEG) of Aspergillus sojae ATCC 20225, Aspergillus sojae MT, 

Aspergillus niger, and Rhizopus oryzae ATCC 4858.  
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APPENDIX F 

 

PELLET MORPHOLOGY OF DIFFERENT FUNGAL 

STRAINS  

 

 

Aspergillus sojae ATCC 20225 

 

Aspergillus sojae MT 

 

 

Aspergillus niger 

 

Rhizopus oryzae ATCC 4858 

 

Figure F.1. Fungal pellet morphologies grown in orange peel medium, images taken at 

the third day of fermentation by digital photo camera (Eastman Kodak 

M320) of Aspergillus sojae ATCC 20225, Aspergillus sojae MT, 

Aspergillus niger, and Rhizopus oryzae ATCC 4858. 
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APPENDIX G 

 

PELLET MORPHOLOGY OF A. sojae MT GROWN IN 

DEFINED MEDIUM WITH DIFFERENT SPORE 

CONCENTRATIONS 

 

 

Figure G.1. Fungal pellet morphologies of Aspergillus sojae MT grown in glucose 

medium with different spore concentrations (5x103 to 18x104 spore/mL), 

images taken by digital photo camera (Eastman Kodak M320). The left 

and right columns show replicates. 
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APPENDIX H 

 

PELLET MORPHOLOGIES OF Aspergillus sojae ATCC 

20225 and Aspergillus sojae MT GROWN IN DIFFERENT 

MEDIUM COMPOSITIONS 

 

 

Figure H.1. Pellet morphologies of A. sojae grown in different medium compositions, 

initial pH 5.0. 
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(cont. on next page) 
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Figure H.1. (cont.) 

 

 

 

 

 

 

 

Pectin and Fructose Medium 

  

Pectin and Saccharose Medium 
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APPENDIX I 

 

PELLET MORPHOLOGIES OF A. sojae MT GROWN IN 

BIOREACTORS AT DIFFERENT pH VALUES 

 

 

Figure I.1. Pellet morphologies of A. sojae grown in bioreactors with different pH 

values. 
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