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ABSTRACT 

 

DEVELOPMENT OF CHROMATOGRAPHIC AND MOLECULAR 

SPECTROSCOPIC  MULTIVARIATE CHEMOMETRIC  MODELS 

FOR THE GEOGRAPHICAL CLASSIFICATION OF OLIVE OILS 

 

Olive oil is a fat obtained from the olive (the fruit of Olea europaea; family 

Oleaceae), a traditional tree crop of the Mediterranean Basin. The oil is produced by 

grinding whole olives and extracting the oil by mechanical or chemical means. It is 

commonly used in cooking, cosmetics, pharmaceuticals, and soaps and as a fuel for 

traditional oil lamps. The classification of olive based on geographical origin is of great 

interest since the quality of olive oil depends on its chemical composition and 

geographical origin. In this study, it is aimed to develop classification models using 

elemental and molecular composition of olive oil samples via chromatographic method 

and molecular spectrometry. For this purpose, olive oil samples from diffirent regions 

of Turkey (Manisa and Bursa) were collected from producers and they were scanned 

with Fourier Transform Infrared spectrometer equiped with attenuated total reflectance 

(FTIR-ATR) accesory, and Gas Chromatography (GC), High Performance Liquid 

Chromatography (HPLC). Afterwards, any clustering of samples based on their regions 

was investigated using principal component analysis (PCA) and hierarchical cluster 

analysis (HCA).   

In conclusion, although molecular spectrometry is more advantageous for the 

classification of olive oil samples in the case of saving time, saving chemicals and ease 

of usage, chromatography gave better classification results based on geograpical origin 

compared to results obtained with molecular spectrometry.  
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ÖZET 

 

ZEYTİNYAĞLARININ COĞRAFİ SINIFLANDIRILMASI İÇİN 

KROMATOGRAFİK VE MOLEKÜLER SPEKTROSKOPİK ÇOK 

DEĞİŞKENLİ KEMOMETRİK MODELLERİN GELİŞTİRİLMESİ  

 

Zeytinyağı, Akdeniz Havzasına ait geleneksel zeytin ağaçlarından elde edilen bir 

yağdır. Yağ, bütün zeytinin öğütülmesi ve mekanik ya da kimyasal vasıtalarla yağı 

çıkarılması sureti ile üretilir. Genellikle yemek, kozmetik, ilaç, sabun ve geleneksel yağ 

lambaları için yakıt olarak kullanılır. Zeytinyağlarının kalitesi, içeriği ve yetiştirildiği 

bölgeye bağlı olmasından dolayı, sınıflandırılmaları büyük önem taşımaktadır. Bu 

çalışmada, kromatografik ve moleküler spektroskopik verilere kemometrik analiz 

yöntemleri uygulayarak sınıflandırma modellerinin kurulması amaçlanmıştır. Bu 

amaçla, Türkiye’nin farklı yörelerinden (Manisa ve Bursa) zeytinyağı örnekleri 

toplanmış ve toplanan örnekler Fourier Transform Infrared spektroskopisinde 

zayıflatılmış toplam reflektans aparatı (FTIR-ATR) ve Gaz Kromatogafisi (GC) ayrıca 

Yüksek Performanslı Sıvı Kromatogafisi (HPLC) ile taranmıştır. Sonrasında, bölgelere 

göre kümelenme olup olmayacağını araştırmak için yönlendirmesiz sınıflandırma 

(unsupervised classification) metotlarından temel bileşenler analizi (principal 

component analysis, PCA) ve hiyerarşik kümeleme analizi (hierarchical cluster analysis, 

HCA) uygulanmıştır. 

Sonuç olarak, moleküler spektrometrinin analiz için harcanan süre, kimyasal 

madde kullanımı ve kullanım kolaylığı açısından daha avantajlı olmasına rağmen 

zeytinyağlarının coğrafi bölgelere göre sınıflandırılmasında kromatografik verilerin 

moleküler spektrometri verilerine göre daha başarılı olduğu belirlenmiştir.  
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CHAPTER 1 

 

INTRODUCTION 

 

Olive oil’s recent popularity could be attributed to its sensorial characteristics as 

well as its potential health benefits. These benefits have been related to its wellbalanced 

fatty acid composition, where oleic acid is the main component, and to the presence of 

minor biomolecules, such as vitamins and natural antioxidants (Matos, et al. 2007).  

Olive oil constitutes various chemical components including triacylglycerols, 

free fatty acids, phosphotides as the major components and also minor components such 

as phenolic compounds, hydrocarbons etc. With increasing consumer demand for high 

quality olive oil, oil produced from olives of just one variety (monovarietal) or one 

geographical region have been appeared on the market. Therefore, it has become 

important to characterize each monovarietal olive oil by its chemical and sensorial 

properties. Chemical composition of olive oils might also differ due to influence of 

geographical, argonomic and technological factors (Aparicio and Luna, 2002). 

Differences in composition depending on geographic orjin or variety are the basis of the 

legislations such as Protected Denomination of Origin (PDO) and Protected 

Geographical Indication (PGI). PDO and PGI certifications allow labelling of food 

products with growing areas and provide extra economical benefits for products of 

designated areas. Consequently, there is a need to develop reliable analytical methods 

for geographical and varietal classification and adulteration determination of olive oils 

(Ulberth and Buchgraber, 2000; Babcook and Clemens, 2004). 

 To characterize each olive oil variety few series of chemical compounds or a 

univariate statistics is not adequate. Instead multivariate analysis techniques should be 

applied to a number of variables (chemical compounds and/or sensory descriptions). 

The multivariate data analysis enables the extraction of meaningful information from 

the large amount of data such as chemical and sensorial properties of olive oil (Aparicio 

and Luna, 2002). Multivariate data analysis can be used for both classification and 

regression issues. It is common to employ principal component analysis (PCA) which 

shows the relation between observations to classify olive oil with respect to variety or 

geographical origin.  
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Chromatographic methods have been generally prefered in classification and 

adulteration studies. Although chromatographic methods supply high dgree of precision, 

there is an increasing demand for rapid, inexpensive and effective techniques for 

determination of authenticity of olive oils. Infrared spectroscopy combined with 

chemometric techniques is one of the promising rapid methods (Downey, 1998).  FT-IR 

(frourier transform infrared spectroscopy) is a quite suitable analysis tool for oil and fat 

analysis because it could be applied directly to samples without any chemical treatment 

(Bendini, et al. 2007). High number of data generated as a result of IR measurements 

makes it necessary to use multivariate data analysis tools. Therefore, FT-IR 

spectroscopy combined with principal component analysis (PCA) could be performed 

for varietal and geographical characterization. 

The purpose of this study is to develop new chemometric methods for the 

classification of olive oils, which are come from different regions of Turkey (Manisa 

and Bursa), according to variety, geographical origin and harvest year using three 

different data sets (1) fatty acid profile obtained from gas chromatography (GC) 

analysis, (2) triacylglycerol profile obtained from high performance liquid 

chromatography (HPLC) analysis and  (3) spectral data obtained from fourier transform 

infrared spectroscopy (FT-IR) analysis. Discrimination ability of these three methods 

was also compared and discussed. 
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CHAPTER 2 

 

OLIVE OIL 

 

2.1. Composition of Olive Oil 

 

Olive oil contains triacylglycerols and small quantities of free fatty acids, 

glycerol, pigments, aroma compounds, sterols, tocopherols, phenols, unidentified 

resinous components and others ( Kiritsakis, et al. 1998). Among these constituents the 

unsaponifiable fraction which covers a small percentage (0,5-15%) plays a significant 

role on human health.  

Fatty Acids; the most important components in olive oil are the fatty acids. Fatty 

acids are simple structures made up of long chains of various numbers of carbon atoms. 

There are only a few types of fatty acids in olive oil, but the proportions of each 

strongly influence the characteristics and nutritive value of olive oil. 

The majority of olive oil fatty acid chains contain 16 or 18 carbon atoms. The 

carbon chains of all fatty acids have a carboxly group (COOH) at one end. 

Edible oil fatty acids can have between 12 and 24 carbons. Nearly all of the fatty 

acids have an even number of carbons. Olive oil contains a small proportion of fatty 

acids with 17 carbons. 

Although fatty acids are relatively similar in structure, there are some variations 

that have a strong influence on their properties. The number of carbon atoms will 

determine if they are; 

 volatile – such as butyric acid, C4 

 solid at room temperature – such as palmitic acid, C16 

 liquid at room temperature – such as oleic acid, C18 

           Fatty acids can also be “saturated” or “unsaturated”. 

 A saturated fatty acid has all of the carbon atoms attached by single bonds. 

 A monounsaturated fatty acid has one double bond joining two of the carbon 

atoms. 

 A polyunsaturated fatty acid has two or more double bonds, each joining two 

carbon atoms. 
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 The number of double bonds is defined by the abbreviation, for example 

“C18:1” denotes 18 carbons and one double bond. 

 The fatty acids can be bent (cis form) or straight (trans form) (Figure 2.1). 

       

    

Figure 2.1. Various types and forms of edible oil fatty acids.  

(Source: Primefacts, August 2006) 

 

Triacylglycerols; olive oil is composed mainly of triacylglycerols. In a unit (or 

molecule) of olive oil, the fatty acids are bound in groups of three together with a unit 

of glycerol. These units are called triacylglycerol molceculse or TAGs (Figure 2.2). 

 

 

Figure 2.2. Triacylglycerol (oil) molecule with three different fatty acids attached. 

(Source: Primefacts, August 2006) 

 

Only when the fatty acids are bound in these small units are they considered to 

be good quality oil. A triacylglycerol unit may lose one fatty acid to become a 
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diacylglycerol or if it loses two fatty acids it is a monoacylglycerol. The fatty acid 

which is lost form the triacylglycerol is then called a “free fatty acid”. 

The glycerol unit can have any three of several fatty acids attached to form 

TAGs. The carbon chains may be different lengths and they may be saturated, 

monounsaturated or polyunsaturated. It is the relative proportion of these that make one 

oil different from another. 

About 95-98% of olive oil consists of TAGs. The remainder of the oil, although 

only a small part in proportion to TAGs, includes a very large number of minor 

compounds, including the phenolic and the sterols. These compounds give olive oil its 

unique flavour and contribute greatly to the nutritional benefits. 

Oleic Acid; olive oil contains a high percentage of the monounsaturated oleic 

acid. Thus, it is a natural monounsaturated oil. This particular fatty acid reduces low-

density lipoprotein (LDL-cholesterol), which is responsible for the formation of the 

atherosclerotic plaque, and increase the high- density lipoprotein (HDL- cholesterol). 

 

Table 2.1. Allowable fatty acid ranges for extra virgin olive oil. 

 Fatty Acid  
Carbon 

Number 
 

Allowable 

Range % 
 

       

(1) Palmitic  C16:0  7.5-20.0  

(2) Palmitoleic  C16:1  0.3-3.5  

(3) Stearic  C18:0  0.5-5.0  

(4) Oleic  C18:1  55.0-83.0  

(5) Linoleic  C18:2  3.5-21.0  

(6) Linolenic  C18:3  <1.0  

(7) Arachidic  C20:0  <0.6  

(8) Gadoleic  C20:1  <0.4  

       

 

Tocopherols; olive oil contains the tocopherols -, -, -, - (- tocopherol 

covers almost 88%). The tocopherol content of olive oil depends not only on the 

presence of these compounds in olive fruit but also on several other factors, involved in 

the transportation, sorage and olive fruit processing. According to Viola et al. (1997), 
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the ratio of vitamin-E to polyunsaturated fatty acids in olive oils is better than in other 

edible oils. 

Pigments; the colour of olive oil is mainly related to the presence of chlorophyll 

and pheophytin. Carotenoids are also responsible for the colour of olive oil. The 

presence of these constituents depend on several factors, such as cultivar, soil and 

climate, and fruit maturation as well as applied conditions during olive oil processing. 

Phenolic Compounds; olive fruit contains simple and complex phenolic 

compounds. Most of these compounds pass into the oil, increase its oxidative stability 

and improve the taste. Hydrohtyrosol, tyrosol and some phenolic acids are mainly found 

in olive oil (Kiritsakis, et al. 1998). The phenol content and the specific composition of 

these phenols in olive oil depend on the altitude where olive trees are grown, on the 

harvesting time and on the processing conditions (Cinquanta, et al. 1997; Kiritsakis, et 

al. 1998). 

Aroma Components; aroma and the taste of olive oil are its main sensory 

characteristics. These characteristics are attributed to a group of aroma compounds. 

Their formation occurs in olive fruit, via a series of enzymatic reactions (Kiritsakis, et 

al. 1998). 

 

2.2. Olive Oil Processing 

 

Virgin olive oil quality depends on different factors such as olive cultivar, olive 

tree cultivation and the operations of olive picking, storage and processing. Olive oil 

takes on odors and flavors readily. Fruit should be classified and separated by quality. 

Fruit with defects should be processed separately from good fruit, because a very small 

portion of bad fruit producing defective oil can ruin a large quantity of good oil (Di 

Giovacchino, et al. 2002).  

 

2.2.1. Washing and Leaf Removal 

 

          The purpose of preliminary washing is to remove any foreign material that coıld 

damage machinery or contaminate the oil. Only olives that have been harvested from 

the soil or require removal of copper, sprays, etc. need to be washed. If olives are 
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crushed in a hammermills, the extra moisture from the wash water can cause 

extractability problems because an emulsion forms between the oil and water. 

          Polyphenol content is lower in washed olives; there can be as high as a 49% loss 

in oil stability. Oil sensory ratings for washed olives is usually affected negatively and 

washed olives generally have a lower bitterness rating, and a less fruity flavor. Wash 

water is often dirty and has a good chance of passing flavors into the oil. 

          It is important that no fruit remains stuck in the bins and hoppers at the processing 

plant as it can ferment and ruin the oil. Olives should be stored for as short a period as 

possible and at cool temperatures (4.5-7.5 
o
C). Temperatures above 10  

o
C can cause 

problems. Wet fruit is also much more likely to ferment than dry fruit. 

          Small quantities of leaves are not detrimental to the oil and sometimes leaves are 

added to produce a chlorophyll (green) colour and flavour in the oil. 

 

2.2.2. Milling 

 

          Olive fruit is made up approximately 1/3 water, and 1/3 oil. The objective of the 

first true step of olive oil production, crushing the olives, is to produce a paste with 

easily extracted oil droplets. Two types of machines are used to crush olives: stone mills 

and stainless steel hammermills. Each has advantages (Di Giovacchino, et al. 2002). 

 

2.2.2.1. Stone Mills 

 

          Stone crushers consist of a stone base and upright millstones enclosed in a metal 

basin, often with scrapers and paddles to guide the fruit under the stones and to circulate 

and expel the paste. The slow movement of the stone crushers does not heat the paste 

and result in less emulsification so the oil is easier to extract without as much mixing. 

          The major disadvantages of this method are bulky machinery and its slowness, its 

high cost, and its inability to be continuously operated. The stones are also more 

difficult to clean, and the slow milling time can increase oxygen exprosure and paste 

fermentation. Stone mills, because of their inefficiency, have been replaced by hammer 

mills in most large operations (Di Giovacchino, et al. 2002). 
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Figure 2.3. Stone mill 

(Source: Klazomenai; Urla, 2010) 

 

2.2.2.2. Hammer Mills 

 

           It consists of a metal body that rotates at high speed, hurling the olives against a 

metal grate. The major advantage of metal crusher is their speed and continuous 

operation, which translate into high output, compact size, and low cost. Their major 

disadvantage is the type of paste produced. The oil is more emulsified, requiring a 

longere mixing period to achieve a good oil extraction and the speed of metal crushing 

can produce elevated temperatures and possible metal contamination. Both factors 

reduce oil quality (Di Giovacchino, et al. 2002). 

 

 

Figure 2.4. Hammer mill 

(Source: Olive Oil Source, 2013) 
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2.2.3. Mixing of the Olive Paste (Malaxation) 

 

Malaxation prepares the paste for separation of the oil from the pomace. This 

step is particularly important if the paste was produced in a hammermill. The mixing 

process optimizes the amount of oil extracted through the formation of larger oil 

droplets and a reduction of the oil-water emulsion (Aparicio and Harwood, 2000). 

 

2.2.3.1. Malaxing Time  

 

A longer malaxing time increases the oil yield and helps the oil pick up minor 

components of the oil that can improve flavour. But a longer malaxing time allows 

oxidation that decreases shelf life; the oil has a higher acidity and peroxide level 

(Aparicio and Harwood, 2000). 

 

2.2.3.2. Heating 

 

Heating the olive paste will decrease viscosity and improve the separation of oil 

and water. This increases the yield. Heating speeds oxidation and enzymatic breakdown 

of the paste, however, resulting in a lower quality product with higher acidity and 

peroxides. The oil has a shorter shelf life (Aparicio and Harwood, 2000). 

 

2.2.3.3. Using Inert Gases 

 

 To discourage oxidation, mixing tanks system can be ordered with covers that 

contain an inert gas such as carbon dioxide or nitrogen, allowing increased yield and 

flavour without the danger of oxidation. Mixing chambers kept under a vacuum will 

accomplish the same purpose, but cannot remove as much oxygen as an inert gas 

blanket. 

 

2.2.3.4. Adding Water 

 

Water can also be added to facilitate the oil extraction but also results in lower 

quality oil with higher acidity and lower polyphenol level, hence a shorter shelf life. 
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2.2.4. Oil Extraction From the Paste 

 

The next step is exracting the oil from the paste and fruit water (water of 

vegetation). The oil can be extracted by pressing, centrifugation, percolation, or through 

combinations of the different methods. 

 

2.2.4.1. Lever or Screw Olive Presses 

 

Historically, olive paste was put on round mats or in burlap bags, stacked, and 

squeezed with a long lever weighted with stones, or via a twisting screw. These presses 

were bulky and inefficient, since the pressure was low and the process discontinuous. In 

addition, the mats or bags were nearly impossible to clean. 

Because it was not possible to extract all the oil in the “first press”, hot water 

was added to the pomace to help release additional oil, and a second press (or several) 

was done, hence the terms “ first press” and “cold press”, which are now pretty much 

obsolete, even though still widely used improperly for marketing reasons. 

 

2.2.4.2. Hydraulic Olive Press 

 

This is somewhat similar to a hydraulic car jack; a piston squeezes the paste that 

has been applied to stacks of disk-like filters. This method has some advantages and 

disadvantages. 

Adavatages; 

 Requires a limited invesment. 

 It is simple and reliable machinery. 

 The energy consumption is low. 

 The resulting pomace has a low moisture content. 

 It tolerates rocks and sand without wear. 

 No water has to be added and there is minimal vegetable water disposal. 

Disadvantages; 

 It is very labor intensive. 

 Decomposition of materials left on mats, if not properly cleaned and stored, 

can produce chemicals responsible for winey and fusty defects. 



11 

 It is a discontinuous process. 

 An additional step is needed to separate the oil from the vegetable water. 

 There is more exposure to oxygen resulting in more oxidation and a higher 

level of peroxides. 

 

2.2.4.3. Centrifugal Decanters (Three-Phase) 

 

These days, modern facilities all use a centrifuge-based system of extraction, 

also referred to as horizontal decanters. The traditional centrifuges (stiil commonly 

used) are three-phase; they spin the olive paste in a horizontal drum, the heavier flesh 

and pits go to the outside and the water and oil are tapped off separately from the center. 

Adavntages; 

 The machinery is compact- one decanter can take the place of several 

presses. 

 They are semi-continuous and automated. 

 The amount of labor required is limited. 

 There is no need for an oil/water separation step. 

Disadvantages; 

 They are expensive. 

 More technical labor is required. 

 They may consume hot water. 

 The enegy consuption is high. 

 The pomace may end up moist. 

 As water has to be added to the process, a greater amount of vegetable water 

has to be disposed of. 

 There is a lost of polyphenols due to the added water. 
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2.2.4.4. Advanced Dual Phase, Triple Phase Centrifuge 

 

These are similar to the centrifugal decanter, but some of the vegetable water is 

recycled to extarct more from the pomace. The water, oil, and pomace are 

simultaneously removed in a single step.  

Advantages; 

 They have highest percentage of oil extraction. 

 In three-phase systems, the pomace is dry and readily usable. (ın dual phase 

systems, the pomace and vegetable water are extracted together.) 

 There is no need for an oil/water separation step. 

 Less or no water needs to be added. 

 The oil has more polyphenols and a longer shelf life. 

 The vegetable water disposal is less of a problem. 

 Olive oil from two-phase centrifugation systems contains more phenols, 

tocopherols, trans-2-hexenal and total aroma compounds and is more 

resistant to oxidation than oil from three-phase ones and from hydraulic 

presses. 

Disadvantages; 

 They are expensive. 

 More technical labor required. 

 The energy consumption is high. 

 They are subject to wear from rocks, sand, and grit. 

 The oil has more polyphenols so will be bitterer. 

 

2.2.4.5. Percolation – Sinolea 

 

Rows of metal discs or plates are dipped into the paste; the oil preferentially 

wets and sticks to the metal and is removed with scrapers in a continuous process. This 

is not very commonly used and sale of future machiners is currently outlawed in the 

European Union due to the difficulty of cleaning such large surface areas. 

Advantages; 

 The polyphenol content of the oil is higher. 

 It is low temperature method. 
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 It is automated. 

 The labor requirement to operate the machine is low. 

 There is no need for an oil/water separation step. 

 The energy consumption is low. 

Disadvantages; 

 It must be combined with one of the above methods to maximize oil 

extraction; this, of course, requires more space, labor, and expense. 

 The large surface area can lead to rapid oxidation. 

 

2.2.5. Processing Waste 

 

This is the final step. Depending on what equipment was used in the extarction 

process, this may be unnecessary. When a hydraulic press is used and the liquid output 

is a mix of oil and water, with microscopic bits of olives, this final separation of oil 

from water is obviously required. In the case of separation with a centrifuge, when the 

product is almost completely oil, this step can still be beneficial (especially in the case 

of very ripe, overwatered olives when the oil has not separated perfectly in the first 

centrifugation), but it is not always an absolute necessity. 

 

2.2.5.1. Separation by Gravity 

 

The oil and water are put into tanks where they separate by gravity. This method 

is not used in any modern facility. It is inexpensive from an equipment point of view but 

very time consuming, bulky, and leads to wasted oil if the separation is incomplete. It 

can also lead to a deterioration of the oil. 

 

2.2.5.2. Centrifugal Olive Oil Separator 

 

Like a cream separator ina dairy, the liquid is spun, separating the heavier water 

from the oil. Vertical centrifuges with perforated conical discs can act as either: 

 Purifier; they take a little water out from mostly oil. This is the most 

common case. 
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 Skimmer; they take a little oil from a lot of water (if the goal is to scavenge 

the waste water). 

 Clarifier; removes a little solid from a liquid phase (removes microscopic 

partides from the oil). 

Advantages; 

 It is a quick step. 

 The process is continuous. 

 It is very efficient and results in higher yield than gravity separation. 

Disadvantages; 

 They are expensive. 

 They are energy intensive. 

 They can be complicated to operate and difficult to clean, although the 

newer Pieralisi decanters with their self-flushing systems, are much easier to 

use than other equipment. 

 

2.3. Definitions of Olive Oil 

 

There are two main categories; olive oils (including virgin olive oil, refined 

olive oil, and olive oil), all obtained directly from the olive fruit without the use of 

solvents or re-esterification. Olive-pomace oils, obtained by treating olive pomace (the 

ground olive flesh and pits left after oil extraction) with solvents or other physical 

treatments (excluding re-esterification processes). 

Extra Virgin Olive Oil: Extra virgin olive oil which has a free acidity, expressed 

as oleic acid, of no more than 0.8 gram per 100 gram (0.8%) and this is the highest 

quality of olive oil (IOOC 2012). 

Virgin Olive Oil: Virgin olive oil which has a free acidity, expressed as oleic 

acid, of not more than 2 gram per 100 gram (0.2%) and their quality is lower than extra 

virgin olive oils (IOOC 2012). 

Ordinary Virgin Olive Oil: Ordinary virgin olive oil which has a free acidity, 

expressed as oleic acid, of not more than 3.3 gram per 100 gram (3.3%) (IOOC 2012). 

Lampante Virgin Olive Oil: Lampante virgin olive oil which has a free acidity, 

expressed as oleic acid, of more than 3.3 gram per 100 gram (3.3%) and it is not 

suitable for consumption (IOOC 2012). 
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Riviera Olive Oil: The oil that is obtained by mixing refined olive oil with virgin 

olive oil that can directly be consumed as a food. It has a free acidity, expressed as oleic 

acid, of no more than 1.0 gram per 100 gram (1%) (IOOC 2012). 

Refined Olive Oil: Refined olive oil is the olive oil obtained from virgin olive 

oils by refining methods that do not lead to alterations in the initial glyceridic structure. 

It has a free acidity, expressed as oleic acid, of no more than 3.0 gram per 100 gram 

(0.3%) (IOOC 2012). 

Olive oil: Olive oil is the oil consisting of a blend of refined olive oil and virgin 

olive oil fit for consumption as they are. It has a free acidity, expressed as oleic acid, of 

not more than 1 gram per 100 gram (1%) (IOOC 2012). 

Refined Pomace Oil: Oil that is obtained by refining methods not causing any 

change in triglyceride structure of raw pomace oil. Refined pomace oil can be marketed 

directly or by mixing with virgin olive oil. It has a free acidity, expressed as oleic acid, 

of not more than 0.3 gram per 100 gram (0.3%) (IOOC 2012). 

Olive Pomace Oil: The oil that is obtained by mixing refined pomace oil and 

virgin olive oil can be consumed directly as a food. It has a free acidity, expressed as 

oleic acid, of not more than 1 gram per 100 gram (1%) (IOCC 2012). 

 

2.4. Factors Affecting Olive Oil Composition 

 

Influence of Pedoclimatic Conditions; Climate has a great influence on the 

ripeness and hence, on the chemical composition of vegetable oils. Cultivars do not 

always grow at the same altitude, but olive grove zones are disseminated over a wide 

range of altitudes where climatic conditions (rainfall, temperature, humidity) obviously 

can be quiet different. Consequently, this has an impact on chemical and sensory 

profiles. Author reported that in the case of the varieties Frantoio, Leccino, Moraiolo 

and Coratina the amount of total polyphenols in oils produced in the coastal zones 

(altitude <100 ml) of Tuscany is double that of oils produced in the inland (Cimato, 

1991). Other authors found that virgin olive oils of fruits collected from low altitude 

have higher amounts of sterols (Aparicio, et al. 1991), polyphenols and tocopherols 

(Moussa, et al. 1996), but lower contents of chlorophylls and unsaturated fatty acid 

(Moussa, et al. 1996 ; Ferreiro, et al. 1992). 
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It is well known that the percentage of unsaturated fatty acids in olive oil 

increases with decreasing temperature or increasing altitude (Osman, et al. 1994). In 

consequence, olive oils from high altitude should have theorically a lower stability than 

those from low altitudes because of their ratio of polyunsaturated to saturated fatty 

acids. The oxidative stability, however, is also due to the content of -tocopherol and 

polyphenolic compounds that are considered the most important antioxidants 

traditionally (Blekas, et al. 1995 ; Papadopoulos, et al. 1991). Thus, the hypothetical 

lower stability of the olive oils produced in the mountains can also be due to their lower 

content of total polyphenols (Mousa, et al. 1998). 

Virgin olive oils obtained from monovarietal olive groves at the high altitudes 

are, in general, more sweet and have an herbaceous fragance compared to their 

corresponding oils from lower elevations. Recent studies have established that the 

production of hexanol increases when the temperature decreases (Aparicio, et al. 2000). 

Apart from altitude and temperature, other climatic variables and the soils of 

olive grove zones influence the chemical composition of virgin olive oil. The influence 

of rainfall on the synthesis of oil was studied by authors and they found that the 

amounts of sterols, squalene, oleic acid and of some triacylglycerols were explained by 

the autumn temperatures, the relative humidity of the summer months and the rainfall of 

the whole year (Angerosa, et al. 1996). 

Influence of Agronomical Conditions; Until recently the olive tree was a crop of 

dry regions since traditional agricultural practices did not involve irrigation. The price 

increase for olive oil and recent droughts in the Mediterranean basin have increased 

irrigated olive groves whose numbers have become exponentially greater in all olive-

producing countries. Chemical and sensory characteristics, however, allow to 

distinguish clearly between monovarietal virgin olive oils from irrigated and non-

irrigated olive trees. Thus, the total content of polyphenols, which contribute to the 

bitter taste of the oil (Gutierrez, et al. 1989), is lower in the virgin olive oil harvested 

from irrigated zones. This is of great importance for varieties characterised by high 

values of astringent, throat-catching or bitter sensory descriptiors. This olive oils have a 

shorter shelf life and a more “light” sensory profile than oils produced from non-

irrigated olive groves (Salas, et al. 1997). 

Influence of Ripeness; The ripeness of olives is an important determinant for 

harvesting, because the accumulation of fatty acids rises with ripeness index has been 

universally accepted for determining the ripeness stage of olives (Frias, et al. 1991) and 
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hence the optimum time for harvesting. The scale is based on the colour and texture of 

the olive drupe, and the first numbers correspond to uniripe olives, values around 3.5-

4.5 correspond to normal ripe olives, while numbers above 6 correspond to overripe 

olives. 

Over the ages farmers were normally paid according to the percentage of oil 

obtained from their olives, so they were interested in harvesting when their olives were 

ripe enough. Recent studies on the evolution of chemical compounds during ripeness 

(Aparicio, et al. 1998), however, have allowed delineating not only the best time for 

harvesting but also the importance of olive ripeness to sensory quality. Virgin olive oil 

obtained from overripe olives is received in a higher yield but its chlorophyll content is 

relatively low (Minguez-Mosquero, et al. 1986), it contains smaller amounts of total 

phenols (Maestro Duran, 1990) and some aromatic compounds (Morales, et al. 1996). 

The effects of ripeness on the sensory quality of virgin olive oil and 

monovarietal virgin olive oils are obvious and were studied with either sensory 

descriptors or volatile and phenolic compounds. The influence of ripeness on the 

concentration of green aroma compounds were studied by authors (Morales, et al. 

1990). The authors found that the total content of volatile compounds decreases with 

ripeness and there are markers for monovarietal virgin olive oils obtained from unripe 

(E-2-hexenal), normal ripe (hexyl acetate) and overripe olives (E-2-hexenol), regardless 

of the variety selected (Aparicio, et al. 1998). 

Influence of Extraction Systems; Various studies have shown that a monovarietal 

virgin olive oil produced by the three-phases centrifugation system contains lower 

amounts of polyphenols (De Felice, et al. 1979) and of aliphatic alcohols (Mattei, et al. 

1988), but slightly higher amounts of cholorophylls (De Felice, et al. 1979) than the 

same oill obtained by cold press. It is also well konwn that oils from cold press are 

significantly more bitter, have less gross flavour and higher values of undesirable 

attributes like yeast aroma and ferment odour than those obtained by the three-phase 

centrifugation procedure. Besides, with respect to volatiles, concentrations of almost all 

of them higher in the oils obtained by cold press (Angerosa, et al. 1996). 

However due to the problems with the volume of waste waters (Fiestas, J. A. 

1953 ; Capasso, et al. 1992), the three-phases centrifugation systems evolved to 

centrigugal decanters of two-phases that avoid adding water during the process. Since 

the adoption of the former system in the early 1990s, numerous researchers have 

pointed out the sensory and chemical differences between these three- and two-phases 
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centrifugation systems. Comparing monovarietal virgin olive oils obtained by both 

processes, the oils obtained by two-phases decanters have higher contents of 

polyphenols (Jimenez-Marquez, et al. 1995), ortho-diphenols, hydroxytyrosol, 

tocopherols (Angerosa, et al. 1996), E-2-hexenal and total aromatic substances, but 

lower values of pigments, aliphatic and triterpenic alcohols, steroid hydrocarbons and 

waxes (Ranalli, et al. 1996) with a significance lower than 0.05. 

 

2.5. The Role of Olive Oil in Human Health 

 

There is no doubt that the traditional olive oil has contributed to the low rates of 

numerous chronic diseases observed in Mediterranean region and that has been proved 

as a model of healthy nutrition. In particular, a large body of evidence documents the 

relationship between the olive oil, cardiovascular risk factors (especially 

hyperlipidaemia, diabetes, obseity) and coronary heart disease (CHD) (International 

Consensus Conference on the Mediterranean Diet, 2000). 

Hyperlipidaemia; With regard to the prevention, but also the therapy of 

hyperlipidaemia, the low saturated fatty acid (SFA) and high monounsaturated fatty 

acid (MUFA) contents of olive oil are of outstanding importance. However, its total 

nutrient composition also meets the requirements of the internationally recommended 

lipid-lowering and coronary heart disease (CHD)-preventive diet (Expert Panel on 

Detection, Evaluation, and Treatment of High Blood Cholestrol in Adults, 2001). 

Diabetes; The most important measure for preventing type 2 diabetes is the 

prevention of obesity, which is also facilitated by a olive oil with its lower energy 

density compared to other oils. The basic measure in the treatment of type 2 diabetes is 

weight reduction, together with increased physical activity in the majority of obese 

patients. In addition, a reduction of saturated fatty acid (SFA) intake is the main dietary 

invention, due to the high coronary heart disease (CHD) risk in diabetic patients which 

is frequently associated with dyslipidaemia (Ha, et al. 1998). To improve the blood 

glucose and serum lipid profile a diet rich in carbonhydrates and dietary fibre and with a 

high content of monounsaturated fatty acid (MUFA) is recommended (Wright, J. 1998). 

The olive oil gives an excellent example for an adequate diabetes diet. 

Coronary Heart Disease (CHD); Verschuren, et al. (1995) documented a 

negative correlation between the intake of monounsaturated fat and the 
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monounsaturated fatty acid (MUFA) to saturated fatty acid (SFA) ratio and coronary 

heart disease (CHD) incidence. All cause and coronary heart disease (CHD) death rates 

were low in the Mediterranean cohorts with the monounsaturated fatty acid (MUFA) 

rich olive oil as the main fat, underlining the favourable role of olive oil. Furthermore, 

there is a body of indirect evidence from interventional studies that the traditional 

Mediterranean diet with its abundance in plant foods, preferential and regular intake of 

olive oil, and low to moderate consumption of animal foods protects against coronary 

heart disease (CHD) efficiently (Spiller, G. A. 1991 ; Denke, M. 1995 ; Kris-Etherton, 

et al. 2001). 

Recent findings indicate that the olive oil yield its benefits not only through its 

effect on established coronary heart disease (CHD) risk factors such as hyperlipidaemia, 

diabetes, and obesity but also through direct protective effects, particularly its 

antioxidative properties (Hertog, et al. 1995), due to its abundance of both antioxidative 

vitamins (vitamin E, -carotene, vitamin C) and other antioxidative compounds, like 

flavonoids and other polyphenols. These antioxidants seem to contribute to the 

prevention of processes, such as low density lipoprotein (LDL) oxidation, that are 

considered to promote atherogenesis (Visioli, et al. 1995 ; Heinecke, et al. 1998 ; Jialal, 

et al. 1996 ; Esterbauer, et al. 1992). 

Cancer; A study from Barcelona by Menendez, et al. (2009) confirmed that the 

polyphenols in extra virgin olive oil are effective in combinating breast cancer cells of 

the HER-2 type. The study notes that the isolated polyphenols were applied in much 

higher concentrations than what can be consumed in dietary olive oil, but their findings 

may help explain the protective effect olive oil seems to have in preventing certain 

types of cancer among Mediterranean women. 

Investigators studied the effects of a diet rich in safflower, fish oil or olive oil on 

rats, which had been given a chemical that accelerates cancer in the bowel. After five 

months, twice as many rats in the safflowerr group had developed tumors as the rats in 

the other two groups. In fact, the rats that received olive oil had colon cancer rates 

almost as low as those fed fish oil, which several studies have already linked to a 

reduction in colon cancer risk (Olive Oil Source, 2012). 

Women who ate more olive oil had better protection against ovarian cancer. The 

study looked at the diets of nearly 3.500 Italian women; 1.031 with ovarian cancer, and 

2.411 without cancer. The women who consumed the highest amount of olive oil had 

the lowest rate of ovarian cancer, reduced 30% from the average (Bosetti, et al. 2002). 
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A study from Japan found that hairless mice exposed to damaging doses of 

sunlight then soothed with olive oil developed fewer skin cancers. We do not know if 

people’s skin will react the same as hairless mice, but it is likely that the antioxidants in 

olive oil could help prevent cancer in humans too.  
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CHAPTER 3 

 

MULTIVARIATE STATISTICAL ANALYSIS 

 

Chemometrics has been defined as the application of mathematical and 

statistical methods to chemical measurements (Kowalski, B. 1980). Chemometrics 

developments and the accompanying realization of these developments as computer 

software provide the means to convert raw data into information, information into 

knowledge and finally knowledge into intelligence (Delaney, M. 1984). Measurements 

related to the chemical composition of a substance are taken and the value of a property 

of interest is inferred from them through some mathematical relation (Lavine, B. 1998). 

Chemometrics is a chemical discipline that uses mathematics, statistics and 

formal logic; 

 to design or select optimal experimental procedures 

 to provide maximum relevant chemical information by analyzing chemical 

data 

 to obtain knowledge about chemical systems (Massart, et al. 1997). 

            Most of the published studies in chemometrics are on pattern recognition. 

Pattern recognition is used to classify the pbjects into sets based upon some similarity in 

properties (Einax, et al. 1995). The aim is to classify data (patterns) based on either 

knowledge or on statistical information. In chemistry, there are many applications using 

data to determine the patterns. The following examples can be given: wine 

characterization based on the analysis of the biogenic amine composition using the 

chromatographic profiles (Garcia-Villar, et al. 2007), verifying the geographical origin 

olive oils by near infrared spectroscopy (Woodcock, et al. 2008) and monitoring of 

water quality using nitrate, sulphate, chloride, turbidity, conductivity, hardness, 

alkalinity, coliforms and Escherichia coli data (De luca, et al. 2008). 

There are many methods for chemical classification. Classification methods in 

chemometrics are mainly divided into two groups: unsupervised and supervised 

techniques. 

This section will attempt to give some elementary background mathematical 

skills that will be required to understand the process of unsupervised technique.  
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Standard Deviation & Variance; Standard deviation is a statistical value used to 

determine how spread out the data in a sample are, and how close individual data points 

are to the mean (or average) value of the sample. A standard deviation of a data set 

equal to zero indicates that all values in the set are the same.  

To calculate the standard deviation, first calculate the mean value of all the data 

points. The mean is equal to the sum of all the values in the data set divided by the total 

number of data points. Next, the deviation of each data point from the average is 

calculated by subtracting its value from the mean value. Each data point’s deviation is 

squared, and the individual squared deviations are averaged together. The resulting 

value is known as the variance. Standard deviation is the square root of the variance, 

and the variance is squared of the standard deviation. 

 

         

                 

                      (3.1)                                           (3.2) 

 

Covariance; Covariance is such a measure. Covariance is always measured 

between two dimensions. If we calculate the covariance between one dimension and 

itself, we get the variance. So, if we had a three-dimensional data set (x, y, z), then we 

could measure the covariance between the x and y dimensions, the x and z dimensions, 

and the y and z dimensions. Measuring the covariance between x and x, or y and y, or z 

and z would give we the variance of the x, y and z dimensions respectively. 

If two variables tend to vary together (that is, when one of them is above its 

expected value, then the other variable tends to be above its expected value too), then 

the covariance between the two variables will be positive. On the other hand, when one 

of them is above its expected value the other variable tends to be below its expected 

value, then the covariance between the two variables will be negative. 
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Eigenvectors & Eigenvalues; We say is an eigenvalue of a square matrix A if    

                                                   Ax = x                                                          

for some x ≠ 0. The vector x is called an eigenvector of A, associated with the 

eigenvalue . Note that if x is an eigenvector, then any multiple ax is also an 

eigenvector. Eigenvalues presented as percentage. 

Note that square matrices of any size, not just 2x2 matrices, can have 

eigenvectors and eigenvalues. 

 

3.1. Unsupervised Methods 

 

The main goal of unsupervised methods is to evalute whether clustering exists in 

a data set and to find a property of objects using measurements on them. Unsupervised 

methods do not require any prior knowledge about the group structure in the data, but 

instead produce the grouping and this type of methods mainly analyzes the data. In 

some situations the class membership of the samples is known. If the aim is any 

grouping between samples or any outliers, unsupervised pattern recognition techniques 

such as principal component analysis (PCA), hierarchical cluster analysis (HCA) can be 

used. Thus, the class information is known or suspected but is not used initially (Sharaf, 

et al. 1986). 

 

3.1.1. Principal Component Analysis (PCA) 

 

Principal component analysis (PCA) is a multivariate technique that analyzes a 

data table in which observations are described by several inter-correlated quantitative 

dependent variables. Its goal is to extract the important information from the table, to 

represent it as a set of new orthogonal variables called principal components, and to 

display the pattern of similarity of the observations and of the variables as points in 

(3.4) 
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maps. The quality of the principal component analysis (PCA) model can be evaluated 

using cross-validation techniques (Williams, J. 2010). 

The goals of principal component analysis (PCA) are to (a) extract the most 

important information from the data table, (b) compress the size of the data set by 

keeping only this important information, (c) simplify the description of the data set, and 

(d) analyze the structure of the observations and the variables (Abdi, H. 2010). 

In order to achieve these goals, principal component analysis (PCA) computes 

new variables called principal components which are obtained as linear combinations of 

the original variables. The first principal component is required to have the largest 

possible variance (inertia and therefore this component will explain or extract the 

largest part of the inertia of the data table). The second component is computed under 

the constraint of being orthogonal to the first component and to have the largest possible 

inertia. 

While principal component analysis (PCA) is performed, the dataset is 

decomposed into two parts, namely, meaningful information and erro (or noise). The 

transformation is often mathematically described as follows (Brereton, 2002) 

 

where 

 X is teh original data 

 T is the principal component scores and has as many rows as the original 

data matrix 

 P is the principal component loadings and has as many columns as the 

original data matrix 

 E is error matrix. 

 (3.5) 
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Figure 3.1. Principal Component Analysis (PCA) 

(Source: Brereton, 2002) 

 

Principal component (PC) account for the majority of the variability in the data. 

This enables to describe the information with considerably few variables than originally 

present. The number of components extracted in a principal component analysis (PCA) 

is equal to the number of observed variables being analyzed. The first component 

extracted in a principal component analysis (PCA) accounts for a maximal amount of 

total variance in the observed variables. This means that the first component will be 

correlated with at least some of the observed variables. The second component extracted 

will have two important characteristics. First, this component will account for a 

maximal amount of variance in the data set that was not accounted for by the first 

component. This means tahta the second component will be correlated with some of the 

observed variables that did not display strong correlations with first component. The 

second characteristic of the second component is that it will be uncorrelated with the 

first component (Davies, A.M.C. 1992). 

The cumulative percentage eigenvalue explains the proportion of the data which 

has been modelled using principal component analysis (PCA). The model is faithful if 

this vaşue is close to 100%. Using the size of eigenvalues, estimation of the number of 

significnat components in the data set is carried out (Brereton, 2002). 

The significance of the each principal component (PC) can be tasted by cross- 
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validation. In cross-validation, each sample is removed once from the data set and 

principal component analysis (PCA) is performed on the remaining samples. Different 

scores and loadings matrices are obtained depending on removed sample. In this way, 

all samples are removed once and the remaining sample is predicted. 

Application of principal component analysis (PCA) chemometric method 

combined with many spectroscopic and chromatographic techniques has been carried 

out to characterize the olive oils according to cultivar, location and sampling date and 

classification of olive oils according to cultivar and geographical origin. 

Aranda, et al. (2004) have measured triglycerides, total and 2-position fatty acid 

composition by high performance liquid chromatography (HPLC) and achieved 90% 

correct classification using principal component analysis (PCA) and linear discriminant 

analysis (LDA) in differentiating Spanish olive oil cultivars. 

D’Imperio, et al. (2005) and Rezzi, et al. (2005) had work out related to 

classification of olive oils from Italy and from various Mediterranean areas, 

respectively, by the combination of Nuclear Magnetic Resonance (NMR) with 

multivariate analysis techniques of principal component analysis (PCA) and linear 

discriminant analysis (LDA). 

Poulli, et al. (2005) studied the classification of virgin olive oils based on their 

synchronous fluorescence spectra by hierarchical cluster analysis (HCA) and principal 

component analysis (PCA). According to result of this study, principal component 

analysis provided better discrimination between the virgin olive oil classes, while 

hierarchical cluster analysis (HCA) allowed 97% correct classification. 

Piŝ, et al. (2011) studied synchronous scanning fluorescence spectroscopy in 

combination with multivariate data analysis is introduced for the characterization and 

classification of brandies and wine distillates. Using principal component analysis 

(PCA), correct classification of brandy and wine distillates samples observed for 

synchronous fluorescence data set, hierarchical cluster analysis (HCA) showed that the 

brandy and wine distillate samples created two cluster, the first cluster included only 

wine distillate samples and the second one only brandy samples. Linear discriminant 

analysis (LDA) performed on selected wavelengths provided 93% of correct 

classification. 
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3.1.2. Hierarchical Cluster Analysis (HCA) 

 

Hierarchical cluster analysis (HCA) has become a standard method in searching 

for similarities among data sats, its applications are related to the partitioning are related 

to the similarity classes that are represented as cluster. Hierarchical cluster analysis 

(HCA) constitutes a method for classifying the original set with which it is posssible to 

study the behavior of a member of determined class and finally generalize sucg 

knowledge to the other members of the class (Restrepo, et al. 2006). 

The main idea is to exmine the interpoint distance between all the samples and 

represent that information in the form of two dimensional plots as a dendrogram. This 

idea has been applied in many areas including astronomy, archeology, medicine, 

chemistry, education, psychology, linguistics and sociology. 

While constructing a dendgrogram. The first step is to determine the similarities 

between samples or variables. It is possible with measuring the distances between 

objects. There are many different methods for measuring a distance and the most 

common ones for hierarchical cluster analysis are as follows: 

Euclidean Distance: The distance between samples k and l is defined by: 

 

where there are j measurements and xkj is the j
th

 measurement on sample k. 

Manhattan Distance: This is defined slightly differently to the Euclidean 

distance and is given by: 

Mahalanobis Distance: This method is similar to the Euclidean distance; it takes 

into account that some variables may be correlated, thus it measures more or less the 

same properties.  

 

(3.6) 

 

     (3.7) 
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where C is the covariance matrix. The Mahalanobis distance is as same as with 

Euclidean distance if the covariance matrix is the identity matrix. 

After all distances or similarities have been calcukated, need a way of 

determining how closely samples are related or grouped. Start with the two most related 

samples and link them forming an initial cluster. The process is repeated until all 

samples have been linked. Several methods of linking the samples are avaliable. 

Single Linkage: Here the shortest distance between opposite clusters is 

calculated. Thus, first cluster is one with two observation that have the shortest distance. 

A third observation, which has the next least distance, is added to the two observation 

cluster to create a three observation cluster or a new two observation cluster is formed. 

The algorithm continues until all the observations are in one cluster. The distance 

between any two clusters is the shortest distance from any point in one cluster to any 

point in the second cluster. Two clusters are merged at any single stage by the single 

shortest or strongest link between them (Hair, et al. 1987). 

Complete Linkage: This is similar to single linkage except that this is based on 

maximum distance not minimum distance. The maximum distance between any two 

individuals in a cluster represents the smallest (minimum diameter) sphere that can 

enclose the cluster. The advantage here is that this does not create one cluster for “chain 

observations”. This happens in single linkage distance where the whole collection of 

data becomes a cluster, though the first and the last observation will be at the maximum 

distance for the entire sample space (Hair, et al. 1987). 

Average Linkage: Here the average distance from samples in one cluster to 

samples in other clusters are used. There are two diffirent way of doing this, according 

to the size of each group being joined together. 

i) Unweighted average linkage: with this method the number of objects in a 

cluster is used for weighting the cluster distances. 

ii) Weighted average linkage: the sizes of clusters and their weights are assumed 

to be egual. 

Centroid (Mean) Method: Euclidean distance is measured between centroids of 

two clusters.  

(3.8) 
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Ward Distance: This method is distinct from all other methods because it uses 

an analysis of variance approach to evaluate the distance between clusters. In short, this 

method attempts to minimize the Sum of Squares (SS) of any two (hypotheical) clusters 

that can be formed at each step. In general, this method is regarded as very efficient, 

however, it tends to create clusters of small size (Samba Moorthi, S. 2011). 

After conducting the linkage, need a way to visualizing the results. Dendrograms 

can be used for this purpose and provide a very simple two dimensional plot that 

indicates clustering, similarities and linkage (Figure 3.2). 

 

 

Figure 3.2.  Simple example illustrating the protocol for cluster analysis. (a) Data set                  

consisting of four objects, each characterized by two characters, (b) Objects     

plotted in character space, (c) Similarity matrix showing dissimilarity 

between objects, (d) and (e) Derived similarity matrices used in successive 

steps of the clustering process (f) Dendrogram. (Source: Varmuza and 

Filzmoser, 2008)                                          
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3.2. Supervised Methods 

 

Supervised methods are methods that attempt to discover the relationship 

between input attributes (sometimes called independet variables) and a target attribute 

(sometimes referred to as a dependent variable). The relationship discovered is 

represented in a structure referred to as a model. Usually models describe and explain 

phenomena, which are hidden in the data set and can be used for predicting the value of 

the target attribute knowing the values of the input attributes. The supervised methods 

can be implemented in a variety of domains such as marketing, finance and 

manufacturing. 

           The supervised classification is the essential tool used for extracting quantitative 

information from remotely sensed image data (Richards, 1993). Using this method, the 

analyst has available sufficient known pixels to generate representative parameters for 

each class of interest. This step is called training. Once trained, the classifier is then 

used to attach labels to all the image pixels according to the trained parameters. 

It is useful to distinguish between two main supervised models: classification 

models (classifiers) and regression models. Regression models map the input space into 

a real-value domain. For instance, a regressor can predict the demand for a certain 

product given its characteristics. On the other hand, classifiers map the input space into 

pre-defined classes. For instance, classifiers can be used to classify mortgage consumers 

as good (fully payback the mortgage on time) and bad (delayed payback). There are 

many alternatives for representing classifiers, for example, support vector machines, 

decision trees, probabilistic summaries, algebraic function, etc. 
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CHAPTER 4 

 

 EXPERIMENTAL 

 

4.1. Materials 

 

4.1.1. Olive Oil Samples 

 

Two set of extra virgin olive oil (EVOO) samples were used in this study. The 

first set of samples were obtained from Manisa (Akhisar, Salihli and Saruhanlı), and the 

other set of samples were obtained from Bursa (Gemlik) region in the two successive 

harvest year 2009/2010 and 2010/2011. All of the samples were provided by Olive 

Research Institue (Izmir, Turkey). 

 

                                         Table 4.1. Samples 

Sample 

no 

Geographic  

origin 

Sample 

code 

Number of 

samples 

Harvest 

year 

1 ZAE Bornova ZAE1 1 1st-2nd 

2 ZAE Kemalpaşa ZAE2 1 1st-2nd 

3 Kayalıoğlu (M) KY 6 1st-2nd 

4 Mecidiye (M) MCD 14 1st-2nd 

5 Işıkköy (M) IŞK 2 1st-2nd 

6 Ballıca (M) BLC 13 1st-2nd 

7 Hamidiye (M) HMD 1 1st-2nd 

8 Belen (M) BLN 9 1st-2nd 

9 Salihli (M) SLH 1 1st-2nd 

10 Gökçeköy (M) GKÇ 1 1st-2nd 

11 Tendirlik (M) TND 1 1st-2nd 

12 Alyattes (M) BT 2 1st-2nd 

13 Tekelioğlu (M) TK 1 1st-2nd 

          (cont. on the next page) 
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Table 4.1. (cont.) 

14 Derici (M) DRC 1 1st-2nd 

15 Gürpınar (M) GP 1 1st-2nd 

16 Dombaylı (M) DMB 1  1st-2nd 

17 Durasıllı (M) DRS 1 1st-2nd 

18 Eşkel (B) EŞ 1 1st-2nd 

19 Esenge (B) ES 1 1st-2nd 

20 Konaklı (B) KNK 1 1st-2nd 

21 Trilya (B) TR 5 1st-2nd                

22 Güzelyalı (B) GY 1 1st-2nd 

23 Mudanya (B) MD 1 1st-2nd 

24 Bursa (B) BRS 1 1st-2nd 

25 Umurbey (B) UB 1 1st-2nd 

26 Yukarı Benli (B) YB 1 1st-2nd 

27 Büyük Benli (B) BB 1 1st-2nd 

28 Kumla (B) KM 1 1st-2nd 

29 Büyük Kumla (B) BKM 1 1st-2nd 

30 Haydariye (B) HY 1 1st-2nd 

31 Kurtul (B) KR 1 1st-2nd 

32 Karamürsel (B) KMR 1 1st-2nd 

33 Gençali (B) GA 1 1st-2nd 

34 Karacaali (B) KAL 1 1st-2nd 

35 Soğuksu (B) SS 1 1st-2nd 

36 Narlı (B) NR 1 1st-2nd 

37 Kapaklı (B) KPK 1 1st-2nd 

38 Armutlu (B) ART 1 1st-2nd 

40 Çeltikçi (B) ÇLT 1 1st-2nd 

41 Boyalıca (B) BY 1 1st-2nd 

42 Gürle (B) GR 1 1st-2nd 

43 Müşküle (B) MŞ 1 1st-2nd 

44 Orhaniye (B) OR 1 1st-2nd 

45 Keramet (B) KR 1 1st-2nd 

46 İğdir (B) İG 1 1st-2nd 

47 Orhangazi (B) OG  2 1st-2nd 
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4.1.2. Chemicals 

 

Reagents used in chemical analysis were obtained from Riedel-de Haén and 

Sigma-Aldrich and they are either high performance HPLC or analytical grade. In 

chromatographic analysis, fatty acid methyl esters containing C8-C24 (2%-11% relative 

concentration) was used as reference standard (Supelco # 18918). 

 

4.2. Instruments and Methods 

 

4.2.1. Fourier Transform Infrared (FTIR) Spectrometry 

 

The region starts from 4000 cm
-1

 and ends at 400 cm
-1 

in the electromagnetic 

spectrum assigns the middle infrared region. Infrared radiation is not sufficient to cause 

the transitions between the electronic states. The vibrational levels and infrared spectra 

are generated by the characteristic twisting, bending, rotating and vibrational motions of 

atoms in a molecule. All of the motions can be described in terms of two types of 

molecular vibrations. One type of vibration, a strech, produces a change of bond length. 

A strech is a rhythmic movement along the line between the atoms so that the 

interatomic distance is either increasing or decreasing. The second type of vibration, a 

bend, results in a change in bond angle. These are also called scissoring, rocking or 

wigwag motions. Each of these two main types of vibration can have variations. A 

stretch can be symmetric or asymmetric (Figure 4.1). 

In a Fourier Transform Infrared (FTIR) Spectrometer, a continuum source of 

light is used to produce light over a broad range of infrared wavelengths. Light coming 

from this continuum source is split into two paths using a half-silvered mirror; this light 

is then reflected two mirrors back onto the beam splitter, where it is recombined. 

Because the path that one beam travels is a fixed length and the other is constantly 

changing as its mirror moves, the signal which exits the interferometer is the result of 

these two beams “interfering” with each other. The resulting signal is called an 

interferogram which has the unique property that every data point (a function of the 

moving mirror position) which makes up the signal has information about every 

infrared frequency which comes from the source. 
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Figure 4.1. Types of molecular vibrations. + indicates motion from the page toward the 

reader; - indicates the motion away from the reader. (Source: Skoog, et al. 

1998) 

 

In infrared instruments, Nernst glower, globar, tungsten filament, mercury arc or 

CO2 laser are used as a source. Due to the heat property of sources, the detectors should 

be resistant to the heat. Thermocouples, bolometer, photoconducting tubes or 

pyroelectrics are generally used detectors in infrared spectrometers and also the mostly 

used one as an interferometer is the Michelson interferometer. Figure 4.2 shows the 

optical diagram of an infrared instrument.  

 

 

Figure 4.2. Optical diagram of Foruier Transform Infrared (FTIR) Spectrometer 

(Source: wikipedia.com 2012) 
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The analysis of aqueous solutions is complicated by the solubility of the NaCl 

cell window in water. One way to obtaining infrared spectra on aqueous solutions is to 

use attenuated total reflectance (ATR) instead of transmission. Figure 4.3 shows a 

diagram of a typical ATR sampler, consisting of an IR-transparent crystal of high 

refractive index, such as ZnSe, surrounded by a sample of lower-refractive index. 

Radiation from the source enters the ATR crystal, where it goes through a series of total 

internal reflections before exiting the crystal. During each reflection, the radiation 

penetrates into the sample to a depth of a few microns. The result is a selective 

attenuation of the radiation at those wavelengths at which the sample absorbs. 

 

 

 

Figure 4.3. Attenuated total reflectance (ATR) cell used in infrared spectroscopy 

(Source: Harvey, 2000) 

 

Solid samples also can be analyzed by means of reflectance. The ATR sampler 

described for the analysis of aqueous solutions can be used for the analysis of solid 

samples, provided that the solid can be brought into contact with the ATR crystal. 

 

4.2.1.1. Measurements Using Fourier Transform Infrared-Attenuated 

Total Reflectance (FTIR-ATR) 

 

Fourier Transform Infrared spectra of the olive oil samples were collected at 

room temperature on Perkin Elmer Spectrum 100 FTIR. Spectrometer (Waltham, MA, 

USA) between 600 and 4000 cm-1. Since olive oil is liquid attenuated total reflectance 

with diamond was used for measurements. The spectra were saved as log 1/R and the 

resolution was 8 cm
-1

. Background spectrum was obtained empty and dry ATR cell. 

Before and after each sample analyses background was collected to reduce the 

contaminations that would come from the ATR crystal. ATR crystal was cleaned with 

pure ethanol and allowed to dry. 
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4.2.2. Gas Chromatography (GC) 

 

Gas chromatography (GC) is a powerful and widely used tool for the separation, 

identification and quantitation of components in a mixture. In this technique, a sample is 

converted to the vapor state and a flowing stream of carrier gas (often helium or 

nitrogen) sweeps the sample into a thermally-controlled column. In the case of gas 

liquid chromatography, the column is usually packed with solid particles that are coated 

with a non-volatile liquid, referred to as the stationary phase. As the sample mixture 

moves through the colımn, sample components that interact strongly with the stationary 

phase spend more time in the stationary phase vs. the moving gas phase and thus require 

more time to move through the column. 

Retention time is defined as the time from injection of the sample to the time a 

specific sample component is detected. Components with higher volatility (lower 

boiling points) tend to spend more time in the moving gas phase and therefore tend to 

have shorter retention times. After exiting the column the separated components are 

detected and a detector response is recorded (Figure 4.4). 

The most application field of Gas Chromatography (GC) in olive oil analysis is 

the determination of methyl esters of fatty acids. The aim of this determination is to 

establish the percentage composition of fatty acids in olive oil, more commonly known 

as fatty acid composition, which is influenced by the olive variety, production zone, 

climate and stage of maturity of the drupes when they are collected. Determination of 

fatty acid composition of olive oil is not only a quality indicator but also is used for 

classification and characterization of the oils. 

 

 

Figure 4.4. Schematic representation of a system for gas chromatography (GC) 

(Source: Oliveoil, 2012) 
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4.2.2.1. Measurements Using Gas Chromatography (GC) 

  

European Official Methods of Analysis (EEC, 1991) was used for the 

preparation of methyl esters. 100 mg oil samples was weighted in 20mL test tube. The 

sample was dissolved in 10 mL n-hexane and 100 μL 2 N potassium hydroxide in 

methanol was added (2.8 g in 25 mL). The sample solution was vortexed for 30 seconds 

and centrifuged for 15 minutes. After centrifugation, supertant phase was transferred 

into 2 mL autosampler vial for chromatographic analysis. 

Chromatographic analyses were performed on a HP 6890 GC equipped with a 

flame ionization detector (FID). The instrument configuration and analytical conditions 

were summarized in Table 4.2. 

 

Table 4.2. Chromatographic method for the analysis of fatty acid methyl esters 

Chromatographic system HP 6890 GC 

Inlet Split/spitless 

Detector FID 

Automatic sampler HP 7683 

Liner Split linear (p/n 5183-4647) 

Column 30 m x 0.25 mm i.d x 0.250 mm 

Inlet temperature 250 
o
C 

Injection volume 1μL 

Split ratio 1/100 

Carrier gas Helium 

Head pressure 0.5 mL/min constant flow 

Oven temperature 170 
o
C, 2

o
C/min, 210 

o
C, 10 min 

Detector temperature 250 
o
C 

Detector gas Hydrogen: 30 mL/min; Air: 300 

mL/min; Nitrogen make up gas: 24.5 

mL/min 

 

Fatty acids used in the analysis were myristic acid (C14:0), palmitic acid 

(C16:0), palmitoleic acid (C16:1), margaric acid (C17:0), margoleic acid (C17:1), 

stearic acid (C18:0), elaidic acid (C18:1 trans), oleic acid (C18:1), linoelaidic acid 
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(C18:2 trans), linoleic acid (C18:2), trans linolenic acid (C18:3 trans), linolenic acid 

(C18:3), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), lignoseric 

acid (C24:0). Each sample was analyzed at least two times. 16 main fatty acids in olive 

oil samples were determined by retention time of each one according to the reference of 

standard fatty acids. The area of the each peak which belonged to these fatty acids was 

integrated by using Chem-station software. The integrated area of each fatty acid was 

converted to the % concentraction by dividing the calculated area of each acid to total 

area content of all related fatty acids existed in olive oil. 

 

4.2.3. High Performance Liquid Chromatography (HPLC) 

 

High performance liquid chromatography (HPLC) is a chemistry tool for 

quantifiying and analyzing mixtures of chemical compounds which is used to find the 

amount of a chemical compounds within a mixture of other chemicals. High 

performance liquid chromatography (HPLC) has the ability to separate, identify and 

quantitate the compounds that are present in any sample that can be dissolved in a 

liquid. 

 

 

 

Figure 4.5. Schematic representation of a system for high performance liquid 

chromatography (HPLC). (Source: Oliveoil, 2012) 
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High performance liquid chromatography (HPLC) and combined 

chromatographic methods has a great emphasis in olive oil analysis techniques. Several 

minor components of olive oil such as phenolic compounds, pigments, sterols, 

tocopherols and triacylglycerols can be identified and quantitated with this technique. 

Reversed-phase high performance liquid chromatography (RP-HPLC) currently is the 

most popular and reliable technique for the determination of triacylglycerols. Numerous 

mobile phases have been employed with different modifiers, which include methanol, 

acetonitrile or tetrahydrofuran (Ryan, et al. 1999). Percentage determination of the 

various triglycerides present in virgin olive oil or high performance liquid 

chromatography offers a way of detecting possible adulterations with oils which, while 

having a similar fatty acid composition to olive oil, have a different triglyceride 

composition. 

 

4.2.3.1.  Measurements Using High Performance Liquid 

Chromatography (HPLC) 

 

European Official Methods of Analysis (EEC, 2568-91) was used for the 

analysis of triacylglycerols. 

Chromatographic analyses were performed on a Agilent HP 1200 HPLC 

equipped with a refractive index detector (RID). The instrument configuration and 

analytical conditions were summarized in Table 4.3. 

 

Table 4.3. Chromatographic method for the analysis of triacylglycerol 

Chromatographic system Agilent HP 1200 HPLC 

Inlet Split/spitless 

Detector RID 

Liner Split linear (p/n 5183-4647) 

Column 244 m x 4.0 mm i.d x 4.0 mm 

Inlet temperature 35 
o
C 

Injection volume 0.5 mL / min 

Inlet pressure 200 bar  

Mobile phase 

Acetone: 63.6 % mL; Acetonitrile: 

36.4 % mL/  
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4.3. Statistical Classification Studies 

 

The multivariate unsupervised calssification analyses (principal component 

analysis, PCA and hierarchical cluster analysis, HCA) were carried out by Minitab 15 

(Minitab Inc.). Data obtained from analyses were put in a matrix with the rows relating 

to the olive oil varieties and geographical origins to the individual absorbance or 

intensity values. Prior to multivariate analysis, the data were pre-processed by the 

standard procedure. This procedure includes mean-centring (the mean value of each 

variable is calculated and subtracted from the data) and normalization. 

The models were developed for classification of olive oil samples according to 

geographical origin. Principal component analysis (PCA) results were illustrated on the 

plot of the first component vs the second component and meanwhile hierarchical cluster 

analysis (HCA) results were shown on dendrograms. 
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CHAPTER 5 

 

 RESULT AND DISCUSSION 

 

5.1. Classification Studies in 2009-2010 Harvest Year  

 

It is worth to investigate the clustering of the collected olive oil samples based 

on their regions as they are received in different geographic regions of Turkey from 

north (Bursa) to south (Manisa). For this purpose, two different scenarios were tested 

and they were decided according to their sample size and the region. The first group 

was based on the samples from Akhisar (which is the subgroup of Manisa) and Bursa 

and the second one established on the samples Salihli-Saruhanlı (which are the 

subgroup of Manisa) and Bursa. The sample names are coded according to city from 

where they are collected. The sample codes are illustrated in Table 5.1 and Table 5.2. 

The mentioned two groups were scanned with the spectroscopic and 

chromatographic methods, such as FTIR, GC and HPLC and then analyzed with PCA 

and HCA. 

 

Table 5.1. Coded Samples (Akhisar and Bursa) 

Sample Name 

Sample 

Code 

Sample 

Number Group 

ZAE Bornova ZAE 1 1 1 

ZAE Kemalpaşa ZAE 2 2 1 

Kayalıoğlu 1 KY 1 3 1 

Kayalıoğlu 2 KY 2 4 1 

Kayalıoğlu 3 KY 3 5 1 

Kayalıoğlu 4 KY 4 6 1 

Kayalıoğlu 5 KY 5 7 1 

Kayalıoğlu 6 KY 6 8 1 

Mecidiye 1 MCD 1 9 1 

Mecidiye 2 MCD 2 10 1 

(cont. on the next page) 
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Table 5.1. (cont.) 

 

Mecidiye 3 MCD 3 11 1 

Mecidiye 4 MCD 4 12 1 

Mecidiye 5 MCD 5 13 1 

Mecidiye 6 MCD 6 14 1 

Mecidiye 7 MCD 7 15 1 

Mecidiye 8 MCD 8 16 1 

Mecidiye 9 MCD 9 17 1 

Mecidiye 10 MCD 10 18 1 

Mecidiye 11 MCD 11 19 1 

Mecidiye 12 MCD 12 20 1 

Mecidiye 13 MCD 13 21 1 

Mecidiye 14 MCD14 22 1 

Işıkköy 1 IŞK 1 23 1 

Işıkköy 2 IŞK 2 24 1 

Ballıca 1 BLC 1 25 1 

Ballıca 2 BLC 2 26 1 

Ballıca 3 BLC 3 27 1 

Ballıca 4 BLC 4 28 1 

Ballıca 5 BLC 5 29 1 

Ballıca 6 BLC 6 30 1 

Ballıca 7 BLC 7 31 1 

Ballıca 8 BLC 8 32 1 

Ballıca 9 BLC 9 33 1 

Ballıca 10 BLC 10 34 1 

Ballıca 11 BLC 11 35 1 

Ballıca 12 BLC 12 36 1 

Ballıca 13 BLC 13 37 1 

Hamidiye HMD 38 1 

Eşkel EŞ 39 2 

(cont. on the next page) 
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Table 5.1. (cont.) 

 

Esenge ES 40 2 

Konaklı  KNK 41 2 

Trilya 1 TR 1 42 2 

Trilya 2 TR 2 43 2 

Trilya 3 TR 3 44 2 

Trilya 4  TR 4 45 2 

Trilya 5 TR 5 46 2 

Güzelyalı  GY 47 2 

Mudanya  MD 48 2 

Bursa BRS 49 2 

Gemlik 1 GMK 1 50 2 

Gemlik 2 GMK 1 51 2 

Umurbey UB 52 2 

Yukarıbenli YB 53 2 

Büyükbenli BB 54 2 

Büyükkumla BKM 55 2 

Kumla KM 56 2 

Haydariye HY 57 2 

Kurtul KR 58 2 

Karamürsel KMR 59 2 

Gençali GA 60 2 

Karacaali KAL 61 2 

Soğuksu SS 62 2 

Narlı NR 63 2 

Kapaklı KPK 64 2 

Armutlu ART 65 2 

Çeltikçi ÇLT 66 2 

Boyalıca BY 67 2 

Gürle GR 68 2 

Müşküle MŞ 69 2 

(cont. on the next page) 
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Table 5.1. (cont.) 

 

Orhaniye OR 70 2 

Keramet KR 71 2 

İğdir İG 72 2 

Orhangazi 1 OG 1 73 2 

Orhangazi 2 OG 2 74 2 

 

 

Table 5.2. Coded Samples (Salihli-Saruhanlı and Bursa) 

Sample Name Sample Code 

Sample 

Number Group 

ZAE Bornova ZAE 1 1 1 

ZAE Kemalpaşa ZAE 2 2 1 

Belen 1 BLN 1 3 1 

Belen 2 BLN 2 4 1 

Belen 3 BLN 3 5 1 

Belen 4 BLN 4 6 1 

Belen 5 BLN 5 7 1 

Belen 6 BLN 6 8 1 

Belen 7 BLN 7 9 1 

Belen 8 BLN 8 10 1 

Belen 9 BLN 9 11 1 

Salihli SLH  12 1 

Gökçeköy GKÇ 13 1 

Tendirlik TND 14 1 

Alyattes 1 BT 1 15 1 

Alyattes 2 BT 2 16 1 

Tekelioğlu TK 17 1 

Derici DRC 18 1 

Gürpınar GP 19 1 

Dombaylı DMB 20 1 

(cont. on the next page) 
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Table 5.2. (cont.) 

 

Durasıllı DRS 21 1 

Eşkel EŞ 22 2 

Esenge ES 23 2 

Konaklı KNK 24 2 

Trilya 1 TR 1 25 2 

Trilya 2 TR 2 26 2 

Trilya 3 TR 3 27 2 

Trilya 4 TR 4 28 2 

Trilya 5 TR 5 29 2 

Güzelyalı GY 30 2 

Mudanya MD 31 2 

Bursa BRS 32 2 

Gemlik 1 GMK 1 33 2 

Gemlik 2 GMK 1 34 2 

Umurbey UB 35 2 

Yukarıbenli YB 36 2 

Büyükbenli BB 37 2 

Büyükkumla BKM 38 2 

Kumla KM 39 2 

Haydariye HY 40 2 

Kurtul KR 41 2 

Karamürsel KMR 42 2 

Gençali GA 43 2 

Karacaali KAL 44 2 

Soğuksu SS 45 2 

Narlı NR 46 2 

Kapaklı KPK 47 2 

Armutlu ART 48 2 

Çeltikçi ÇLT 49 2 

Boyalıca BY 50 2 

(cont. on the next page) 
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Table 5.2. (cont.) 

 

Gürle GR 51 2 

Müşküle MŞ 52 2 

Orhaniye OR 53 2 

Keramet KR 54 2 

İğdir İG 55 2 

Orhangazi 1 OG 1 56 2 

Orhangazi 2 OG 2 57 2 

 

 

5.1.1. FTIR-ATR Results 

 

Fourier Transform infrared spectrometer is used for classifying the olive oil 

samples based on their spectral features. The spectrometer is equipped with attenuated 

total reflectance (FTIR-ATR) accessory that carries a diamond-ZnSe crystal plate. The 

samples are scanned between 4000 and 600 cm
-1

 and the collected spectra are shown in 

Figure 5.1. 

 

Figure 5.1. The FTIR-ATR spectra of olive oil samples. 

 

In FTIR spectrum, the peaks around 2950-2800 cm
-1

 region are due to C-H 

stretching vibrations of –CH3 and –CH2 groups. The large peak around 1745 cm
-1

 

results from C=O double bond strecthing vibration of carbonyl groups. Peaks around 
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1470-1200 cm
-1

 region corresponds to CH bending of –CH3 and –CH2. Fingerprint 

region lay between 1250-700 cm
-1

 which is due to stretching vibration of C-O ester 

group and CH2 rocking vibration (Harwood & Aparicio, 2000). Extra virgin olive oil 

that has a maximum absorbance at 3006cm
-1

. This is due to their composition, extra 

virgin olive oil consists higher proportion of oleic acyl groups. The entire spectral 

profiles of each olive oil sample used in this study were similar. 

After scanning the olive oil samples with FTIR-ATR spectrometer, the collected 

spectra were used for principal component analysis (PCA) and hierarchical cluster 

analysis (HCA) by Minitab software. As it is known principal component analysis 

(PCA) is an unsupervised classification method and is generally used to obtain a lower 

dimensional graphical representation which describes a maximum variation in a data 

set. The first principal component accounts for as much of the variability in the data as 

possible, and each succeedinng component accounts for as much of the remaining 

variability as possible (Beebe, et al. 1998). 
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The first combination is made with two groups which consist of olive oil 

samples from Manisa (Akhisar) and Bursa. The score plot of the first component versus 

the second component is demonstrated in Figure 5.2. The first and second principal 

components explained 90% of the variation of the data. 

When the score plot of the samples is examined, it is seen that all of the group 1 

samples (Manisa - Akhisar samples) expect some of them were characterized with 

positive value of components; neverthless, some of the group 2 samples (Bursa 

samples) were classified on the negative sides of components. 

Following the principal component analysis (PCA) another unsupervised 

classification method which is also commonly used to demonstrate the similarities 

between the samples is applied to the same spectroscopic data set. This method is called 

hierarchical cluster analysis (HCA) and it generates rectangular tables of variables and 

objects that are called dendrograms. The aim of hierarchical cluster analysis (HCA) is to 

find out the grouping of the objects (samples) and variables (features) in addition to 

similarities possibly, in terms of a hierarchy of embedded groups. Briefly, two main 

steps are repeated. The first step is to investigate the distance matrix for the two closest 

objects (or variables) whereas the second one is used to consider this pair of objects as a 

single individual and to recompute the distance between this new element and the the 

rest of the objects (Devillers, et al. 2002). As it can be directly applied to raw data set, it 

is also possible to apply hierarchical cluster analysis (HCA) to the principal component 

analysis (PCA) score vectors and loading vectors. In fact, when the original data 

contains too many variables (e.g. spectroscopic data contains several absorbance values 

at corresponding wavelengths or wave numbers), it is better to preprocess the data with 

principal component analysis (PCA) so that the dimensionality of the original data 

(either normalized or not) can be reduced to a few most important principal components 

(PC’s). After principal component analysis (PCA), the resulting significant score and 

loading vectors can be used to cluster teh objects and variables, respectively. If there are 

only a few original variables in the data set, hierarchical cluster analysis can be directly 

applied to the original data. In the present study, the Fourier Transform infrared (FTIR) 

spectra of the olive oil samples have contained around 1800 individual wave numbers 

and therefore, the hierarchical cluster analysis (HCA) has to be applied to principal 

component analysis (PCA) score and loading vectors. Figure 5.3. depicts the 

dendrogram of olive oil samples from Manisa (Akhisar) and Bursa obtained with 

hierarchical cluster analysis (HCA). The first three principal component (PC) score 
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vectors that are accounted 95% of the total variability in the original spectral data are 

used in the distance calculation. 

Although the samples in dendrogram were not separated in two main classes 

according to their sampling regions, the clusters contained the samples from the same 

city, for example, Manisa (Akhisar) samples were cluster together and Bursa samples 

were classified separately. Dendrogram also shows the closeness of the samples. 

The next combination was made up with the samples from Manisa (Salihli and 

Saruhanlı) and Bursa. The score plot of the first component versus the second 

component is presented in Figure 5.4. The two principal components (PC’s) explain 

approximately 93% of the total variance of the data. 

As can be seen from the Figure 5.4 the samples from group 2 (Bursa samples) 

were classified in the negative region of the first component and the positive region of 

the second component whereas the samples from group 1 (Manisa – Salihli/Saruhanlı 

samples) were characterized with positive side of the first component. Nonetheless, 

some olive oil samples from group 1 (Manisa – Salihli/Saruhanlı samples) were not 

classified and scattered on three regions. 

In order to see the closeness of the olive oil samples, hierarchical cluster 

analysis (HCA) dendrogram is applied by using three principal components which are 

explained 97 % variation of the original data and the dendrogram is depicted in Figure 

5.5. The samples are not clustered according to sampling city and it can be concluded 

that Fourier Transform Infrared (FTIR) spectra is not sufficient enough to classify the 

samples in which the regions are very close. 
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5.1.2. GC Results 

 

The most application field of Gas Chromatography (GC) in olive oil analysis is 

the determination of methyl esters of fatty acids. The aim of this determination is to 

establish the percentage composition of fatty acids in olive oil, more commonly known 

as fatty acid composition, which is influenced by the olive variety, production zone, 

climate and stage of maturity of the drupes when they are collected. Determination of 

fatty acid composition of olive oil is not only a quality indicator but also is used for 

classification and characterization of the oils. The monounsaturated fatty acids have 

great importance because of their nutritional implication and their effect on oxidative 

stability of oils (Aparicio, et al. 1999). As the most abundant fatty acid in olive oil, the 

amount of oleic acid varied remarkably between the olive oil samples. 

 

 

Figure 5.6. The GC chromatogram of olive oil samples. 

 

After scanning the olive oil samples with GC chromatography, the collected data 

were used for principal component analysis (PCA) and hierarchical cluster analysis 

(HCA) by Minitab software. 

The first combination is made with two groups which consist of olive oil 

samples from Manisa (Akhisar) and Bursa. The score plot of the first component versus 

the second component is demonstrated in Figure 5.7. The first and second principal 

components explained 65% of the variation of the data. 
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As can be seen from the Figure 5.7. the samples from group 1 (Manisa – Akhisar 

samples) were classified in the positive region of the first component and the negative 

region of the second component whereas the samples from group 2 (Bursa samples) 

were characterized with positive side of the second component. Nonetheless, the olive 

oil samples were not classified clearly. 

A typical principal component analysis (PCA) loading plot is shown in Figure 

5.8. The loading plot is a plot of the relationship between the original variables and the 

subspace dimension. It is used to interpret relationship between variables. The loadings 

of the two first components, were plotted to investigate the relationship between the 

various fatty acid methyl esters (FAME). In the loading plot, we can see that vaccenic, 

palmitoleic and palmitic acid have similar heavy loadings for principal component 1. 

Oleic acid, stearic acid, squalene and monounsaturated fatty acid (MUFA), however, 

have similar heavy loadings for principal component 2. 

In Figure 5.9. shows principal component analysis (PCA) biplot. A biplot uses 

points to represent the score of the observation on the principal components, and it uses 

vectors to represent the coefficients of the variables on the principal components. In this 

graph, the points represent olive oil samples, and the vectors represents variables. The 

relative location of the points can be interpreted. Points that are close together 

correspond to observations that have similar scores on the components displayed in the 

plot. To the extent that these components fit the data well, the points also correspond to 

observations that have similar values on the variables. 

In figure 5.10 shows hierarchical cluster analysis (HCA) dendrogram by using 

raw (original) data. As we can see in the figure altough the samples in dendrogram were 

not separated in two main classes according to their sampling region ( Manisa and 

Bursa), the clusters contained the samples from the same city, for example, Manisa 

samples were clustered together and Bursa samples were classified separately. 

Furthermore, HCA also demonstrates that similar samples are clustered in the 

same region (Figure 5.11). The number of PCs for HCA (hierarchical cluster analysis) is 

7 which explained about 95 % of the variance in the data. 

As it can be concluded from Figure 5.11, most of the olive oil samples from 

Manisa are clustered at the left side and most of the samples from Bursa are clustered at 

the right side. 

Figure 5.12 is a dendrogram that shows us which samples are classified 

according to which variables. As we can see in the graph, Manisa samples, which are 
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clustered at the left side of the garph, are affected palmitic acid, palmitoleic acid, 

vaccenic acid and classified according to these fatty acid methyl ester. On the other 

hand Bursa samples, which are clustered of the right side of the graph, are affected 

eicosanoic acid, oleic acid, gadoleic acid and classified according to these fatty acid 

methyl esters. 
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The second combination was constructed with olive oil samples from Manisa 

(Salihli-Saruhanlı) and Bursa. The result of classification analysis with Principal 

Component Analysis (PCA) is shown Figure 5.13 and 63 % of the total variance of the 

data is explained with the first two components. As can be seen from the Figure 5.13 

almost all Bursa samples were characterized in the positive region of both components. 

The graph, Figure 5.14, is a loading plot from principal component analysis 

(PCA). Lines that go in the same direction and are close to one another indicate how the 

variables may be grouped. In this diagram, the first component in the horizontal 

direction is a summary of the vaccenic, palmitoleic and palmitic. Oleic acid, stearic 

acid, squalene and monounsaturated fatty acid (MUFA), however, have similar heavy 

loadings for principal component 2. These variables have been grouped together as they 

are closely associated/correlated from a statistical point of view. 

In Figure 5.15. shows principal component analysis (PCA) biplot. The biplot 

contains a lot of information and can be helpful in interpreting relationships between 

olive oil samples and variables (fatty acid methyl esters).  

In order to investigate the similarities between the olive oil samples, hierarchical 

cluster analysis (HCA) was performed with raw data and 7 PCs explain approximately 

95 % of the total variance of the data. The dendrogram is illustrated in Figure 5.16 

constructed by using raw data (fatty acid methyl esters). As we can see in the figure 

only one Manisa (Salihli-Saruhanlı) sample mixed with Bursa samples and the samples 

in dendrogram were separated in two main classes according to their sampling region 

(Manisa and Bursa).  

In figure 5.17 shows hierarchical cluster analysis (HCA) dendrogram by using 7 

PCs explain approximately 95 % of the total variance of the data. The dendrogram 

showed us Manisa (Salihli-Saruhanlı) and Bursa samples were separated clearly. 

Manisa (Salihli-Saruhanlı) samples were classified at the left side whereas Bursa 

samples at the right side. 

Figure 5.18 is a dendrogram that shows us which samples are classified 

according to which variables. As we can see in the graph, Manisa samples, which are 

clustered at the left side of the garph, are affected palmitic acid, palmitoleic acid, 

polyunsaturated fatty acid (PUFA) and classified according to these fatty acid methyl 

ester. On the other hand Bursa samples, which are clustered of the right side of the 

graph, are affected eicosanoic acid, oleic acid, gadoleic acid and classified according to 

these fatty acid methyl esters. 
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5.1.3. HPLC Results 

 

High performance liquid chromatography (HPLC) and combined 

chromatographic methods has a great emphasis in olive oil analysis techniques. Several 

minor components of olive oil such as phenolic compounds, pigments, sterols, 

tocopherols and triacylglycerols can be identified and quantitated with this technique. 

Reversed-phase high performance liquid chromatography (RP-HPLC) currently is the 

most popular and reliable technique for the determination of triacylglycerols. Numerous 

mobile phases have been employed with different modifiers, which include methanol, 

acetonitrile or tetrahydrofuran (Ryan, et al. 1999). Percentage determination of the 

various triglycerides present in virgin olive oil or high performance liquid 

chromatography offers a way of detecting possible adulterations with oils which, while 

having a similar fatty acid composition to olive oil, have a different triglyceride 

composition. 

 

 

Figure 5.19. The HPLC chromatogram of olive oil samples. 

 

After scanning the olive oil samples with HPLC chromatograhy, PCA (principal 

component analysis) and HCA (hierarchical cluster analysis) were performed with the 

same combinations of regions (Manisa-Akhisar and Bursa) mentioned above in order to 

compare chromatographic methods for the classification of olive oils based on the 

geographical region and the score plot obtained is represented in Figure 5.20. 
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As can be seen from the figure, almost all Bursa samples were placed on the 

negative part of the principal component one (PC1) and positive part of the principal 

component two (PC2). On the other hand Manisa samples were to be scattered on the 

graph. 

The loading of the two first components, were plotted to investigate the 

relationship between the various triacylglycerol (TAG) and represet in Figure 5.21. The 

plot of the loading of the two first components, expressing the relationship between the 

various triacylglycerol (TAG) showed the lack of correlation between triolein and 

palmatin olein palmatin (POP). 

Figure 5.22. represents the principal component analysis (PCA) biplot. Biplots 

are a type of exploratory graph used in statistics, a generalization of the simple two 

variable scatterplot. A biplot allows information on both samples and variables of a data 

matrix to be displayed graphically. Samples are displayed as points while variables are 

displayed either as vectors, linear axes or nonlinear trajectories. 

In figure 5.23 shows hierarchical cluster analysis (HCA) dendrogram by using 

raw (original) data. As we can see in the figure some Bursa samples  mixed with Manisa 

(Akhisar) samples and the samples in dendrogram were separated in two main classes 

according to their sampling region (Manisa and Bursa).  

Furthermore, HCA also demonstrates that similar samples are clustered in the 

same region (Figure 5.24). The number of 8PCs for HCA (hierarchical cluster analysis) 

is 8 which explained about 95 % of the variance in the data. Altough the samples in 

dendrogram were not separated in two main classes according to their sampling region 

(Manisa and Bursa), the clusters contained the samples from the same city, for example, 

Manisa samples were clustered together and Bursa samples were classified separately. 

Figure 5.25 is a dendrogram that shows us which samples are classified 

according to which variables. As we can see in the graph, Manisa samples, which are 

clustered at the left side of the garph, are affected trilinolein (LLL), equivalent carbon 

number 42 (ECN42), equivalent carbon number 44 (ECN44) and classified according to 

these triacylglycerols. On the other hand Bursa samples, which are clustered of the right 

side of the graph, are affected equivalent carbon number 48 (ECN48), equivalent carbon 

number 50 (ECN50), triolein (OOO) and classified according to these triacylglycerols. 
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The next trial was constructed with the samples from Manisa (Salihli-Saruhanlı) 

and Bursa and the plot of the first two components which were accounted for 88 % 

variation are illustrated in Figure 5.26. As can be seen from the figure, almost all Bursa 

samples were placed on the negative part of the principal component one (PC1) and the 

principal component two (PC2). On the other hand Manisa samples were to be scattered 

on the graph and were placed positive part of the components. 

The loading of the two first components, were plotted to investigate the 

relationship between the various triacylglycerol (TAG) and represet in Figure 5.27. The 

plot of the loading of the two first components, expressing the relationship between the 

various triacylglycerol (TAG) showed the lack of correlation between equivalent carbon 

number 48 (ECN48) and equivalent carbon numver 42 (ECN42). 

In Figure 5.28. shows principal component analysis (PCA) biplot. The biplot 

contains a lot of information and can be helpful in interpreting relationships between 

olive oil samples and variables (triacylglycerols). 

In figure 5.29 shows hierarchical cluster analysis (HCA) dendrogram by using 

raw (original) data. As we can see in the figure some Bursa samples  mixed with Manisa 

(Salihli-Saruhanlı) samples and the samples in dendrogram were not separated in two 

main classes according to their sampling region (Manisa and Bursa).  

Figure 5.30 represents the hierarchical cluster analysis (HCA) dendrogram 

obtained with seven principal components covering again 95 % of the variability in the 

data set. This dendrogram shows similarity with the result obtained by principal 

component analysis (PCA) and shows the closenes of the samples. As can be seen, most 

of the samples from cities formed small clusters with respect to each other and could not 

observed formation of clear two cluster. 

Figure 5.31 is a dendrogram that shows us which samples are classified 

according to which variables. As we can see in the graph, Manisa samples, which are 

mostly clustered at the left side of the garph, are affected trilinolein (LLL), olein 

linolein linolein (OLL), equivalent carbon number 44 (ECN44) and classified according 

to these triacylglycerols. On the other hand Bursa samples, which are mostly clustered 

of the right side of the graph, are affected equivalent carbon number 48 (ECN48), 

equivalent carbon number 50 (ECN50), triolein (OOO), tripalmitin (PPP) and classified 

according to these triacylglycerols. 
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5.2. Classification Studies in 2010-2011 Harvest Year  

 

It is worth to investigate the clustering of the collected olive oil samples based 

on their regions as they are received in different geographic regions of Turkey from 

north (Bursa) to south (Manisa). The group was constructed based on the samples from 

Akhisar and Salihli-Saruhanlı (which are the subgroups of Manisa) and Bursa The 

sample names are coded according to city from where they are collected. The sample 

codes are illustrated in Table 5.3.  

The mentioned group was scanned with the spectroscopic and chromatographic 

methods, such as FTIR, GC and HPLC and then analyzed with PCA and HCA. 

 

Table 5.3. Coded Samples (Manisa and Bursa) 

Sample Name  

Sample 

Code 

Sample 

Number Group 

ZAE Bornova ZAE 1 1 1 

ZAE Kemalpaşa ZAE 2 2 1 

Kayalıoğlu 1 KY 1 3 1 

Kayalıoğlu 2 KY 2 4 1 

Kayalıoğlu 3 KY 3 5 1 

Kayalıoğlu 4 KY 4 6 1 

Kayalıoğlu 5 KY 5 7 1 

Kayalıoğlu 6  KY 6 8 1 

Akhisar 1 AKH 1 9 1 

Akhisar 2 AKH 2 10 1 

Akhisar 3 AKH 3 11 1 

Dereköy DK 12 1 

Zeytinliova 1 ZO 1 13 1 

Zeytinliova 2 ZO 2 14 1 

Beyoba  BY 15 1 

Ballıca 1 BLC 1 16 1 

Ballıca 2 BLC 2 17 1 

Ballıca 3 BLC 3 18 1 

(cont. on the next page) 
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Table 5.3. (cont.) 

 

Mecidiye 1 MCD 1 19 1 

Mecidiye 2 MCD 2 20 1 

Mecidiye 3 MCD 3 21 1 

Mecidiye 4 MCD 4 22 1 

Mecidiye 5 MCD 5 23 1 

Mecidiye 6 MCD 6 24 1 

Mecidiye 7 MCD 7 25 1 

Mecidiye 8 MCD 8 26 1 

Mecidiye 9 MCD 9 27 1 

Mecidiye 10  MCD 10 28 1 

Sarılar 1 SR 1 29 1 

Sarılar 2 SR 2 30 1 

Sarılar 3 SR 3 31 1 

Karakurt KRK 32 1 

Belen 1 BLN 1 33 1 

Belen 2 BLN 2 34 1 

Belen 3 BLN 3 35 1 

Belen 4 BLN 4 36 1 

Belen 5 BLN 5 37 1 

Belen 6 BLN 6 38 1 

Koldere KD 39 1 

Borlu 1 BR 1 40 1 

Borlu 2 BR 2 41 1 

Karayahşi KYH 42 1 

Dombaylı 1 DMB 1 43 1 

Dombaylı 2 DMB 2 44 1 

Pazarköy PZ 45 1 

Balıkhane BLK 46 1 

Derici 1 DR 1 47 1 

Derici 2 DR 2 48 1 

Tendirlik TND 49 1 

(cont. on the next page) 
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Table 5.3. (cont.) 

 

Kestelli KST 50 1 

Görece GRC 51 1 

Mandallı MND 52 1 

Manavdere MNV 53 1 

Mudanya  MDN 54 2 

Trilya 1  TR 1 55 2 

Trilya 2   TR 2 56 2 

Trilya 3 TR 3 57 2 

Trilya 4 TR 4 58 2 

Trilya 5 TR 5 59 2 

Trilya 6 TR 6 60 2 

İznik İZN 61 2 

Tacir TCR 62 2 

Drazali DRA 63 2 

Çakırcalı ÇKR 64 2 

Boyalıca BYL 65 2 

Gemlik GM 66 2 

 

5.2.1. FTIR-ATR Results 

 

Fourier Transform infrared spectrometer is used for classifying the olive oil 

samples based on their spectral features. The spectrometer is equipped with attenuated 

total reflectance (FTRI-ATR) accessory that carries a diamond-ZnSe crystal plate. The 

samples are scanned between 4000 and 600 cm
-1

. 

After scanning the olive oil samples with FTIR-ATR spectrometer, the collected 

spectra were used for principal component analysis (PCA) and hierarchical cluster 

analysis (HCA) by Minitab software. 

The combination is made with two groups which consist of olive oil samples 

from Manisa (Akhisar-Salihli-Saruhanlı) and Bursa. The score plot of the first 

component versus the second component is demonstrated in Figure 5.32. The first and 

the second principal components explained 90 % of variation of the data. Principal 

component analysis (PCA) result explains that there is no grouping of the olive oil 
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samples according to their geographical origins as the samples from all regions are 

overlapped on the graph. 

Furthermore, hierarchical cluster analysis (HCA) also demonstrates that similar 

samples are clustered in the same region (Figure 5.33). The number of PCs for 

hierarchical cluster analysis is 4 which explained about 95 % of the variation in the 

data.  

As it can be concluded from Figure 5.33 most of the olive oil samples from 

Manisa and Bursa are clustered mixed and spreaded along the line.. Although the 

samples were very scattered  they were clustered mainly with some exceptions. 
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5.2.2. GC Results 

 

As we mentioned before the most application field of Gas Chromatography 

(GC) in olive oil analysis is the determination of methyl esters of fatty acids. The aim of 

this determination is to establish the percentage composition of fatty acids in olive oil, 

more commonly known as fatty acid composition, which is influenced by the olive 

variety, production zone, climate and stage of maturity of the drupes when they are 

collected. Determination of fatty acid composition of olive oil is not only a quality 

indicator but also is used for classification and characterization of the oils. 

After scanning the olive oil samples with GC chromatography, the collected data 

were used for principal component analysis (PCA) and hierarchical cluster analysis 

(HCA) by Minitab software. 

The combination was made up with the samples from Manisa (Akhisar-Salihli-

Saruhanlı) and Bursa. It is important to investigate the classification since these regions 

are very close to each other on the map of Turkey. The score plot of the first component 

versus the second component is presented in Figure 5.34. The two PC’s explain 

approximately 62 % variation of the data. 

As can be seen from the Figure 5.34. most of the olive oil samples were not 

discriminated according to geographical origin, all samples were scattered the software 

could not idetified samples as a class.  

In Figure 5.35. shows principal component analysis (PCA) loading plot. 

.Loadings plot is a plot of relation between original variables and subspace dimensions. 

Loading plot shows us, variables which are close have high correlation and variables on 

opposite side of origin have negative correlation and showed the lack of correlation 

between linoleic aicd and monounsaturated fatty acids (MUFA). 

Biplots display interunit distance, as weel as variances and correlations of 

variables of large data sets. They can be used as a tool to reveal clustering, 

multicollinearity, and multivariate outliers, and to guide the interpretation of principal 

component analysis (PCA). In a biplot, the length of the lines approximates the variance 

of the variables. The longer the line, the higher is the variance. In figure 5.36 shows 

biplot, squalene has lower variance but monounsaturated fatty acid (MUFA) has higher 

variance because of their line measurements. 

 



92 

In order to see the closeness of the olive oil samples, hierarchical cluster 

analysis (HCA) dendrogram was drawn using GC raw data directly (Figure 5.37).  As, 

Manisa (Akhisar-Salihli-Saruhanlı) samples were clustered at the left side of the 

dendrogram, except some Manisa samples almost all Bursa samples were classified at 

the right side of the dendrogram. 

Figure 5.38. represents the hierarchical cluster analysis (HCA) dendrogram 

obtained with seven principal which is covering again 95 % of the variability in the data 

set. The same conclusion can be done. As, Manisa (Akhisar-Salihli-Saruhanlı) samples 

were clustered at the left side of the dendrogram, except some Manisa samples almost 

all Bursa samples were classified at the right side of the dendrogram. 

Figure 5.39 is a dendrogram that shows us which samples are classified 

according to which variables. As we can see in the graph, Manisa samples, which are 

clustered at the left side of the garph, are affected palmitic acid, palmitoleic acid, 

polyunsaturated fatty acid (PUFA) and classified according to these fatty acid methyl 

ester. On the other hand Bursa samples, which are clustered of the right side of the 

graph, are affected oleic acid, gadoleic acid, monounaturated fatty acid (MUFA) and 

classified according to these fatty acid methyl esters. 
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5.2.3. HPLC Results 

 

High performance liquid chromatography (HPLC) and combined 

chromatographic methods has a great emphasis in olive oil analysis techniques. Several 

minor components of olive oil such as phenolic compounds, pigments, sterols, 

tocopherols and triacylglycerols can be identified and quantitated with this technique. 

Percentage determination of the various triglycerides present in virgin olive oil or high 

performance liquid chromatography offers a way of detecting possible adulterations 

with oils which, while having a similar fatty acid composition to olive oil, have a 

different triglyceride composition. 

The same combination of the samples that are given in GC were used for 

principal component analysis (PCA) and principal component analysis (PCA) 

hierarchical cluster analysis (HCA) in order to compare the results. The group had 

included Manisa (Akhisar-Salihli-Saruhanlı) and Bursa olive oil samples. The principal 

component analysis (PCA) score plot result using HPLC is shown in Figure 5.40. As 

can be seen from the figure, almost all Bursa samples were placed on the negative part 

of the principal component one (PC1) and positive part of the principal component two 

(PC2). On the other hand Manisa samples were to be scattered on the graph. 

The loading of the two first components, were plotted to investigate the 

relationship between the various triacylglycerol (TAG) and represet in Figure 5.41. The 

plot of the loading of the two first components, expressing the relationship between the 

various triacylglycerol (TAG) showed the lack of correlation between triolein and 

trilinolein (LLL). 

Figure 5.42. represents the principal component analysis (PCA) biplot. Biplots 

are a type of exploratory graph used in statistics, a generalization of the simple two 

variable scatterplot. A biplot allows information on both samples and variables of a data 

matrix to be displayed graphically. Samples are displayed as points while variables are 

displayed either as vectors, linear axes or nonlinear trajectories. 

In figure 5.43. shows hierarchical cluster analysis (HCA) dendrogram by using 

raw (original) data. As we can see in the figure some Bursa samples  mixed with Manisa 

(Akhisar) samples and the samples in dendrogram were separated in two main classes 

according to their sampling region (Manisa and Bursa).  
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Furthermore, HCA also demonstrates that similar samples are clustered in the 

same region (Figure 5.44). Figure 5.44. represents the hierarchical cluster analysis 

(HCA) dendrogram obtained with seven principal components covering again 95 % of 

the variability in the data set. This dendrogram shows similarity with the result obtained 

by principal component analysis (PCA) and shows the closeness of the samples. As it 

can be concluded from Figure 5.44. most of the olive oil samples from Bursa are 

clustered at right cluster and the others at the left cluster. Although the samples were 

from very close neighbor regions (from Manisa samples) they were clustered mainly 

with some exceptions. 

Figure 5.45 is a dendrogram that shows us which samples are classified 

according to which variables. As we can see in the graph, Manisa samples, which are 

clustered at the left side of the garph, are affected trilinolein (LLL), equivalent carbon 

number 42 (ECN42), equivalent carbon number 44 (ECN44) and classified according to 

these triacylglycerols. On the other hand Bursa samples, which are clustered of the right 

side of the graph, are affected equivalent carbon number 48 (ECN48), equivalent carbon 

number 50 (ECN50), triolein (OOO) and classified according to these triacylglycerols. 
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CHAPTER 6 

 

CONCLUSION 

 

In this thesis, it is aimed to develop classification models of olive oil produced 

in Turkey based on geographical origin via chromatographic and molecular 

specgtrometry. The olive oil samples were taken from different regions of Turkey and 

then they were scanned with molecular spectrometric method (FTIR-ATR) and 

chromatographic methods (GC and HPLC). Afterwards, unsupervised (principal 

component analysis, PCA and hierarchical cluster analysis, HCA) methods were used 

for the classification of olive oil samples.  

Differentiation of olive oil samples was examined based on their geographical 

origins. For this purpose two different harvest year and three different scenarios were 

tested. The first harvest year (2009-2010) two different scenarios were constructed, the 

first one was based on the samples from Manisa (Akhisar region) and Bursa and the 

second one was established on the samples from Manisa (Salihli-Saruhanlı region) and 

Bursa. The second harvest year (2010-2011) one scenario was tested, it was based on 

the samples from Manisa (Akhisar-Salihli-Saruhanlı) and Bursa. Successful 

differentiations were obtained with samples from Manisa and Bursa by processing 

molecular spectrometric and chromatographic data. Although the samples from 

neighbor regions (Akhisar, Salihli and Saruhanlı) clear distinctions were obtained by 

processing molecular spectrometric and chromatographic data. 

In conclusion, although molecular spectrometry is more advantageous for the 

classification of olive oil samples in the case of saving time, saving chemicals and ease 

of usage, chromatography gave better classification results based on geograpical origin 

compared to results obtained with molecular spectrometry.  
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