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ABSTRACT 
 

FREE VIBRATION ANALYSIS OF CURVED BEAMS WITH 
VARIABLE CROSS-SECTIONS ON ELASTIC FOUNDATIONS 

 

Free out of plane vibration characteristics of curved beams with variable cross-

sections on elastic foundations are studied by TMM (Transfer Matrix Method) since the 

mathematical model of the present system based on the coupled differential eigenvalue 

problem with variable coefficients which can not be solved easily by exact methods. 

Vibrations of beams on different elastic foundations are reviewed. Out of plane 

vibration of curved beams on different elastic foundations are investigated. TMM is 

detailed with its applications to vibration problems. To solve the vibration problems, 

TMM is examined with several computer programs developed in Mathematica. The 

accuracy of the TMM results obtained from the developed program is evaluated by 

comparing with FEM results found from model created in ANSYS. Finally, the effects 

of the variation of cross-section of the curved beams and elastic foundation parameters 

on natural frequencies are investigated. 
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ÖZET 
 

ELASTİK ZEMİNDEKİ DEĞİŞKEN KESİTLİ EĞRİ ÇUBUKLARIN 
SERBEST TİTREŞİM ANALİZİ 

 

Elastik zemindeki değişken kesitli eğri çubukların düzlem dışı titreşim 

karakteristikleri, mevcut sistemin matematiksel modeli kesin metodlarla kolayca 

çözülemeyen değişken katsayılı bağlaşık diferansiyel özdeğer problemine dayalı 

olduğundan, TMM (Transfer Matris Metodu) ile incelenmiştir. Çubukların değişik 

elastik zeminlerdeki titreşimleri gözden geçirilmiştir. Elastik zeminlerdeki eğri 

çubukların düzlem dışı titreşimleri araştırılmıştır. Titreşim problemleri için TMM 

detaylandırılmıştır. Titreşim problemlerini çözmek için, Mathematica geliştirilen çeşitli 

programlar ile TMM denenmiştir. Geliştirilen programdan elde edilen TMM 

sonuçlarının doğruluğu, ANSYS de oluşturulan modelden elde edilen sonuçlarla 

karşılaştırılarak değerlendirilmiştir. Son olarak, eğri çubuğun enine kesitinin değişim ve 

elastik zemin parametrelerinin doğal frekanslara etkileri araştırılmıştır. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 
Curved beams have many engineering applications. They are in the shape of a 

space curve or a plane curve. On the other hand, they may have constant or variable 

curvature and constant or variable cross section. If the cross-section of the curved beam 

is not symmetrical, the in-plane and out-of-plane vibrations of curved beams are 

coupled. 

Out-of-plane vibrations of the curved beams have been studied by many 

researchers. However, only a few researchers performed researches for the vibration 

problem of curved beams with variable cross-section on elastic foundation. The related 

literature is introduced in the next paragraphs according to subjects. The literature 

survey on elastic foundations is based on the lecture notes by Yardimoglu (2012). 

The models of beam on elastic foundations introduced by numerous 

investigators are given in the textbook written by Karnovsky (2000). The oldest one is 

the Winkler (1867) model. It is extensively used because of its simplicity due to one-

parameter. In this model, foundation is considered as infinite number of closely spaced 

unconnected linear elastic vertical springs. However, limitation of this model is the lack 

of interaction or coupling between adjacent springs. To overcome this weakness, 

Filonenko-Borodich (1940, 1945) proposed a model connecting the vertical springs by a 

thin elastic tensioned membrane placed over the springs (Das 2011). The well-known 

textbook by Hatenyi (1946) presents exact solutions of straight beams on Winkler 

foundations. Pasternak (1954) modified Winkler model by introducing a second 

parameter regarding coupling effect of the linear elastic springs, also known as shear 

interactions. This model sometimes called as two-parameter model. The generalization 

of Pasternak model is the Reissner model (1958) regarding deflections of plates on a 

viscoelastic foundation. Kerr (1964) offered three-parameter model. This model consists 

of a spring bed placed over a Pasternak foundation. Vlasov and Leontiev (1966) 

considered the shear interactions in a foundation and formulated their problems by 

using a variational method. Each model may have also viscoelastic properties which can 

be provided by adding a viscous damping term. 
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Carefully selected samples of the literature on vibration of beams on different 

elastic foundations are presented as follows: 

Exact analytical vibration characteristics of the aforementioned subject are 

covered in some textbooks (Hatenyi 1946, Meirovitch 1967, Volterra and Gaines 1971). 

Yihua et al. (2009) analyzed the vibrations of Timoshenko beams on a nonlinear elastic 

foundation. A weak form Quadrature Element Method is used for the vibration analysis. 

The nonlinear foundation parameter stiffness is assumed as: 
2vk f βα +=  

Eisenberger (1994) presented the exact vibration frequencies of beams resting on 

variable one- and two-parameter elastic foundation. His solution is based on dynamic 

stiffness matrix for the member including the effects of the variable foundation 

stiffness. Stiffness of the two-parameter elastic foundation is expressed as follows: 

)()()()()()( 1 xvxk
x
xvxvxk

x
xk f +⎥⎦

⎤
⎢⎣
⎡

∂
∂

∂
∂

−=  

Avramidis and Morfidis (2006) formulated and analytically solved the bending 

of a Timoshenko beam resting on a Kerr-type three-parameter elastic foundation. 

Out of plane vibration of curved beams on different elastic foundations are studied by 

following researchers: 

Rao (1971) presented three-dimensional vibrations of a ring on elastic 

foundation. Stiffness parameters of the elastic foundation are based on the bending-

torsion motions of the curved beam. For this reason, the first parameter regarding 

bending motion, the second parameter regarding torsional motion. 

Panayotunakos and Theocaris (1980) made an analytical treatment for the 

determination of the natural frequencies of a circular Timoshenko beam on a Winkler 

foundation. 

Wang and Brannen (1982) studied the effects of Winkler-Pasternak foundations 

upon natural frequencies of finite circular curved beams vibrating out of their initial 

plane of curvature. 

Issa (1988) and Issa et al. (1990) examined the natural frequencies of curved 

Timoshenko beams on Winkler- and Pasternak-type foundations, respectively. 

Recently, Kim et al (2007) presented the dynamic stiffness matrix for the 

spatially coupled free vibration analysis of thin-walled curved beams on Winkler- and 

Pasternak-type foundations. They used the power series method in their solution. 
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 General review of Transfer Matrix Method (TMM) is provided below: 

In the middle of the 20th century, several authors have developed Transfer 

Matrix Methods for the vibration and stability analysis of elastic systems. TMM can be 

easily used for one-dimensional structures. This structure is also called chain-type 

structure. 

Holzer (1920) used this method for torsional vibrations of shafts. Myklestad 

(1944) introduced the eigenvalue problem of beam bending vibrations by using this 

method. Later, Prohl (1945) extended this approach for calculating critical speeds of 

flexible rotors. 

Leckie and Pestel (1960) presented the transfer matrices for chain- and tree-

types structures. Their study includes not only the natural vibrations of elastic systems, 

but also the forced vibrations. Pestel and Leckie (1963) published very comprehensive 

textbook on transfer matrices for elastomechanical elements up to twelfth order. 

Djodjo (1969) interested in Transfer Matrices for beams loaded axially and laid 

on an elastic foundation. 

Recently, He at al. (2012) studied on TMM for natural vibration analysis of tree-

type system which is modified chain-type system adding several branches. 

In this study, the effects of the variable cross-section of the curved beams and 

elastic foundation parameters on natural frequencies are investigated. TMM is used to 

find the natural frequencies numerically. A computer program is developed in 

Mathematica to determine the natural frequencies depending on cross-sectional and 

elastic foundation parameters. The accuracy of the TMM results obtained from the 

developed program is evaluated by comparing with FEM results found from model 

created in ANSYS. Finally, the effects of the variation of cross-section of the curved 

beams and elastic foundation parameters on natural frequencies are investigated. 
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CHAPTER 2 

 

DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS 
 

2.1. Introduction 

 
This chapter presents the theoretical background with geometrical detail of the 

current problem considered in this thesis. First of all, title of the thesis is explained 

shortly. Then, the geometry of the curved is described by introducing the taper functions 

of breadth and depth of the cross-section of the beam. After providing these 

backgrounds, Equations of motions of the tapered curved beam are obtained by 

Newtonian method. 

The critical step of the thesis is to be familiarize the elastic foundation model to 

use the proper one or ones in this thesis. Because of this reason, well-known elastic 

foundation models existing in the reachable literature are presented in summarized 

form. 

In order to obtain the natural frequencies of the tapered curved beam, TMM 

(Transfer Matrix Method) is selected. One section in this chapter summarizes the 

fundamental concepts regarding TMM. Finally, finding the natural frequencies by 

TMM is given. 

 

2.2. Description of the Problem 

 
The out-of-plane free vibrations of a variable cross-sectioned curved beam on 

different elastic foundations are considered. The material of the beam is assumed as 

isotropic. The problems are constructed as a fixed-free beam on Winkler and Pasternak 

foundations. The cases of variable cross-section and variable foundation parameters are 

investigated in order to find out the effects of these parameters on natural frequencies. 
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2.3. Geometry of Curved Beam 

 
A planar tapered curved beam is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

Figure 2.1. A planar tapered curved beam 
 

The breadth and depth functions of the curved beam are selected as follows: 

 

sbbsb 10)( −=      (2.1) 

 

shhsh 10)( −=      (2.2) 

 

where b0 and h0 are breadth and depth of the beam at root cross-section, respectively. 

Also, b1 and h1 are breadth and depth parameters, respectively. 

 

2.4. Derivation of the Equations of Motions 

 
Newtonian method is used to derive equations of motions based on the 

following two vectorial equations: 

 

amF
i

i
rr

=∑       (2.3) 

 

∑ =
i

i IM α
rr

      (2.4) 
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In this method, it is needed to neglect small quantities of higher orders terms in 

order to obtain linear differential equations. Moreover, expressing the boundary 

conditions are based on the understanding of the internal forces and moments. 

 

 

y  

 
x  

 
Vy 

 Mz

Mx

 
z 

 

 

Figure 2.2. A curved beam with internal forces and moments 

 

By using Equations 2.3 and 2.4, force and moment equilibrium equations of the 

curved beam can be obtained as follows (Love 1944): 

 

vmF
ds

dV
y

y &&=+      (2.5.a) 

 

0
0

=−+ y
zx VM

ds
dM

ρ
     (2.5.b) 

 

β
ρ

&&iTM
ds

dM
z

xz =+−
0

     (2.5.c) 

 

where )(sAm ρ= is mass per unit length,        (2.6.a) 

 )(sJi ρ=  is mass polar moment inertia of unit length.     (2.6.b) 

 

It should be noted that external force in y direction Fy and external twisting moment 

about z axis Tz in Equations 2.5.a-c can be treated as elastic foundation effects. A(s) and 

J(s) in Equations 2.6.a,b are cross-sectional area and torsional constant of cross-section. 
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Bending and twisting moments in Equation 2.5.b and 2.5.c are given as 

 

κ)(sEIM xxx =      (2.7.a) 

 

τ)(sGJM z =       (2.7.b) 

where 

)( 2

2

0 s
v

∂
∂

−=
ρ
βκ ,     (2.8.a) 

 

)v1(
0 sds

d
∂
∂

+=
ρ

βτ

Geometrical properties are detailed in th

the cross-section about xx-axis is determined by 

orsional constant for rectangular cross-section is given as (Popov 1998) 

 

     (2.10) 

here the values of parameter Cβ depends on the ratio of b/h. 

 Selecting the state vector as {Z}={v, v’, β

stem is found by the procedure given in Section 2.5. 

Elastic foundation models are described by the relation between the reaction of 

eflection of the beam and the parameters of 

undations. When p(y,t) is not expressed in explicit form, the Differential Equation(s) 

is give

     (2.8.b) 

 

is paragraph. Area moment of inertia of 

 

12/)()()( 3shsbsI xx =      (2.9) 

 

T

3)()()( shsbCsJ β=

 

w

, Vy, Mx, Mz}T, transfer matrix of the 

sy

 

2.5. Elastic Foundation Models 

 

the foundation (or pressure) p(y,t), d

fo

n to find the p(y,t). The well-known elastic foundation models with their 

mathematical expressions are given below: 
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Winkler foundation (Winkler 1867): 

 

ykp 0=       (2.11) 

iscoelastic Winkler foundation: 

 

 

V

t
ydykp
∂
∂

+= 0      (2.12) 

Filonenko-Borodich Foundation (Filonenko-Borodich 1940): 

 

 

20 x∂

2 yTykp ∂
−=      (2.13) 

Hetenyi foundation (Hetenyi 1946): 

 

     (2.14) 

iscoelastic Hetenyi foundation: 

 

 

yDykp 22
00 ∇∇+=

 

V

t
ydyDykp
∂
∂

+∇∇+= 22
00     (2.15) 

Pasternak foundation (Pasternak 1954): 

 

 

2

2

0 x
ykykp G ∂

∂
−=      (2.16) 

Viscoelastic Pasternak foundation: 

 

 

t
yd

x
ykykp G ∂

∂
+

∂
∂

−= 2

2

0     (2.17) 
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Generalized foundation (Pasternak 1954): 

 

dn
dykm 1=ykp 0=    ,     (2.18) 

Reissner foundation (Reissner 1958): 

 

 

p
c
cpycyc 2

1

22
21 ∇−=∇−     (2.19) 

Vlasov and Leontiev (Vlasov and Leontiev 1966): 

 

 

20 2
x

tykp
∂

 
2 y∂

−=     (2.20) 

The notations used in Equations 2.11-20 for elastic foundation are listed in “List of 

Symbols” given at the begining of the thesis. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. A beam on Pasternak foundation 
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2.5. Transfer Matrix Method (TMM) 

 
There are several methods to derive the transfer matrix for vibration analysis. 

All these methods can be found in the comprehensive textbook written by Pestel and 

Leckie (1963). In this thesis, “the solution of n first-order differential equations with 

variable coefficients” is used. It can be explained briefly as follows: 

For the structure shown in Figure 2.4, the following notations are used: 

• Left state vector of segment j is  L
jZ}{

• TM for segment j is [T]j. 

A state vector  having the physical quantities such as displacements and 

corresponding internal forces regarding the L (left) end of segment j=1,2,... of elastic 

domain shown in Figure 2.4 is considered. Transfer matrix of this segment j is [T

L
jZ}{

j] and 

transfers the state vector from L (left) end to R (right) end as: 

 
L
jj

R
j ZTZ }]{[}{ =  j=1,2,3,...   (2.21) 

 

So, the important step is to derive the transfer matrix of this segment j [Tj] by using n 

first-order differential equations with variable coefficients. For this step, the following 

form of the first-order differential equations can be considered: 

 

})]{([}{ ZsA
ds
Zd

=      (2.22) 

 

By using the matrix [A(s)] in given in Equation 2.22 and following the standard 

procedure given by Pestel and Leckie (1963), transfer matrix is obtained. 

In order to explain the obtaining overall transfer matrix, a chain-type structure 

shown in Figure 2.4 can be considered. 

 

5R=6L  1L 1R=2L 2R=3L 3R=4L 4R=5L 6R
 

 [ T ]1 [ T ]2 [ T ]3 [ T ]4 [ T ]5 [ T ]6 

 

Figure 2.4. A chain-type structure divided into 6 segments 
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Due to the continuity principle, state vectors have the following properties: 

 
R
j

L
j ZZ 1}{}{ −=   j=1,2,3,...   (2.23) 

 

By using Equation 2.23 in Equation 2.21 and considering the state vectors at 

boundaries, the following general form is obtained: 

 

LZ 1}{]⎥
⎤

     (2.24) 
nj

j
R
n TZ

1

[}{
⎦

⎢
⎣

⎡
= ∏

=

 

Boundary conditions are applied to Equation 2.24. 

 

2.6. Natural Frequencies by TMM 

 
In order to apply the boundary conditions to Equation 2.24, it can be written as 

follows: 

 

{ }
{ }

{ }
{ }

LR

n f
d

TT
TT

f
d

12221

1211

)]([)]([
)]([)]([

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

ωω
ωω

  (2.25) 

 

If the left end is fixed and right end is free,  and . Therefore,  0}{ 1 =Ld 0}{ 1 =Rf

 

{ }
{ }

LR

n fTT
TTd

12221

1211 0
)]([)]([
)]([)]([

0 ⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

ωω
ωω

   (2.25) 

 

By equating the determinant of [T22(ω)] to zero, natural frequencies are found. 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 
 

3.1. Introduction 

 
In this chapter, the numerical investigations for the effects of taper parameters, 

opening angle and elastic foundation properties of the curved beams for the out-of-plane 

motion are presented. 

The main numerical data used throughout in this chapter are as follows: 

bo=ho=0.01 m, E=200 GPa, G=80 GPa, ρ=7850 kg/m3, R=0.2 m. Other data used in the 

modeling of the system are given in table and figure legends. The numerical results 

obtained by TMM detailed in Section 2.5 and FEM results obtained from the model 

created in ANSYS are compared. After verifying the computer code developed in 

Mathematica, parametric study results are given and discussed. 

 

3.2. Validations of the Procedure for Constant Cross-Section 

 
 In order to determine the proper number of segment n in TMM, the first natural 

frequencies are found for a curved beam having 45º opening angle and the results are 

plotted in Figure 3.1. 
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Figure 3.1. Convergence of first natural frequency 
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Figure 3.2. Convergence of second natural frequency 
 

It is clear from Figure 3.1 and 2 that the first and second natural frequency does 

not change significantly after the number of segment n=6. Therefore, n=6 is selected for 

all cases. 

To validate the present model for TMM, FEM is used. For this purpose, finite 

element models with 30 Beam44 elements are generated by using APDL language in 

ANSYS. The natural frequencies found for different opening angle α by TMM and 

FEM are tabulated in Table 3.1 and plotted in Figure 3.3. 

 

Table 3.1. Natural frequencies found by TMM and FEM (b1=h1=0) 
 

  α =45º α =90º α =135º α =180º 

TMM 330 83 37 22 
f1 (Hz) 

FEM 333 85 40 24 

TMM 1890 401 153 76 
f2 (Hz) 

FEM 1897 409 156 78 

TMM 5207 1315 533 268 
f3 (Hz) 

FEM 5176 1297 529 268 

TMM 6337 2642 1135 600 
f4 (Hz) 

FEM 6196 2611 1130 601 

TMM 11360 3649 1678 903 
f5 (Hz) 

FEM 11029 3661 1924 1052 
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b) Second frequency 
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d) Fourth frequency 

Figure 3.3. Comparisons of natural frequencies found for different α by FDM 
with FEM results. 
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e) Fifth frequency 

Figure 3.3. Comparisons of natural frequencies found for different α by FDM 
with FEM results (continued). 

 

It is clear from Table 3.1 and Figure 3.3 that developed program based on TMM 

and the ANSYS results are in good agreement for the constant cross sectioned curved 

beam without elastic foundation effect for different opening angles. 

In order to validate the developed program for the elastic foundation effect, the 

Winkler model is considered and the results are presented in Tables 3.2-4. 

 

Table 3.2. Comparison of natural frequencies found for different opening angle α by 
TMM with FEM results (b1=h1=0, k0=20 MN/m2/m, k1=0) 

 

  α =45º α =90º α =135º α =180º 

TMM 340 115 89 83 
f1 (Hz) 

FEM 342 117 89.6 84 

TMM 1892 409 172 111 
f2 (Hz) 

FEM 1899 417 176 112 

TMM 5207 1318 539 280 
f3 (Hz) 

FEM 5176 1299 535 280 

TMM 6337 2643 1138 606 
f4 (Hz) 

FEM 6196 2612 1133 607 

TMM 11361 3650 1680 906 
f5 (Hz) 

FEM 11029 3661 1926 1055 
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Table 3.3. Comparison of natural frequencies found for different opening angle α by 
TMM with FEM results (b1=h1=0, k0=50 MN/m2/m, k1=0) 

 

  α =45º α =90º α =135º α =180º 

TMM 354 152 132 129 
f1 (Hz) 

FEM 356 153 133 129 

TMM 1895 420 199 148 
f2 (Hz) 

FEM 1902 428 201 149 

TMM 5208 1321 548 297 
f3 (Hz) 

FEM 5177 1303 544 296 

TMM 6338 2645 1142 614 
f4 (Hz) 

FEM 6196 2614 1137 614 

TMM 11361 3650 1683 912 
f5 (Hz) 

FEM 11029 3661 1928 1060 
 

 

Table 3.4. Comparison of natural frequencies found for different opening angle α by 
TMM with FEM results (b1=h1=0, k0=100 MN/m2/m, k1=0) 

 

  α =45º α =90º α =135º α =180º 

TMM 376 198 184 181 
f1 (Hz) 

FEM 378 199 184 181 

TMM 1899 439 236 195 
f2 (Hz) 

FEM 1906 447 238 196 

TMM 5209 1327 562 323 
f3 (Hz) 

FEM 5178 1309 559 322 

TMM 6339 2648 1149 626 
f4 (Hz) 

FEM 6197 2617 1144 627 

TMM 11362 3651 1688 920 
f5 (Hz) 

FEM 11030 3662 1932 1067 
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It is clear from Table 3.2-4 that the developed program based on TMM and the 

ANSYS results are in good agreement for the constant cross sectioned curved beam 

with elastic foundation effect based on Winkler model for different opening angles. 

 

3.3. Applications for Variable Cross-Section 

 
Numerical applications for the case of variable cross-sectioned curved beams are 

presented here for various cases. Effects of taper, opening angles and foundation 

parameters on natural frequencies are studied for Winkler model and the results are 

presented in Table 3.5-12. The numerical data are given in each table legends. 

 

 

Table 3.5. Natural frequencies for (b1=h1=2/sL, k0=20 MN/m2/m, k1=0) 
 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 375 132 104 99 

f2 (Hz) 1853 413 181 122 

f3 (Hz) 5203 1240 512 271 

f4 (Hz) 6749 2444 1044 558 

f5 (Hz) 10302 3503 1518 820 
 

 
Table 3.6. Natural frequencies for (b1=h1=4/sL, k0=20 MN/m2/m, k1=0) 

 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 423 157 127 118 

f2 (Hz) 1803 418 195 141 

f3 (Hz) 4822 1149 483 264 

f4 (Hz) 7826 2191 938 507 

f5 (Hz) 9166 3050 1318 717 
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Table 3.7. Natural frequencies for (b1=h1=2/sL, k0=50 MN/m2/m, k1=0) 
 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 393 177 157 152 

f2 (Hz) 1856 428 214 167 

f3 (Hz) 5204 1245 524 293 

f4 (Hz) 6749 2446 1050 569 

f5 (Hz) 10302 3505 1522 827 
 

 
Table 3.8. Natural frequencies for (b1=h1=4/sL, k0=50 MN/m2/m, k1=0) 

 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 447 214 190 176 

f2 (Hz) 1808 440 239 204 

f3 (Hz) 4824 1156 500 296 

f4 (Hz) 7826 2195 947 524 

f5 (Hz) 9167 3053 1325 730 
 

 
Table 3.9. Natural frequencies for (b1=h1=2/sL, k0=100 MN/m2/m, k1=0) 

 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 420 233 217 211 

f2 (Hz) 1862 453 260 225 

f3 (Hz) 5206 1253 543 326 

f4 (Hz) 6749 2450 1059 587 

f5 (Hz) 10303 3507 1529 840 
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Table 3.10. Natural frequencies for (b1=h1=4/sL, k0=100 MN/m2/m, k1=0) 
 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 485 284 258 240 

f2 (Hz) 1816 473 304 280 

f3 (Hz) 4827 1169 528 344 

f4 (Hz) 7826 2201 963 551 

f5 (Hz) 9168 3058 1337 751 
 

Effects of taper, opening angles and foundation parameters on natural 

frequencies are also studied for two-parameter foundation model and the results are 

presented in Table 3.11-12. 

 
Table 3.11. Natural frequencies for (b1=h1=2/sL, k0=50 MN/m2/m, k1=2000 N) 

 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 388 177 160 158 

f2 (Hz) 1867 438 222 172 

f3 (Hz) 5217 1259 538 307 

f4 (Hz) 6751 2462 1066 586 

f5 (Hz) 10319 3524 1542 848 
 

 
Table 3.12. Natural frequencies for (b1=h1=4/sL, k0=50 MN/m2/m, k1=2000 N) 

 

 α =45º α =90º α =135º α =180º 

f1 (Hz) 440 215 199 187 

f2 (Hz) 1821 451 245 208 

f3 (Hz) 4844 1176 519 311 

f4 (Hz) 7828 2221 973 549 

f5 (Hz) 9192 3090 1362 765 
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It can be seen from Table 3.5-3.12 that all natural frequencies decrease when the 

opening angle increases. Also, when the taper parameter increases (from 2/sl to 4/sl), 

namely when the cross-section of the curved beam decreases in the positive s direction 

due to the tapers effect, only the first natural frequencies increase for the considered 

opening angles and foundation parameters. 

The results listed in Table 5.5, 5.7 and 5.9 are plotted in Figures 3.4-3.8 as 

natural frequency versus opening angle to see the effects of opening angle and Winkler 

foundation parameter on natural frequencies. 
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Figure 3.4. First natural frequencies found for b1=h1=2/sL and k1=0. 
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Figure 3.5. Second natural frequencies found for b1=h1=2/sL and k1=0. 
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Figure 3.6. Third natural frequencies found for b1=h1=2/sL and k1=0. 
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Figure 3.7. Fourth natural frequencies found for b1=h1=2/sL and k1=0. 
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Figure 3.8. Fifth natural frequencies found for b1=h1=2/sL and k1=0. 
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 Variation of first to fifth natural frequencies found for b1=h1=2/sL and k1=0. are 

shown in Figure 3.4-3.8. These figures show that Winkler foundation parameter k0 

significantly effects the first natural frequencies for the considered opening angles. 

When the Winkler foundation parameter k0 increases, the first natural frequencies of 

curved beams having opening angles from 45º to 180º increase for the considered taper 

properties. General tendancy of the all frequencies depending on the opening angle is 

the same. 
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CHAPTER 4 

 

CONCLUSIONS 

 
In this study, the differential equations governing the free out-of plane vibrations 

of curved beams with variable cross-section are presented. The equations of motions are 

derived by using Newtonian Method. Since the coefficients of the derived differential 

equations are not constant, it is difficult to express an exact solution. 

In order to validate the developed computer program by using TMM to solve the 

present problem, the models are created in ANSYS. The results found from TMM are 

compared with the results obtained from ANSYS. Good agreement is obtained for all 

comparisons. 

The effects of taper and curvature parameters on natural frequencies are found 

for the linearly tapered curved beams. 
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