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ABSTRACT 
 

FREE VIBRATION ANALYSIS OF CURVED BEAMS WITH 
VARIABLE RADII OF CURVATURE ON ELASTIC FOUNDATIONS 

 

Free out of plane vibration characteristics of curved beams with variable 

curvature on elastic foundation are studied by Finite Difference Method (FDM) since 

the mathematical model of the present system based on the coupled differential 

eigenvalue problem with variable coefficients. Firstly, vibrations of beams on different 

elastic foundations are reviewed. Then, out of plane vibrations of curved beams on 

different elastic foundations are investigated. FDM is detailed for this study. To solve 

the coupled differential eigenvalue problem, FDM is examined with several computer 

programs developed in Mathematica. The effects of curvature of the curved beams and 

elastic foundation parameters on natural frequencies are investigated. The accuracy of 

the present results obtained from the developed program is evaluated by comparing with 

FEM results found from model created in ANSYS. 
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ÖZET 
 

ELASTİK ZEMİNDEKİ DEĞİŞKEN EĞRİLİK YARIÇAPLI EĞRİ 
ÇUBUKLARIN SERBEST TİTREŞİM ANALİZİ 

 

Elastik zemindeki değişken eğrilik yarıçaplı eğri çubukların düzlem dışı titreşim 

karakteristikleri, mevcut sistem değişken katsayılı bağlaşık diferansiyel özdeğer 

problemine bağlı olduğu için, Sonlu Farklar Yöntemi (SFY) ile çalışılmıştır. Öncelikle, 

farklı elastik zeminlerdeki çubukların titreşimleri gözden geçirilmiştir. Sonra, farklı 

elastik zeminlerdeki eğri çubukların düzlem dışı titreşimleri araştırılmıştır. SFY bu 

çalışma için detaylandırılmıştır. Bağlaşık diferansiyel özdeğer problemini çözmek için, 

Mathematica’da geliştirimiş çeşitli programlar sınanmıştır. Eğri çubukların 

eğriliklerinin ve elastik zemin parametrelerinin doğal frekanslara etkileri araştırılmıştır. 

Geliştirilen programdan elde edilen çözümlerin hassasiyeti ANSYS de oluşturulan 

modelden bulunan Sonlu Elemanlar Metodu sonuçları ile karşılaştırılarak 

değerlendirilmiştir. 
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CHAPTER 1  

 

GENERAL INTRODUCTION 

 
Curved beams are used in many engineering applications such as 

turbomachinery blades, stiffeners in aircraft structures, curved girder bridges. 

Depending on the functionality of the curved beam, they can be in the shape of a space 

curve or a plane curve. They may also have constant or variable curvature / cross 

section. 

For dynamic analysis, it is known that either Bernoulli-Euler beam theory or 

Timoshenko beam theory is used depending on the geometry of the beam and the 

desired vibration modes. If the beam is thin and lower modes of vibration is 

satisfactory, Bernoulli-Euler beam theory is used. On the other hand, if the beams have 

large cross-sectional dimensions in comparison with their lengths and higher vibration 

modes are required, the Timoshenko beam theory should be used. 

While the out-of-plane and the in-plane vibrations of curved beams are coupled 

for unsymmetrical cross-section, they are not coupled for symmetrical cross-section. 

Many studies have been performed for out-of-plane vibrations of the curved beams, but 

only a few have been focusing on the vibration problem of curved beam with variable 

curvature on elastic foundation. The literature survey on present problem is presented in 

the next paragraphs according to the subjects. The literature survey on elastic 

foundations is based on the lecture notes by Yardimoglu (2012). 

The elastic foundation models for the vibration of beams on elastic foundations 

are given in the textbook written by Karnovsky (2000). The first elastic foundation 

model is the Winkler (1867) model. Winkler model is known as one-parameter model. 

Since this is very old and simple, it is extensively used. In Winkler model, foundation is 

considered as closely spaced unconnected linear elastic vertical springs, i.e. adjacent 

springs are uncoupled. To overcome this poorness, Filonenko-Borodich (1940, 1945) 

proposed a model connecting the vertical springs by a thin elastic tensioned membrane 

placed over the springs (Das 2011). Hatenyi (1946) presented exact solutions of straight 

beams on Winkler foundations. Pasternak (1954) modified Winkler model by 

introducing a second parameter regarding coupling effect of the linear elastic springs, 
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also known as shear interactions. This model is known as two-parameter model. The 

Reissner model (1958) regarding deflections of plates on a viscoelastic foundation is the 

generalization of Pasternak model. Kerr (1964) offered three-parameter model by 

placing a spring bed over Pasternak foundation. Vlasov and Leontiev (1966) considered 

the shear interactions in their foundation model. Each model may have also viscoelastic 

properties which can be provided by adding a viscous damping term. 

Carefully selected samples of the literature on vibration of beams on different 

elastic foundations are presented as follows: Exact analytical vibration characteristics of 

the aforementioned subject are covered in some textbooks (Hatenyi 1946, Meirovitch 

1967, Volterra and Gaines 1971). Yihua et al. (2009) analyzed the vibrations of 

Timoshenko beams on a nonlinear elastic foundation. A weak form Quadrature Element 

Method is used for the vibration analysis. The nonlinear foundation parameter stiffness 

is assumed as: 
2vk f βα +=  

Eisenberger (1994) presented the exact vibration frequencies of beams resting on 

variable one- and two-parameter elastic foundation. His solution is based on dynamic 

stiffness matrix for the member including the effects of the variable foundation 

stiffness. Stiffness of the two-parameter elastic foundation is expressed as follows: 

)()()()()()( 1 xvxk
x
xvxvxk

x
xk f +⎥⎦

⎤
⎢⎣
⎡

∂
∂

∂
∂

−=  

Avramidis and Morfidis (2006) formulated and analytically solved the bending of a 

Timoshenko beam resting on a Kerr-type three-parameter elastic foundation. 

Out of plane vibration of curved beams on different elastic foundations are 

studied by following researchers: Rao (1971) presented three-dimensional vibrations of 

a ring on elastic foundation. Stiffness parameters of the elastic foundation are based on 

the bending-torsion motions of the curved beam. For this reason, the first parameter is 

related with the bending motion and the second parameter is about torsional motion. 

Panayotunakos and Theocaris (1980) made an analytical treatment for the determination 

of the natural frequencies of a circular Timoshenko beam on a Winkler foundation. 

Wang and Brannen (1982) studied the effects of Winkler-Pasternak foundations upon 

natural frequencies of finite circular curved beams vibrating out of their initial plane of 

curvature. Issa (1988) and Issa et al. (1990) examined the natural frequencies of curved 

Timoshenko beams on Winkler- and Pasternak-type foundations, respectively. Recently, 
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Kim et al. (2007) presented the dynamic stiffness matrix for the spatially coupled free 

vibration analysis of thin-walled curved beams on Winkler- and Pasternak-type 

foundations. They used the power series method in their solution. 

In this study, the effects of the variable curvature of the curved beams and elastic 

foundation parameters on natural frequencies are investigated. FDM is used to reduce to 

differential eigenvalue problem to discrete eigenvalue problem to solve numerically. A 

computer program is developed in Mathematica to determine the eigenvalues depending 

on cross-sectional and elastic foundation parameters. The accuracy of the present results 

obtained from the developed program is evaluated by comparing with FEM results 

found from model created in ANSYS. 
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CHAPTER 2 

 

DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS 
 

2.1. Introduction 

 
This chapter is presented to describe the problem physically, to introduce the 

geometry of the curved beam which is the most critical object in this thesis. After 

presenting the aforementioned information, equation of motion of the curved beam with 

elastic foundation is obtained by using Newtonian method and Hamilton’s principle. 

The benefit of the Hamilton’s principle in this step is to obtain the boundary conditions 

without any difficulty that happens generally in Newtonian method for complicated 

problems such as the problem in this study. Therefore, boundary conditions are listed 

for different types of end conditions: clamped, pinned and free. 

Elastic foundation models are summarized by using the very well written 

textbook written by Karnovsky and Lebed (2000) to provide the fundamental concepts 

to the readers. 

The differential eigenvalue problem is solved numerically by using Finite 

Difference Method which is detailed in this chapter for vibration analysis. 

 

2.2. Description of the Problem 

 
In this study, the problem is the out-of-plane free vibrations of curved beam with 

variable curvature. A curved beam in the shape of catenary curve is selected. The 

boundary conditions of the curved beam are considered as clamped-free. The material 

of the curved beam is assumed as isotropic. Winkler and Pasternak foundation models 

are used for elastic foundations. 

The cases of variable curvature and variable foundation parameters are 

investigated in order to find out the effects of these parameters on natural frequencies. 
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2.3. Geometry of Curved Beam 

 
 A catenary curve, its parameters shown in Figure 2.1 and equations are taken 

from Yardimoglu (2010). 

 

z

sL

(zr, xr) 
αr

x 

α

ρ0

 

 

 

 

 
R0

 

 
0  

Figure 2.1. Parameters of catenary beam 

 

The function of the catenary curve is given as follows: 

 

]1)/[cosh()( 00 −= RzRzx     (2.1) 

 

The slope α is obtained by differentiation of Equation 2.1 with respect to z as 

 

)/sinh(/)(tan 0Rzdzzdx ==α    (2.2) 

 

The tip co-ordinates of the curved beam (zr, xr) can be found as 

 

)sinh(tan0 rr arcRz α=     (2.3) 

 

)1cos/1(0 −= rr Rx α      (2.4) 

 

Since the arc length s from origin to any point (z, x) on the curve is 

 

dzdzzdxzs
s

∫ +=
0

2)/)((1()(    (2.5) 
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The following relationship between s and α is obtained: 

 

αα tan)( 0Rs =      (2.6) 

 

Similarly, the arc length sL from origin to point (zr, xr) can be expressed as 

 

rL Rs αtan0=       (2.7) 

 

Radius of curvature at abscissa is found as 

 

[ ] )/(cosh
/)(

)/)((1)( 0
2

022

2
32

0 RzR
dzzxd
dzzdxz =

+
=ρ  (2.8) 

 

Eliminating the variable z in Equation 2.8 by using Equation 2.2, radius of curvature can 

be written in terms of α as follows: 

 

ααρ 2
00 cos/)( R=      (2.9) 

 

Now, cos α can be expressed in terms of s by using Equation 2.6 as 

 

22
00 /cos sRR +=α     (2.10) 

 

Therefore, radius of curvature can also be written in terms of s as follows: 

 

0
2

00 /)( RsRs +=ρ      (2.11) 

 

2.4. Derivation of the Equations of Motions 

 
In this section, derivations of equations of motion are presented by Newtonian 

Method and Hamilton’s Principle. The advantages of Hamilton’s principle are stated. 

Then, physical interpretations for boundary conditions are listed. 
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Newtonian Method: The following two vectorial equations are used: 

 

amF
i

i
rr

=∑       (2.12) 

 

∑ =
i

i IM α
rr

      (2.13) 

 

In this method, it is needed to neglect small quantities of higher order terms in 

order to obtain linear differential equations. The weakness of this method is expressing 

the boundary conditions since they are based on the understanding of the internal forces 

and moments. 

 

 

y 

x 

Vy

Mz

Mx

z 

Figure 2.2. A curved beam with internal forces and moments 

 

By using Equations 2.12 and 2.13, force and moment equilibrium equations of 

the curved beam can be obtained as follows (Love 1944): 

 

vmF
ds

dV
y

y &&=+      (2.14.a) 

 

0
0

=−+ y
zx VM

ds
dM

ρ
     (2.14.b) 

 

β
ρ

&&iTM
ds

dM
z

xz =+−
0

     (2.14.c) 
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where Am ρ=  is mass per unit length,               (2.15.a) 

Ji ρ=  is mass polar moment inertia of unit length.             (2.15.b) 

In Equations 2.14.a, c  and ),( tsv ),( tsβ  are transverse and angular displacements of 

the curved beam, respectively. 

It should be noted that external force in y direction Fy and external twisting 

moment about z axis Tz in Equations 2.14.a-c can be treated as elastic foundation 

effects. A and J in Equations 2.15.a, b are cross-sectional area and torsional constant of 

cross-section, respectively. Detailed information on torsional constant can be found in 

textbooks about Mechanics of Solids (Popov and Balan 1998). 

Bending and twisting moments in Equations 2.14.b and 2.14.c are given as 

 

κxxx EIM =       (2.16.a) 

 

τGJM z =       (2.16.b) 

where 

)( 2

2

0 s
v

∂
∂

−=
ρ
βκ      (2.17.a) 

and 

)1(
0 s

v
ds
d

∂
∂

+=
ρ

βτ      (2.17.b) 

 

Hamilton’s Method:  This method uses the kinetic energy T and the potential 

energy V to derive the equation of motion and associated boundary conditions. 

Hamilton’s principle can be stated as follows; “Of all possible time histories of 

displacement states that satisfy the compatibility equations and the constraints or the 

kinematic boundary conditions and that also satisfy the conditions at initial and final 

times t1 and t2, the history to the actual solution makes the Langrangian a minimum” 

(Meirovitch 1967). This principle is defined mathematically as follows: 

 

0)(
2

1

=−∫ dtVT
t

t

δ      (2.18) 

 

Kinetic and elastic strain energies of present problem are given as follows; 
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dsivmT LS
)(

2
1 2

0

2 β&& += ∫     (2.19.a) 

 

dsTvFMMV zyz

S

x
L )(

2
1

0
βτκ −−+= ∫   (2.19.b) 

 

Substituting Equations 2.15.a,b into Equation 2.19.a and Equations 2.16.a,b into 

Equation 2.19.b, kinetic and elastic strain energies become 

 

dsJvAT LS
)(

2
1 2

0

2 βρρ && += ∫     (2.20.a) 

 

dsTvFGJEIV zy

S

xx
L )(

2
1 2

0

2 βτκ −−+= ∫   (2.20.b) 

 

Using the Equations 2.20.a,b along with Equations 2.17.a,b in Equation 2.18, 

governing differential equations for vibrations of curved beams having variable cross-

section and associated boundary conditions can be obtained as follows: 

 

y

x

FvA
s
v

sss
JG

s

s
v

s
IE
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−=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
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⎜⎜
⎝
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∂
∂
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∂
∂

+⎥
⎦

⎤
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⎟⎟
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⎜⎜
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⎛
∂
∂

−
∂
∂

&&ρ
ρ

β
ρ

ρ
β
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2
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0
2
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  (2.21.a) 
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∂
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∂
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β
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ρ
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0

0
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2

0
  (2.21.b) 

 

0
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  (2.22.c) 

 

In Equation 2.22.a, prime represents the differentiation with respect to s. 

Physical interpretations for boundary conditions corresponding to Equations 

2.22.a-c are as follows, respectively: 

a) Either bending moment is zero (pinned/free), or slope is zero (fixed), 

b) Either twisting moment is zero (pinned/free), or rotation is zero (fixed), 

c) Either shear force is zero (free), or displacement is zero (pinned/fixed). 

If the boundary conditions of the curved beam are homogeneous as in Equations 

2.22.a-c, the solutions of Equations 2.21.a,b are assumed as 

 

)()(),( tTsVtsv =      (2.23.a) 

 

)()(),( tTsBts =β      (2.23.b) 

 

where  and are linear and angular displacements as function of s, respectively. 

Time dependent function can be chosen as 

)(sV )(sB

)exp()( titT ω=  in which ω is the circular 

natural frequency of the harmonic vibrations. Thus, Equations 2.21.a,b are reduced to 

following coupled differential eigenvalue problem in terms of  and : )(sV )(sB
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2

00
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   (2.24.a) 
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 The boundary conditions as functions of s can be obtained easily by replacing d 

instead of ∂  in Equations 2.22.a-c since there is no time dependent term in BCs. 

 

2.5. Elastic Foundation Models 

 
The differential equation of the vibration of a beam on an elastic foundation may be 

written with operator notation as 

 

0),()],([ =+ typtsyL     (2.25) 

 

where  is an operaor acting on the lateral displacement and  is 

the reaction of the foundation. Several function for  are presented in Table 2.1. 

)],([ tsyL ),( tsy ),( typ

),( typ

 

Table 2.1 Elastic foundation models 
 

Foundation Model p(y,t) or DE to find p(y,t) 

Winkler foundation (Winkler 1867) ykp 0=  

Viscoelastic Winkler foundation 
t
ydykp
∂
∂

+= 0  

Hetenyi foundation (Hetenyi 1946) yDykp 22
00 ∇∇+=  

Viscoelastic Hetenyi foundation 
t
ydyDykp
∂
∂

+∇∇+= 22
00  

Pasternak foundation (Pasternak 1954) yGykp 2
00 ∇−=  

Viscoelastic Pasternak foundation  
t
ydyGykp
∂
∂

+∇−= 2
00  

Generalized foundation (Pasternak 1954) ykp 0= ,   
dn
dykm 1=  

Reissner foundation (Reissner 1958) p
c
cpycyc 2

1

22
21 ∇−=∇−  
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The notations used in Table 2.1 are listed in the “List of Symbols”. 

 

2.6. Finite Difference Method (FDM) 

 
The Finite Difference Method is a numerical method for solution of differential 

equations by using approximate derivatives (Hildebrand 1987). 

Since the differential equations having variable coefficients are analytically 

unsolvable except for equations having special combinations of coefficients, the Finite 

Difference Method can be used. 

Figure 2.3 shows a one dimensional domain divided by six dub domains. Each 

point called as grid is represented by numbers. Roman numerals are used to represent 

the sub domains. 

 

1

2
3

4

5

VI 

V 
IV III

II 

I 

 

 

 

 
0 6

 

Figure 2.3. A curved domain divided into six sub domains for approximation 

 

In the Finite Difference Method, the derivatives of dependent variables in the 

differential equations are replaced by the finite difference approximations at mesh 

points and these equations are enforced at each mesh points. Therefore, n simultaneous 

algebraic equations are obtained. 

The finite differences can be seen in three forms as follows: forward, backward, 

and central differences. However, the central difference yields a more accurate 

approximation. Truncation error depends on the approximation order in FDM. Also, 

grid spacing is very critical parameter in this method. It should be determine very 

carefully. 

In this study, central difference approximations which are detailed in Table 2.2 

are used. 
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Table 2.2. Finite difference equations 

Term Central Difference Expressions for required derivatives of V(s) and B(s) 

ds
dV  h

iViV
2

)1()1( −−+  

2

2

ds
Vd  2

)1()(2)1(
h

iViViV −+−+  

3

3

ds
Vd  32

)2()1(2)1(2)2(
h

iViViViV −−−++−+  

4

4

ds
Vd  4

)2()1(4)(6)1(4)2(
h

iViViViViV −+−−++−+  

ds
dB  h

iBiB
2

)1()1( −−+  

2

2

ds
Bd  2

)1()(2)1(
h

iBiBiB −+−+  

 

2.7. Natural Frequencies by FDM 

 
The differential eigenvalue problem given by Equation 2.24.a,b and associated 

boundary conditions are reduced to discrete eigenvalue problem which can be written as 

follows: 

 

[ ] { } { }XBXA ][λ=      (2.26) 

 

Solutions of the generalized eigenvalue problem given by Equation 2.26 can be 

obtained by any mathematical software such as Matlab, Mathematica or Maple. 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 
 

3.1. Introduction 

 
In this chapter, numerical applications are carried out for curved beams in the 

shape of catenary with different parameters. The beam is in z-x plane as shown in 

Figures 2.1 or 2.2 and has clamped-free boundary conditions. The main numerical data 

are as follows: b=h=0.01 m, E=200 GPa, G=80 GPa, ρ=7850 kg/m3, sL=0.12 m. Other 

data are given in table and figure legends. The numerical results are found and 

compared with the FEM results obtained from the model created in ANSYS. The results 

given in tabular and graphical forms are discussed. 

 

3.2. Verifications and Selecting the Number of Nodes for FDM 

 
 In this section, as first step, in order to determine the proper number of node in 

FDM, the first natural frequencies are found for different number of node and shown in 

Figure 3.1. 

 

 

556.06
556.08
556.10
556.12
556.14
556.16
556.18
556.20
556.22
556.24

0 20 40 60 80 100 120 140 160
n

f1 (Hz)
 

 

 

 

 

 

 

 

 

Figure 3.1. Convergence of first natural frequencies for R0=50 mm 
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Considering the tendancy of the curve shown in Figure 3.1, the proper number 

of node for FDM is selected as 100 for all calculations. 

To evaluate the results of FDM for the case of variable curvature, four different 

models depending on R0 are created in ANSYS by using 30 Beam44 elements with 

consistent mass matrix option. The proper number of finite element is determined after 

observing the convergences. 

The natural frequencies found for different R0 by FDM and Finite Element 

Models are tabulated in Table 3.1 and plotted in Figures 3.2.a-d and Figures 3.3.a-d as 

natural ferqunecies versus R0. It can be seen from these figures that FDM and FEM 

have very similar results except first mode. 

 

Table 3.1. Comparison of natural frequencies found for different R0 by FDM 
with FEM results 

 

  R0=50 mm R0=100 mm R0=150 mm R0=200 mm 

FDM 556.2 562.9 564.7 565.4 
f1 (Hz) 

FEM 570.2 569.7 568.2 567.3 

FDM 3084.5 3157.9 3275.8 3358.3 
f2 (Hz) 

FEM 3095.6 3175.2 3284.5 3357.4 

FDM 7802.6 7481.7 7186.7 7009.3 
f3 (Hz) 

FEM 7821.6 7523.5 7267.1 7118.6 

FDM 9556.1 9810.8 9891.1 9913.9 
f4 (Hz) 

FEM 9386.2 9621.1 9694.0 9714.5 

FDM 18942 19161 19228 19275 
f5 (Hz) 

FEM 18291 18492 18569 18614 

FDM 21119 20547 20330 20217 
f6 (Hz) 

FEM 21486 20989 20789 20690 

FDM 31422 31799 31920 31982 
f7 (Hz) 

FEM 29736 30013 30116 30166 

FDM 34217 33657 33486 33404 
f8 (Hz) 

FEM 35027 34584 34433 34363 
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Figure 3.2. Comparisons of natural frequencies found for different R0 by FDM with 
 FEM results (f1-f4). 
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d) Eighth frequency 

Figure 3.3. Comparisons of natural frequencies found for different R0 by FDM with 
 FEM results (f5-f8). 
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3.3. Applications for Curved Beams on Elastic Foundations 

 
Effects of curvature and foundation parameters on natural frequencies are 

studied and the results are given in Table 3.2-11. Winkler foundation is considered in 

Tables 3.2-6. Second foundation parameter, which is called Pasternak parameter, 

k1=2000 N is taken in other tables. 

 

Table 3.2. Effects of parameter R0 on natural frequencies for k0=20 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 568.557 571.074 

f2 (Hz) 3158.91 3359.2 

f3 (Hz) 7481.77 7009.28 

f4 (Hz) 9811.1 9914.23 

f5 (Hz) 19160.6 19274.7 

f6 (Hz) 20546.6 20217 

f7 (Hz) 31798.8 31982.2 

f8 (Hz) 33656.5 33403.8 
 

 

Table 3.3. Effects of parameter R0 on natural frequencies for k0=50 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 577.006 579.487 

f2 (Hz) 3160.37 3360.59 

f3 (Hz) 7481.84 7009.32 

f4 (Hz) 9811.56 9914.7 

f5 (Hz) 19160.9 19274.9 

f6 (Hz) 20546.6 20217 

f7 (Hz) 31798.9 31982.3 

f8 (Hz) 33656.5 33403.8 
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Table 3.4. Effects of parameter R0 on natural frequencies for k0=100 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 590.82 593.244 

f2 (Hz) 3162.8 3362.92 

f3 (Hz) 7481.95 7009.39 

f4 (Hz) 9812.33 9915.49 

f5 (Hz) 19161.3 19275.3 

f6 (Hz) 20546.6 20217.1 

f7 (Hz) 31799.2 31982.6 

f8 (Hz) 33656.6 33403.8 
 

 

Table 3.5. Effects of parameter R0 on natural frequencies for k0=150 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 604.318 606.689 

f2 (Hz) 3165.24 3365.25 

f3 (Hz) 7482.06 7009.46 

f4 (Hz) 9813.10 9916.27 

f5 (Hz) 19161.7 19275.7 

f6 (Hz) 20546.6 20217.1 

f7 (Hz) 31799.4 31982.8 

f8 (Hz) 33656.6 33403.8 
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Table 3.6. Effects of parameter R0 on natural frequencies for k0=200 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 617.521 619.843 

f2 (Hz) 3167.67 3367.58 

f3 (Hz) 7482.17 7009.53 

f4 (Hz) 9813.87 9917.06 

f5 (Hz) 19162.1 19276.1 

f6 (Hz) 20546.6 20217.1 

f7 (Hz) 31799.7 31983.1 

f8 (Hz) 33656.6 33403.8 
 

It is clear from Tables 3.2-6 that first, second, fourth, fifth and seventh natural 

frequencies increase when R0 is increased from 100 mm to 200 mm. Also, it can be seen 

from the same tables that when k0 is increased from 20 MN/m2/m to 200 MN/m2/m, 

only the first and second natural frequencies increase significantly, but other natural 

frequencies higher than second is changed in decimal places. 

 

Table 3.7. Effects of parameter R0 on natural frequencies for k0=20 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 565.524 567.92 

f2 (Hz) 3167.27 3367.34 

f3 (Hz) 7482.89 7009.97 

f4 (Hz) 9821.02 9924.33 

f5 (Hz) 19171.7 19285.0 

f6 (Hz) 20547.0 20218.1 

f7 (Hz) 31810.6 31993.9 

f8 (Hz) 33656.7 33404.0 
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Table 3.8. Effects of parameter R0 on natural frequencies for k0=50 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 574.018 576.379 

f2 (Hz) 3168.73 3368.74 

f3 (Hz) 7482.96 7010.02 

f4 (Hz) 9821.48 9924.8 

f5 (Hz) 19171.9 19285.3 

f6 (Hz) 20547.0 20218.1 

f7 (Hz) 31810.7 31994.0 

f8 (Hz) 33656.7 33404.0 
 

 
Table 3.9. Effects of parameter R0 on natural frequencies for k0=100 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 587.902 590.209 

f2 (Hz) 3171.16 3371.06 

f3 (Hz) 7483.07 7010.08 

f4 (Hz) 9822.25 9925.59 

f5 (Hz) 19172.3 19285.6 

f6 (Hz) 20547.0 20218.1 

f7 (Hz) 31811.0 31994.3 

f8 (Hz) 33656.7 33404.0 
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Table 3.10. Effects of parameter R0 on natural frequencies for k0=150 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 601.465 603.721 

f2 (Hz) 3173.58 3373.38 

f3 (Hz) 7483.18 7010.15 

f4 (Hz) 9823.01 9926.37 

f5 (Hz) 19172.7 19286.0 

f6 (Hz) 20547.0 20218.2 

f7 (Hz) 31811.2 31994.5 

f8 (Hz) 33656.7 33404.0 
 

 

Table 3.11. Effects of parameter R0 on natural frequencies for k0=200 MN/m2/m 
 

 R0=100 mm R0=200 mm 

f1 (Hz) 614.730 616.938 

f2 (Hz) 3176.01 3375.7 

f3 (Hz) 7483.29 7010.22 

f4 (Hz) 9823.78 9927.16 

f5 (Hz) 19173.1 19286.4 

f6 (Hz) 20547.0 20218.2 

f7 (Hz) 31811.5 31994.8 

f8 (Hz) 33656.7 33404.0 
 

Similarly, it is clear from Tables 3.7-11 which are given for k1=2000 N that first, 

second, fourth, fifth and seventh natural frequencies increase when R0 is increased from 

100 mm to 200 mm. Also, it can be seen from the same tables that when k0 is increased 

from 20 MN/m2/m to 200 MN/m2/m, only the first and second natural frequencies 

increase significantly, but other natural frequencies higher than second is changed in 

decimal places. 
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Figure 3.4. First natural frequencies 
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Figure 3.5. Second natural frequencies 
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Figure 3.6. Third natural frequencies 
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Figure 3.7. Fourth natural frequencies 
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Figure 3.8. Fifth natural frequencies 

 

 

20150
20200
20250
20300
20350
20400
20450
20500
20550
20600

0 50 100 150 200

f6 (Hz)

Ro=100 mm , k1=0 Ro=200 mm , k1=0
Ro=100 mm , k1=2000 N Ro=200 mm , k1=2000 N

ko (N/m^2/m)

 

 

 

 

 

 

 

 

Figure 3.9. Sixth natural frequencies 

 

 24



 

31750

31800

31850

31900

31950

32000

0 50 100 150 200

f7 (Hz)

Ro=100 mm , k1=0 Ro=200 mm , k1=0
Ro=100 mm , k1=2000 N Ro=200 mm , k1=2000 N

ko (N/m^2/m)

 

 

 

 

 

 

 

 

Figure 3.10. Seventh natural frequencies 
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Figure 3.11. Eighth natural frequencies 

 

 The numerical results presented in Tables 3.2-11 are plotted in Figures 3.4-11 in 

order to see the effects of foundation parameters and curvature parameter on natural 

frequencies. The major effect of foundation parameters on natural frequencies can be 

seen from Figure 3.4 which shows the variation of first natural frequencies depending 

on all parameters in this study. On the other hand, it is very interesting that third, sixth 

and eighth natural frequencies decrease when R0 is increased from 100 mm to 200 mm. 
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CHAPTER 4 

 

CONCLUSIONS 

 
In this study, the differential equations governing the free out-of plane vibrations 

of curved beams with variable curvature on elastic foundation are presented. Since the 

coefficients of the derived differential equations are not constant, it is generally very 

difficult to express the exact solution. 

In the existing literature, for the free out-of-plane vibrations of curved beams, 

most of the researchers investigated the symmetrical boundary conditions such as both 

ends fixed, pinned or free conditions. 

With this study, as far as the author is aware, for the first time, the natural 

frequencies for out-of plane vibrations of curved beams with variable curvature on 

elastic foundation are studied and presented. 

In order to validate the developed computer program to solve the differential 

eigenvalue problem based on FDM, the solid models are created for Finite Element 

analysis. The results, found out from FDM, are compared with the results from FEM 

(Finite Element Method). The effects curvature and foundation parameters on natural 

frequencies are found for the curved beams in the shape of catenary with selected 

geometries. 
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