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ABSTRACT

ELECTRONIC CORRELATIONS IN METALLOPROTEINS: A
QUANTUM MONTE CARLO STUDY

Metalloproteins are proteins that contain a metal atom. Some metalloproteins

include a transition metal such as vitamin B12 (Co) and hemoglobin (Fe) and these struc-

tures show semiconducting properties. In this thesis, as an example of metalloproteins,

vitamin B12 is studied and electronic and magnetic properties of Co 3d electrons are ex-

amined by the quantum Monte Carlo method (QMC). Since vitamin B12 contains a cobalt

(Co) atom and has a semiconductor gap, its electronic and magnetic properties can be

described by multi-orbital Haldane-Anderson model. Haldane-Anderson model explains

the electronic properties of semiconductors which contain a transition metal impurity and

considers the onsite Coulomb interactions of impurity 3d orbitals. To solve this model, we

use Hirsch-Fye quantum Monte Carlo algorithm (HFQMC) without making any approx-

imations. Firstly, the occupations and intra-orbital electronic correlations of 3d orbitals

are calculated. After that, the total magnetization and the inter-orbital correlations of 3d

orbitals are obtained. Next, the total magnetic susceptibility and magnetic susceptibilities

between the 3d orbitals are calculated. Finally, we discuss the physical meaning of the

QMC calculations.
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ÖZET

METALOPROTEİNLERDE ELEKTRONİK BAĞLILIKLAR: KUANTUM
MONTE CARLO ÇALIŞMASI

Metaloproteinler bir metal atomu içeren proteinlerdir. Vitamin B12 (Co) ve hemog-

lobin (Fe) gibi metaloproteinler bir geçiş metali içerirler ve yarıiletken özelliği gösterirler.

Bu tezde, metaloproteinlere örnek olarak, vitamin B12 çalışılmış ve Co 3d orbitallerinin

elektronik ve manyetik özellikleri kuantum Monte Carlo (QMC) metodu ile açıklanmıştır.

Vitamin B12 kobalt (Co) atomu içerdiği ve yarıiletken band aralığına sahip olduğu için o-

nun elektronik ve manyetik özellikleri çok-orbitalli Haldane-Anderson modeli ile tanım-

lanır. Haldane-Anderson modeli geçiş-metali safsızlık atomu içeren yarıiletken yapıların

elektronik özelliklerini açıklar ve safsızlık 3d orbitallerindeki Coulomb etkileşmelerini

hesaba katar. Bu modeli çözmek için Hirsch-Fye kuantum Monte Carlo algoritmasını

(HFQMC) hiç bir yaklaşım yapmaksızın kullandık. İlk olarak, safsızlık 3d orbitallerinin

doluluk oranları ve orbital içi elektronik bağlılıkları hesaplanmıştır. Daha sonra 3d or-

bitallerinin toplam manyetizasyonu ve 3d orbitalleri arası bağlılıklar açıklanmıştır. Bunun

ardından, toplam manyetik alınganlık ve 3d orbitalleri arası manyetik alınganlıklar hesap-

lanmıştır. Son olarak QMC hesaplarının fiziksel anlamları tartışılmıştır.
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CHAPTER 1

INTRODUCTION

Proteins are the most important constituents of living cells and they are respon-

sible for many essential functions in living organisms [1]. It is known that one-third of

all proteins contain a metal atom and these materials are named as metalloproteins [2].

Metalloproteins have attracted scientists’ attention since the sperm whale myoglobin, the

first X-ray crystal structure of protein, showed the presence of an iron atom in 1950s [3].

An important part of metalloproteins contain a transition metal such as iron (Fe), cobalt

(Co), nickel (Ni) and zinc (Zi), and these metals are usually arranged by nitrogen, oxy-

gen or sulfur atoms which belong to amino acids in the polypeptide chain in the proteins.

Some examples for metalloproteins which contain transition metal atoms are hemoglobin

(Fe), vitamin B12 (Co) and enzymes. These structures are very important because metal

Figure 1.1. Structure of hemoglobin

imbalance or lack of activity of metalloproteins lead to many diseases [4]. Moreover, they

are used for many biological processes such as transition O2 and CO2 through the cells,

normal functioning of brain and nervous systems, transport and storage proteins, and it is

1



known that protein-bound transition metals play key roles in these processes [3], [4].

Figure 1.2. Structure of vitamin B12

Although the importance of metalloproteins is widely known, the contribution of

transition metals to the physics of metalloproteins and functions in many metalloproteins

remain unclear [5].

To understand properties of metalloproteins, some researches have been done

in recent years. For example, it has been found that hemoglobin and vitamin B12 (see

Fig.1.3) have energy gap and they show semiconducting properties [6], [7]. With these

characteristics, they resemble diluted magnetic semiconductors (DMS).
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Figure 1.3. Density of states of vitamin B12

DMS are semiconductor materials and show ferromagnetic properties. The idea

of DMS is that a small fraction of the original atoms in the non-magnetic host is sub-

stituted by transition metals. Therefore, these materials are magnetic due to transition

metals and semiconductor due to host structure. For example, (Ga,Mn)As, (In,Mn)As

and (Ga,Mn)N are some DMS materials. Fig.1.4 shows (Ga,Mn)As. Here, GaAs is host

structure which is a semiconductor as seen in Fig.1.5 and As are substituted by Mn. In

DMS, magnetization is resulted from the local magnetic moments of the magnetic impu-

rities and low-density carriers mediate magnetic interactions of impurities [8].

Figure 1.4. (Ga,Mn)As

3



Figure 1.5. Band structure of GaAs

Unlike the traditional electronics, DMS materials have spin-dependent properties

[9] and they allow control of quantum spin states [10]. With these characteristics, DMS

are important for spintronics or semiconductor-based spin electronics which studies possi-

ble applications of electron spins in electronic devices. Therefore, to develop many DMS

candidates and understand the origin of magnetism in these materials, many investigations

have been carried out since 1980s [11].

In one of the studies on DMS, to understand their magnetic properties, Anderson

model was used and the basic electronic structures of DMS were found [8]. This model

was introduced by Anderson in [12] to study the multiple charge states of Au impurities

in Ge. After that, Anderson model was extended to describe the electronic structure of

transition metal impurities in semiconductors [13].

It is known that metalloproteins and DMS materials have similar structures. Both

of them contain transition metal and show semiconducting properties. Therefore, to ex-

plain the electronic and magnetic properties of metalloproteins, like DMS materials, An-

derson model can be used. Understanding of metalloproteins is very important in many

aspects. Firstly, metalloproteins can help to interpret physics of DMS materials, which

provides developing new electronic materials. Furthermore, explanation of properties of

metalloproteins can help in the discovery of new chemical structures which contain tran-

sition metals.

In this thesis, electronic and magnetic properties of metalloproteins are studied

by using the Anderson model. To study this model, density functional theory (DFT) and

quantum Monte Carlo (QMC) methods are used together. This combined DFT+QMC ap-
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proach is a ”first principle” approach which treats exactly strong electronic correlations

at the transition-impurity 3d orbitals. As an example for metalloproteins, vitamin B12 is

studied and here, by using the Hirsch-Fye QMC algorithm (HFQMC), the occupations,

magnetic correlation functions, effective magnetic moments and susceptibilities of impu-

rity 3d orbitals are calculated and presented.

In Chapter 2, the impurity Anderson Hamiltonian is introduced for single and

multi-orbital cases. After that, in Chapter 3, physical quantities which we calculate

through the static QMC measurements and dynamical QMC measurements are described.

Results for the static QMC measurements are explained in Chapter 4 and in these, QMC

results are compared with the DFT results. Next, the results for the dynamical QMC mea-

surements are discussed in Chapter 5. Furthermore, HFQMC algorithm for single-orbital

and multi-orbital cases are explained in Appendix A and Appendix B, respectively. Fi-

nally, in Appendix C, the calculation of host-impurity and host Green’s functions are

described.
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CHAPTER 2

ANDERSON MODEL FOR ELECTRONIC STRUCTURE

OF VITAMIN B12

Haldane-Anderson model [13] is the extension of the Anderson model [12] to

describe the electronic structure of transition metal impurities in semiconductors. The

Anderson Hamiltonian is

H =
∑
kσ

(εk − µ) ckσ
†ckσ +

∑
σ

(εd − µ) d†σdσ +
∑
k,σ

(Vkckσ
†dσ + h.c) + Und↑nd↓ (2.1)

Here, εk denotes the eigenvalues of the host electrons, c†k σ (ck σ) is the creation (annihi-

lation) operator for the host electrons, Vk is the hybridization term between the host and

impurity electrons, εd denotes the eigenvalues of the impurity electrons, d†σ (dσ) is the

creation (annihilation) operator for the impurity electrons, U specifies the Coulomb in-

teraction on d sites and nd σ is the site occupation number of a d electron with σ =↑ and

σ =↓ which denote the two orientations of the electron spins.

The above Anderson Hamiltonian is used for the single orbital case. However, in

this thesis, the electronic structure of vitamin B12 that contains Co as an impurity atom is

studied. It is known that transition metal impurities have partially filled d or f orbitals [14]

and so electron exchanges occur not only between the impurity and host states but also

between the impurity states. Therefore, we have to expand single orbital case to multi-

orbital Anderson model. If the Anderson Hamiltonian is rewritten for the multi-orbital

case, it is

H =
∑
mσ

( εm − µ ) c†mσ cmσ +
∑
mσ

5∑
ν=1

( Vmν c
†
mσ dσ ν + h.c.)

+
5∑

ν,ν′=1

∑
σ

( tν ν′ d
†
ν σ dν′ σ + h.c.) +

5∑
ν=1

∑
σ

( εd ν − µ)nd ν σ

+
5∑

ν=1

Uν nd ν ↑ nd ν ↓. (2.2)
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For single-orbital Anderson model, ~k denotes the wave vector of the host lattice

structure. But in the study of metalloproteins, m denotes the discrete host eigenstates.

Furthermore, ν is the index of the d orbitals ranging from 1 to 5 and hopping terms

between the 3d orbitals tνν′ are used for multi-orbital Anderson model.

In this thesis, DFT and QMC methods are combined to study vitamin B12. The

terms which are eigenvalues of host and impurity electrons, chemical potential, hopping

terms between the 3d orbitals and hybridizations of host and impurity orbitals are calcu-

lated by DFT (these terms have been shown in boxes in Eq.2.2) . After that, these terms

are placed in the Anderson Hamiltonian and electronic properties of vitamin B12 have

been described.

H =
∑
mσ

(εm − µ) c†mσ cmσ +
∑
mσ

5∑
ν=1

(Vmν c
†
mσ dσ ν + h.c.)

+
5∑

ν,ν′=1

∑
σ

(tν ν′ d
†
ν σ dν′ σ + h.c.) +

5∑
ν=1

∑
σ

(εd ν − µ)nd ν σ

+
5∑

ν=1

Uν nd ν ↑ nd ν ↓ (2.3)

With onsite Coulomb interactions of 3d orbitals Uν , solving Anderson model is

very difficult. Therefore, the numerical results which are discussed in Chapter 4 and

Chaper 5 are obtained by HFQMC algorithm. In Appendix A, single-orbital HFQMC

algorithm is explained and it was used in [8]. This algorithm is modified for multi-orbital

case in Appendix B and it is used to obtain the electronic properties of vitamin B12.
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CHAPTER 3

QUANTUM MONTE CARLO MEASUREMENTS

By using multi-orbital Hirsch-Fye QMC technique (see Appendix B), the numer-

ical results were obtained and these results will be represented in Chapter 4 and Chapter

5. With this method, the Green’s functions of 3d orbitals

Gν ν′ ↑(τ) = −
〈
Tτ dν ↑(τ

′ + τ) d†ν′ ↑(τ
′)
〉
, (3.1)

Gν ν′ ↓(τ) = −
〈
Tτ dν ↓(τ

′ + τ) d†ν′ ↓(τ
′)
〉
. (3.2)

are calculated. Here, ν and ν ′ show the Co 3d orbitals and Tτ is the Matsubara time-

ordering operator. Furthermore, algebra of the fermionic creation and annihilation opera-

tors is defined by the following anti-commutation relation:

{
dν , d

†
ν′

}
= δν,ν′ (3.3)

and the expression for the magnetization and number operators are

M z
ν = d†ν↑ dν↑ − d†ν↓ dν↓, (3.4)

nν = d†ν↑ dν↑ + d†ν↓ dν↓. (3.5)

With these information, firstly, the static QMC measurements were made and occupa-

tions of 3d orbitals 〈nν 〉, the equal-time magnetic correlation function 〈 (M z
ν )2 〉, total

magnetic correlation function 〈 (M z)2 〉 of 3d orbitals and magnetic correlation functions

between 3d orbitals were calculated. After that, the dynamical QMC measurements were

made. In this part, total magnetic susceptibility χ(iωm) and the magnetic susceptibilities

between 3d orbitals χν ν′(iωm) were obtained.

To obtain the QMC results, Matsubara time step was equaled ∆ τ = 0.3125 and

L values were equaled 16, 32, 48, 64, 128, 192 and 384. For some measurements, to set

the temperature values, ∆ τ was changed a few. In addition, for simulations, number of
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warm up sweeps and number of measurement sweeps were calibrated.

Warm up sweeps describe the thermalizes of system at the given temperature.

During the warm up sweeps, only the Hubbard-Stratonovich spins (see Appendix A and

B) flip to decrease the correlations and no any measurements are made. After warm up

sweeps, measurements start. Large number of measurements are grouped into bins and

then, by using standard deviation of bins, average values and error values are calculated.

Measurement sweeps are simple way to improve the estimate of the QMC errors.

3.1. Static Quantum Monte Carlo Measurements

By using fermion operators, Green’s functions, magnetization operator and Wick’s

theorem, occupations of 3d orbitals 〈nν 〉, the equal-time magnetic correlation function

〈 (M z
ν )2 〉, total magnetic correlation function 〈 (M z)2 〉 of 3d orbitals and magnetic cor-

relation functions between 3d orbitals were calculated and their equations are represented

below, respectively.

The occupations of 3d orbitals are calculated by

〈nν 〉 =
〈
d†ν↑ dν↑ + d†ν↓ dν↓

〉
(3.6)

=
1

L

L∑
i=1

〈 [ ( 1 − Gν ν ↑(τi, τi) ) + ( 1 − Gν ν ↓(τi, τi) ) ]〉{Slν} . (3.7)

Impurity magnetic correlation function is expressed by

〈
(M z

ν )2
〉

=
〈(

d†ν↑ dν↑ − d†ν↓ dν↓

) (
d†ν↑ dν↑ − d

†
ν↓ dν↓

)〉
(3.8)

=
〈(

d†ν↑ dν↑ − d†ν↓ dν↓

) (
d†ν↑ dν↑ − d†ν↓ dν↓

)〉
+
〈(

dν↑ d
†
ν↑ d

†
ν↑ dν↑ + dν↓ d

†
ν↓ d

†
ν↓ dν↓

)〉
(3.9)

=
1

L

L∑
i=1

〈 [
(Gν ν ↑(τi, τi) − Gν ν ↓(τi, τi) )2

+ Gν ν ↑(τi, τi) ( 1−Gν ν ↑(τi, τi) )

+ Gν ν ↓(τi, τi) ( 1−Gν ν ↓(τi, τi) ) ]〉{Slν} . (3.10)
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〈 (M z
ν )2 〉 means the square of magnetic moment of 3d electrons:

(µeff,ν)
2 =

〈
(M z

ν )2
〉
. (3.11)

Total magnetic correlation function of impurity is

〈
(M z)2

〉
=

〈
5∑

ν=1

(
d†ν↑ dν↑ − d

†
ν↓dν↓

) 5∑
ν′=1

(
d†ν′↑dν′↑ − d

†
ν′↓dν′↓

)〉
(3.12)

=

〈
5∑

ν=1

5∑
ν′=1

(
d†ν↑dν↑ − d

†
ν↓dν↓

)(
d†ν′↑dν′↑ − d

†
ν′↓dν′↓

)〉

+

〈
5∑

ν=1

5∑
ν′=1

(
dν↑ d

†
ν′↑ d

†
ν↑ dν′↑ + dν↓ d

†
ν′↓ d

†
ν↓ dν′↓

)〉
(3.13)

=
1

L

5∑
ν=1

5∑
ν′=1

L∑
i=1

〈 [ (Gνν↑(τi, τi)−Gνν↓(τi, τi) )

× (Gν′ν′↑(τi, τi)−Gν′ν′↓(τi, τi) )

+ Gν ν′ ↑(τi, τi) ( δν ν′ − Gν′ ν ↑(τi, τi) )

+Gν ν′ ↓(τi, τi) ( δν ν′ − Gν′ ν ↓(τi, τi) ) ] 〉{Slν} . (3.14)

〈 (M z)2 〉 also means the square of total magnetic moment of 3d electrons:

(µTeff )
2 =

〈
(M z)2

〉
. (3.15)

and the magnetic correlation functions between 3d orbitals are

〈 (M z
ν M

z
ν′) 〉 =

〈(
d†ν↑ dν↑ − d†ν↓ dν↓

) (
d†ν′↑ dν′↑ − d†ν′↓ dν′↓

)〉
(3.16)

=
〈(

d†ν↑ dν↑ − d†ν↓ dν↓

) (
d†ν′↑ dν′↑ − d†ν′↓ dν′↓

)〉
+
〈(

dν↑ d
†
ν′↑ d

†
ν↑ dν′↑ + dν↓ d

†
ν′↓ d

†
ν↓ dν′↓

)〉
(3.17)

10



=
1

L

L∑
i=1

〈 [ (Gν ν ↑(τi, τi) − Gν ν ↓(τi, τi) )

× (Gν′ ν′ ↑(τi, τi) − Gν′ ν′ ↓(τi, τi) )

+ Gν ν′ ↑(τi, τi) ( δν ν′ − Gν′ ν ↑(τi, τi) )

+Gν ν′ ↓(τi, τi) ( δν ν′ − Gν′ ν ↓(τi, τi) ) ] 〉{Slν} . (3.18)

In these equations, {Slν} indicates the Hubbard-Stratonovich field summation.

3.2. Dynamical Quantum Monte Carlo Measurements

After, static QMC measurements, total magnetic susceptibility χ(iωm) and the

magnetic susceptibilities between 3d orbitals χν ν′(iωm) were obtained.

Time ordered total magnetic susceptibility is

χ(τ) = 〈Tτ mz(τ)mz(0) 〉 . (3.19)

By Fourier transformation, frequency-dependent susceptibility is calculated:

χ(iωm) =

∫ β

0

dτeiωmτ χ(τ). (3.20)

In experiment, the retarded magnetic susceptibility is measured and it is calculated by

Kubo linear response theory:

χret(ω) = −i
∫ ∞
−∞

eiωt 〈[mz(t),mz(0)]〉θ(t) dt. (3.21)

When the Matsubara frequency iωm and real frequency ω equal zero, the measured sus-

ceptibilities are same

χ(iωm = 0) = χret(ω = 0). (3.22)
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Therefore, to compare the experimental results for magnetic susceptibility, zero-frequency

magnetic susceptibilities were calculated.

χ(iωm = 0) =

∫ β

0

d τ χ(τ). (3.23)

In addition, the magnetic susceptibilities between 3d orbitals were obtained by the

following equations

χν ν′(τ) = 〈Tτ mz
ν(τ)mz

ν′(0) 〉 , (3.24)

and by Fourier transformation,

χν ν′(iωm = 0) =

∫ β

0

dτ χνν′(τ). (3.25)
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CHAPTER 4

RESULTS FOR STATIC QUANTUM MONTE CARLO

MEASUREMENTS

In this chapter, results for static QMC measurements will be represented. First-

ly, occupations of Co 3d orbitals nν will be discussed and these measurements will be

compared with DFT results. After that, semiconductor gap ∆ of vitamin B12 and its DFT

results will be explained. Then, impurity magnetic correlation functions will be analyzed.

From these magnetic correlation functions, effective magnetic moments of 3d electrons

are calculated and their values will be compared with DFT results. Finally, results of total

magnetic correlation function of 3d orbitals and correlations between these orbitals will

be explained.

For QMC measurements, the onsite Coulomb interactions of impurities were set

to U = 4 eV and U = 8 eV. These values are not the real values and to see the effect of

Coulomb interaction, U = 4 eV and U = 8 eV were used in measurements.

4.1. Occupations of 3d Orbitals

By using Eq.3.7, the occupations of 3d orbitals are calculated and Figure 4.6

shows the occupations with respect to different temperature values for U = 4 eV. This

graph shows that occupations of Co 3d orbitals do not change with changing in temper-

ature. Furthermore, it has been found that the value of occupations are 1 or less than 1,

which means that each 3d orbitals has 1 electron instead of 2 electrons. This is a very

important result because Co has 7 3d electrons, however; QMC measurements show that

3d orbitals have 5 electrons due to strong onsite Coulomb interactions. Moreover, the

most occupied state is 3d3z2−r2 because it has the lowest energy and 3dxz has the least

occupations because it has the highest energy.
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Figure 4.1. 3d orbitals from the QMC measurements and DFT measurements

4.1.1. Comparison of QMC Results and DFT Results for

Occupations of 3d Orbitals

Table 4.1 indicates the comparison of QMC and DFT results for occupations of 3d

orbitals. While occupation values are less than 1 in QMC results, they are approximately

2 in DFT results and this situation is shown in Fig.4.1. Furthermore, total electron number

of Co 3d orbitals equals 4.5 with respect to QMC and it is obtained 7.2 from DFT. The

reason of this situation is that DFT does not consider the onsite Coulomb interactions of

3d electrons and due to this reason, 3d orbitals are doubly-occupied.

Table 4.1. QMC, DFT and LSDA results for occupations of 3d orbitals.

ν QMC (U = 4 eV) QMC (U = 8 eV) DFT LSDA nν
3z2 − r2 1.02 0.97 1.81975 1.74869
xy 1.00 0.92 1.65561 1.65126
yz 0.91 0.77 1.44569 1.48235

x2 − y2 0.87 0.74 1.36078 1.39305
xz 0.74 0.72 0.98964 1.10553
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4.2. Semiconductor Gap

To find the semiconductor gap ∆ of vitamin B12, the occupations of 3d orbitals

were calculated for different chemical potentials. Figure 4.7-a and 4.7-b show the 〈nν 〉
vs µ for U = 4 eV at T = 300 K and T = 600 K, respectively. For U = 8 eV at T = 300

K and T = 600 K, 〈nν 〉 vs µ is discussed in Fig. 4.8-a and 4.8-b. Here, red solid

lines show HOMO level and dash lines are LUMO level, and they were obtained from

DFT calculations. Figure 4.7 and 4.8 indicate that in semiconductor gap, 〈nν 〉 changes

and doubly occupied states which have εdν + U energy values are formed. This means

that semiconductor gap which was obtained from QMC is less than DFT results due to

hybridization between the impurity and host orbitals and onsite Coulomb interactions of

3d orbitals. As seen in Fig. 4.7a-b and 4.8a-b, the value of semiconductor gap do not

change with changing in temperature both for U = 4 eV and U = 8 eV.

To see the effect of onsite Coulomb interactions on semiconductor gap, in Fig.

4.9, 〈nν 〉 vs µ is analyzed at T = 300 K for U = 4 eV and U = 8 eV, respectively. For

U = 4 eV, doubly occupied states εdν + U have lower energy than for U = 8 eV case

and so the value of semiconductor gap equals 0.4 eV for U = 4 eV and 1.6 eV for U = 8

eV. Moreover, to illustrate the differences between these two cases, electron density of

3d3z2−r2 is calculated as an example for 3d orbitals and it is shown in Fig. 4.10. To obtain

ρν , firstly, cubic spline of 〈nν 〉 vs µ was done and after that, the derivative of cubic spline

with respect to energy ε was taken. These figures indicate more clearly doubly occupied

states in semiconductor gap.

4.2.1. Comparison of QMC Results and DFT Results for

Semiconductor Gap

In Table 4.2, QMC results and DFT results for semiconductor gap of vitamin B12

are compared. In this table, it is seen that the results for QMC and DFT for semicon-

ductor gap are very different because QMC uses the onsite Coulomb interactions of 3d

orbitals exactly and hybridization between the impurity and host orbitals. Due to these

parameters, doubly occupied states are formed in semiconductor gap and so QMC results

for semiconductor gap is smaller than 2.71 eV.
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Table 4.2. QMC, DFT and LSDA results for semiconductor gap ∆ (eV).

Semiconductor gap ∆ (eV)
QMC (U = 4 eV) 0.4
QMC (U = 8 eV) 1.6

DFT 2.71325
LSDA α 1.9263
LSDA β 2.09365

4.3. Impurity Magnetic Correlation Functions

After the occupations of 3d orbitals, impurity magnetic correlation functions were

calculated and 〈 (M z
ν )2 〉 vs temperature T are discussed in Fig. 4.11a. This figure shows

that there is no significant changes in 〈 (M z
ν )2 〉 for different temperatures. In the previous

part, 〈nν 〉 have been discussed and it has been said that each 3d orbitals have 1 electron

instead of 2 electrons due to onsite impurity Coulomb interactions. Therefore, 〈 (M z
ν )2 〉

does not equal 0 because of single-occupancy of 3d orbitals.

By using impurity magnetic correlation functions, effective magnetic moments of

3d electrons µeff,ν which is shown in Fig. 4.11b were calculated. In QMC measurements,

µeff,ν equals the squre of 〈 (M z
ν )2 〉 and due to single-occupancy of 3d orbitals, their

values are approximately 1.

In Fig. 4.12a-b and Fig. 4.13a-b, 〈 (M z
ν )2 〉 vs chemical potential µ is indicated

for U = 4 eV and U = 8 eV at T = 300 K and T = 600 K. Again here, red solid lines

show HOMO level and dash lines are LUMO level. From these figures, it is said that

behaviour of impurity magnetic correlations functions for different chemical potentials is

the same at T = 300 K and T = 600 K for both U = 4 eV and U = 8 eV. Moreover,

〈 (M z
ν )2 〉 vs µ shows doubly occupied states in semiconductor gap and due to these states,

in semiconductor gap, values of 〈 (M z
ν )2 〉 decrease.

Fig. 4.13a-b indicate 〈 (M z
ν )2 〉 vs µ for U = 4 eV and U = 8 eV at T = 300 K. In

semiconductor gap, decreases of values of 〈 (M z
ν )2 〉 are observed at higher energies for

U = 8 eV so again, it is said that semiconductor gap is larger than for U = 4 eV case.
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4.3.1. Comparison of QMC Results and DFT Results for Effective

Magnetic Moment

Table 4.3 indicates the differences between the QMC and DFT results for effective

magnetic moment of 3d electrons. QMC results for µeff,ν are calculated by

(µTeff )
2 =

〈
(M z)2

〉
. (4.1)

and DFT results for µeff,ν are obtained from

µeff,ν = nν↑ − nν↓. (4.2)

Because DFT uses the onsite Coulomb interactions of impurity electrons as an approxi-

mation, it gives that 3d orbitals are doubly-occupied. Therefore, µeff,ν equals 0 ; however,

QMC measurements say that µeff,ν are approximately 1 due to single-occupancy of im-

purity orbitals.

Table 4.3. QMC, DFT and LSDA results for magnetic moment of 3d electrons.

ν QMC (U = 4 eV) QMC (U = 8 eV) LSDA
3z2 − r2 0.94 0.97 0.02090
xy 0.91 0.93 0.03594
yz 0.87 0.85 0.00883

x2 − y2 0.84 0.83 0.01245
xz 0.78 0.82 0.00229

4.4. Total Impurity Magnetic Correlation Function

In this part of the static QMC results, total impurity magnetic correlation func-

tion 〈 (M z)2 〉 is analyzed. Fig. 4.15a-b shows the 〈 (M z)2 〉 vs temperature T and total

effective magnetic moment µTeff vs T for U = 4 eV.
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In Fig. 4.15a, dash line indicates the sum of impurity magnetic correlation func-

tions which are

5∑
ν=1

〈
(M z

ν )2
〉
. (4.3)

It is known from the previous part that 〈 (M z
ν )2 〉 does not change with temperature, how-

ever; 〈 (M z)2 〉 are affected by changes in temperature, which means that inter-orbital

magnetic correlation function 〈M z
ν M

z
ν′ 〉 are temperature dependent. Moreover, in Fig

4.15a, total magnetic correlation function of 3d orbitals increase at high temperatures and

decrease at low temperatures.

To explain this situation, µTeff was calculated by

(µTeff )
2 =

〈
(M z

ν )2
〉

(4.4)

and µTeff vs T is discussed in Fig. 4.15b. These QMC results indicate that at high tem-

peratures, correlations between the 3d orbitals are ferromagnetic (FM) and they are anti-

ferromagnetic (AFM) at low temperatures. In other words, 3d electrons have high spin

state at high temperatures and they have low spin states at low temperatures. For exam-

ple, one possible visualization of high spin state and low spin state of Co 3d5 orbitals can

be Fig. 4.2. In Fig. 4.2, the left one shows the high spin state at high temperatures

𝟑𝒛𝟐 − 𝒓𝟐 

𝒙𝒚 

𝒚𝒛 

𝒙𝟐 − 𝒚𝟐 

𝒙𝒛 

Figure 4.2. High spin state and low spin state of Co 3d5.

18



and all correlations are FM between the 3d electrons. The right one represents the low

spin state at low temperatures and AFM correlations are seen between some 3d electrons.

Therefore, at low temperatures, 〈 (M z)2 〉 and µTeff decrease.

Fig. 4.16a-b shows the comparison of 〈 (M z)2 〉 vs T and 〈M z
νM

z
ν′〉 between the

3z2 − r2 and xy orbitals vs T . Here, 3z2 − r2 and xy orbitals was chosen as an example

for inter-orbital magnetic correlations and it is observed that these orbitals have the most

negative correlations. In Fig.4.16b, at high temperatures, magnetic correlations between

the 3z2 − r2 and xy orbitals are FM and at low temperatures, they are AFM as in the

4.16a. From inter-orbital correlations of 3z2 − r2 and xy, what happens at high and low

temperatures is seen more clearly.

It is the most important point that at T = 600 K, we have big error bars and it

is focused in Fig. 4.3. For this temperature value, 10 simulations were performed and

Figure 4.3. Total magnetic correlations of 3d orbitals 〈 (M z)2 〉 vs temperature T .

each of them had 50.000 measurement sweeps. As seen in Fig. 4.4, the results of these

simulations for 〈 (M z)2 〉 fluctuate between 2 and 9 and the possible explanation of this

situation can be as the following:
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Figure 4.4. Measurements at T = 600 K for 〈 (M z)2 〉.

When 〈 (M z)2 〉 are 9, µTeff = 3 and when 〈 (M z)2 〉 are 2, µTeff = 1.7. If µTeff = 3 case is

defined as high spin state, µTeff = 1.7 case can be low spin state and this situation is shown

in Fig. 4.5. While the left picture in Fig. 4.5 defines the high spin state and µTeff = 3 case,

the right one indicates the low spin state and µTeff = 1.7 case. The QMC measurements

are fluctuate between these values at T = 600 K because at this temperature, the energies

of high spin state and low spin state can be close each other.

After that, to see the all magnetic correlations between the Co 3d orbitals, 〈M z
νM

z
ν′〉

was calculated and these results are discussed with respect to 3d orbitals ν in Fig. 4.17

at T = 300 K and T = 1550 K, respectively. As being expressed, at T = 300 K, AFM

correlations are seen between the 3d orbitals and all correlations are FM at T = 1550 K.

Up to now, all results have shown total impurity magnetic correlation function and

inter-orbital correlation functions for U = 4 eV case. To see the effect of onsite Coulomb

interactions of 3d orbitals, same measurements were made for U = 8 eV.

Fig. 4.18a-b show 〈 (M z)2 〉 vs T and 〈M z
νM

z
ν′〉 between the 3z2 − r2 and xy

orbitals vs T . Similar to U = 4 eV case, at high temperatures, total magnetic correlations

are FM and at low temperatures, AFM correlations exist between the 3d orbitals. The

most important differences between the U = 4 eV and U = 8 eV is that fluctuation
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Figure 4.5. Spin states for µTeff = 3 and spin states for µTeff = 1.7.

between the high spin state and low spin state is seen at T = 300 K for U = 8 eV. Again,

the most negative correlations were observed between the 3z2 − r2 and xy orbitals and

Fig. 4.18b indicates that the behaviour of correlations between these orbitals specifies

total impurity correlation function for different temperatures.

In Fig. 4.19a-b, inter-orbital magnetic correlation functions are discussed at T =

300 K and T = 1550 K. At T = 300 K, AFM correlations exist but what happens at

lower temperatures is very important for U = 8 eV. Because, in contrast to U = 4 eV

case, fluctuation between the high and low spin states are observed at T = 300 K and so

it is estimated that AFM correlations can be seen at below the 300 K for U = 8 eV. At

T = 1550 K, all correlations are FM as U = 4 eV.
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Figure 4.6. Onsite Coulomb interaction of 3d orbitals U = 4 eV. Occupations of 3d
orbitals 〈nν 〉 vs T .
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  (a)

(b)

Figure 4.7. Onsite Coulomb interaction of 3d orbitals U = 4 eV. Red solid line shows
HOMO and red dash line shows LUMO. (a) Occupations of 3d orbitals
〈nν 〉 vs µ at temperature T = 300 K. (b) Occupations of 3d orbitals 〈nν 〉
vs µ at temperature T = 600 K.
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(a)

(a)

(b)

(b)

Figure 4.8. Onsite Coulomb interaction of 3d orbitals U = 8 eV. Red solid line shows
HOMO and red dash line shows LUMO. (a) Occupations of 3d orbitals
〈nν 〉 vs µ at temperature T = 300 K. (b) Occupations of 3d orbitals 〈nν 〉
vs µ at temperature T = 600 K.
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  (a)

(b)

Figure 4.9. Red solid line shows HOMO and red dash line shows LUMO. (a) On-
site Coulomb interaction of 3d orbitals U = 4 eV and occupations of 3d
orbitals 〈nν 〉 vs µ at temperature T = 300 K. (b) Onsite Coulomb inter-
action of 3d orbitals U = 8 eV and occupations of 3d orbitals 〈nν 〉 vs µ
at temperature T = 300 K.
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Figure 4.10. Red solid line shows HOMO and red dash line shows LUMO. Blue solid
line is energy level of 3z2− r2. For 3z2− r2 orbital, 〈nν 〉 vs µ at tempera-
ture T = 300 K for U = 4 eV and U = 8 eV and ρν(ε) vs ε at temperature
T = 300 K for U = 4 eV and U = 8 eV.
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(a)

(b)

Figure 4.11. Onsite Coulomb interaction U = 4 eV. (a) Impurity magnetic correlation
function 〈 (M z

ν )2 〉 vs temperature T . (b) Impurity effective magnetic mo-
ment µeff,ν vs temperature T .
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(a)

(b)

Figure 4.12. Onsite Coulomb interaction U = 4 eV. Red solid line shows HOMO and
red dash line shows LUMO. (a) Impurity magnetic correlation function
〈 (M z

ν )2 〉 vs µ at temperature T = 300 K. (b) Impurity magnetic correla-
tion function 〈 (M z

ν )2 〉 vs µ at temperature T = 600 K.
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(a)

(b)

Figure 4.13. Onsite Coulomb interaction U = 8 eV. Red solid line shows HOMO and
red dash line shows LUMO. (a) Impurity magnetic correlation function
〈 (M z

ν )2 〉 vs µ at temperature T = 300 K. (b) Impurity magnetic correla-
tion function 〈 (M z

ν )2 〉 vs µ at temperature T = 600 K.
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(a)

(b)

Figure 4.14. Temperature T = 300 K. Red solid line shows HOMO and red dash line
shows LUMO. (a) Impurity magnetic correlation function 〈 (M z

ν )2 〉 vs µ
for onsite Coulomb interaction U = 4 eV. (b) Impurity magnetic correla-
tion function 〈 (M z

ν )2 〉 vs µ for onsite Coulomb interaction U = 8 eV.
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(a)

(b)

Figure 4.15. Number of warmup and measurement sweeps are shown as N×(warmup
+ measurements). N is the number of simulations. For T = 200 K 14 ×
(1k + 1k), T = 300 K 9 × (5k + 10k), T = 460 K 10 × (1k + 16k),
T = 600 K 32 × (10k + 50k), T = 770 K 10 × (10k + 480k), T = 1160
K 40× (1k+ 80k). (a) Total impurity magnetic correlation function of Co
3d 〈 (M z)2 〉 vs temperature T . Dash line shows the

∑5
ν=1 〈 (M z

ν )2 〉. (b)
Total effective magnetic moment of Co 3d electrons µTeff vs temperature
T .
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(a)

(b)

Figure 4.16. Number of warmup and measurement sweeps are shown as N×(warmup
+ measurements). N is the number of simulations. For T = 200 K 14 ×
(1k+1k), T = 300 K 9× (5k+10k), T = 460 K 10× (1k+16k), T = 600
K 32 × (10k + 50k), T = 770 K 10 × (10k + 480k), T = 1160 K 40 ×
(1k + 80k). (a) Total impurity magnetic correlation function 〈 (M z)2 〉
vs temperature T . Dash line shows the

∑5
ν=1 〈 (M z

ν )2 〉. (b) Magnetic
correlation function 〈M z

νM
z
ν′〉 between the 3z2 − r2 and xy orbitals vs

temperature T .
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(a)

 (b)

Figure 4.17. Onsite Coulomb interaction U = 4 eV. Number of warmup and measure-
ment sweeps are shown as N×(warmup + measurements). N is the number
of simulations. For T = 300 K 9 × (5k + 10k), T = 1550 K (1k + 60k).
(a) Magnetic correlation function 〈M z

νM
z
ν′〉 between the 3d orbitals vs 3d

orbitals ν at temperature T = 300 K. (b) Magnetic correlation function
〈M z

νM
z
ν′〉 between the 3d orbitals vs 3d orbitals ν at temperature T = 1550

K.
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(a)

(b)

Figure 4.18. Number of warmup and measurement sweeps are shown as N×(warmup
+ measurements). N is the number of simulations. For T = 200 K 10 ×
(1k+1k), T = 300 K 10× (5k+10k), T = 460 K 6× (5k+80k), T = 600
K 10 × (10k + 50k), T = 770 K 10 × (10k + 480k), T = 1160 K 10 ×
(1k + 80k). (a) Total impurity magnetic correlation function 〈 (M z)2 〉
vs temperature T . Dash line shows the

∑5
ν=1 〈 (M z

ν )2 〉. (b) Magnetic
correlation function 〈M z

νM
z
ν′〉 between the 3z2 − r2 and xy orbitals vs

temperature T .
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(a)

 (b)

Figure 4.19. Onsite Coulomb interaction U = 8 eV. Number of warmup and measure-
ment sweeps are shown as N×(warmup+measurements). N is the number
of simulations. For T = 300 K 10 × (5k+ 10k), T = 1550 K (1k+ 40k).
(a) Magnetic correlation function 〈M z

νM
z
ν′〉 between the 3d orbitals vs 3d

orbitals ν at temperature T = 300 K. (b) Magnetic correlation function
〈M z

νM
z
ν′〉 between the 3d orbitals vs 3d orbitals ν at temperature T = 1550

K.
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CHAPTER 5

RESULTS FOR DYNAMICAL QUANTUM MONTE CARLO

MEASUREMENTS

In this chapter, results for dynamical QMC measurements are discussed. By using

Eq. 3.23, total magnetic susceptibility of Co 3d orbitals are calculated. After that, Eq.

3.25 is used to obtain magnetic susceptibilities between the 3d orbitals. This calculations

were performed to interpret magnetic properties of impurity orbitals in detail.

In figures of magnetic susceptibilities, the red dash lines indicate the magnetic

susceptibility of single-free electron and the solid red lines define the total magnetic sus-

ceptibility of 5 non-interacting electrons. These susceptibilities are calculated by using

Curie Law which describes the magnetization of paramagnets:

χ =
C

T
. (5.1)

Here, C shows the Curie constant and T is the temperature. Curie constant is written as

C =
Ng2µ2

BS(S + 1)

3kB
. (5.2)

N is the electron number, g is the Lande constant, µB shows the Bohr magneton, S is the

spin states and kB is the Boltzmann constant. To calculate the magnetic susceptibility of

non-interacting electrons:

g = 2 (5.3)

S =
1

2
(5.4)

and N = 1 for single particle and N = 5 for 5 non-interacting particles. Magnetic

susceptibilities of single particle and 5 non-interacting particles were calculated to explain

total magnetic susceptibility of 3d orbitals and magnetic susceptibilities between them.

Fig. 5.1 shows the total magnetic susceptibility of Co 3d orbitals χ(iωm = 0)
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vs temperature T . Between T = 1500 K and T = 800 K, 3d electrons behave like 5

non-interacting electrons, however; between the T = 800 K and T = 450 K, χ(iωm =

0) decreases unlike the total susceptibility of 5 non-interacting electrons. This situation

indicates that between these temperature values, interactions are seen between the 3d

electrons and they are AFM because of decreasing in χ(iωm = 0). After that, at lower

temperatures, Co 3d electrons behave like single electron, which means that between 4

3d electrons, AFM correlations exist and they cancel each other. Therefore, below the

T = 600 K, total susceptibility of 3d electrons are similar with the Curie temperature

type susceptibility of single-free electron.

Fig.5.2, 5.3 and 5.4 indicate the magnetic susceptibilities between the 3d electrons.

It is seen that susceptibilities between the 3z2− r2 and the other orbitals are the strongest

and at low temperatures χν ν′(iωm = 0) between the xy, yz, x2−y2 and xz are very small.

To see the magnetic susceptibility for different onsite 3d Coulomb interactions,

QMC measurements for U = 8 eV were done and for this case, in Fig.5.5, the total mag-

netic susceptibility of Co 3d orbitals χ(iωm = 0) vs temperature T is discussed. Here, Co

3d electrons behave like 5 non-interacting electrons and measurements at lower tempera-

ture values must be done to understand effect of Coulomb interactions much better.

Similar toU = 4 eV case, fig.5.6, 5.7 and 5.8 indicate the magnetic susceptibilities

between the 3d electrons for U = 8 eV. It is seen that susceptibilities between the 3z2−r2

and the other orbitals are the strongest and at low temperatures χν ν′(iωm = 0) between

the xy, yz, x2 − y2 and xz are very small.
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Figure 5.1. Number of warmup and measurement sweeps are shown as (warmup +
measurements). For T = 200 K (1k+1k), T = 300 K (5k+10k), T = 450
K (5k+10k), T = 600 K (5k+80k), T = 800 K (10k+100k), T = 1000
K, (5k + 80k) T = 1200 K (5k + 80k), T = 1500 (5k + 80k). Red solid
line shows magnetic susceptibility of 5 free spin. Red dash line shows
magnetic susceptibility of 1 free spin. Black solid line is total magnetic
susceptibility χ(iωm = 0) vs temperature T .
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(a)

 (b) 

Figure 5.2. Number of warmup and measurement sweeps are shown as (warmup +
measurements). For T = 200 K (1k + 1k), T = 300 K (5k + 10k),
T = 450 K (5k+ 10k), T = 600 K (5k+ 80k), T = 800 K (10k+ 100k),
T = 1000 K, (5k+80k) T = 1200 K (5k+80k), T = 1500 K (5k+80k).
Red dash line shows magnetic susceptibility of 1 free spin. (a) Magnetic
susceptibility between 3z2− r2 and the other Co 3d orbitals χ1ν(iωm = 0)
vs temperature T . (b) Magnetic susceptibility between xy and the other Co
3d orbitals χ2ν(iωm = 0) vs temperature T
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(a)

 (b)

Figure 5.3. Number of warmup and measurement sweeps are shown as (warmup +
measurements) . For T = 200 K (1k + 1k), T = 300 K (5k + 10k),
T = 450 K (5k+ 10k), T = 600 K (5k+ 80k), T = 800 K (10k+ 100k),
T = 1000 K, (5k+80k) T = 1200 K (5k+80k), T = 1500 K (5k+80k).
Red dash line shows magnetic susceptibility of 1 free spin. (a) Magnetic
susceptibility between yz and the other Co 3d orbitals χ3ν(iωm = 0) vs
temperature T . (b) Magnetic susceptibility between x2 − y2 and the other
Co 3d orbitals χ4ν(iωm = 0) vs temperature T .
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Figure 5.4. Number of warmup and measurement sweeps are shown as (warmup +
measurements) . For T = 200 K (1k+1k), T = 300 K (5k+10k), T = 450
K (5k+10k), T = 600 K (5k+80k), T = 800 K (10k+100k), T = 1000
K, (5k+ 80k) T = 1200 K (5k+ 80k), T = 1500 K (5k+ 80k). Red dash
line shows magnetic susceptibility of 1 free spin. Magnetic susceptibility
between xz and the other Co 3d orbitals χ5ν(iωm = 0) vs temperature T .
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Figure 5.5. Number of warmup and measurement sweeps are shown as (warmup +
measurements). For T = 300 K (5k + 10k), T = 450 K (5k + 10k),
T = 600 K (5k+80k), T = 800 K (5k+80k), T = 1000 K, (5k+80k) T =
1200 K (5k + 80k), T = 1500 (5k + 80k). Red solid line shows magnetic
susceptibility of 5 free spin. Red dash line shows magnetic susceptibility
of 1 free spin. Onsite Coulomb interactions of 3d orbitals are U = 8 eV.
Total magnetic susceptibility χ(iωm = 0) vs temperature T .
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(a)

(b)

Figure 5.6. Number of warmup and measurement sweeps are shown as (warmup +
measurements). For T = 300 K (5k + 10k), T = 450 K (5k + 10k),
T = 600 K (5k+80k), T = 800 K (5k+80k), T = 1000 K, (5k+80k) T =
1200 K (5k + 80k), T = 1500 (5k + 80k). Red dash line shows magnetic
susceptibility of 1 free spin. (a) Magnetic susceptibility between 3z2 − r2

and the other Co 3d orbitals χ1ν(iωm = 0) vs temperature T . (b) Magnetic
susceptibility between xy and the other Co 3d orbitals χ2ν(iωm = 0) vs
temperature T

43



(a)

(b)

Figure 5.7. Number of warmup and measurement sweeps are shown as (warmup +
measurements). For T = 300 K (5k + 10k), T = 450 K (5k + 10k),
T = 600 K (5k+80k), T = 800 K (5k+80k), T = 1000 K, (5k+80k) T =
1200 K (5k + 80k), T = 1500 (5k + 80k). Red dash line shows magnetic
susceptibility of 1 free spin. (a) Magnetic susceptibility between yz and
the other Co 3d orbitals χ3ν(iωm = 0) vs temperature T . (b) Magnetic
susceptibility between x2 − y2 and the other Co 3d orbitals χ4ν(iωm = 0)
vs temperature T .
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Figure 5.8. Number of warmup and measurement sweeps are shown as (warmup +
measurements). For T = 300 K (5k + 10k), T = 450 K (5k + 10k),
T = 600 K (5k + 80k), T = 800 K (5k + 80k), T = 1000 K, (5k + 80k)
T = 1200 K (5k + 80k), T = 1500 (5k + 80k). Red dash line shows
magnetic susceptibility of 1 free spin. Magnetic susceptibility between xz
and the other Co 3d orbitals χ5ν(iωm = 0) vs temperature T .
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CHAPTER 6

CONCLUSION

In this thesis, the magnetic and electronic properties of 3d electrons of vitamin

B12 have been shown by using Hirsch-Fye QMC algorithm to the impurity Anderson

model. For this model, Co 3d orbitals have been defined as impurity and the other or-

bitals constract host structure. For vitamin B12, multi-orbital Anderson model have been

defined and some terms which are eigenvalues of host and impurity electrons, hybridiza-

tion between the impurity and host, hopping terms between the 3d orbitals and chemical

potential were obtained from DFT calculations. By using DFT+QMC approach, onsite

Coulomb interactions of 3d electrons are considered exactly. In Chapter 3, the results

for static QMC measurements have been discussed. Furthermore, in this chapter, static

QMC results have been compared with DFT results. Then, in Chapter 4, the results of

dynamical QMC measurements have been represented. Single-orbital Hirsch-Fye QM-

C algorithm have been explained in Appendix A and this algorithm was used in study

[8]. For metalloproteins, single-orbital Hirsch-Fye QMC algorithm have been converted

multi-orbital case in Appendix B.

Firstly, the occupations have been discussed. QMC results have shown that occu-

pations of 3d orbitals are less than 1 and 3d orbitals have 4.5 electrons. However, from

DFT results, occupations of 3d orbitals were found to be approximately 2 and their total

electron number were found to be 7.2. After that, by Hirsch-Fye QMC algorithm, square

of the magnetic correlation function of 3d orbitals have been obtained and from these nu-

merical results, effective magnetic moments of 3d orbitals have been calculated. These

measurements have shown that effective magnetic moments are approximately 1. On the

other hand, DFT found that effective magnetic moments equaled nearly 0. The reason

of differences between the QMC and DFT measurements is that QMC considers onsite

Coulomb interaction, however; DFT uses the Coulomb interaction as an approximation.

QMC measurements say that with these strong electron-electron interactions, 3d orbitals

can not be doubly-occupied and so their magnetic moments equal 1. This comparison

shows the effect of strong onsite Coulomb interactions on occupations and magnetic cor-

relation functions of 3d orbitals.

In static QMC measurements, occupations and magnetic correlation functions

have been studied for different chemical potential values and these measurements have
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been done for U = 4 eV and U = 8 eV. Due to hybridization between the host and im-

purity states, and onsite Coulomb interactions of 3d electrons, in semiconductor gap, the

new states have been observed. This means that QMC results for semiconductor gap do

not have same values with DFT results. Moreover, for QMC measurements, the semicon-

ductor gap are different for U = 4 eV and U = 8 eV. The reason is that due to Coulomb

interactions, the impurity states are broaden and their values equal εν + U so for U = 8

eV case, these states have been seen at higher energies. Therefore, semiconductor gap is

large than for U = 4 eV case.

Next, the total magnetization functions of 3d orbitals have been calculated. De-

spite the fact that square of the magnetic correlation functions of 3d orbitals do not have

temperature dependency, total magnetic correlation function of 3d orbitals are affected by

changes in temperature. Therefore, it can be said that inter-orbital magnetic correlations

are temperature dependent. Furthermore, numerical results have shown that at high tem-

peratures, correlations between the 3d electrons are FM and at low temperatures, AFM

correlations exist between them.

It is the important point that for total magnetic correlation function, at T = 600

K, the big error bars have been observed. While number of measurement sweeps were

increased, error could not been decreased and at this temperature value, effective magnetic

moment have changed between 1.7 and 3. The possible explanation of this situation can

be that energies of high spin states and low spin states are very close so correlations

fluctuate between FM and AFM.

In addition U = 4 eV case, all calculations were done for U = 8 eV to see the

effect of Coulomb interactions on the measurements. For U = 8 eV, correlations again

fluctuate between the FM and AFM, however; in this case, this situation has occured at

T = 300 K.

To control the results for total magnetic correlation functions, inter-orbital corre-

lation functions have been obtained for U = 4 eV and U = 8 eV. For the former case, at

high temperatures, all correlations are FM and at low temperatures, AFM correlations are

seen. In other words, at high temperatures, electrons are at high spin state and they are a

low spin state at low temperatures. For U = 8 eV, all correlations are FM at T = 1550

K. For this case, measurements should be done for lower temperatures than T = 300

K because due to strong Coulomb interactions, it is expected that low spin states can be

detected below the T = 300 K.

After that, dynamical QMC measurements have been discussed and total magnetic

susceptibility and susceptibilities between the 3d orbitals have been found. To explain
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these results, Curie type magnetic susceptibilities of single electron and 5-free electrons

were calculated. It has been observed that at high temperatures, 3d electrons behave as

5-free electron. Below T = 800 K, the total magnetic susceptibility decrease, which

means that electrons go to low spin state and AFM correlations exist. At lower energies

than T = 450 K, 3d electrons have similar behaviour with single free electron. The

reason of this situation can be that 4 3d electrons form 2 pairs and their correlations are

AFM. Therefore, susceptibilities of these electrons can cancel each other and the only 1

3d electron determines the total susceptibility.

To see what happens between the 3d electrons, inter-orbital magnetic susceptibili-

ties were measured. It has been found that the strongest correlations are observed between

the 3z2 − r2 and the other 3d orbitals. The behavior of these correlations are similar with

total magnetic susceptibility. The susceptibilities between the xy, yz, x2 − y2 and xz are

small and these orbitals’ interactions are very weak.

These results indicate that due to strong Coulomb interactions, 3d electrons show

interesting electronic and magnetic properties. At high temperatures and low temper-

atures, it has been observed that electrons are at high spin states and low spin states,

respectively. With correlations between the 3d electrons, the possible explanations for

spin states have been done. To control these results, experiments on 3d orbitals of vitamin

B12 are necessary.

In addition, dynamical magnetic susceptibility measurements have shown that Co

are paramagnetic because total magnetic susceptibility of Co 3d orbitals are similar with

Curie type magnetic susceptibility at high and low temperatures. Paramagnetism of Co

atom was estimated in study [15]. However, new experimental results for Co atom in

vitamin B12 are necessary.

In study [15], it was said that vitamin B12 is diamagnetic. To obtain magnetic

properties of vitamin B12 and compare with previous results, QMC measurements for host

and impurities should be done (see Appendix C for calculation of host-impurity Green’s

functions). Also with these measurements, total number of Co 3d orbitals can be found,

which satisfies controling whether Co is 3d5 or not.
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APPENDIX A

HIRSCH-FYE QUANTUM MONTE CARLO ALGORITHM

FOR THE SINGLE-IMPURITY ANDERSON MODEL

In this appendix, the Hirsch-Fye Quantum Monte Carlo (HFQMC) algorithm

for the single-orbital Anderson model is described. This algorithm uses the Hubbard-

Stratonovich (HS) transformation to convert the interacting electron system to a non-

interacting one. Moreover, with the HS transformation, electrons move in a fluctuating

magnetic field which is defined by a random set of spin configurations. These configu-

rations are accepted or rejected by Monte Carlo (MC) algorithms such as the heat-bath

algorithm or the Metropolis algorithm. In this way, the finite temperature Green’s func-

tions which measure the electronic and magnetic properties of the system are calculated.

HFQMC algorithm is used for many strongly correlated systems such as diluted

magnetic semiconductors (DMS). In DMS, a transition metal that behaves as a magnet-

ic impurity is placed in semiconductor host. Some examples for DMS are manganese-

doped indium arsenide and gallium arsenide (GaMnAs), cobalt-doped titanium dioxide,

iron-doped tin dioxide. In [8], HFQMC algorithm was used for DMS and, the magnetic

properties and electronic states were shown. In Appendix B, this single orbital algorithm

will be changed to multi-orbital Anderson model to explain the electronic properties of

Co 3d electrons.

A.1. Form of the Hamiltonian

The Hamiltonian for the single-orbital and single-impurity Anderson model can

be defined ([13]) by

H =
∑
k σ

(εk − µ)c†k σck σ +
∑
kσ

Vk (c†kσdσ + h.c.) +
∑
σ

(εd − µ)ndσ + U nd↑ nd↓. (A.1)

Here, εk denotes the eigenvalues of the host electrons, c†k σ (ck σ) is the creation (anni-

hilation) operator for the host electrons, Vk is the hybridization term between the host
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and impurity electrons, εd denotes the eigenvalues of the impurity electrons, d†σ (dσ) is

the creation (annihilation) operator for the impurity electrons, U specifies the Coulomb

interaction between the d electrons and nd σ is the site occupation number of a d electron

with σ =↑ and σ =↓ which denote the two orientations of the electron spins and µ is the

chemical potential.

The above Hamiltonian can be rewritten as a sum of two terms, H0 and H1:

H ≡ H0 +H1, (A.2)

where H0 is the non-interacting term:

H0 =
∑
k σ

(εk − µ) c†k σ ck σ +
∑
k σ

Vk (c†k σ dσ + h.c.)

+
∑
σ

(εd − µ)nd σ +
U

2
(nd ↑ + nd ↓) (A.3)

and H1 is the interacting term:

H1 = U nd ↑ nd ↓ −
U

2
(nd ↑ + nd ↓) (A.4)

that will be treated using the HS transformation.

A.2. The Hubbard-Stratonovich Transformation, Trotter Break-Up

and Partition Function

The partition function Z representation is a convenient starting point to perform

the quantum Monte Carlo (QMC) algorithm for the electron-electron interaction systems.

When the Coulomb term which is H1 is taken into account, this problem is very difficult.

In order to treat it, we use the Trotter decomposition and Hubbard-Stratonovich transfor-

mation. They introduces the freedom on the imaginary time axis and converts H1 into a

form where electrons become decoupled from each other.
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First, we introduce the partition function in Monte Carlo method:

Z = Tr
[
e−β H

]
= Tr

[
L∏
l=1

e−∆ τ H

]
(A.5)

Tr

[
L∏
l=1

e−∆τ (H0+H1)

]
' Tr

[
L∏
l=1

e−∆τ H0 e−∆τ H1 + ϑ (∆τ 2)

]
. (A.6)

The imaginary time interval [0,β] is discretized into L time slices with β ≡ ∆τ L, and

by using the Trotter break-up, the partition function is obtained. This is the only ap-

proximation in the QMC. Next, for Hubbard-Stratonovich transformation, we define the

identity

nd ↑ nd ↓ = −1

2
(nd ↑ − nd ↓)2 +

1

2
(nd ↑ + nd ↓), (A.7)

and use it in the interaction term,

H1 = −U
2

(nd ↑ − nd ↓)2. (A.8)

With cosh (λ) = e
1
2

∆τ U ,

e−∆τ H1 = e−∆τ U
2

(nd ↑−nd ↓)2 (A.9)

=
1

2

∑
S=±1

eλS (nd ↑−nd ↓). (A.10)

Here, S is an auxiliary Hubbard-Stratonovich field and the sum over of these discrete

S variables is the essential of the Hirsch-Fye QMC algorithm. By using the Hubbard-

Stratonovich transformation and Trotter approximation, the partition function is formu-
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lated as

Z = Tr

[
L∏
l=1

1

2

∑
Sl=±1

e−∆τ H0eλSl (nd ↑−nd ↓)

]
(A.11)

= Tr

L∏
l=1

1

2

∑
Sl=±1

exp

{
−∆τ

∑
i j

c†i ↑Ki j cj ↑

}
exp {+λSl nd ↑}

× exp

{
−∆τ

∑
i j

c†i ↓Ki j cj ↓

}
exp {−λSl nd ↓} (A.12)

where

H↑ (l) =
∑
i j

c†i ↑Ki j cj ↑ −
λSl nd ↑

∆ τ
, (A.13)

H↓ (l) =
∑
i j

c†i ↓Ki j cj ↓ +
λSl nd ↓

∆ τ
, (A.14)

H0 =
∑
i, j, σ

a†i σKi j aj σ. (A.15)

Here, a denotes both c and d orbitals, K is a (N + 1) × (N + 1) matrix for the bilinear

part of H and N is the number of the host states.

Let’s define

V σ = σ λS. (A.16)

V σ = σ λS |d〉 〈d| only acts at the impurity site so it is a diagonal (N+1)×(N+

1) matrix with the element eλσ S for the impurity site and 1 for the host sites,
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eV
σ

=



eλσ S

1

1 0
.

0 .

1


(A.17)

Let’s introduce now the following matrix Bl(σ) = e−∆τ K eV
σ
l . By using this

definition, the partition function is written

Z =
∑

S1, S2....=±1

∏
σ=±1 det [I +BL(σ)BL−1(σ)....B1(σ)] (A.18)

≡
∑

S1, S2....=±1 det ϑS1 S2.....SL (↑) det ϑS1 S2.....SL (↓). (A.19)

ϑ(σ) is an (N + 1)L× (N + 1)L matrix and the derivation of this result is given in [16].

ϑS1,S2,....,SL(σ) =

l = 1 l = 2 l = L

I 0 0 .. .. BL(σ)

−B1(σ) I 0 .. ..

0 −B2(σ) I 0 0 0

. 0 .. .. .. 0

. 0 0 0 −BL−1(σ) I


(A.20)

55



A.3. Dyson’s Equation of the Green’s Functions

We define the single particle Green’s function as

Gσ = −
〈
Tτ dσ(τ) d†σ(0)

〉
(A.21)

= − 1

Z
Tr Tτ dσ(τ) d†σ(0) e−β H . (A.22)

Now, we recall ϑ(σ) matrix which is related to the Green’s function by the identity

Gσ = (ϑ(σ))−1, (A.23)

as shown in [17]. The size of the ϑS1,S2,...,SL is (N + 1)L× (N + 1)L and the calculation

of the Green’s functions for every set S1, S2, ..., SL of spins from this large size matrix is

very difficult.

Hirsch and Fye [18] noted that the Green’s function G can be calculated only

once for a certain spin configuration S1, S2, ..., SL and after that, G can be updated for a

new set of configuration where only one spin is changed. The Green’s functions which

are different only by one “spin flip” are related to each other by a Dyson’s equation. To

derive this equation, it is more useful to work with

G̃σ = eV
σ

Gσ. (A.24)

This relation is calculated by using ϑ(σ).

(ϑ(σ)) e−V
σ
l )−1 = (ϑ(σ))−1 eV

σ

(A.25)

= eV
σ

Gσ ≡ G̃σ, (A.26)

so

Gσ = e−V
σ

G̃σ. (A.27)
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The matrix representation of ϑ(σ) eV
σ
l is

ϑ(σ) eV
σ
l =



e−V
σ
1 e∆τK

−e−∆τ K e−V
σ
2 0
−e∆τ K e−V

σ
3

0 −e∆τ K e−V
σ
L


.

When the HS field is changed, only the diagonal elements of ϑ(σ) eV
σ change so

we can write

ϑ(σ
′
) e−V

σ
′

− ϑ(σ) e−V
σ

= e−V
σ
′

− e−V σ ≡ C. (A.28)

Then,

(G̃σ
′

)−1 − (G̃σ)−1 = C (A.29)

G̃σ − G̃σ
′

= G̃σ C G̃σ
′

(A.30)

G̃σ
′

= G̃σ − G̃σ C G̃σ
′

. (A.31)

By substituting G̃σ = eV
σ
Gσ,

eV
σ
′

Gσ
′

= eV
σ

Gσ − eV σ Gσ (e−V
σ
′

− e−V σ) eV
σ
′

Gσ
′

. (A.32)

If we divide both sides with eV σ
′
, we obtain

Gσ
′

= eV
σ−V σ

′

Gσ − eV σ−V σ
′

Gσ (I − eV σ
′−V σ)Gσ

′

, (A.33)
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and

Gσ
′

= eV
σ−V σ

′

Gσ + eV
σ−V σ

′

Gσ (eV
σ′−V σ − I)Gσ

′

. (A.34)

The following relation is used for the new spin configuration Green’s function G′ and the

old spin configuration Green’s function G, (by omitting σ )

G
′
= G+ (G− I) (eV

′−V − I)G
′
. (A.35)

So,

G
′
= G+G (eV

′−V − I)G
′ − (eV

′−V − I)G
′
, (A.36)

and

eV
′−V G

′
= G+G (eV

′−V − I)G
′
. (A.37)

Then, the new spin configuration Green’s function and the old spin configuration

Green’s function have the relation

G
′
= eV−V

′

G+ eV−V
′

G (eV
′−V − I)G

′
. (A.38)

Note that eV
′−V − I has non-zero matrix elements only at the impurity sites. V ′

shows the new configuration while V indicates the old configuration so only the compo-

nents ofG at the d sites are related each other. Hence, if we consider only the d component

of G from

G
′
= G+ (G− I) (eV

′−V − I)G
′
, (A.3.39)
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G
′

d d = Gd d + (Gd d − I) (eV
′−V − I)G

′

d d , (A.3.40)

where Gd d is a L× L matrix, (eV
′−V − I) is a L× L diagonal matrix and I is the L× L

identity matrix.

(
eV

′−V
)
l,l′

= δl l′e
λσ (Sl′−Sl). (A.3.41)

We obtain the new impurity Green’s function from the Dyson’s equation

G
′

d d = [I − (Gd d − I) (eV
′−V − I)]−1Gd d . (A.3.42)

A.4. Impurity Green’s Function for the New Hubbard-Stratonovich

Field Configuration

After the spin Sl is flipped, we know that the new impurity Green’s function is

obtained from the relation

G
′

d d = Gd d + (Gd d − I) (eV
′−V − I)G

′

d d . (A.4.1)

By substituting

G
′

d d = [I − (Gd d − I) ((eV
′−V − I)]−1Gd d (A.4.2)

G
′

d d = Gd d + (Gd d − I) (eV
′−V − I)

×[I − (Gd d − I) (eV
′−V − I)]−1Gd d . (A.4.3)
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If we define

A = I + (I −Gd d) (eV
′−V − I). (A.4.4)

AG
′

d d = Gd d . (A.4.5)

It is seen that the new Green’s function G′ is obtained from G by the inversion of a L×L
matrix A. We observe that eV

′−V − I has the form

eV
′−V − I =



0

. 0

.

eV
′−V − I
.

0 .

0


(A.4.6)

Here, this matrix represents that only one spin is changed by the new HS field.

When the new spin configuration (S ′1, ...S
′
L) differs from the old spin configuration (S1, ...., SL)

by the value of a single spin Sl, A has the form
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A =



1 A1l

1 A2l 0
A3l

1

0 .

.

ALl 1


(A.4.7)

After Sl is flipped, the new impurity Green’s function is given by

G
′

dd(l1, l2) = Gdd(l1, l2)

+
∑
l3, l4

(Gdd − I)l1, l3 (eV
′−V )l3, l3 (A−1)l3, l4 (Gdd)l4, l2 , (A.4.8)

and

G
′

dd(l1, l2) = Gdd(l1, l2)

+
∑
l4

(Gdd(l1, l)− δl1, l) (eV
′−V ) (A−1)l, l4 Gdd(l4, l2). (A.4.9)

where

(A−1)l, l4 = δl, l4
1

[I + (I −Gdd(l, l)) (eV
′
l −Vl − I)]

. (A.4.10)
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Then,

G
′

dd(l1, l2) = Gdd(l1, l2) + (Gdd(l1, l)− δl1, l) (eV
′−V − I)

× 1

[I + (I −Gdd(l, l))(eV
′
l −Vl − I)]

(Gdd)l, l2 . (A.4.11)

A.5. Ratio of the Fermion Determinants

In a quantum Monte Carlo simulation, new spin configurations are generated by a

probability which is proportional to the ratio of the determinants of ϑ′
(σ) and ϑ(σ). For

a proposed change of the Hubbard-Stratonovich field Sl

Sl → S
′

l = −Sl,

the ratio of the determinants for the new and the old configuration is

Rσ =
detϑS′

l
(σ)

detϑSl(σ)
= I + [I −Gσ

dd(l, l)]

(
eV

σ
′

l −V
σ
l − I

)
. (A.5.1)

In order to prove it, we start from

G̃
′
= G̃− G̃ (e−V

′

− e−V ) G̃
′
, (A.5.2)

where

G̃ = eV G. (A.5.3)
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Multiplying both sides with (G̃
′
)−1 on the right, we get

I = G̃ (G̃
′
)−1 − G̃ (e−V

′

− e−V ). (A.5.4)

Then,

G̃ (G̃
′
)−1 = I + G̃ (e−V

′

− e−V ). (A.5.5)

Since

G̃ = eV G = eV ϑ−1, (A.5.6)

we have

(eV ϑ−1)
[
eV

′

(ϑ
′
)−1
]−1

= I + eV G (e−V
′

− e−V ), (A.5.7)

eV (ϑ−1 ϑ
′
) e−V

′

= I + eV G (e−V
′

− e−V ). (A.5.8)

Here, we multiply on the left with e−V and on the right with eV
′
, which yields

ϑ−1 ϑ
′

= e−V eV
′

+G (e−V
′

− e−V ) eV
′

, (A.5.9)

ϑ−1 ϑ
′

= eV
′−V +G (I − eV

′−V ) (A.5.10)

= eV
′−V + (G− I)(I − eV

′−V ) + I (I − eV
′−V ), (A.5.11)

so

ϑ−1 ϑ
′
= I + (I −G)(eV

′−V − I). (A.5.12)
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Taking the determinant of both sides, we obtain

det ϑ
′

det ϑ
= det (I + (I −G)(eV

′−V − I)). (A.5.13)

The spin flip is only at one d site and this way

det (I + (I −G)(eV
′−V − I)) = I + (I −Gσ

dd(l, l))(e
V

′
l −Vl − I). (A.5.14)

Hence

Rσ = I + (I −Gσ
dd(l, l))(e

V
′
l −Vl − I). (A.5.15)

Here, a quantum Monte Carlo algorithm which is the heat-bath algorithm is used

to determine whether the new spin state is accepted. In this algorithm, the transition

probability from one state Sl to another state S ′l is

P (Sl → S ′l) =
1∏

σ Rσ + 1
(A.5.16)

A.6. Impurity Green’s Function for Vanishing Hubbard -

Stratonovich Field

In HF [18], G0(l, l
′
) is defined by

G0(l, l
′
) = T

∑
i ωn

e−iωn ∆ τ (l−l′ ) G0(iwn). (A.6.1)
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for l, l′ = 1, ....., L. However, for l = l
′ we need to be careful. In the simulation, G0(i ωn)

is the impurity Green’s function for H0 defined by

H0 =
∑
k σ

εk c
†
k σ ck σ +

∑
k σ

Vk

(
c†k σ dσ + h.c.

)
+

(
εd +

U

2

)∑
σ

nd σ. (A.6.2)

Then

G0(i ωn) =
1

i ωn −
(
εd + U

2

)
− F0(i ωn)

, (A.6.3)

where the self-energy

F0(i ωn) = V 2
∑
k

1

i ωn − εk
. (A.6.4)

Here, ωn = (2n+ 1) π T is the Matsubara frequency with the temperature T and F0 is the

self energy. When l = l
′ , we define G0(l, l) by

G0(l, l) = lim
τ→ 0+

T
∑
i ωn

e−i ωn τ G0(i ωn). (A.6.5)

We evaluate this expression from

G0(l, l) =

(
T
∑
i ωn

G0(i ωn)− T
∑
i ωn

1

i ωn −
(
εd + U

2

))

−
[
1− f(εd +

U

2
)

]
. (A.6.6)

In the QMC algorithm, we calculate G0(l, l
′
) for l = l

′ case and l 6= l
′ case. After

that, we use

G0(τl) = −G0(τl + β) = −G0(τl+L) (A.6.7)
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to obtain G0(τl) for −L ≤ l ≤ −1 and l = L. Hence, we have G0(τl) for −L ≤ l ≤ L.

A.7. Calculation of the Impurity Green’s Function for Vanishing

Hubbard - Stratonovich Field

Here, we define the Green’s function Gσ
dd(l, l

′
) with the minus sign,

Gσ
d d(l, l

′
) = −

〈
Tτ dσ(l) d†σ(l

′
)
〉
. (A.7.1)

Here, Tτ is the Matsubara time ordering operator. The non-interacting Green’s function

can be obtained with setting all spins S1, S2, ...., SL to 0.

d d d c c d dd

(   −iV )    ( −iV* )    

Figure A.1. Feynman diagram representing the Green’s functionG0
d d(i ωn) for the U =

0. The double lines denote G0
d d while the single lines denote with the

indeces c and d, G0
c(i ωn) and G00

d d(i ωn), respectively. Here, G0
c(i ωn) is

the Green’s function for the host electrons.

i G0
d d(i ωn) = i G00

d d(i ωn)

+ (i G00
d d(i ωn)) (−i V ) (i G0

c(k)) (−i V ∗) (i G0
d d(i ωn)) (A.7.2)

G0
d d(i ωn) = G00

d d(i ωn) +
∑
k

(−1)2 i4 V 2G00
d d(i ωn)G0

c(k)G0
d d(i ωn). (A.7.3)

Then, the impurity Green’s function for Sl = 0 case is

G0
d d(i ωn) =

G00
d d(i ωn)

1−
∑

k V
2G00

d d(i ωn)G0
c(k)

(A.7.4)

=
1

(G00
d d(i ωn))−1 −

∑
k V

2G0
c(k)

. (A.7.5)
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Here, the impurity Green’s function and host Green’s function with no hybridization and

no Coulomb interaction are

G00
d d(i ωn) =

1

i ωn − εd
, (A.7.6)

G0
c(k) =

1

i ωn − εk
. (A.7.7)

So,

G0
d d(i ωn) =

1

i ωn − εd − V 2
∑

k
1

i ωn−εk

. (A.7.8)

A.8. Procedure to Update the Impurity Green’s Functions

Up to now, all steps of Hirsch-Fye quantum Monte Carlo algorithm have been

derived. In summary, the update of the Green’s function in our program is the following.

Firstly, we calculate the G0
dd(i ωn) which is the Green’s function for non-zero hybridiza-

tion and no Hubbard field. After that, for an initial spin configuration, Gdd(l, l
′) is cal-

culated. State of whole system is changed from Sl to Sl′ with probability P (Sl → S ′l).

Then the Green’s function is updated if P (Sl → S ′l) is larger than the random number

which is generated from 1 to 0.
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APPENDIX B

HIRSCH-FYE QUANTUM MONTE CARLO ALGORITHM

FOR THE MULTI-ORBITAL ANDERSON MODEL

In this section, the Hirsch-Fye QMC algorithm for the multi-orbital Anderson

model is developed. For this case, we have 5 d orbitals and so the size of the impurity

Green’s functions is 5L × 5L. The algorithm for the multi-orbital case is similar to the

single-orbital case but there are some differences. In the below sections , we will discuss

the multi-orbital algorithm which we use for the study of metalloproteins.

B.1. Form of the Hamiltonian

Here the Hamiltonian for the multi-orbital case is defined :

H =
∑
mσ

(εm − µ) c†mσ cmσ +
∑
mσ

5∑
ν=1

Vmν (c†mσ dν σ + h.c.)

+
5∑

ν=1

∑
σ

(εd ν − µ)nd ν σ +
5∑

ν=1

Uν nd ν ↑ nd ν ↓. (B.1.1)

In the previous part, ~k denotes the wave vector of the host lattice structure. But in the

study of metalloproteins, m denotes the host eigenstates which are obtained by density

functional theory calculation of the electronic structure of metalloproteins. Furthermore,

ν is the index of the d orbitals ranging from 1 to 5. For proteins, the hopping terms

between d orbitals are included so the Hamiltonian is written by

H =
∑
mσ

(εm − µ) c†mσ cmσ +
∑
mσ

5∑
ν=1

Vmν (c†mσ dσ ν + h.c.)

+
5∑

ν,ν′=1

∑
σ

(tν ν′ d
†
ν σ dν′ σ + h.c.) +

5∑
ν=1

∑
σ

(εd ν − µ)nd ν σ

+
5∑

ν=1

Uν nd ν ↑ nd ν ↓, (B.1.2)
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where tν ν′ is the hopping term. The Hamiltonian is divided into two parts which are the

non-interacting part H0 and the interacting part H1

H ≡ H0 +H1, (B.1.3)

where

H0 =
∑
mσ

(εm − µ) c†mσ cmσ +
∑
mσ

5∑
ν=1

Vmν (c†mσ dν σ + h.c.)

+
5∑

ν=1

∑
σ

(εd ν − µ)nd ν σ +
5∑

ν=1

Uν/2 (nd ν ↑ + nd ν ↓), (B.1.4)

H1 =
5∑

ν=1

Uν nd ν ↑nd ν ↓ −
5∑

ν=1

Uν/2 (nd ν ↑ + nd ν ↓). (B.1.5)

The interaction HamiltonianH1 is treated by using the Hubbard-Stratonovich transforma-

tion.

B.2. The Hubbard-Stratonovich Transformation, Trotter Break-Up

and Partition Function

The next step is the Hubbard-Stratonovich (HS) transformation. In the interaction

Hamiltonian, if we replace nd ν ↑ nd ν ↓ term with

nd ν ↑ nd ν ↓ = −1

2
(nd ν ↑ − nd ν ↓)2 +

1

2
(nd ν ↑ + nd ν ↓), (B.2.1)

we obtain

H1 =
∑
ν

−Uν
2

(nd ν ↑ − nd ν ↓)2. (B.2.2)
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With cosh (λν) = e
1
2

∆τ Uν ,

exp {−∆τ H1} = exp

{
−∆τ

∑
ν

Uν
2

(nd ν ↑ − nd ν ↓)2

}
(B.2.3)

=
1

2

∑
Sν =±1

exp

{∑
ν

λν Sν (nd ν ↑ − nd ν ↓)

}
, (B.2.4)

where Sν is the auxiliary Hubbard-Stratonovich field. The partition function is

Z = Tr
[
e−β H

]
. (B.2.5)

By taking small time step in imaginary time with ∆τ L = β, we do the Trotter approxi-

mation

e−∆τ (H0+H1) = e−∆τ H0 e−∆τ H1 + θ (∆τ 2[H0, H1]). (B.2.6)

The partition function is rewritten:

Z = Tr
[
e−β H

]
(B.2.7)

= Tr

[
L∏
l=1

e−∆τ (H0+H1)

]
(B.2.8)

' Tr

[
L∏
l=1

e−∆τ H0 e−∆τ H1 + θ (∆τ 2)

]
. (B.2.9)
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This is the only approximation in the QMC. By using the Hubbard-Stratonovich transfor-

mation and the Trotter approximation, we write the partition function.

Tr

[
L∏
l=1

exp {−∆τ H0} × exp {−∆τ H1)}

]

=Tr
L∏
l=1

1

2

∑
Slν =±1

exp

{
−∆τ

∑
i j

a†i ↑Ki j aj ↑

}
exp

{∑
ν

λν Sl ν nd ν ↑

}

× exp

{
−∆τ

∑
i j

a†i ↓Ki j aj ↓

}
exp

{∑
ν

−λν Sl ν nd ν ↓

}
(B.2.10)

=
1

2L
Tr

L∏
l=1

∑
S1 ν ,S2 ν ,....,SLν =±1

exp
{
−∆τ H↑(l)

}
exp

{
−∆τ H↓(l)

}
, (B.2.11)

where

H0 =
∑
i,j,σ

a†i σKi j aj σ (B.2.12)

H↑(l) =
∑
i j

a†i ↑Ki j aj ↑ −
∑

ν λν Sl ν nd ν ↑
∆τ

(B.2.13)

H↓(l) =
∑
i j

a†i ↓Ki j aj ↓ +

∑
ν λν Sl ν nd ν ↓

∆τ
. (B.2.14)

a denotes both c and d orbitals and now, we define

V σ
ν = σ λν Sν . (B.2.15)

V σ
ν = σ λν Sν |ν〉 〈ν| only acts at the impurity sites and the matrix form of eV σν is
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eV
σ
ν =



eσ λν=1 Sν=1

eσ λ2 S2 0
eσ λ3 S3

eσ λ4 S4

eσ λ5 S5

1

0 .

1



This is a diagonal (N + 5)× (N + 5) matrix. In this matrix, diagonals are eσ λν Sν

for the impurity sites and 1 for the host sites and we represent it with

eV
σ
ν =



•
•

• 0
•

•
1

1

0 .

.

1



Let’s introduce now the following matrix Bσ
lν = e−∆τ K eV

σ
lν . By using this defi-

nition, we can write the partition function

Z =
∑

S1ν ,S2ν ....=± 1

∏
σ=± 1

det[I +BLν(σ)BL−1 ν(σ)....B1 ν(σ)] (B.2.16)

≡
∑

S1 ν ,S2 ν ....=± 1

det ϑS1 ν S2 ν .....SLν (↑) det ϑS1 νS2 ν .....SLν (↓) (B.2.17)
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ϑν(σ) is an (N + 5)L × (N + 5)L matrix, where K is a (N + 5) × (N + 5) matrix for

the bilinear part of the H and N is the number of the host states. Furthermore, the matrix

representation of eV σl ν is

l=1 l=2 l=3 l=L

l=1

l=2

l=3

l=L

(N+5)X(N+5)

(N+5)X(N+5)

(N+5)X(N+5)

L(N+5) X L(N+5)

1
.
.

1
.
.

1
.

1
1
.

.

0

0

In this matrix, d orbitals are shown with the bullets and the host states are 1.

Moreover, the matrix elements at the l 6= l′ and ν 6= ν ′ are zero.

B.3. Dyson’s Equation for the Green’s Functions

We define the single particle Green’s function as

Gσ
ν ν′ = −

〈
Tτdν σ d

†
ν′ σ

〉
(B.3.1)

=
−Tr Tτ e−β Hdν σ(l) d†ν′ σ(l′)

Tr e−β H
. (B.3.2)
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The relation between the ϑν(σ) and the Green’s function is

Gσ
ν ν′ = (ϑν(σ))−1. (B.3.3)

Similar to the single-orbital case, the new configuration Green’s function G′

ν ν′ and the

old configuration Green’s function Gν ν′ are related to each other by a Dyson’s equation

(by omitting σ )

G
′

ν ν′ = Gν ν′ + (Gν ν′ − I) (eV
′
ν−Vν − I)G

′

ν ν′ (B.3.4)

B.4. Impurity Green’s Function for the New Hubbard-Stratonovich

Field Configuration

After the spin Sl ν is flipped, the new impurity Green’s function is obtained from

the relation

G
′

ν ν′ = Gν ν′ + (Gν ν′ − I) (eV
′
lν−Vlν − I)G

′

ν ν′ . (B.4.1)

By substituting

G
′

ν ν′ = [I − (Gν ν′ − I) ((eV
′
lν−Vlν − I)]−1Gν ν′ , (B.4.2)

we have

G
′

ν ν′ = Gν ν′ + (Gν ν′ − I) (eV
′
lν−Vlν − I)

×[I − (Gν ν′ − I)(eV
′
lν−Vlν − I)]−1Gν ν′ . (B.4.3)
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We define

A = I + (I −Gν ν′) (eV
′
lν−Vlν − I). (B.4.4)

After Sl ν is flipped, the new impurity Green’s function is given by

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2)

+
∑
l3,l4

(Gν ν′ − I)l1,l3 (eV
′
lν−Vlν )l3, l3 (A−1)l3, l4 (Gν ν′)l4,l2 . (B.4.5)

Hence

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2)

+
∑
l4

(Gν ν′(l1, l)− δl1,l δν, ν′) (eV
′
lν−Vlν ) (A−1)l, l4 (Gν ν′)l4, l2 . (B.4.6)

We define

(
eV

σ′
l′ ν′−V

σ
l ν

)
= δν ν′ δl l′ e

σ λν (Sl′ ν′−Sl ν) (B.4.7)

so

(A−1)l, l4;ν, ν′ = δl l4 δν ν′
1

[I + (I −Gν ν′(l, l))(e(V
′
lν−Vlν) − I)]

. (B.4.8)

Hence

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2) + (Gν ν′(l1, l)− δl1, l δν ν′)(eV
′
ν−Vν − I)

× 1

[I + (I −Gν ν′(l, l))(eV
′
l ν−Vl ν − I)]

Gν ν′(l, l2) (B.4.9)
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B.5. Ratio of the Fermion Determinants

For a proposed change of the HS field Sl ν ,

Sl ν → S
′

l ν = −Sl ν (B.5.1)

As in the single-orbital case, the probability of acceptence of the new configura-

tion is proportional to the ratio of determinants of the new and old configuration.

Rν σ =
det ϑS′

l ν
(σ)

det ϑSl ν (σ)
= I + [I −Gσ

ν ν′(l, l)] (eV
σ
′

l ν −V
σ
l ν − I). (B.5.2)

In order to prove this, we start from

G̃
′

ν ν′ = G̃ν ν′ − G̃ν ν′ (e−V
′
lν − e−Vlν ) G̃′

ν ν′ , (B.5.3)

where

G̃ν ν′ = eVlν Gν ν′ . (B.5.4)

Multiplying both sides with (G̃
′

ν ν′)
−1 on the right, we get

I = G̃ν ν′ (G̃
′

ν ν′)
−1 − G̃ν ν′ (e−V

′
lν − e−Vlν ). (B.5.5)

Hence

G̃ν ν′ (G̃
′

ν ν′)
−1 = I + G̃ν ν′ (e−V

′
lν − e−Vlν ). (B.5.6)
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Since

G̃ν ν′ = eVlν Gν ν′ = eVlν ϑ−1
lν , (B.5.7)

we have

(eVν ϑ−1
lν )

[
eV

′
lν (ϑ

′

lν)
−1
]−1

= I + eVlν Gν ν′ (e−V
′
lν − e−Vlν ), (B.5.8)

eVlν (ϑ−1
lν ϑ

′

lν) e
−V ′

lν = I + eVlν Gν ν′ (e−V
′
lν − e−Vlν ). (B.5.9)

Here, we multiply on the left with e−Vlν and on the right with eV
′
lν ,

ϑ−1
lν ϑ

′

lν = e−Vlν eV
′
lν +Gν ν′ (e−V

′
lν − e−Vlν ) eV

′
lν (B.5.10)

ϑ−1
lν ϑ

′

lν = eV
′
lν−V +Gν ν′ (I − eV

′
lν−Vlν ) (B.5.11)

= eV
′
lν−Vlν + (Gν ν′ − I)(I − eV

′
lν−Vlν ) + I (I − eV

′
lν−Vlν ). (B.5.12)

Hence

ϑ−1
lν ϑ

′

lν = I + (I −Gν ν′)(e
V

′
lν−Vlν − I). (B.5.13)

By taking the determinant of the both sides, we obtain

det ϑ
′

lν

det ϑlν
= det (I + (I −Gν ν′) (eV

′
lν−Vlν − I)) (B.5.14)

(eV
′
lν−Vlν − I) has the non-zero elements only at the d sites so I+(I−Gν ν′)(e

V
′
lν−Vlν − I)

has the form
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l

1
1
1

1
1

.

.
.
.

1
1

0

0

In this matrix, the bullets show the impurity sites and the line denotes a single flip

at an arbitrary l and ν orbital. This way

det
(
I + (I −Gν ν′)(e

V
′
lν−Vlν − I)

)
= I + (I −Gσ

ν ν′(l, l))(e
V

′
lν−Vlν − I). (B.5.15)

Hence

Rν σ = I + (I −Gσ
ν ν′(l, l))(e

V
′
lν−Vlν − I). (B.5.16)

In heat-bath method, the transition probability from one state Sl ν to another state S ′l ν is

P (Sl ν → S ′l ν) =
1∏

ν σ Rν σ + 1
(B.5.17)

Then, by random number generator, if

P > random number −→ accept

else reject.
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B.6. Impurity Green’s Functions for the Multi-Orbital Case for

When the Hubbard-Stratonovich Field is Zero

The impurity and host Green’s functions with no hybridization and no Coulomb

interaction are given by

G00
ν ν′ =

δν ν′

iωn − (εd ν − µ)
and G00

m (iωn) =
1

iωn − (εm − µ)
. (B.6.1)

The Green’s function with hybridization and no Coulomb interaction can be evaluated by

using the following diagrams

υ υ υ υ υ υ

(−iV)                      (−iV)

υ m

Figure B.1. Feynman diagram representing the impurity Green’s function G0
ν ν′(i ωn)

for the U = 0. The double lines denote G0
ν ν′(i ωn) while the single lines

denote G00
m (i ωn) and G00

ν (i ωn), respectively.

G0
ν ν′(iωn) = G00

ν ν′(iωn) +
∑
ν′′

G00
ν ν′(i ωn)

×

{∑
m

Vνm Vmν′′ G
00
m (i ωn)

}
G0
ν′′ ν′(iωn) (B.6.2)

and let’s define the self-energy

Fν ν′′(iωn) ≡
∑
m

Vmν Vν′′m
1

iωn − (εm − µ)
. (B.6.3)

Then;

G0
ν ν′(i ωn) = G00

ν ν′(iωn) +G00
ν ν′(i ωn)

∑
ν′′

Fν ν′′(iωn)G0
ν′′ ν′(iωn), (B.6.4)
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G0
ν ν′(iωn) = G00

ν ν′

1 +
∑
ν′′

Fν ν′′(iωn)G0
ν′′ ν′(iωn)︸ ︷︷ ︸

Tν ν′ (iωn)

 . (B.6.5)

Tν ν′(iωn) = 1 +
∑
ν′′

Fν ν′′(iωn)G0
ν′′ ν′(iωn). (B.6.6)

∑
ν′′

Tν ν′′(i ωn)G0
ν′′ ν′(i ωn) = G00

ν (i ωn). (B.6.7)

So

G0
ν ν′(i ωn) =

∑
ν′′

T−1
ν ν′′(i ωn)G00

ν′′(i ωn) (B.6.8)

Up to now, we have got iωn dependent Green’s functions. Now, all Green’s func-

tions are transformed to imaginary time space to be used in the Hirsch-Fye algorithm.

Here, G0(l, l
′
) is defined by

G0
ν ν′

(l, l
′
) = T

∑
iwn

e−iwn ∆τ(l−l′ ) G0
ν ν

′ (iwn) (B.6.9)

for l, l′ = 1, ....., L. However, for l = l
′ cases, attention is required for implementation of

boundary conditions in τl space. For l = l
′ , we define G0

ν ν′
(l, l)

G0
ν ν′

(l, l) = lim
τ→ 0+

T
∑
iwn

e−i ωn τG0
ν ν′

(i ωn). (B.6.10)
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We evaluate this expression from

G0
ν ν′

(l, l) =

(
T
∑
i ωn

G0
ν ν′

(i ωn)− T
∑
i ωn

1

i ωn −
(
εd ν + Uν

2

))

−
[
1− f(εd ν +

Uν
2

)

]
. (B.6.11)

Our choice for l = l
′ gives,

G0
ν ν′

(l, l) = −
〈
Tτ cν(τl) c

†
ν′(τl)

〉
0

(B.6.12)

= −[1−
〈
cν(τl) c

†
ν′(τl)

〉
0
] (B.6.13)

= −[1− 〈nd ν σ〉0]. (B.6.14)

In the program, we calculate G0
ν ν′(l, l

′) for l 6= l′ and l, l′ = 1, ....., L cases. After that,

we use

G0
ν ν′

(τl) = −G0
ν ν′

(τl + β) = −G0
ν ν′

(τl+L) (B.6.15)

to obtain G0
ν ν′

(τl) for −L ≤ l ≤ −1 and l = L.

B.7. Procedure to Update Impurity Green’s Functions

Procedure to update Green’s functions are the same in the case of single orbital

Hirsch-Fye algorithm. Firstly, we calculate the G0
ν ν′(i ωn) which is the Green’s function

for non-zero hybridization and no Hubbard field. After that, for an initial spin configu-

ration, Gν ν′(l, l
′) is calculated. State of whole system is changed from Sl ν to Sl ν ′ with

probability P (Sl ν → S ′l ν). Then the Green’s function is updated if P (Sl ν → S ′l ν) is

larger than the random number which is generated from 1 to 0.
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B.8. Flow chart for the HFQMC algorithm

• Calculate the non-interacting (HS field = 0) Green’s function G0.

• By random number generator, choose starting HS field configuration.

• Calculate the Green’s function G from the below equation,

Gνν′(l1, l2) = Aνν′(l1, l2)G0
νν′(l1, l2) (B.8.1)

where

Aνν′(l1, l2) = δl1,l2 δν ν′ e
λνσSl2ν −G0

νν′(l1, l2) (eλνσSl2ν − 1) (B.8.2)

• Choose imaginary time slice and 3d orbital randomly for spin flip and accept or

reject the spin flip with respect to heat-bath QMC algorithm.

• Calculate the new Green’s function G′νν′ by using Dyson’s equation.

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2) + (Gν ν′(l1, l)− δl1, l δν ν′)(eV
′
lν−Vlν − I)

× 1

[I + (I −Gν ν′(l, l))(eV
′
l ν−Vl ν − I)]

Gν ν′(l, l2) (B.8.3)

• After certain number of warm up sweeps, the system reaches the equilibrium.

• Then, measurements start. In order to eliminate the correlations, a few update

sweeps between the measurements should be considered.

• Finally, calculate the averages and standart deviation of the measurements.
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APPENDIX C

CALCULATION OF THE HOST-IMPURITY AND HOST

GREEN’S FUNCTIONS

In this appendix, host-impurity and host Green’s functions are calculated for multi-

orbital case. These equations were used for single-orbital HFQMC in [19].

Up to now, electronic and magnetic properties of Co 3d have been studied. To find

the magnetic properties of vitamin B12, impurity-host and host Green’s functions must be

calculated. Details of all calculations have been explained in Appendix A and Appendix

B for 3d orbitals. Host-impurity and host Green’s functions are calculated in the same

way.

C.1. Calculation of Gmν

=     

m υ          υ−iV

  
   
       

    

υ                                                                                               mm

Figure C.1. Feynman diagram representing the Green’s functionG0
mν(iωn) for Slν = 0.

The double lines denote the host-impurity Green’s function G0
mν(iωn) and

the impurity Green’s function G0
νν′(iωn), respectively and the single line

denotes the host Green’s function G00
mm′(iωn) for no hybridization and no

Hubbard-Stratonovich field. Here, m is the index of host states and ν is the
index of impurity orbitals.

By using above Feynman diagram, host-impurity Green’s functions for zero Hubbard-

Stratonovich field are calculated as

iG0
mν(iωn) =

Nhost∑
m′=1

5∑
ν′=1

iG00
mm′ (−iVm′ν′) iG

0
ν′ν(iωn) (C.1.1)

G0
mν(iωn) =

Nhost∑
m′=1

5∑
ν′=1

G00
mm′ (Vm′ν′)G

0
ν′ν(iωn). (C.1.2)
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where

G00
mm′ =

δmm′

iωn − (εm − µ)
(C.1.3)

and G0
ν′ν is calculated in Appendix B. Here, Green’s functions are defined by

G0
mν(τ, τ

′) = −
〈
Tτ cmσ(τ) d†νσ(τ ′)

〉
, (C.1.4)

G0
mν(τ, τ

′) = G0
mν(τ − τ ′) (C.1.5)

By Fourier transformation,

G0
mν(l, l

′) = T
∑
iωn

eiωn(τl−τl′ ) G0
mν(iωn) (C.1.6)

and

G0
mν(l, l

′) −−−−→ G0
mν(l, l

′,m, ν) (C.1.7)

Here,

l −−−−→ 1 : L (C.1.8)

l′ −−−−→ 1 : L (C.1.9)

m −−−−→ 1 : Nhost (C.1.10)

ν −−−−→ 1 : Nd. (C.1.11)

l and l′ are imaginary time slice for host and impurity, respectively. m defines host orbitals

and the total host orbitals is Nhost = 2431. ν is Co 3d orbitals and total 3d orbitals are

Nd = 5.
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In Appendix B, by using Dyson’s equation, Gνν′ has been calculated for non-zero

Hubbard-Stratonovich fields. In the same way, Gmν is found by Dyson equation from

the G0
mν which is zero HS field Green’s functions. (Forms of Dyson equations have been

proved in Appendix A.)

Gmν = G0
mν +G0

mν (eVlν − I)Gνν′ (C.1.12)

and

(Gmν)l1,l2 = (G0
mν)l1,l2 +

L∑
l3=1

(G0
mν)l1,l3 [eVlν − I]l3,l3 (Gνν)l3,l2 (C.1.13)

Here, l1 is used for host orbitals, l2 and l3 is used for 3d orbitals. At this point, the most

important point is that spin flip must be at both same l and same 3d orbital.

C.1.1. Calculation of the Updated G′mν

By using G0
mν Green’s functions, non-zero HS field Green’s functions Gmν have

been obtained. In this subsection, the new HS field Green’s functions are calculated from

Gmν and Dyson equation is used.

G′mν = Gmν +Gmν (eVlν − I)G′νν′ (C.1.14)

Spin flips occur the same l and same 3d orbital so

(eV
σ
ν )ll′,νν′ = δll′ δνν′ e

σλSlν

S ′lν = −Slν (C.1.15)

and

V σ′

lν = σ λSl′ν (C.1.16)
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Then

V σ′

lν − V σ
lν = (−σλνSlν)− (σλνSlν) = −2σλνSlν (C.1.17)

and

(e(V σ
′

lν −V
σ
lν))ll = e−2σλνSlν . (C.1.18)

By using Eq.C.1.15,

(e(V σ
′

lν −V
σ
lν) − I)l1,l2 = δl,l1 δl,l2 (e−2σλνSlν − 1). (C.1.19)

If above equation is multiplied by 3d Green’s functions,

[(e(V σ
′

lν −V
σ
lν) − I)Gνν′ ]l1,l2 = δl,l1 e

−2σλνSlν (Gνν′)l,l2 (C.1.20)

is obtained. After that, Eq.C.1.20 is multiplied with host-impurity Green’s functions and

[Gmν

∑
l3

(eV
′
lν−Vlν − I)Gνν′ ]l1,l2 =∑

l3

(Gmν)l1,l3 [ (eV
′
lν−Vlν − I)Gνν′ ]l3,l2 = (Gmν)l1,l e

−2σλνSlν (Gνν′)l,l2 .(C.1.21)

the above equation is found. The Dyson equation for G′mν is

G′mν = Gmν +Gmν +Gmν (eV
′
lν−Vlν − I)G′νν′ (C.1.22)

and by Eq.C.1.21,

(G′mν)l1,l2 = (Gmν)l1,l2 + (Gmν)l1,l e
−2σλνSlν (Gνν′)l,l2 (C.1.23)
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the new HS field Green’s functions are calculated.

C.2. Calculation of Gνm

  
   =     

m −iV mυ                                                                                               υ                                                                                               υ                                                                                               m

Figure C.2. Feynman diagram representing the Green’s functionG0
νm(iωn) for Slν = 0.

The double lines denote the impurity-host Green’s function G0
νm(iωn) and

the impurity Green’s function G0
νν′(iωn), respectively and the single line

denotes the host Green’s function G00
mm′(iωn) for no hybridization and no

Hubbard-Stratonovich field. Here, m is the index of host states and ν is the
index of impurity orbitals.

From Feynman diagram,

iG0
νm(iωn) =

Nhost∑
m=1

5∑
ν′=1

iG0
νν′(iωn) (−iVν′m) iG00

mm′(iωn) (C.2.1)

G0
νm(iωn) =

Nhost∑
m=1

5∑
ν′=1

G0
νν′(iωn) (Vν′m)G00

mm′(iωn). (C.2.2)

impurity-host Green’s functions are calculated. Here, it is seen that host-impurity Green’s

functions and impurity-host Green’s functions equal.

G0
mν(iωn) = G0

νm(iωn) (C.2.3)
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C.3. Calculation of the Updated G′νm

The new HS fied Green’s functions are calculated from Dyson equation:

G′νm = Gνm + (G′νν′ − I) (I − e−(V ′
lν−Vlν))Gνm. (C.3.1)

In the case of single spin flip,

S ′lν = −Slν (C.3.2)

V σ′

lν = σ λν Sl′ν (C.3.3)

Then

V σ′

lν − V σ
lν = (−σλνSlν)− (σλνSlν) = −2σλνSlν (C.3.4)

(e(V σ
′

lν −V
σ
lν))ll = e−2σλνSlν (C.3.5)

(e(V σ
′

lν −V
σ
lν) − I)l1,l2 = δl,l1 δl,l2 (e−2σλνSlν − 1) (C.3.6)

(G′νm)l1,l2 = (Gνm)l1,l2

+
∑
l3,l4

(G′νν′ − I)l1,l3 (I − e−(V ′
lν−Vlν))l3,l4 (Gνm)l4,l2 (C.3.7)

= (Gνm)l1,l2

+
∑
l3,l4

(G′νν′ − I)l1,l3 δl,l3 δl,l4 (1− e2σλνSlν ) (Gνm)l4,l2 (C.3.8)
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and so the HS field impurity-host Green’s functions are obtained. From Eq.C.3.8,

(G′νm)l1,l2 = (Gνm)l1,l2 + ((G′νν′)l1,l − δl1,l) (1− e2σλνSlν ) (Gνm)l,l2 . (C.3.9)

C.4. Calculation of Gmm′

  
   
       

=     +    

m υ                                                                                               mm −iVm m m m

Figure C.3. Feynman diagram representing the host Green’s function G0
mm′(iωn) for

Slν = 0. The double lines denote the host Green’s functionG0
mm′(iωn) and

the impurity-host Green’s function G0
νm′(iωn), respectively and the single

line denotes the host Green’s function G00
mm′(iωn) for no hybridization and

no Hubbard-Stratonovich field. Here, m is the index of host states and ν is
the index of impurity orbitals.

From Feynman diagram, host Green’s function is calculated as the following:

iGmm′(iωn) = iG00
mm′(iωn)

+
Nhost∑
m′′=1

iG00
mm′′(iωn)

5∑
ν=1

(−iVm′′ν) iG
0
νm′(iωn), (C.4.1)

G0
mm′(iωn) = G00

mm′(iωn) +
Nhost∑
m′′=1

G00
mm′′(iωn)

5∑
ν=1

Vm′′ν G
0
νm′(iωn). (C.4.2)

Then

G0
mm′(iωn) = G00

mm′(iωn) +
Nhost∑
m′′=1

G00
mm′′(iωn)

×
5∑

ν=1

Vm′′ν

(
Nhost∑
m=1

5∑
ν′=1

G0
νν′(iωn)Vν′mG

00
mm′(iωn)

)
. (C.4.3)
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By using Dyson equation, new HS fields Green’s functions are obtained by Eq.C.4.4 and

C.4.5.

Gmm′ = G0
mm′ +G0

mν (e−Vlν − I)Gνm (C.4.4)

and

G′mm′ = Gmm′ +Gmν (e(V ′
lν−Vlν) − I)G′νm (C.4.5)

C.5. Calculation of the Dynamical Magnetic Susceptibility χνm

In this section, impurity-host dynamical magnetic susceptibility is defined as the

following equation:

χνm(τ) =
〈

(nνν↑(τ)− nνν↓(τ) ) (nmm↑ − nmm↓ )
〉

(C.5.1)

=
〈

( d†ν↑(τ) dν↑(τ)− d†ν↓(τ) dν↓(τ) ) ( c†m↑ cm↑ − c
†
m↓ cm↓ )

〉
0

(C.5.2)

=
〈

( d†ν↑(τ) dν↑(τ)− d†ν↓(τ) dν↓(τ) ) ( c†m↑ cm↑ − c
†
m↓ cm↓ )

+ dν↑(τ) c†m↑ d
†
ν↑(τ) cm↑ + d†ν↓(τ) cm↓ dν↓(τ) c†m↓

〉
Slν
. (C.5.3)

where 0 subscript indicates the all contractions and the Slν subscript means that the Monte

Carlo average over the Hubbard Stratonovich fields is performed. We know that

Gνν′σ(τ, τ ′) = −
〈
Tτ dνσ(τ) d†ν′σ

〉
(C.5.4)

Gνmσ(τ, τ ′) = −
〈
Tτ dνσ(τ) c†mσ

〉
(C.5.5)

Gmνσ(τ, τ ′) = −
〈
Tτ cmσ(τ) d†ν′σ

〉
. (C.5.6)
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Then, the magnetic susceptibility equals

χνm(τ) = 〈 (Gνν↑(τ, τ)−Gνν↓(τ, τ) ) (Gmm↑(0, 0)−Gmm↓(0, 0) )

− Gνm↑(τ, τ
′)Gmν↑(0, τ)−Gνm↓(τ, 0)Gmν↓(0, τ) 〉Slν . (C.5.7)

By Fourier transformation, the impurity-host magnetic susceptibility is

χmν(iωm) =

∫ β

0

d τ eiωmτ χmν(τ), (C.5.8)

and especially the magnetic susceptibility for zero frequency is given by

χνm =

∫ β

0

d τ χνm(τ). (C.5.9)
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