

A FEEDBACK-BASED TESTING

METHODOLOGY FOR NETWORK

SECURITY SOFTWARE

A Thesis Submitted to

The Graduate School of Engineering and Sciences of

İzmir Institute of Technology

In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Gürcan GERÇEK

July 2013

İZMİR

We approve the thesis of Gürcan GERÇEK

Examining Committee Members:

Assist. Prof. Dr. Selma TEKİR

Department of Computer Engineering, İzmir Institute of Technology

Assist. Prof. Dr. Tuğkan TUĞLULAR

Department of Computer Engineering, İzmir Institute of Technology

Assist. Prof. Dr. Enis KARAARSLAN

Department of Computer Engineering, Muğla Sıtkı Koçman University

 11 July 2013

Assist. Prof. Dr. Selma TEKİR

Supervisor, Department of Computer Engineering, İzmir Institute of Technology

Prof. Dr. İ. Sıtkı AYTAÇ

Head of the Department of Computer

Engineering

Prof. Dr. R. Tuğrul SENGER

Dean of the Graduate School of

Engineering and Sciences

ACKNOWLEDGMENTS

 I would like to express my sincere gratitude to my advisors, Assist. Prof. Dr.

Tuğkan TUĞLULAR and Assist. Prof. Dr. Selma TEKİR, for their guidance and

encouragement. Their enthusiasm, inspiration, and great efforts during this research

made this work valuable.

I would also like to state my special thanks to my wife Bilge GERÇEK, for her

endless support, motivation and love.

Finally, I would like to express my greatest thanks my parents especially for

supporting me throughout my whole life as well as in my graduate study.

iv

ABSTRACT

A FEEDBACK-BASED TESTING METHODOLOGY FOR NETWORK

SECURITY SOFTWARE

 As part of network security testing, an administrator needs to know whether the

firewall enforces the security policy as expected or not. In this setting, black-box testing

and evaluation methodologies can be helpful. In this work, we employ a simple

mutation operation, namely flipping a bit, to generate mutant firewall policies and use

them to evaluate our previously proposed weighted test case selection method for

firewall testing. In the previously proposed firewall testing approach, abstract test cases

that are automatically generated from firewall decision diagrams are instantiated by

selecting test input values from different test data pools for each field of firewall policy.

Furthermore, a case study is presented to validate the proposed approach.

v

ÖZET

AĞ GÜVENLİĞİ YAZILIMLARI İÇİN GERİ BESLEME TEMELLİ BİR

TEST YÖNTEMİ

Ağ güvenlik testlerinin bir parçası olarak, bir yöneticinin, güvenlik duvarının

güvenlik politikasını uygulayıp uygulamadığını bilmesi gerekir. Bu çerçevede, kara kutu

testi ve değerlendirme metodolojileri faydalı olamaktadır. Bu çalışmada bit değerinin

tersini almak olarak bilinen basit mutasyon operasyonlarını, hata barındıran mutant

güvenlik duvarı politikaları oluşturması ve bunları daha önceden önerdiğimiz güvenlik

duvarı test için ağırlıklandırılmış test durum seçim metodunu değerlendirmesinde

kullanıyoruz. Daha önceden önerilmiş güvenlik duvarı testi yaklaşımında, güvenlik

duvarı karar diyagramlarından otomatik olarak yaratılan soyut test tanımları, güvenlik

duvarı politikasının her bir alanı için farklı test veri kümelerinden seçilmiş test girdi

değerleri ile örneklendirilmiştir. Ayrıca önerilen yaklaşımı doğrulamak için bir vaka

çalışması sunulmuştur.

vi

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RELATED WORK .. 6

2.1. Firewall Decision Diagrams .. 7

2.2. Test Case Generation for Firewalls ... 12

2.3. Test Architecture for Firewalls .. 14

2.4. Mutation-Based Test Set Evaluation ... 15

CHAPTER 3. FEEDBACK-BASED FIREWALL TESTING APPROACH 16

3.1. Abstract Test Case Generation.. 17

3.2. Weighted Test Case Selection ... 18

3.3. Test Architecture ... 21

3.4. Mutation-Based Evaluation of Test Sets for Firewall Testing 23

3.5. Implementation and Tool Support .. 27

CHAPTER 4. CASE STUDY .. 29

4.1. Firewall Policy Under Consideration ... 29

4.2. Results and Discussion ... 31

CHAPTER 5. CONCLUSION ... 33

BIBLIOGRAPHY ... 34

vii

LIST OF FIGURES

Figure Page

Figure 1. An FDD .. 8

Figure 2. Firewall Generation using FDD ... 8

Figure 3. Marking of FDDs Algorithm .. 9

Figure 4. Firewall Generation Algorithm .. 10

Figure 5. Firewall Compaction Algorithm ... 11

Figure 6. Firewall Simplification Algorithm ... 12

Figure 7. Firewall Testing Architecture ... 14

Figure 8. Firewall Testing Process ... 17

Figure 9. A Simple FDD .. 18

Figure 10. Schematic Working of Feedback Control based Approach to Select Test

 Input Values .. 19

Figure 11. Feedback Control Based Selection of Test Input Values Algorithm 21

Figure 12. Experimental Setup .. 23

Figure 13. Calculation of Mutation-Based Policy Coverage ... 24

Figure 14. Mutant Policy Generation Algorithm ... 25

Figure 15. TG Firewall Testing Suite, Mutation Analysis Pane 28

Figure 16. TG Firewall Testing Suite, Policies Pane ... 28

Figure 17. FDD of the Firewall Policy Used for Case Study .. 30

Figure 18. Mutation Scores of WTS and RTS Sets ... 31

viii

LIST OF TABLES

Table Page

Table 1. Sets of Input Values .. 14

Table 2. Test Input Value Selection Example using Feedback Control based

Selection ... 20

Table 3. Abstract Test Case .. 30

1

CHAPTER 1

INTRODUCTION

 Computers have an important role in our daily life. From entertainment to

health-care they have a vital role to make our lives easier. As a side effect of this, our

dependency to computers increases day by day inevitably. Usage of smart phones with

social media, email and instant messaging tools allow us contacting with other people

anywhere anytime. Other examples from daily lives, our cars can communicate with us

by means of navigation systems or for safety measures new trucks can check the

distance between the car ahead and itself and activate the breaking system automatically

to prevent a crash, if necessary. Examples that are more vital are the security systems,

which are responsible to protect systems, data, etc. Companies and Governments try to

secure; their networks by deploying firewalls, intrusion detection and/or intrusion

prevention systems besides enterprise level authentication systems and anti-virus

applications; also using encryption or data loss prevention systems to ensure their

privacy and data security.

 Computer programs, which are known as software need to be reliable to some

certain levels according to its importance. Some inconsistency or aggregation problems

about the news in social media may be tolerated or ignored in vast information flows.

On the other hand, a malfunctioning in emergency breaking system in trucks/cars

cannot be tolerated because of its consequences.

 Examples of security software, such as firewalls are expected to have error-free

behavior as well. A firewall is a software or hardware-based network security system

that controls the incoming and outgoing network traffic by analyzing the data packets

and determining whether they should be allowed through or not, based on a rule

set.(paraphrase) “The aim of firewall is to protect the network from network-based

threats and attacks, and to provide a single choke point where security and audit can be

imposed. A firewall builds a blockade between an internal network that is assumed to be

secure and trusted, and another network, usually an external (inter)network, such as the

Internet, that is not assumed to be secure and trusted.” (Oppliger, 1997). Guarding a

2

trusted environment from untrusted one based on some rule set(can be defined as a

firewall policy) is an important task which must not malfunction. Otherwise using a

firewall would be the same as using a safe, which can be opened without a key or

password.

 In order to avoid such consequences software needs to be reliable. To measure

the reliability, we need to test software. Software testing is an important topic under

Software Engineering discipline. In short we can define software testing as; “an

empirical technical investigation conducted to provide stakeholders with information

about the quality of the product or service under test." (Kaner, 2006). Testing process

tries to detect possible bugs, defects or risks of the usage of the program. It is not

feasible to expect to detect all the faults or unexpected behaviors of the program in a

single testing approach. In order to increase the detection rates of such undesired effects

or behaviors different kind of testing methodologies are suggested, such as regression

testing, usability testing, performance testing, security testing, and many more.

 Software testing is a part of the quality control and assurance part of software

development. Software testing may be defined as the implementation of verification and

validation process. According to IEEE Standard Glossary of Software Engineering

Terminology (610.12-1990) (Committee, 2013) these terms are defined as follows;

 Validation: “The process of evaluating a system or component during or at the

end of the development process to determine whether it satisfies specified requirements.

Contrast with: verification.”

 Verification: “(1) The process of evaluating a system or component to determine

whether the products of a given development phase satisfy the conditions imposed at the

start of that phase. Contrast with: validation. (2) Formal proof of program correctness.

See: proof of correctness.”

 Verification and Validation (V&V): “The process of determining whether the

requirements for a system or component are complete and correct, the products of each

development phase fulfill the requirements or conditions imposed by the previous

phase, and the final system or component complies with specified requirements. See

also: independent verification and validation.”

 In an informal way to explain, verification is asking the question “Is it really

working?” while the validation is asking the question “Is it really working how it is

supposed to work?”

3

 Mostly, software’s behaviors do not change during runtime. They behave as

programmed and produce output according to given input and parameters. In such cases

program flow is static and parameters of the program are used to select the programmed

behaviors during the runtime. We can define a program as function f with input set 𝑋

and parameter set Y. So that output o can be defined as 𝑜 = 𝑓(𝑥, 𝑦), 𝑥 𝑋 𝑦 𝑌 . Some

examples are browsers, instant messengers, office products, etc. In such kind of

software for each input 𝑥 ∈ 𝑋and parameter 𝑦 ∈ 𝑌produces same output 𝑜 ∈ 𝑂. On the

other hand, some software takes extra arguments to define their behaviors. Such

behaviors are not programmed in the software but defined by a given set of rules or

expressions, which can be defined as policies. The rules may be defined as some

domain specific language or even can be written in any programming language that the

software supports, latter method is called as dynamic code execution or dynamic code

inclusion. According to this approach we can define this extra argument policy p as

𝑝 ∈ 𝑃 where P is set of policies a software may accept. We need to redefine the function

f, 𝑜 = 𝑓(𝑥, 𝑦, 𝑝)so the output o depends also on input p. If we consider p as a set of

expressions that will be processed by the program then we can assume that the p is used

with some internal parameters zi of software s and produce some internal output oi to be

used by s, by this assumption we can redefine p as a function; 𝑜𝑖 = 𝑝(𝑧𝑖)

 Firewalls are examples of dynamic behavior software. In this work, we are

ignoring the hardware part of the firewalls. The policy parameter of the firewalls may

be defined by domain specific languages (DSL) provided by its manufacturer.

Enterprise level firewalls provide high level scripting capabilities with different feature

sets. Although the representations vary, the basic functionality does not change.

Basically a firewall checks the incoming or outgoing packets’ field values against to its

policy. If there is a match then the matched rule's action will be applied otherwise

default action will be applied to packet under inspection, this will provide completeness

to firewall. A policy is composed of rules, basically a rule is a simple boolean

expression over packets fields with an action result; <expression> → <action> the

action field may contain accept and deny values. A simple rule for blocking all TCP

traffic to IP address 192.168.10.43;

𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 = 𝑇𝐶𝑃 ∧ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑃 = 192.168.10.43 → 𝑑𝑒𝑛𝑦

Firewall policies can be represented by a simplified five tuple format. For the

sake of simplicity we only take into consideration the following five fields over packets.

4

These fields may change or replace without any problem for the applicability of our

approach. These five tuples contain the following fields over packets: Protocol, source

IP, source port, destination IP and destination port.

 Firewalls have to be tested to validate that they work as specified. Literature on

security (Ma, 2004), (Zaugg, 2005) mainly focuses on testing of firewall rules where

firewall implementation is assumed error-free. However, a firewall can be hacked and

programmed to behave differently from its specification or may have vulnerabilities as

shown by Kamara et al. (2003). A firewall vulnerability is defined as an error made

during firewall design, implementation, or configuration, that can be exploited to attack

the trusted network that the firewall is supposed to protect (Kamara, Fahmy, Schultz,

Kerschbaum, & Frantzen, 2003). One of the important goals of security management is

identifying and eliminating vulnerabilities.

 The main focus of our firewall testing approach is the intended security policy.

The intended security policy consists of firewall rules configuring the firewall behavior.

The security policy is external to the firewall like a configuration file (Tuglular & Belli,

2008).

 In this work, firewall policy is represented by firewall decision diagram (FDD).

FDD is a graph based representation for firewall policies. By its properties FDD is able

to check the completeness and consistency of given firewall policy. FDD is a directed

graph with one root node. In FDD, nodes represent fields from five tuple and edges

represent range of values of fields. In this setup, terminal nodes represent the action or

decision field of the policy. Nodes may have multiple outgoing edges. Union of edges'

range values must be equal to input space of source node's field. Each decision path

must be started from root node and ended on terminal nodes.

 FDD is used to generate abstract test cases through path coverage using decision

paths on the FDD. Abstract test cases are definition of possible input sets, in other

words they are equivalence classes of input space for a given firewall policy. We

instantiate our test cases from each decision path in order to provide more coverage on

input space, which will increase the chance to detect faults/bugs in the firewall. In

software testing the path coverage method is used on source code to check the all

possible paths can be followed during execution. By its nature this method falls in

verification category. Our path coverage method is used not on source code but on input

space of a firewall policy. By this way our path coverage methodology falls in the

5

validation category. We are trying to validate the behavior of firewall under certain

circumstances.

 Instantiation of abstract test cases with test values, which are selected based on

priorities and weights using a feedback control approach, is presented in our previous

paper (Tuglular & Gercek, 2010). The test values with high priorities are assumed to

have high probability to reveal mismatches between firewall’s expected and executed

behavior. Weights are used to alternate among high priority test values. Once the

concrete test cases are ready, firewall testing process is executed using firewall

evaluator architecture (Tuglular & Belli, 2009).

 In this work, we employ a simple mutation operation, namely flipping a bit, to

generate mutant firewall policies. Although there are a few studies on mutating

specifications and using them to evaluate test sets (Ammann & Black, 1999), (Smith &

Williams, 2009), (Gupta & Jalote, 2008), to the authors’ knowledge there is only one

study (Hwang, Xie, Chen, & Liu, 2008) where mutating firewall policies for the

evaluation of security test sets is proposed.

 The novelty of the approach presented in this work is to use flipping a bit as a

mutation operator to mutate specifications, where we consider firewall policy as a

special case of dynamic specifications. The decision made and action taken by the

firewall is either accept or deny, which can be represented by one bit. A slight change

can be obtained by flipping one bit, which means if the action field of a rule in the

original policy is accept, its corresponding mutant policy will have a rule with deny

action and vice versa. The flipping a bit mutation operator is a variation of other logic-

based mutation operators. For the generation of mutant policies, we follow table

coverage criteria suggested by Ammann and Black (1999), whereas Hwang et al. (2008)

used rule coverage criterion, predicate coverage criterion and clause coverage criterion.

The firewall policy is placed in a table, where each rule is a row and each field of a rule

is a column. We use mutated policies to evaluate the test set generated using our

proposed weighted test selection method.

6

CHAPTER 2

RELATED WORK

This work focuses on firewall implementation testing considering only policy

execution. There is one approach to firewall implementation testing by Senn et al.

(Senn, Basin, & Caronni, 2005), who have worked on firewall implementation testing

using protocol finite state automata to generate abstract test cases through unique

input/output sequences (Sabnani & Dahbura, 1988) and instantiate abstract test cases

with test tuples consisting of

<protocol>, <srcIP>, <dstIP>, <action>

fields of a firewall policy rule. However, in our work abstract test cases are generated

from FDD and concrete test cases are built using

<protocol>, <srcIP>, <srcPort>, <dstIP>, <dstPort>, <action>

fields of a firewall rule.

An approach to specification-based test generation for security-critical systems

is proposed by Wimmel and Jürjens (Wimmel & Jürjens, 2002). Although not directly

related, in their work, the test sequences are determined with respect to the security

properties required by the system, using mutations of the system specification. They

also followed the abstract test case generation approach,

however the concretization of abstract test cases apply only to an existing

implementation.

Hwang et al. (2008) utilized two test case generation methods, one is based on

local constraint solving and the other one based on global constraint solving, in addition

to random test case generation, whereas we employed our weighted test selection

method in addition to random test case generation.

In this work, we use FDD (Gouda & Liu, 2004) notion for modeling, whereas in

our previous work (Tuglular & Belli, Directed Acyclic Graph Modeling of Security

Policies for Firewall Testing, 2009), we used directed acyclic graph concept to deal with

rule dependencies, which is implicitly handled by FDD. The present work chooses FDD

notation since formal, graph-theoretical notions and algorithms are utilized intensively

with it.

7

2.1. Firewall Decision Diagrams

 A field Fi is a variable whose value is taken from a predefined interval of

nonnegative integers, called the domain of Fi and denoted by D(Fi). A firewall decision

diagram f (or FDD f, for short) over the fields F0, · · · , Fn−1 is an acyclic and directed

graph that satisfies the following five conditions:

 “1. f has exactly one node that has no incoming edges, called the root of f, and

has two or more nodes that have no outgoing edges, called the terminal nodes of f.

 2. Each nonterminal node v in f is labeled with a field, denoted by F(v), taken

from the set of fields F0, · · · , Fn−1. Each terminal node v in f is labeled with a decision

that is either accept (or “a” for short) or discard (or “d” for short).

 3. A directed path from the root to a terminal node in f is called a decision path.

No two nodes on a decision path in f have the same label.

 4. Each edge e, that is outgoing of a node v in f, is labeled with an integer set

I(e), where I(e) is a subset of the domain of field F(v).

 5. Let v be any terminal node in f. The set E(v) of all outgoing edges of node v

satisfies the following two conditions:

 (a) Consistency: For any distinct ei and ej in E(v), I(ei) ∩ I(ej) = ∅

 (b) Completeness: ∪e∈E(v) I(e) = D(F(v)) where ∅ is the empty set and D(F(v))

is the domain of the field F(v)” (Gouda & Liu, 2004).

 An FDD f over the fields F0, · · · , Fn−1 can be represented by a sequence of

rules, each of them is of the form

 F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → <decision>

such that the following two conditions hold (Gouda & Liu, 2004). An example FDD is

shown in Figure 1. FDD f given in Figure 1 is defined over fields F0 and F1. Both of the

fields' domains are in the interval of [0-9]. The labels on the edges describe the domain

values of its node.

8

Figure 1. An FDD

These labels must be composed of non-overlapping values. Union of all

outgoing edge labels of a node should be equal to domain of that node, otherwise this is

a indication of incompleteness of the firewall rules. This condition violates the

completeness property of Firewall Decision Diagrams given above.

 Each path from root node to terminal nodes can be represented by a rule. From

the example this rule can be formed as follows:

F0 ∈ [4,5] ∧ F1 ∈ [2,3] U [5,7] → accept

 Firewall Decision Diagrams are proposed as method of ideal approach of

firewall rule design and implementation.

Figure 2. Firewall Generation using FDD

9

 The firewall generation using FDD process is given in Figure 2. In this approach

given FDD is reduced by merging the decision paths or edges as much as possible

without changing decision paths decision value. After merging, marking process starts.

In this process, a marked FDD is generated by marking exactly one outgoing edge of

non-terminal nodes in FDD as “ALL”. Any edge marked as “ALL” has a degree of 1

otherwise degree is smallest number of non-overlapping intervals on given edge. This

approach leads to many marked version of FDD. The number of rules in the firewall of

a marked FDD equals the degree of the marked FDD, thus they tried to minimize the

degree by using Algorithm 1 which is shown in Figure 3.

Algorithm 1: Marking of FDDs

input : a reduced FDD f

output: a marked version f´ of f such that for every marked version f´´ of f , deg(f´) ≤ deg(f´´)

steps:

Compute the degree of each terminal node v in f as follows:

deg(v) = 1

while f has a node v whose degree has not yet been computed and v has k outgoing edges

e0 , · · · , ek−1 that are incoming of the nodes v0 , · · · , vk−1 , respectively, whose degrees have

already been computed do

Find an outgoing edge ej of v whose quantity

(deg(ej) − 1) × deg(vj) is larger than or equal to the corresponding quantity

of every other outgoing edge of v.

Mark edge ej with “ALL”.

Compute the degree of v as follows:

 deg (𝑣) = ∑ (deg(𝑒𝑖) × deg(𝑣𝑖))𝑘−1
𝑖=0

end

Figure 3. Marking of FDDs Algorithm

 “In Algorithm 3, for generating a firewall of a marked FDD f, which is

generated by Algorithm 2. The generated firewall is a sequence of rules where each rule

corresponds to a decision path in the marked FDD f . Algorithm 3 computes for each

rule in the generated firewall a binary number, called rank of the rule, and two

predicates, called exhibited and original predicates of the rule. The rule ranks are used

to order the computed rules in the generated firewall. The exhibited and original

predicates of the rules are used in the next section to make the generated firewall

“compact”.” (Gouda & Liu, 2004). Algorithm 2 is shown in Figure 4 and Algorithm 3 is

shown in Figure 5.

10

Algorithm 2: Firewall Generation

input: a marked FDD f over the fields F0 , · · · , Fn−1 and assume that along each directed path in f , if a

field Fi appears before field Fj then i < j.

output: a firewall r over the same fields such that

r.accept = f.accept, and

r.accept = f.accept

and for each rule ri in r, the algorithm computes a binary number of n bits, called the rank of ri , and two

predicates, called the exhibited and original predicates of ri .

steps:

For each decision path in f , compute a rule ri , its rank, its exhibited predicate epi and its original

predicate opi as follows:

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → decision

rank = b0 · · · bn−1

epi = (F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1)

opi = (F0 ∈ T0 ∧ · · · ∧ Fn−1 ∈ Tn−1)

where each bi , Si , and Ti is computed according to the following three cases:

Case 1: (The decision path has no nodes labelled Fi)

bi = 0

Si =the domain [ai , bi] of Fi

Ti =the domain [ai , bi] of Fi

Case 2: (The decision path has a node labelled Fi , and its outgoing edge e has no mark)

bi = 0;

Si =the integer set that labels e

Ti =the integer set that labels e

Case 3: (The decision path has a node labelled Fi , and its outgoing edge e has an ALL mark)

bi = 1

Si =ALL

Ti =the integer set that labels e

After computing all the rules and their ranks, order the rules in r in an ascending order of their

ranks.

Figure 4. Firewall Generation Algorithm

 A generated firewall :

 r = (F0 ∈ [4, 7] ∧ F1 ∈ [2, 3] ∪ [5, 7] → a,

 F0 ∈ [4, 7] ∧ F1 ∈ ALL → d,

 F0 ∈ ALL ∧ F1 ∈ [0, 9] → d)

 “Firewalls that are generated by Algorithm 3 in the last section can have

redundant rules, i.e., rules that can be removed from their firewalls without affecting the

accept or discard sets of these firewalls.” (Gouda & Liu, 2004). With Algorithm 4 they

removed all redundant rules.

11

Algorithm 3: Firewall Compaction

input: a firewall r with m rules (r0 , · · · , rm−1) over the fields F0 , · · · , Fn−1 generated by Algorithm 2

output: a compact firewall r such that

r´.accept = r.accept, and

r´.accept = r.accept

variables
i : 0..m – 2;

j : 0..m;

redundant : array[0..m − 1] of boolean;

np : name of a predicate;

steps:

redundant[m − 1] := false;

for i = m − 2 to 0 do

j := i + 1;

let ri.op be named np;

redundant[i] := true

while redundant[i] ∧ j ≤ m − 1 do

if redundant[j]

then j := j + 1;

else if (decision of ri = decision of rj)

 ∨ (no packet over the fields F0 , · · · , Fn−1 satisfies np ∧ rj.ep)

then let np ∧ ¬rj.ep be named np;

 j := j + 1;

else redundant[i] := false;

Remove from r every rule ri where redundant[i] := true;

Figure 5. Firewall Compaction Algorithm

Compact firewall example:

 r = (F0 ∈ [4, 7] ∧ F1 ∈ [2, 3] ∪ [5, 7] → a,

 F0 ∈ ALL ∧ F1 ∈ [0, 9] → d)

For the last step firewall needs to be simplified. In paper (Gouda & Liu, 2004)

simplification process is defined as follows;

“A firewall rule of the form

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → decision

is called simple if every Si in the rule is either the ALL mark or an interval of

consecutive nonnegative integers. A firewall is called simple off all its rules are simple.

The following algorithm can be used to simplify any firewall generated by Algorithm 3

or Algorithm 4.” (Gouda & Liu, 2004). Algorithm 4 is shown in Figure 6.

12

Algorithm 4: Firewall Simplification

input: a firewall r generated by Algorithm 2 or Algorithm 3

output: a simple firewall r´ such that

r´ .accept = r.accept, and

r´ .accept = r.accept

steps:

while r has a rule of the form

F0 ∈ S0 ∧ · · · ∧ Fi ∈ S ∪ [a, b] ∧ · · · ∧ Fn−1 ∈ Sn−1 → decision

where S is a nonempty set of nonnegative integers that has neither a − 1 nor b + 1

do

replace this rule by two consecutive rules of the form:

F0 ∈ S0 ∧ · · · ∧ Fi ∈ S ∧ · · · ∧ Fn−1 ∈ Sn−1 → decision ,

F0 ∈ S0 ∧ · · · ∧ Fi ∈ [a, b] ∧ · · · ∧ Fn−1 ∈ Sn−1 → decision

end

Figure 6. Firewall Simplification Algorithm

A simple firewall:

 r = (F0 ∈ [4, 7] ∧ F1 ∈ [2, 3] → a,

 F0 ∈ [4, 7] ∧ F1 ∈ [5, 7] → d,

 F0 ∈ ALL ∧ F1 ∈ [0, 9] → d)

“Our contribution in this paper is two-fold. First, we proposed to use firewall

decision diagrams to specify firewalls at the early stage of firewall design. The main

advantages of these diagrams are that their consistency and completeness can be

checked systematically. Second, we developed a sequence of five algorithms that can be

applied to a firewall decision diagram to generate a compact sequence of firewall rules

while maintaining the consistency and completeness of the original firewall diagram.”

(Gouda & Liu, 2004).

In our work we use FDD for both representing the given firewall policies and

simplifying them.

2.2. Test Case Generation for Firewalls

Our test case generation consists of two parts. First, we generate abstract test

cases. Abstract test cases are produced to test the correct policy handling of a firewall.

Second, test input values are collected from various sources, such as firewall policy,

domain topology knowledge, and black-lists. To obtain the concrete test cases, we

instantiate abstract test cases with test input values.

13

The sequence of firewall rules is converted to a FDD as described in (Gupta &

Jalote, 2008), which is then used for test generation. Each decision path in the FDD

represents an abstract test case. We select to abstract a firewall rule as

IF

(<protocol>, <srcIP>, <srcPort>, <dstIP>, <dstPort>)

THEN <action>,

where protocol is a network protocol, such as TCP or UDP, and action is either

ACCEPT or DENY. The root node of a FDD represents the protocol field, and the

terminal nodes represent the action field, intermediate nodes represent other fields in

order. Every decision path starting at the root and ending at a terminal node represents a

rule in the policy and vice versa.

Sets of test input values may be constructed using equivalence class partitioning,

intelligent segmentation (Senn, Basin, & Caronni, 2005), or expert knowledge. The

equivalence class partitioning divides the input domain of policy field into a finite

number of partitions or equivalence classes (Sabnani & Dahbura, 1988). El-Atawy et al.

(2005) proposed intelligent segmentation, where potential erroneous regions in the

firewall input space are adapted using the firewall policy. When determining test input

data, values that a hacker might choose may be considered in addition to using the

blacklists from network/security administrator or third parties as well as using statistical

significant/insignificant past traffic. In this work, we choose the expert knowledge

approach to construct test input values. Although more time consuming and costly, test

input values selected using expert knowledge is assumed to reveal more errors than

other two approaches. Moreover, expert knowledge can prioritize test input values,

which is the default feature of our approach. Finally, we instantiate the abstract test

cases with the test input data to obtain concrete test cases. Although the number of sets

may vary from expert to expert, we decide to utilize three sets for each of the following

fields: src_IP, dst_IP, and dst_port. We increased the number of the sets proposed in

(Tuglular & Gercek, 2010). In this work, we employed four sets, which are given in

Table 1.

14

Table 1. Sets of Test Input Values

Field Src_IP Dst_IP Dst_Port

Set1 Blacklist Admin Current Domain Addresses Listening Ports

Set2 Blacklist 3
rd

 Party Past Domain Addresses Vulnerable Ports

Set3 Past Traffic Addresses Past Traffic Addresses Past Traffic Ports

Set4 Policy Addresses Policy Addresses Policy Ports

Finally, we instantiate the abstract test cases with the test input data to obtain

concrete test cases. Once the concrete test cases are generated, they are converted to

network packets and injected to firewall, where the evaluation is performed using

firewall testing architecture as explained in Section 3.3.

2.3. Test Architecture for Firewalls

 Although firewalls are software implementations, the method used for input and

output is network I/O. Thus, network packets should be produced, injected, and

collected for testing a firewall. Test packets are derived from generated test cases and

those packets are sent or injected to the firewall to analyze its behavior. In order to

analyze and evaluate the behavior of firewall under test (FUT) with respect to test cases,

a special architecture as illustrated in Figure 7 was developed in our previous work

(Tuglular & Belli, 2009).

 The packet injection point (PIP) is used to release test packets. All the traffic

entering and leaving the firewall is recorded and collected data is analyzed to obtain test

 Collector

Evaluator

Collector

FUT

PIP

Figure 7. Firewall Testing Architecture

15

outputs. The outputs are then compared with expected outputs to determine test result.

The accepted packets are expected to be at the packet leaving point, but not the denied

packets. The presented architecture can also be used to monitor a firewall constantly in

order to check whether it operates in accordance with its specification and

implementation (Tuglular & Belli, 2009).

2.4. Mutation-Based Test Set Evaluation

 Mutation testing is a fault-based testing technique providing a mutation

adequacy score, which can be used to measure the effectiveness of a test set in terms of

its ability to detect faults (Jia & Harman, 2010). The hypothesis behind mutation testing

is that the faults introduced by mutation testing represent the mistakes that programmers

often make. A mutation operator creates a slight change (Mathur, 2008) in the

corresponding context, which can be a program, a specification, or a policy in our case.

A slightly changed program is called a mutant. To evaluate the quality of a given test

set, each mutant is executed against the test set. If the result of running a mutant is

different from the result of running the original program for any test cases in the test set,

the seeded fault denoted by the mutant is detected (Jia & Harman, 2010). The detection

ratio, called mutation score, is used to assess the quality of the test set.

 Since most coverage metrics apply to source code, it is difficult to utilize them

in cases of conformance testing (Ammann & Black, 1999). Security testing, a kind of

conformance testing, is performed with respect to a security policy. Therefore, an

approach which evaluates security test sets independent of code is necessary. Ammann

and Black (1999) developed a specification-based coverage metric to evaluate test sets.

We follow their approach and apply it to security policies. Instead of specification

mutants, we generate policy mutants using a mutation operator, which we call flipping a

bit. Then we evaluate firewall test set for mutation adequacy. The mutation score for a

test set is the percentage of non-equivalent mutants killed by that test set. A test set is

called mutation adequate if its mutation score is 100% (Offutt, Rothermel, & Zapf,

1993).

16

CHAPTER 3

FEEDBACK-BASED FIREWALL TESTING APPROACH

 The firewall testing process we employed is shown in Figure 8. The process

starts with generation of FDD from firewall policy based on the algorithms we

mentioned in Chapter 2. Next step covers the generation of abstract test cases. Abstract

test cases define sets of test cases. These abstract test cases are generated by traversing

paths of generated FDD. All paths must start from root node and end at a terminal node.

Each valid path on FDD corresponds to an abstract test case. After the generation of

abstract test cases, concrete test cases are instantiated. Instantiation is basically done by

selecting an element from the set of test cases defined by an abstract test case. Abstract

test case generation will be discussed in Section 3.1.

The selection procedure is based on a simple weighted feedback mechanism. For

deciding the weights we used expert knowledge besides the history information of the

network, which holds the firewall under consideration. The weighted test case selection

method (Tuglular & Gercek, 2010) we used to instantiate concrete test cases is

explained in detail in Section 3.2.

 Concrete test cases are converted to network test packets and injected to the

firewall under consideration. The packets passing the firewall are collected to determine

the result of test cases. After the collection of packets, we compare the test cases’

expected firewall decision with firewall’s actually decision in order to name the test

case as passed or failed. Another approach is using simulator rather than real firewall

software/hardware. A firewall simulator will mimic the firewall behavior and makes it

easier to setup experiments and collect the packets passing on it. The architecture used

for testing is explained in Section 3.3.

To measure the quality of test set we used mutation analysis. Mutation analysis

is basically generating new policies by using policy under test and use test set against

generated policies. The difference between original policy and the generated policy is

that generated one contains simple faults in it. Such faults must cause change in

behavior of policy otherwise they are not valid. The quality of a test set is measured by

17

the detection rate of changed behavior of generated policies. Mutation analysis will be

discussed in Section 3.4.

In Section 3.5 we will explain the tool we developed. The tool is capable of

generating both abstract and concrete test cases, evaluation of test cases and mutation

analysis as well.

Figure 8. Firewall Testing Process

3.1. Abstract Test Case Generation

An abstract test case is a definition of a set of test cases. An abstract test case is

generated by selecting a path in a given FDD. A valid path must start at root node and

end at one of the terminal nodes. In Figure 9 a simple FDD is given. Let’s follow the

right-most path of the FDD in Figure 9. The path is as follows;

Protocol ∈ {TCP}

Source IP ∈ {[1.1.1.1-193.139.255.255] ∪ [193.141.1.1-255.255.255.255]}

Source Port ∈ {[1-65535]}

Destination IP ∈ {140.130.120.80}

Destination Port ∈ {[1-79] ∪ [81-65535]}

Action → Deny

Any element belongs to this set/definition will generate a result of deny at the firewall

and this definition is called an abstract test case of FDD in Figure 9. For each path we

18

repeat this procedure to split firewall test input space by it decisions.

Figure 9. A Simple FDD

3.2. Weighted Test Case Selection

 For the instantiation of abstract test cases, we proposed feedback control based

approach to select test input values (Tuglular & Gercek, 2010). The field values that

have higher potential to reveal errors should be selected more often than others. In order

to facilitate this idea, priorities should be stored along with field values in the sets of test

input values and used in the selection process. Moreover, the sets should have dynamic

weights so that alternating among sets is possible. The proposed approach is illustrated

in Figure 10.

19

The controller is responsible for the determination of next weight vector (wv),

which is composed of n weight values, where n is the total number of sets of test input

values. A weight value is a real number and it is initially equal to 1. The controller,

remembering the current weight vector and using the feedback, namely the identity (ID)

of selected set, determines the next weight vector using Equations (3.1) and (3.2).

Figure 10. Schematic Working of Feedback Control based Approach to Select Test Input

 Values

 wvi(k+1) = wvi(k) - wap if i is the ID of selected set (3.1)

 wvj(k+1) = wvj(k) + (wap/n-1) for all j not equal to i (3.2)

where wvi(k+1) is the the ith element of the weight vector at step k+1 and weight

alternate percentage (wap) is a real number in (0,1).

 When there is a test value request, the selector chooses a test input value from

the sets using the (setID,elementID) information that comes from the intensity

calculator. The intensity calculator stores a priority vector (pv), which is composed of

priorities of all elements of all sets

 pv = (p11, p12,...,p1i,p21, p22,...,p2j,...,pn1, pn2,..., pnk) (3.3)

The size of the priority vector is the total number of elements of all sets. For instance,

assuming that each set given in Table 1 has three elements, the size of the priority vector

is nine. The intensity vector (iv) is obtained by normalizing the priorities, which is

achieved by dividing each priority to the sum of all priorities (Σp).

 iv = (i11, i12,...,i1i,i21, i22,...,i2j,...,in1, in2,..., ink) (3.4)

where ijk = pjk / Σp.

20

 The weighted intensity vector (wiv) is calculated by the scalar multiplication of

the intensity vector with expanded weight vector (ewv), where expanded weight vector

is composed of element weights that have their set weights.

 wiv = iv • ewv (3.5)

 The selected test value is the one where weighted intensity is the maximum of

all weighted intensities. The intensity calculator passes the (setID, elementID)

information of the maximum weighted intensity to the selector, which returns the

corresponding test input value to the requestor.

 For illustration purposes, an example is given in Table 2. In this example, there

are three sets of test input values, each having two elements and their priorities are

presented in the priority vector. Using (3.4) and (3.5), weighted intensity of each

element is calculated and presented in the weighted intensity vector. The element that

has the highest weighted intensity is selected as the test value input for that step.

Table 2. Test Input Value Selection Example using Feedback Control based Selection

At the next step, the weight of its set is reduced by the controller using wap.

Additionally, the priority of the selected element is decremented by the intensity

calculator using deprioritization constant (dc), which is used to lower the priority of an

element so that other elements will have a better chance to be selected. The algorithm

for feedback control based selection of test input values is given in (Tuglular & Gercek,

2010).

 The feedback control based selection should be performed separately for each

field in the abstract test case. We suggest that test input values for the Protocol, Src_IP,

Dest_IP, Dest_port fields should be selected for firewall testing. In the following

section, we present a case study to illustrate the application of our proposed approach

for feedback control based selection of test input values to firewall testing.

21

Algorithm 5:. Feedback Control based Selection of Test Input Values

input: cut, wap, dc, ev, pv

output: osse

variables:
cut: number of test input values required

wap : weight alternate percentage

dc : deprioritization constant

ev : element vector

pv : priority vector

osse: ordered set of selected elements

steps:
proceed := true

while proceed do

calculate wv using wap

ewv := extend(wv)

calculate iv using dc

wiv := iv • ewv

selected_set := selectS(ev, max(wiv))

selected_element := selectE(ev, max(wiv))

osse := osse ∪ selected_element

cut := cut – 1

if (cut == 0 or pv is all zero) then proceed := false

do while
return osse

Figure 11. Feedback Control Based Selection of Test Input Values Algorithm

3.3. Test Architecture

In Figure 7 we introduced our testing architecture. This method could be called

injection based firewall testing. We inject the generated packets on one side of the

firewall and collect passed packets on the other side of the firewall, then evaluates the

expected results and actual results to see if there is something wrong with the policy

enforcement or not.

A real experimental setup is introduced in Figure 12. The components and their

responsibilities are as follows.

 Packet Generator: This component is responsible for parsing the firewall policy

and generate correspondent FDD. Use generated FDD to generate abstract test

cases end instantiate concrete test cases. Concreted test cases are passed to

sender for injection to network.

 Sender: This component is a simple Python script based on Scapy. It took a

string representation (5 tuple) of a packet that needs to be generated. According

to this representation sender generates a new packet then inject it to network. All

activity is logged in a MySQL database, for later evaluation. Another

22

responsibility is all generated packets are marked. The mark operation is done

by generating a unique signature/id for generated packet and put it on the

payload. So that on Listener component, we are able to check whether the

captured packet is generated by our system or not.

 Listener: This component is a simple Python script based on Scapy. It sniffs the

outgoing traffic of firewall and records marked packets. All captured marked

packets are stored in our database as accepted. In this approach to check the

dropped packets, we need to check the logs of firewall whether the marked

packets generated by sender but not captured by listener are dropped because of

the policy or because of some other problem on firewall or network. This log

checking procedure is not generic because of the product specific log formats.

 Firewall: We used a PC with two Ethernet interfaces Linux 2.6 installed on it. As

firewall software we used iptables, which is easy to configure and easy to collect

logs of it. An example on how collect logs on iptables is as follows;

Log Incoming Dropped Packets:

iptables -N LOGGING

iptables -A INPUT -j LOGGING

iptables -A LOGGING -j LOG --log-prefix "[Incoming Dropped]: " --log-level 7

iptables -A LOGGING -j DROP

Log Outgoing Droped Packets:

iptables -N LOGGING

iptables -A OUTPUT -j LOGGING

iptables -A LOGGING -j LOG --log-prefix "[Outgoing Dropped]: " --log-level 7

iptables -A LOGGING -j DROP

 Evaluator: This component is the decision point of the test. This component

connects to MySQL database to compare the generated packets with captured

ones. This comparison evaluates only accepted packets, in order to evaluate

dropped packets we need to check iptables logs in syslog. By merging results of

two comparison method gives us the difference between expected results of

generated packets with actual results of firewall decision.

23

Figure 12. Experimental Setup

Another testing approach is simulation unlike the injection based firewall

testing. It is easier and more controlled environment. We don’t need to check the custom

log files to see the dropped packets are really dropped because of the policy or some

other problem. We developed a simple firewall engine to simulate a firewall based on

five tuples.

3.4. Mutation-Based Evaluation of Test Sets for Firewall Testing

 A coverage metric independent of implementation is necessary to evaluate test

sets generated for firewall testing. In this work, a mutation-based policy coverage

metric is presented analogous to specification coverage metric suggested by Ammann

and Black (1999). Although the general idea is similar, our approach differs from theirs

in the following points:

• We apply mutations to firewall policies, which are simple logic formulae,

whereas they apply mutations to temporal logic formulae, which are more general.

• We use flipping a bit mutation whereas they employed replace constant, replace

operator, replace variable, and remove expression mutations.

24

• We use policy decision point (Moses, 2005), which is an engine that makes

accept/deny decisions based on a set of policies, whereas they utilized model checker to

execute test cases.

 The calculation of mutation-based policy coverage metric for a policy and test

set is shown in Figure. 13. First, mutant policies (MPs) are generated using a mutation

method (M) from the original firewall policy (P). A generated mutant policy is not

accepted as a valid MP (VMP) if it is same with P.

Figure 13. Calculation of Mutation-Based Policy Coverage

The test set (TS) is executed on VMPs at the policy decision point. Mutation-based

policy coverage metric is mutation score (MS), which is the number of MPs killed

(KMPs) by TS divided by the total number of VMPs.

 MS(P , TS , M) = # of KMPs / # of VMPs (3.6)

 The flipping a bit mutation method is developed specifically for firewall

policies. The decision made and action taken by the firewall is either accept or deny,

which can be represented by one bit. If the necessary condition that is given in

Algorithm 6 and explained below occurs, then the slight change can be obtained by

flipping one bit, which means if the action field of a rule in the original policy is accept,

its corresponding mutant policy will have a rule with deny action and vice versa.

 The mutant policy generation algorithm is given in Figure 14. One of the

important questions in mutant generation is when to stop generating mutants. We follow

table coverage criteria in our mutant policy generation algorithm. A policy can be

represented as a table, number of rows is equal to the number of rules in the policy and

the number of columns is always equal to six. We generate a mutant policy for each cell

of the policy table. If we take the policy of the case study as an example, our algorithm

will generate 21× 6 = 126 mutant policies.

25

 As seen in Figure 14, a mutant policy is generated depending on the value of

each cell. The function create_mutant copies all the rules of the original policy except

the current rule, which is indicated by i, and changes the current rule depending on the

corresponding cell value. Although create_mutant function can be simplified in terms of

arguments to be passed and written as create_mutant(PT, i, false/true), is written with

all cell values to be passed to indicate what happens to which cell in the create_mutant

function.

Algorithm 6: Mutant Policy Generation Algorithm

input: PT

output: SMP

variables:
PT: original firewall policy represented as a table

SMP : set of mutant policies

steps:

SMP := {}

for i = 1 to number of rules

for j = 1 to 6

switch(j)

Case 1 ; if (PT[i,1] = “tcp”) then

SMP := SMP ∪
create_mutant(PT, i, “udp”, PT[i,2], PT[i,3], PT[i,4], PT[i,5],false);

break;

else SMP := SMP ∪

create_mutant(PT, i, “tcp”, PT[i,2], PT[i,3], PT[i,4], PT[i,5],false);

break;

Case 2 ; if (PT[i,2] of type concrete_IP_address) then

SMP := SMP ∪

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],false);

break;

else SMP := SMP ∪
create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],true);

break;

Case 3 ; if (PT[i,3] of type concrete_port) then

SMP := SMP ∪

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],false);

break;

else SMP := SMP ∪

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],true);

break;

Case 4 ; if (PT[i,4] of type concrete_IP_address) then

SMP := SMP ∪

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],false);

break;

else SMP := SMP ∪

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],true);

break;

Case 5 ; if (PT[i,5] of type concrete_port) then

SMP := SMP ∪

Figure 14. Mutant Polciy Generation Algorithm (Cont. on next page)

26

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],false);

break;

else SMP := SMP ∪

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],true);

break;

Case 6 ;

SMP := SMP ∪

create_mutant(PT, i, PT[i,1], PT[i,2], PT[i,3], PT[i,4], PT[i,5],true);

break;

end switch

end for

end for

return SMP

Figure 14. (cont.)

For j = 1, the value of first cell in the current rule is changed to another protocol

and values of the remaining cells are copied. The last argument of create_mutant

function indicates whether to apply the mutation operator to the action cell or not. A

FALSE value means “do not apply”, whereas a TRUE value means “do apply”.

 For j = 2 or 4, if the value of second cell or fourth cell in the current rule is a

concrete IP address, then a value from complementing address space is selected

randomly and mutation operator is not applied to action cell. If the value of second cell

or fourth cell in the current rule is an IP address range, then an address is selected

randomly from that range and mutation operator is applied to action cell.

 For j = 3 or 5, if the value of third cell or fifth cell in the current rule is a

concrete port value, then a value from complementing port space is selected randomly

and mutation operator is not applied to action cell. If the value of third cell or fifth cell

in the current rule is a port range, then a value from that port range is selected randomly

and mutation operator is applied to action cell.

 For j = 6, mutation operator is applied to the sixth cell. After mutant creation for

each j index value, the resulting mutant policy is compared with the original policy. If

they are the same policy, then the created mutant policy becomes an invalid mutant

policy to be discarded, thus nil is returned. If they are different, then mutant policy

returned from create_mutant function.

27

3.5. Implementation and Tool Support

 For the implementation of our approach, we developed a mutation analysis tool

called TG Firewall Testing Suite (TGFTS) in Java for firewall testing. As a mutation

analysis tool working on firewall policies, TGFTS first creates mutant policies from the

original firewall policy using only one mutation operation, flipping a bit. Each created

mutant has a slight change from the original policy. The Policies tabbed pane, shown in

Figure 16, creates and lists all the mutant policies. The user is able to check the content

of each mutant policy.

 The Test Cases tabbed pane enables users to generate test cases either using the

weighted selection method or randomly. All the parameters are entered in this pane.

After test cases are generated, they are listed with field values. The Results tabbed pane

shows mutant policies versus test cases matrix. Which test case kills which mutant

policy can be found out in this matrix.

 The last tabbed pane of TGFTS is called Mutation Analysis pane and shown in

Figure 15. This pane is used to list killed mutant policies, the test case that killed the

mutant and the rule of the mutant policies that the test case fails. As seen from the

figure, number of test cases, number of mutant policies, number of invalid mutant

policies, number of killed mutants, and calculated mutation score are presented at the

top of Mutation Analysis tabbed pane.

28

Figure 15. TG Firewall Testing Suite, Mutation Analysis Pane

Figure 16. TG Firewall Testing Suite, Policies Pane

29

CHAPTER 4

CASE STUDY

 The policy of the firewall is considered as a specification. Therefore, the firewall

testing context in this work is specification based testing, where the operation of FUT or

implementation of its policy is checked with respect to its specified policy, i.e. expected

behavior. Once the firewall policy is determined, it is loaded to the firewall and the

firewall is started. It should be noted that the loaded firewall policy on the FUT can be

changed externally after starting the firewall. In that case, firewalls require restart.

When that happens, we assume that the specified policy does not match the

implemented policy and if there is a mismatch it should be identified.

Firewall testing is one of the approaches to identify such a mismatch. Even if

there is no mismatch between specified and loaded policies, the firewall software and/or

hardware may not behave as expected. The unexpected behavior can also be uncovered

by using the firewall testing approach stated in this work, which is another merit of the

proposition.

4.1. Firewall Policy Under Consideration

The firewall policy under consideration (PUC) for the case study is taken from a

firewall, which protects a research laboratory in our university. Some of the IP addresses

are sanitized for security reasons. A mutant of it can be seen in Figure 16. Then the

policy is converted to a FDD, which is presented in Figure 17. Using FDD, abstract test

cases can be generated by traversing all paths so that path coverage criteria is satisfied.

For the right outmost path of the FDD given in Figure 17, the abstract test case is as

follows:

30

Table 3. Abstract Test Case

Test Input Protocol tcp

Test Input Src_IP [192.168.0.0- 192.168.255.255]

Test Input Dst_IP 120.130.140.100

Test Input Dst_port 20,21,22,80,110,143,443,465, 993,995, 10000-10003]

Expected Output Action accept

To instantiate concrete test cases for this abstract test case, test input values

should be selected for all fields. The sets of test input values similar to sets given in

Table 1 are determined prior to test input value selection process and employed by our

weight based test case selection approach. The test input values for all fields are

selected using the proposed weight based selection algorithm with initial-weight=100,

wap=0.1 and dc=0.1 values.

For definitive fields, such as Protocol and Dst_IP, the values in the abstract test

case are utilized. For Src_port field, which does not occur in the abstract case because it

is not in the FDD, a random number generator is employed to generate related test

Figure 17. FDD of the Firewall Policy Used for Case Study

31

value. After a test case is put together using selected test input values, it is checked for

uniqueness. If it exists in the test set, it is discarded and a new test case is formed. After

the composition of concrete test cases, network packets are generated from concrete test

cases and injected to the network.

4.2. Results and Discussion

The PUC for the case study has 21 rules. We generate 126 mutant policies from

PUC using mutant policy generation method. One of these mutant policies is consistent

with the original PUC, therefore counted as invalid mutant policy.

 The test input values for all fields are selected using the weight based selection

algorithm with initial- weight=100, wap=0.1 and dc=0.1 values and five test sets, called

WTSi, containing 50, 100, 150, 200, and 250 test cases are generated. Each test set

starts with test cases from the preceding test set and adds 50 more test cases to the end.

This way, we are able to observe the slope of increase in mutation score. The mutation

scores obtained for each weight based selected test set is illustrated in Figure 18.

Figure 18. Mutation Scores of WTS and RTS Sets

 Moreover, another five test sets, called RTSi, containing 50, 100, 150, 200, and

250 test cases are generated randomly. We use the mutation scores of these random

generated test sets as a baseline. The mutation scores obtained for each random

generated test set is illustrated in Figure 18 as well.

 There are two limitations to be considered with higher number of test cases. One

is the limitation introduced by our weighted test case selection approach. The maximum

number of test cases to be generated is bounded by the initial weight and the number of

elements existing in the sets of test input values. Second limitation comes from software

32

operational profile modeling research, which shows that after a certain point randomly

generated test cases outperforms any other test case generation approach (Li & Malaiya,

1994). However, that certain point depends on the operational profile of the software

and may be computationally infeasible.

33

CHAPTER 5

CONCLUSION

 To evaluate our weighted test case selection and generation approach for firewall

testing, we choose mutation analysis method. In the proposed approach, mutant policies

are generated from the original firewall policy using flipping a bit mutation. The

resulting set of mutant policies are exercised by five test sets, which are generated by

our weighted test case selection approach and compared with a different five test sets

that are generated randomly. It is observed that for the initial 250 test cases, weighted

test case selection and generation approach outperforms random test generation

approach for firewall testing.

 We will be extending the proposed approach by employing other mutation

operators suitable for firewall policies. Then, we would like to compare our weighted

test case generation approach with adaptive random testing and intelligent segmentation

testing.

34

BIBLIOGRAPHY

Ammann, P., & Black, P. (1999). A Specification-Based Coverage Metric to Evaluate

Test Sets. 14th IEEE International Symposium on High-Assurance Systems

Engineering. Washington, D.C.

Committee, C. -S. (2013, 06). Software and Systems Engineering Standards. Retrieved

from IEEE Standarts:

http://standards.ieee.org/findstds/standard/software_and_systems_engineering.ht

ml

El-Atawy, A., Ibrahim, K., Hamed, H., & Al-Shaer, E. (2005). Policy segmentation for

intelligent firewall testing. 1st IEEE ICNP Workshop on Secure Network

Protocols (NPSec).

Gouda, M., & Liu, X. (2004). Firewall Design: Consistency, Completeness, and

Compactness. 24th International Conference on Distributed Computing Systems.

Gupta, A., & Jalote, P. (2008). An Approach for Experimentally Evaluating

Effectiveness and Efficiency of Coverage Criteria for Software Testing.

International Journal on Software Tools for Technology Transfer, 145-160.

Hwang, J. H., Xie, T., Chen, F., & Liu, A. X. (2008). Systematic Structural Testing of

Firewall Policies. IEEE Symposium on Reliable Distributed Systems. Naples.

Jia, Y., & Harman, M. (2010). An Analysis and Survey of the Development of Mutation

Testing. IEEE Transactions on Software Engineering.

Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., & Frantzen, M. (2003). Analysis of

Vulnerabilities in Internet Firewalls. Computers&Security, 214-232.

Kaner, C. (2006). Exploratory Testing. Quality Assurance Institute Worldwide Annual

Software Testing Conference. Orlando, FL.

Li, N., & Malaiya, Y. (1994). On Input Profile Selection for Software Testing. 5th

International Symposium on Software Reliability Engineering. CA.

Ma, H. (2004). Specification Based Firewall Testing. Master of Arts Thesis. San

Marcos: Texas State University.

Mathur, A. P. (2008). Foundations of Software Testing: Fundamental Algorithms and

Techniques. Pearson Education.

Moses, T. (2005). Extensible access control markup language (xacml) version 2.0. Oasis

Standard.

35

Offutt, A., Rothermel, G., & Zapf, C. (1993). An experimental evaluation of selective

mutation. 15th International conference on Software Engineering (ICSE '93).

Oppliger, R. (1997, May). Internet Security: FIREWALLS and BEYOND.

Communications of the ACM Vol. 40, No. 5, pp. 92-102.

Sabnani, K., & Dahbura, A. (1988). A Protocol Test Generation Procedure. Computer

Networks and ISDN Systems, 285-297.

Senn, D., Basin, D., & Caronni, G. (2005). Firewall Conformance Testing. Testing of

Communicating Systems (pp. 226-241). Springer.

Smith, B., & Williams, L. (2009). Should Software Testers Use Mutation Analysis to

Augment a Test Set? Journal of Systems and Software, 1819-1832.

Tuglular, T. (2007). Test Case Generation for Firewall Implementation Testing Using

Software Testing Techniques. International Conference on Security of

Information and Networks. Cyprus.

Tuglular, T., & Belli, F. (2008). Model Based Mutation Testing of Firewalls. Testing:

Academic and Industrial Conference-Practice and Research Techniques. UK.

Tuglular, T., & Belli, F. (2009). Directed Acyclic Graph Modeling of Security Policies

for Firewall Testing. 1st International Workshop on Model-Based Verification &

Validation. Shanghai.

Tuglular, T., & Belli, F. (2009). Protocol-Based Testing of Firewalls. 4th South-East

European Workshop on Formal Methods. Thessaloniki.

Tuglular, T., & Gercek, G. (2010). Feedback Control Based Test Case Instantiation for

Firewall Testing. 7th International Workshop on Software Cybernetics. Seoul.

Wimmel, G., & Jürjens, J. (2002). Specification-Based Test Generation for Security-

Critical Systems Using Mutations. Formal Methods and Software Engineering,

(pp. 471-482).

Zaugg, G. (2005). Firewall Testing. MA Thesis. Zurich: Swiss Federal Institute of

Technology.

