PALLADIUM-CATALYZED ALKOXYCARBONYLATION REACTIONS OF (E)-2-EN-4-YNE CARBONATES

A Thesis Submitted to
the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
in Chemistry
by
Ezgi Şule KARAGÖZ

March 2013
IZMİR

We approve the thesis of Ezgi Şule KARAGÖZ

Examining Committee Members:

Prof. Dr. Levent ARTOK

Department of Chemistry, İzmir Institute of Technology

Assoc. Prof. Dr. Hayati TÜRKMEN
 Department of Chemistry, Ege University

Assist. Prof. Dr. Mustafa EMRULLAHOĞLU
Department of Chemistry, İzmir Institute of Technology

19 March 2013

Prof. Dr. Levent ARTOK
Supervisor, Department of Chemistry
İzmir Institute of Technology

Prof. Dr. Durmuş ÖZDEMİR
Head of the Department of Chemistry

Prof. Dr. R. Tuğrul SENGER
Dean of the Graduate School of Engineering and Sciences

ACKNOWLEDGEMENTS

There are many people to thank. I am heartily thankful to my supervisor Prof. Dr. Levent ARTOK for his patient guidance, encouragement and excellent advice throughout this study. This thesis could not have been written without his astute guidance.

During this work I have collaborated with my colleagues Fırat Ziyanak, Doğan Taç and Melih Kuş for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work at Chemistry Department. Also I would like to thank especially Erman Karakuş, Muhammed Üçüncü for their friendship.

I would like to thank to the Dr. Hüseyin Özgener for FT-IR analyses, Gürkan Eray Akpınar for HRMS analyses, Işın Özçelik and Salih Mehmet Günnaz for NMR analyses.

Special thanks to Assoc. Prof. Dr. Hayati TÜRKMEN and Asst. Prof. Dr. Mustafa EMRULLAHOĞLU for participating as committee member and for reviewing my work.

I am deeply and forever indebted to my parents for their love, support and encouragement throughout my entire life.

Abstract

\section*{PALLADIUM-CATALYZED ALKOXYCARBONYLATION REACTIONS OF (E)-2-EN-4-YNE CARBONATES}

Transition metal-catalyzed carbon-carbon bond formation reactions are wellrounded methods to synthetic organic chemistry. One type of these reactions is the alkoxycarbonylation reactions performed in the presence of a transition metal catalyst, an alcohol and carbon monoxide atmosphere.

Investigations on palladium-catalyzed alkoxycarbonylation reaction of allylic compounds leading to β, γ-unsaturated esters have been performed. Moreover propargyl derivatives are prominent reactants for palladium-catalyzed alkoxycarbonylation reactions to yield allene esters which proceed through a σ-allenylpalladium intermediate. Palladium-catalyzed alkoxycarbonylation reaction of some enantioenriched propargylic derivatives that facilitate unique centre-to-axis chirality transfer is still inadequate and essential.

In this study, the palladium-catalyzed alkoxycarbonylation reaction of E configured 2,4-enyne carbonates which afforded exclusively ester functionalized (E)configured vinylallenes through the formation of σ-vinylallenylpalladium species was performed. Moreover the chirality transfer of the proposed method was also surveyed over an enantio-enriched E-enyne carbonate.

ÖZET

(E)-2-EN-4-İN KARBONATLARIN PALADYUM KATALİZLİ ALKOKSİKARBONILASYON TEPKİMELERİ

Geçiş metal-katalizli karbon-karbon bağ oluşum tepkimeleri sentetik organik kimyada yaygın olarak kullanılan bir yöntemdir. Paladyum katalizörü, metanol ve karbon monoksit varlığında gerçekleştirilen alkoksikarbonilasyon tepkimeleri bu tepkimelerden bir tanesidir.
β, γ-doymamış esterlerin oluşumu ile sonuçlanan allilik bileşiklerin paladyum katalizli alkoksikarbonilasyon tepkimeleri üzerinde çalışmalar yapılmıştır. Bunun yanı sıra σ-allenilpaladyum ara yapısı üzerinden ilerleyen ve allen ester yapılarının oluşumunu sağlayan paladyum katalizli alkoksikarbonilasyon tepkileri için propargil türevleri önde gelen başlangıç maddeleridir. Enantiomerik açıdan zengin propargil türevlerinin paladyum-katalizli karbonilasyon tepkimeleri ile merkezden eksene kiralitenin aktarımına olanak sağlayabilen yöntemler hala yetersiz seviyede bulunmakta ve çok önemlidir.

Bu çalışmada, E-2-en-4-in karbonat yapılarının σ-allenpalladyum ara yapısı üzerinden ilerleyerek vinilallen ester yapılarını oluşturan paladyum katalizli alkoksikarbonilasyon tepkimeleri gerçekleştirilmiştir. Ayrıca enantiomerik açıdan zenginleştirilmiş E-enin karbonat yapıları kullanılarak önerilen yöntemin kiralite transfer özellikleri de araştırılmıştır.

TABLE OF CONTENTS

LIST OF FIGURES ix
LIST OF TABLES xiii
CHAPTER1. INTRODUCTION 1
CHAPTER 2. LITERATURE WORKS 3
2.1. Transition Metal-Catalyzed Carbonylation of Alkenes 3
2.1.1. Carbonylation Reaction of Allyl Compounds 5
2.2. Palladium-Catalyzed Alkoxycarbonylation of Alkynes 7
2.2.1. Pd-Catalyzed Reactions of Propargyl Compounds 9
2.2.2. Carbonylation Reactions of Propargylic Compounds Containing a Leaving Group 11
2.3. Synthesis of Vinylallenes 14
2.3.1. Synthesis of Vinylallenes with Grignard Reagent 14
2.3.2. Synthesis of Vinylallenes with Organocopper Reagents 15
2.3.3. Palladium-Catalyzed Synthesis of Vinylallene By Organozinc Reagent 16
2.3.4. Palladium-catalyzed Synthesis of Vinylallenes By N- tosylhydrazone Salt 16
2.3.5.Palladium-Catalyzed Synthesis of Vinylallene by Alkenyl Trifluoroborates 17
2.3.6. $\mathrm{Rh}(\mathrm{I})$-Catalyzed Reaction of the (Z)-Enyne Acetate with Organoboronic Acids 17
2.3.7. Palladium-Catalyzed Reaction of 2-en-4-yne Carbonates with Organoboronic Acids 18
2.3.8. Palladium-Catalyzed Alkoxycarbonylation Reaction of (Z)-2-en-4-yne Carbonates 19
CHAPTER 3. EXPERIMENTAL STUDY 20
3.1. General Procedures for Drying the Solvents 20
3.2. Synthesis of Substrates 20
3.2.1. Synthesis of E-Enyne Alcohols $\mathrm{S} 6 \mathrm{~g}, \mathrm{~h}, \mathrm{j}, 1, \mathrm{~m}-\mathrm{o}: 20$
3.2.2. Synthesis of E-Enyne Alcohols S6a-b, d-e: 22
3.2.3. Synthesis of E-Enyne Alcohol S6c: 24
3.2.4. Synthesis of E-Enyne Alcohol S6f: 26
3.2.5. Synthesis of E-Enyne Alcohol S6i: 28
3.2.6. Synthesis of E-Enyne Carbonate E-1k: 29
3.2.7. Synthesis of (S, E)-4-methyldec-3-en-5-yn-2-ol 31
3.2.8. Synthesis of (R, E)-4-methyldec-3-en-5-yn-2-ol 32
3.2.9. Typical Procedures for the Preparation of Enyne Carbonates. 34
3.3. Characterization of Reactants 35
3.4. General Procedure for Carbonylation Reactions 43
3.5. Characterization of Products. 43
CHAPTER 4. RESULTS AND DISCUSSION 51
CHAPTER 5. CONCLUSION 67
REFERENCES
APPENDICES
APPENDIX A. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR SPECTRUMS OF REACTANTS 73
APPENDIX B. MASS SPECTRUMS OF REACTANTS 101
APPENDIX C. FTIR SPECTRUMS OF REACTANTS 117
APPENDIX D. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ SPECTRUMS OF PRODUCTS 132
APPENDIX E. MASS SPECTRUM OF PRODUCT 161
APPENDIX F. FT-IR SPECTRUMS OF PRODUCTS 177
APPENDIX G. GC CHROMATOGRAMS OF REACTANTS 192
APPENDIX H. HPLC CHROMATOGRAMS OF PRODUCTS 196

LIST OF FIGURES

Figure Page
Figure 2.1. Palladium-catalyzed hydroesterification of alkenes 3
Figure 2.2. Mechanisms for the palladium-catalyzed hydroesterification of alkenes via Pd-alkoxycarbonyl intermediate 4
Figure 2.3. Mechanisms for the palladium-catalyzed hydroesterification of alkenes via acyl- palladium intermediate 4
Figure 2.4. Palladium-catalyzed carbonylation reaction of 3-chloroprop-1-ene 5
Figure 2.5 Palladium-catalyzed alkoxycarbonylation of allyl carbonates 5
Figure 2.6. Alkoxycarbonylation mechanism of allyl carbonates 6
Figure 2.7. Palladium-catalyzed alkoxycarbonylation of allyl phosphates 6
Figure 2.8. Palladium-catalyzed alkoxycarbonylation of allyl acetates 7
Figure 2.9. Pd-catalyzed alkoxycarbonylation of terminal alkynes 7
Figure 2.10. The mechanism of alkoxycarbonylation of alkynes via (alkoxycarbonyl)palladium intermediate 8
Figure 2.11. The mechanism of alkoxycarbonylation reaction of alkynes via palladium-hydride formation 8
Figure 2.12. Palladium-catalyzed alkoxycarbonylation reaction of internal alkynes 9
Figure 2.13. Palladium-catalyzed reaction of propargyl compounds including two intermediate 9
Figure 2.14. Reaction of σ-prop-2- ynylpalladium intermediate 9
Figure 2.15. Reaction of σ-allenylpalladium which involves nucleophilic attack (Source: Meijere, et al. 2004) 10
Figure 2.16. Reaction of σ-allenylpalladium which involves transmetallation 10
Figure 2.17. Reactions of σ-allenylpalladium which involves insertion (Source: Meijere, et al. 2004) 11
Figure 2.18. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of propargyl compounds 11
Figure 2.19. Alkoxycarbonylation of propargyl carbonates 12
Figure 20. Alkoxycarbonylation of propargyl carbonates to form 2,4-dienyl carboxylate 12
Figure 2.21. Pd-catalyzed alkoxycarbonylation mechanism of propargylic carbonates 13
Figure 2.22. Carbonylation reaction of optically active propargylic phosphates (Source: Tsuji et al. 1995) 13
Figure 2.23. Carbonylation reaction of propargylic mesylate to give optically active allenes (Source: Marshall et al. 1997) 14
Figure 2.24. The reaction of chloro-enynes with Grignard reagents 14
Figure 2.25. 1,5-(SN2'')-type Substitution reaction of enyne acetates with dialkyl cuprates (Source: Krause et al. 1999) 15
Figure 2.26. 1,5-($\mathrm{S}_{N} 2$ '")-type Substitution reaction of enyne oxiranes with dialkyl cuprates (Source: Krause et al. 1999) 15
Figure 2.27. Synthesis of Vinylallenes by organozinc reagents 16
Figure 2.28. Synthesis of vinylallene synthesis by N-tosylhydrazone Salt (Source: Chen, et al. 2011) 17
Figure 2.29. Synthesis of vinylallene by alkenyltrifluoroborates (Source: Molander, et al.2006) 17
Figure 2.30. Rh(I)-Catalyzed Reaction of the (Z)-Enyne Acetate with Organoboronic Acids 18
Figure 2.31. Palladium-Catalyzed Reaction of 2-en-4-yne Carbonates with Organoboronic Acids 18
Figure 2.32. Palladium-Catalyzed Alkoxycarbonylation Reaction of (Z)-2-en-4- yne Carbonates 19
Figure 3.1. Synthesis of E-Enyne Alcohols S6g, h, j, m-o 20
Figure 3.2. Synthesis of $\mathbf{S 3 m}(\mathrm{R} 1=\mathrm{Ph})$ by Sonagashira Coupling of $\mathbf{S} 2$ (Source:Takeuchi, et al. 2000). 22
Figure 3.3. Synthesis of E-Enyne Alcohols S6a-b, d-e. 22
Figure 3.4. Synthesis of E-Enyne Alcohols S6c 24
Figure 3.5. Synthesis of E-Enyne Alcohol S6f. 26
Figure 3.6. Synthesis of E-Enyne Alcohol S6i 28
Figure 3.7. Synthesis of (E)-Enyne Carbonate $\boldsymbol{E} \mathbf{- 1 k}$ 29
Figure 3.8. Synthesis of (S, E)-4-methyldec-3-en-5-yn-2-ol 31
Figure 3.9. Synthesis of E-Enyne Carbonates \boldsymbol{E}-1a-e, h, k-o 34
Figure 3.10. Synthesis of E-Enyne Carbonates $\boldsymbol{E} \mathbf{- 1 f} \mathbf{- g}$, i-j 34
Figure 3.11. (E)-6-cyclohexyl-4-methylhex-3-en-5-yn-2-yl methyl carbonate 35
Figure 3.12. Methyl (E)-4,7,7-trimethyloct-3-en-5-yn-2-yl carbonate 36
Figure 3.13. (E)-dec-3-en-5-yn-2-yl methyl carbonate 36
Figure 3.14. (E)-4-butyldec-3-en-5-yn-2-yl methyl carbonate 37
Figure 3.15.Methyl (E)-4-phenyldec-3-en-5-yn-2-yl carbonate 37
Figure 3.16. Methyl (E)-3-methyldec-3-en-5-yn-2-yl carbonate 38
Figure 3.17. Methyl (E)-3-methyl-1-phenylnon-2-en-4-ynyl carbonate 38
Figure 3.18. Methyl (E)-3-methylnon-2-en-4-ynyl carbonate 39
Figure 3.19. Methyl (E)-4-methyldodeca-3-en-5,7-diyn-2-yl carbonate 39
Figure 3.20. Methyl (E)-4-methyldec-3-en-5-yn-2-yl carbonate 40
Figure 3.21. (E)-hept-3-en-5-yn-2-yl methyl carbonate 40
Figure 3.22. Methyl (E)-4-methylhept-3-en-5-yn-2-yl carbonate 41
Figure 3.23. Methyl (E)-4-methyl-6-phenylhex-3-en-5-yn-2-yl carbonate 41
Figure 3.24. Methyl (E)-2,5-dimethyloct-4-en-6-yn-3-yl carbonate 42
Figure 3.25. Methyl (E)-7-methyldec-6-en-8-yn-5-yl carbonate 42
Figure 3.27. (E)-methyl 2-cyclohexyl-4-methylhepta-2,3,5-trienoate 44
Figure 3.28. (E)-methyl 2-tert-butyl-4-methylhepta-2,3,5-trienoate 45
Figure 3.29. (E)-methyl 2-butylhepta-2,3,5-trienoate. 45
Figure 3.30. Methyl 2-butyl-4-(E)-prop-1-enyl)octa-2,3-dienoate 46
Figure 3.31. (E)-methyl 2-butyl-4-phenylhepta-2,3,5-trienoate 46
Figure 3.32. (E)-methyl 2-butyl-4-methylhepta-2,3,5-trienoate 46
Figure 3.33. (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate. 47
Figure 3.34. (E)-methyl 4-methyl-2-phenylhepta-2,3,5-trienoate 47
Figure 3.35. (E)-methyl 2,4,7-trimethylocta-2,3,5-trienoate 48
Figure 3.36. (E)-methyl 2,4-dimethyldeca-2,3,5-trienoate 48
Figure 3.37. (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate 49
Figure 3.38. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate 49
Figure 3.39. (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate 50
Figure 3.40. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate 50
Figure 4.1. $\mathrm{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonates 51
Figure 4.2. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonates $(\boldsymbol{E} \mathbf{- 1 j})$ in the presence of NHC ligand 55
Figure 4.3. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonate (\boldsymbol{E}-1f) 60
Figure 4.4. $\mathrm{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonate $(\boldsymbol{E}-\mathbf{1 g})$ 61
Figure 4.5. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonate $(\boldsymbol{E}-\mathbf{1 h})$ 61
Figure 4.6. $\mathrm{Pd}(0)$-catalyzed alkoxycarbonylation of E-endiyne carbonate $(\boldsymbol{E}-1 \mathbf{i})$ 61
Figure 4.7. Proposed reaction mechanism of alkoxycarbonylation of (E)-enyne carbonates 62
Figure 4.8. $\operatorname{Pd}(0)$-catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate ($\boldsymbol{S}, \boldsymbol{E}$)- $\mathbf{1} \mathbf{j}$ with S, S-Chiraphos 64
Figure 4.9. $\operatorname{Pd}(0)$-catalyzed Alkoxycarbonylation Reactions of Enyne Carbonate ($\boldsymbol{R}, \boldsymbol{E}$) $\mathbf{- 1 \mathbf { j }}$ with DPEphos 66

LIST OF TABLES

Table Page
Table 4.1. Effect of Various Mono-dentate Ligands on Pd(0)-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate $\boldsymbol{E}-\mathbf{1 j}{ }^{\text {a }}$ 52
Table 4.2 Effect of Various Bidentate Ligands on Pd(0)-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate $\boldsymbol{E}-1 \mathbf{j}^{\text {a }}$ 54
Table 4.3.Effect of Catalyst and Catalyst/Ligand Ratio on Pd(0)-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonates \boldsymbol{E} - $\mathbf{1 j}$ 56
Table 4.4.Effect of Amount of $\mathrm{Pd} / \mathrm{PPh}_{3}$ Catalyst system, CO Pressure and Temperature on $\operatorname{Pd}(0)$-catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonates $\boldsymbol{E}-\mathbf{1 j}$ 57
Table 4.5.Pd(0)-catalyzed alkoxycarbonylative reaction of $\boldsymbol{E} \mathbf{- 1 \mathbf { j }}$ with various alcohols ${ }^{\text {a,c }}$ 58
Table 4.6.Pd(0)-Catalyzed Alkoxycarbonylation Reactions of Various E-Enyne Carbonates ${ }^{\text {a }}$ 59
Table 4.7.Pd(0)-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate ($\boldsymbol{S}, \boldsymbol{E}$) - $\mathbf{1} \mathbf{j}$ at Different Reaction Temperatures ${ }^{\text {a }}$ 63
Table 4.8. $\operatorname{Pd}(0)$-catalyzed Alkoxycarbonylation Reactions of (E)-Enyne Carbonate ($\boldsymbol{S}, \boldsymbol{E}$) $\mathbf{- 1} \mathbf{j}$ with Different Ligands ${ }^{\text {a }}$ 64

CHAPTER 1

INTRODUCTION

Since the first cobalt-catalyzed hydroformylation reaction was performed by Roelen in 1939 transition-metal catalyzed carbonylation reaction, in which carbon monoxide used as a reactant, became the efficacious method to synthesize the compounds comprising a carbonyl functionality. Catalytic carbonylation reaction of unsaturated hydrocarbons in the presence of CO and a nucleophile showed by Reppe in 1953 accelerated the synthesis of $\alpha-\beta$ unsaturated carbonyl compounds showing biological activity via catalytic carbonylation reactions.

For a few decades, the synthesis of allenes has become a hot research topic due to its unique reactivity toward many synthetic reactions and its importance as a reaction intermediate for organic synthesis. Although allenes attract the attention of many medicinal and organic chemists owing to the existence of allenyl moieties in many natural products and biologically active compounds catalytic stereoselective synthesis of allenes are still deficient and indispensable.

Many C-C-coupling reactions using organometallic reagents such as Grignard, organolithium, organocopper, organozinc and organoindium are well-known and widespread methods and a number of which can produce allene structures. For instance, readily available alkynes bearing a leaving group on the propargylic position is prominent reactants for $\mathrm{C}-\mathrm{C}$ bond forming reactions to yield the allene derivatives.

After the first palladium-catalyzed carbonylation reaction of propargylic compounds reported in 1966 (Tsuji, et al. 1995), the Pd-catalyzed alkoxycarbonylation reaction of propargylic derivatives under mild conditions have become a substantial method for the synthesis of allenyl esters.

Propargylic compounds such as propargylic carbonates, phosphates, and mesylates having a vinyl functionality can undergo palladium-catalyzed transformations in the presence of a hard or soft nucleophile as a coupling partner to afford vinylallenes, which are valuable building blocks toward various synthetic applications (Molander, et al. 2006, Ma, et al. 2003, Chen, et al. 2011).

In 2011, Akpinar et al. showed that the palladium-catalyzed alkoxycarbonylation reactions of Z-configured conjugated enyne carbonates, the allenes with an ester functionality on one of the end allenyl carbon.

In this study, the applicability of the palladium-catalyzed alkoxycarbonylation reaction was also investigated for E-configured 2,4-enyne carbonates. The palladiumcatalyzed alkoxycarbonylation reaction of E-configured 2,4-enyne carbonates afforded exclusively the (E)-configured ester functionalized vinylallenes via σ vinylallenylpalladium species. Moreover the carbonylation reaction of enantioriched E enyne carbonates leading to synthesis of enantioenriched vinylallenes was also surveyed.

CHAPTER 2

LITERATURE WORKS

2.1. Transition Metal-Catalyzed Carbonylation of Alkenes

To synthesize variety of saturated carbonyl compounds such as carboxylic acids, anhydrides, esters, amides, amino acids, etc., transition metal catalyzed carbonylation reaction of olefins are versatile method (Chaudhari, et al. 2005). The name of the carbonylation reaction changes according to type of the nucleophile such as water, hydrogen and alcohol. The palladium-catalyzed alkoxycarbonylation of alkenes with CO and alcohols, also named as hydro esterification, have become crucial by virtue the high abundance of palladium as a synthetic method to lead to branched and linear esters (Figure 2.1) (Beller, et al. 2009).

Figure 2.1. Palladium-catalyzed hydroesterification of alkenes.

Two types of catalytic cycles have been proposed for the hydroesterification reaction of olefins (Claver et al. 2001).

Based on the first mechanism, a cycle starts with the formation of a Pdalkoxycarbonyl complex. The insertion of alkene to the Pd-carbon bond of a Pdalkoxycarbonyl intermediate and consecutive alcoholysis yield an ester and regenerate the palladium complex (Figure 2.2).

Figure 2.2. Mechanisms for the palladium-catalyzed hydroesterification of alkenes via Pd-alkoxycarbonyl intermediate

In the second reaction mechanism, the alkene is estimated to insert the $\mathrm{Pd}-\mathrm{H}$ bond to produce Pd-alkyl intermediate. Then a migratory insertion of CO to the Pdcarbon bond of the alkyl metal complex gives acyl-palladium intermediates. A subsequent nucleophilic attack of alcohol produces a linear or branched ester (Figure 2.3).

Figure 2.3. Mechanisms for the palladium-catalyzed hydroesterification of alkenes via acyl- palladium intermediate

A chemoselective- and regioselective alkoxycarbonylation reactions can be performed to yield only one of the branched or linear ester under an appropriate reaction condition and catalytic system.

2.1.1. Carbonylation Reaction of Allyl Compounds

In 1964 , Tsuji et al. showed that π-allylpalladium chloride can be converted to 3 butenoate under carbon monoxide pressure in alcohol via using PdCl_{2} as catalyst Figure 2.4).

Figure 2.4. Palladium-catalyzed carbonylation reaction of 3-chloroprop-1-ene

In 1984, Tsuji and coworkers described a first catalytic system consisting $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ to carry out the palladium catalyzed alkoxycarbonylation reaction of allylic carbonates, which give β, γ-unsaturated esters, at elevated $50{ }^{\circ} \mathrm{C}$ under atmospheric or higher pressures of carbon monoxide and neutral conditions (Figure 2.5).

Figure 2.5 Palladium-catalyzed alkoxycarbonylation of allyl carbonates

According to the proposed mechanisms, the oxidative addition of palladium to an allyl carbonate and subsequent decarboxylation form a π-allylpalladium alkoxide intermediate. The following carbon monoxide insertion can take place via two possible paths. These are the insertion of carbon monoxide to the π-allylpalladium bond to give a 3-butenoylpalladium complex and the insertion into the palladium-alkoxide bond to give a (carboalkoxy)(π-ally1)palladium complex. Finally a reductive elimination step leads to the formation a β, γ-unsaturated ester structure and regeneration of $\operatorname{Pd}(0)$ species (Figure 2.6).

Figure 2.6. Alkoxycarbonylation mechanism of allyl carbonates

In 1993, Murahashi and his co-workers demonstrated that the allyl phosphates are excellent reactants for palladium-catalyzed alkoxycarbonylation reaction. The reaction is carried out in the presence of $2 \mathrm{~mol} \%$ of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}, 2 \mathrm{~mol} \%$ of PPh_{3}, and 1 equiv. of i - $\mathrm{Pr}_{2} \mathrm{NEt}$ in ethanol to obtain the β, γ-unsaturated esters with high yields. The branched phosphates give linear β, γ-unsaturated esters and the reaction can cause the isomerization of β, γ-unsaturated esters (Figure 2.7).

Figure 2.7. Palladium-catalyzed alkoxycarbonylation of allyl phosphates

Also allyl acetates produce β, γ-unsaturated esters via palladium-catalyzed alkoxycarbonylation reactions under the condition containing NaBr as a cocatalyst (Figure 2.8). Sodium bromide accelerates the reaction because the insertion of carbon
monoxide into π-allylpalladium bromide complex proceeded by the ligand exchange of acetate with bromide after the generation of π-allylpalladium acetate complex is facile (Murahashi et al. 1993).

Figure 2.8. Palladium-catalyzed alkoxycarbonylation of allyl acetates

2.2. Palladium-Catalyzed Alkoxycarbonylation of Alkynes

The alkoxycarbonylation reaction of simple alkynes that produces the α, β unsaturated esters an extensive process, which is performed over Pd catalysts in the presence of alcohols. The selectivity in formation of linear or branched esters may differentiate depending on the catalytic system and reaction conditions (Figure 2.9).

Figure 2.9. Pd-catalyzed alkoxycarbonylation of terminal alkynes

In 1998, Scrivanti et al. reported two feasible paths for the alkoxycarbonylation reaction of terminal alkynes based on the literature and deuterium labeled studies. First mechanism starts with the formation of an (alkoxycarbonyl)-palladium by the insertion of CO into a Pd-OR bond. Carboalkoxy moiety on a carbon atom of the triple bond of the 1 -alkyne π-coordinated to the metal center shifts and finally protonation gives the desired branched esters. (Figure 2.10)

Figure 2.10. The mechanism of alkoxycarbonylation of alkynes via (alkoxycarbonyl) palladium intermediate

The second mechanism involves the insertion of terminal alkyne into the palladium-hydrogen bond resulted the vinyl palladium intermediate. Insertion of CO to $\mathrm{Pd}-\mathrm{C}$ bond and alcoholysis led to branched esters. (Figure 2.11)

Figure 2.11. The mechanism of alkoxycarbonylation reaction of alkynes via palladiumhydride formation

In 1998, Reetz and coworkers showed that the palladium catalyzed alkoxycarbonylation reaction is applicable to symmetrical terminal alkynes in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{2} \mathrm{Py}$ catalytic systems (Figure 2.12).

Figure 2.12. Palladium-catalyzed alkoxycarbonylation reaction of internal alkynes

2.2.1. Pd-Catalyzed Reactions of Propargyl Compounds

$\mathrm{Pd}(0)$-catalyzed reactions of various propargyl compounds proceed by formation of two different intermediates which are σ-allenylpalladium or the propargylpalladium (or σ-prop-2-ynylpalladium) structures (Figure 2.13) (Elsevier et al. 1983-1986).

Figure 2.13. Palladium-catalyzed reaction of propargyl compounds including two intermediate

A propargylpalladium intermediate can undergo hydrogenolysis to generate alkynes or β-H elimination to yield conjugated enynes (Figure 2.14) (Tsuji, et al. 1995).

Figure 2.14. Reaction of σ-prop-2- ynylpalladium intermediate

Depending on the reactants an σ-allenylpalladium intermediate can undergo three types of reactions.

First type of reaction involves nucleophilic attack such as β-keto esters and malonates at the central sp hybridized carbon atom of the σ-allenylpalladium intermediate. The Pd-carbene complex is generated from the nucleophilic attack. The carbine intermediate takes a proton and forms π-allylpalladium complex. Further
reaction of nucleophile and π-allylpalladium results in formation of the alkene containing nucleophiles on its olefinic and allylic carbons (Figure 2.15).

Figure 2.15. Reaction of σ-allenylpalladium which involves nucleophilic attack (Source: Meijere, et al. 2004)

The second type of reaction occurs by the transmetallation between the σ allenylpalladium and hard nucleophiles such as metal hydrides, Grignard reagents and organozinc reagents. Allene products are formed as a result of the reductive elimination (Figure 2.16) (Tsuji, et al. 2004).

$$
\begin{gathered}
\mathrm{M}=\mathrm{Mg}, \mathrm{Zn}, \mathrm{~B}, \mathrm{Si}, \mathrm{Cu} \\
\mathrm{R}=\text { aryl, alkenyl, alkynyl, H}
\end{gathered}
$$

Figure 2.16. Reaction of σ-allenylpalladium which involves transmetallation

In the third type of reactions, the insertions of unsaturated bonds of alkenes, alkynes, or CO into the σ-bond between palladium and sp^{2} carbon of the σ allenylpalladium complex takes place (Figure 2.17).

Figure 2.17. Reactions of σ-allenylpalladium which involves insertion (Source: Meijere, et al. 2004)

2.2.2. Carbonylation Reactions of Propargylic Compounds Containing a Leaving Group

As mentioned in the previous section, alkynes bearing different leaving groups on its propargylic position can undergo different types of transformations which are transmetallation, nucleophilic attack and insertion in the presence of palladium. The common and key point of this transformation is the formation of the σ-allenylpalladium complex. Carbon monoxide can easily insert the bond between palladium and the carbon atom of the σ-allenylpalladium complex. As a result of this property, propargyl compounds can give palladium catalyzed mono- and dicarbonylation reaction related to the reaction conditions (Tsuji, et al.1993).

X: OCOOR, OCOR, PO(OR) ${ }_{2}$, Br, Ms

Figure 2.18. $\mathrm{Pd}(0)$-catalyzed alkoxycarbonylation of propargyl compounds

In 1986, Tsuji and coworkers published the first palladium-catalyzed carbonylation reaction of propargyl carbonates to generate the 2,3-dienyl carboxylates in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3} / \mathrm{PPh}_{3}$ catalytic systems (Figure 2.19).

Unlike the primary propargylic carbonates having terminal triple bond which forms the desired product with low yield a tertiary propargyl carbonates having terminal triple bond give the carbonylation reaction with excellent yield. Secondary carbonates having internal alkyne moiety is also suitable to carbonylation to high yields of allenyl ester (Figure 2.19).

Figure 2.19. Alkoxycarbonylation of propargyl carbonates

They noted that the 2,4-dienyl carboxylate was formed instead of allenyl esters as the reaction was performed in ether, instead of methanol (Figure 2.20).

Figure 20. Alkoxycarbonylation of propargyl carbonates to form 2,4-dienyl carboxylate

Their proposed reaction mechanism starts with the oxidative addition of $\operatorname{Pd}(0)$ to propargyl carbonate followed by decarboxylation to generate an (allenyl)palladium alkoxide complex. After coordination of carbon monoxide to the complex and insertion
into the palladium-carbon bond, reductive elimination gives the allenyl esters and regenerates the $\mathrm{Pd}(0)$ (Figure 2.21).

Figure 2.21. Pd-catalyzed alkoxycarbonylation mechanism of propargylic carbonates

In the presence of 20 atm pressure of carbon monoxide and methanol, an optically active 2,3 -dienoate could be synthesized under the $\mathrm{Pd}(\mathrm{OAc})_{2} / 1,6$ bis(diphenylphosphino)hexane catalytic system when optically active propargyl phosphates were used (Figure 2.22) (Tsuji et al. 1995).

Figure 2.22. Carbonylation reaction of optically active propargylic phosphates (Source: Tsuji et al. 1995)

Palladium catalyzed carbonylation reaction of enantioriched propargylic mesylates can lead to formation of enantioriched allenyl esters by exposure of the mesylates to CO and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in the presence of an alcohol(Figure 2.23). However the centre to axial chirality transfer failed when a propargylic carbonate was carbonylated instead (Marshall et al. 1997).

Figure 2.23. Carbonylation reaction of propargylic mesylate to give optically active allenes (Source: Marshall et al. 1997).

2.3. Synthesis of Vinylallenes

Developing methods to synthesize vinyl allenes bearing cumulenic and vinylic group has come prominence because of its widespread use in organic reaction such as inter- and intramolecular Diels-Alder reactions, cycloisomerization reactions and cyloaddition reactions.

2.3.1. Synthesis of Vinylallenes with Grignard Reagent

In 1972, Gore et al. performed the reaction of 1-chloro-2-en-4-ynes with methylmagnesium iodide and trimethylsilylmagnesium chloride to produce vinyl substituted allenes (Figure 2.24).

Figure 2.24. The reaction of chloro-enynes with Grignard reagents

The applicability of this process is limited owing to the fact that other Grignard reagents except methylmagnesium iodide and trimethylsilylmagnesium chloride completely failed to yield desired vinylallenes.

2.3.2. Synthesis of Vinylallenes with Organocopper Reagents

Previously 1,5-($\left.\mathrm{S}_{N} 2^{\prime \prime}\right)$-type reaction of 2-en-4-yne acetates with various lithium dialkylcuprates affording vinylallenes with excellent yields was reported. The method is apparently is not diastereoselective, yielding vinyl allene compounds as E - and Zmixtures (Figure 2.25).

Figure 2.25. 1,5-($\left.\mathrm{S}_{N} 2^{\prime \prime}\right)$-type Substitution reaction of enyne acetates with dialkyl cuprates (Source: Krause et al. 1999)
E-enyne oxirane was also found to be reactive reagents toward copper catalyzed $1,5-\left(\mathrm{S}_{N} 2^{\prime \prime}\right)$-type reactions. The substrate reacted cleanly with the tert-butylcuprate to afford the alkylated vinylallene bearing hydroxyl group on its vinylic position (Figure 2.26).

Figure 2.26. 1,5-($\mathrm{S}_{N} 2$ '')-type Substitution reaction of enyne oxiranes with dialkyl cuprates (Source: Krause et al. 1999)

2.3.3. Palladium-Catalyzed Synthesis of Vinylallene By Organozinc Reagent

Ma and coworkers demonstrated that the palladium catalyzed coupling reaction of propargyl mesylate with alkoxycarbonylethenyl zinc complexes can form vinyl allenes with excellent yields in the presence of a catalyst system resulting from the combination of 2- diphenylphosphino-2'-hydroxy-1,1'-binaphthalene (L) and $[\{\operatorname{PdCl}(\pi$ $-\mathrm{C}_{3} \mathrm{H}_{5}$) $\}_{2}$] (Ma, et al. 2003) (Figure 2.27).

Figure 2.27. Synthesis of Vinylallenes by organozinc reagents

2.3.4. Palladium-catalyzed Synthesis of Vinylallenes By \mathbf{N} tosylhydrazone Salt

New synthetic method reported by Chen showed that diazo compound generated in-situ from N-tosylhydrazone salt in the presence of base can tend as a nucleophile and react with the propargylic carbonates to form tri- and tetra- substituted vinylallene structures in the presence of $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ as a catalyst (Figure 2.28) (Chen, et al. 2011).

Figure 2.28. Synthesis of vinylallene synthesis by N-tosylhydrazone Salt (Source: Chen, et al. 2011)

2.3.5.Palladium-Catalyzed Synthesis of Vinylallene by Alkenyl Trifluoroborates

In addition to synthesis of several racemic allenes having different functional groups, central to axial chirality transfer was investigated utilizing $\operatorname{Pd}(0)$-catalyzed cross-coupling reaction of enantioriched propargylic carbonates and phosphates with alkenyltrifluoroborates (Molander, et al.2006) (Figure 2.29).

Figure 2.29. Synthesis of vinylallene by alkenyltrifluoroborates
(Source: Molander, et al.2006)

2.3.6. Rh(I)-Catalyzed Reaction of the (Z)-Enyne Acetate with Organoboronic Acids

In 2011, Üçüncü, et al. reported that rhodium(I)-catalyzed reaction of (Z)-2-en4 -yne acetates with organoboronic acids afforded vinylallenes. The reaction is suitable
for arylboronic acids having both electron-withdrawing or -donating groups (Figure 2.30).

Figure 2.30. $\mathrm{Rh}(\mathrm{I})$-Catalyzed Reaction of the (Z)-Enyne Acetate with Organoboronic Acids

2.3.7. Palladium-Catalyzed Reaction of 2-en-4-yne Carbonates with Organoboronic Acids

Üçüncü and coworkers also proved that arylboronic acids having different electron deficient or electron donating substituents are good coupling partner for (E) and (Z)-configured enyne carbonates under the palladium-catalyst conditions, yielding exclusively the (E)-configured vinylallenes (Figure 2.31).

Figure 2.31. Palladium-Catalyzed Reaction of 2-en-4-yne Carbonates with Organoboronic Acids

The $\operatorname{Pd}(0)$-catalyzed 1,5 -substitution type reactions of 2 -en- 4 -yne and organoboronic acids proceeded through the formation of σ-vinylallenylpalladium (II) intermediate and transmetallation type reaction of σ-vinylallenylpalladium (II) intermediate and organoboronic acids.

2.3.8. Palladium-Catalyzed Alkoxycarbonylation Reaction of (Z)-2-en-4-yne Carbonates

For the first time the synthesis of vinylallenyl esters was investigated by Akpınar et al. in 2011. Conjugated (Z)-enyne having a carbonate as a leaving group at allylic moiety underwent $\operatorname{Pd}(0)$-catalyzed reaction to lead to $2,3,5$-trienoate products with high yields (Figure 2.32).

Figure 2.32. Palladium-Catalyzed Alkoxycarbonylation Reaction of (Z)-2-en-4-yne Carbonates

Palladium-catalyzed alkoxycarbonylation reaction is also applied to an enantioriched (Z)-enyne. It was found that the reaction proceeded with complete racemization.

CHAPTER 3

EXPERIMENTAL STUDY

3.1. General Procedures for Drying the Solvents

Tetrahydrofuran (THF) and dichloromethane (DCM) solvents were all purified by a solvent purification system (MBRAUN SPS-800). $\mathrm{Et}_{2} \mathrm{O}$ was distilled from benzophenone-ketyl under argon prior to use. Methanol was dried over Mg turnings in the presence of iodine and stored on $3 \AA$ molecular sieves under Argon. Pyridine was dried over CaH_{2} and stored on $3 \AA$ molecular sieves under Argon.

3.2. Synthesis of Substrates

3.2.1. Synthesis of \boldsymbol{E}-Enyne Alcohols S6g, h, j, l, m-o:

Figure 3.1. Synthesis of E-Enyne Alcohols S6g, h, j, m-o

To the mixture of commercially available, (E)-pent-2-en-4-yn-1-ol (S1) $(9.6 \mathrm{~g}$, 100 mmol) and 3,4-dihydropyran (11 mL) was added p-toluenesulfonic acid (220 mg , 0.1 mmol) and then stirred for 45 min at room temperature. Then, the mixture was diluted with 200 mL of dry THF under argon and cooled to $-78^{\circ} \mathrm{C}$. At that temperature, a 120 mmol hexane solution of $\operatorname{BuLi}(1.6 \mathrm{M}, 75 \mathrm{~mL})$ was added dropwise via a syringe. After stirring the reaction mixture for 1 h at $0^{\circ} \mathrm{C}, 19 \mathrm{~mL}$ of alkyl halide ($\approx 300 \mathrm{mmol}$) was added dropwise. The mixture was stirred overnight at room temperature when the alkyl halide used was MeI, or 5 days at $65^{\circ} \mathrm{C}$ when BuBr was used. The reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ solution and the reaction solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with water, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was used in the following step without any other purification. (Betzer, et al. 1997)

To a solution of the preceding crude compound (S3) in methanol (300 mL) ptoluenesulfonic acid ($6 \mathrm{~g}, 30 \mathrm{mmol}$) was added and the resulting solution stirred at RT for $45-60 \mathrm{~min}$. Then, triethylamine was added (9 mL), and the solution was concentrated under reduced pressure. The mixture was taken into dichloromethane and washed with water. The combined extracts were washed with brine, dried over MgSO 4 , filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel (hexane/ethyl acetate as the eluent) gave the enynol \boldsymbol{E}-S4 (yields: $\mathrm{R}^{1}=\mathrm{Me}, 86 \%$; Bu, 65\%). (Purpura and Krause 1999)

To the solution of (S4) ($\approx 65 \mathrm{mmol})$ in 250 mL of dry diethyl ether, 114 g of activated MnO_{2} was added, and the mixture was stirred overnight at room temperature. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (S5) was used in the next step (Betzer, et al. 1997).

The crude aldehyde ($\mathbf{S 5}$) was dissolved in 140 mL of anhydrous THF and treated at $-78{ }^{\circ} \mathrm{C}$ with 1.2 equivalent ethereal solution of $\mathrm{R}_{3} \mathrm{MgX}(1.6-2.0 \mathrm{M}, \mathrm{X}$ stands for iodine in the case of methylation, and bromine for the others) under Ar. At the end of the addition of the Grignard reagent, the mixture was warmed with stirring to $-40^{\circ} \mathrm{C}$ at nearly 2 h and then, hydrolyzed by the addition of 115 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with diethyl ether, the combined organic layers were washed with water, dried over MgSO_{4}, and filtered. The solvent was removed in vacuum, and the crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate, yields: \boldsymbol{E}-S6; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Me}, 65 \% ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=i-\mathrm{Pr}, 60 \% ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Bu}$, $\left.70 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{3}=\mathrm{Me}, 65 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{3}=\mathrm{H}, 65 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{3}=\mathrm{Ph}, 52 \%\right)$.

To synthesize $\mathrm{R}^{1}=\mathrm{Ph}$ en-yne alcohol ($\mathbf{S 6 m}$) Sonagashira coupling was applied in second step. A mixture of (S2) ($\approx 17 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(105.3 \mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{CuI}(16.5 \mathrm{mg}, 0.085 \mathrm{mmol})$, in 70 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred for 5 min at $50^{\circ} \mathrm{C}$ under Ar , and then, to this mixture was added phenyl acetylene (19 mmol). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . At the end of the reaction, water was added to the resulting mixture and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4}. The solvent was evaporated in vacuum and the product ($\mathbf{S 3 \text {) was }}$ purified by column chromatography on silica gel (hexane/ethyl acetate, yield: 85\%) (Takeuchi, et al. 2000).

Figure 3.2. Synthesis of $\mathbf{S 3 m}\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ by Sonagashira Coupling of $\mathbf{S 2}$
(Source: Takeuchi, et al. 2000).

3.2.2. Synthesis of \boldsymbol{E}-Enyne Alcohols S6a-b, d-e:

Figure 3.3. Synthesis of E-Enyne Alcohols S6a-b, d-e.

A mixture of terminal alkyne (S7) (50 mmol), alkynoic ester (S8) (25 mmol), $\mathrm{CuBr}(225 \mathrm{mg}, 1.25 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(465 \mathrm{mg}, 0.625 \mathrm{mmol})$ in 50 mL water was stirred at $60^{\circ} \mathrm{C}$ temperature under Ar for 48 h . (To synthesis of compound having $R^{1}=C y, R^{2}=M e$, the mixture was stirred for 24 h). After completion of the reaction, the reaction mixture was allowed to be cold to room temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (hexane/ethyl acetate, yields, (S9) : $\mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 85 \% ; \mathrm{R}^{1}=\mathrm{t}-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 75 \%$; $\left.R^{1}=B u, R^{2}=B u, 90 \% ; R^{1}=B u, R^{2}=P h, 84 \%\right)($ Chen, et al. 2004).

To the 250 mL of flask $\approx 20 \mathrm{mmol} \mathbf{S 9}$ and 44 mL of dry dichloromethane was added. The stirred solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and 40 mL of a 1 M solution of diisobutylaluminum hydride in hexane was added dropwise with a syringe. After addition of complete, the cooling bath was removed and the reaction mixture was allowed to warm to room temperature and stirred at RT for 16 hours. The mixture was hydrolyzed at $-20{ }^{\circ} \mathrm{C}$ by dropwise addition of water and extracted with dichloromethane. Combined extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product ($\mathbf{S 4}$) was purified by column chromatography on silica gel (hexane/ethyl acetate) (Shintani, et al. 2005).

To the solution of $(\mathbf{S 4})(\approx 10 \mathrm{mmol})$ in 39 mL of dry diethyl ether, 17.6 g of activated MnO_{2} was added, and the mixture was stirred overnight at room temperature. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde ($\mathbf{S 5}$) was used in the next step. (Betzer, et al. 1997)

The crude aldehyde ($\mathbf{S 5}$) was dissolved in 21 mL of anhydrous THF and treated at $-78{ }^{\circ} \mathrm{C}$ with 1.2 equivalent ethereal solution of $\mathrm{R}^{3} \mathrm{MgX}(1.6-2.0 \mathrm{M}, \mathrm{X}$ stands for iodine in the case of methylation, and bromine for the others) under Ar. At the end of the addition of the Grignard reagent, the mixture was warmed with stirring to $-40^{\circ} \mathrm{C}$ at nearly 2 h and then, hydrolyzed by the addition of 18 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with diethyl ether, the combined organic layers were washed with water, dried over MgSO_{4}, and filtered. The solvent was removed in vacuum, and the crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate, yields: \boldsymbol{E}-S6; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Bu}, 40 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Ph}, 39 \% ; \mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}$, $39 \% ; \mathrm{R}^{1}=\mathrm{t}-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me} ; 34 \%$).

3.2.3. Synthesis of \boldsymbol{E}-Enyne Alcohol S6c:

Figure 3.4. Synthesis of E-Enyne Alcohols S6c

To a solution of alkynoic ester (S10) ($\approx 40 \mathrm{mmol})$ and acetic acid (240 mmol , 13.8 mL) ($512 \mathrm{mmol}, 20.8 \mathrm{~mL}$ when (S10) was added ethyl 3-phenylpropiolate and sodium iodide $(9.6 \mathrm{~g}, 64 \mathrm{mmol})$ and stirred for 3 h at $115^{\circ} \mathrm{C}$. After completion of the reaction, the brown mixture was transferred while hot to a separatory funnel containing water ($\approx 10 \mathrm{~mL} / \mathrm{mmol}$ of the ester substrate). The reaction flask was washed with a mixture of water ($\approx 5 \mathrm{~mL}$) and diethyl ether ($\approx 30 \mathrm{~mL} / \mathrm{mmol}$ of the ester substrate). The washings were combined in a separatory funnel. The phases were separated and the aqueous phase was extracted with diethyl ether. The combined organic phases were treated sequentially with saturated aqueous sodium bicarbonate, aqueous sodium thiosulfate (1 M), and brine and then were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (hexane/ethyl acetate, yields, (S11): 84\%) (Piers, et al. 1994).

To the solution of $(\mathbf{S 1 1})(\approx 25 \mathrm{mmol})$ in 13 ml benzene $(1.8 \mathrm{M}), 0.3$ equivalent solution of hydroiodic acid ($\% 57 \mathrm{v} / \mathrm{v}, 1.0 \mathrm{~mL}$) was added. The reaction mixture was stirred for 3 days at $80^{\circ} \mathrm{C}$ temperature. After the reaction mixture was allowed to cool down to room temperature, diluted with 12 mL diethyl ether and washed with 5 mL of saturated sodium thiosulphate solution. The aqueous phase was extracted with diethyl ether and this combined organic phases were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. (S11/S12=96/4) (Garrais, et al. 2009).

The mixture of crude (S12) ($\approx 25 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(151.2 \mathrm{mg}, 0.23 \mathrm{mmol})$, and $\mathrm{CuI}(23.5 \mathrm{mg}, 0.13 \mathrm{mmol})$, in 100 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred for 10 min at room temperature under Ar , and then, to this mixture was added a terminal alkyne (28.8 $\mathrm{mmol})$. The mixture was stirred at room temperature for 3 h . At the end of the reaction, water was added to the resulting mixture and then extracted with $\mathrm{Et}_{2} \mathrm{O}$ The combined organic layers were dried over MgSO_{4}. The solvent was evaporated in vacuum and the product (S9c) was purified by column chromatography on silica gel (hexane/ethyl acetate, yield: 88\%) (Takeuchi, et al. 2000).

A dry, three-necked, round-bottomed $250-\mathrm{mL}$ flask equipped with an internal thermometer, a rubber septum, and an Ar gas inlet, was charged with $\approx 10 \mathrm{mmol}$ of (S9c) and 20 mL of anhydrous dichloromethane. The stirred solution was cooled to -78 ${ }^{\circ} \mathrm{C}$ and 6 mL of a 1 M solution of diisobutylaluminum hydride in hexane was added dropwise with a syringe at such a rate that the temperature would not exceed $-75^{\circ} \mathrm{C}$. After stirring for 30 min at $-78^{\circ} \mathrm{C}, 17 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ solution of a $\mathrm{MeMgI}(11 \mathrm{mmol}, 2.0 \mathrm{M}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ with a syringe. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature. The mixture was hydrolyzed at $-20{ }^{\circ} \mathrm{C}$ by dropwise addition of 20 mL of a 1 M aqueous solution of hydrochloric acid, followed by addition of 30 mL of ether. The organic layer was separated and extracted with ether. The combined extracts were dried over MgSO_{4}. The solvent was evaporated in vacuum. The product (S6c) was purified by column chromatography on silica gel (hexane/ethyl acetate; yield: 50\%) (Marek, et al. 1998).

3.2.4. Synthesis of \boldsymbol{E}-Enyne Alcohol S6f:

Figure 3.5. Synthesis of E-Enyne Alcohol S6f

A dry, two-necked, round-bottomed $250-\mathrm{mL}$ flask equipped with a reflux condenser and an Ar gas inlet, was charged with 75 mL of anhydrous absolute ethanol. Metallic sodium ($3.48 \mathrm{~g}, 150 \mathrm{mmol}$) was cut into small pieces and added into the ethanol and stirred. After all sodium was dissolved, diethylmalonate (S13) ($23 \mathrm{~mL}, 150$ mmol) was added to the solution. The reaction mixture was treated with iodomethane ($9.8 \mathrm{~mL}, 157,5 \mathrm{mmol}$) by dropwise addition via a syringe. The mixture was heated until the mixture reached its boiling point. After 4 hours the reaction mixture was concentrated under a reduced pressure. The mixture was diluted with diethyl ether and water and phases were separated. The aqueous layer was extracted with ether, and the combined extracts were dried over MgSO_{4}, filtered and evaporated in vacuo. The crude product (S14) was used in the next step. (Weiner, et al.1937).

The crude ($\mathbf{S 1 4}$) ($\approx 50 \mathrm{mmol}$) was slowly added to the solution of $\mathrm{NaH}(25 \mathrm{~g}, 52$ mmol) in 63 mL dry $\mathrm{Et}_{2} \mathrm{O}$ via syringe and the reaction mixture was refluxed for a further $2.5 \mathrm{~h} . \mathrm{CHCl}_{3}(19.8 \mathrm{~g}, 50 \mathrm{mmol})$ was added in one portion and the mixture was refluxed for 20 h . After cooling to $0^{\circ} \mathrm{C}$, hydrochloric acid solution ($18 \mathrm{~mL}, 10 \%$) was added and the resulting mixture was stirred about 10 min . The organic phase decanted and dried over MgSO_{4}, filtered and concentrated under a reduced pressure. The remaining residue was diluted with petroleum ether and precipitated iodoform was removed by filtration. The product (S15) was purified by distillation at $130^{\circ} \mathrm{C}$ and 12 bar. (Yield= 65\%) (Baker, et al.1990)

The solution of $(\mathbf{S 1 5})(\approx 33 \mathrm{mmol}), \mathrm{KOH}(5.6 \mathrm{~g}, 0,1 \mathrm{~mol})$ and $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(3: 1$, 45 mL) were refluxed for 24 h and cooled to room temperature. The reaction mixture was concentrated under reduced pressure and diluted with solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(27 \mathrm{~mL}$, $\% 10$) and washed with dichloromethane ($9 \mathrm{~mL} \times 2$). The basic solution is acidified with $\mathrm{HCl}(\mathrm{aq})(12 \mathrm{M})$. The aqueous phase extracted with dichloromethane ($7 \mathrm{~mL} \times 7$). The combined organic phases was dried over MgSO_{4}, filtered and concentrated under vacuo. The residue (S16) was purified by crystallization with petroleum ether (Yield= 89\%) (Baker, et al.1990).

To the solution of (E)-3-iodo-2-methylprop-2-enoic acid (S16) ($\approx 29 \mathrm{mmol})$ in 48 mL of dry THF, lithium aluminium hydride ($1.1 \mathrm{~g}, 29 \mathrm{mmol}$) was slowly added at 0 ${ }^{\circ} \mathrm{C}$ temperature under Ar. The reaction mixture was allowed to warm to room temperature and stirred for 3 hours. The reaction mixture was recooled to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ by dropwise addition. The mixture was diluted with ether and 40 mL of aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{M})$ was added. The organic phase was decanted and the aqueous phase was extracted with DCM. The combined organic phases was washed with 10 mL of $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \%)$ and the aqueous phase extracted with DCM. The combined organic phases was dried over MgSO_{4}, filtered and the solvent was removed under vacuo. The product (S17) was purified by column chromatography on silica gel (hexane/ethyl acetate; yield:65\%) (Baker, et al.1990).

The mixture of $(\mathbf{S 1 7})(\approx 8.5 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(51.2 \mathrm{mg}, 0.077 \mathrm{mmol})$, and $\mathrm{CuI}\left(8.1 \mathrm{mg}, 0.041 \mathrm{mmol}\right.$), in 37 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred for 10 min at room temperature under Ar , and then, to this mixture was added a 1- hexyne (9.6 mmol). The mixture was stirred at room temperature for 3 h . At the end of the reaction, water was added to the resulting mixture and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4}. The solvent was evaporated in vacuum and the product ($\mathbf{S 2 1}$) was purified by column chromatography on silica gel (hexane/ethyl acetate, yields: 86\%) (Takeuchi, et al. 2000).

To the solution of $(\mathbf{S 4 f})(\approx 7 \mathrm{mmol})$ in 30 mL of dry diethyl ether, 12.0 g of activated MnO_{2} was added, and the mixture was stirred overnight at room temperature. After filtration through celite, the solution was concentrated under reduced pressure. The crude aldehyde ($\mathbf{S 5 f}$) was used in the next step. (Betzer, et al. 1997)

The crude aldehyde ($\mathbf{S 5 f}$) was dissolved in 14 mL of anhydrous THF and treated at $-78{ }^{\circ} \mathrm{C}$ with 1.2 equivalent ethereal solution of $\mathrm{R}_{3} \mathrm{MgI}(1.6 \mathrm{M})$ under Ar . At the end of the addition of the Grignard reagent, the mixture was warmed with stirring to $-40^{\circ} \mathrm{C}$ at
nearly 2 h and then, hydrolyzed by the addition of 12 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with diethyl ether, the combined organic layers were washed with water, dried over MgSO_{4}, and filtered. The solvent was removed in vacuum, and the crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate, yield (S6f): 45 \%)

3.2.5. Synthesis of \boldsymbol{E}-Enyne Alcohol S6i:

Figure 3.6. Synthesis of E-Enyne Alcohol S6i

To a solution of 1-hex-1-yne ($2.3 \mathrm{~mL}, 20 \mathrm{mmol}$) in $17 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added the 24 mmol hexane solution of $\mathrm{BuLi}(12 \mathrm{~mL}, 2 \mathrm{M})$ dropwise via a syringe. The resulted solution was stirred magnetically for 15 min then cooled to $-20^{\circ} \mathrm{C} .28 \mathrm{Mmol} \mathrm{Br} 2$ (1.43 mL) was added dropwise via syringe to the solution and reaction mixture was stirred at room temperature. The reaction mixture was quenched by slow addition of water at -20 ${ }^{\circ} \mathrm{C}$ temperature and organic phase was decanted. The organic phase was washed 3 times with 7 mL of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The combined organic phase was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude 1-bromo-hex-1-yne was used for the following step (Kloster-Jensen, et al. 1966).

A suspension of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](273 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{CuI}(147 \mathrm{mg}, 0.8 \mathrm{mmol})$, $\mathrm{PPh}_{3}(203 \mathrm{mg}, 0.8 \mathrm{mmol})$ and 1-bromohex-1-yne ($\approx 20 \mathrm{mmol}$) in degassed $\mathrm{Et}_{3} \mathrm{~N}(200$ mL) was stirred for 30 min , treated with commercially available, (E)-pent-2-en-4-yn-1-
ol ($1.9 \mathrm{~g}, 0.48 \mathrm{mmol}$), and stirred at $25^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with EtOAc and washed with cold $\left(\approx 0^{\circ} \mathrm{C}\right)$ saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc and the organic phase was dried over MgSO_{4}, filtered and evaporated. The crude ($\mathbf{S 4 i}$) was purified by column chromatography on silica gel (hexane/ethyl acetate, yields: 30%) (Xu, et al. 2005).

To the solution of ($\mathbf{S 4 i}$) ($\approx 7 \mathrm{mmol}$) in 30 mL of dry diethyl ether, 12.0 g of activated MnO_{2} was added, and the mixture was stirred overnight at room temperature. After filtration through celite, the solution was concentrated under reduced pressure. The crude aldehyde ($\mathbf{S 5 i}$) was used in the next step (Betzer, et al. 1997).

The crude aldehyde ($\mathbf{S 5 i}$) was dissolved in 14 mL of anhydrous THF and treated at $-78{ }^{\circ} \mathrm{C}$ with 1.2 equivalent ethereal solution of $\mathrm{MeMgI}(1.6-2.0 \mathrm{M})$ under Ar . At the end of the addition of the Grignard reagent, the mixture was warmed with stirring to -40 ${ }^{\circ} \mathrm{C}$ at nearly 2 h and then, hydrolyzed by the addition of 12 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with diethyl ether, the combined organic layers were washed with water, dried over MgSO_{4}, and filtered. The solvent was removed in vacuum, and the crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate, yield (S6i): 65%).

3.2.6. Synthesis of \boldsymbol{E}-Enyne Carbonate E-1k:

Figure 3.7. Synthesis of (E)-Enyne Carbonate \boldsymbol{E} - $\mathbf{- 1 k}$

To a solution of hydrazine monohydrate ($100 \mathrm{~g}, 2 \mathrm{~mol}$) in ethanol (120 ml) ethyl
 addition was complete, the reaction mixture was stirred for 2 h at room temperature and then cooled to $0^{\circ} \mathrm{C}$, precipitate was filtered off and washed with cold ethanol (yield: 90\%) (Simmross, et al. 1981).

The solution of 3-methyl-2-pyrazolin-5-one ($\mathbf{S 1 9}$) ($167 \mathrm{~g}, 1.7 \mathrm{~mol}$) in acetic acid (300 mL) was added dropwise to the acetic acid $(200 \mathrm{~mL})$ solution of bromine $(544 \mathrm{~g}$, $6.8 \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$ and stirred for 3 h at room temperature. The solution was poured into water (10 L). The crystals were filtered off and washed to neutralize with water and dried under high vacuum (Yield; 78\%) (Simmross, et al. 1981).
10% solution of $\mathrm{NaOH}(4000 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$ was added dropwise to the solution of 4,4-dibromo-3-methyl-2-pyrazolin-5-one (S20) ($256 \mathrm{~g}, 1 \mathrm{~mol}$) in Et2O (1200 mL). The solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and additional 1 h at room temperature. The solution was neutralized by conc. HCl in an ice bath and extracted with diethylether by extractor for 3 days. The solution was dried with MgSO 4 and solvent was removed in vacuo. The crude product (S10) was purified by sublimation at $60^{\circ} \mathrm{C}$ under 0.02 torr pressure (Yield: 90\%) (Simmross, et al. 1981).

To a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(4.4 \mathrm{~mL})$ in methanol (92 mL) was carefully added a solution of 2-butynoic acid ($8.0 \mathrm{~g}, 95.2 \mathrm{mmol}, 1.0$ equivalent) in methanol (180 mL). The reaction mixture was stirred for 4 days at room temperature. Water (280 mL) was added, followed by $\mathrm{Et}_{2} \mathrm{O}(280 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 2800 \mathrm{~mL}$). The organics were combined, washed with water (1 L), saturated aqueous sodium carbonate (1 L), then water (1 L), then dried over sodium sulfate, filtered, and carefully concentrated in vacuo to afford methyl but-2ynoate (S22) (yield: 65\%) (Trost, et al. 2011).

To a solution of ($5.88 \mathrm{~g}, 60.0 \mathrm{mmol}$) of methyl 2-butynoate ($\mathbf{S 2 2}$) in of diethyl ether (300 ml), DIBAH ($102 \mathrm{ml}, 102 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexane) was added dropwise at $80^{\circ} \mathrm{C}$ and stirred for 2 h . In a second flask ethyl(diethoxyphosphoryl) acetate (66.0 mmol) of in THF (100 ml) was added dropwise to a suspension of $\mathrm{NaH}(3.6 \mathrm{~g}, 90$ $\mathrm{mmol}, 60 \%$ in paraffin oil) in THF (100 ml). After 10 min the solution of the ethyldiethoxyphosphoryl)acetate reagent was cooled to $-80^{\circ} \mathrm{C}$ and transferred via a teflon tube to the other flask. The mixture was warmed to room temperature and stirred for 2 h . After acidification with 2 N HCl the layers were separated and the aqueous layer was extracted several times with diethyl ether and the combined organic layers
were dried with MgSO_{4}. The solvent was removed in vacuo; the crude product was purified by kugelrohr distillation ($40-50^{\circ} \mathrm{C}$ under 0.1 Torr pressure) as a colorless liquid (S9k) (Koop, et al. 1996).

A suspension of 23.1 mmol of LiAIH_{4} in 46 ml of diethyl ether was cooled to $60^{\circ} \mathrm{C}$ and $2.9 \mathrm{~g}(21 \mathrm{mmol})$ of $(\mathbf{S 9 k})$ in 21 ml of diethyl ether was added dropwise. After stirring for 1 h at $-60^{\circ} \mathrm{C}, 2 \mathrm{ml}$ of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was warmed up to room temperature and filtered through Celite; the residue was washed with diethyl ether, the combined filtrates were dried with MgSO_{4}, and the solvent was removed in vacuo. A solution of the crude alcohol thus obtained in 80 ml of diethyl ether was added to a thoroughly stirred suspension of $55 \mathrm{~g}(0.63 \mathrm{~mol})$ of activated MnO_{2} and the mixture was stirred for 16 h at room temp. The mixture was then filtered through celite and solvent was removed in vacuo (Betzer, et al. 1997).

18 mmol of the aldehyde ($\mathbf{S 5 k}$) was dissolved in $40 \mathrm{~mL}^{\mathbf{m}} \mathrm{Et}_{2} \mathrm{O}$ and treated at $80^{\circ} \mathrm{C}$ with $7.2 \mathrm{~mL}(21.6 \mathrm{mmol})$ of MeMgBr (3 M in diethyl ether). Within 2 h the mixture was warmed with stirring to $-40^{\circ} \mathrm{C}$ and then hydrolyzed by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with diethyl ether, the combined organic layers were washed with water and dried with MgSO_{4}. The solvent was removed in vacuo, and the crude alcohol was dissolved in 16 mL THF and was added $10.8 \mathrm{~mL}(21.6 \mathrm{mmol}) n-$ BuLi at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . Then methylchloroformate was added dropwise at $-78^{\circ} \mathrm{C}$. The solution was gradually warmed up to RT and stirred for 15 h . The reaction was quenched by the addition of a saturated NaHCO_{3} solution and extracted with ethylacatate and dried over MgSO_{4}. The solvents were evaporated under a vacuum to give an oily product $\boldsymbol{E} \mathbf{- 1 k}$, which was purified by column chromatography (silica gel, cyclohexane/ ethyl acetate/ triethylamine, $100: 6: 1$) (Mandai, et al. 1994).

3.2.7. Synthesis of (S,E)-4-methyldec-3-en-5-yn-2-ol

Figure 3.8. Synthesis of (S,E)-4-methyldec-3-en-5-yn-2-ol

2-Iodoxybenzoic acid (IBX) ($6,6 \mathrm{~g}, 24 \mathrm{mmol}$) was added to a solution of secondary enyne alcohol ($\approx 12 \mathrm{mmol}$) in DMSO (34 mL). After 3 h , the reaction mixture was diluted with water and filtered. After extraction with diethyl ether, the combined organic layers was dried over MgSO_{4}, and filtered. The solvent was removed in vacuum, and the crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate, yield: 90%) (Frigerio, et al. 2005).

To the solution R-2-Me-CBS-oxazaborolidine ($821 \mathrm{mg}, 1 \mathrm{mmol}$ in 30 mL of THF) was added $\mathrm{BH}_{3} . \mathrm{SMe}_{2}(0.25 \mathrm{~mL}, 2 \mathrm{mmol})$ and the mixture was cooled to $-30{ }^{\circ} \mathrm{C}$ temperature. $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(0.5 \mathrm{~mL}, 4 \mathrm{mmol})$ reagent and the solution of enynone ($\mathbf{S 2 3}$) ($\approx 5 \mathrm{mmol}$) in 5 mL THF were slowly added to the reaction mixture at the same time over a period of 2 h via a syringe. The reaction mixture was warmed to $-20{ }^{\circ} \mathrm{C}$ and stirred for 6 h . After the reaction mixture was recooled to $-30^{\circ} \mathrm{C}, \mathrm{MeOH}(\approx 15 \mathrm{~mL})$ was added slowly. The solution was warmed to room temperature and stirred until the gas evolution complete. The reaction mixture was concentrated under a reduced pressure and the crude residue was purified by column chromatography on silica gel (hexane/ethyl acetate, yield: 40 \%) (Corey, et al. 1998). Enantiomeric purity was determined as 82.8% ee by GC method using a Hydodex-beta-3P column ($25 \mathrm{~m}, 0.25$ mm ID $) .[\alpha]_{\mathrm{D}}{ }^{23}=-0.33^{\circ}\left(\mathrm{c}=0.242 \mathrm{~g} / 100 \mathrm{~mL}\right.$, in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Specific rotation was determined according to equation 3.1. Its hydroxyl group was modified to carbonate as described method.

$$
\begin{equation*}
[\alpha]_{\mathrm{D}}^{\mathrm{T}}=\frac{\text { Observed Rotation, }(\alpha)}{\text { Path length }, 1(\mathrm{dm}) \times \text { Concentration of Sample, } \mathrm{c}(\mathrm{~g} / 100 \mathrm{~mL})} \tag{3.1}
\end{equation*}
$$

3.2.8. Synthesis of (R, E)-4-methyldec-3-en-5-yn-2-ol

\%70 TBHP in water (50 mL), and then toluene (60 mL) were added to a seperatory funnel (No shaking preferred). The aqueous layer was separated and the organic layer was transferred to a two-necked flask equipped with a Dean-Stark trap, a reflux condenser, and a thermometer. After addition of several boiling chips, the solution was refluxed at $90^{\circ} \mathrm{C}$ under Ar until all water was collected. The solution of TBHP in toluene was stored over activated $4 \AA$ molecular sieves (Hill, et al. 1993).

In order to determine TBHP concentration, 22 g of NaI was added into a flask containing 100 mL of isopropanol. The resulting solution was refluxed for $\approx 10 \mathrm{~min}$, cooled to RT and filtered. 10 mL of sodium iodide-isopropanol solution was added to the solution of glacial acetic acid (2 mL) in isopropanol (25 mL). To this solution TBHP in toluene $(0.2 \mathrm{~mL})$ was added and refluxed for $\approx 1 \mathrm{~min}$. Mixture was diluted with 100 mL of distilled water and immediately titrated with $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ untill disappearance of yellow iodine color Concentration of TBHP was determined as 4.3 M using the equation 3.2 (Verhoeven, et al. 1979).

$$
\begin{equation*}
\text { M of TBHP }=\frac{\mathrm{mL} \text { of Sodium thiosulphate used for titration } \times \text { Normality of Sodium thiosulphate }}{\mathrm{mL} \text { of } \mathrm{TBHP} \times 2} \tag{3.2}
\end{equation*}
$$

Sharpless's kinetic resolution (Verhoeven, et al. 1979) method was employed for the preparation of (R, E)-4-methyldec-3-en-5-yn-2-ol. Accordingly, 6.4 mmol of $\mathrm{Ti}(\mathrm{OiPr})_{4}$, and 7.7 mmol of L-(+)-diisopropyl tartrate, were dissolved in 200 mL of dry DCM and cooled to $-20^{\circ} \mathrm{C}$. To this mixture, dry DCM solution of 6.4 mmol of racemic mixture of (E)-4-methyldec-3-en-5-yn-2-ol was added and then stirred for 30 min at -30 ${ }^{\circ} \mathrm{C}$. Then, 12.8 mmol of dry t-butyl hydroperoxide (4.3 M in toluene) was added and left in a freezer $\left(-20^{\circ} \mathrm{C}\right)$ for 18.5 h . After completion, a pre-cooled $\left(0^{\circ} \mathrm{C}\right) 10.3 \mathrm{~mL}$ aqueous solution of 11.9 mmol FeSO 4 and 19.2 mmol tartaric acid mixture was added to the reaction mixture with small portions while stirring at $-20^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature over 1 h , and then extracted with DCM. The DCM solution was concentrated by evaporation and 30 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added. The ethereal solution was cooled to $0^{\circ} \mathrm{C}$, and 30 mL of aqueous NaOH was added and stirred at this temperature for 1.5 h . Extraction with ether, drying with MgSO_{4}, and following column chromatography on silica gel using hexane/ethyl acetate eluent yielded the isolated product at 36%. Enantiomeric purity was determined as 98.9% ee by GC method using a Hydodex-beta-3P column ($25 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID). $[\alpha]_{\mathrm{D}}{ }^{23}=0.93^{\circ}$ (c=0.96 g/100 mL, CHCl_{3}). Specific rotation was determined according to equation 3.1. (Verhoeven, et al. 1979). Its hydroxyl group was modified to carbonate as described method.

3.2.9. Typical Procedures for the Preparation of Enyne Carbonates

Figure 3.9. Synthesis of E-Enyne Carbonates \boldsymbol{E}-1a-e, h, k-o

An enyne alcohol (S6a-e, h, k-o) (8.945 mmol) was dissolved in 8 mL THF and was added $5 \mathrm{~mL}(10.74 \mathrm{mmol}) n-\mathrm{BuLi}$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . Then $1.05 \mathrm{~mL}(13.4 \mathrm{mmol})$ of methyl chloroformate was added dropwise at $-78^{\circ} \mathrm{C}$. The solution was gradually warmed up to RT and stirred for 15 h . The reaction was quenched by the addition of a saturated NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried over MgSO_{4}. The solvents were evaporated under a vacuum to give an oily product, which was purified by column chromatography (silica gel, (hexane/ NEt_{3} (1 vol. \%), yields: $\boldsymbol{E}-1 \mathbf{1 a}, 45 \%$; $\boldsymbol{E}-1 \mathrm{lb}, 55 \%$; $\boldsymbol{E}-1 \mathbf{c}, 50 \%$; $\boldsymbol{E}-1 \mathrm{dd}, 50 \%$; $\boldsymbol{E}-1 \mathbf{e}, 52 \% ; \boldsymbol{E}-1 \mathrm{~h}, 60$ $\% ; \boldsymbol{E}-1 \mathrm{k}, 60 \% \boldsymbol{E}-\mathbf{1 1}, \mathbf{5 5 \%} ; \boldsymbol{E}-1 \mathrm{~m}, 50 \% ; \boldsymbol{E}-1 \mathbf{n}, 60 \%$; $\boldsymbol{E}-1 \mathbf{1 0}, 50 \%$) (Mandai, et al. 1994).

Figure 3.10. Synthesis of E-Enyne Carbonates $\boldsymbol{E} \mathbf{- 1 f} \mathbf{- g}$, i-j

In another method, an alcohol ($\mathbf{S 6 f} \mathbf{- g}, \mathbf{i} \mathbf{- j}$) ($\approx 5.7 \mathrm{mmol}$) was dissolved in 72 mL DCM and was added $3.7 \mathrm{~mL}(45.69 \mathrm{mmol})$ of pyridine and the mixture was cooled to $0^{\circ} \mathrm{C} .1 .4 \mathrm{~mL}(17.1 \mathrm{mmol})$ of methyl chloroformate was added dropwise at $-0^{\circ} \mathrm{C}$. The solution was stirred for 3 h . The reaction was quenched by the addition of water and extracted with DCM and dried over MgSO_{4}. The solvents were evaporated under a
vacuum to give an oily product, which was purified by column chromatography (silica gel, (hexane/ NEt_{3} (1 vol. \%), yields: $\boldsymbol{E}-1 \mathbf{f}, 87 \% ; \boldsymbol{E}-1 \mathrm{~g}, 88 \% ; \boldsymbol{E}-1 \mathbf{1}, \% 62 ; \boldsymbol{E}-1 \mathbf{j}, 70 \%$, (S)-$\boldsymbol{E}-1 \mathbf{j}, 70 \%$) (Zhao, et al. 2012).

3.3. Characterization of Reactants

The synthesized reactants were analyzed by GC (Agilent/6990N) equipped with Thermo TR-5MS ($30 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID) column, GC-MS (Thermo/ISQ) equipped with Thermo TR-5MS ($30 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID) column and isolated by column chromatography using a hexane-ethyl acetate eluent. High-resolution mass spectral analyses were performed at the Dortmund University of Technology Mass Spectrometry Laboratory on a Thermo Electron system. NMR spectra were recorded on a Varian VnmrJ 400 spectrometer, a Varian Mercury AS 400, or a Bruker DRX 400 spectrometer. Infrared spectra were obtained using a Perkin-Elmer Spectrum 100 by ATR method with neat samples. Optical rotations were measured on a Bellingham Standley ADO 410 polarimeter. Enantiopure enyne alcohols were analyzed by GC (Shimadzu GC 2010).

Figure 3.11. (E)-6-cyclohexyl-4-methylhex-3-en-5-yn-2-yl methyl carbonate
$\boldsymbol{E}-1 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.97(\mathrm{dd}, J=15.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dq}, J=$ $15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{tt}, J=11.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.63(\mathrm{~m}$, $8 \mathrm{H}), 1.33(\mathrm{qt}, J=12.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{tt}, J=12.4-3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.00 \mathrm{dq}, J=12.4,3.2 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.3,133.7,122.5,93.6,82.5,71.7,54.7,32.8$, 29.6, 26.0, 25.0, 20.5, 18.4; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3423, 2931, 2855, 2217, 1744, 1443, 1327, 1257, 1151, 1036, 939, 864, 791; MS (EI, m/z): 250 (4, M ${ }^{+}$), 191 (45), 175 (36), 159 (29), 145 (24), 131 (54), 117 (42), 109 (100), 105 (74), 91 (93), 81 (44), 79 (47),77 (40), 55 (34) 43 (55). HRMS (EI, m/z, M ${ }^{+}$): 250.1564 (calculated), 250.1557 (found).

Figure 3.12. Methyl (E)-4,7,7-trimethyloct-3-en-5-yn-2-yl carbonate
$\boldsymbol{E}-\mathbf{- 1 b}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.66(\mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dq}, J=$ $9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.4, \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.3,133.7,122.5,97.7,81.0,71.7,54.7,31.1,27.9,20.5$, 18.4; FTIR ($v_{\text {max }} / \mathrm{cm}^{-1}$): 2969, 2929, 2902, 2868, 2205, 1744, 1442, 1327, 1255, 1150, 1038, 948, 938, 864, 791; MS (EI, m/z): 224 (6, M ${ }^{+}$), 165 (98), 167 (23), 149 (53), 133 (74), 123 (32), 121 (41), 107 (54), 105 (100), 93(44), 91 (96), 79 (41), 77 (42), 43 (90). HRMS (EI, $m / z, \mathrm{M}^{+}$): 224.14070 (calculated), 224.14027 (found).

Figure 3.13. (E)-dec-3-en-5-yn-2-yl methyl carbonate
$\boldsymbol{E}-\mathbf{1 c}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.98(\mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=$ $16 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 (quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), $2.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.39$ $(\mathrm{m}, 4 \mathrm{H}), 1.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}^{3}\right) \delta:$ $155.1,139.6,113.1,92.6,78.0,74.6,54.8,30.8,22.1,20.2,19.2,13.7$; FTIR ($v_{\max } / \mathrm{cm}^{-}$ $\left.{ }^{1}\right): 2958,2934,2873,2217,1745,1441,1256,1154,1036,942,868,791 ; ~ M S ~(E I, m / z):$ $210\left(2, \mathrm{M}^{+}\right), 168(8), 151(66), 135(34), 119$ (11), 109 (27), 105 (22), 95 (61), 91 (100), 79 (52), 77 (38), 65 (33), 43 (67); HRMS (EI, m/z, M ${ }^{+}$): 210.12505 (calculated), 210.12495 (found).

Figure 3.14. (E)-4-butyldec-3-en-5-yn-2-yl methyl carbonate
$\boldsymbol{E}-1 \mathbf{d}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.66(\mathrm{~d}, J=8.8,1 \mathrm{H}), 5.46(\mathrm{dq}, J=9.2,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.2,133.5,127.8,90.2,81.5,71.4,54.7,31.5,30.94$, 30.75, 22.4, 22.1, 20.8, 19.1, 14.1, 13.7; FTIR ($v_{\max } / \mathrm{cm}^{-1}$):2957,2932, 2862, 2219, 1744 , 1441, 1259, 1151, 1036, 941, 866, 791; MS (EI, m/z): 266 (1, M ${ }^{+}$), 207 (24), 191 (14), 161 (9), 148 (14), 119 (29), 105 (55), 91 (83), 77 (50), 55 (52), 43 (100); HRMS: (ESI, $\left.m / z,(\mathrm{M}+\mathrm{H})^{+}\right): 267.19562$ (calculated), 223.19547 (found).

Figure 3.15.Methyl (E)-4-phenyldec-3-en-5-yn-2-yl carbonate
$\boldsymbol{E}-\mathbf{1 e}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{dq}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.40(\mathrm{~m}$, $4 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) δ : $154.9,137.4,135.1,128.48,128.43,128.1,127.3,91.7,81.5,72.3,54.7,30.8,22.1$, 20.8, 19.2, 13.7; FTIR ($v_{\max } / \mathrm{cm}^{-1}$):3019, 2957, 2933, 2873, 1744, 1442, 1258, 1154, 1029, 941, 866, 791, 772, 736, 699; MS (EI, m/z): 286 (2, M ${ }^{+}$), 227 (25), 211 (20), 195 (18), 185 (14), 171 (23), 168 (51), 167 (39), 153 (35), 141 (24), 129 (22), 115 (21), 105 (8), 91 (22), 81 (21), 77 (13), 43 (100); HRMS: (ESI, $\left.m / z,(\mathrm{M}+\mathrm{H})^{+}\right): 287.16473$ (calculated), 287.16417 (found).

Figure 3.16. Methyl (E)-3-methyldec-3-en-5-yn-2-yl carbonate
$\boldsymbol{E}-\mathbf{1 f}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ ($\mathrm{s}, 3 \mathrm{H}$), 2.34 (td, $J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}$, $2 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 155.1, 147.0, 107.9, 95.8, 77.9, 77.3, 54.8, 31.1, 22.1, 19.4, 19.2, 14.9, 13.7; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2982,2957,2934,2861,2215,1746,1441,1328,1256,1067,938,871,853$, 791; MS (EI, m/z): 224 (4, M ${ }^{+}$), 165 (31), 149 (15), 148 (12), 119 (13), 109 (25), 106 (37), 105 (50), $93(26), 91$ (100), 79 (32), 77 (31), 43 (40); HRMS: (ESI, $\left.m / z,(\mathrm{M}+\mathrm{H})^{+}\right)$: 225.14861 (calculated), 225.14852 (found).

Figure 3.17. Methyl (E)-3-methyl-1-phenylnon-2-en-4-ynyl carbonate
$\boldsymbol{E - 1 g}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 1 \mathrm{H})$, $6.34(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.2, \mathrm{~Hz}, 2 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.2,138.8,132.2,128.7,128.3,126.6$, $123.1,90.2,82.4,76.1,54.8,30.8,22.0,19.0,18.5,13.6$; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3085,3059$, 3028, 2957, 2931, 2872, 2215, 1746, 1440, 1311, 1255, 1217, 942, 907, 878, 789, 763, 696; MS (EI, m / z): 242 (16), 227 (31), 199 (38), 185 (34), 165 (37), 153 (36), 152 (42), 141 (36), 128 (30), 115 (36), 105 (100), 91 (86), 77 (97), 41 (51).

Figure 3.18. Methyl (E)-3-methylnon-2-en-4-ynyl carbonate
$\boldsymbol{E}-\mathbf{1 h}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2 H), 3.77 (s, 3 H), $2.29(\mathrm{t}, J=6.8, \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.53$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.41 (sext, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.8$, $127.9,124.9,90.1,82.5,64.0,55.0,30.9,22.1,19.1,18.2,13.7 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2958$, 2933, 2873, 2219, 1748, 1442, 1378, 1329, 1254, 943, 791; MS (EI, m/z): $210\left(2, \mathrm{M}^{+}\right)$, 168 (16), 151 (22), 135 (30), 119 (8), 109 (16), 105 (20), 95 (71), 92 (100), 91 (71), 81(30), 79 (53), 77 (42); HRMS (EI, $m / z, \mathrm{M}^{+}$): 210.12505 (calculated), 210.12565 (found).

Figure 3.19. Methyl (E)-4-methyldodeca-3-en-5,7-diyn-2-yl carbonate
$\boldsymbol{E}-1 \mathbf{i}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.86(\mathrm{dq}, J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dq}, J=$ $9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~d}, 3 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H})$, 1.37 (d, J=6.4Hz, 3H), 0.91 (t, J=7.2Hz, 3H); MS (EI, m/z): 248 (14, M ${ }^{+}$), 206 (7), 189 (60), 173 (66),161 (13), 147 (33), 142 (22), 128 (47), 115 (49), 105 (37); 91 (66), 77 (41), 63 (19), 43 (100); HRMS: (ESI, $\left.m / z,(\mathrm{M}+\mathrm{H})^{+}\right): 249.14850$ (calculated), 249.14852 (found).

Figure 3.20. Methyl (E)-4-methyldec-3-en-5-yn-2-yl carbonate
$\boldsymbol{E}-\mathbf{1 j}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.86(\mathrm{dq}, J=9.2,1.6 \mathrm{~Hz} \mathrm{1H}), 5.48(\mathrm{dq}, J=$ $8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, \mathrm{~s}, 3 \mathrm{H}), 1.37-$ $1.24(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $(101 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta: 155.7,134.6,122.9,89.6,83.3,71.3,54.1,31.1,22.2,20.3,19.2,18.4,13.7$; FTIR $\left(v_{\text {max }} / \mathrm{cm}^{-1}\right): 2958,2933,2873,2220,1743,1638,1441,1326,1257,1154,1036$, 939, 865, 792; MS (EI, m/z): 224 (6, M ${ }^{+}$), 182 (9), 165 (70), 149 (50), 133 (19), 119 (41), 105 (77), 91 (100), 77 (53); HRMS: (ESI, $\left.m / z,(\mathrm{M}+\mathrm{H})^{+}\right): 225.14873$ (calculated), 225.14852 (found). $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 j}:[\alpha]_{\mathrm{D}}{ }^{23}=2.44^{\circ}\left(\mathrm{c}=0.96 \mathrm{~g} / 100 \mathrm{~mL}\right.$, in $\left.\mathrm{CHCl}_{3}\right) .(\boldsymbol{S})-\boldsymbol{E}-\mathbf{1 j}$: $[\alpha]_{\mathrm{D}}{ }^{23}=-2.12^{\circ}\left(\mathrm{c}=0.93 \mathrm{~g} / 100 \mathrm{~mL}\right.$, in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Figure 3.21. (E)-hept-3-en-5-yn-2-yl methyl carbonate
$\boldsymbol{E}-\mathbf{1 k}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.99\left(\mathrm{dd}, J_{A B}=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.67(\mathrm{~d}$, $\left.J_{A B}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15$ (quint, $\left.J=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.33 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 155.0,139.6,112.9,87.9,75.4$, 54.7, 20.1, 4.3; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 2984, 2958, 2920, 2854, 2223, 1743, 1638, 1441, 1255, 1036, 941, 871, 790; MS (EI, m/z): 168 (3, M ${ }^{+}$), 153 (3), 109 (100), 91 (83), 77 (47).

Figure 3.22. Methyl (E)-4-methylhept-3-en-5-yn-2-yl carbonate
$\boldsymbol{E}-11:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.66(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dq}, J=$ $9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.3$, 134.0, 122.4, 85.0, 81.7, 71.6, 54.7, 20.5, 18.2, 4.3; FTIR ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 2981, 2957, 2920, 2853, 2227, 1742, 1639, 1441, 1327, 1255, 1154, 1034, 938, 898, 864, 791; MS (EI, m/z): 182 (13, M ${ }^{+}$), 167 (5), 123 (100), 107 (84), 91 (99), 79 (62). HRMS (EI, m/z, M ${ }^{+}$): 182.09375 (calculated), 182.09455 (found).

Figure 3.23. Methyl (E)-4-methyl-6-phenylhex-3-en-5-yn-2-yl carbonate
$\boldsymbol{E}-1 \mathrm{~m}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 3 \mathrm{H})$, 5.87 (dq, $J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dq}, J=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.3,135.5,131.7$, 128.4, 123.3, 121.9, 91.3, 88.5, 71.6, 54.8, 20.4, 18.0; FTIR $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3059,2982$, 2956, 2923, 1741, 1489, 1441, 1328, 1255, 1142, 1036, 942, 866, 754, 690; MS (EI, $m / z): 244\left(6, \mathrm{M}^{+}\right), 185$ (100), 167 (90), 153 (95), 152 (88), 141 (44), 128 (38), 115 (54), 102 (22), 91 (35), 77 (36). HRMS (EI, m/z, M ${ }^{+}$): 244.10940 (calculated), 244.10998 (found).

Figure 3.24. Methyl (E)-2,5-dimethyloct-4-en-6-yn-3-yl carbonate
$\boldsymbol{E}-\mathbf{1 n}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.63(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=9.6$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.6,131.5,124.0$, 85.0, 81.9, 79.6, 54.8, 32.5, 18.5, 18.3, 17.9, 4.3; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 2960, 2920, 2876, 2222, 1743, 1639, 1441, 1254, 966, 934, 791; MS (EI, m / z): $210\left(9, \mathrm{M}^{+}\right), 195$ (3), 167 (100), 151 (85), 135 (41), 123 (42), 119 (92), 108 (71), 91 (82), 77 (59). HRMS (EI, $\left.\mathrm{m} / \mathrm{z}, \mathrm{M}^{+}\right): 210.12505$ (calculated), 210.10403 (found).

Figure 3.25. Methyl (E)-7-methyldec-6-en-8-yn-5-yl carbonate
$\boldsymbol{E}-10:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.62(\mathrm{~d}, J=9.2,1 \mathrm{H}), 5.26-5.32(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.58(\mathrm{~s}, 1 \mathrm{H})$, 1.37-1.24 (m, 4H), $0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.4$, $133.1,123.2,85.0,82.0,75.2,55.0,34.2,27.1,23.0,18.4,14.1,4.3 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right)$: 2957, 2930, 2862, 2222, 1743, 1638, 1441, 1380, 1321, 1259, 1152, 1091, 1036, 933 , 879, 866, 791;MS (EI, m/z): 224 (4, M ${ }^{+}$), 167 (31), 148 (26), 133 (19), 123 (38), 119 (51), 105 (47), 91 (94), 77 (56). HRMS (EI, m/z, M ${ }^{+}$): 224.1407 (calculated), 224.44375 (found).

3.4. General Procedure for Carbonylation Reactions

Method A:

The substrate, a palladium compound, ligand, and an alcohol (5 mL) were added, successively to a Schlenk apparatus that is attached to an Ar line. A CO balloon was fixed to the reaction vessel and then, the mixture was stirred magnetically in a preheated oil bath. The course of the reaction was followed by TLC and GC analyzes. At the end of the reaction, the solvent was evaporated and the residue was purified by column chromatography on silica gel (Hexane/EtOAc), affording the product. The all vinylallene products appeared as colorless oil and coupling constants of olefinic protons and NOE studies confirm E-configured structures.

Method B:

A palladium compound, phosphine ligand and an alcohol (0.5 mL) were added, successively to a Schlenk apparatus that is attached to an Ar line and the mixture was stirred magnetically for a period of time. The substrate in an alcohol (1.2 mL) was added and a CO balloon was fixed to the reaction vessel and then, the mixture was stirred magnetically in a preheated oil bath.

For high pressure carbonylation reactions mixture of enyne, ligand, catalyst and alcohol (5 mL) was added into glass insert which was then placed into a stainless-steel reactor. Reactor was evacuated and purged with sufficient CO twice. Then reactor was pressurized with sufficient CO and the mixture was stirred magnetically in a pre-heated oil bath. After cooling reactor, the reaction mixture was recovered with diethyl ether.

3.5. Characterization of Products

The synthesized reactants were analyzed by GC (Agilent/6990N) equipped with Thermo TR-5MS ($30 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID) column, GC-MS (Thermo/ISQ) equipped with Thermo TR-5MS ($30 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID) column and isolated by column chromatography using a hexane-ethyl acetate eluent. High-resolution mass spectral analyses were
performed at the Dortmund University of Technology Mass Spectrometry Laboratory on a Thermo Electron system. NMR spectra were recorded on a Varian VnmrJ 400 spectrometer, a Varian Mercury AS 400, or a Bruker DRX 400 spectrometer. Infrared spectra were obtained using a Perkin-Elmer Spectrum 100 by ATR method with neat samples. Optical rotations were measured on a Bellingham Standley ADP 410 polarimeter. Enantiomeric purities were determined by HPLC (Agilent/1200).

For the calculation of amount of products, response factors were determined on GC using the equation (3.3). For this purpose dodecane was used as an internal standard.

$$
\begin{equation*}
\mathrm{RF}=\frac{\text { Area of internal standard } \times \text { Amount of compound }}{\text { Area of compound } \times \text { Amount of internal standard }} \tag{3.3}
\end{equation*}
$$

The equation (3.4) was used to calculate the amount of products.

$$
\begin{equation*}
\text { Amount of compound }=\frac{\text { Amount of internal standard }}{\text { Area of internal standard }} \times \text { R.F. } \times \text { Area of compound } \tag{3.4}
\end{equation*}
$$

${ }^{1}$ H-NMR technique was also used for the quantitative analyses of products using p-anisaldehyde or toluene as internal standards (Equation 3.5).

$$
\text { Amount of sample }=\text { amount of ISTD } \times \frac{\text { Amount of sample }}{\text { Area of ISTD }} \times \frac{\begin{array}{c}
\text { Number of H represented } \\
\text { by the integral for the } \\
\text { sample }
\end{array}}{\begin{array}{c}
\text { Number of H represented by } \tag{3.5}\\
\text { the integral for ISTD }
\end{array}}
$$

Figure 3.26. (E)-methyl 2-cyclohexyl-4-methylhepta-2,3,5-trienoate

2aa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.97(\mathrm{dd}, J=15.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dq}, J=$ $15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{tt}, J=11.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}) 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.63(\mathrm{~m}$, 8 H), 1.33 (qt, $J=12.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}$) 1.15 (tt, $J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.01 (qd, $J=12.4$, $3.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 211.4,166.6,126.2,125.2,104.7,104.0$,
51.0, 36.6, 32.0, 31.9, 25.5, 25.2, 17.5, 14.1; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2925,2852,1935,1714$, 1448, 1253, 1228, 960; MS (EI, m/z): 234 (50, M ${ }^{+}$), 205 (61), 175 (60), 165 (33), 159 (30), 152 (36), 133 (65), 119 (87), 105 (76), 91 (100), 77 (47); HRMS (EI, m/z, M^{+}):234.1614(calculated); 234.1616 (found).

Figure 3.27. (E)-methyl 2-tert-butyl-4-methylhepta-2,3,5-trienoate

2ba: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.98(\mathrm{dq}, J=15.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dq}, J=$ $15.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (s, 3H), 1.86 (s, 3H), 1.80 (dd, $J=6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.18 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.6,166.0,126.4,125.0,107.6,102.9,50.7,33.3$, 28.6, 17.5, 14.1; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 2992, 2957, 2867, 1935, 1716, 1434, 1362, 1257, 1224, 1060, 1030, 1007, 960, 925, 778; MS (EI, m / z): 208 (41, M ${ }^{+}$), 193 (11), 165 (10), 152 (100), 137 (11), 124 (15), 119 (28), 105 (23), 91 (43), 77 (17); HRMS (EI, m / z, $\left.\mathrm{M}^{+}\right): 208.1458$ (calculated); 208.1453 (found).

Figure 3.28. (E)-methyl 2-butylhepta-2,3,5-trienoate

2ca: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.15(\mathrm{dt}, J=10.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.84$ $(\mathrm{m}, 1 \mathrm{H}), 5.76(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz} 3 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $211.8,166.6,129.3,123.1,100.8,96.8,51.3,29.3,27.7,21.3,17.4,13.0 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2956,2931,2861,1940,1715,1435,1262,1241,1119,962 ; \mathrm{MS}(\mathrm{EI}, \mathrm{m} / \mathrm{z})$: 194 ($10, \mathrm{M}^{+}$), 165 (22), 152 (65), 137 (48), 123 (19), 105 (30), 93 (100), 77 (52); HRMS (EI, $m / z, \mathrm{M}^{+}$): 194.1301 (calculated); 194.1309 (found).

Figure 3.29. Methyl 2-butyl-4-(E)-prop-1-enyl)octa-2,3-dienoate

2da: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.90(\mathrm{dd}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dq}, J=$ $14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 4 \mathrm{H}), 1.47-$ $1.30(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 212.6,168.2$, 126.5, 126.0, 108.9, 101.2, 52.1, 30.5, 29.8, 29.0, 28.7, 22.62, 22.47, 18.6, 14.1; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2956,2930,2873,2860,1938,1715,1456,1435,1263,1132,961 ;$ MS (EI, m / z): 250 (7), 221 (25), 207 (34), 191 (69), 179 (28), 165 (43), 151 (87), 133 (41), 119 (55), 107 (85), 91 (100), 77 (48); HRMS (EI, m / z, M $^{+}$): 250.1927 (calculated); 250.1923 (found).

Figure 3.30. (E)-methyl 2-butyl-4-phenylhepta-2,3,5-trienoate

2ea: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.39$ - $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.12$ (dd, $J=15.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dq}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{dq}, J=12.4$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.85$ (dd, $J=6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{sext}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $0.89(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 212.9,167.7,135.6,130.6$, 128.6, 127.9, 127.8,124.9, 111.3, 102.5, 52.3, 30.3, 29.1, 22.5, 18.7, 14.0; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3025,2955,2928,2872,1932,1714,1434,1259,761,694 ; \mathrm{MS}(\mathrm{EI}, \mathrm{m} / \mathrm{z})$: 270 (38), 227 (20), 148 (100), 165 (47), 155 (57), 141 (34), 129 (26), 115 (20), 105 (9), 91 (25), 77 (11); HRMS (EI, m / z, M $^{+}$): 270.1614 (calculated); 270.1614 (found).

Figure 3.31. (E)-methyl 2-butyl-4-methylhepta-2,3,5-trienoate

2ja: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 6.03 (dd, $J=15.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (dq, $J=$ $15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 5 \mathrm{H})$, 1.31 (sex, $J=7.2 \mathrm{~Hz} 2 \mathrm{H}$), $0.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 213.1$, $167.5,127.7,126.0,104.0,100.2,51.6,30.8,29.4,22.6,18.3,15.0,14.1$; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 2955, 2929, 2873, 2860, 1941, 1713, 1262, 1014, 960, MS (EI, m / z): 208 (8, M+), 193 (2), 179 (8), 165 (17), 151 (46), 135 (18), 119 (22), 107 (100), 91 (66), 77 (26); HRMS: (ESI, $\left.m / z,(\mathrm{M}+\mathrm{H})^{+}\right): 209.1536$ (calculated), 209.1536 (found).
$(\boldsymbol{R}) \mathbf{- 2 j a}$: The enantiomers of this product was separated on a Chiralpak IC column ($0.46 \mathrm{~cm} / 25 \mathrm{~cm}$) with hexane:2-propanol= 99:0.5, flow= $1 \mathrm{~mL} / \mathrm{min}$. $59.4 \mathrm{ee} \%$ $[\alpha]_{\mathrm{D}}{ }^{27}=-0.11^{\circ}\left(\mathrm{c}=1.22 \mathrm{~g} / 100 \mathrm{~mL}\right.$, in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(S)-2ja: The enantiomers of this product was separated on a Chiralcel OJ-H column $(0.46 \mathrm{~cm} / 25 \mathrm{~cm})$ with hexane flow $=0.4 \mathrm{~mL} / \mathrm{min} .72 .1 \mathrm{ee} \% .[\alpha]_{\mathrm{D}}{ }^{23}=0.25^{\circ}(\mathrm{c}=$ $0.80 \mathrm{~g} / 100 \mathrm{~mL}$), $\mathrm{in} \mathrm{CHCl}_{3}$)

Figure 3.32. (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate

2la: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.98(\mathrm{dq}, \mathrm{J}=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dq}, \mathrm{J}=$ $15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{dd}, \mathrm{J}=6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 212.9,168.3,127.0,126.5,102.8,94.6,52.2,18.5$, 15.7, 15.0; FT-IR ($v_{\max } / \mathrm{cm}^{-1}$): 2989, 2952, 2929, 2857, 1943, 1713, 1436, 1268, 1119, 1037, 960, 920, 759; MS (EI, m/z): 166 (53, M ${ }^{+}$), 151 (50), 138 (14), 123 (40), 107 (34), 107 (34), 95 (22), 91 (100), 79 (32), 77 (28); HRMS (ESI, m/z, (M+H) ${ }^{+}$): 167.1067 (calculated), 167.1065 (found).

Figure 3.33. (E)-methyl 4-methyl-2-phenylhepta-2,3,5-trienoate

2ma: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.45-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.29 (m, 1H), $6.10\left(\mathrm{dq}, J_{A B}=15.6(\mathrm{AB}), 1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80\left(\mathrm{dq}, J_{A B}=15.6,6.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta: 215.2,166.7,133.5,128.6,128.3,127.7,127.6,126.1,105.2,102.3,52.4$, 18.6, 14.9; FT-IR ($v_{\max } / \mathrm{cm}^{-1}$): 3057, 3027, 2950, 1928, 1717, 1434, 1380, 1282, 1258, 1196, 1173, 1023, 960, 780, 746, 694, 661; MS (EI, m / z): 228 (100, M ${ }^{+}$), 213 (44), 200 (51), 185 (67), 169 (61), 154 (90), 141 (48), 128 (49), 115 (39), 102 (12), 91 (27), 77 (22), HRMS (EI, $m / z, \mathrm{M}^{+}$): 228.1145 (calculated), 228.1142 (found).

Figure 3.34. (E)-methyl 2,4,7-trimethylocta-2,3,5-trienoate

2na: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta: 6.06(\mathrm{dd}, J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=$ 15.6, 7.0, Hz, 1H), 3.38 ($\mathrm{s}, 3 \mathrm{H}$), 2.13-2.24 (m, 1H), $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$) ${ }^{13}{ }^{\mathrm{C}}$ NMR: ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta: 213.4,167.7,138.3,123.8,103.0,95.1$, 51.7, 31.8, 22.5, 15.8, 15.0; FT-IR ($v_{\max } / \mathrm{cm}^{-1}$): 2958, 2928, 2869, 1944, 1716, 1436, 1269, 1237, 1119, 1043, 965, 760; MS (EI, m/z): 194 (35, M ${ }^{+}$), 179 (36), 163 (9), 152 (56), 147 (26), 135 (85), 119 (100), 105 (69), 91 (83), 77 (47); HRMS (EI, $m / z, \mathrm{M}^{+}$): 194.1301 (calculated), 194.1296 (found).

Figure 3.35. (E)-methyl 2,4-dimethyldeca-2,3,5-trienoate

20a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.96(\mathrm{dt}, J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dt}, J=$ $15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dq}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, 1.28-1.43 (m, 4H), $0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.1$, $168.3,132.0,125.6,102.9,94.6,52.2,32.8,31.6,22.4,15.7,15.0,14.1 ;$ FT-IR $\left(v_{\max } / \mathrm{cm}^{-}\right.$ ${ }^{1}$): 2989, 2955, 2927, 2872, 1943, 1715, 1435, 1269, 1119, 962, 760; MS (EI, m / z): 208
(<1, $\left.\mathrm{M}^{+}\right), 166$ (12), 151 (100), 123 (58), 109 (36), 91 (17), 81 (32); HRMS: (ESI, m / z, $\left.(\mathrm{M}+\mathrm{H})^{+}\right): 209.1536$ (calculated), 209.1533 (found).

Figure 3.36. (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate

2jb: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.98(\mathrm{dq}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dq}, J=$ $15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.79(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.0$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 212.8,167.5,127.2,126.0,103.8,100.0,60.8$, $30.4,28.8,22.3,18.5,15.0,14.43,14.03$; FT-IR ($v_{\max } / \mathrm{cm}^{-1}$): 2957, 2929, 2872, 2860 , 1940, 1762, 1708, 1445, 1367, 1259, 1239, 1130, 960; MS (EI, m / z): 222 (7, M ${ }^{+}$), 193 (9), 180 (9), 165 (18), 149 (46), 137 (18), 119 (15), 107 (100), 91 (71), 77 (36); HRMS: (ESI, $\left.m / z,(\mathrm{M}+\mathrm{H})^{+}\right): 223.1693$ (calculated), 223.1692 (found).

Figure 3.37. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate

2jc: ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.91$ (dq, $\left.J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.59(\mathrm{dq}, J=$ $6.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{td}, J=6.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.79$ (s, 3H), 1.73 (dd, $J=6.6,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.57$ (sext, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.22-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 212.8,167.6$, 127.2, 126.0, 103.8, 100.0, 66.3, 30.4, 28.7, 22.3, 22.2, 18.5, 14.9, 14.0, 10.5; FT-IR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2959,2929,2875,2859,1941,1709,1458,1260,960 ;$ MS (EI, $\left.\mathrm{m} / z\right): 236$ ($8, \mathrm{M}^{+}$), 207 (5), 194 (7), 177 (7), 165 (10), 149 (45), 137 (29), 121 (15), 107 (100), 91 (65), 77 (34); HRMS: (EI, $m / z, \mathrm{M}^{+}$): 236.1771 (calculated), 236.1764 (found).

Figure 3.38. (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate

2jd: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.05(\mathrm{dq}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dq}, J=$ $15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.56$ (dd, $J=6.4,0.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.52 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.42 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.32 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.18 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 0.85 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 0.73 (t, $J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 213.0,167.1,125.9,103.9,100.6,64.7,31.1$, 30.9, 29.4, 22.6, 19.5, 18.3, 15.0, 14.1, 13.8; FT-IR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2958,2932,2873,1941$, 1710, 1458, 1378, 1239, 1119, 960; MS (EI, m / z): $250\left(3, \mathrm{M}^{+}\right), 165$ (13), 149 (50), 137 (35), 121 (12), 107 (100), 91 (44), 77 (20); HRMS (EI, m / z, M $^{+}$): 250.1927 (calculated), 250.1934 (found).

Figure 3.39. (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate

2je: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.98 (dq, $J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.65 (dq, $J=$ $15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{hept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.79$ (dd, $J=6.8,1.6, \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 212.8,167.1,127.3,125.8,103.8,100.5,68.1$, $30.4,28.8,22.3,22.0,18.5,14.9,14.1 ;$ FT-IR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2979,2958,2930,2860$, 1941, 1706, 1466, 1373, 1261, 1241, 1107, 1067, 960; MS (EI, m / z): $236\left(9, \mathrm{M}^{+}\right), 194$ (24), 177 (10), 165 (22), 149 (79), 137 (44), 121 (19), 107 (100), 91 (66), 77 (30); HRMS (EI, $m / z, \mathrm{M}^{+}$): 236.1771 (calculated), 236.1762 (found).

CHAPTER 4

RESULTS AND DISCUSSION

It was demonstrated in this study the $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation reaction of (E)-2-en-4-yne carbonates in an alcohol and under carbon monoxide atmosphere affords vinylallene esters. As judged from NMR studies, the reactions proceeded diastereoselectively to yield exclusively (E)-configured products (Figure 4.1).

Figure 4.1. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonates

To optimize the reaction condition, various reaction conditions, such as reaction temperature, pressure of CO, type of ligand, amount of the catalyst and the ratio of catalyst to ligand were screened.

Palladium-catalyzed alkoxycarbonylation reactions of enyne carbonate ($\boldsymbol{E}-\mathbf{1} \mathbf{j}$) were performed by using various mono-dentate phosphine, phosphite and arsine ligands in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2 \mathrm{~mol} \% \mathrm{Pd}) /$ Ligand ($4 \mathrm{~mol} \%$) at RT under balloon atmosphere of CO (Table 4.1). Tris(2,6-dimethoxyphenyl)phosphine, tris(2methoxyphenyl)phosphine, tris(4-methoxyphenyl)phosphine, triphenylphosphine and benzyldiphenylphosphine ligands exhibited high reactivities, ensuring the high yield of the vinylallene $\mathbf{2 j a}$ formation with complete conversions (Table 4.1, entries 1,2,3,4,9). Diethylphosphite, diphenylphosphite, $\mathrm{Me}(\mathrm{Ph})_{2} \mathrm{P},\left(4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$ and $\left(2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right)_{3} \mathrm{P}$ ligands showed lower activities and their presence also led to formation of an $\mathrm{S}_{\mathrm{N}} 2$ product 3ja in low yields (Table 4.1, entries 6,7,8,10,12). Ligands including $\mathrm{Ph}_{3} \mathrm{As}$, $\mathrm{Cy}_{3} \mathrm{P},\left(2,4,6-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{3} \mathrm{P}$ and (2-Biphenyl)di-tert-butylphosphine were ineffective for the alkoxycarbonylation reaction (Table 4.1, entries 5, 11,13,14,).

Table 4.1. Effect of Various Mono-dentate Ligands on $\operatorname{Pd}(0)$-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate $\boldsymbol{E}-\mathbf{1} \mathbf{j}^{\mathbf{a}}$

Table 4.1. (cont.)
7

[^0]Palladium-catalyzed alkoxycarbonylation reactions were also carried out by using bi-dentate phosphine ligands. But only bis[(2-diphenylphosphino)phenyl] ether and xantphos ligands showed efficient activities to yield vinylallene with complete conversion (Table 4.2; entry 3,4). Other phosphine derivatives dppe and dppp showed lower activities to form the product $\mathbf{2 j a}$ (Table 4.2; entries 5,6) and dppb, dppf, BiPhep and BINAP ligands were either non-active or showed very low activities (Table 4.2; entries $1,2,7,8$). As judged from the reaction periods ortho-OMe substituted mono dentate phosphines (Table 4.2; entries 2,3) and Xanthphos and DPEphos (Table 4.2;
entries 3,4) ligands appear relatively more active ligands as compared to PPh_{3}. However PPh_{3} were the choice of ligand for the further investigation of the method because of its lower cost.

Table 4.2 Effect of Various Bidentate Ligands on $\operatorname{Pd}(0)$-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate $\boldsymbol{E}-\mathbf{1} \mathbf{j}^{\text {a }}$

Table 4.2. (cont.)
$7^{\text {c }}$

RT

RT
26 16 8
$8^{\text {c }}$

24
30
9

[^1]The alkoxycarbonylation reaction was also applied to the enyne carbonate $(\boldsymbol{E}-\mathbf{1 j})$ in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2 \mathrm{~mol} \% \mathrm{Pd}(0))$ and $4 \mathrm{~mol} \% ~ 1,3$-bis $(2,6-\mathrm{di}-i$ -propylphenyl)imidazol-2-ylidene catalytic system. However, the enyne alcohol $\mathbf{6 j a}$ was formed instead of the desired carbonylative product without complete conversion.

Figure 4.2. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonates $(\boldsymbol{E}-\mathbf{1} \mathbf{j})$ in the presence of NHC ligand

In the presence of tetrakistriphenylphosphinopalladium complex the alkoxycarbonylation reaction of E-enyne carbonate $\boldsymbol{E} \mathbf{- 1} \mathbf{j}$ after 24 h with methanol and carbon monoxide under balloon pressure at RT formed the vinylallene ester with an excellent yield (Table 4.3, entry 1). Using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3} / \mathrm{Ph}_{3} \mathrm{P}$ with a $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio of $1 / 2$ decreased the reaction time to 7 hours for complete conversion. Decreasing the palladium to ligand ratio from $1 / 2$ to $1 / 4$ caused a decrease in the catalyst activity (Table 4.3, entries 2,3) Using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3} /$ Xantphos with a ratio of $1 / 1$ also decreased the reaction time from 24 hours to 4 hours for complete conversion (Table 4.3, entries 4,5).

Table 4.3. Effect of Catalyst and Catalyst/Ligand Ratio on $\operatorname{Pd}(0)$-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonates \boldsymbol{E}-1j

${ }^{\text {a }}$ Method A: $\boldsymbol{E}-\mathbf{1 j}: 0.3 \mathrm{mmol}, \mathrm{MeOH}: 5 \mathrm{~mL}, \mathrm{CO}$: balloon pressure ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ No complete conversion. ${ }^{\mathrm{d}}$ Determined by GC using dodecane as an internal standard.

The effect of reaction temperature was also investigated. The reaction achieved a complete conversion within 4 h at elevated temperature $\left(50{ }^{\circ} \mathrm{C}\right)$ in the presence of 1 $\mathrm{mol} \%$ of Pd source and $2 \mathrm{~mol} \% \mathrm{PPh}_{3}$ (Table 4.4, entry 2). At room temperature and in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}$ source and $4 \mathrm{~mol} \% \mathrm{PPh}_{3}$ the reaction resulted in to yield the vinylallene ester structure $\mathbf{2 j a}$ within 7 hours (Table 4.4, entry 3). A complete conversion could be provided even at $10{ }^{\circ} \mathrm{C}$ of reaction temperature albeit at a prolonged reaction time (Table 4.4, entry 4). The conversion of enyne carbonate could not be complete at $0^{\circ} \mathrm{C}$ of reaction temperature even at higher Pd loading 3\% (Table 4.4, entry 6).

The alkoxycarbonylation reaction of $E-2$-en-4-yne carbonate $\boldsymbol{E} \mathbf{- 1 j}$ in the presence of $0.25 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ and 2 equivalent of PPh_{3} with respect to palladium gave vinylallene at a low yield 45% with complete conversion (Table 4.4, entry 1).

The application of higher CO pressure (10 Atm) seemed no effect on carbonylation reaction of $\boldsymbol{E}-\mathbf{1} \mathbf{j}$ (Table 4.4, entry 3,4).

Table 4.4.Effect of Amount of $\mathrm{Pd} / \mathrm{PPh}_{3}$ Catalyst system, CO Pressure and Temperature on $\operatorname{Pd}(0)$-catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonates $\boldsymbol{E}-1 \mathrm{j}$

$\stackrel{B u}{ }$ $\mathrm{MeO}_{2} \mathrm{CO}$	$-\mathrm{Me}+\mathrm{MeOH}$ $-\mathrm{Me}$	$\mathrm{CO}-$	$\mathrm{Pd}_{2}(\mathrm{dba})$ PP	HCl_{3}	(2ja		
							3 a
Entry	$\begin{gathered} \mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl} \\ (\% \mathrm{~mol} \mathrm{Pd}(0)) \end{gathered}$	PPh_{3}	$\begin{gathered} \mathrm{P}_{C O} \\ (\mathrm{Atm}) \end{gathered}$	T(${ }^{\circ} \mathrm{C}$)	$\mathbf{2 j a} \%$	$\mathbf{3 j a} \%$	Time (h)
$1{ }^{\text {d }}$	$0.25 \mathrm{~mol} \%$	$0.5 \mathrm{~mol} \%$	Balloon	50	45	12	24
$2^{\text {b }}$	$1 \mathrm{~mol} \%$	$2 \mathrm{~mol} \%$	Balloon	50	90	-	4
$3^{\text {b }}$	$2 \mathrm{~mol} \%$	$4 \mathrm{~mol} \%$	Balloon	RT	93	-	7
$4^{\text {b }}$	$2 \mathrm{~mol} \%$	$4 \mathrm{~mol} \%$	Balloon	10	91	-	48
$5^{\text {d }}$	$2 \mathrm{~mol} \%$	$4 \mathrm{~mol} \%$	10	RT	94	-	6
$6^{\text {c }}$	$3 \mathrm{~mol} \%$	$6 \mathrm{~mol} \%$	Balloon	0	38	-	73

${ }^{\text {a }}$ Method A: $\boldsymbol{E}-\mathbf{1 j}: 0.3 \mathrm{mmol}, \mathrm{MeOH}: 5 \mathrm{~mL}^{\mathrm{b}}$ Isolated yield. ${ }^{\text {c }}$ No complete conversion. Determined by GC using dodecane as an internal standard. ${ }^{\text {d }}$ Determined by NMR with using p-anisaldehyde as internal standard.

The alkoxycarbonylation reaction of E-configured enyne carbonate $\boldsymbol{E} \mathbf{- 1 \mathbf { j }}$ in the presence of different alcohols formed ester functionalized allene derivatives $\mathbf{2 j a} \mathbf{- 2 j} \mathbf{j}$. Although the alkoxycarbonylation of enyne carbonate $\boldsymbol{E}-\mathbf{1} \mathbf{j}$ in the presence of MeOH , $\mathrm{EtOH}, \mathrm{PrOH}$ and BuOH formed desired allene esters just within 3-4 h in the range of $80-91 \%$ isolated yields (Table 4.5, Entries 1-4), a lower yield of 2,3,5-trienoate product $\mathbf{2 j e}$ could also be obtained with i-propyl alcohol after 6h (Table 4.5, Entry 5).

Table 4.5.Pd(0)-catalyzed alkoxycarbonylative reaction of $\boldsymbol{E}-\mathbf{1} \mathbf{j}$ with various alcohols ${ }^{\text {a,c }}$

Entry	ROH	Isolated yield (\%)
1	MeOH	$88(\mathbf{2 j a})$
2	EtOH	$81(\mathbf{2 j b})$
3	PrOH	$91(\mathbf{2 j c})$
4	BuOH	$80(\mathbf{2 j d})$
5	$i-\mathrm{PrOH}$	$67(\mathbf{2 j e})^{\mathrm{b}}$

${ }^{a}$ Method A: $\boldsymbol{E}-\mathbf{1 j}: 0.3 \mathrm{mmol}, \mathrm{ROH}: 5 \mathrm{~mL}, \mathrm{CO}$: balloon pressure, $1 \mathrm{~mol} \% \mathrm{Pd}, 2 \mathrm{~mol} \% \mathrm{PPh}_{3} .{ }^{b} 6 \mathrm{~h} \mathrm{~h} .{ }^{\mathrm{c}}$
Akpinar G. E. master thesis iyte library P.S.N: QD505 .A315 2011

The scope of (E)-2-en-4-yne carbonates having different substituent groups on alkynyl, olefinic and allylic positions was surveyed. The methodology can tolerate the (E)-2-en-4-yne carbonates having butyl, phenyl, cyclohexyl and bulky tertiary butyl on its alkynyl terminus (R^{1}) in spite of the fact that the enyne carbonate bearing tertiary butyl and methyl group on its alkynyl position required 1 h longer reaction period and gave the desired product with a moderate yield (Table 4.6, entries 1,2,6,8,9).

The enyne carbonates having hydrogen, butyl, and phenyl group on its olefinic position $\left(\mathrm{R}^{2}\right)$ were also reactive substrates toward $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation reaction to lead to vinylallenyl esters (Table 4.6,entries 3,4,5,6). But the E-configured enyne carbonate $\boldsymbol{E}-\mathbf{1 1}$ having hydrogen on its olefinic position $\left(\mathrm{R}^{2}\right)$ and methyl group on its alkynyl terminus $\left(\mathrm{R}^{1}\right)$ led to a complex mixture (containing only small amounts of the desired vinylallenes) when subjected to the $\operatorname{Pd}(0)$-catalyzed carbonylation reaction as determined by ${ }^{1} \mathrm{H}$-NMR analysis (Table 4.6, entry 7).

The enyne carbonate \boldsymbol{E} - $\mathbf{1 n}$ bearing a isopropyl group on its allylic position $\left(\mathrm{R}^{3}\right)$ was tolerated to afford the desired product 2na with high yield (Table 4.6, entry 10) in spite of the fact that enyne carbonate \boldsymbol{E}-10 having butyl group on its allylic position required 1 h longer reaction period and gave the desired product 20 a (Table 4.6, entry 11).

Table 4.6.Pd(0)-Catalyzed Alkoxycarbonylation Reactions of Various E-Enyne Carbonates ${ }^{\text {a }}$

Entry
(cont. on next page)

Table 4.6. (cont.)

E-1k

E-1I

$E-1 m$

$E-1 n$

E-10

2ka (20\%)

2la (66\%)

2ma (81\%)

${ }^{\text {a }}$ Method A: $\boldsymbol{E}-10.3 \mathrm{mmol}, \mathrm{MeOH}: 5 \mathrm{~mL}, \mathrm{CO}$: balloon pressure, $1 \mathrm{~mol} \% \mathrm{Pd}, 2 \mathrm{~mol} \% \mathrm{PPh}_{3} .{ }^{\mathrm{b}}$ Isolated yield. Akpinar G. E. master thesis iyte library P.S.N: QD505 .A315 2011

The (E)-2-en-4-yne carbonate (\boldsymbol{E}-1f) bearing hydrogen on its R^{2} position and methyl on its olefinic position near the allylic carbon led, however to the mixture of allene structures under the optimum conditions (Figure 4.3).

E-1f
Figure 4.3. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonate $(\boldsymbol{E}-\mathbf{1 f})$

The consequence of the allylic substitution on reactivity of enyne carbonate were also examined. It was observed that the reactivity of the enyne carbonates highly based on the nature of the allylic position. Unlike the enyne carbonates substituting a
methyl group on R^{3} position, the phenyl substituted enyne carbonate ($\boldsymbol{E}-\mathbf{- 1 g}$) did not give the desired carbonylation product, rather produced a non-separable mixture of allylic methoxy substituted structures with 63% yield of an $\mathrm{S}_{N} 2^{2}$ and 21% yield of an $\mathrm{S}_{N} 2$ products (Figure 4.4).

Figure 4.4. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonate $(\boldsymbol{E}-\mathbf{1 g})$

The alkoxycarbonylation reaction of a primary enyne carbonate ($\boldsymbol{E}-\mathbf{1 h}$) accompanied formation of a directly alkoxycarbonylated product 6ha along with the expected allenyl product 2ha without complete conversion (Figure 4.5).

Figure 4.5. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-enyne carbonate $(\boldsymbol{E}-\mathbf{1 h})$

The carbonylation reaction was also performed with the (E)-2-en-4,5-diyne carbonate ($\boldsymbol{E}-\mathbf{1 i}$), which led to form complex mixture without complete conversion (Figure 4.6).

Figure 4.6. $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of E-endiyne carbonate $(\boldsymbol{E}-\mathbf{1 i})$

The alkoxycarbonylation reaction pathway starts with in-situ formation of active $\operatorname{Pd}(0)$ species. The reaction pursues two possible pathways to form a σ-allenylpalladium intermediate (B). First possible path includes oxidative addition of $\operatorname{Pd}(0)$ followed by decarboxylation to form allyl palladium intermediate (A). A shift of Pd to far alkynyl carbon give the σ-allenylpalladium intermediate (B). $1,5-\mathrm{S}_{N} 2$ "' type $\operatorname{Pd}(0)$-substitution may also cause the formation of vinylallenylpalladium intermediate (B) The reaction cycle continues with insertion of CO to the Pd-carbon bond and reaction of alcohol. The cycle finalizes by a reductive elimination and regeneration of $\mathrm{Pd}(0)$ species.

(B)

Figure 4.7. Proposed reaction mechanism of alkoxycarbonylation of (E)-enyne carbonates.

We also investigated possible chiral transfer characteristics of the method. The alkoxycarbonylation reaction of $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1} \mathbf{j}(82.8 \%$ ee $)$ performed at $50^{\circ} \mathrm{C}$ gave the allene ester structure with only 10.9 ee $\%$ (Table 4.7, entry 1). Decreasing the reaction temperature from $50^{\circ} \mathrm{C}$ to room temperature resulted slight increase in enantiopurity of allene to 12% (Table 4.7, entry 2). Also, the alkoxycarbonylation reaction of ($\boldsymbol{S}, \boldsymbol{E}$) $\mathbf{- 1} \mathbf{j}$ at $10{ }^{\circ} \mathrm{C}$ showed slight effect on the order of chirality transfer (Table 4.7 entry 4). Mixing first the Pd compound and the triphenylphosphine ligand in MeOH about 10 min at RT
prior to the addition of the substrate had slight effect on the enantioselectivity of the process (Table 4.7, entry 3).

Table 4.7. $\operatorname{Pd}(0)$-Catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate (S,E)-1j at Different Reaction Temperatures ${ }^{\text {a }}$

Entry	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ $\mathrm{Pd}(0) \%$	PPh_{3}	$\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	ee (\%)	Yield (\%)
1^{b}	$1 \mathrm{~mol} \%$	$2 \mathrm{~mol} \%$	50	4	10.9	90
2^{b}	$2 \mathrm{~mol} \%$	$4 \mathrm{~mol} \%$	RT	9	12	93
$3^{\mathrm{b}, \mathrm{c}}$	$2 \mathrm{~mol} \%$	$4 \mathrm{~mol} \%$	RT	9	17.1	91
4^{b}	$2 \mathrm{~mol} \%$	$4 \mathrm{~mol} \%$	10	46	14.4	91

[^2]The effect of phosphine ligands on the stereosectivity of the $\operatorname{Pd}(0)$-catalyzedalkoxycarbonylation of the enantiomerically enriched enyne carbonate was also demonstrated. The ($\boldsymbol{S}, \boldsymbol{E}$)-1j did not undergo the carbonylation reaction with R-Segphos (Table 4.8, entry 6). Although using tris(2,6-dimethoxyphenyl)phosphine in the alkoxycarbonylation reaction gave almost racemic vinylallene ester structures, using tris(2-methoxyphenyl)phosphine slightly affected the chirality transfer (Table 4.8, entry 2,3). A bidentate ligand xantphos and tetrakistriphenylphosphinopalladium were superior to tris(2,6-dimethoxyphenyl)phosphine and tris(2-methoxyphenyl)phosphine and PPh_{3} ligands (Table 4.8 , entry 3,5). Using $4 / 1$ ratio of P / Pd and mixing first the Pd compound and the Xantphos ligand in MeOH about 10 min at RT prior to the addition of the substrate caused increase in the enantioselectivity of the process (Table 4.8, entry 4).

Table 4.8. $\operatorname{Pd}(0)$-catalyzed Alkoxycarbonylation Reactions of (E)-Enyne Carbonate (S,E)-1j with Different Ligands ${ }^{\text {a }}$

Entry	Palladium ($\operatorname{Pd}(0) \%$)	Ligand(\%)	Time(h)	ee (\%)	2ja\%
$1^{\text {b }}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2 \mathrm{~mol} \%)$	Tris(2,6-dimethoxyphenyl)phosphine (4 mol \%)	6	6.7	91
$2^{\text {b }}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2 \mathrm{~mol} \%)$	Tris(2-methoxyphenyl)phosphine (4 mol\%)	6	12.1	93
$3^{\text {b }}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(2 \mathrm{~mol} \%)$	Xantphos ($2 \mathrm{~mol} \%$)	4.5	44	91
$4^{\text {b,d }}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2 \mathrm{~mol} \%)$	Xantphos (4 mol\%)	17	59.4	93
$5^{\text {b }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \mathrm{~mol} \%)$	-	40	41.6	91
$6^{\text {c }}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(2 \mathrm{~mol} \%)$	(R)-Segphos (4 mol\%)	72	-	-

${ }^{\text {a }}$ Method A: $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 j}: 0.1 \mathrm{mmol}$, MeOH: 1.7 mL , Ballon pressure CO^{b} Isolated yield. ${ }^{\mathrm{c}}$ Not complete conversion.Determined by NMR with using p-anisaldehyde as internal standard. ${ }^{\mathrm{d}}$ Method B: $\boldsymbol{(S , E} \mathbf{E} \mathbf{- 1 \mathbf { j } : ~} 0.1 \mathrm{mmol}$, $\mathrm{MeOH}: 1.7 \mathrm{~mL}$, Ballon pressure $\mathrm{CO} . \mathrm{Pd}(0)$ formed by mixing Pd source and ligand in 0.5 mL MeOH for 10 min and then reactant in methanol $(1.2 \mathrm{~mL})$ was added.
S, S-Chiraphos ligand, however, ligand led to the formation of a nonseperable mixture of trace amount of allene 2ja and (E)-2-methoxy-4-methyldec-3-en-5-yne 3ja and (E)-4-methoxy-4-methyldec-2-en-5-yne 3jb (Figure 4.8).

Figure 4.8. $\mathrm{Pd}(0)$-catalyzed Alkoxycarbonylation Reactions of E-Enyne Carbonate (S,E)-1j with S, S-Chiraphos

Using 4/1 ratio of P / Pd and mixing first the Pd compound and the PPh_{3} and tris para-trifluoromethylphenylphosphine ligands in MeOH about 1h at RT under Ar prior to the addition of the substrate (E)-enyne carbonate ($\boldsymbol{R}, \boldsymbol{E}$)-1j having 98.8% enantiopurity formed vinylallene $\mathbf{2 j a}$ having almost same enantiopurity, even though the reaction of $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 \mathbf { j }}$ in the presence of trispara-trifluoromethylphenylphosphine did not give complete convertion (Table 4.9 entries 3,4). Using xantphos showed an increase in chirality transfer and resulted to form 61% ee allene (Table 4.9 entries 1).

Table 4.9. $\operatorname{Pd}(0)$-Catalyzed Alkoxycarbonylation Reactions of (E)-Enyne Carbonate $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1} \mathbf{j}$ with Different Ligands ${ }^{\text {a }}$

(R, E)-1 ${ }^{j}$
($98.8 \% \mathrm{ee}$)

Entry	Ligand	T $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	ee (\%)	Yield (\%)
1^{b}	$4 \mathrm{~mol} \%$ Xantphos	RT	27	61.7	93
2^{b}	$4 \mathrm{~mol} \%$ DPEphos	RT	4	72.1	90
$3^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$8 \mathrm{~mol} \% \mathrm{P}\left(4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$	RT	25	58.2	56
4^{b}	$8{\mathrm{~mol} \% \mathrm{PPh}_{3}}^{\text {RT }}$	20	54.3	90	

${ }^{a}$ Method B: $\left.\boldsymbol{R}, \boldsymbol{E}\right) \mathbf{- 1 j}: 0.1 \mathrm{mmol}, \mathrm{MeOH}: 1.7 \mathrm{~mL}, \mathrm{CO}$: balloon pressure. $\mathrm{Pd}(0)$ formed by mixing $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ and ligand in metanol $(0.5 \mathrm{~mL})$ for 1 h and then reactant in methanol $(1.2 \mathrm{~mL})$ was added. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ No complete conversion. 31% of reactant was in reaction medium. ${ }^{\text {d }}$ Determined by NMR with using toluene as internal standard.

The alkoxycarbonylation of $(R, E)-1 \mathrm{j}$ in the presence of DPEphos showed superiority compared to the other phosphine ligands used giving 72% enantiomerically enriched vinylallene (\boldsymbol{S})-2aj that is an anti product (Figure 4.9).

Figure 4.9. Pd(0)-catalyzed Alkoxycarbonylation Reactions of Enyne Carbonate ($\boldsymbol{R}, \boldsymbol{E}$)$\mathbf{1 j}$ with DPEphos

The investigations showed that the chirality transfer is severely dependent on the nature of the ligand used in the alkoxycarbonylation reactions. The reason for this dependence could be alteration in the rates of oxidative addition, CO insertion and reductive elimination steps that can be excuse for the isomerization of π-allylpalladium intermediate.

CHAPTER 5

CONCLUSION

In this study the palladium-catalyzed alkoxycarbonylation reactions of (E)-2-en4 -yne carbonate derivatives which led to the ester funtionalized vinylallene products was described.

The optimization studies showed that the palladium-catalyzed alkoxycarbonylation reactions could be performed in the presence of triphenylphosphine, xantphos, tris(2-methoxyphenyl)phosphine, tris(2,6dimethoxyphenyl)phosphine and DPEphos ligands upon using $2 / 1$ ratio of P / Pd. The coordinatively saturation of palladium with phosphines rendered the decrease of the catalyst activity.

The reaction could be performed successfully under balloon atmosphere of CO. That the application of higher CO pressures did not influence the reaction activity may imply that CO insertion is not a rate determining step of the overall reaction cycle.

Chirality transfer ability of the method was found to be partial. The highest ee\% (app. 72%) of the product, so far, could be obtained when reacting an enantio-enriched enyne carbonate by using DPEphos ligand with a P/Pd ratio of 4.

REFERENCES

Akpınar, G. E., Kuş, M., Üçüncü, M., Karakuş, E., Artok, L. 2011 Palladium-Catalyzed Alkoxycarbonylation of (Z)-2-En-4-yn Carbonates Leading to 2,3,5-Trienoates. Organic Letters 13(4):748-751.

Baker, R., Castro, J. L. 1990 Total Synthesis of (+)-Macbecin I. J. Chem. Soc. Perkin Trans. 1: 47-65.

Beller, M., Neumann, H., Brenführer, A. 2009. Palladium-Catalyzed Carbonylation Reactions of Alkenes and Alkynes. Chem.Cat. Chem., 1:1:28-41.

Betzer, J., et al. 1997 Radical Hydrostannylation, Pd(0)-Catalyzed Hydrostannylation, Stannylcupration of Propargyl Alcohols and Enynols: Regio- and Stereoselectivities. The Journal of Organic Chemistry 62(22): 7768-7780.

Chen, L., Li, C. 2004 Facile and Selective Copper-Palladium Catalyzed Addition of Terminal Alkynes to Activated Alkynes in Water. Tetrahedron Letters 45: 2771-2774.

Chen, Z., Duan, X., Wu, L., Ali, S., Ji, K., Zhou, P., Liu, X., Liang, Y. 2011. Palladium-Catalyzed Coupling of Propargylic Carbonates with NTosylhydrazones: Highly Selective Synthesis of Substituted Propargylic NSulfonylhydrazones and Vinylallenes Chem. Eur. J. 17: 6918-6921.

Corey, E. J., Helal, C. J. 1998 Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. Angewandte Chemie Int. Ed. 37: 1986 -2012.

Coupling Reaction Involving Allenic/Propargylic Palladium Species. Angewandte Chemie International Edition 42: 4215-4217.

Elsevier, C.J., Kleijin, H., Boersma, J., Vermeer, P. 1986. Synthesis, Structure, and Reactivity of Some (σ-Alleny1)- and (σ-Prop-2-ynyl)-palladium(II) Complexes. Organometallic 5:716-720.

Frigerio, M., Santagostino, M., Sputore, S., Palmisano, G. 1995 Oxidation of Alcohols with o-Iodoxybenzoic Acid (IBX) in DMSO: A New Insight into an Old Hypervalent Iodine Reagent. Journal of Organic Chemistry 60: 7272-7276.

Garrais, S., Turkington, J., P.D. Goldring W.P.D. 2009 Synthesis of Isomeric Polyacetylenes Based on Natural Hydroxy Matricaria Esters Tetrahedron 65: 8418-8427.

Gore, J., Dulcere, J.P. 1972. New Synthesis of Vinylallene. Journal of Chemical Society, Chemical Communications 867.

Hill, J. G., Rossiter B. E., Sharpless K. B. 1983 Anhydrous tert-Butyl Hydroperoxide in Toluene: The Preferred Reagent for Applications Requiring Dry TBHP. J. Org. Chem. 148, 3608-3611.

Kloster-Jensen, E., 1966 The Preparation of Monochloro-,Monobromo- and Monoiodoacetylene. Tetrahedron. 22: 965-973.

Koop, U., Handke, G., Krause, N. 1996 Synthesis of Vinylallenes by Conjugate 1,6-, 1,8-, 1,1O- and 1,12-Addition Reactions of Organocuprates with Acetylenic Michael Acceptors and Their Use as Dienes in Intermolecular Diels-Alder Reactions. Liebigs Ann. 1487-1499.

Krause, N., Purpura, M. 1999. Regio- and Stereoselective Synthesis of Vinylallenes by $1,5-\left(\mathrm{SN}^{\prime \prime}\right)$-Substitution of Enyne Acetates and Oxiranes with Organocuprates. European Journal of Organic Chemistry 265-275.

Ma, S., Wang, G. 2003. Regioselectivity Control by a Ligand Switch in the in the Coupling Reaction Involving Allenic/Propargylic Palladium Species. Angewandte Chemie Int. Ed. 42(35): 4215-4217.

Mandai, T., et al. 1994 Palladium-Catalyzed Hydrogenolysis of 2-Alkynyl Formates and Elimination of 2-Alkynyl Carbonates- 2-Alkynylpalladium Complex vs Allenylpalladium Complex as Intermediates. Journal of Organometallic Chemistry 473: 343-352.

Marek, I., Meyer, C., Normant, J. F. 1998 A Simple and Convenient Method for the Preparation of (Z)- β-iodoacrolein and of (Z)- or (E) $-\gamma$-iodo Allylic Alcohols: (Z)- and (E)-1-iodohept-1-en-3-ol Organic Synthesis 9: 510.

Marshall, J. A., Wolf, M. A., Wallace, E. M. 1997. Synthetic Routes to Allenic Acids and Esters and Their Stereospecific Conversion to Butenolides. Journal of Organic Chemistry 62: 367-371.

Meijere, A., Diederich de F., ed. 2004 Metal-Catalyzed Cross-Coupling Reactions. Volume 1: WILEY-VCH Verlag GmbH \& Co. KGaA.

Molander, G. A., E. M. Sommers, Baker, S. R. 2006. Palladium(0)-Catalyzed Synthesis of Chiral Ene-allenes Using Alkenyl Trifluoroborates. Journal of Organic Chemistry 71(4):1563-1568.

Murahashi, S, I. , Imoda, Y., Taniguchi, Y., Higashiura, S. 1993 Palladium(0) Catalyzed Alkoxycarbonylation of Allyl Phosphates and Acetates. Journal of Organic Chemistry 58:6:1538-1545.

Piers, E., et al. 1994 A Convenient Procedure For The Efficient Preparation of Alkyl (Z)-3-Iodo-2-Alkenoates. Canadian Journal of Chemistry-Revue Canadienne De Chimie 72(8):1816-1819.

Purpura, M., Krause, N. 1999 Regio- and stereoselective synthesis of vinylallenes by 1,5 -(S-N-")-substitution of enyne acetates and oxiranes with organocuprates. European Journal of Organic Chemistry 1: 267-275.

Reetz, M.T., Demuth, R., Goddard, R. 1998. 2-Pyrimidyphosphines:A New Class of Ligands for Transition Metal Catalysis. Tetrahedron 39:7089-7092.

Rio, I., Claver, C., Leeuwen, P.W.N.M. 2001. On the Mechanism of the Hydroxycarbonylation of Styrene with Palldium System. European Journal of Organic Chemistry 2719-2738.

Sarkar, B.R., Chaudhari, R.V. 2005. Carbonylation of Alkynes, Alkenes and Alcohols Using Metal Complex Catalyst. Cataysis Survey from Asia 9:3:193-205.

Scrivanti, A., Beghetto, V., Campagna, E., Zanato, M., Matteoli, U. 1998. Mechanism of the Alkoxycarbonylation of Alkynes in the Presence of the $\operatorname{Pd}(\mathrm{OAc}) 2 /$ $\mathrm{PPh}_{2} \mathrm{Py}^{2} \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ Catalytic System. Organometallics 17:630-635.

Shintani, R., Tsurusaki, A., Okamoto, K., Hayashi, T. 2005 Highly Chemo- and Enantioselective Arylative Cyclization of Alkyne-Tethered Electron-Deficient Olefins Catalyzed by Rhodium Complexes with Chiral Dienes. Angewandte Chemie Int. Ed. 44:3909-3912.

Simmross, F. M., Weyerstahl, P. 1881 Ein Einfache Weg Zu 2-Butynsaure (Tetrolsaure). Synthesis.1:72

Takeuchi, R., Tanabe, K., Tanaka, S. 2000 Stereodivergent synthesis of (E)- and (Z)-2-Alken-4-yn-1-ols from 2-propynoic acid: A practical route via 2-alken-4ynoates. Journal of Organic Chemistry 65(5): 1558-1561.

Trost, B. M., Taft, B. R., Masters, J. T., Lumb, J. P. 2011 A New Strategy for the Synthesis of Chiral β-Alkynyl Esters via Sequential Palladium and Copper Catalysis. J. Am. Chem. Soc. 133, 8502-850.

Tsuji, J. Palladium Reagents in Organic Synthesis; John Wiley and Sons: New York, 1995: 453-471.

Tsuji, J., ed. 2004 Palladium Reagents and Catalysts-New Perspectives for the 21st Century: WILEY-VCH Verlag GmbH \& Co. KGaA.

Tsuji, J., Kiji, J., Imamura, S., Morikawa, M. 1964. Organic Synthesises by Means of Nobel Metals Compounds. VIII. Catalytic Carbonylation of Allylic Compounds with Palladium Chloride. Contribution From The Basic Research Laboratories, Toro Rayon Co. Ltd. Kamakura Japan 86: 4350-4353.

Tsuji, J., Mandai T. 1995. Palladium-Catalyzed Reactions of Propargylic Compounds in Organic Synthesis. Angewandte Chemie International Edition 34: 2589-2612.

Tsuji, J., Mandai, T. 1993. Palladium-Catalyzed Carbonylation of 2-Alkynyl Carbonates and 2,3-Alkadienyl Carbonates. Journal of Organometallic Chemistry 451: 115.

Tsuji, J., Sato, K., Okumoto, H. 1984. Palladium-Catalyzed DecarboxylationCarbonylation of Allylic Carbonates To Form β, γ-Unsaturated Ester. Journal of Organic Chemistry 49:8:1341.

Tsuji, J., Sugiura, T., Minami, I. 1986. Palladium-Catalyzed Carbonylation of Propargylic Carbonates : Preparation of 2,3 and 2,4-Dienyl Carboxylate. Tetrahedron Letters 27: 731.

Tsuji, J., Suqiura, T., Yuhara, M., Minami, I. 1986. Palladium-catalyzed Preparation of 1,2-Dienes by Selective Hydrogenolysis of Alk-2-ynyl Carbonates with Ammonium Formate. Journal of Chemical Society, Chemical Communications, 922.

Tsuji, J., Watanabe, H., Minami, I., Schmizu, I. 1985. Novel Palladium-Catalyzed Reactions of Propargyl Carbonates with Carbonuchleophiles Under Neutral Condition. Journal of American Chemical Society, 107:2196-2198.

Üçüncü, M., Karakus, E.,Kuş, M., Akpınar, G.E., Aksın-Artok, Ö., Krause, N., Karaca,S., Elmacı, N., Artok, L. Rhodium- and Palladium-Catalyzed 1,5Substitution Reactions of 2-En-4-yne Acetates and Carbonates with Organoboronic Acids. Journal of Organic Chemistry 76: 5959-5971.

Verhoeven, K., Sharpless B., and Thomas R. 1979 Metal-Catalyzed,Highly Selective Oxygenations of Olefins and Acetylenes with tert-Butyl Hydroperoxide. Practical Considerations and Mechanism. Aldrichimica Acta 12(4):63-77.

Weiner, N., Organic Syntheses, Coll. 17: 56.

Xu, M., Miao, Z., Bernet, B., Vasella, A. 2005 Functionalised Monocyclic Five- to Seven-Membered exo-Glycals by Alkynol Cycloisomerisation of Hydroxy Buta-1,3-diynes and 1-Haloalkynols. Helvetica Chimica Acta 88: 2918- 2937.

Zhao, S., Ji, K., Lu, L., He, T., Zhou, A., Yan, R., Ali, S., Liu, X., Liang, Y. 2012 Palladium-Catalyzed Divergent Reactions of 1,6-Enyne Carbonates: Synthesis of Vinylidenepyridines and Vinylidenepyrrolidines. Journal of Organic Chemistry. 77: 2763-2772.

APPENDIX A

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR SPECTRUMS OF REACTANTS

Figure A.1. ${ }^{1}$ H NMR of (E)-6-cyclohexyl-4-methylhex-3-en-5-yn-2-yl methyl carbonate
 Solvent CHLOROFORM-D

Figure A.2. ${ }^{13}$ C NMR of (E)-6-cyclohexyl-4-methylhex-3-en-5-yn-2-yl methyl carbonate

Figure A.3. ${ }^{1} \mathrm{H}$ NMR of (E)-methyl (4,7,7-trimethyloct-3-en-5-yn-2-yl) carbonate

25510.20

Acquisition Time (sec)	4.0894	Comment
File Name	C:lUsersVHexeVDesktopitez ile	

$\stackrel{\bar{c}}{0}$

$\begin{array}{ll}4.96 & \\ 1.5 & 1.0\end{array}$

Figure A.6. ${ }^{13} \mathrm{C}$ NMR of (E)-dec-3-en-5-yn-2-yl methyl carbonate
$\begin{array}{ll}\text { Acquisition Time (sec) } & 2.5559 \\ \text { File Name } & \text { C:\Users }\end{array}$

File Name
Nucleus
Pulse Sequ

$\begin{array}{ll}\text { Pulse Sequence } & \text { s2pul } \\ \text { Temperature (degree C) } 25.000\end{array}$
E-1d

0.80

0.75
0.70

0.60

Figure A.8. ${ }^{13} \mathrm{C}$ NMR of (E)-4-butyldec-3-en-5-yn-2-yl methyl carbonate

Acquisition Time (sec)	2.5559	Comment	ezgi-81-k1	Date
File Name	C:UsersUHexelDesktopltez ile alakal Jezgi-nmrlarlezgi-81-k1_12Dec2011PROTON_01	Dec 122011		

$\begin{array}{ll}\text { Puise Sequence } & \text { s2pul } \\ \text { Temperature (degree C) } 25.000\end{array}$
LZLE
Figure A.9.
00

$\frac{N}{n}$
0

 | Pulse Sequence s2pul | Solvent | |
| :--- | :--- | :--- | :--- |
| Temprature | SHLOROFORM-D | |

Temperature (degree C) 28.000
HLLE $6060-\frac{268^{\circ} 0}{876^{\circ}}$

Temperature (degree C) 28.000

\%
※
N

$968 \downarrow$ っし
$8>0.79$
 $\begin{array}{lll}88 & 80 & 72 \\ \text { Chemical Shiff (ppm) }\end{array}$
96
104
1
112
9880
Figure A.14. ${ }^{13} \mathrm{C}$ NMR of (E)-methyl (3-methylnon-2-en-4-yn-1-yl) carbonate

098' 1

$877^{\circ} \mathrm{G}$
$997^{\circ} \mathrm{G}$
$87^{\circ} \mathrm{G}$
$70 \mathrm{~S}^{\prime} \mathrm{G}$
6 LG
678 G
$2 \angle 8 \mathrm{G}$

Figure A.16. ${ }^{1} \mathrm{H}$ NMR of (E)-methyl (4-methyldec-3-en-5-yn-2-yl) carbonate

Figure A.17. ${ }^{13} \mathrm{C}$ NMR of (E)-methyl (4-methyldec-3-en-5-yn-2-yl) carbonate

Figure A.19. ${ }^{13} \mathrm{C}$ NMR of (E)-hept-3-en-5-yn-2-yl methyl carbonate

GEA－AE－151	Date	Mar 12011	File Name	F：IGEA－AE－151－met－std＿01Mar2011IPROTON＿01	
1H	Number of Transients	8	Original Points Count	16384	Points Count

GEA	Number of Transients	8	Original Points Count	16384	Points Count	16384
1H		Spectrum Offset (Hz)	2397.1353	Sweep Width (Hz)	6410.26	
CHLOROFORM－d						

$8 \downarrow<$ \＆
．

0
$-$
1.5
2.0
s＇z
8Lと \qquad Figure A．20．${ }^{1}$ H NMR of（ E ）－methyl 4－methylhept－3－en－5－vn－2－vl carbonate

Acquisition Time (sec)	1.2845
Frequency (MHz)	100.47
Pulse Sequence	s2pul
Temperature (degree C)	22.000

esp VerticalScaleFactor $=1$

Acquisition Time (sec)	1.9976	Comment
File Name	C:IUsersleraylDesktoplson n	
Number of Transients	8	Original Po

1H
CHLOROFORM-
d

$\begin{array}{ll}4 & \\ 0 & 0 \\ 4 & 0 \\ 2 & 0\end{array}$ 399.88
2pul
Apr 12011
$\varepsilon L L$ ' ε

R1Ph-KAR

| File Name | C:IUsersleray | Oesktoplson nmrler e-karlriphiR1Ph- | |
| :--- | :--- | :--- | :--- | :--- |
| Number of Transients | 8 | Original Points Count | 12764 |
| Spectrum Offset (Hz) | 2399.2761 | Sweep Width $(H z)$ | 6389.78 |

$\begin{array}{cc}\text { Spectrum Offset }(\mathrm{Hz}) \quad 2399.2761 \quad \text { Sweep Width }(\mathrm{Hz}) \\ \text { R1Ph-kar-hnmmr.esp } & \text { VerticalScaleFactor }=1\end{array}$
C-1m
$E-1 \mathrm{~m}$

1.10
1.05
1.00
0.90
0.85
0.80
0.75
0.70
র্!!suəəu| poz!!emon
Figure A.22. ${ }^{1} \mathrm{H}$ NMR of (E)-methyl 4-methyl-6-phenvlhex-3-en-5-vn-2-vl carbonate

Figure A.23. ${ }^{13} \mathrm{C}$ NMR of (E)-methyl 4-methyl-6-phenvlhex-3-en-5-vn-2-vl carbonate

Figure A.25. ${ }^{13} \mathrm{C}$ NMR of (E)-2.5-dimethyloct-4-en-6-yn-3-vl methyl carbonate

${ }^{\text {| }}$ R3Butil-PROTON_01.esp VerticalScaleFactor $=1$

Figure A.27. ${ }^{13}$ C NMR of (E)-methyl 7-methyldec-6-en-8-yn-5-yl carbonate

APPENDIX B

MASS SPECTRUMS OF REACTANTS

Figure B.1. Mass Spectrum of (E)-6-cyclohexyl-4-methylhex-3-en-5-yn-2-yl methyl carbonate
<

$\stackrel{\Gamma}{\mathrm{N}}$

○88 \% \% \&

43.1

әэuepunq४ әл!̣е|әу
$\stackrel{\circ}{\stackrel{\circ}{+}}$

Figure B.5. Mass Spectrum of (E)-methyl (4-phenyldec-3-en-5-yn-2-yl) carbonate

Figure B.6. Mass Spectrum of (E)-methyl (3-methyldec-3-en-5-yn-2-yl) carbonate

Figure B.7. Mass Spectrum of (E)-methyl (3-methyl-1-phenylnon-2-en-4-yn-1-yl) carbonate

Figure B.8. Mass Spectrum of (E)-methyl (3-methylnon-2-en-4-yn-1-yl) carbonate
43.1

Figure B.9. Mass Spectrum of (E)-methyl (4-methyldodeca-3-en-5,7-diyn-2-yl) carbonate

MUHAMMED
5/13/2011 2:25:52 AM
C:IXcalibur\...\MUHAMMED\MU-ER1-BU
MU-ER1-BU \#2034 RT: 13.91 AV: 1
T. $\{0.0\}+$ c El Full ms [40.00-500.00]
$100 \quad 91.0$
100
95
06
-98
08
OL
02
09
әכuepunq甘 әк!̣е|әと
Figure B.10. Mass Spectrum of (E)-methyl 4-methyldec-3-en-5-vn-2-vl carbonatecarbonate
MUHAMMED

E-1k
C:IXcalibur\...VMUHAMMEDIMU-ER1-ME
5/13/2011 1:53:03 AM
VU-ER1-ME \#1064 RT: 10.62 AV: 1 NL: 1.10E9
$\Gamma:\{0,0\}+c$ El Full ms [40.00-500.00]
$\begin{array}{ll}100 \\ \exists & 91.0\end{array}$
95
-
${ }_{\infty}^{\infty}$
∞
$\stackrel{1}{\circ}$
70
z.64
105.2

MUHAMMED
(C-1I
E-1I
0
m/z
124.1

08910
て 291
180
$140 \quad 160$
120
$100 \quad 120$
00Z
Figure B.12. Mass Spectrum of (E)-methyl 4-methylhept-3-en-5-yn-2-yl carbonate
C: IXcalibur\...IMUHAMMEDMMU-ER1-PH
MU-ER1-PH \#3117 RT: 17.60 AV: 1 NL: 1.38E8
$\mathrm{T}:\{0,0\}+c$ El Full ms [40.00-500.00]
100
95
○
$0 \stackrel{\curvearrowleft}{\circ}$
ㅇ
10
әэuepunq४ әм!̣е|әу
MUHAMMED

C:IXcalibur $1 .$. IMUHAMMEDIMU-ER3-BU
MU-ER3-BU \#2008 RT: 13.83 AV: 1 NL: 1.21E9
MUHAMMED
5/13/2011 4:25:14 AM

Figure B.15. Mass Spectrum of (E)-methyl 7-methyldec-6-en-8-yn-5-yl carbonatecarbonatecarbonatecarbonate

APPENDIX C

FTIR SPECTRUMS OF REACTANTS

Figure C.1. FT-IR Spectrum of (E)-6-cyclohexyl-4-methylhex-3-en-5-vn-2-vl methyl carbonate

110.0
105
100
95
90
85
80
80
75
70
65
60
65
\%T
50
45
40
35
30
25
20
15
10
5
0.0
4000

Figure C.3. FT-IR Spectrum of (E)-dec-3-en-5-vn-2-vl methyl carbonate
110.0
n
C-1d
$\Longrightarrow \underset{\sim}{\circ}=$
 $\frac{2}{7}$ $\stackrel{\infty}{\stackrel{\infty}{\square}}$ $=$

$\int_{1108.92}^{1104}$
15001000
Figure C.4. FT-IR Spectrum of (E)-4-butvldec-3-en-5-yn-2-vl methyl carbonate
2873.31
2861.90 1441.32

110.0
105
(-1e

-

$\begin{array}{ll}2000 & \text { CM-1 }\end{array}$

Figure C.6. FT-IR Spectrum of (E)-methyl (3-methyldec-3-en-5-yn-2-vl) carbonate

Figure C.7. FT-IR Spectrum of (E)-methyl (3-methyl-1-phenylnon-2-en-4-vn-1-vl) carbonate

Figure C.11. FT-IR Spectrum of (E)-methyl 4-methylhept-3-en-5-vn-2-vl

Figure C.12. FT-IR Spectrum of (E)-methyl 4-methyl-6-phenvlhex-3-en-5-yn-2-yl

Figure C.13. FT-IR Spectrum of (E)-2.5-dimethyloct-4-en-6-yn-3-vl methyl

APPENDIX D

${ }^{1} \mathrm{H}$ NMR and ${ }^{13}$ CNMR SPECTRUMS OF PRODUCTS

Temperature (degree C) 28.000
169 '
$78 L^{\circ} 1$
$108^{\prime} 1$

$8 \triangleright \varepsilon^{\prime}!$
¿๕'।
カ69'. 099^{\prime},
$L Z L L=$
998°
$0.5 \quad 0$

1.0
-11

Figure D.1. ${ }^{1} \mathrm{H}$ NMR of (E)-methyl 2-cyclohexyl-4-methylhepta-2,3,5-trienoate

Acquisition Time (sec)	1.2845	Comment
File Name	C:WsersWHexelDesktopitez ile al	
Al		

File Name
Nucleus
Pulse Sequ

sktopitez ile alakal \ezgi-nmrlarlezgilezgico101-2_15Aug2011CARBON_01
$\begin{array}{llll}\text { Number of Transients } & 256 & \text { Original Points Count } & 32768 \\ \text { Solvent } & \text { CHLOROFORM-D } & \end{array}$ Solvent
ezgico101-2 Date Aug 152011
$\begin{array}{ll}\text { Points Count } & 32768 \\ \text { Sweep Width }(H z) & 25510.20\end{array}$

Figure D.2. ${ }^{13}$ C NMR of (E)-methyl 2-cyclohexyl-4-methylhepta-2,3,5-trienoate
$\begin{array}{ll}\text { Acquisition Time (sec) } & \mathbf{4 . 0 8 9 4} \\ \text { File Name } & \text { CiUsers } \\ \text { Nincters }\end{array}$
File Name
Pulse Sequence \quad s2pul
Temperature (degree C) 25.000

N
$4.5 \quad 4.0 \quad 3.5$
3.21
01
0.5
$=0$
Figure D.3. ${ }^{1}$ H NMR of (E)-methyl 2-(tert-butyl)-4-methylhepta-2,3,5-trienoate
$\begin{array}{ll}\text { Acquisition Time (sec) } & 1.2845 \\ \text { Fille Name } & \text { C:Wsers } \\ \text { Nucter }\end{array}$

Fille Name
Nucleus
Pulse Sequ

Temperature (degree C) 25.000
ba

1.00
0.95
0.85
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
898012
126591
$\begin{array}{ll}120 & 110 \\ \text { Chemical shin (oom }\end{array}$
5
6.7 Zl
8049 C
Solvent
ezgi-co107-k2 Date Oct 272011
$\begin{array}{lll}256 & \text { Original Points Count } 32768\end{array}$
CHLOROFORM-D

$10-20$

\circ
0
0
0
0

8
Figure D.4. ${ }^{13}$ C NMR of (E)-methyl 2-(tert-butyl)-4-methylhepta-2,3,5-trienoate

Acquisition Time (sec)	$\mathbf{4 . 0 8 9 4}$
File Name	C.User
Nucleus	1 H
Ple	

Fille Name	CiUsers HexelDesktopltez lie alakal lezgi-nmrlarlezgilezgicoto6_		
Nucleus	1 H	Number of Transients 8	Or
Pulse	CHLOROFORM-D		

Pulse Sequence
Temperature (degree C) 28.000

-
$\underset{\sim}{2}$

Figure D.7. ${ }^{1}$ H NMR of (E)-methyl 2-butyl-4-(prop-1-en-1-yl)octa-2,3-dienoate

Figure D.9. ${ }^{1}$ H NMR of (E)-methyl 2-butyl-4-phenylhepta-2,3,5-trienoate

Figure D.10. ${ }^{13}$ C NMR of (E)-methyl 2-butyl-4-phenylhepta-2,3,5-trienoate

Figure D.11. ${ }^{1} \mathrm{H}$ NMR of (E)-methyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure D.13. ${ }^{1}$ H NMR of (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate

Figure D.13. ${ }^{13}$ C NMR of (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate

Figure D.14. ${ }^{1} \mathrm{H}$ NMR of (E)-methyl 4-methyl-2-phenylhepta-2,3,5-trienoate

Figure D.15. ${ }^{13}$ C NMR of (E)-methyl 4-methyl-2-phenylhepta-2,3,5-trienoate

Figure D.16. ${ }^{1}$ H NMR of (E)-methyl 2,4,7-trimethylocta-2,3,5-trienoate

Figure D.17. ${ }^{13}$ C NMR of (E)-methyl 2,4,7-trimethylocta-2,3,5-trienoate

Figure D.18. ${ }^{1}$ H NMR of (E)-methyl 2,4-dimethyldeca-2,3,5-trienoate

$\mid \underline{2}=$
"
\%
?
?
:
2
,

Figure D.20. ${ }^{1}$ H NMR of (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure D. $21{ }^{13}$ C NMR of (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure D. $22{ }^{1}$ H NMR of (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure D. $23{ }^{13} \mathrm{C}$ NMR of (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate

Oct 142010
399.85
$22 p u t$
$\$ 389.78$

cluezs ever 101020130

Figure D. $24{ }^{1} \mathrm{H}$ NMR of (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure D. $25{ }^{13} \mathrm{C}$ NMR of (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure D. 26^{1} H NMR of (E)-isopropyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure D. $27{ }^{13} \mathrm{C}$ NMR of (E)-isopropyl 2-butyl-4-methylhepta-2,3,5-trienoate

APPENDIX E.

MASS SPECTRUM OF PRODUCT

Figure E.1. Mass Spectrum of (E)-methyl 2-cyclohexyl-4-methylhepta-2,3,5-trienoate

Abundanco
180000
160000
140000
120000
100000
80000
60000
40000
20000
m/z

[^3]
m/zon>

2500000

8
8
8

1500000
1000000
8
8
8
Figure E.8. Mass Spectrum of (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate $\frac{1}{8}=$

Figure E.12. Mass Spectrum of (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure E.13. Mass Spectrum of (E)-propyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure E.14. Mass Spectrum of (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure E.15. Mass Spectrum of (E)-isopropyl 2-butyl-4-methylhepta-2,3,5-trienoate

APPENDIX F

FT-IR SPECTRUMS OF PRODUCTS

Figure F.1. FT-IR Spectrum of (E)-methyl 2-cyclohexyl-4-methylhepta-2.3.5-trienoate
Figure F.2. FT-IR Spectrum of (E)-methyl 2-(tert-butyl)-4-methylhepta-2.3.5-trienoate

112.0
110
105
100
95
90
95
85
80
75
57
70
65
60
55
50
50
45
40
40
35
30.0
4000.0

Figure F.3. FT-IR Spectrum of (E)-methyl 2-butvlhepta-2.3.5-trienoate
115.6
110
105
100
95
90
85
80
75
70
65
65
60
55
50
45
40
35
30
25
20.0
4000.0
$\begin{array}{ll}3000 & 2000 \\ \text { Figure F.4. FT-IR Spectrum of }(E) \text {-methyl } & 1500\end{array}$

2ja
$\begin{array}{ll}1000 & 2000 \\ \text { Figure F.6. FT-IR Spectrum of }(E) \text {-methyl } & 1500\end{array}$

Figure F.7. FT-IR Spectrum of (E)-methyl 2,4-dimethylhepta-2,3,5-trienoate

117.0
110
105
100
95
90
85
80
75
70
65
$\% 6$
60
55
50
45
40
35
30
25
20
15
100
4000.0
Figure F.9. FT-IR Spectrum of (E)-methyl 2,4,7-trimethylocta-2,3,5-trienoate

Figure F.10. FT-IR Spectrum of (E)-methyl 2.4-dimethyldeca-2.3.5-trienoate
102.0
95
90
85
80
75
70
65
60
55
55
$\% \mathrm{~s}$,
45
40
35
30
25
20
15
10
5
5
0.0
4000.0

cm-1
2000
000ε
3000
Figure F.11. FT-IR Spectrum of (E)-ethyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure F.13. FT-IR Spectrum of (E)-butyl 2-butyl-4-methylhepta-2,3,5-trienoate

Figure F.14. FT-IR Spectrum of (E)-isopropyl 2-butvl-4-methylhepta-2.3.5-trienoate

APPENDIX G.

GC CHROMATOGRAMS OF REACTANTS

Figure G.1. GC Chromatogram of (E)-4-methyldec-3-en-5-yn-2-ol

(

APPENDIX H

HPLC CHROMATOGRAMS OF PRODUCTS

Chiralpak IC
2mol\% Pd, 4mol\% Xantphos
Balloon P. CO, RT

Figure H.1. HPLC Chromatogram of (R, E)-methyl 2-butyl-4-methylhepta-2,3,5-trienoate

Chiralcel OJ-H
2mol\% Pd, 4mol\% DPEphos
Balloon P. CO,RT

Figure H.3. HPLC Chromatogram of (S, E)-methyl 2-butyl-4-methylhepta-2,3.5-trienoate

[^0]: ${ }^{\text {a }}$ Mehod A: $\boldsymbol{E}-\mathbf{1 j}: \quad 0.3 \mathrm{mmol}, \mathrm{MeOH}: 5 \mathrm{~mL}, \mathrm{CO}:$ balloon pressure ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ No complete conversion
 ${ }^{\text {d }}$ Determined by NMR using p-anisaldehyde as an internal standard. ${ }^{\text {e }}$ Determined by GC using dodecane as an internal standard.

[^1]: ${ }^{\text {a }}$ Method A: $\boldsymbol{E - 1 j}: 0.3 \mathrm{mmol}, \mathrm{MeOH}: 5 \mathrm{~mL}, \mathrm{CO}$: balloon pressure ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ No complete conversion
 ${ }^{\text {d. }}$ Determined by NMR using p-anisaldehyde as an internal standart. ${ }^{e}$ Determined by GC using dodecane as an internal standard.

[^2]: ${ }^{\text {a }}$ Method A: $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 j}: 0.1 \mathrm{mmol}, \mathrm{MeOH}: 1.7 \mathrm{~mL}, \mathrm{CO}$: balloon pressure ${ }^{\mathrm{b}}$ Isolated yield ${ }^{\mathrm{c}}$ Method B: $\left.\boldsymbol{S}, \boldsymbol{E}\right) \mathbf{- 1 j}$: $0.1 \mathrm{mmol}, \mathrm{MeOH}: 1.7 \mathrm{~mL}, \mathrm{CO}$: balloon pressure. $\mathrm{Pd}(0)$ formed by mixing $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ and PPh_{3} in methanol $(0.5 \mathrm{~mL})$ for 10 min and then reactant $(0.1 \mathrm{mmol})$ in methanol $(1.2 \mathrm{~mL})$ was added.

[^3]: Figure E.6. Mass Spectrum of methyl 2-butyl-4-methylhexa-2,3,5-trienoate

