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ABSTRACT 
 

VIBRATION CHARACTERISTICS OF PORTAL FRAMES 

 

This research study deals with the defining of dynamic behaviors of a portal 

frame structure with tapered members by using Finite Element Method (F.E.M.) and 

experimental modal analysis. 

Portal frame with three beam members is used in this study. Frame structure is 

composed by two tapered and one uniform cross sectioned beams. 

The first part of thesis is about the finite element modelling of the model which 

is developed in ANSYS. Theoretical modal analysis to find the natural frequencies and 

mode shapes of the frame is performed by using the finite element model. 

The second part of thesis is experimental modal analysis of the frame under 

study. For this purpose, the experimental modal test setup has been established. 

The modal parameters found from both numerical and experimental methods are 

compared and good agreement is found. 
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ÖZET 
 

PORTAL ÇERÇEVELERİN TİTREŞİM KARAKTERİSTİKLERİ 

 

Bu araştırma çalışması, daralan kesitleri olan portal çerçevelerin Sonlu 

Elemanlar Yöntemi (FEM) ve deneysel modal analizi kullanılarak dinamik 

davranışlarını belirlenmek ile ilgilidir. 

Çalışmada üç çubuklu portal çerçeve kullanılmıştır. Çerçeve  iki daralan ve bir 

sabit kesitli çubuktan oluşturulmuştur. 

Tezin ilk bölümü ANSYS’de geliştirilen sonlu eleman modeli ile ilgilidir. Sonlu 

eleman modeli kullanılarak, doğal frekansları ve titreşim biçimlerini bulmak için teorik 

modal analizi yapılmıştır. 

Tezin ikinci bölümünde, çalışmadaki çerçevenin deneysel modal analizi 

yapılmıştır. Bunun için, deneysel modal analizi test düzeneği oluşturulmuştur. 

Sayısal ve deneysel modal analizlerinden bulunan modal parametreler 

karşılaştırılmış ve iyi uyum bulunmuştur. 
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CHAPTER 1  

 

GENERAL INTRODUCTION 

 

The understanding of physcal nature of vibration phenomena has always been 

important for researches and engineers. There are lots of problems such as noise, 

vibration or failure encountered in practice. These problems direct engineers and 

researches to investigate vibrations of structural elements, structures and machines. 

The role of understanding and predicting dynamic behavior of system is also 

significant tool for design step. For this reason, analytical and experimental methods are 

used together. Finite element modeling (F.E.M.) which popular and powerful technique 

is actually used as analytical methods. Certainly, one of the most important areas of 

experimental methods is modal analysis. Due to different built-in limitations, 

assumptions and choices, each approach has its own advantages and disadvantages. 

It is obvious that the problem of vibrating frame structures have been examined 

widely in several fields of engineering i.e. bridge design, building design, space-based 

antenna and micro frames used in electronic equipment. 

Frame structures can be classified as closed or open. Closed frames are 

developed by chains of beams in which both ends are fixed. Open frames are formed by 

chains of beams that have one end fixed and the other end free. 

Tapered members which generally used in the frame structure have drawn 

attention .Because, tapered members make the stress in the structure more evenly 

distributing, so that consumption of material can be reduced. 

Because of the wide usage of portal frames in engineered design, many 

investigators have examined portal frames. Researchers investigating vibration 

characteristics of portal frames tackle with problems of different points of view 

aforementioned. 

The equations of receptance functions in analyzing the flexural vibration of 

uniform beams were derived (Bishop 1955). The natural vibration of structures such as 

portal frames, which may be regarded as being composed of beams that perform 

flexural vibration was investigated. The technique was based upon tables which were 

presented by the author (Bishop 1955). The numerical results obtained by the method 



 2 

were compared with the experimental results (Bishop 1956). The vibration analysis of a 

planar serial frame structure was presented. The transverse and longitudinal motions of 

each segment were analyzed simultaneously. The eigenvalue problem was solved by 

using closed-form transfer matrix method (Lin and Ro 2003). Both in plane and out of 

plane free vibrations of two member open frame structures was investigated. A 

substructure method was used (Heppler et al. 2003). The vibration of a frame with 

intermediate constraint and ends elastically restrained against rotation and translation 

was examined. The separation of variables method was applied for the determination of 

the exact eigenfrequenciens and mode shapes (Albarracin and Grossi 2005). The finite 

element modelling and experimental modal testing for the 1/10 scale rig was carried 

out. A comparison between experimental results and finite element results was 

presented (Wu 2004). The effects of semi-rigid connections on the responses of steel 

frame structure were defined by comparing experimental and theoretical modal analysis 

results (Türker et al. 2009). 

Although, the problem to define the vibration characteristics of portal frames is 

much investigated and a considerable amount of publications have been published so 

far, it still holds attraction because of wide usage. Therefore, in this study, the vibration 

characteristics of portal frame were examined. The finite element method and the 

experimental modal testing technique are employed for this purpose. 

This thesis has 6 chapters. First chapter presents the subject and summaries the 

previous studies on the titled subjects. Second chapter provides the theory about Finite 

element modelling (F.E.M) and Experimental modal analysis. Finite element analysis 

and it's results are given in chapter 3. Experimental modal analysis and it's results are 

given chapter 4. Chapter 5 discusses the vibration characteristics obtained both finite 

element modelling and experimental modal analysis. Then conclusion is given in 

Chapter 6. 
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CHAPTER 2 

 

THEORETICAL BACKGROUND 

 

2.1. Introduction 

 

The finite element method is a numerical method for solving problems of 

engineering and mathematical physics. The F.E allows users to obtain the evolution in 

space and/or time of one or more variables representing the behavior of physical 

system. Nowadays the F.E.M is one of the most popular approaches for the vibration 

analysis of structures, but accuracy of the F.E.M can be questionable and validation is 

usually required. For this reason, the experimental modal testing is undertaken to 

measure the natural frequencies and the corresponding mode shapes of the structures 

and then a comparison between the experimental results and results obtained the finite 

element model is made. This chapter presents a brief explanation of the theory of these 

two important methods. 

 

2.2. Theoretical Modal Analysis 

 

2.2.1. Frequency response functions of an SDoF system 

 

Some mechanical and structural systems can be idealized as SDoF systems. The 

SDoF system having  a mass, a spring and a viscous damper is considered. For a 

harmonic force f(t) = F(ω) e
jωt

, the response of the system is another harmonic function 

x(t) = X(ω) e
jωt

 where X(ω) is a complex amplitude. The frequency response function 

(FRF) of the system is given by (He and Fu 2001) as 

 

cjmkF

X









2

1

)(

)(
)(     (2.1) 

 

or in different forms as 
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 Mobility FRF for this system is given as 
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 Accelerance FRF for this system is given as 
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 It is known that α(ω), Y(ω), and A(ω) have the following relationships: 

 

)()()( 2   YA     (2.5) 

 

 The reciprocals of α(ω), Y(ω), and A(ω) of an SDoF system also used in modal 

analysis. They are respectively: 
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The FRF of an SDoF system can be presented in different forms to those in previous 

equations. The receptance FRF can be factorized to become: 
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where 

jm
R

02

1


        (2.10) 

 

0

2 )1(  j      (2.11) 

 

Conjugate coefficients R and R* are called residues of the receptance. λ and λ* are the 

complex poles of the SDoF system. 

 

2.2.2. Graphical display of a frequency response function 

 

 The possible 2-D graphical display of an FRF are listed as follows: 

1. Amplitude–phase plot and log–log plot 

2. Real and imaginary plots 

3. Nyquist plot 

4. Dynamic stiffness plot 

Details of the listed items are available in the textbook written by He and Fu (2001). A 

sample frequency response function with linear-linear plot is shown in Figure 2.1. 

 

                | α(ω) | 

 

 

 

 

 

 

 

 

                r 

Figure 2.1. A sample for frequency response function  

(Source: Tse et al 1978) 
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2.2.3. Frequency response functions of a damped MDoF system 

 

 The equations of motion of a MDoF system is written in matrix form as: 

 

)}({)}(]{[)}(]{[)}(]{[ tftxKtxDtxM      (2.12) 

 

where [M], [D] and [K] are mass, damping and stiffness matrices, respectively. Also, 

{x(t)} is displacement vector and {f(t)} is force vector. 

 Considering the harmonic motion for displacement and force, the following 

equations can be written: 
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}{}]){[]([ 2 FXMK       (2.15) 

or 

}{})]{([ FXZ       (2.16) 

 

where [Z(ω)] = ([K] – ω
2
[M]) is known as the dynamic stiffness matrix of an MDoF 

system. Similar to SDoF system, the inverse of dynamic stiffness matrix gives the 

receptance FRF matrix of the system and is denoted by [ α(ω)]. It is in open form as: 

 

12 ])[]([)]([  MK      (2.17) 

or 
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 αij(ω) is the frequency response function when the system only has one input 

force applied at coordinate ‘j’ and the response is measured at coordinate ‘i’. A sample 

plot for receptance α11(ω) of the 4DoF system is shown in Figure 2.2. It is seen from 

Figure 2.2 that there are 4 peak due to the degres of freedom of the system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. A sample for receptance α11(ω) of the 4DoF system 

(Source: He and Fu 2001) 

 

2.3. Finite Element Modeling and Equation of Motion 

 

2.3.1. Frame Element Properties 

 

The bar is capable of carrying axial forces only. On the other hand, the beam is 

capable of carrying transverse forces, as well as moments. Therefore, a frame element 

can be obtained by combining bar and beam elements. Consider a frame structure is 

divided in to frame elements. The elements and nodes are numbered separately in a 

convenient manner. In a planar frame element, there are three degrees of freedom at one 

node in its local coordinate system, as shown in Figure 2.1 (Liu 1993). 
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Figure 2.3. A finite element for frame element 

(Source: Liu 1993) 

 

The bar element has only one degree of freedom at each node (axial 

deformation), and the beam element has two degrees of freedom at each node 

(transverse deformation and rotation). Combining this knowledge gives the degree of 

freedom and displacements frame elements in Equation 2.5 (Liu, 1993). 
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2.3.2. Element Potential Energy and Stiffness Matrix 

 

A bar element with length 2a is shown in Figure 2.2. 

 

 

 

 

 

Figure 2.4. A bar element in the local coordinate system 

(Source: Petyt 2010) 
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The total strain energy of bar element is given by as (Petyt 2010) 
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where E is modulus of elasticity and A is cross-sectional area. 

The axial strain component can be expressed in terms of the axial displacement 

u(x), by means of the following relation 
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Substituting Equation 2.13 into Equation 2.12 the potential energy becomes 
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The potential energy stored in the beam element is given by 
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where Iz is the second moment of area.  

The stiffness matrix for bar element [ke
bar

] is expressed by considering the frame 

displacement vector given by Equation 2.11 as 
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The stiffness matrix for beam element [ke
beam

] is expressed by considering the 

frame displacement vector given by Equation 2.11 as 
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 The stiffness element matrix for a frame element is obtained by combining 

[ke
truss

] and [ke
beam

] as 
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2.3.3. Element Kinetic Energy and Mass Matrix 

 

The kinetic energy expressions for the bar and beam elements are given as 
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By using the same procedure used for stiffness matrices, the mass matrix of the 

frame element is obtained as 
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2.3.4. Global Mass and Stiffness Matrix 

 

[ke] and [me] are expressed in the local co-ordinate system shown in Figure 2.1 

as x-y. To obtain the global element matrices, all the matrices must be expressed in the 

global coordinate system which is shown in Figure 2.1 as X-Y. To do this, global 

displacement vector of which component shown in Figure 2.3 is defined as 
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Figure 2.5. Frame element in global coordinates (Source: Liu, 1993) 
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The coordinate transformation between the displacement vectors are written as 

 

}{][}{ ee DTd        (2.31) 

 

where [T] is the co-ordinate transformation matrix based on Figure 2.3 and expressed as 
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where lx=cosα, ly=-sinα, mx=sinα and my=cosα which are the direction cosines of the 

axial axis of the element. 

Using the transformation matrix [T] the mass and stiffness matrix for frame 

element in the global coordinate system can be obtained. Therefore, the stiffness and 

mass matrices of frame in global coordinate system are obtained by the following 

equations: 

 

]][[][][ TkTK e

T

e       (2.33) 

 

]][[][][ TmTM e

T

e       (2.34) 

 

2.3.5. Equation of Motion 

 

 The general differential equation of a forced vibration is given by 

 

)}({)}(]{[)}(]{[)}(]{[ tftxKtxDtxM      (2.35) 

 

where [M], [C] and [K] are mass, damping and stiffness matrices, respectively. Also, 

{x(t)} is displacement vector and {f(t)} is force vector. 
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 The proportional damping model made a significant contribution at the early 

development of modal analysis. A structure with proportional damping can be analysed 

using the theory for an undamped MDoF system. Rayleigh indicated in his work “The 

Theory of Sound”, first published in 1845, that if the viscous damping matrix [C] is 

proportional to mass and stiffness matrices (or that if the damping forces are 

proportional to the kinetic and potential energies of the system), then it can be written as 

(He and Fu 2001) : 

 

][][][ KMC        (2.36) 

 

2.3.6. Natural Frequencies and Mode Shapes 

 

Considering the harmonic motion for displacement and force vextors in the general 

differential equation, the following generalized eigenvalue equation is written: 

 

}0{}]){[]([ 2  ii uMK      (2.37) 

 

where ωi is i
th

 natural frequency of the system. {ui} in Equation given in Section on 

“Natural Frequencies” is the i
th

 vibration mode shape vector. 

 

2.4. Experimental Modal Analysis 

 

2.4.1. Measurement Hardware 

 

The experimental modal analysis generally requires several hardware 

components. The basic setup depends on a few major factors. These include the type of 

structure to be tested and the level of results desired. The hardware elements required 

consist of a source of excitation for providing a known or controlled input to the 

structure, a transducer to convert the mechanical motion of the structure into an 

electrical signal, a signal conditioning amplifier to match the characteristics of the 

transducer to the input electronics of the digital data acquisition system, and an analysis 
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system (or analyzer), in which signal processing and modal analysis programs reside. 

Figure 2.4 shows a diagram of a basic test system configuration. 

 

 

 

 

 

 

 

 

 

Figure 2.6. General test configuration 

(Source: Inman 2006) 

 

2.4.2. Signal Processing 

 

The task of the analyzer is to convert analog time domain signals into digital-

frequency-domain information. By using this information, the analyzer performs the 

required computations. At this point, a Fourier transform is used to alter an analog 

signal, x(t), into frequency-domain information. 

 A periodic time signal of period T can be represented by a Fourier series in time 

as follows: 
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
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 The signals (accelerometer or force transducer outputs) are in the time domain 

and the desired spectral properties are in the frequency domain. Figure 2.5 shows the 

various types of time history encountered and their Fourier series or Transforms. 

 

 

 

 

 

 

 

 

 

Figure 2.7. Some signals and their Fourier Spectrum 

(Source: Inman, 2006) 

 

2.4.3. Modal Data Extraction 

 

After obtaining the FRF (frequency response function) H(jω), the task is to 

compute the natural frequencies and damping ratios associated with each resonant peak 

of the measured FRF. There are several ways to examine the measured FRF to extract 

these data. To examine all of them, interested reader should consult well-known 

textbook written by Ewins (2000). SDOF Method or Peak Amplitude Model is 

summarized below: 

This method works adequately for structures whose FRF exhibit well- separated 

modes. The method is applied as follows: 

(i) First, individual resonance peaks are detected on the FRF plot, and the frequency of 

one of the maximum responses taken as the natural frequency of that mode (ωr). 
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(ii) Second, the local maximum value of the FRF is noted and the frequency bandwidth 

of ‘half-power points’ is determined (Δω)).  

(iii) The damping of the mode in question can now be estimated from one of the 

following formulae 

 

rr

ba
r
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







2

22

2
2      (2.43) 

 

(iv) Last, the estimated modal constant of the mode is calculated as 

 

)(2 2  jHA rrr       (2.44) 

 

 

 

 

 

 

 

 

Figure 2.8. FRF (frequency response function) 

(Source: Ewins, 2000) 
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CHAPTER 3 

 

THEORETICAL MODAL ANALYSIS 

 

3.1. Introduction 

 

 The portal frame is shown in Figure 3.1 and its properties are given in Table 3.1. 

It is seen from Figure 3.1 that portal frame has linearly tapered legs. In Table 3.1, 

horizontal and vertical frame members are numbered with 1, 2 and 3, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Portal Frame 

 

Table 3.1. Geometrical and material properties of the frame structure 

Property Value 

b01, h01 (mm) 20 

b02, h02, b03, h03 (mm) 12 

L1, L2, L3 (mm) 250 

E (MPa) 200000 

ρ (tonne/mm
3
) 7.85 10

-9
 

υ (-) 0 
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3.2. Finite Element Model 

 

 In ANSYS, 8-node 3D structural solid element (Solid45) is selected and setting 

the global size of the elements to 5, the solid model is meshed by 2228 elements. 

 

3.3. Natural Frequencies 

 

 Natural frequencies found from ANSYS is listed in Table 3.2. 

 

Table 3.2. Theoretical natural frequencies of portal frame 

Mode FEM [ANSYS] f (Hz) 

1 243.86 

2 669.78 

3 1212.6 

4 1225.2 

5 2183.2 

6 3057.7 

 

3.4. Mode Shapes 

 

 Mode shapes are plotted in Figure 3.2-5. 

 

 

 

 

 

 

 

 

 

Figure 3.2. First mode shape 
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Figure 3.3. Second mode shape 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Third mode shape 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Fourth mode shape 
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Figure 3.6. Fifth mode shape 

 

 

 

 

 

 

 

 

 

Figure 3.7. Sixth mode shape 
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CHAPTER 4 

 

EXPERIMENTAL MODAL ANALYSIS 

 

4.1. Experimental Setup 

 

4.1.1. Portal Frame 

 

 The portal frame is shown in Figure 4.1 and its properties are given in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Portal Frame 

 

4.1.2. Accelerometers 

 

 Kistler PiezoBEAM accelerometer Type:8632C50 ahown in Figure 4.2 is used. 

 

 

 

 

 

 

Figure 4.2. Accelerometer 
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4.1.3. Coupler 

 

 Kistler Piezetron Coupler 5108A shown in Figure 4.3 is used. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Coupler 

 

4.1.4. Power Supply 

 

 DC 24 Volt, 2.08 A power supply is used. 

 

4.1.5. Data Acquisition Board 

 

 DaqBoard/1000 is a high-speed, multi-function, plug-and-play data acquisition 

board for PCI bus computers. It features a 16-bit, 200-kHz A/D converter, digital 

calibration, bus mastering DMA, two 16-bit, 100-kHz D/A converters, 24 digital I/O 

lines, four counters, and two timers. 

 

4.1.6. Signal Analyzer 

 

DaqView Version 11 is used to see the natural frequencies. 
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4.2. Natural Frequencies 

 

 Natural frequencies found experimentally are listed in Table 4.1. 

 

Table 4.1. Experimental natural frequencies of portal frame 

 

Mode f (Hz) 

1 242 

2 668 

3 1215 

4 1225 

5 2190 

6 3540 
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CHAPTER 5 

 

DISCUSSION OF RESULTS 

 

 Present experimental results, the results of ANSYS, and percentage difference of 

FEM (% difference = 100*[FEM-Experimental]/ Experimental) are given in Table 5.1. 

 

Table 5.1. Natural frequencies of portal frame 

 

Mode Experimental f (Hz) FEM [ANSYS] f (Hz) % error 

1 242 243.86 0.77 

2 668 669.78 0.27 

3 1215 1212.6 -0. 2 

4 1125 1225.2 0.02 

5 2190 2183.2 -0.31 

6 3540 3057.7 -13.6 

 

 

 It is seen from Table 5.1 that experimental and numerical results are close to 

each others. 
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CHAPTER 6 

 

CONCLUSIONS 

 

In this thesis, firstly vibration of frames are investigated and reported. In the 

chapter on theoretical background the following details are given: Finite Element 

Method for vibration analysis of frames, theoretical modal analysis and experimental 

modal analysis. Vibration analysis of portal frame is presented as natural frequencies 

and mode shapes by Finite Element Method. 

Experimental setup has been prepared for Experimental Modal Analysis for the 

first time in the Department. Experimental modal tests have been performed. The 

obtained results are in good agreement. 
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