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ABSTRACT

VIBRATION CHARACTERISTICS OF PORTAL FRAMES

This research study deals with the defining of dynamic behaviors of a portal
frame structure with tapered members by using Finite Element Method (F.E.M.) and
experimental modal analysis.

Portal frame with three beam members is used in this study. Frame structure is
composed by two tapered and one uniform cross sectioned beams.

The first part of thesis is about the finite element modelling of the model which
is developed in ANSYS. Theoretical modal analysis to find the natural frequencies and
mode shapes of the frame is performed by using the finite element model.

The second part of thesis is experimental modal analysis of the frame under
study. For this purpose, the experimental modal test setup has been established.

The modal parameters found from both numerical and experimental methods are
compared and good agreement is found.



OZET

PORTAL CERCEVELERIN TITRESIM KARAKTERISTIKLERI

Bu arastirma ¢alismasi, daralan kesitleri olan portal ¢ergevelerin Sonlu
Elemanlar Yontemi (FEM) ve deneysel modal analizi kullanilarak dinamik
davraniglarini belirlenmek ile ilgilidir.

Calismada ii¢ cubuklu portal ¢erceve kullanilmistir. Cergeve iki daralan ve bir
sabit kesitli cubuktan olusturulmustur.

Tezin ilk boliimii ANSYS’de gelistirilen sonlu eleman modeli ile ilgilidir. Sonlu
eleman modeli kullanilarak, dogal frekanslar1 ve titresim bigimlerini bulmak i¢in teorik
modal analizi yapilmstir.

Tezin ikinci boliimiinde, calismadaki ¢ercevenin deneysel modal analizi
yapilmistir. Bunun i¢in, deneysel modal analizi test diizenegi olusturulmustur.

Sayisal ve deneysel modal analizlerinden bulunan modal parametreler

karsilastirilmis ve iyl uyum bulunmustur.
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CHAPTER 1

GENERAL INTRODUCTION

The understanding of physcal nature of vibration phenomena has always been
important for researches and engineers. There are lots of problems such as noise,
vibration or failure encountered in practice. These problems direct engineers and
researches to investigate vibrations of structural elements, structures and machines.

The role of understanding and predicting dynamic behavior of system is also
significant tool for design step. For this reason, analytical and experimental methods are
used together. Finite element modeling (F.E.M.) which popular and powerful technique
is actually used as analytical methods. Certainly, one of the most important areas of
experimental methods is modal analysis. Due to different built-in limitations,
assumptions and choices, each approach has its own advantages and disadvantages.

It is obvious that the problem of vibrating frame structures have been examined
widely in several fields of engineering i.e. bridge design, building design, space-based
antenna and micro frames used in electronic equipment.

Frame structures can be classified as closed or open. Closed frames are
developed by chains of beams in which both ends are fixed. Open frames are formed by
chains of beams that have one end fixed and the other end free.

Tapered members which generally used in the frame structure have drawn
attention .Because, tapered members make the stress in the structure more evenly
distributing, so that consumption of material can be reduced.

Because of the wide usage of portal frames in engineered design, many
investigators have examined portal frames. Researchers investigating vibration
characteristics of portal frames tackle with problems of different points of view
aforementioned.

The equations of receptance functions in analyzing the flexural vibration of
uniform beams were derived (Bishop 1955). The natural vibration of structures such as
portal frames, which may be regarded as being composed of beams that perform
flexural vibration was investigated. The technique was based upon tables which were

presented by the author (Bishop 1955). The numerical results obtained by the method



were compared with the experimental results (Bishop 1956). The vibration analysis of a
planar serial frame structure was presented. The transverse and longitudinal motions of
each segment were analyzed simultaneously. The eigenvalue problem was solved by
using closed-form transfer matrix method (Lin and Ro 2003). Both in plane and out of
plane free vibrations of two member open frame structures was investigated. A
substructure method was used (Heppler et al. 2003). The vibration of a frame with
intermediate constraint and ends elastically restrained against rotation and translation
was examined. The separation of variables method was applied for the determination of
the exact eigenfrequenciens and mode shapes (Albarracin and Grossi 2005). The finite
element modelling and experimental modal testing for the 1/10 scale rig was carried
out. A comparison between experimental results and finite element results was
presented (Wu 2004). The effects of semi-rigid connections on the responses of steel
frame structure were defined by comparing experimental and theoretical modal analysis
results (Tiirker et al. 2009).

Although, the problem to define the vibration characteristics of portal frames is
much investigated and a considerable amount of publications have been published so
far, it still holds attraction because of wide usage. Therefore, in this study, the vibration
characteristics of portal frame were examined. The finite element method and the
experimental modal testing technique are employed for this purpose.

This thesis has 6 chapters. First chapter presents the subject and summaries the
previous studies on the titled subjects. Second chapter provides the theory about Finite
element modelling (F.E.M) and Experimental modal analysis. Finite element analysis
and it's results are given in chapter 3. Experimental modal analysis and it's results are
given chapter 4. Chapter 5 discusses the vibration characteristics obtained both finite
element modelling and experimental modal analysis. Then conclusion is given in
Chapter 6.



CHAPTER 2

THEORETICAL BACKGROUND

2.1. Introduction

The finite element method is a numerical method for solving problems of
engineering and mathematical physics. The F.E allows users to obtain the evolution in
space and/or time of one or more variables representing the behavior of physical
system. Nowadays the F.E.M is one of the most popular approaches for the vibration
analysis of structures, but accuracy of the F.E.M can be questionable and validation is
usually required. For this reason, the experimental modal testing is undertaken to
measure the natural frequencies and the corresponding mode shapes of the structures
and then a comparison between the experimental results and results obtained the finite
element model is made. This chapter presents a brief explanation of the theory of these

two important methods.
2.2. Theoretical Modal Analysis

2.2.1. Frequency response functions of an SDoF system

Some mechanical and structural systems can be idealized as SDoF systems. The
SDoF system having a mass, a spring and a viscous damper is considered. For a
harmonic force f(t) = F(w) ", the response of the system is another harmonic function
X(t) = X(w) &' where X(w) is a complex amplitude. The frequency response function
(FRF) of the system is given by (He and Fu 2001) as

_ X(o) _ 1
F(w) k-o’m+ jac

(2.1)

or in different forms as



1/k 1/m

(@)= 1-(0* 1 ) + j2(w] w,) - W} — 0 + 200, 22)
Mobility FRF for this system is given as
Accelerance FRF for this system is given as
It is known that a(®), Y(®), and A(w) have the following relationships:

| A@)| = 0] Y (@) |= 07 a(a)| (25)

The reciprocals of a(w), Y(w), and A(w) of an SDoF system also used in modal
analysis. They are respectively:

Dynamic stiffness = = — force (2.6)
a(w) displacement

Mechanical impedance = 1 = forc.e (2.7)
Y(w) velocity

Apparent mass = 1 force (2.8)

A(w)  acceleration

The FRF of an SDoF system can be presented in different forms to those in previous

equations. The receptance FRF can be factorized to become:

*

R R
_ _ 2.9
a(w) ja)—/1+ jwo_ 7 (2.9)




where

Ro_ 1 (2.10)
2Ma, |
A=(=E+1-&7 1), (2.11)

Conjugate coefficients R and R* are called residues of the receptance. 1 and A* are the

complex poles of the SDoF system.

2.2.2. Graphical display of a frequency response function

The possible 2-D graphical display of an FRF are listed as follows:
1. Amplitude—phase plot and log-log plot
2. Real and imaginary plots
3. Nyaquist plot
4. Dynamic stiffness plot
Details of the listed items are available in the textbook written by He and Fu (2001). A

sample frequency response function with linear-linear plot is shown in Figure 2.1.

| o) |

|
=

A\

. \Q

0 1 2 3

r
Figure 2.1. A sample for frequency response function
(Source: Tse et al 1978)



2.2.3. Frequency response functions of a damped MDoF system

The equations of motion of a MDoF system is written in matrix form as:

[MRX(®)}+[DIXO}+ KO} ={f (1)} (2.12)

where [M], [D] and [K] are mass, damping and stiffness matrices, respectively. Also,
{x(t)} is displacement vector and {f(t)} is force vector.
Considering the harmonic motion for displacement and force, the following

equations can be written:

Fl

I:2
{f()}=< ... ;sinwt ={F}sin wt (2.13)

Fn

X,

X2
{x()}=1 ... ;sinwt ={X}sin wt (2.14)

X,
([K]-’[MD{X}={F} (2.15)

or

[Z(){X}={F} (2.16)

where [Z(w)] = (K] — @?[M]) is known as the dynamic stiffness matrix of an MDoF
system. Similar to SDoF system, the inverse of dynamic stiffness matrix gives the

receptance FRF matrix of the system and is denoted by [ a(w)]. It is in open form as:

[(@)] = ([K]- " [M])™ (2.17)

or



a,(@) ap(e) .. o)

[a(e) = () ay(®) ... a, (o) (2.18)

ay(w) a,(@) .. a,(o)

aij(w) is the frequency response function when the system only has one input
force applied at coordinate ‘j” and the response is measured at coordinate ‘i’. A sample
plot for receptance a;1(w) of the 4DoF system is shown in Figure 2.2. It is seen from
Figure 2.2 that there are 4 peak due to the degres of freedom of the system.

Ci’11(l£|:i"] indg
=50

=100

-150

=200 | | |

0 25 50 75 100
o rad/s

Figure 2.2. A sample for receptance a11(w) of the 4DoF system
(Source: He and Fu 2001)

2.3. Finite Element Modeling and Equation of Motion

2.3.1. Frame Element Properties

The bar is capable of carrying axial forces only. On the other hand, the beam is
capable of carrying transverse forces, as well as moments. Therefore, a frame element
can be obtained by combining bar and beam elements. Consider a frame structure is
divided in to frame elements. The elements and nodes are numbered separately in a
convenient manner. In a planar frame element, there are three degrees of freedom at one

node in its local coordinate system, as shown in Figure 2.1 (Liu 1993).



%y

X, U
Y,V / node 2 ]
A (y, vy, 05)
‘) \ z
node 1 _ /
(“1"’1’931) \ le=2a
Q - X, U

0z
Figure 2.3. A finite element for frame element

(Source: Liu 1993)

The bar element has only one degree of freedom at each node (axial

deformation), and the beam element has two degrees of freedom at each node
(transverse deformation and rotation). Combining this knowledge gives the degree of

freedom and displacements frame elements in Equation 2.5 (Liu, 1993).

{de}=

2.3.2. Element Potential Energy and Stiffness Matrix

A bar element with length 2a is shown in Figure 2.2.

Figure 2.4. A bar element in the local coordinate system
(Source: Petyt 2010)

(2.19)



The total strain energy of bar element is given by as (Petyt 2010)

1

Ubar =, :‘EAgfdx (2.20)

bar

where E is modulus of elasticity and A is cross-sectional area.
The axial strain component can be expressed in terms of the axial displacement
u(x), by means of the following relation

_au

=—— 2.21
= (221)

g

Substituting Equation 2.13 into Equation 2.12 the potential energy becomes

u,, == j+aEA(a—uj2 dx (2.22)
27 OX

The potential energy stored in the beam element is given by

U —lraEl CAAIN (2.23)
beam 2 _a z 6X2 '

where |, is the second moment of area.

bar:

The stiffness matrix for bar element [ke "] is expressed by considering the frame

displacement vector given by Equation 2.11 as

AE 0 - AE

b 0 0 0 0 (2.24)
(k™1 =
AE 0 0
2a
sym. 0 0




The stiffness matrix for beam element [k.”*"™] is expressed by considering the
frame displacement vector given by Equation 2.11 as

0 0 0 0 0 0
3El, —3El, —3El, 3El,
3 2 0 3 2
2a 2a 2a 2a
2El — 3ElI El
) £ 0 ot : (2.25)
[keeam]: a a a
0 0 0
svm 3El, —3El,
ym 2a 2a’
2El,
L a i

The stiffness element matrix for a frame element is obtained by combining
[ketI‘USS] and [kebeam] as

AE 0 0 —AE 0
2a 2
3El, —3El, —-3El, 3El,
3 2 0 3 2
2a 2Za %a 2a
El — 3El El
£ 0 > £ (2.26)
[k ]: a 2a a
e AE
— 0 0
2a
svm 3El, —3El,
y 2a’ 2a’
2El,
L a i

2.3.3. Element Kinetic Energy and Mass Matrix

The kinetic energy expressions for the bar and beam elements are given as

_ 1 +a )
Toar = Ej_a pAUdx 2.27)

B 1 +a .2
Toean =5 j PAVZdx (2.28)

10



By using the same procedure used for stiffness matrices, the mass matrix of the

frame element is obtained as

[70 0 0O 3 O 0 |
78 22a 0 27 -—13a
[m ]=A_pa 8a®’ 0 13a -—6a? (2.29)
¢ 105 70 O 0
sym. 78 —22a
L 8a2 _

2.3.4. Global Mass and Stiffness Matrix

[ke] and [me] are expressed in the local co-ordinate system shown in Figure 2.1
as x-y. To obtain the global element matrices, all the matrices must be expressed in the
global coordinate system which is shown in Figure 2.1 as X-Y. To do this, global

displacement vector of which component shown in Figure 2.3 is defined as

Dsi,
D4
D;
{D.}= (2.30)
D, j-2
D, j-1
D;;
4 -
X
¥
o
o
Lo Y™
global node i
local node 1

Figure 2.5. Frame element in global coordinates (Source: Liu, 1993)

11



The coordinate transformation between the displacement vectors are written as

{d.}=[THD.} (2.31)

where [T] is the co-ordinate transformation matrix based on Figure 2.3 and expressed as

k, m 0O O 0 O
, m, 0 0 0 O
O 0 1 0 0 O
= 2.32
M=l 0 01, m o (2.32)
O 0 0 I, m O
0 0 0 0 0 1]

where l,=cosa, l,=-sina, my=sina and my=cosa which are the direction cosines of the
axial axis of the element.

Using the transformation matrix [T] the mass and stiffness matrix for frame
element in the global coordinate system can be obtained. Therefore, the stiffness and
mass matrices of frame in global coordinate system are obtained by the following

equations:

[K1=[TT[kIIT] (2.33)

[M1=[T]"[m,][T] (2.34)

2.3.5. Equation of Motion

The general differential equation of a forced vibration is given by

[MI{XO}+ [DRx@}+ [KH{x(®)} ={f (1)} (2.35)

where [M], [C] and [K] are mass, damping and stiffness matrices, respectively. Also,
{x(t)} is displacement vector and {f(t)} is force vector.

12



The proportional damping model made a significant contribution at the early
development of modal analysis. A structure with proportional damping can be analysed
using the theory for an undamped MDoF system. Rayleigh indicated in his work “The
Theory of Sound”, first published in 1845, that if the viscous damping matrix [C] is
proportional to mass and stiffness matrices (or that if the damping forces are
proportional to the kinetic and potential energies of the system), then it can be written as
(He and Fu 2001) :

[C]=aM]+ K] (2.36)

2.3.6. Natural Frequencies and Mode Shapes

Considering the harmonic motion for displacement and force vextors in the general
differential equation, the following generalized eigenvalue equation is written:

([K1- o [MD{u;}={0} (2.37)

where w; is i"™ natural frequency of the system. {u;} in Equation given in Section on
“Natural Frequencies” is the i vibration mode shape vector.

2.4. Experimental Modal Analysis

2.4.1. Measurement Hardware

The experimental modal analysis generally requires several hardware
components. The basic setup depends on a few major factors. These include the type of
structure to be tested and the level of results desired. The hardware elements required
consist of a source of excitation for providing a known or controlled input to the
structure, a transducer to convert the mechanical motion of the structure into an
electrical signal, a signal conditioning amplifier to match the characteristics of the

transducer to the input electronics of the digital data acquisition system, and an analysis

13



system (or analyzer), in which signal processing and modal analysis programs reside.
Figure 2.4 shows a diagram of a basic test system configuration.

Exciter —{—T_- Structure T ]
li]_ ‘l SCI‘ 1 Recorder

Power
supply
Signal i
gnal analysis T = Transducer
Signal SC = Signal conditioning
generator Modal analysis

Figure 2.6. General test configuration
(Source: Inman 2006)

2.4.2. Signal Processing

The task of the analyzer is to convert analog time domain signals into digital-
frequency-domain information. By using this information, the analyzer performs the
required computations. At this point, a Fourier transform is used to alter an analog
signal, x(t), into frequency-domain information.

A periodic time signal of period T can be represented by a Fourier series in time

as follows:
F(t) =%+g(an cos Nyt +b, sinnat) (2.38)
where
o 2T_” (2.39)
= ZT—” OT F(t)dt (2.40)

14



2 (T
a, = ?L F (t) cos ne,tdt n=12.. (2.41)

b 2 (T : q
\ :?.[0 F(t) sin ne,tdt n=12. (2.42)

The signals (accelerometer or force transducer outputs) are in the time domain
and the desired spectral properties are in the frequency domain. Figure 2.5 shows the

various types of time history encountered and their Fourier series or Transforms.

x{t) Xp

R
_

@p

Time signal Fourier spectrum

x(t) Xn

il
lll:mn

Figure 2.7. Some signals and their Fourier Spectrum
(Source: Inman, 2006)

2.4.3. Modal Data Extraction

After obtaining the FRF (frequency response function) H(jw), the task is to
compute the natural frequencies and damping ratios associated with each resonant peak
of the measured FRF. There are several ways to examine the measured FRF to extract
these data. To examine all of them, interested reader should consult well-known
textbook written by Ewins (2000). SDOF Method or Peak Amplitude Model is
summarized below:

This method works adequately for structures whose FRF exhibit well- separated
modes. The method is applied as follows:

(i) First, individual resonance peaks are detected on the FRF plot, and the frequency of

one of the maximum responses taken as the natural frequency of that mode (wy).

15



(if) Second, the local maximum value of the FRF is noted and the frequency bandwidth
of ‘half-power points’ is determined (Aw)).
(iii) The damping of the mode in question can now be estimated from one of the

following formulae

o -0} Ao

2f —a ~ = 2.43
g 20} o, (2.43)

(iv) Last, the estimated modal constant of the mode is calculated as
A =20 |H(jo) (2.44)

o

-2

t ﬁ)b 'E"]lt {})a 0]
Figure 2.8. FRF (frequency response function)
(Source: Ewins, 2000)
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CHAPTER 3

THEORETICAL MODAL ANALYSIS

3.1. Introduction

The portal frame is shown in Figure 3.1 and its properties are given in Table 3.1.
It is seen from Figure 3.1 that portal frame has linearly tapered legs. In Table 3.1,

horizontal and vertical frame members are numbered with 1, 2 and 3, respectively.

Figure 3.1. Portal Frame

Table 3.1. Geometrical and material properties of the frame structure

Property Value
bo1, hor (Mm) 20

Doz, oz, Doz, hoz (MmM) 12

L, Lo, Lg (mm) 250

E (MPa) 200000
p (tonne/mm°) 7.85107
v(-) 0

17



3.2. Finite Element Model

In ANSYS, 8-node 3D structural solid element (Solid45) is selected and setting

the global size of the elements to 5, the solid model is meshed by 2228 elements.

3.3. Natural Frequencies

Natural frequencies found from ANSYS is listed in Table 3.2.

Table 3.2. Theoretical natural frequencies of portal frame

Mode FEM [ANSYS] f (Hz)
1 243.86

2 669.78

3 12126

4 1225.2

5

6

2183.2
3057.7

3.4. Mode Shapes

Mode shapes are plotted in Figure 3.2-5.

MRY 27 2013
09:02:16

Figure 3.2. First mode shape
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MAY 27 2013

DISPLACEMENT

STEP=1 09:04:46
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Figure 3.3. Second mode shape
DISPLACEMENT ,\NSYS
MAY 27 2013

STEP=1 09:05:16
SUB =3

FREQ=1213

DMX =44.941

Figure 3.4. Third mode shape

T ANSYS|
DISPLACEMENT MAY 27 2013
STEP=1 09:05:58
-

DMZ =46.682

Figure 3.5. Fourth mode shape




ANSYS|
MAY 27 2013
STEP=1 09:06:19
SUB =5
FREQ=2183
DME =75.561

1
DISPLACEMENT

Figure 3.6. Fifth mode shape

DISPLACEMENT

MAY 27 2013
STEP=1 09:06:48
UB =6

FREQ=3058
DMX =52.64

Figure 3.7. Sixth mode shape
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CHAPTER 4

EXPERIMENTAL MODAL ANALYSIS

4.1. Experimental Setup

4.1.1. Portal Frame

The portal frame is shown in Figure 4.1 and its properties are given in Table 3.1.

Figure 4.1. Portal Frame

4.1.2. Accelerometers

Kistler PiezoBEAM accelerometer Type:8632C50 ahown in Figure 4.2 is used.

Figure 4.2. Accelerometer
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4.1.3. Coupler

Kistler Piezetron Coupler 5108A shown in Figure 4.3 is used.

(LI

LNdNI

OUTPUT

PIEZOTRON -
@ COUPLER x] <
| =
TYPE 5108 —

(+) KISTLER () |

Figure 4.3. Coupler

4.1.4. Power Supply

DC 24 Volt, 2.08 A power supply is used.

4.1.5. Data Acquisition Board

DagBoard/1000 is a high-speed, multi-function, plug-and-play data acquisition
board for PCI bus computers. It features a 16-bit, 200-kHz A/D converter, digital
calibration, bus mastering DMA, two 16-bit, 100-kHz D/A converters, 24 digital 1/0

lines, four counters, and two timers.

4.1.6. Signal Analyzer

DaqView Version 11 is used to see the natural frequencies.

22



4.2. Natural Frequencies

Natural frequencies found experimentally are listed in Table 4.1.

Table 4.1. Experimental natural frequencies of portal frame

Mode f (Hz)

1 242

668

1215

2190

2
3
4 1225
5
6

3540




CHAPTER 5

DISCUSSION OF RESULTS

Present experimental results, the results of ANSY'S, and percentage difference of
FEM (% difference = 100*[FEM-Experimental]/ Experimental) are given in Table 5.1.

Table 5.1. Natural frequencies of portal frame

Mode | Experimental f (Hz) FEM [ANSYS] f (Hz) % error
1 242 243.86 0.77
2 668 669.78 0.27
3 1215 1212.6 -0.2
4 1125 1225.2 0.02
5 2190 2183.2 -0.31
6 3540 3057.7 -13.6

It is seen from Table 5.1 that experimental and numerical results are close to

each others.

24



CHAPTER 6

CONCLUSIONS

In this thesis, firstly vibration of frames are investigated and reported. In the
chapter on theoretical background the following details are given: Finite Element
Method for vibration analysis of frames, theoretical modal analysis and experimental
modal analysis. Vibration analysis of portal frame is presented as natural frequencies
and mode shapes by Finite Element Method.

Experimental setup has been prepared for Experimental Modal Analysis for the
first time in the Department. Experimental modal tests have been performed. The

obtained results are in good agreement.
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