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ABSTRACT

ON PSEUDO SEMISIMPLE RINGS

In this thesis, we give a survey of right pseudo semisimple rings and prove some

new results about these rings. Namely, we prove that a right pseudo semisimple ring is an

internal exchange ring and a right pseudo semisimple ring is an SSP ring. We also give

a complete characterization of right and left pseudo semisimple rings.
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ÖZET

SÖZDE YARIBASİT HALKALAR ÜZERİNE

Bu tezde, sağ sözde yarıbasit halkarın incelemesi yapıldı ve bu halkalarla ilgili

yeni sonuçlar ispatlandı. Şöyle ki bir sağ sözde yarıbasit halkanın iç değişim halka ve

SSP halka olduğu ispatlandı. Ayrıca sağ ve sol yarıbasit halkaların tam karakterizasyonu

verildi.
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LIST OF ABBREVIATIONS

R an associative ring with unit unless otherwise stated

MR a unitary right R- module

⊕i∈IMi direct sum of R- modules Mi

Z the ring of integers

Zn the cyclic group Z/nZ
0X left annihilator of the set X

X0 right annihilator of the set X

S right socle of the ring R

S ′ left socle of the ring R

J Jacobson radical of the ring R

Z right singular ideal

Z ′ left singular ideal

⊆ submodule

⊂ proper submodule

< proper ideal

≤ ideal

≪ small ( or superfluous) submodule

≤⊕ direct summand

kerf the kernel of the map f

imf the image of the map f

End(M) the endomorphism ring of a module M
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CHAPTER 1

INTRODUCTION

Throughout this thesis, the rings that we consider are associative with an identity

element. A ring R is called a right pseudo semisimple if any right ideal of R is either

semisimple or isomorphic to R. Trivial examples of these rings are principal right ideal

domains and semisimple rings. Pseudo semisimple rings are investigated and studied by

S. H. Mohamed and B. Muller in a series of papers (see, (Mohamed & Muller, 1982),

(Mohamed & Muller, 1991), (Mohamed & Muller, 1990), , (Mohamed, 2010)). Be-

sides proving some properties of these rings, they also characterized the structure of right

pseudo semisimple rings under some particular conditions. The complete structure of

right pseudo semisimple rings is still not known.

In this thesis, we investigate some further properties of pseudo semisimple rings.

Also we characterize the right and left pseudo semisimple rings.

In chapter 2 we give some known results related with our work and used in the

sequel. For the results in this chapter we refer to (Anderson & Fuller, 1992), (Bland,

2010), (Kasch, 1982), (Alizade & Pancar, 1999), (Goodearl, 1979), (Lambek, 1966),

(Lam, 1991), (Lam, 1999), (Wisbauer, 1991), and (Tuganbaev, 2002).

In Chapter 3 we give a survey of some results on the structure of right pseudo

semisimple rings from (Mohamed, 2010) and (Mohamed & Muller, 1991). In the case

S2 = 0, they proved that R is right pseudo semisimple if and only if R/S is a principal

right ideal domain and S is torsion-free as a left R/S module. In the case S is maximal,

R is right and left pseudo semisimple if and only if R is semiprime and has enough shifts.

Also in the case S2 = 0 and S ̸= 0, R is a right and left pseudo semisimple ring if and

only if R is a local ring with radical square 0. They also give an example in order to show

that right pseudo semisimple rings are not left pseudo semisimple, in general.

In Chapter 4 we prove that a right pseudo semisimple ring is an internal exchange

ring, and a right and left pseudo semisimple ring is an SSP ring. We obtain that if R

is a right and left pseudo semisimple ring, then either S is maximal or J = 0. In both

cases we have proved some equivalent conditions for a right pseudo semisimple ring to be

left pseudo semisimple. As a consequence, a complete structure of right and left pseudo

semisimple rings is obtained.
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CHAPTER 2

PRELIMINARIES

In this chapter, we give some fundamental properties of rings and modules that

will be used later.

2.1. The Radical and Socle

For an element x ∈ R and a right ideal L of R, the set {r ∈ R : xr ∈ L} will be

denoted by (L : x).

Definition 2.1 A division ring is a ring whose non-zero elements are invertible.

Definition 2.2 An R- module M is simple if M ̸= 0 and it has no non-trivial submodules.

Proposition 2.1 ( (Anderson & Fuller, 1992), Proposition 5.5) Let M = K ⊕K ′, let pK

be the projection of M on K along K ′, and let L be a submodule of M . Then

M = L⊕K ′

if and only if

(pK |L) : L → K

is an isomorphism.

Let M be an R- module. Then for each subset X of M , the (left) annihilator of X in R is

0X = {r ∈ R | rx = 0 for all x ∈ X},

and the (right) annihilator of X in R is

X0 = {r ∈ R | xr = 0 for all x ∈ X)}.

Proposition 2.2 ( (Anderson & Fuller, 1992), Theorem 2.14) Let M be a R- module and

X be a subset of M . Then 0X is a right ideal of R. Moreover, if X is a submodule of M ,

then 0X is an ideal of R.

Proof Let x, y ∈ 0X and r ∈ R. Then for each a ∈ X, we have
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(rx− y)a = (rx)a− ya = r(xa)− ya = 0.

Thus rx − y ∈ 0X and 0X is a right ideal of R. Assume that X is a submodule of M.

Then

a(xr − y) = a(xr)− ya = (ax)r − ya = 0.

It means that 0X is a left ideal of R. �

Proposition 2.3 ( (Anderson & Fuller, 1992), Theorem 9.6.) A right R-module T is sim-

ple if and only if T ∼= R/I for some maximal right ideal I of R.

Definition 2.3 A right (left) ideal A of R is said to be a minimal right (left) ideal if 0

and A are the only right (left) ideals of R that contained in A.

Lemma 2.1 Let R be a ring and a be a non-zero element of R. The right aR is a minimal

right ideal of R if and only if aR = abR for any b ∈ R such that ab ̸= 0.

Definition 2.4 An element e of a ring R is called idempotent if e2 = e. An idempotent

e of R is central idempotent in case it is in the center of R. A pair of idempotents e1

and e2 in a ring R is said to be orthogonal if e1e2 = 0 = e2e1. An idempotent e ∈ R is

said to be indecomposable if it is nonzero and it is not the sum of two nonzero orthogonal

idempotents of R.

Lemma 2.2 The ideal I of R is a direct summand of R if and only if I = eR for some

e2 = e ∈ R.

Proof Assume that I = eR for some e = e2 ∈ R. Since x = ex + (1 − e)x for all

x ∈ R, RR = eR + (1 − e)R. If ex = (1 − e)y for some x, y ∈ R, then ex = e2x =

e((1− e)y) = 0. Thus R = eR⊕ (1− e)R. If I is a direct summand of R, R = I ⊕ J for

some J ⊆ R. Then 1 = e+ f for some e ∈ I and f ∈ J .

e2 = (1− f)2 = 1− f − f + f 2 = e− f(1− f) = e− fe = e.

Also if x ∈ I , then

x = (e+ f)x = ex+ fx = ex ∈ eR.

Thus I = eR for some e = e2 ∈ R. �
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The idempotents in a ring R represent idempotents in every factor ring of R. However,

idempotent cosets in a factor ring of R need not have idempotent representatives in R.

For example, Z has two idempotents, while Z6 has four.

Definition 2.5 Let I be an ideal of a ring R and let g + I be an idempotent element of

R/I . We say that this idempotent can be lifted modulo I in case there is an idempotent

e ∈ R such that g + I = e + I . We say that idempotents lift modulo I in case every

idempotent in R/I can be lifted to an idempotent in R.

Proposition 2.4 ( (Anderson & Fuller, 1992), Theorem 27.1) If I is a nil ideal in a ring

R, then idempotents lift modulo I .

Proposition 2.5 ( (Bland, 2010), Proposition 6.3.5) If A is a minimal right ideal of a ring

R, then either A2 = 0 or A = eR for some idempotent e of R.

Proof Let A be a minimal right ideal of R, and assume that A2 ̸= 0. Then there exists

a ∈ A such that aA ̸= 0. Since aA is a nonzero right ideal of R contained in A, we must

have A = aA. Let e ∈ A be such that a = ae. If B = a0, then B is a right ideal of

R and A ∩ B ̸= A. Hence, A ∩ B = 0. But ae = ae2, so a(e − e2) = 0. Therefore,

e− e2 ∈ A∩B, so e = e2. Hence, e is an idempotent of R, and e ̸= 0 since a ̸= 0. Thus,

0 ̸= eR ⊆ A gives eR = A. �

Proposition 2.6 If R is a domain, then R does not contain any nonzero proper minimal

right ideal.

Corollary 2.1 ( (Lambek, 1966), Corollary) If e2 = e ∈ R and f2 = f ∈ R, then

eR ∼= fR if and only if Re ∼= Rf .

Definition 2.6 A submodule N of an R-module M is said to be an essential (or a large)

submodule of M , written N ≤ess M , if N ∩ N ′ ̸= 0 for each nonzero submodule N ′ of

M . If N is an essential submodule of M , then M is referred to as an essential extension

of N . It is easily seen that for a submodule N of M we have N ≪ess M if and only if for

every 0 ̸= m ∈ M , there is an element r ∈ R such that rm ̸= 0 and rm ∈ N.

Proposition 2.7 ( (Anderson & Fuller, 1992), Proposition 5.16) Let M be an R- module

with submodules K ≤ N ≤ M and H ≤ M. Then

(1) K ≪ess M if and only if K ≪ess N and N ≪ess M.

(2) H ∩K ≪ess M if and only if H ∩M and K ≪ess M.
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Definition 2.7 If N is a submodule of an R-module M , then a submodule C of M such

that N ⊕ C is essential in M is said to be a complement of N in M .

Proposition 2.8 ( (Alizade & Pancar, 1999), Proposition 9.8) Every submodule of a mod-

ule M has a complement in M .

Definition 2.8 A submodule K of an R-module M is called superfluous or small in M,

written K ≪ M , if, for every submodule L ⊆ M , the equality K + L = M implies

L = M .

Lemma 2.3 If N is an ideal of a ring R such that N0 ≤ N, then N is essential as a left

ideal.

Proof Let A be a left ideal such that A ∩N = 0. Since NA ≤ A ∩N = 0, we obtain

NA = 0. Then we have A ≤ N0 ≤ N . Thus 0 = A ∩N = A. �

Let M be a left R-module. The radical of M is defined by

Rad(M) =
∩
{K ⊆ M | K is a maximal submodule in M}

=
∑

{L ⊆ M | L is a small submodule in M}

and the socle of M is defined by

Soc(M) =
∑

{K ⊆ M | K is a minimal submodule in M}

=
∩
{L ⊆ M | L is an essential submodule in M}.

The right socle of a ring is S = Soc(RR) and left socle is S ′ = Soc(RR), and they

are ideals of R. They need not to be equal for example; if R is the ring of 2 × 2 upper

triangular matrices over a field, then S ̸= S ′.

Lemma 2.4 ( (Lam, 1991), Lemma 4.1) For y ∈ R, the following statements are equiva-

lent:

(1) y ∈ J(R);

(2) 1− yx is right invertible for any x ∈ R;

(3) My = 0 for any simple right R-module M .

Proof

5



(1)⇒ (2) Assume y ∈ J(R). If, for some x, 1 − yx is not right invertible, then (1 −
yx)R & R is contained in a maximal right ideal M of R. But 1 − yx ∈ M and

y ∈ M imply that 1 ∈ M , a contradiction.

(2)⇒ (3) Assume my ̸= 0 for some m ∈ M . Then since M is simple, we must have

myR = M . In particular, m = myx for some x ∈ R, so m(1 − yx) = 0. Using

(2), we get, m = 0 a contradiction.

(3)⇒ (1) For any maximal right ideal M of R, R/M is a simple right R-module, so by

(3), (R/M)y = 0 which implies that y ∈ M . By definition, we have y ∈ J(R).

�

Corollary 2.2 ( (Anderson & Fuller, 1992), Corollary 15.4) If R is a ring, then

Rad(RR) = Rad(RR).

The Jacobson radical of a ring is J(R) = Rad(RR) and it is an ideal.

Corollary 2.3 ( (Anderson & Fuller, 1992), Corollary 15.5) If R is a ring, then J(R) is

the annihilator in R of the class of simple right (left) R-modules.

Corollary 2.4 ( (Anderson & Fuller, 1992), Corollary 15.6) If I is an ideal of a ring R,

and if J(R/I) = 0, then J(R) ⊆ I .

Proof If J(R/I) = 0, then the intersection of the maximal right ideals of R containing

I is exactly R. It follows that J(R), the intersection of the maximal right ideals of R , is

contained in I . �

Corollary 2.5 ( (Anderson & Fuller, 1992), Corollary 15.8) If R and R′ are rings and

if ϕ : R → R′ is a surjective ring homomorphism, then ϕ(J(R)) ⊆ J(R′). Moreover, if

kerϕ ⊆ J(R), then ϕ(J(R)) = J(R′). In particular, J(R/J(R)) = 0.

Corollary 2.6 ( (Anderson & Fuller, 1992), Corollary 15.11) If R is a ring, then J(R)

contains no non-zero idempotent.

Proof If e ∈ R is idempotent and if e ∈ J(R), then eR is a small direct summand of

RR. Thus e = 0. �

Corollary 2.7 ( (Lam, 1991), Lemma 11.4) If a right (left) ideal U ≤ R is nil, then

U ≤ J(R).

Proof Let y ∈ U . Then for any x ∈ R, yx ∈ U is nilpotent. It follows that 1− yx has

an inverse given by Σ∞
i=0(xy)

i. Therefore, by Lemma 2.4, we have y ∈ J(R). �
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2.2. Polynomial Rings

Theorem 2.1 Let f(x), g(x) be nonzero polynomials over a ring R. If f(x)g(x) ̸= 0,

then

deg[f(x)g(x)] ≤ deg[f(x)] + deg[g(x)].

If R has no zero divisors, then we always have

deg[f(x)g(x)] = deg[f(x)] + deg[g(x)].

In particular, this applies if R is an integral domain.

Proof Write f(x) = a0+ ...+anx
n and g(x) = b0+ ...+ bmx

m, with an, bm ̸= 0. Then

f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ ...+ anbmx
n+m.

Thus the largest power of x that can occur is xn+m, so deg[f(x)g(x)] ≤ deg[f(x)] +

deg[g(x)].

If R has no zero divisors, then anbm ̸= 0 and n+m is the degree, giving us deg[f(x)g(x)] =

deg[f(x)] + deg[g(x)]. �

Corollary 2.8 If R is an integral domain, so is R[x].

Theorem 2.2 Let R be an integral domain. The polynomial f(x) ∈ R[x] is a unit if and

only if f(x) is a constant polynomial that is a unit in R.

Proof Clearly such polynomials are units in R[x]. On the other hand, suppose that

f(x)g(x) = 1. Then deg[f ] + deg[g] = deg[1] = 0, so deg[f ] = deg[g] = 0. Hence they

are in R, and units in R because their product is 1. �

Corollary 2.9 If F is a field, then f(x) ∈ F [x] is a unit if and only if it is a nonzero

constant polynomial.

Corollary 2.10 The Jacobson radical of R[x] is zero when R is a domain.

Proof Let f ∈ J(R[x]). Then 1 + xf is a unit by Lemma 2.4, and so 1 + xf must be

constant by Theorem 2.2. Thus f = 0. �

7



2.3. The Singular Ideal

Let M be an R- module. Consider the following set:

Z(MR) = {x ∈ M |xI = 0 for some I ≪ess RR} = {x ∈ M |x0 ≪ess RR}.

Lemma 2.5 Z(M) is a submodule of M .

Proof Since R is an essential right ideal over itself, we get 0 ∈ Z(M). Given any

x, y ∈ Z(M), there are essential right ideals I , J in R such that xI = yJ = 0. By

Proposition 2.7 I ∩ J is an essential right ideal of R and so x ∓ y ∈ Z(M). Now for

any t ∈ R and x ∈ Z(M), we will show that xt ∈ Z(M). Consider the right ideal

K = {r ∈ R | tr ∈ I}. It is essential by Lemma ??, and we have xtK ≤ xI = 0, whence

xt ∈ Z(M). Thus Z(M) is a submodule of M . �

Proposition 2.9 If f : M → N is a homomorphism of right R- modules, then f(Z(M)) ⊆
Z(N).

Proof Let x ∈ Z(M). Then there exists an essential right ideal of R such that Ix = 0,

that is for every a ∈ I , xa = 0. So f(xa) = f(x)a = 0 for every a ∈ I , that is I ⊆ f(x)0.

Since I ≪ess R, by Proposition 2.7, f(x)0 ≪ess R, so we get f(x) ∈ Z(N). �

Corollary 2.11 If N is a submodule of a module M , then Z(N) ⊆ Z(M).

Proof This is clear from Proposition 2.9. �

Lemma 2.6 If N is a submodule of a module M , then Z(M) ∩N = Z(N).

Proof By Corollary 2.11, Z(N) ⊆ Z(M) and Z(N) = Z(N) ∩ N ⊆ Z(M) ∩ N.

Conversely, let x ∈ Z(M) ∩N. Then there is an essential right ideal I such that xI = 0,

on the other hand, x ∈ N , so x ∈ Z(N). �

Definition 2.9 The right singular ideal of a ring R is the ideal Z = Z(RR), and the left

singular ideal of R is the ideal Z l = Z(RR).

Lemma 2.7 If R is a domain, then Z = 0.

Proof Let x ∈ Z. Then xI = 0 for some essential right ideal of R. But then as R is a

domain and I ̸= 0, x = 0. �

8



Corollary 2.12 The following statements hold for a ring R.

(1) Z is an ideal of R.

(2) If R ̸= 0, then Z ̸= R.

(3) Z does not contain any nonzero idempotent.

2.4. Semisimple Modules

Let (Tα)α∈A be an indexed set of simple submodules of M . If M is the direct sum

of this set, then

M =
⊕

A Tα

is a semisimple decomposition of M . A module M is said to be semisimple in case it has

a semisimple decomposition.

Theorem 2.3 ( (Anderson & Fuller, 1992), Theorem 9.6) For a right R-module M the

following statements are equivalent;

(1) M is semisimple;

(2) M is generated by simple modules;

(3) M is the sum of some set of simple submodules;

(4) M is the sum of its simple submodules;

(5) Every submodule of M is a direct summand;

(6) Every short exact sequence

0 → K → M → N → 0

of right R-modules splits.

Corollary 2.13 ( (Kasch, 1982), Corollary 8.1.5) For a right R- module M, the following

hold.

(1) Every submodule of a semisimple module M is semisimple.

9



(2) Every epimorphic image of a semisimple module M is semisimple.

Corollary 2.14 ( (Kasch, 1982), Corollary 8.2.2) For a ring R, the following are equiva-

lent;

(1) R is semisimple;

(2) Every right and left R- module is semisimple.

2.5. Local, Regular and Semiprime rings

A ring R is a local ring in case the set of non-invertible elements of R is closed

under addition.

Proposition 2.10 ( (Anderson & Fuller, 1992), Theorem 15.15) For a ring R, the follow-

ing statements are equivalent;

(1) R is a local ring;

(2) R has a unique maximal left ideal;

(3) J(R) is a maximal left ideal;

(4) The set of elements of R without left inverses is closed under addition;

(5) J(R) = {x ∈ R |Rx ̸= R};

(6) R/J(R) is a division ring;

(7) J(R) = {x ∈ R | x is not invertible};

(8) If x ∈ R, then either x or 1− x is invertible.

Lemma 2.8 If R is a local ring with J2 = 0, then S = J.

Proof We know by Corollary 2.3 that J(R) annihilates every simple R- module. Thus,

S ≤ 0J . But 0JJ = 0. Therefore, 0J is an R/J- module. So by Corollary 2.14 0J is

semisimple and 0J ≤ S. Hence we have S =0 J . If J2 = 0, then J ≤ S. On the other

hand, since R is local, S ≤ J . Thus S = J . �
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A ring R is called regular provided that for every x ∈ R there exists y ∈ R such

that xyx = x.

Theorem 2.4 ( (Goodearl, 1979), Theorem 1.1) For a ring R, the following conditions

are equivalent;

(1) R is regular;

(2) Every principal right (left) ideal of R is generated by an idempotent;

(3) Every finitely generated right (left) ideal of R is generated by an idempotent.

Proof

(1)⇒(2) Given x ∈ R, there exists y ∈ R such that xyx = x. Then xy is an idempotent

in R such that xyR = xR.

(2)⇒(3) It suffices to show that xR + yR is principal for any x, y ∈ R. Now, xR = eR

for some idempotent e ∈ R, and since y − ey ∈ xR+ yR, we see that xR+ yR =

eR + (y − ey)R. There is an idempotent f ∈ R such that fR = (y − ey)R, and

we note that ef = 0. Consequently, g = f − fe is an idempotent orthogonal to

e. Observing that fg = g and gf = f , we see that gR = fR = (y − ey)R,

whence xR + yR = eR + gR. Since e and g are orthogonal, we conclude that

xR + yR = (e+ g)R.

(3)⇒(1) Given x ∈ R, there exists an idempotent e ∈ R such that xR = eR. Then

e = xy for some y ∈ R, and x = ex = xyx.

�

A proper ideal A of R is said to be a semiprime ideal of R if whenever I is an

ideal of R such that I2 ⊆ A, then I ⊆ A. A ring R is said to be a semiprime ring if the

zero ideal is a semiprime ideal of R.

Corollary 2.15 ( (Goodearl, 1979), Corollary 1.2) Let R be a regular ring. Then the

following hold statements are hold.

(1) All one-sided ideals of R are idempotent.

(2) All two-sided ideals of R are semiprime.

(3) The Jacobson radical of R is zero.

Proof
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(1) Let I be a right ideal of R. For x ∈ I , we have xyx = y for some y ∈ R, and,

consequently, x = (xy)x ∈ I2. Thus I2 = I.

(2) is clear from (1).

(3) Let a ∈ J(R), there exists y ∈ R such that a = aya. Then a(1− ya) = 0, and since

(1− ya) is invertible by Lemma 2.4, we get a = 0.

�

Proposition 2.11 ( (Bland, 2010), Proposition 6.2.27) The following are equivalent for a

ring R;

(1) R is semiprime;

(2) The zero ideal is the only nilpotent ideal of R;

(3) If A and B are right (left) ideals of R such that AB = 0, then A ∩B = 0.

Proof

(1)⇒(3) If A and B are right ideals of R such that AB = 0, then AB ⊆ P for every

prime ideal P of R. Hence, A ⊆ P or B ⊆ P, and so that A ∩ B ⊆ P for every

prime P. Thus, A ∩B ⊆ J(R) = 0.

(3)⇒(2) Let I be a nilpotent ideal of R. If In = 0, then it follows from (3) that I =

I1 ∩ I2 ∩ ... ∩ In = 0, where Ii = I for i = 1, 2, ...n.

(2)⇒(1) If 0 ̸= a ∈ R, let a = a0. Then Ra0R ̸= 0, and so the ideal Ra0R is not

nilpotent. Hence, we can pick a1 ∈ Ra0R, a1 ̸= 0. For the same reasons, we can

select a nonzero a2 ∈ Ra1R, and so on. Thus, a is not nilpotent, so a is not in

J(R). Hence, J(R) = 0 and R is therefore semiprime.

�

Remark 2.1 ( (Tuganbaev, 2002), Remark 3.2.)If R is a semiprime ring then left socle

coincides with right socle.
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2.6. Projective Modules

Definition 2.10 An R- module M is said to be projective if each row exact diagram

M
g

}}{
{

{
{

f
��

N2
h // N1

// 0

of R-modules and R-module homomorphisms can be completed commutatively by an R-

linear mapping g : M → N2.

Proposition 2.12 ( (Bland, 2010), Proposition 5.2.3, Corollary 5.2.4, Lemma 5.2.5, Propo-

sition 5.2.6) The following hold for a ring R.

(1) If {Mα}△ is a family of R- modules, then
⊕

△ Mα is projective if and only if each

Mα is projective.

(2) A direct summand of a projective R-module is projective.

(3) The ring R is a projective R-module.

(4) Every free R-module is projective.

Proposition 2.13 ( (Anderson & Fuller, 1992), Proposition 17.2) The following state-

ments about a right R- module P are equivalent;

(1) P is projective ;

(2) Every epimorphism RM →R P → 0 splits;

(3) P is isomorphic to a direct summand of a free right R- module.

Definition 2.11 A ring R is right hereditary (respectively, right PP ) if every right ideal

(respectively, cyclic ideal) is projective.

2.7. (C2), (C3), SSP, and (C4) Rings

Definition 2.12 An R-module M has (C2) if whenever a submodule N of M is isomor-

phic to a direct summand of M , then N ≤⊕ M.

13



Remark 2.2 A ring R has (C2) if RR and RR has (C2).

Proposition 2.14 Every regular ring has (C2).

Proof Let B be a right ideal of R and B ∼= A for some right ideal A of R such that

A ≤⊕ B. Then B is cyclic. By Theorem 2.4 B is generated by an idempotent and so B

is a direct summand of R. �

Definition 2.13 An R-module M has (C3) if whenever N ≤⊕ M and K ≤⊕ M such that

N ∩K = 0 then, N +K ≤⊕ M .

Proposition 2.15 (?, Proposition 2.2) If an R- module M has (C2) then it has (C3).

Proof Write M = M1 ⊕ M ′
1 and let ϕ denote the projection M1 ⊕ M ′

1 → M ′
1. Then

M1 ⊕M2 = M1 ⊕ ϕM ′
1. Since ϕ|M2 is a monomorphism, we get ϕM2 ⊂⊕ M by C2. As

ϕM2 ≤ M ′
1, M1 ⊕ ϕM2 ⊂⊕ M. �

Definition 2.14 An R-module M has (C4) if every submodule of M that contains an

isomorphic copy of M , is itself isomorphic to M .

Definition 2.15 An R- module M has the summand sum property (SSP ) if the sum of

any two direct summands of M is a summand.

Theorem 2.5 ( (Shen, 2011), Theorem 2.4) The followings are equivalent for a ring R;

(1) R is right SSP ;

(2) For any two idempotents e and f of R, efR ≤⊕ RR;

(3) R is left SSP ;

(4) For any two idempotents e and f of R, Ref ≤⊕
RR.

2.8. Exchange Rings

Definition 2.16 A decomposition M = ⊕n
i=1Mi is exchangeable if for any summand N

of M, M = ⊕n
i=1M

′
i ⊕N with M ′

i ≤ Mi.

Definition 2.17 If every finite decomposition of M is exchangeable, then M is said to

have the finite internal exchange property.

14



Lemma 2.9 ( (Mohamed & Muller, 2002), Lemma 5) Let M = N⊕K ′ where K ′ ≤ K ≤
M . If K has an exchangeable decomposition K = ⊕i∈IKi, then M = N ⊕ (⊕i∈IK

′
i)

with K ′
i ≤ Ki.

Proof By the modular law, K = (K∩N)⊕K ′. The hypothesis on K = ⊕i∈Ki implies

K = (K ∩ N) ⊕ (⊕i∈IK
′
i) with K ′

i ≤ Ki. Write L = ⊕i∈IK
′
i. Then M = N ⊕ K ′ =

N +K = N +N ∩K+L = N +L, then N ∩L = N ∩ (K ∩L) = (N ∩K)∩L = 0. �

Definition 2.18 M is said to have n- exchange property if whenever M ≤⊕ A = ⊕n
i=1Ai,

then A = (⊕n
i=1A

′
i)⊕M with A′

i ≤ Ai.

Definition 2.19 M has the finite exchange property if M has the n-exchange property for

every positive integer n.

Definition 2.20 A ring R is said to be an exchange (internal exchange) ring if RR, equiv-

alently RR has the exchange (internal exchange) property.

Proposition 2.16 Semisimple rings have exchange property.

Proposition 2.17 ( (Mohamed & Muller, 2002), Proposition 15) The 2-internal exchange

property is inherited by summands.

Proof Assume M = A⊕B has the 2- internal exchange property. Let A = A1⊕A2 and

let X be a summand of A. Consider decomposition M = A1⊕(A2⊕B). By the 2- internal

exchange property for M , M = (X ⊕B)⊕A′
1⊕ (A2⊕B)′ = X ⊕A′

1⊕ (A2⊕B)′⊕B,

with A′
1 ≤ A1 and (A2 ⊕ B)′ ≤ A2 ⊕ B. Let π denote the projection M → A along

B. Then π((A2 ⊕ B)′) ≤ π(A2 ⊕ B) = A2. Write A′
2 ⊕ B = (A2 ⊕ B)′ ⊕ B. Hence

M = X ⊕ A′
1 ⊕ A′

2 with A′
i ≤ Ai. �

Proposition 2.18 ( (Mohamed & Muller, 2002), Proposition 16) The 2-internal exchange

property implies the finite exchange property.

Proof Let n > 2 be an integer, and assume inductively that any module K with 2-

internal exchange property has the (n- 1)- internal exchange property. Let M = M1 ⊕
... ⊕ Mn be a module with the 2- internal exchange property, and let X be a summand

of M . Write K = M2 ⊕ ... ⊕ Mn. Then M = M1 ⊕ K. By the 2- internal exchange

property for M , M = X ⊕M ′
1 ⊕K ′, with M ′

1 ≤ M1 and K ′ ≤ K. As K is a summand

of M , K has the 2- internal exchange property by Proposition 2.17. Hence K has the

(n- 1)- internal exchange property by induction. It then follows by Lemma 2.17 that

M = X ⊕M ′
1 ⊕M ′

2...⊕M ′
n with M ′

i ≤ Mi. �
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Corollary 2.16 ( (Mohamed, 2006), Corollary 2.3) The following are equivalent for a

module M ;

(1) M has the finite internal exchange property;

(2) For any idempotents e and f of End(M), there exists an idempotent g ∈ End(M)

such that eEnd(M) = gEnd(M) and gf(1− g) = 0.

(3) For any idempotents e and f of End(M), there exists an idempotent γ ∈ End(M)fe

such that e− γ ∈ End(M)fe such that e− γ ∈ End(M)(1− f)e;

(4) End(M)EndM has the internal exchange property.

Example 2.1 ( (Mohamed, 2006), Example 2.5) The ring R =

(
Z 0

Z Z

)
is an internal

exchange ring.

We show that (2) of Corollary 2.16 is satisfied for all possible choices of idempotents e

and f of R. Let k =

(
a 0

b c

)
be an idempotent of R. Then

(
a 0

b c

)2

=

(
a2 0

ab+ cd c2

)
=

(
a 0

b c

)
.

implies a2 = a, b2 = b and ab+ cd = b. Now we have four cases:

(1) If a = 0, c = 0 then b = 0 and k =

(
0 0

0 0

)
.

(2) If a = 1, c = 0 then k =

(
1 0

b 0

)
for all b ∈ Z.

(3) If a = 0, c = 1 then k =

(
0 0

b 1

)
for all b ∈ Z.

(4) If a = 1, c = 1 then k =

(
1 0

0 1

)
.

Thus all idempotents of R are:

(
0 0

0 0

)
,

(
1 0

b 0

)
,

(
0 0

b 1

)
,

(
1 0

0 1

)
,

where b ∈ Z.

For e =

(
1 0

b 0

)
and f =

(
1 0

b′ 0

)
, take g = e.
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For e =

(
1 0

b 0

)
and f =

(
0 0

b′ 1

)
, take g = e.

For e =

(
0 0

b 1

)
and f =

(
1 0

b′ 0

)
, take g =

(
0 0

−b′ 1

)
. For e =(

0 0

b 1

)
and f =

(
0 0

b′ 1

)
, take g = f.

Proposition 2.19 ( (Nicholson, 1977), Proposition 2.9) The following conditions are

equivalent for a projective module P ;

(1) P has the finite exchange property;

(2) If P = M1 +M2 + ...+Mn where Mi are submodules, then there is a decomposition

P = P1 ⊕ P2 ⊕ ...⊕ Pn with Pi ≤ Mi for each i;

(3) If P = M + N where M and N are submodules, then there exists a summand P1 of

P such that P1 ≤ M and P = P1 +N.
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CHAPTER 3

NON-TRIVIAL RIGHT PSEUDO SEMISIMPLE RINGS

This chapter includes the definition of a right pseudo semisimple ring and funda-

mental facts of these rings.

Definition 3.1 A right ideal P of R is called right pseudo maximal if P is maximal in

the set of right ideals not isomorphic to R.

Pseudo maximal ideals of a ring R need not to be a maximal ideal, for an example consider

Z. Socle of Z is 0, and every right and left ideal of Z is isomorphic to Z. So 0 is a pseudo

maximal ideal, but it is not maximal ideal.

Definition 3.2 A ring R is called right pseudo semisimple if any right ideal of R is either

semisimple or isomorphic to RR.

Trivial examples of such rings are semisimple rings (S = R) or principal right ideal

domains (S = 0). So it is only interesting to study pseudo semisimple rings in which

0 < S < R.

Proposition 3.1 ( (Mohamed, 2010), Proposition 2.1.) The following hold in a right

pseudo semisimple ring R.

(1) If R = A ⊕ B for non-zero right ideals A and B of R, then exactly one of them is

semisimple and the other one is isomorphic to R; in particular, none of them is an

ideal, and so any nontrivial idempotent of R is not central .

(2) S is the smallest essential right ideal of R and is right pseudo maximal.

(3) 0S = Z ≤ S ∩ J .

(4) S = 0x for every 0 ̸= x ∈ J; in particular, if J ̸= 0, then S = 0J .

(5) Z ≤ A for any right ideal A not contained in S.

(6) If b0 = 0, then (Z : b) = Z.

(7) If a is not in S, then (S : a) = S and aZ = Z.

(8) R/S is a principal right ideal domain.
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(9) SZ = 0 and Z is torsion free divisible as a left R/S module.

Proof

(1) If A � S then A ∼= R, so that A = A1 ⊕ B1 with A1
∼= A and B1

∼= B. Then

R = A1⊕B1⊕B. Iterating this process, we obtain R = An⊕Bn⊕...⊕B1⊕B, with

Bi
∼= B, for every n ∈ N. Thus, R contains the right ideal

⊕
i∈NBi, which is not

finitely generated, hence not isomorphic to R. Therefore,
⊕

i∈N Bi is semisimple

and consequently B is semisimple. Suppose A ∼= R and B ≤ S. If B is an ideal,

then AB ≤ A ∩B = 0, so that B ⊆ A0. On the other hand, since A ∼= R, we have

A0 = R0 = 0. Then B = 0 which is a contradiction.

(2) A nonzero right ideal A of R is either contained in S or is isomorphic to R, and hence

contains a copy of S. In either case S∩A ̸= 0, and therefore, S is smallest essential

right ideal in RR. If S is contained in a right ideal I of R, then by the definition of

right pseudo semisimple ring I ∼= R. So, S is right pseudo maximal.

(3) Z ⊆ 0S follows from (2) that x0 contains S, for every x ∈ Z. Let x ∈ 0S. Since

S is essential in R from (2), x0 is essential in R, and so 0S = Z. This also proves

that Z � R, and we obtain Z 6 S. Therefore, Z2 = 0, and consequently Z 6 J

by Corollary 2.7.

(4) We know that SJ = 0 by Corollary 2.3, so for every x ∈ J, we have S ≤ 0J ≤ 0x.

For an element a of R which is not in S, aR ∼= R. Then aR is projective by

Proposition 2.12 . It is clear that

0 → a0 → R → aR → 0

is exact. By Proposition 2.13, R = a0 ⊕ B with B ∼= R and a0 ≤ S by (1).

It follows that a0 ∩ J = 0, and consequently ax ̸= 0. Hence 0x ≤ S, and so

S = 0J =0 x.

(5) We know that Z ≤ S by (3). Then by Theorem 2.3, Z = A ∩Z ⊕K , for some right

ideal K of R, and we get A+Z = A+A∩Z ⊕K. Since A is not contained in S,

R ∼= A ⊕K and K ∼= eR with e2 = e ∈ S by (1). As KeR ≤ ZS = 0, eR = 0,

and hence K = 0. It follows that Z = A ∩ Z, and so Z ≤ A.

(6) Z ≤ (Z : b) is clear. br ∈ Z implies brS = 0 by (3), which in turn implies rS = 0,

and so by (3) r ∈ Z.
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(7) We have aR ∼= R, and so by Proposition 2.12 and Proposition 2.13, R = a0 ⊕ C

for some right ideal C of R with C ∼= R. Then a0 ≤ S by (1). Assume ar ∈ S,

and write r = s + c, where s ∈ a0 and c ∈ C, and so ar = as + ac = ac . Then

S ≥ arR = acR ∼= cR because a0 ∩ C = 0. Hence, c ∈ S, and consequently

r ∈ S. Now, aR ∼= R implies aR = bR with b0 = 0. Then applying (5) and (6), we

get aZ = aRZ = bRZ = bZ = bR ∩ Z = Z.

(8) Let x, y ∈ R/S. Suppose that x is not in S and xy = 0. Then xy ∈ S and by (7)

y ∈ S. That is R/S is a domain. Let A/S be a nonzero right ideal of R/S. Then

by the definition of right pseudo semisimple ring, A ∼= R, and so A is cyclic, that

is A/S is cyclic.

(9) The result is trivial for Z = 0, assume that Z ̸= 0. By (3) Z ≤ J, and SZ = 0 by

(4). Thus Z is an R/S module. Let x be a nonzero element of Z and r ∈ R/S such

that rx = 0. Then rx = 0 and by (3) and (4) r ∈ S. That is R/S is torsion free as

an R/S module. Let a be a nonzero element of R/S. Then by (7) aZ = Z, and so

aZ = Z. Thus Z is divisible as R/S module.

�

Proposition 3.2 Let R be any ring with idempotent g. Then the following are equivalent.

(1) R ∼= (1− g)R;

(2) There exists t, t∗ ∈ R such that t∗t = 1, tt∗ = 1− g;

(3) R ∼= R(1− g).

Proof

(1)⇒(2) Let ϕ be the isomorphism between R and (1 − g)R. Let ϕ(1) = t for some

t ∈ (1− g)R. Then for some r ∈ R, we have

t = (1− g)r = (1− g)2r = (1− g)t.

Since ϕ is onto, (1−g)R = ϕ(R) = tR. So there exists t∗ ∈ R such that tt∗ = 1−g.

Now

ϕ(1− t∗t) = t(1− t∗t) = t− tt∗t = t− (1− g)t = t− t = 0.

Since ϕ is monomorphism, 1− t∗t = 0 and so t∗t = 1.
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(2)⇒(1) We have (1 − g)t = tt∗t = t. Define ϕ : R → (1 − g)R such that ϕ(r) = tr.

Clearly, ϕ is well defined. Suppose that ϕ(r) = tr = 0 for some r ∈ R. Then

t∗tr = 0, and so r = 0. Therefore, ϕ is one to one. Also,

(1− g)R = tt∗ ≤ tR = (1− g)tR ≤ (1− g)R.

Hence ϕ is onto. That is R ∼= (1− g)R.

(2)⇔ (3) Proof is similar to (1) ⇔ (2).

�

Proposition 3.3 Let R be a ring with idempotent g which is in S. Then the following are

equivalent.

(1) R ∼= (1− g)R;

(2) There exist t, t∗ ∈ R such that t∗t = 1, tt∗ = 1− g;

(3) R ∼= R(1− g);

(4) R⊕ gR ∼= R;

(5) R⊕Rg ∼= R.

Proof

(1)⇔ (2)⇔ (3) is by Proposition 3.2

(1)⇒ (4) Suppose R ∼= (1− g)R. Then

R⊕ gR ∼= (1− g)R⊕ gR = R.

Thus R⊕ gR ∼= R.

(4)⇒ (1) Suppose R ⊕ gR ∼= R. Then R ⊕ gR ∼= (1 − g)R ⊕ gR. Since g ∈ S, gR

is semisimple, and so gR has exchange property by Proposition 2.16. Therefore,

R ∼= (1− g)R.

(3)⇔ (5) Proof is similar to (1)⇔ (4).

�
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Definition 3.3 We call t in the Proposition 3.3 a shift for g. We say that R has enough

shifts if for every isomorphism type of indecomposable idempotents in S, there is a repre-

sentative f which has a shift.

Corollary 3.1 Let R be a right pseudo semisimple ring and e2 = e ∈ S. Then

(1− e)R ∼= RR and R(1− e) ∼= RR.

Proof (1− e)R ∼= RR follows by Proposition 3.1(1). Then R(1− e) ∼= RR by Corol-

lary 2.1. �

Corollary 3.2 Assume that R has enough shifts, and let R = A⊕ B for some left ideals

A and B. If A ≤ S, then B ∼= RR.

Proposition 3.4 ( (Mohamed, 2010), Proposition 2.2.) Let R be a ring with S ̸= 0. Then

R is non-trivial right pseudo semisimple if and only if S is right pseudo maximal and R

has enough shifts.

Proof Suppose that R is right pseudo semisimple ring. Then S is right pseudo maximal

by Proposition 3.1 (2). Since R ∼= eR ⊕ (1 − e)R, by Proposition 3.1 (1) e ∈ S or

1 − e ∈ S. Thus R has enough shifts by Proposition 3.3. Conversely, let A be a right

ideal of R which is not semisimple. Write S = (A ∩ S) ⊕K for some right ideal K of

R. Then S < A + S = A⊕K, and hence A⊕K ∼= R. Therefore, R = (1− e)R ⊕ eR

with (1 − e)R ∼= A and eR ∼= K ≤ S. As R has enough shifts, by Proposition 3.3,

A ∼= (1− e)R ∼= R. �

3.1. Right Pseudo Semisimple Rings with S2 = 0

Lemma 3.1 ( (Mohamed, 2010), Lemma 2.4.) Let R be a non-trivial right pseudo semisim-

ple ring. Then:

(1) S2 = 0 if and only if Z = S ≤ J ≤ S0;

(2) S2 ̸= 0 if and only if Z ≤ S0 = J < S, and S contains a countable set of non-zero

orthogonal idempotents.

Proof

(1) If S2 = 0, then S ≤ J by Corollary 2.3, and S = Z by Proposition 3.1 (3). Therefore,

Z = S ≤ J ≤ S0. Conversely, if Z = S ≤ J ≤ S0, then S2 = 0 by Corollary 2.3.
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(2) Suppose that S2 ̸= 0, and let A be a minimal right ideal of R. Then by Proposition 2.5,

either A2 = 0 or A = e1R for some idempotent e1 of R. If A2 = 0, then A ≤
J , by Corollary 2.7. It follows S ≤ J which contradicts to the assumption, by

Corollary 2.3. So, A = e1R for some idempotent e1 ∈ S. Then by Proposition 3.3,

R = e1R ⊕ (1 − e1)R and (1 − e1)R ∼= R. Again (1 − e1)R ∼= e2R ⊕ (1 − e2)R

with (1 − e2)R ∼= R. Iterating this process, we get a countable set of orthogonal

idempotents {ei} ∈ S. Write S = S ∩J ⊕K for some right ideal K of R. Now we

claim that the projections of the ei into K are still non-zero orthogonal idempotents.

Let e ∈ S such that e2 = e. Then e = j + k for some j ∈ J ∩ S and k ∈ K. Then

j + k = e = e2 = (j + k)e = je+ ke.

Since (S ∩ J) ∩ K = 0, j = je and k = ke. Since e ∈ S and j ∈ J , we have

ej = 0 by Corollary 2.3. Then

e = e2 = e(j + k) = ej + ek = ek.

It follows k2 = keke = kee = ke = k. Let e1, e2 ∈ S such that e21 = e1 and

e22 = e2. Then e1 = j1 + k1 and e2 = j2 + k2 for some j1, j2 ∈ J and k1, k2 ∈ K.

It follows that

0 = e1e2 = (j1 + k1)(j2 + k2) = k1k2.

That is k1k2 = 0. Hence K is not finitely generated. Suppose that J is not in S, then

R ∼= J +S = J ⊕K, and it follows that K is finitely generated. This contradiction

proves that J 6 S. Then by Corollary 2.3, S2 ̸= 0 implies J < S. In the same

manner, one can prove that S0 < S. This implies (S0)2 = 0, hence S0 6 J . As

J 6 S0, we get J = S0.

�

Theorem 3.1 ( (Mohamed, 2010), Theorem 2.5.) Let R be a ring with S2 = 0. The

following are equivalent:

(1) R is right pseudo semisimple;

(2) R/S is a right principal ideal domain, and S is torsion-free divisible as a left R/S

module;

(3) S is right pseudo maximal.
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Proof S2 = 0 implies S ̸= R, and the result is trivial if S = 0. So we may assume

0 < S < R.

(1)⇒(2) As S = Z by Lemma 3.1, the result follows by (8) and (9) of Proposition 3.1.

(2)⇒(3) Let A be a right ideal of R with S < A. Then R/S is a principal right ideal ring

implies that A = aR with a0 ≤ S. As S is torsion free as left R/S module, a0 = 0.

Then A = aR+S = aR+aS = aR because S is divisible as R/S module. Hence

A ∼= R.

(3)⇒(1) As S has no non-zero idempotents, the result follows by Proposition 3.4.

�

Lemma 3.2 ( (Mohamed & Muller, 1991), Lemma 2.6.) If R is right pseudo semisimple,

then the left socle of R is contained in S.

Proof The result is obvious in the trivial cases. So assume 0 < S < R, and consider

the two cases in Lemma 3.1.

If S2 = 0, then by Proposition 3.1(1), R contains no non-trivial idempotents. Thus, every

minimal left ideal A of R satisfies A2 = 0 by Proposition 2.5, and so A
2
= 0 in R = R/S.

Since R is a domain by Proposition 3.1(8), we get A ≤ S.

If S2 ̸= 0, then by Lemma 3.1, S0 < S, and hence S is essential as a left ideal of R by

Lemma 2.3, and therefore contains the left socle. So, the left socle of R is contained in

S. �

Corollary 3.3 ( (Mohamed, 2010), Corollary 2.7.) Let R be a ring with S ̸= 0 and

S2 = 0. Then R is right and left pseudo semisimple if and only if R is a local ring with

radical square 0.

Proof Suppose that R is local ring with J2 = 0. By Corollary 2.3, J annihilates every

simple R module. Thus, S 6 0J . But 0JJ = 0. Therefore, 0J is an R/J module. Then

we have by Corollary 2.14 that 0J is semisimple and 0J = S. This gives us J 6 S because

J2 = 0. Since R is local ring S 6 J . Thus, S = J . If A is a right (left) ideal which is not

isomorphic to R, then A 6 J = S. Thus, R is a right (left) pseudo semisimple ring.

Conversely, assume that R is a right and left pseudo semisimple. Then, S is the

left socle by the right-left symmetry of Lemma 3.2. Consider a minimal left ideal A

of R. Since S has no nontrivial idempotents, by Proposition 2.5, A2 = 0. Hence, by

Lemma 2.7, A ≤ J . Therefore A = Rx, with x ∈ J . Also, we have A ∼= R/0x, and so
0x is a maximal left ideal. Since S = 0x by Proposition 3.1(4), S is a maximal left ideal.

As S ≤ J , S = J and the result follows. �
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Definition 3.4 The split extension of a ring R by an R-R bimodule M, denoted by RoM,

is the ring of all matrices of the form

(
r m

0 r

)
, with r ∈ R and m ∈ M .

Now we give an example of a right pseudo semisimple ring with S2 = 0, which is not left

pseudo semisimple.

Example 3.1 ( (Mohamed, 2010), Example 2.8.) Let A = F [X], the ring of polynomials

over a field F, and M = F (X), the quotient field of A. We make M as an A-bimodule

by natural multiplication on the left and multiplying by constant coefficient on the right.

Define R = A o M . Let N =

(
0 M

0 0

)
= 0 o F (X). If

(
0 m

0 0

)
∈ N , then(

0 m

0 0

)2

= 0 and so by Corollary 2.7

(
0 m

0 0

)
∈ J . That is N ≤ J . It is

clear that R/N ∼=

(
F [X] 0

0 F [X]

)
∼= F [X]. Since J(F [X]) = 0 by Corollary 2.10,

J(R/N) = 0. Therefore J ≤ N . Now, we have N = J .

Claim : S = 0o F (X) = N.

Let a =

(
0 m1

0 0

)
∈ 0 o F (X). Take an element b =

(
a2 m2

0 a2

)
∈ R such that

ab ̸= 0. That is m1a
′
2 ̸= 0, where a′2 is constant term of a2 which means a′2 has an

inverse (a′2)
−1. Let c be the matrix

(
(a′2)

−1 0

0 (a′2)
−1

)
. Then, abc = a which means

aR is a minimal right ideal of R by Lemma 2.1. Hence 0 o F (X) ≤ S. Since R/N ∼=(
F [X] 0

0 F [X]

)
∼= F [X] and Soc(F [X]) = 0, we get Soc(R/N) = 0 and so S ≤ N.

Therefore, J = S = 0 o F (X). Then for every element a ∈ S, a2 = 0, and so S2 = 0.

One can see that R/S ∼= F [X]. On the other hand, since F [X] is a principal ideal

domain, R/S is a principal ideal domain. Now we prove that S is torsion-free divisible

as a left R/S module. Firstly let

(
a1 m

0 a1

)
be an element of R such that a1 ̸= 0. Now

we get,(
a1 m

0 a1

)
+ S =

(
a1 0

0 a1

)
+

(
0 m

0 0

)
+ S =

(
a1 0

0 a1

)
+ S ̸= S

because

(
a1 0

0 a1

)
is not is S. Let

(
a1 m

0 a1

)
be a nonzero element of R/S so a1 ̸= 0

and 0 ̸=

(
0 m

0 0

)
∈ S. Then, we get
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(

(
a1 m

0 a1

)
+ S)

(
0 m

0 0

)
=

(
0 a1m

0 0

)
̸= 0.

Thus, S is torsion free as a left R/S module. Let 0 ̸=

(
0 m

0 0

)
∈ S, and let

(
a1 m

0 a1

)
+

S be a nonzero element of R/S. Since F (X) is divisible, there exists m2 ∈ F (X) such

that m = am2. Now we get,(
0 m

0 0

)
=

(
0 am2

0 0

)
= (

(
a1 0

0 a1

)
+ S)

(
0 m2

0 0

)
=

(

(
a1 m

0 a1

)
+ S)

(
0 m2

0 0

)
.

Thus, S is divisible as a left R/S module. Then, R is right pseudo semisimple by Theo-

rem 3.1.

Claim :S0 = XF [X]o F (X) =

(
XF [X] F (X)

0 XF [X]

)
.

Let

(
Xk a

0 Xk

)
∈ XF [X]o F (X) and

(
0 m

0 0

)
∈ S. Then,

(
Xk a

0 Xk

)(
0 m

0 0

)
=

(
0 0

0 0

)
.

Thus

(
Xk a

0 Xk

)
∈ S0. Let

(
a k

0 a

)
∈ S0. Then, for every m ∈ M with constant

term m′,

(
0 m

0 0

)(
a k

0 a

)
=

(
0 m′a

0 0

)
=

(
0 0

0 0

)
.

So m′a = 0 and a = Xk for every k ∈ F [X]. It follows

(
a k

0 a

)
∈ XF [X] o F (X).

Hence S0 = XF [X]o F (X). Also, we have J < S0, and this means R is not local. So,

by Corollary 3.3, R is not left pseudo semisimple ring.

3.2. Right Pseudo Semisimple Rings with S Maximal

We know that S is a right pseudo maximal ideal of a ring R, which is a right

pseudo semisimple ring by Proposition 3.1(2). Here, we study the pseudo semisimple
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property for rings with S maximal. So, we assume that S ̸= 0, and is a maximal right

ideal. Such a ring R is local if and only if S2 = 0, and hence R is right and left pseudo

semisimple by Corollary 3.3. So, we will consider non-local rings with maximal right

socle.

Theorem 3.2 ( (Mohamed & Muller, 1991), Theorem 2.2) Let R be a non-local ring with

S maximal. Then R is right pseudo semisimple if and only if R has enough shifts.

Proof It follows from Proposition 3.4. �

Theorem 3.3 ( (Mohamed, 2010), Theorem 2.10) Let R be a ring with maximal non-zero

right socle. The following are equivalent

(1) R is right and left pseudo semisimple and regular;

(2) R is right pseudo semisimple, and J = 0;

(3) R is semiprime and has enough shifts.

Proof

(1)⇒ (2) Since R is a regular ring, J = 0 by Corollary 2.15.

(2)⇒ (3) Let I be an ideal of R such that In = 0 for some positive integer n. Then I ≤ J,

by Corollary 2.7, and so I = 0. Therefore, R is semiprime ring by Proposition 2.11.

On the other hand, R has enough shifts by Proposition 3.4.

(3)⇒ (1) Since R is semiprime, S2 ̸= 0 by Proposition 2.11, hence R is non-local. Also,

S is the left socle of R by Remark 2.1. Then, R is right and left pseudo semisimple

by Theorem 3.2, and its right-left symmetry. For an element a ∈ R, let K be a

complement of aR. Then, S is a maximal right ideal implying that aR⊕K = S or

aR ⊕K = R. Since R is semiprime, we get aR is a summand of R in both cases.

Hence R is regular.

�

Theorem 3.4 ( (Mohamed, 2010), Theorem 2.11) Let R be a ring with S2 ̸= 0. If R

is non-trivial right pseudo semisimple, then R/Z is non-trivial right pseudo semisimple

with Z(R/Z) = 0. The converse holds if S is maximal.

Proof Assume that R is a non-trivial right pseudo semisimple ring. We prove that

R = R/Z is not semisimple. We first claim that R/Z contains no non-trivial central

idempotents. Let u be a central idempotent in R. We have Z2 = 0 by Proposition 3.1 (3),
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and so we can lift idempotents modulo Z by Proposition 2.4. Then u = e for some

idempotent e ∈ R. Now u is central in R implying that eR(1− e) ≤ Z.On the other hand

we may assume that e ∈ S by Proposition 3.1(1). But, then by Proposition 3.1 (9),

eR(1− e) ≤ Z ∩ eR = eZ = 0.

Thus e = 0 or e = 1. This proves our claim, as required. Now if R is semisimple,

then R got to be simple ring, and therefore Z is a maximal ideal in R. As Z ≤ S by

Proposition 3.1 (3), we get Z = S, and hence S2 = 0, a contradiction. Thus, R is not

semisimple. Let L be the right socle of R. Since S is semisimple, S/Z is semisimple,

and so S/Z ≤ L/Z. That is S ≤ L. We have L/S ∼= (L/Z)/(S/Z). But, then L/S is

semisimple because L/Z is semisimple. So L/S ≤ Soc(R/S). As R/S is a domain by

Proposition 3.1 (8), Proposition 2.6 implying that L/S = 0 or L/S = R/S. This means

L = S or L = R. As R is not semisimple, L ̸= R. Hence Soc(R) = S/Z. Now let

A be a right ideal in R such that A ̸= S. Then A ̸= S and A ∼= R. Let f : R → A

be the isomorphism and f(1) = a ∈ A. We claim that A = aR with a0 = 0 and a

is not in S. If b ∈ A, then since f is an epimorphism, there exists x ∈ A such that

b = f(x) = f(1)x = ax ∈ aR. Let y ∈ ao, then 0 = ay = f(1)y = f(y), and so y = 0

because f is monomorphism. This proves our claim. On the other hand, by Proposition 3.1

(7), Za = Z, and so

A = A/Z = aR/aZ ∼= R/Z = R.

Now, we prove that Z(R/Z) = 0. If Z = S, then R/Z is a domain by Proposition 3.1 (8)

and so by Lemma 2.7 Z(R/Z) = 0. So, assume that Z ̸= S. By Proposition 3.1 (3), Z ≤
S and hence by Proposition 2.3, S = Z ⊕K for some right ideal K of R. Consider x ∈
Z(R/Z). Since R/Z is right pseudo semisimple, (x+Z)S/Z = 0 by Proposition 3.1 (9)

and so xS ≤ Z. Also, we have xS = xZ ⊕ xK, and so xK ≤ xS ≤ Z. Hence,

xK ≤ Z∩K = 0. On the other hand, if xR ∼= R, then there exists a nonzero isomorphism

f : R → xR. Let f(1) = xy for some y ∈ R. Then, f(K) = f(1)K = xyK = 0. But

f is monomorphism K = 0 , a contradiction, and so xR 6 S. Now, we have xZ = 0 by

Proposition 3.1 (9). Therefore, xS = xZ ⊕ xK = 0. So, by Proposition 3.1 (3), we get

x ∈ Z.

For the converse, consider a right ideal A � S, and let C be a complement of A.

As S is maximal, A⊕C = R. This proves that any right ideal is either contained in S or is

a summand, hence projective. Now, let x ∈ Z, then either xR 6 S or xR is a summand of

R. If xR 6 ⊕R the xR = eR for some idempotent e ∈ R by Lemma 2.2, and so 1 = e+f

for some f = f 2 ∈ R and e = e2 ∈ Z. But, Z does not contain any nontrivial idempotent
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so xR = 0. Thus, x ∈ S, and so Z ≤ S. Then by Proposition 2.3, Z = A ∩ Z ⊕ K

for some right ideal K of R. Now we have A + Z = A + A ∩ Z ⊕ K = A ⊕ K = R.

So K = eR for some idempotent e ∈ R by Lemma 2.2. But Z does not contain any

nontrivial idempotent so K = 0. This implies Z ≤ A. As R = R/Z is a non-trivial right

pseudo semisimple ring, then the right socle of R is S. Now A 
 S implies A = aR with

a0 6 Z. However, by Proposition 2.12, A is projective implying that a0 is a summand of

R . So that a0 = 0, and hence A ∼= R. �
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CHAPTER 4

RIGHT- LEFT PSEUDO SEMISIMPLE RINGS

In this chapter we find relations between right pseudo semisimple rings and the

other classes of rings. Furthermore, from the Example 3.1, we see that pseudo semisimple

rings are not left- right symmetric, and we give some characterizations of left-right pseudo

semisimple rings.

Lemma 4.1 A ring R with S maximal is an exchange ring.

Proof Let R = A + B for right ideals A and B of R. As S is maximal, we may

assume A � S. Let C be a complement of A. Then maximality of S implies R = A⊕C.

Hence, R = A + B with A ≤⊕ R. Now the result follows Proposition 2.12 and by

Proposition 2.19. �

Proposition 4.1 A right pseudo semisimple ring R is an internal exchange ring.

Proof We only need to show that RR has the 2-internal exchange property by Propo-

sition 2.18. Let R = A ⊕ B for right ideals A and B, and let C be a summand of R.

By Proposition 3.1(1), we may assume that B is semisimple. Hence, by Theorem 2.3,

B = ((A+ C) ∩B)⊕B′ for some B′ ≤ B. Then

A+B = [A+ ((A+ C) ∩B)]⊕B′,

and therefore by modular law

R = [(A+ C) ∩ (A+B)]⊕B′ = (A+ C)⊕B′.

Let f : A⊕ B → B be the natural projection, and let f ′ denote the restriction of f to C.

Again by Theorem 2.3, B is semisimple implying that f ′(C) is a summand of B, so it is

projective by Proposition 2.12. It follows by Proposition 2.13 that C = Kerf ′ ⊕D with

D ∼= f ′(C). Therefore, A ∩ C = Kerf ′ ≤⊕ C ≤⊕ R, and so write R = A ∩ C ⊕ K,

for some right ideal K of R. Then, by modular law, A = (A ∩ C) ⊕ (A ∩ K). Hence,

A+ C = (A ∩K)⊕ C. Consequently, we obtain that R = (A ∩K)⊕ C ⊕B′. �
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Theorem 4.1 A right pseudo semisimple ring R with Z = J has SSP .

Proof Let A and B be summands of R. We consider two cases.

(i) B ≤ S : Then B = ⊕n
i=1Bi where Bi is a minimal right ideal and Bi ≤⊕ R. Using

induction, we may assume that B is minimal. If B ≤ A, then we have nothing to

prove. So, assume that B � A. Since B is minimal right ideal, we have A + B =

A⊕B. Also, R = A⊕ C for some right ideal C of R. So we get by modular law

A⊕B = A+ (A⊕B) ∩ C.

Then, by Proposition 2.1, (A ⊕ B) ∩ C = X ∼= B. This implies X ∩ Z = 0,

and consequently X ∩ J = 0. It follows that X2 ̸= 0, and so by Proposition 2.5

X ≤⊕ R. Then, R = X ⊕K for some right ideal K of R. As X ≤ C, we obtain

by modular law C = X ⊕ (C ∩K). Thus,

R = A⊕ C = A⊕X ⊕ (C ∩K) = A⊕B ⊕ (C ⊕K).

(ii) B � S : Write R = B ⊕ D for some right ideal D of R. Then D ≤ S by Proposi-

tion 3.1(1). We get by modular law

A+B = B ⊕ (A+B) ∩D.

As D is semisimple, by Theorem 2.3, we have D = ((A+ B) ∩D)⊕K for some

right ideal K of R. Hence,

R = B ⊕D = B ⊕ ((A+B) ∩D)⊕K = (A+B)⊕K.

�

Remark 4.1 The above theorem shows that RR has SSP . By Theorem 2.5, RR also has

SSP .

Lemma 4.2 For a right pseudo semisimple ring R, we have:

(1) If S is maximal, then J ≤ S ′,

(2) Either J ∩ S ′ = 0 or S is maximal and 0 < J ≤ S ′ ≤ S.

Proof
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(1) For a nonzero x ∈ J , we have 0x = S by Proposition 3.1(4). Now Rx ∼= R/0x =

R/S, and so Rx is a minimal left ideal of R because R/S is a division ring. This

implies that x ∈ S ′.

(2) Assume J ∩S ′ ̸= 0, and consider a minimal left ideal Rx ≤ J . Since Rx ∼= R/0x, 0x

is a maximal left ideal. As 0x = S by Proposition 3.1(4), we have R/S is a division

ring. Hence, S is a maximal right (left) ideal. Now the result follows by (1) and

Lemma 3.2.

�

Proposition 4.2 Let R be a right pseudo semisimple ring with S2 = 0. Then either

S ′ = 0 or S ′ = J = S, and R is a local ring with J2 = 0.

Proof As S2 = 0, we get S ′ ≤ J by Corollary 2.3 and by Lemma 3.2. Hence, J ∩S ′ =

S ′. Then, it follows by Lemma 4.2 that either S ′ = 0 or S is maximal, and 0 < J ≤ S ′ ≤
S. If S ′ ̸= 0, then by Lemma 4.2 J ≤ S ′ and so we get S ′ = J = S. Therefore, R/J is a

division ring, and so R is local. Also, J2 = SJ = 0. �

Proposition 4.3 Let R be a right and left pseudo semisimple ring. Then the following

hold.

(1) S ′ = S.

(2) Z = J = Z ′.

(3) S is maximal or J = 0.

Proof

(1) is obvious by Lemma 3.2, and its left-right symmetry.

(2) By Corollary 2.3, JS ′ = 0, and so by (1) JS = 0. Hence, J ≤ Z by Proposi-

tion 3.1(3). However Z ≤ J by Proposition 3.1(3), hence Z = J . Similarly,

Z ′ = J .

(3) Suppose S is not maximal, then by Lemma 4.2, J∩S ′ = 0. We get, by (1), J∩S = 0.

It follows from Proposition 3.1(3) and (2) that J = 0.

�
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Corollary 4.1 A right and left pseudo semisimple ring is an SSP ring.

Proof If R is a right and left pseudo semisimple ring, then Z = J by Proposition 4.3.

Thus, R is an SSP ring by Theorem 4.1. �

A right and left pseudo semisimple ring has S maximal or J = 0. Theorem 3.3

deals with the case S maximal and J = 0. In the following we will separate the two cases.

First we note that this corollary may be rephrased as follows:

Theorem 4.2 The following are equivalent for a ring R with 0 < S < R.

(1) R is right pseudo semisimple and regular,

(2) R is semiprime, right and left pseudo semisimple with R/S division ring,

(3) R is left pseudo semisimple and regular.

Proof

(1)⇒ (2) R is semiprime by Corollary 2.15. Suppose that S < A for some right ideal of

R. Since R is right pseudo semisimple A ∼= R, and so A is finitely generated. Then,

A is generated by an idempotent by Theorem 2.4. It follows that R = A ⊕ B for

some right ideal B. Also, B 6 S by Proposition 3.1 (1). Thus B = 0, that is, R =

A, and S is maximal right ideal. Since R is regular ring, we get by Corollary 2.15,

J = 0. Consequently, by Theorem 3.3 R is right and left pseudo semisimple ring.

(2)⇒ (1) Since R is right pseudo semisimple ring R has enough shifts by Proposition 3.4.

Thus, by Theorem 3.3, R is regular ring.

(2)⇔(3) The proof is similar to (1)⇔(2).

�

Note that in a right pseudo semisimple ring, J = 0 if and only if R is semiprime.

Suppose J = 0. Let A be a nilpotent ideal of R, then it is a nil ideal. It follows by

Corollary 2.7 that A = 0. Thus, by Proposition 2.11, R is semiprime ring. Indeed, R

being semiprime implies S2 ̸= 0, and hence J < S by Lemma 3.1. So that J2 ≤ SJ = 0,

and consequently J = 0.

We generalize Theorem 4.2 by dropping the semiprimeness condition in (2) and

replacing regularity by the weaker condition (C2).

Theorem 4.3 The following are equivalent for a ring R with 0 < S < R.

(1) R is right pseudo semisimple with (C2),
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(2) R is right and left pseudo semisimple with S maximal,

(3) R is left pseudo semisimple with (C2).

Proof

(1)⇒(2) Let A be right ideal of R such that S < A. Then, A ∼= R. By (C2), R = A⊕B

for some right ideal B of R. Therefore, by Proposition 3.1 (1), B ≤ S. So, B = 0

and S is maximal. Then, J ≤ S. Now, by Theorem 2.3, we have S = J ⊕ K for

some right ideal K of R. We prove that K ≤ S ′. Consider a minimal right ideal

E ≤ K. If E2 = 0, then, by Corollary 2.7, E 6 J . It follows that E 6 K∩J, which

is a contradiction. Thus E2 ̸= 0, and so, by Proposition 2.5, E = eR for some

e2 = e ∈ R. We prove that Re is a minimal left ideal. Consider a nonzero element

re ∈ Re. As reR ∼= eR, we get by (C2) that reR ≤⊕ R. Hence, reRreR ̸= 0, and

therefore eRre ̸= 0. Since eRe is a division ring, eReRre = eRe. Hence,

Re = ReRe = ReReRre ≤ Rre ≤ Re.

So that Re is a minimal left ideal of R. It follows that e ∈ Re ≤ S ′. As S ′ is an

ideal, we get eR ≤ S ′. This proves that K ≤ S ′. Hence, S ≤ S ′, and so S = S ′.

As R contains enough shifts, we get R is left pseudo semisimple by the left-handed

version of Proposition 3.4.

(2)⇒(1) Let A be a right ideal of R such that A ∼= eR for some e2 = e ∈ R. By

Proposition 3.1, we may assume eR ∈ S. Let B be a complement of A then

S ≤ A ⊕ B. Since S is maximal, A ⊕ B = S or A ⊕ B = R. In the second case,

we have nothing to prove. In the first case, we have A ≤ S. Since eR is semisimple

Z ∩ eR = 0. Now A ∼= eR implies Z ∩ A = 0. Since Z = J by Proposition 4.3,

J ∩A = 0, and so each simple right ideal contained in A is a direct summand of A.

Using induction, we get A = gR for some g2 = g ∈ R.

(3)⇔(2) Follows by symmetry.

�

Corollary 4.2 If R is a right pseudo semisimple ring with (C2), then R/J is a regular

right and left pseudo semisimple ring.

Proof By Theorem 4.3, R is right and left pseudo semisimple with S maximal. Then

S ′ = S and Z = J by Proposition 4.3. If S2 = 0, then R is local by Proposition 4.2.
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Hence R/J is a division ring. On the other hand, assume S2 ̸= 0. Then by the right-left

symmetry of Theorem 3.4, R/J is right and left pseudo semisimple with Soc(R/J) =

S/J. Thus, R/J is a semiprime right and left pseudo semisimple with maximal socle.

Hence, R/J is regular by Theorem 4.2. �

Next we deal with the case J = 0.

Theorem 4.4 The following are equivalent for a ring R with 0 < S < R.

(1) R is right pseudo semisimple, left PP and left (C4),

(2) R is right and left pseudo semisimple with J = 0,

(3) R is left pseudo semisimple, right PP and right (C4).

Proof

(2)⇒(1) Suppose that R is right and left pseudo semisimple ring with J = 0. Let I

be a left ideal of R which contains an isomorphic of R then by Proposition 3.1(1)

I � S. Again by Proposition 3.1(1) I ∼= R. So R is left (C4). Thus, it remains

to show that R is left PP. We have S ′ = S by Proposition 4.3. Since J = 0, by

Proposition 2.5 every minimal right ideal is of the form eR with e2 = e. Then

we get by Proposition 2.12 every minimal right ideal of R is projective. Again by

Proposition 2.12 SR is projective. Now let A be a left ideal of R. If A ≤ S, then

by Theorem 2.3 A ≤⊕ S, and hence projective by Proposition 2.12. On the other

hand, by Proposition 3.1 A � S implies A ∼= RR, and hence free. (This proves that

R is left hereditary).

(1)⇒(2) Consider an element a ∈ R such that a is not in S. As R/S is a domain, by

Proposition 3.1(8), 0a ≤ S. Now R is left PP implies Ra is projective, and hence

by Proposition 2.13 R = 0a⊕B, with B ∼= Ra. As R has enough shifts, we get by

Corollary 3.2 that Ra ∼= B ∼= RR. Now applying (C4), we get A ∼= RR for any left

ideal A that is not contained in S. It remains to show that J = 0 (this also proves

S ′ = S ). To the contrary, let 0 ̸= x ∈ J . Then 0x = S by Proposition 3.1(4). As

Rx is projective, we get by Proposition 2.13 R = S ⊕ C, with C ∼= Rx. Again R

has enough shifts implies C ∼= RR. Now SC ≤ S ∩ C = 0 implies SR = 0, and

hence S = 0, a contradiction. Therefore, J = 0.

(3)⇔(2) follows by symmetry.

�
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Corollary 4.3 Let R be any ring with 0 < S < R. Then R is right and left pseudo

semisimple if and only if

(1) R is a local ring with J2 = 0, or

(2) R has enough shifts, S ′ = S and S is maximal, or

(3) R has enough shifts, J = 0, R/S is a domain, R is hereditary with (C4).

Proof Suppose that R is right and left pseudo semisimple ring. We consider two cases:

(i) S2 = 0 : We obtain R is local ring with J2 = 0 by Proposition 4.2.

(ii) S2 ̸= 0 : We know that R has enough shifts by Proposition 3.4. Since R is right

and left pseudo semisimple ring S is maximal or J = 0 by Proposition 4.3. If S

is maximal, then there is nothing to prove. Suppose J = 0. R/S is a domain by

Proposition 3.1 (8). Since J = 0 , by Proposition 2.5 every minimal right ideal is

of the form eR with e2 = e ∈ R. Hence, RS is projective (also RS is projective)

by Proposition2.12. Let A be a right ideal of R. If A ≤ S, then A is projective by

Theorem 2.3 and Proposition 2.12. If A � S, then A ∼= R and A is projective by

Proposition 2.12. That is R hereditary ring.

For the converse we consider three cases:

(i) Assume that R is local ring with J2 = 0. Since R is local ring we have S = J . Then

R is right and left pseudo semisimple ring by Corollary 3.3.

(ii) Assume that R has enough shifts, S ′ = S and S is maximal. Then R is right and left

pseudo semisimple ring by Proposition 3.4.

(iii) Assume that R has enough shifts, J = 0, R/S is a domain, R is hereditary ring with

(C4). Let A be a right ideal of R such that S < A. If x ∈ A/S, then by Proposition

2.12 R ∼= xR ⊕ x0 because R is a hereditary ring. On the other hand, since R/S

is a domain, x0 ≤ S. As R has enough shifts, xR ∼= R by Corollary 3.2. Thus,

A ∼= R by (C4). Now S is a right pseudo maximal ideal and so by Proposition 3.4

R is right pseudo semisimple ring. Consequently, by Theorem 4.4 R is right and

left pseudo semisimple ring.
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