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ABSTRACT 
 

IN-PLANE FREE VIBRATION ANALYSIS OF LAMINATED CURVED 
BEAMS WITH VARIABLE CURVATURE 

 

In this study, in plane free vibration characteristics of laminated curved beams 

with variable curvatures are studied. The present problem is modeled by differential 

eigenvalue problem with variable coefficients. FDM (Finite Difference Method) is used 

to solve the differential eigenvalue problem. A computer program is developed in 

Mathematica and this program is verified by using results available in the literature. The 

effects of curvature and lamination parameters of the curved beams on natural 

frequencies are investigated. 
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ÖZET 
 

DEĞİŞKEN EĞRİLİK YARIÇAPLI TABAKALI KOMPOZİT EĞRİ 
ÇUBUKLARIN SERBEST TİTREŞİM ANALİZİ 

 

Bu çalışmada, değişken eğrilik yarıçaplı tabakalı kompozit eğri çubukların 

düzlem içi titreşim karakteristikleri çalışılmıştır. Mevcut problem değişken katsayılı 

diferansiyel özdeğer problemi ile modellenmiştir. Diferansiyel özdeğer probleminin 

çözümü için SFY (Sonlu Farklar Yöntemi) kullanılmıştır. Mathematica`da bir bilgisayar 

programı geliştirilmiş ve bu program literaturde mevcut sonuçlar ile doğrulanmıştır. 

Eğri çubuğun eğrilik ve tabaka parametrelerinin doğal frekanslara etkileri araştırılmıştır.  
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 
Curved beams are used in many engineering applications such as stiffeners in 

airplane/ship/roof structures. They can be classified depending on their geometrical 

properties. A curved beam can be in the shape of a space curve or a plane curve, have 

variable curvature and cross-section. 

Many investigators studied vibrations of the isotropic curved beams, but only a 

few researchers studied laminated curved beams. The analysis of laminated curved 

beams with variable curvature is even rather limited. 

Qatu (1993) derived a complete and consistent set of equations for the analysis 

of laminated composite curved thin and thick beams. Natural frequencies for simply-

supported curved beams are obtained by exact solutions. 

Lin and Hsieh (2007) presented the closed form general solutions for laminated 

curved beams of variable curvatures under in plane static loading. The quantities such 

as axial force, shear force, radial and tangential displacements are expressed as 

functions of angle of tangent slope. Applications of elliptic, parabola, catenary, cycloid, 

and exponential spiral laminated curved beams are shown. 

Lin and Lin (2011) derived the finite deformation of 2-D laminated curved 

beams with variable curvatures. The analytical solutions of laminated curved beams of 

circular and spiral are presented. 

In general, the out-of-plane and the in-plane vibrations of curved beams are 

coupled. However, if the cross-section of the curved beam is uniform and doubly 

symmetric, then the out-of-plane and the in-plane vibrations are independent (Ojalvo 

1962). 

On the other hand, in-plane vibrations of curved beams have two types of 

motions: (1) bending, (2) extensional. Aforementioned motions are coupled. In order to 

uncouple the equations for in plane vibration, inextensionality condition can be used. 

This condition requires zero axial strain in neutral axis. 

In this study, in plane free vibration characteristics of laminated curved beams in 

the shape of catenary are studied by Finite Difference Method since the mathematical 
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model of the present problem is based on the coupled differential eigenvalue problem 

with variable coefficients.  

A computer program is developed in Mathematica and this program is verified 

by using results available in the literature. The effects of curvature and lamination 

parameters of the curved beams on natural frequencies are investigated. 
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CHAPTER 2  

 

THEORETICAL VIBRATION ANALYSIS 

 
2.1. Introduction 

 
In this chapter, first of all, the problem is described mathematically. The selected 

geometry of axis of the curved beam is detailed with mathematical formulations. 

Equation of motion is derived by vectorial and analytical methods for in-plane 

vibrations of curved beam with variable curvature. Laminated composite curved beam 

formulations are presented. Finally, Finite Difference Method is summarized for finding 

the natural frequencies by solving eigenvalue problem. 

 

2.2. Description of the Problem 

 
The titled problem is based on Differential Eigenvalue Problem with variable 

coefficients. Differential Eigenvalue Problem can be reduced to Discrete Eigenvalue 

Problem by Finite Difference Method. 

 
y  

 

 
ρ0  

 z x 
 

 

Figure 2.1. A planar curved beam with variable radius of curvature 

 3



2.3. Geometry of Curved Beam 

 
A catenary curve, its parameters shown in Figure 2.2 and equations are taken from 

Yardimoglu (2010). 

 

z

sL

(zr, xr) 
αr

x 

α

ρ0

 

 

 

 

 
R0

 

 
0  

Figure 2.2. Parameters of catenary beam (Source: Yardimoglu 2010) 

 

The function of the catenary curve is given as follows: 

 

]1)/[cosh()( 00 −= RzRzx     (2.1) 

 

The slope α is obtained by differentiation of Equation 2.1 with respect to z as 

 

)/sinh(/)(tan 0Rzdzzdx ==α    (2.2) 

 

The tip co-ordinates of the curved beam (zr, xr) can be found as 

 

)sinh(tan0 rr arcRz α=     (2.3) 

 

)1cos/1(0 −= rr Rx α      (2.4) 

 

Since the arc length s from origin 0 to any point (z, x) on the curve is 

 

αtan)/)((1()( 00

2 Rdzdzzdxzs
s

=+= ∫   (2.5) 
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Equation 2.5 provides a relationship between s and α. On the other hand, radius of 

curvature at abscissa is found as 

 

[ ] )/(cosh
/)(

)/)((1)( 0
2

022

2
32

0 RzR
dzzxd
dzzdxz =

+
=ρ   (2.6) 

 
Eliminating the variable z in Equation 2.6 by using Equation 2.2, radius of curvature can 

be written in terms of α as follows: 

 

ααρ 2
00 cos/)( R=       (2.7) 

 
Now, cos α can be expressed in terms of s by using Equation 2.5 as 

 

22
00 /cos sRR +=α      (2.8) 

 

Therefore, radius of curvature can also be written in terms of s as follows: 

 

0
2

00 /)( RsRs +=ρ           (2.9) 
 

2.4. Derivation of the Equation of Motion 

 

2.4.1. Newtonian Method 

 
This is based on the following two vectorial equations: 

 

amF
i

i
rr

=∑        (2.10) 

 

∑ =
i

i IM α
rr

       (2.11) 

 

In this method, it is needed to neglect small quantities of higher orders terms in order to 

obtain linear differential equations. Moreover, expressing the boundary conditions are 

based on the understanding of the internal forces and moments. 
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y 

x

Figure 2.3. A curved beam with internal forces and moments 

 

By using Equations 2.10 and 2.11, force and moment equilibrium equations of 

the curved beam can be obtained as follows (Love 1944): 

 

umT
ds
dN

&&=′+ 1κ       (2.12) 

 

wmN
ds
dT

&&=′− 1κ       (2.13) 

 

0=+ N
ds

dM y        (2.14) 

 

where   N, T and My are internal forces and moments, 

1κ′  is dynamic curvature in x-z plane, 

u, w are displacements in x and z directions, 

  Am ρ=  is mass per unit length, 

in which A is area  of the cross-section. 

 

The dynamic curvatures is given by 

 

)( 001 w
ds
du

ds
d κκκ ′++′=′      (2.15) 

 

Axial force T and bending moment My in Equations 2.12-14 are given as 

z 
T

My

ρ0

s N 
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εAET =        (2.16) 

 

)( 01 κκ ′−′= BM y       (2.17) 

 

ε in Equation 2.16 is tangential strain due to tension. It is expressed as 

 

u
ds
dw

0κε ′−=        (2.18) 

 

B in Equation 2.17 is bending rigidity of curved beam material. 

 

2.4.2. Hamilton’s Method 

 
The principle is defined as follows (Meirovitch 1967): 

 

0)(
2

1

=−∫ dtVT
t

t

δ       (2.19) 

 

where T and V are the kinetic and strain energies, respectively. For the present problem, 

they are given as follows; 

 

dswmumT LS
)(

2
1 2

0

2 && += ∫      (2.20) 

 

dsMV LS

y )(
2
1

010
κκ ′−′= ∫      (2.21) 

 

By using Equation 2.17 along with Equation 2.15 in Equation 2.21, the following strain 

energy expression is obtained: 

 

dsw
ds
d

ds
udBV LS 2

00 2

2

)]([(
2
1 κ′+= ∫     (2.22) 
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If central line of curved beam is assumed as unextended, the inextensionality 

condition is obtained from Equation 2.18 as 

 

0κ′= u
ds
dw        (2.23) 

 

By substituting Equations 2.20 and 2.22 along with Equation (2.23) in Equation 

2.19, governing differential equations for vibrations of curved beams having variable 

radius of curvature are obtained as follows: 
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where 
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2
0

6 )(
)(

s
Bsf

κ′
=       (2.25.g) 

 

Physical interpretations of boundary conditions are as follows: 

a) Either bending moment is zero (pinned or free), or slope is zero (clamped). 

b) Either shear force is zero (free), or displacement is zero (pinned or clamped). 

c) Either bending moment is zero (pinned or free), or displacement is zero (pinned or 

clamped). 

 

2.5. Fiber-Reinforced Laminated Curved Beam 

 
In order to obtain the bending rigidity for a fiber-reinforced laminated curved 

beam shown in Figure 2.4, the following equations are needed (Kaw 2006). 
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Figure 2.4. Curved beam laminated in radial direction 

(Source: Fraternali and Bilotti 1997) 

 

The stress–strain equation for kth layer along tangential direction is 

 
kkk Q εσ

11
=        (2.26) 

 

where kQ11 is the elastic stiffness coefficient for the material and given as 

 
kkkkkkkkk QQQQQ γγγγ 4

22
22

6612
4

1111 sinsincos)2(2cos +++=  (2.27) 

 

in which 

kk

k
k EQ

2112

1
11 1 νν−
=              (2.28.a) 

 

kk

kk
k EQ

2112

212
12 1 νν

ν
−

=              (2.28.b) 

 
kk GQ 1266 =               (2.28.c) 

 

kk

k
k EQ

2112

2
22 1 νν−
=              (2.28.d) 

 

and γk is the angle between tangential direction and fiber direction shown in Figure 2.5. 
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Figure 2.5. Local and global axes of an angle lamina. 

(Source: Kaw 2006) 

 

Strain due to bending at a distance of x defined by 

 

)( 01 κκε ′−′= xb       (2.29) 

 

The moment is the integral of the stress over the beam thickness h 

 

∫−=
2/

2/

h

hy dxxbM σ       (2.30) 

 

where b is width of the beam. The resultant moment of the laminate is obtained by 

integrating the stress in each layer through the thickness 

 

∑∫
= −

=
N

k

h

h

k
y

k

k

dxxbM
1 1

σ       (2.31) 

 

Substituting Equation 2.26 along with Equation 2.29 into Equation 2.30 and 

carrying out the integration over the thickness piecewise, from layer to layer, yields: 

 

)( 0111 κκ ′−′= DM y       (2.32) 

 

where D11 is the stiffness coefficient arising from the piecewise integration and 

expressed as 
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)(
3
1 3

1
3

1
1111 −

=

−= ∑ kk

N

k

k xxQbD      (2.33) 

 

It should be noted that D11 corresponds to B appeared in coefficients of equation of 

motion given by Equations 2.25a-g. 

 

2.6. Natural Frequencies by Finite Difference Method 

 
Differential Eigenvalue Problem can be described by 

 

][][ 2 xMxL ω=       (2.34) 

 

where L[x] and M[x] are linear differential operators having variable coefficients of the 

derivatives and ω is eigenvalues. 

Solution of Equation 2.34 can be obtained by the FDM (Hildebrand 1987). In 

the FDM, the derivatives of dependent variables in Equation 2.34 are replaced by the 

finite differences at mesh points shown in Figure 2.6. 

There are three types of finite differences: forward, backward, and central. 

However, the central difference provides more accurate approximation. Accuracy of the 

solution by FDM is based on truncation error and grid spacing which is depends on the 

approximation order and selecting procedure, respectively. The most critical one is the 

grid spacing. It is selected by observing the convergence of desired results. 
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 0 6
 

Figure 2.6. A curved domain divided into six subdomains. 

 

Therefore, by using the central difference approximations for derivatives listed 

in Table A.1, n simultaneous algebraic equations are obtained. Also, boundary 
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conditions are considered in these n simultaneous algebraic equations. Thus, differential 

eigenvalue problem is reduced to discrete eigenvalue problem which can be written as 

follows: 

 

[ ] { } { }XBXA ][2ω=      (2.35) 

 

Solutions of the generalized eigenvalue problem given by Equation 2.35 can be 

calculated by a mathematical software such as Matlab, Mathematica or Maple. 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 

 
3.1. Introduction 

 
In this chapter, the following numerical applications are presented: 

a) isotropic curved beams with constant curvature, 

b) isotropic curved beams with variable curvature, 

c) fiber-reinforced laminated curved beams with constant curvature, 

d) fiber-reinforced laminated curved beams with variable curvature. 

The present numerical results are compared with the results available in the 

existing literature. 

 

3.2. Comparisons for Isotropic Curved Beams 

 

3.2.1. Isotropic Curved Beams with Constant Curvature 

 
In plane vibration analysis of isotropic curved beams with constant curvature can 

be solved analytically, but it is considered here to test the FDM algorithm and to show 

the accuracy and precision of the symbolic program developed in Mathematica. 

 Convergence of first natural frequency for ρ0=50 mm is plotted in Figure 3.1. It 

is seen from Figure 3.1 that n =100 can be selected for all calculation in this chapter. 

Comparisons of natural frequency parameters of fixed-fixed curved beams by 

FDM with analytical results of Archer (1960) can be done by using the Table 3.1. It can 

be said that, the present results for this case have good agreement with analytical results 

of Archer (1960). 
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Figure 3.1. Convergence of first natural frequency for ρ0=50 mm 
 

 

Table 3.1. Comparison of present natural frequency parameters of a curved 
beams with the analytical results of Archer (1960) 

 

Mode Opening Angle Present λ (n =100) λ (Archer 1960) 

1 19.22 19.22 

2 93.06 93.15 

3 320.5 321.5 

4 

 

π 

754.86 756.3 

1 1.945 1.946 

2 12.84 12.85 

3 49.46 49.58 

4 

 

3π/2 

128.06 126.6 

1 0.321 0.3208 

2 2.54 2.545 

3 11.42 11.46 

4 

 

2π 

32.98 33.06 
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Also, it can be seen from Table 3.1 that, when the opening angle increases, the natural 

frequencies decreases due to the reducing stiffness properties. 

 

3.2.2. Isotropic Curved Beams with Variable Curvature 

 
In this section, numerical applications are carried out for isotropic fixed-fixed 

curved beams with different curvature parameters to see the curvature parameter effect 

on natural frequencies. The main numerical data used in this chapter are as follows: 

b=h=0.01 m, E=200 GPa, ρ=7850 kg/m3, sL=0.12 m. Other data are given in tables. 

 

Table 3.2. Natural frequencies found for different R0
 

 R0=0.05 m R0=0.1 m R0=0.15 m R0=0.2 m 

f1 (Hz) 8615.06 9418.99 9678.28 9783.76 

f2 (Hz) 17149. 17743.9 17845.8 17867.4 

f3 (Hz) 30650. 31599.7 31875.8 31989.6 

f4 (Hz) 45783. 46414.4 46519 46542.7 

f5 (Hz) 65438.8 66409.2 66692.8 66811.4 

f6 (Hz) 86900.9 87550.1 87661.9 87688.9 

f7 (Hz) 112710. 113700 113992 114115 

f8 (Hz) 140379. 141056 141177 141209 

 

 It can be seen from the Tables 3.2 that, when the curvature parameter R0 

increases, natural frequency parameters decreases. It should be stated that when R0 

increases, curved beam becomes closer to straight beam. 
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3.3. Comparisons for Fiber-Reinforced Laminated Curved Beams 

 

3.3.1. Applications for Curved Beams with Constant Curvature 

 
Some laminate codes used in this study are illustrated in Figure 3.2.a-d. 

[0/–45/90/60/30] denotes the code for the laminate shown in Figure 3.2.a. It 

consists of five plies, each of which has a different angle to the reference x-axis. A slash 

separates each lamina. The code also implies that each ply is made of the same material 

and is of the same thickness. 

[0/–45/902/60/0] denotes the laminate shown in Figure 3.2.b, which consists of 

six plies. Because two 90° plies are adjacent to each other, 902 denote them, where the 

subscript 2 is the number of adjacent plies of the same angle. 

s]60/45/0[ −  denotes the laminate consisting six plies as shown in Figure 3.2.c. 

The plies above the midplane are of the same orientation, material, and thickness as the 

plies below the midplane, so this is a symmetric laminate. The top three plies are written 

in the code, and the subscript s outside the brackets represents that the three plies are 

repeated in the reverse order. 

s]06/45/0[ −  denotes this laminate shown in Figure 3.2.d, which consists of 

five plies. The number of plies is odd and symmetry exists at the midsurface; therefore, 

the 60° ply is denoted with a bar on the top (Kaw 2006). 

 

 

 

 

 

    (a)    (b) 

 

 

 

 

 

    (c)    (d) 

 Figure 3.2. Laminate code examples 
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In this section, numerical applications are carried out for laminated fixed-fixed 

curved beams with lamination code s]60/45/0[ −  and with constant curvature. The 

main numerical data for geometry are as follows: b=0.01 m, h=0.012 m, sL=0.12 m,  

 The composite material made of T300/5208 Graphite/Epoxy is used. Its 

engineering constants are given as follows by Tsai (1980): E1=181 GPa, E2=10.3 GPa, 

G12=7.17 GPa, υ12= υ21=0.28, ρ=1600 kg/m3. Other data are given in tables. 

 

Table 3.3. Natural frequencies found for different ρ0
 

 ρ0=0.05 m ρ0=0.1 m ρ0=0.15 m ρ0=0.2 m 

f1 (Hz) 18645.7 21890.9 22614.1 22878.4 

f2 (Hz) 38181.1 40845.7 41368.4 41553.6 

f3 (Hz) 69718.1 73661. 74501. 74805.9 

f4 (Hz) 104863. 107841. 108410. 108610. 

f5 (Hz) 150928. 155057. 155934. 156253. 

f6 (Hz) 200952. 204053. 204642. 204849. 

f7 (Hz) 261476. 265681. 266576. 266901. 

f8 (Hz) 326063. 329226. 329826. 330037. 
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Figure 3.3. First natural frequencies   
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Figure 3.4. Second natural frequencies for different ρ0
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Figure 3.5. Third natural frequencies for different ρ0
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Figure 3.6. Fourth natural frequencies for different ρ0

 

 19



 

 

150000
151000
152000
153000
154000
155000
156000
157000

50 100 150 200

Ro (mm)

f5 (Hz)

 

 

 

 

 

 

 

Figure 3.7. Fifth natural frequencies for different ρ0
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Figure 3.8. Sixth natural frequencies for different ρ0
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Figure 3.9. Seventh natural frequencies for different ρ0
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Figure 3.10. Eighth natural frequencies for different ρ0

 

3.3.2. Applications for Curved Beams with Variable Curvature 

 
The results in this section are obtained due to the title of this thesis. Numerical 

applications are carried out for laminated curved beams with lamination code 

 and with variable curvature. The main numerical data are as follows: 

b=0.01m, h=0.002 m, s

s]60/45/0[ −

L=0.12 m, E1=132 GPa, E2=10.8 GPa, G12=5.65 GPa, υ12= 

υ21=0.24, ρ=3250 kg/m3. Other data are given in tables. 

 

Table 3.4. Natural frequencies found for different R0
 

 R0=0.05 m R0=0.1 m R0=0.15 m R0=0.2 m 

f1 (Hz) 20149.8 22030.1 22636.6 22883.3 

f2 (Hz) 40109.8 41501.2 41739.5 41790.1 

f3 (Hz) 71687.3 73908.6 74554.3 74820.7 

f4 (Hz) 107082. 108559. 108803. 108859 

f5 (Hz) 153055. 155325. 155988. 156265 

f6 (Hz) 203253. 204771. 205033. 205096 

f7 (Hz) 263617. 265934. 266617. 266904 

f8 (Hz) 328332. 329916. 330200. 330274 
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Figure 3.11. First natural frequencies 
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Figure 3.12. Second natural frequencies 
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Figure 3.13. Third natural frequencies 
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Figure 3.14. Fourth natural frequencies 
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Figure 3.15. Fifth natural frequencies 
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Figure 3.16. Sixth natural frequencies 
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Figure 3.17. Seventh natural frequencies 
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Figure 3.18. Eighth natural frequencies 
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CHAPTER 4 

 

CONCLUSIONS 

 
In this study, in plane free vibration characteristics of fiber-reinforced laminated 

curved beams with variable curvatures are studied. Equations of motions are derived by 

using Newtonian and Hamiltonian methods. The present problem is modeled by two 

coupled Differential Eigenvalue Problem with variable coefficients. By using 

inextensionality conditions, two coupled equations are reduced to one Differential 

Eigenvalue Problem. Central Difference approach is selected in Finite Difference 

Method to obtain the Discrete Eigenvalue problem from the Differential Eigenvalue 

Problem.  

As a variable curvature, catenary function is selected. Various laminations are 

considered. The effects of curvature and lamination parameters of the curved beams on 

natural frequencies are investigated. 
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APPENDIX A 
 

CENTRAL DIFFERENCES 

 
Table A.1. Central differences approximations for derivatives 

 
Term Central Difference Expressions 

ds
dw  

h
iwiw

2
)1()1( −−+  

2

2

ds
wd  2

)1()(2)1(
h

iwiwiw −+−+  

3

3

ds
wd  32

)2()1(2)1(2)2(
h

iwiwiwiw −−−++−+  

4

4

ds
wd  4

)2()1(4)(6)1(4)2(
h

iwiwiwiwiw −+−−++−+  

5

5

ds
wd  5

)3()2(4)1(5)1(5)2(4)3(
h

iwiwiwiwiwiw −−−+−−+++−+  

6

6

ds
wd  6

)3()2(6)1(15)(20)1(15)2(6)3(
h

iwiwiwiwiwiwiw −+−−−+−+++−+

 

 

 

 27


