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ABSTRACT

BORN - INFELD - RIEMANN GRAVITY

The Universe we live in has started with a bang, a very big bang. Its evolution

and global structure are controlled by gravitation and its matter and radiation content.

Gravitation, curving of spacetime, formulated in minimal or extended versions, provides

different layers of understanding about the Universe. Einstein’s General Relativity (GR)

gives a description of gravity, and there are various reasons for extending it. One such

extension refers to unifying the other forces in Nature with gravity in the framework of

GR. The very first approach in this direction was due to Born and Infeld who have tried

to unify electromagnetism with gravity. It is a generalization of metric tensor to have

both symmetric and antisymmetric parts gives rise to a merging of Maxwell’s theory with

Einstein’s theory. In later decades, attempts have been made to unify the other forces as

well.

In this thesis study, we extend Born-Infeld gravity to unify gravity with non-

Abelian forces in a natural way. This, which we call Born-Infeld-Riemann gravity, is

accomplished by devising a gravity theory based on Riemann tensor itself and subse-

quently generalizing this tensor to naturally involve gauge degrees of freedom. With this

method, preserving the successes of Born-Infeld gravity, we are able to combine Yang-

Mills fields (W, Z bosons as well as gluons) with gravity. We perform a phenomenological

test of our approach by analyzing cosmic inflation generated by non-Abelian gauge fields.
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ÖZET

BORN - INFELD - RIEMANN ÇEKİM KURAMI

Evrenimiz büyük patlamayla oluştu. Bilim insanları tarafindan oluşturulan teo-

riler temelde evrenimizin oluşumunu anlamaya yöneliktir. Bu amaç için oluşturulmuş

teoriler çok çeşitlidir ve farklı farklı ele aldığımızda çözmeye çalıştığımız bazı problem-

lere ancak cevap verebildikleri görülmektedir. A. Einstein da dahil olmak uzere ortak

amaç bu teorileri tek bir teori altında toplayabilmek ve bu teori ile evrenimizin oluşumu,

ivmelenmesi, kara madde gibi bir çok problem icin çözüm sunabilmektir. Ancak bugüne

kadar tam anlamıyla bir teori oluşturulamamıstır. Esas problem çekim kuvvetini diğer

temel kuvvetlerle birleştiremememiz ve tum temel kuvvetleri tek bir teori altinda toplaya-

mamamizdir. Çekimi diğer temel kuvvetlerle birleştirme çabalarından en önemlisi Born-

Infeld çekim teorisidir. Bu teoride cekim ve elektromanyetizma bir araya getirilmeye

calışılmıştır. Yalnızca metrik tensörü modifiye edilerek başarılabilmiştir. Metrik tensörü

hem simetrik hem de antisimetrik parçalardan oluşturulmuş ve antisimetrik parça elektro-

manyetizma ile bağdaştırılmıştır. Teoriye W-Z alanlarını veya gluonu katmak istediğimizde

ne olur? Born-Infeld tipi çekim bunun için yeterli midir? Eldeki teoriler bunun için

yeterli değildir. Bu yüzden tezimizde yeni bir teori oluşturduk ve bu teoriyi yalnizca Rie-

mann tensörü simetrilerini kullanarak geliştirdik. Teorimiz, 4. dereceden tensörleri icinde

barındırdığı için non-Abelian alanlara izin verir ve kozmik patlamayı da sağlar.
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CHAPTER 1

INTRODUCTION

Our Universe, which has started with a ultra high-energy bang, has its entire his-

tory controlled by gravitation. Gravitation, as we understand it after Einstein, shows itself

as the curving of the spacetime[13, 15, 26, 28]. The spacetime may also twirl or have tor-

sion. All such properties, minimal or extended, provides different layers of understanding

about the Universe. It is with astrophysical and cosmological observations that a correct

picture of the Universe will eventually emerge.

Since the very first phases of Einstein’s General Relativity (GR), unification of

gravity and other forces has always been something desired. The problem is to find a

natural way of embedding other forces in the realm of gravitation. To this end, the very

first approach was due to Born and Infeld [10] who generalized metric tensor to have both

symmetric and antisymmetric parts, and identified its antisymmetric part with the field

strength tensor of electromagnetism. This way, one finds a way of combining Maxwell’s

theory with Einstein’s theory in a single pot. This gives a complete description of electro-

magnetic phenomena in a way covering weak and strong field limits together.

One may wonder, if it is possible to unify other theories with gravity. For example,

can one unify the W and Z bosons with gravity? How about the gluon which holds

quarks together in nucleus? In Born-Infeld gravity as well as Born-Infeld-Einstein [25]

gravity this is not possible. The reason is that these theories involve determinants of

the generalized metrics of the form C1gαβ + C2Fαβ , and if the field strength tensor of

the vector field carries an index (like F a
αβ with a being the index of generators) then the

argument of the determinant breaks the gauge symmetry. The determinant over the group

generators, on the other hand, does not bring any improvement. Hence, it is simply not

possible to unify Yang-Mills fields with gravitational theory.

What can be done? The first observation to make is that, gravitational dynamics

can be written in terms of the determinant of the Ricci tensor. This is Eddington’s ap-

proach [29]. However, it is not necessary to limit ourselves to Ricci tensor. The Riemann

tensor itself can be used as well. Giving all the necessary details of such a formalism in

Appendix A, we switch from a two-index tensor theory to four-index tensor theory by

bringing the Riemann tensor in the game. This approach opens up a host of phenomena to

be explored. One application, pertaining to the main topic of this thesis work, is the uni-
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fication of non-Abelian gauge fields with gravity. The point is that, now theory includes

double-determinant of a four-index tensor having the symmetries of Riemann tensor, and

one readily finds that F a
αβF

a
µν is such a tensor field constructed from non-Abelian gauge

fields. We can this formalism as Born-Infeld-Riemann gravity as it involves the Riemann

tensor[24, 60].

Apart from this very feature of unification, the non-Abelian fields, in homoge-

neous and isotropic geometries like the Universe itself, possess the crucial aspect that

they can facilitate cosmic inflation [15, 67]. To this end, the Born-Infeld-Riemann for-

malism provides a natural framework to analyze gauge inflation [44].

In Chapter 2, we give an overview of the GR and its known extensions [27, 31,

53, 54, 56, 58, 59]. We review there GR, metric-affine and scalar-vector-tensor theories.

This material proves important in further chapters of the thesis.

In Chapter 3, we discuss inflationary cosmology [2, 13, 15, 37, 52, 54, 67], in

brief. We give here main properties of the Universe, and the need to cosmic inflation.

After the cosmological background, we try to examine the main idea of combining

gravity and electromagnetism with Born-Infeld(BI) Gravity in Chapter 4. In Chapter 5,

we discuss how determinant of Ricci tensor can be used for obtaining gravitational field

equations. It is Born-Infeld-Einstein gravity. The main idea is to construct a new theory

including both Eddington and BI approach.

In Chapter 6 we discuss Born-Infeld-Riemann gravity and gauge inflation in detail.

There we find how rich the model to yield the requisite dynamics for inflation.

Finally, in Chapter 7 we conclude the thesis.
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CHAPTER 2

THEORIES OF GRAVITATION

Gravitation or dynamical spacetime has been formulated in different contexts with

different purposes. Since Einstein’s 1916 formulation of General Relativity (GR), there

has arisen different generalizations. In this Chapter we briefly summarize them.

2.1. Metric Theory of Gravity

According to Einstein’s formulation of GR, spacetime is a differentiable manifold,

and metric tensor gαβ governs curving and twirling of the spacetime. It is the sole field on

the manifold [13]. In general, on a smooth manifold, there are two independent dynamical

objects: metric tensor (a collection of clocks and rulers needed for measuring distances

and angles) and connection (a guiding force for geodesic motion). In GR, connection is

not an independent variable; it depends on the metric tensor via

Γλαβ =
1

2
gλρ (∂αgβρ + ∂βgρα − ∂ρgαβ) (2.1)

which is known as the Levi-Civita connection. It is symmetric in lower indices since

metric tensor is symmetric [13, 67]. Since Levi-Civita connection is expressed in terms

of the metric tensor, GR is described by a single variable; the metric tensor. The field

equations of GR are obtained by varying the Einstein-Hilbert action

S [g] =

∫
d4x |−g|1/2

{
1

2
M2

PlR(g) + Lmat (g, ψ)

}
(2.2)

with respect to the metric tensor (See Appendix B for more general features.). Here,

MPl = (8πGN)−1/2 is the Planck scale or the fundamental scale of gravity. The action

density depends on the curvature scalar

R(g) = gµνRµν(Γ) (2.3)
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where

Rµν(Γ) = Rα
µαν(Γ) (2.4)

is the Ricci tensor, and

Rα
µβν(Γ) = ∂βΓαµν − ∂νΓαµβ + ΓαβλΓ

λ
µν − ΓανλΓ

λ
µβ (2.5)

is the Riemann curvature tensor. The spacetime manifold is perfectly flat in the close

vicinity of x0
µ if all the components of Riemann tensor vanishes at that point;

Rα
µβν(Γ(x0)) = 0.

Variation of the action (2.2) gives the Einstein equations of gravitation [4, 13, 15,

28, 41, 46, 49, 51, 52, 53, 54, 66, 67] (Appendix B for details.)

Rµν −
1

2
Rgµν = −8πGNTµν (2.6)

whose right-hand side

Tµν = −2
δLmat
δgµν

+ gµνLmat (g, ψ) (2.7)

is the energy-momentum tensor of matter and radiation. Here,

Smat [g] =

∫
d4x |−g|1/2 Lmat (g, ψ) (2.8)

is the action of the matter and radiation fields ψ. The curvature scalar and matter La-

grangian Lmat both involve the same metric tensor gµν .

It is important that the field equations (2.6) arises from the gravitational action

(2.2) by adding an extrinsic curvature term. The reason is that, curvature scalar R(g)

involves second derivatives of the metric tensor, and in applying the variational equations

it is not sufficient to specify δgµν at the boundary. One must also specify its derivatives

δ∂αgµν at the boundary. This additional piece does not admit construction of the Einstein-
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Hilbert action directly; one adds a term (extrinsic curvature) to cancel the excess term.

The metric formalism is the most common approach to gravitation because equiva-

lence principle is automatic, geodesic equation is simple, and tensor algebra is simplified

(metric tensor is covariantly constant). Equivalence principle means that gravitational

force acting on a point mass can be altered by choosing an accelerated (non-inertial) co-

ordinate system. In other words, there is always a frame where connection can be set to

zero. This point corresponds to a locally-flat coordinate system. The curvature tensor

involves both Levi-Civita connection and its derivatives, and making the connection to

vanish does not mean that curvature vanishes.

2.2. Metric-Affine Theory of Gravity

As we mentioned in the previous section, in metrical theories of gravity, the metric

tensor and connection are not independent variables. However, connection does not have

to be symmetric. It can be antisymmetric in lower indices, or it can have no symmetry

condition which means that it has both symmetric and antisymmetric parts. Such a theory

that has metric tensor and affine connection as a priori independent variables is called the

Metric-Affine theory of gravitation [8]. Indeed, when the field equations are formed for

Einsten- Hilbert action by taking metric tensor and connection as a priori independent

dynamical quantities, it is obviously shown that the resulting connection turns out to be

the same as the Levi- Civita connection. This aspect, known as Palatini formalism, over-

comes the difficulties of metrical theory by eliminating the need to extrinsic curvature.

This dynamical equivalence between GR and Metric-Affine approach holds when matter

sector keeps involving only the Levi-Civita connection. Indeed, if the matter Lagrangian

only couples to the Levi-Civita connection i.e. it does not couple to general connection,

Metric-Affine formulation always reduces to metric formulation [17]. For pure Einstein-

Hilbert action the Palatini and Metric-Affine formulations are the same while for the other

theories they split as explained.

Metric-Affine theory of gravity ( we do not refer to Palatini formulation) involves

the metric tensor gµν and a general connection Γ̂αµν where Γ̂αµν 6= Γαµν . It is a non-

Riemannian gravitational theory. Indeed, generality of connection enables one to define

the new geometro-dynamical structures which are obtained by using general connection

definition. These new geometro-dynamical structures are called torsion and non-metricity

tensors. Torsion tensor arises from the antisymmetric part of connection. The non-

metricity tensor, conversely to the metric theory of gravity which is metric-compatible, is

5



the covariant derivative of metric tensor according to the general connection Γ̂αµν . Mathe-

matically,

Tαµν = Γ̂αµν − Γ̂ανµ and Qαµν = −∇αgµν . (2.9)

As a dynamical theory, Metric-Affine gravity is a non-trivial theory (does not reduce to

GR dynamically) if the matter Lagrangian involves the general connection Γ̂αµν explicitly.

The Metric-Affine gravity has one more branch in addition to the Palatini formal-

ism: It is the Einstein-Cartan theory [39]. This theory is metric-compatible and torsion

tensor is non-vanishing. The geometry which Einstein-Cartan theory defined is called the

Riemann-Cartan geometry.

2.3. Scalar-Vector-Tensor Theory of Gravity

As we mentioned in Introduction, GR is a gravitational theory which has mag-

nificent success to explain the universe. In this section, we are going to examine such

theories whose aim is to answer some contradictions that could not be explained by GR.

Gravitational force is mediated by a spin-2 tensor field (coming from metric tensor

in a given background) in the GR. However, the gravitational sector can be expanded to

include other spin multiplets as well [17]. Those other fields can be a scalar (spin 0)

field, a vector (spin 1) field or both. From this point of view, one figures out that there

are extended gravitational theories which include additional spin multiplets and hence

additional degrees of freedom. The first type of extended theories, which are well-studied

alternative theories of GR, are scalar-and-tensor theories. These theories consist a scalar

field φ in addition to the metric tensor [16, 17], and their general action is given by

S =

∫
d4x| − g̃|1/2

[
R̃−

(
ω(φ) +

3

2

)
+ φ−2Lmat

(
Ψ, φ−1g̃

)]
(2.10)

where g̃µν is Einstein metric because the action given in (2.2) is written in Einstein frame

(theory has well-defined Newton’s constant). In fact, the equation (2.10) stands like in ad-

dition to Einstein-Hilbert action there are some additional terms referring to scalar fields

[16, 43]. Einstein frame is useful to discuss general characteristic of such theories. How-

ever, it is easily shown that scalar-tensor theory which is defined in Einstein frame is not a
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metrical theory since its’ Matter Lagrangian couple to φ−1 in addition to the metric tensor.

To work on metrical theory one can define Einstein metric in terms of physical metric as

in the given form [43];

g̃µν = φgµν (2.11)

and then the action (2.10) takes the form [43].

S =

∫
d4x|g|1/2

[
Rφ− ω(φ)

φ
gµν∂µφ∂νφ+ Lmat (Ψ, g)

]
(2.12)

This action of the scalar-tensor theory is a metrical theory, and its frame is called Jordan

frame (the theory needs a well-defined Newton’s constant).

A well-known example of scalar-tensor theories is Brans-Dicke theory [43]. If ω

in the action (2.10) does not depend on φ, then the action takes the form of Brans- Dicke

theory

S =

∫
d4x|g|1/2

[
Rφ− ω

φ
gµν∂µφ∂νφ+ Lmat (Ψ, g)

]
(2.13)

As a metrical theory of gravity, the Brans-Dicke theory is a purely dynamical one since

the field equations for the metric tensor involve scalar fields and vice versa [16].

The second type of extended theories constructed by using additional fields are

vector-tensor theories. In this kind of theory, there is a dynamical 4-vector field uµ in

addition to metric tensor. General action of these theories given as [16]

S = (16πG)−1

∫
d4x|g|1/2

[
R (1 + ωuµu

µ)−Kµν
αβ∇µu

α∇νu
β + λ (1 + uµu

µ)

+Lmat (Ψ, g)
]

(2.14)

where

Kµν
αβ = c1g

µνgαβ + c2δ
µ
αδ

ν
β + c3δ

µ
βδ

ν
α − c4u

µuνgαβ (2.15)

7



If the vector field is time-like i.e (ds2 < 0), vector tensor theories become a constrained

theory where uµuµ = −1 and vector field has unit norm. If there is no condition on vector

fields, it is unconstrained theory. The well-known vector tensor theory is Einsten-Aether

theory which is constrained one i.e. uµ is time-like, uµuµ = −1 and has unit norm [16].

vector-tensor theory with given action is also a metrical theory since matter Lagrangian

only couples to metric tensor.

The last type is the scalar-vector-tensor theory (TeVeS). TeVeS is the relativis-

tic generalization of Modified Newtonian Dynamics (MOND) [9, 45]. It is proposed to

eliminate the dark matter paradigm by explaining galaxy rotational curves via modified

Newtonian dynamics. Even if it could not replace dark matter paradigm without any un-

known matter, it has a great success to explain galaxy rotational curves [17]. The action

for the TeVeS theory is given as

S = Sg̃ + SA + Sφ + Sm (2.16)

where g̃ is called as Bekenstein metric

gµν = e−2φg̃µν − sinh(2φ)AµAν (2.17)

which is time-like for

g̃µνAµAν = −1 . (2.18)

The various parts of the action (2.16) are given by

Sg̃ = (16πG)−1

∫
d4x| − g̃|1/2R̃ (2.19)

SA = (−32πG)−1

∫
d4x| − g̃|1/2 [KF µνFµν − 2λ(AµA

µ + 1)] (2.20)

8



Sφ = (−16πG)−1

∫
d4x| − g̃|1/2

[
µĝµν∇̃µφ∇̃νφ+ V (µ)

]
(2.21)

where [17]

ĝµν = g̃µν − AµAν . (2.22)

There is one more way to obtain extended gravitational theories. As we know,

general relativity has at most second order derivatives. Therefore, we can obtain another

type of extended theory by using higher derivatives. The well-known theory is f(R)

gravity. f(R) is the function of scalar curvatureR thus this theory generalizes Einstein’s

GR. Their action is given as [17, 63].

S =

∫
d4x| − g|1/2f(R) . (2.23)

Finally, as another extended gravitational theory we recall the Born-Infeld the-

ory of gravitation. In Born-Infeld gravity, the main idea is that in constructing invariant

actions all we need is determinant of a tensor (see Appendix A) and this tensor does not

need to be the metric tensor (as in all the gravitational theories we have mentioned above).

Any other rank-2 tensor, for example, the very Ricci curvature tensor, can well do the job.

Since this theory is the main topic of this thesis work, it will be detailed in the following

chapters.
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CHAPTER 3

INFLATIONARY COSMOLOGY

What is cosmology and why is cosmology so important? Can one explain some

problems which are unsolved from the viewpoint of GR ? People have asked these type of

questions for years. When Einstein discovered the field equations (2.6), which equates the

curvature of space-time to directly the energy-momentum source of matter and radiation,

he thought that the universe must be static. In other words, it was necessary to add an

extra term to have static solutions of

Gµν = (−8πGN)Tµν (3.1)

That extra term is a constant curvature source known as the cosmological constant (CC),

(Λ) [21, 23]. This additional Λ term is also a geometrical modification to the field equa-

tions. To balance the gravitational attraction this term must yield a repulsive effect.

Gµν + Λgµν = (−8πGN)Tµν (3.2)

where Λ denotes vacuum energy which means that it is a constant energy density and

has negative pressure. At this point we should discuss the meaning of negative pressure.

Why does vacuum energy have negative pressure? There is a basic physical explanation

to the notion of negative pressure. For a particular conserved system, energy per unit

volume is constant [66]. When the energy of the system is changed, volume changes

directly in proportion to the rate of energy change. This actually means that the balance

between the attraction by gravity and the needed repulsion is supplied by vacuum energy.

Considering a universe without CC means that the universe is empty. On the other hand, if

we consider vacuum state, it corresponds to a vanishing energy-momentum tensor Tµν =

0. Rearranging equation (3.2)

Gµν = −Λgµν = (−8πGN)TΛ
µν (3.3)

10



Here TΛ
µν is energy-momentum tensor of the vacuum state and CC becomes a new source

term.

Actually, when we interpret gravity theoretically, a static universe seems impossi-

ble. Because of the fact that not only relativistic gravity but also non-relativistic gravity

is attractive. Therefore, because of the attraction stationarity of the universe can not be

attained.

At the beginning of the twentieth century, with the help of new generation tele-

scopes lots of galaxies and galaxy sets began to be discovered in the visible universe [53].

As a conclusion of the discoveries, the distribution of the galaxies was interpreted and it

is understood that the universe is homogeneous and isotropic. Homogeneity means that

the universe looks the same from every point. Isotropy also means that there is no centre

of the universe. We are going to examine these notions, homogeneity and isotropy, with

Friedmann equations [2, 13, 15], again.

In 1929, with Hubble’s great discovery it’s understood that the universe is not

static. On the contrary, the universe is expanding. The main clue was the red-shifting of

the light spread by nearby galaxies which concludes that the galaxies are moving away

from us radially -and of course from each other-. One may expect that the expansion

slows down because the galaxies attract each other due to gravitation. But against the

expectation, expansion accelerates. Magically the observed acceleration is compatible

with the vacuum state energy density idea which was not even liked by Einstein at first.

How can the dynamics of a spatially homogeneous and isotropic universe be de-

termined? Are Einstein’s field equations sufficient for explanation? We are going to try

to answer these questions. As a consequence of isotropy one may write a metric that is

spherically symmetric. Beside this, generally the metric can take the form as;

ds2 = −dt2 + a2(t)

(
1

(1− kr2)
dr2 + r2dΩ2

)
(3.4)

which is the Friedmann-Robertson-Walker (FRW) metric [15, 66, 67]. In equation (3.4)

dr is radial part and dΩ is azimuthal part of spherically symmetric spaces. There k de-

notes constant spatial curvature. Due to the geometry of space-time values of k differs:

k ∈ {−1, 0,+1} corresponds to open, flat and closed geometries, respectively. Hyper-

boloid geometries, k = −1, which corresponds constant negative curvature expand for-

ever(open). Flat geometries, k = 0, which causes the curvature term to vanish expand

forever. Spherical geometries, k = +1, which corresponds constant positive curvature

11



expansion will be ceased and it turns into a singular state. In our thesis work we are going

to assume k = 0 and modify the field equations as flat space. Then our metric takes the

form

ds2 = −dt2 + a2(t)
(
dr2 + r2dΩ2

)
(3.5)

or in cartesian coordinate system

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (3.6)

The matrix form of the metric tensor

gµν=̇


−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)

 (3.7)

eases the identification of the pressure and energy densities for a given cosmological

fluid. In the above, the function a(t) is the scale factor that depends only on time. In

other words a(t) is a function that is responsible for time evolution and the expansion

of the universe. (It is the radius of the evolving sphere.) To construct the dynamics

of the homogeneous and isotropic universe we should substitute our chosen metric into

Einstein’s field equations.

To do that we should calculate the Ricci Tensor components and Ricci Scalar: As

seen in equation (3.7) gtt = −1, gti = 0, gij = a2(t)δij . Inserting these components into

Levi-Civita connection, surviving terms are

Γtij = aȧδij

Γitj =
ȧ

a
δij (3.8)
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from which the Ricci tensor can be directly calculated:

Rtt = −3

(
ä

a

)
Rti = 0

Rij =
ä

a
+ 2

(
ȧ

a

)2

(3.9)

Contracting with metric tensor one gets the Ricci scalar:

R = −Rtt + 3Rij = 6

[
ä

a
+

(
ȧ

a

)2
]

(3.10)

Here, we should interpret the meaning of ȧ
a
. Assume that there are two isotropic observers

any time t and the distance between these observers is D. The rate of changing of D is

υ ≡ dD

dt
=
dD

da

da

dt
=
D

a

da

dt
=
D

a
ȧ (3.11)

so one can write dD
dt

= HD where we defined

H =
ȧ

a
(3.12)

as the Hubble parameters. Hubble parameter (having the dimension of inverse time or

mass) measures the fractional growth rate of the Universe’s size.

3.1. Energy-Momentum Tensor

First of all let us examine the meaning of electromagnetic current and its compo-

nents. One may consider 4-electromagnetic current; jµ = (ρ,~j) where ρ is electric charge

density and ~j is current density. As we know electric charge density is the electric charge

per volume, we can demonstrate mathematically as ρ = ∆q
∆x∆y∆z

and current density is

charge flow per unit time and per area, we can demonstrate mathematically as~j = ∆q
∆t∆y∆z

.

If we combine them as 4-vector electromagnetic current; jµ = ∆q
∆V µ

where ∆V µ is vol-

13



ume. With the help of definition of 4-vector electromagnetic current one can construct

energy momentum tensor of space-time via 4-momentum which is pµ = (p0, ~p) = (E, ~p).

Mathematically,

T µν =
∆pµ

∆Vν
(3.13)

As seen directly in Einstein’s field equations (2.6), energy momentum tensor is the source

of gravity. One of the important features of energy momentum tensor for a conservative

system is its conservation. If there is an additional source, then energy momentum tensor

does not conserve.

What is the physical meaning of the components of energy momentum tensor?

One can directly calculate them from the general definition of energy momentum tensor

(3.13) as the following:

T 00 =
∆p0

∆V0

=
∆E

∆x∆y∆z
(3.14)

which means that energy per unit volume⇒ energy density.

T 0i =
∆p0

∆Vi
=

∆E

∆t∆y∆z
(3.15)

which means that energy per unit time per area⇒ energy flux.

T i0 =
∆pi

∆V0

=
∆pi

∆x∆y∆z
(3.16)

With a little help of algebra of relativity one can easily see that equation (3.15) and equa-

tion (3.16) are equal to each other T 0i = T i0. It means that energy momentum tensor T µν

is a symmetrical rank (2,0) tensor. For diagonal components of energy momentum tensor;

T ii =
∆pi

∆Vi
=

∆pi

∆t∆y∆z︸ ︷︷ ︸
area

=
normalforce

area
(3.17)
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According to equation (3.17) above momentum flux is directly proportional to pressure.

The off-diagonal terms does not supply this feature. In the presence of this section we

can say that the energy momentum tensor of a particular system includes all the features

of the system such as energy density, momentum flux, energy flux etc.

We can classify particles according to their energy or momentum flux. The sim-

plest type is dust. Dust includes non-interacting particles. If the particles do not interact

with each other, pressure is not mentioned for this kind of systems. Such systems have

the energy momentum tensor as the following form;

T µν=̇


ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (3.18)

and 4-velocity is of the form; Uµ = (c,~0)

To examine the systems which have a huge number of particles, for simplicity, we

try to analyse these type of systems as doing approximations. One of the useful approx-

imation is perfect fluid approximation. In our work we also use perfect fluid approxima-

tion. It’s a continuous system whose elements interact only through a normal force. As

mentioned above interacting through normal force allows energy momentum tensor only

has diagonal components.

T µν=̇


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 ≡ (ρ+ p)UµUν + gµνp (3.19)

For an arbitrary coordinate frame we can use the expression (3.19)

3.2. Friedmann Equations

We examined energy momentum tensor and perfect fluid form in Section 1 in

detail. Now, we have sufficient background to derive the Friedmann Equations.
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Inserting 4-velocity U t = 1 and Ut = −1 U i = 0 and Ui = 0 in (3.19) time component

takes the form as;

Ttt = (ρ+ p)UtUt + gttp = ρ

Gtt = 8πGNρ (3.20)

and spatial components take the form as;

Tij = (ρ+ p)UiUj + gijp = pδij

Gij = 8πGNδijp (3.21)

Combining (3.20), (3.21) and Einstein field equations for empty space together,

Gtt = Rtt −
1

2
gttR = 3

(
ȧ

a

)2

= 8πGNρ (3.22)

and

Gij = Rij −
1

2
gijR = −2

ä

a
−
(
ȧ

a

)2

= 8πGNδijp (3.23)

From equation (3.22);

ρ =
3

8πGN

(
ȧ

a

)2

(3.24)
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From equation (3.23);

3
ä

a
= −4πGN (3p+ ρ) (3.25)

The equations (3.24) and (3.25) are called Friedmann Equations.

One can extract important information from Friedmann Equations. First of all

equation (3.25) indicates that ä < 0 which is an exact proof of non-stationary of the

universe. In an other words the universe either expands (ȧ > 0) or contracts (ȧ < 0).

Hubble’s discovery about redshift shows that the universe expands (ȧ > 0) which means

that the universe expands faster and faster. Under the homogeneous and isotropic uni-

verse assumption, GR predicts that at a time approximately less than H−1 (when a=0) the

universe was in a singular state. The zero size space is a conclusion of homogeneity. In

an other words at this t time the distance between the points in the space was zero and the

curvature of spacetime was infinite. Essentially, this is the definition of -Big Bang-. The

extension of space-time manifold beyond the big bang makes no sense. This interpreta-

tion of GR concludes that the universe began with the big bang. These interpretations is

compatible with cosmological solutions since the singularities come from the cosmology.

For the mass density evolution, multiplying equation (3.24) by a2and derivating

with respect to t, one finds that

ρ̇+
ȧ

a
(2 + ρ+ 3p) = 0 (3.26)

For dust (p = 0);

ρ̇+
ȧ

a
(2 + ρ) = 0

ρa3 = constant

ρ ∝ a−3 (3.27)
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For radiation (p = ρ
3
);

ρ̇+
ȧ

a
(2 + 3ρ) = 0

ρa4 = constant

ρ ∝ a−4 (3.28)

These ratios show that when a increases, energy density of radiation decreases faster

than energy density of dust. Hence, the radiation content of the present universe may

be neglected. But as a(t) goes to zero (for the past process) radiation should have been

dominated over the ordinary matter.

3.3. Inflation

As seen in Section 3.2, although the early universe is radiation dominated; the

present universe is matter dominated [67]. In Friedmann equation vacuum energy does not

exist that is called flatness problem. Beside that for FRW cosmologies horizon problem

exists[15]. Actually, the motivation comes from the Spontaneously Symmetry Breaking

(SSB) for the inflationary models. Basically, the question is that how did the expansion

begin? If it is caused by the CC, Λ, then which sort of physics causes this large energy?

People have tried to interpret this inflationary phase in the early universe for years. The

most common view is that the huge vacuum energy Λ is caused by the potential of a

scalar field which is called inflaton. Suppose that a theory which includes a scalar field

is constructed. Then, one may derive the dynamical equation for this scalar field in FRW

metric as follows

φ̈+ 3Hφ̇+ V ′(φ) = 0 (3.29)

where V ′(φ) is derivative of potential with respect to φ and

H2 = N

(
1

2
φ̇2 + V (φ)

)
(3.30)
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For inflation models at the early universe potential energy dominates kinetic energy. So

the second derivative of φ is very small. It’shown mathematically as the following;

φ̇2 � V (φ) (3.31)

|φ̈| � |3Hφ̇|, |V ′(φ)| (3.32)

In the presence of that one may define parameters which are called slow-roll parameters

that yield conditions of inflation:

ε =
1

2

(
V ′

V

)2

(3.33)

and

η =
V ′′

V
(3.34)

We can also define the parameters in terms of the Hubble parameter. The only difference

between these two notations is that 3.33 and 3.34 cause rolling slowly for a while. If we

define the parameters via Hubble constant it causes the field to roll slower. The main point

is that, the Universe must start with an exceedingly flat inflaton potential, evolve slowly,

and finally land to a minimum of the potential where its oscillations reheat the universe to

give today’s structure.
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CHAPTER 4

BORN - INFELD GRAVITY

In 1934 Born and Infeld [10] extended Maxwell’s theory of electrodynamics from

a linear nature to a non-linear nature. For the weak field limit, Maxwell’s Theory works

well but for strong field limit it fails. The main idea of B-I Gravity is to modify Lagrangian

density. New terms would be added, if one ensures that Lagrangian is still a scalar density

with all of the terms in it. (See Appendix A)

To modify Lagrangian density, we consider a rank-2 tensor field which is neither

symmetric nor antisymmetric called aαβ . As we know from Appendix A, the Lagrangian

density is of the form

L = (−|aµν |)1/2 (4.1)

where |aµν | is the determinant of the tensor field aµν .

An arbitrary tensor field is formed of a symmetrical field and an anti-symmetrical

field. According to this let aµν = gµν + fµν . It means that the symmetrical part of aµν is

metric tensor and the anti-symmetrical part of aµν is totally antisymmetric (an it is taken to

be proportional to the field strength tensor of electromagnetic field FEM
µν = ∂µAν−∂νAµ).

With this identification,

L 3 (−|gµν + fµν |)1/2 (4.2)

where for the purpose of constructing the Maxwell action we write

L = (−|gµν + fµν |)1/2 − (−|gµν |)1/2 (4.3)

as the complete action. We are going to expand our expression for small fµν :

S =

∫
d4x(−|gµα|)1/2(|δαν + fαν |)1/2 (4.4)
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by using the identity (See Appendix D)

(|1 + A|)1/2 = 1 +
1

2
TrA+

1

8
(TrA)2 − 1

4
Tr[(A)2] +O(A3). (4.5)

Then the second term in action (4.4) expands as

(|I + fαν |)1/2 = 1 +
1

2
Trf +

1

8
(Trf)2 − 1

4
Tr[(f)2] +O(f 3) (4.6)

Since fαν is totally anti- symmetric tensor, both Tr(f) and (Tr(f))2 give vanishing con-

tribution to the expansion. Only one term survives:

Tr[(f)2] = Tr[fαν f
ν
β ] = fαν f

ν
α = fµνfµν (4.7)

Then, our action takes the form

S =

∫
d4x(−|gαβ|)1/2(−1

4
fµνfµν) (4.8)

which is known action for electromagnetic field. From this action we are able to derive

Maxwell’s equations for electromagnetic field.

Since its proposal by Born and Infeld, this theory of electromagnetism has been

developed and applied to different problems. As a consequence there occured different

type of theories with different properties. These theories are called Born-Infeld type the-

ories [5, 6, 11, 19, 20, 33, 36, 40, 47, 68]. The common point of Born-Infeld gravity

theories are that when we examine the action (4.4) functional, we realize that it seems

impossible to embed non-Abelian gauge fields into the theory. If we force to embed them

into the theory, gauge invariance of theory is broken.

The main topic of this thesis work is Born-Infeld-Riemann gravity, and it will be

discussed in Chapter 6.
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CHAPTER 5

BORN - INFELD - EINSTEIN GRAVITY

Deser and Gibbons [25] suggested to modify BI gravity. Instead of adding field

strength tensor of electromagnetic field, it is also a good idea to add Eddington term in

action. In other words, the action can contain the curvature tensor and the metric tensor.

It makes action purely gravitational and geometrical:

SD−G =

∫
d4x(−|agµν + bRµν |)1/2 (5.1)

where a and b are constants. Applying the procedure in Chapter 4, one gets:

SD−G =

∫
d4x(−|agµα(δαν +

b

a
Rα
ν )|)1/2

=

∫
d4x

[
−|agµα|)1/2(|δαν +

b

a
Rα
ν )|)1/2

]
=

∫
d4x

[
a2(| − gµα|)1/2(|δαν +

b

a
Rα
ν )|)1/2

]
(5.2)

Now, the second term above can be expanded as

|δαν +
b

a
Rα
ν |1/2 = 1 +

1

2

b

a
TrR +

1

8

b

a
(TrR)2 − 1

4

b

a
Tr[(R)2] +O(R3) (5.3)

in the small curvature limit.

As we know (TrR)2 and Tr(R)2 terms cause ghosts. To break away ghosty terms

we should add an arbitrary tensor field Xµν to our theory. In the presence of that, action

takes the form;

SD−G =

∫
d4x(−|agµν + bRµν + cXµν |)1/2 (5.4)
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Here, a, b and c are coupling constants. The same expansion procedure gives now:

SD−G =

∫
d4x(−|agµα(δαν +

b

a
Rα
ν +

c

a
Xα
ν )|)1/2

=

∫
d4x

[
−|agµα|)1/2(|δαν +

b

a
Rα
ν +

c

a
Xα
ν )|)1/2

]
=

∫
d4x

[
a2(| − gµα|)1/2(|δαν +

b

a
Rα
ν +

c

a
Xα
ν )|)1/2

]
(5.5)

whose second term in radical sign is expanded as (See Appendix D)

|δαν +
b

a
Rα
ν +

c

a
Xα
ν |1/2 = 1 +

1

2

b

a
TrR +

1

2

c

a
TrX +

1

8

(
b

a
TrR +

c

a
TrX

)2

− 1

4
Tr

(
b

a
Rα
ν +

c

a
Xα
ν

)2

+O(3) (5.6)

Inserting expansion (5.6) in the action (5.5), we get:

SD−G =

∫
d4x
[
a2(| − gµα)|1/2

(
1 +

1

2

b

a
TrR +

1

2

c

a
TrX

+
1

8

( b2

a2
(TrR)2 +

c2

a2
(TrX)2

)
+

1

4

bc

a2
(TrR)(TrX)

− 1

4
Tr
( b2

a2
RµνR

µν +
c2

a2
XµνX

µν +
bc

a2
XµνRµν

)2)]
SD−G =

∫
d4x
[
a2(| − gµα)|1/2

(
1 +

1

2

b

a
TrR +

1

2

c

a
TrX +

1

8

b2

a2
(TrR)2

+
1

8

c2

a2
(TrX)2 +

1

8

bc

4a2
(TrR)(TrX)− 1

4

b2

a2
Tr[RµνR

µν ]

+
c2

a2
Tr[XµνX

µν ]− 1

2

bc

a2
Tr[XµνRµν ]

)]
SD−G =

∫
d4x
[
a2(| − gµα)|1/2

(
1 +

1

2

b

a
TrR +

1

2

c

a
TrX

+
1

4

b2

a2

(1

2
(TrR)2 − Tr[RµνR

µν ]
)

+
1

4

c2

a2

(
1

2
(TrX)2 − Tr[XµνX

µν ] +
bc

2a2
(TrR)(TrX)

)
− 1

2

c2

a2
Tr[XµνRµν ]

)]
(5.7)

To cancel out the ghost term 1
2
(TrR)2−Tr[RµνR

µν ] we make use of the tensor field Xµν
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to set

1

4

b2

a2

(
1

2
(TrR)2 − Tr[RµνR

µν ]

)
= −1

2

c

a
TrX (5.8)

or

TrX = −1

2

b2

ac

(
1

2
(TrR)2 − Tr[RµνR

µν ]

)
(5.9)

Letting Xµν = 1
4
gµνX

α
α we get

Xµν = − b
2

8c

(
1

2
(TrR)2 − Tr[RαβR

αβ]

)
gµν (5.10)

Since Xµν is order of R2, the terms which have XµνRµν mixed terms cancel out. Because

these terms are in cubic or higher contributions. Then our action takes the form;

SD−G =

∫
d4xa2(| − gµα)|1/2

(
1 +

1

2

b

a
R

)
(5.11)

This theory is nothing but the GR action with cosmological constant. It is important to

note that, if we are to construct a consistent theory we need to introduce some extra tensor

field Xµν to cancel the ghost-giving higher curvature terms.

The main advantage of the Born-Infeld-Einstein gravity is that it provides us with

a clear rationale for Einstein-Hilbert term. That term arises as the small curvature limit of

a general determinant theory. The Eddington theory [7, 29] corresponds to taking a = 0,

that is, killing the metric tensor. That theory resides in a complete affine space where

there is no notion of distance. (One recalls here that, the Ricci tensor does not involve the

metric tensor but Ricci scalar does.)

The disadvantage of the Born-Infeld-Einstein gravity is that it does not allow us

to embed non-Abelian gauge fields into the theory due to the action functional (5.1).

Otherwise the gauge symmetry is broken.

Although the disadvantage of the theory, it is an accomplished theory for Abelian

gauge fields included [48, 64, 65].
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CHAPTER 6

BORN - INFELD - RIEMANN GRAVITY

In this chapter we give a generalization of Born-Infeld-Einstein gravity. We try to

construct a theory which includes directly the Riemann tensor i. e. a rank (0,4) tensor field

(not a (0,2) one). We are going to see that, constructing theory from rank - (0,4) tensors

allows us to expand the determinant to include non-Abelian gauge fields in addition to

the electromagnetic field. This method has not been discovered before, and proves highly

important in unifying non-Abelian gauge fields and gravity [24]. Also important is that, in

this theory vector inflation comes out naturally [60]. This happens with no need to extra

degrees of freedom. All these features are going to be the subject matter of this chapter.

From Appendix A, we know that the notion of determinant can be generalized to

higher-rank tensors. For instance, if Tαβ and Fαβµν are two tensor fields, one can form an

invariant volume as d4x |Tαβ|1/2 or as d4x (DDet(Fαβµν))
1/4 whereDDet stands double-

determinant as needed by a rank-4 tensor [61, 62]. The details can be found in Appendix

A. Also the reference [22] gives a more general description.

6.1. Born - Infeld - Riemann Gravity

For D dimensions we write the effective action as

Seff = −
∫

dDxM
D/2
D

[
− DDet

(
κ2g̃µανβ + λ′RRµανβ + λ′F F̃µανβ + λ̃FF

a
µα

˜̃F a
νβ

+ Xµανβ

)]1/4

(6.1)

where MD is mass parameter. The parameter κ is curvature constant which has mass

dimension 2. Constant curvature term g̃µανβ equals

g̃µανβ = (gµνgαβ − gµβgαν) (6.2)
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which is nothing but the curvature tensor of a spacetime with constant scalar curvature

(proportional to κ2). This term has a different importance. When we expand the double-

determinant, it is going to be expanded around this constant-curvature spacetime config-

uration. In (6.1) λR′ is a dimensionless constant and the mass dimensions of λ′F and λ̃F
are [λ′F ] = [λ̃F ] = −2. Finally, the field Xµανβ is an arbitrary tensor field introduced for

canceling ghosts.

Now, let us discuss the term F̃µανβ which has the same symmetries as (gµνgαβ −
gµβgαν) and the Riemann Curvature Tensor Rµανβ . It is easy to see that, for electromag-

netic field, this tensor field attains the unique form

F̃µανβ = FµαFνβ. (6.3)

This term unifies Maxwell theory and gravitation in the way Born-Infeld gravity does. In

other words, instead of generalizing metric to gµν → gµν + Fµν as in Born-Infeld gravity,

we can construct the tensor field (6.3) which has the same symmetries as the Riemann

tensor. The results of the two approaches will be the same.

However, the main novelty is not the inclusion of Maxwell theory; the novelty is

that the Yang-Mills theories can be unified with gravity [24]. Indeed, the tensor field (6.3)

directly generalizes to

F̃µανβ = F a
µαF

a
νβ (6.4)

where a runs over the adjoint of the group. For SU(N) a = 1, . . . , N2− 1. The main nov-

elty is that the non-Abelian gauge fields cannot be included in the Born-Infeld formalism

which is not gauge invariant because of F a
µα appearing with index a not contracted. Here,

in the Born-Infeld-Riemann formalism, as we call it, it is automatic. This generalization

of Born-Infeld theory thus opens a new avenue where one can embed the Yang-Mills

dynamics in gravitational dynamics, which was not possible before.

As usual, the dual of F a
νβ is defined as

˜̃F a
νβ = ε τκ

νβ F a
τκ . (6.5)

In Born-Infeld-Riemann gravity, gauge fields enter the double-determinant in a
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gauge-invariant way, and hence, both Abelian (electromagnetism) and non-Abelian (

Yang-Mills theories like electroweak theory and chromo-dynamics) theories are naturally

included in the formalism [24]. In our work we examine our theory for a homogeneous

and isotropic Universe (FRW background) which is explained in Chapter 3, in detail. We

rewrite the effective action for FRW background and calculate the equations of motion.

Specializing to D = 4 we get,

Seff = −
∫

d4xM2
D

[
− DDet

(
κ2g̃µανβ + λR′Rµανβ +Xµανβ + λ′F F̃µανβ

+ λ̃FF
a
µα

˜̃F a
νβ

)]1/4

Seff = −
∫

d4xM2
D

[
− DDet

(
κ2(gµνgαβ − gµβgαν) + λR′Rµανβ

+ Xµανβ + λ′F F̃µανβ + λ̃FF
a
µα

˜̃F a
νβ

)]1/4

(6.6)

Now, applying the same procedure we did in Born-Infeld and Born-Infeld-Einstein grav-

ities we get

Seff = −
∫

d4xM2
D

(
− DDet

(
κ2(gµν′gαβ′ − gµβ′gαν′)

))1/4

× DDet
(1

2
(δν

′

ν δ
β′

β − δ
ν′

β δ
β′

ν )

+
λR′

κ2
(Inv)µ

′α′ν′β′Rµ′α′νβ

+
1

κ2
(Inv)µ

′α′ν′β′Xµ′α′νβ

+
λ′F
κ2
F̃µ′α′νβ +

λ̃F
κ2
F a
µ′α′

˜̃F a
νβ

)1/4

(6.7)

Let us first compute the first factor in the integral. Using the notion of double-determinant
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(See Appendix A) we obtain

(DDet (κ2(gµν′gαβ′ − gµβ′gαν′)))1/4

= κ2 (DDet ((gµν′gαβ′ − gµβ′gαν′)))1/4

= κ2
(
DDet

(
1

2!2
εµ1µ2µαεµ1µ2ν′β′

))1/4

= κ2 1
2!2

(
DDet

(
εµ1µ2µαεµ1µ2ν′β′

))1/4

= κ2(| − gρσ|)1/2 1
2!2

[
εµ̃1µ̃2µ̃3µ̃4εα̃1α̃2α̃3α̃4εν

′
1ν
′
2ν
′
3ν
′
4εβ
′
1β
′
2β
′
3β
′
4ε
µ11µ

1
2

µ̃1α̃1
ε
µ21µ

2
2

µ̃2α̃2

]1/4

×
[
ε
µ31µ

3
2

µ̃3α̃3
ε
µ41µ

4
2

µ̃4α̃4
εµ11µ21ν′1β′1εµ12µ21ν′2β′2εµ31µ32ν′3β′3εµ41µ42ν′4β′4

]1/4

(6.8)

For simplicity let us call the coefficient of the term κ2(| − gρσ|)1/2 as CDD. It reads

explicitly

CDD = 1
2!2

[
εµ̃1µ̃2µ̃3µ̃4εα̃1α̃2α̃3α̃4εν

′
1ν
′
2ν
′
3ν
′
4εβ
′
1β
′
2β
′
3β
′
4ε
µ11µ

1
2

µ̃1α̃1
ε
µ21µ

2
2

µ̃2α̃2

]1/4

×
[
ε
µ31µ

3
2

µ̃3α̃3
ε
µ41µ

4
2

µ̃4α̃4
εµ11µ21ν′1β′1εµ12µ21ν′2β′2εµ31µ32ν′3β′3εµ41µ42ν′4β′4

]1/4

(6.9)

As a result, we get:

(
−DDet

(
κ2(gµν′gαβ′ − gµβ′gαν′)

))1/4
= CDDκ

2(| − gρσ|)1/2 (6.10)

Hence, we have calculated the first part of (6.8). It is expected that the double-determinant

of the Riemann curvature tensor of a constant-curvature spacetime yields the square of the

determinant of the metric tensor.

Now, we proceed with the remaining calculation. First of all, (Inv)µ
′α′ν′β′ is

nothing but the 4-index identity tensor. Its explicit expression as well as various other

details are given in Appendix B.

With the calculated pieces replaced in, the effective action takes the form

Seff = −
∫

d4xCDDM
2
Dκ

2(| − g|)1/2
(
DDet

(1

2

(
δν
′

ν δ
β′

β − δ
ν′

β δ
β′

ν

)
+
λR′

κ2
Rν′β′

νβ

+
1

κ2
Xν′β′

νβ +
λ′F
κ2
F aν′β′F a

νβ +
λ̃F
κ2
F aν′β′ε τκ

νβ F a
τκ

))1/4

(6.11)
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which is of the form

Seff = −
∫

d4xCDDM
2
Dκ

2(| − g|)1/2 (DDet (I + A))1/4 (6.12)

From Appendix D, we know the expansion of the term DDet (I + A). Let us now apply

the expansion to our tensor fields.

DDet(I + A) = 1 +
λR′

κ2
Tr
[
Rν′β′

νβ

]
+

1

κ2
Tr
[
Xν′β′

νβ

]
+

λ′F
κ2
Tr
[
F aν′β′F a

νβ

]
+
λ̃F
κ2
Tr
[
F aν′β′ε τκ

νβ F a
τκ

]
− 1

2
Tr

[(λR′
κ2
Rν′β′

νβ +
1

κ2
Xν′β′

νβ +
λ′F
κ2
F aν′β′F a

νβ

+
λ̃F
κ2
F aν′β′ε τκ

νβ F a
τκ

)2
]

+
1

2

[
Tr
(λR′
κ2
Rν′β′

νβ +
1

κ2
Xν′β′

νβ +
λ′F
κ2
F aν′β′F a

νβ

+
λ̃F
κ2
F aν′β′ε τκ

νβ F a
τκ

)]2

(6.13)

where each of the pieces of which can be calculated as follows:

Tr

[(
λR′
κ2
Rν′β′

νβ + 1
κ2
Xν′β′

νβ +
λ′F
κ2
F aν′β′F a

νβ + λ̃F
κ2
F aν′β′ε τκ

νβ F a
τκ

)2
]

= Tr
[
λ2
R′
κ4
Rν′β′

νβR
ρ′σ′

ρσ +
λ2
F ′
κ4
F aν′β′F a

νβF
bρ′σ′F b

ρσ

+
λ̃2F
κ4
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′
ρσ F b

τ ′κ′

]
+Tr

[
1
κ4
Xν′β′

νβX
ρ′σ′

ρσ + 2
λR′λF ′
κ4

Rν′β′

νβF
aρ′σ′F a

ρσ

+2
λR′ λ̃F
κ4

Rν′β′

νβF
aρ′σ′ε τ ′κ′

ρσ F a
τ ′κ′

]
+Tr

[
2
λR′
κ4
Rν′β′

νβX
ρ′σ′

ρσ + 2
λF ′ λ̃F
κ4

F aν′β′F a
νβF

bρ′σ′ε τ ′κ′
ρσ F b

τ ′κ′

+2
λF ′
κ4
F aν′β′F a

νβX
ρ′σ′

ρσ

]
+Tr

[
Xρ′σ′

ρσF
aν′β′ε τκ

νβ F a
τκ

]
(6.14)
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=
λ2
R′
κ4
Tr
[
Rν′β′

νβR
ρ′σ′

ρσ

]
+

λ2
F ′
κ4
Tr
[
F aν′β′F a

νβF
bρ′σ′F b

ρσ

]
+
λ̃2F
κ4
Tr
[
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′
ρσ F b

τ ′κ′

]
+ 1
κ4
Tr
[
Xν′β′

νβX
ρ′σ′

ρσ

]
+ 2

λR′λF ′
κ4

Tr
[
Rν′β′

νβF
aρ′σ′F a

ρσ

]
+2

λR′ λ̃F
κ4

Tr
[
Rν′β′

νβF
aρ′σ′ε τ ′κ′

ρσ F a
τ ′κ′

]
+2

λR′
κ4
Tr
[
Rν′β′

νβX
ρ′σ′

ρσ

]
+ 2

λF ′ λ̃F
κ4

Tr
[
F aν′β′F a

νβF
bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
+2

λF ′
κ4
Tr
[
F aν′β′F a

νβX
ρ′σ′

ρσ

]
+ λ̃F

κ4
Tr
[
Xρ′σ′

ρσF
aν′β′ε τκ

νβ F a
τκ

]
(6.15)

Calculation of the last term;

[
Tr
(
λR′
κ2
Rν′β′

νβ + 1
κ2
Xν′β′

νβ +
λ′F
κ2
F aν′β′F a

νβ + λ̃F
κ2
F aν′β′ε τκ

νβ F a
τκ

)]2

=
λ2
R′
κ4

[
Tr
(
Rν′β′

νβ

)]2

+
λ2
F ′
κ4

[
Tr
(
F aν′β′F a

νβ

)]2
+
λ̃2F
κ4

[
Tr
(
F aν′β′ε τκ

νβ F a
τκ

)]2

+ 1
κ4

[
Tr
(
Xν′β′

νβ

)]2

+2
λR′λF ′
κ4

Tr
(
Rν′β′

νβ

)
Tr
(
F aρ′σ′F a

ρσ

)
+2

λR′ λ̃F
κ4

Tr
(
Rρ′σ′

ρσ

)
Tr
(
sF aν′β′ε τκ

νβ F a
τκ

)
+2

λR′
κ4
Tr
(
Rν′β′

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+2

λF ′ λ̃F
κ4

Tr
(
F aν′β′F a

νβ

)
Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
+2

λF ′
κ4
Tr
(
F aν′β′F a

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+2

λ̃2F
κ4
Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
Tr
(
Xν′β′

νβ

)
(6.16)
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With all off the calculated terms equation (6.13) takes the form;

DDet(I + A) = 1 +
λR′

κ2
Tr
[
Rν′β′

νβ

]
+

1

κ2
Tr
[
Xν′β′

νβ

]
+
λ′F
κ2
Tr
[
F aν′β′F a

νβ

]
+

λ̃F
κ2
Tr
[
F aν′β′ε τκ

νβ F a
τκ

]
− λ2

R′

2κ4
Tr
[
Rν′β′

νβR
ρ′σ′

ρσ

]
− λ2

F ′

2κ4
Tr
[
F aν′β′F a

νβF
bρ′σ′F b

ρσ

]
− λ̃2

F

2κ4
Tr
[
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
− λ̃2

F

2κ4
Tr
[
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
− 1

2κ4
Tr
[
Xν′β′

νβX
ρ′σ′

ρσ

]
− λR′λF ′

κ4
Tr
[
Rν′β′

νβF
aρ′σ′F a

ρσ

]
− λR′λ̃F

κ4
Tr
[
Rν′β′

νβF
aρ′σ′ε τ ′κ′

ρσ F a
τ ′κ′

]
− λR′

κ4
Tr
[
Rν′β′

νβX
ρ′σ′

ρσ

]
− λF ′λ̃F

κ4
Tr
[
F aν′β′F a

νβF
bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
− λF ′

κ4
Tr
[
F aν′β′F a

νβX
ρ′σ′

ρσ

]
− λ̃F
κ4
Tr
[
Xρ′σ′

ρσF
aν′β′ε τκ

νβ F a
τκ

]
+

λ2
R′

2κ4

[
Tr
(
Rν′β′

νβ

)]2

+
λ2
F ′

2κ4

[
Tr
(
F aν′β′F a

νβ

)]2

+
λ̃2
F

2κ4

[
Tr
(
F aν′β′ε τκ

νβ F a
τκ

)]2

+
1

2κ4

[
Tr
(
Xν′β′

νβ

)]2

+
λR′λF ′

κ4
Tr
(
Rν′β′

νβ

)
Tr
(
F aρ′σ′F a

ρσ

)
+

λR′λ̃F
κ4

Tr
(
Rρ′σ′

ρσ

)
Tr
(
F aν′β′ε τκ

νβ F a
τκ

)
+

λR′

κ4
Tr
(
Rν′β′

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+

λF ′λ̃F
κ4

Tr
(
F aν′β′F a

νβ

)
Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
+

λF ′

κ4
Tr
(
F aν′β′F a

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+

λ̃2
F

κ4
Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
Tr
(
Xν′β′

νβ

)
(6.17)

Taking care of binomial expansion;

(1 + x)1/4 = 1 +
x

4
− 3

32
x2 +O(3) (6.18)
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Applying binomial expansion to (6.17);

(DDet (I + A))1/4 = 1 +
λR′
4κ2
Tr
[
Rν′β′

νβ

]
+ 1

4κ2
Tr
[
Xν′β′

νβ

]
+

λ′F
4κ2
Tr
[
F aν′β′F a

νβ

]
+ λ̃F

4κ2
Tr
[
F aν′β′ε τκ

νβ F a
τκ

]
− λ2

R′
8κ4
Tr
[
Rν′β′

νβR
ρ′σ′

ρσ

]
−λ2

F ′
8κ4
Tr
[
F aν′β′F a

νβF
bρ′σ′F b

ρσ

]
− λ̃2F

8κ4
Tr
[
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′
ρσ F b

τ ′κ′

]
− λ̃2F

8κ4
Tr
[
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′
ρσ F b

τ ′κ′

]
− 1

8κ4
Tr
[
Xν′β′

νβX
ρ′σ′

ρσ

]
− λR′λF ′

4κ4
Tr
[
Rν′β′

νβF
aρ′σ′F a

ρσ

]
−λR′ λ̃F

4κ4
Tr
[
Rν′β′

νβF
aρ′σ′ε τ ′κ′

ρσ F a
τ ′κ′

]
− λR′

4κ4
Tr
[
Rν′β′

νβX
ρ′σ′

ρσ

]
−λF ′ λ̃F

4κ4
Tr
[
F aν′β′F a

νβF
bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
− λF ′

4κ4
Tr
[
F aν′β′F a

νβX
ρ′σ′

ρσ

]
− λ̃F

4κ4
Tr
[
Xρ′σ′

ρσF
aν′β′ε τκ

νβ F a
τκ

]
+

λ2
R′

32κ4

[
Tr
(
Rν′β′

νβ

)]2

+
λ2
F ′

32κ4

[
Tr
(
F aν′β′F a

νβ

)]2
+

λ̃2F
32κ4

[
Tr
(
F aν′β′ε τκ

νβ F a
τκ

)]2

+ 1
32κ4

[
Tr
(
Xν′β′

νβ

)]2

+
λR′λF ′

16κ4
Tr
(
Rν′β′

νβ

)
Tr
(
F aρ′σ′F a

ρσ

)
+
λR′ λ̃F
16κ4

Tr
(
Rρ′σ′

ρσ

)
Tr
(
F aν′β′ε τκ

νβ F a
τκ

)
+

λR′
16κ4

Tr
(
Rν′β′

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+
λF ′ λ̃F
16κ4

Tr
(
F aν′β′F a

νβ

)
Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
+

λF ′
16κ4

Tr
(
F aν′β′F a

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+

λ̃2F
16κ4

Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
Tr
(
Xν′β′

νβ

)
(6.19)
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In the presence of these, our effective action (6.7) takes the form;

Seff = −
∫

d4xCDDM
2
Dκ

2(| − g|)1/2
[
1 +

λR′

4κ2
Tr
[
Rν′β′

νβ

]
+

1

4κ2
Tr
[
Xν′β′

νβ

]
+
λ′F
4κ2

Tr
[
F aν′β′F a

νβ

]
+
λ̃F
4κ2

Tr
[
F aν′β′ε τκ

νβ F a
τκ

]
−λ

2
R′

8κ4
Tr
[
Rν′β′

νβR
ρ′σ′

ρσ

]
−λ

2
F ′

8κ4
Tr
[
F aν′β′F a

νβF
bρ′σ′F b

ρσ

]
− λ̃

2
F

8κ4
Tr
[
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
− λ̃

2
F

8κ4
Tr
[
F aν′β′ε τκ

νβ F a
τκF

bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
− 1

8κ4
Tr
[
Xν′β′

νβX
ρ′σ′

ρσ

]
−λR

′λF ′

4κ4
Tr
[
Rν′β′

νβF
aρ′σ′F a

ρσ

]
−λR

′λ̃F
4κ4

Tr
[
Rν′β′

νβF
aρ′σ′ε τ ′κ′

ρσ F a
τ ′κ′

]
−λR

′

4κ4
Tr
[
Rν′β′

νβX
ρ′σ′

ρσ

]
−λF

′λ̃F
4κ4

Tr
[
F aν′β′F a

νβF
bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

]
−λF

′

4κ4
Tr
[
F aν′β′F a

νβX
ρ′σ′

ρσ

]
− λ̃F

4κ4
Tr
[
Xρ′σ′

ρσF
aν′β′ε τκ

νβ F a
τκ

]
+

λ2
R′

32κ4

[
Tr
(
Rν′β′

νβ

)]2

+
λ2
F ′

32κ4

[
Tr
(
F aν′β′F a

νβ

)]2

+
λ̃2
F

32κ4

[
Tr
(
F aν′β′ε τκ

νβ F a
τκ

)]2

+
1

32κ4

[
Tr
(
Xν′β′

νβ

)]2

+
λR′λF ′

16κ4
Tr
(
Rν′β′

νβ

)
Tr
(
F aρ′σ′F a

ρσ

]
+
λR′λ̃F
16κ4

Tr
(
Rρ′σ′

ρσ

)
Tr
(
F aν′β′ε τκ

νβ F a
τκ

)
+
λR′

16κ4
Tr
(
Rν′β′

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+
λF ′λ̃F
16κ4

Tr
(
F aν′β′F a

νβ

)
Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
+
λF ′

16κ4
Tr
(
F aν′β′F a

νβ

)
Tr
(
Xρ′σ′

ρσ

)
+
λ̃2
F

16κ4
Tr
(
F bρ′σ′ε τ ′κ′

ρσ F b
τ ′κ′

)
Tr
(
Xν′β′

νβ

) ]
(6.20)

We should cancel out the ghosty terms as in previous chapter via our rank-4 arbitrary
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tensor field Xµανβ .

1

4κ2
X =

1

8κ4

(
Rν′β′

νβR
νβ

ν′β′ −
R2

4

)
X =

1

2κ2

(
Rν′β′

νβR
νβ

ν′β′ −
R2

4

)
(6.21)

Assume that;

Xν′β′

νβ = A
λR′

2κ2

(
Rν′β′

νβR
νβ

ν′β′ −
R2

4

)(
δν
′

ν δ
β′

β − δ
β′

ν δ
ν′

β

)
(6.22)

The trace of Xµανβ;

X = 1
2
Xν′β′

νβ

(
δν
′
ν δ

β′

β − δβ
′

ν δ
ν′

β

)
X = 1

2
A
λR′
2κ2

(
Rν′β′

νβR
νβ

ν′β′ − R2

4

)(
δν
′
ν δ

β′

β − δβ
′

ν δ
ν′

β

)(
δνν′δ

β
β′ − δνβ′δ

β
ν′

)
A = 1

D(D−1)
(6.23)

D=4⇒A = 1
12

. Hence,

Xν′β′

νβ =
λR′

24κ2

(
Rν′β′

νβR
νβ

ν′β′ −
R2

4

)
(6.24)

After inserting equation (6.24) into effective action (6.20) and cutting our expansion at
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second order, the effective action takes the form as;

Seff = −
∫

d4xCDDM
2
Dκ

2(| − g|)1/2
[
1 +

λR′
4κ2
R

+
λ′F
4κ2
F aνβF a

νβ + λ̃F
4κ2
F aνβε τκ

νβ F a
τκ

−λ2
F ′

8κ4

[
F aν′β′F a

νβFbν′β′F
bνβ − 1

4

(
F a
νβF

aνβ
)2
]

− λ̃2F
8κ4

[
F aν′β′ε τκ

νβ F a
τκF

bν′β′ενβρσF
bρσ − 1

4

(
F aνβενβτκF

a
τκ

)2
]

−λR′ λ̃F
4κ4

[
Rν′β′

νβF
aτ ′κ′ενβτκF

aτκ − R
4
F aνβε τκ

νβ F a
τκ

]
−λF ′ λ̃F

4κ4

[
F aν′β′F a

νβFbν′β′ε
νβ
τκF

bτκ − 1
4
F aηθF a

ηθF
bνβε τκ

νβ F b
τκ

]
+
λR′λF ′

4κ4

(
Rν′β′

νβF
a
ν′β′F

aνβF a
ν′β′ − R

4
F aνβFaνβ

) ]
+O(A3) (6.25)

There are two possibilities of gravitational constant and constant curvature. When they

are equal to each other MD = κ;

Seff = −
∫

d4xCDD(| − g|)1/2
[
κ4 + κ2 λR′

4
R

+κ2 λ
′
F

4
F aνβF a

νβ + κ2 λ̃F
4
F aνβε τκ

νβ F a
τκ

−λ2
F ′
8

[
F aν′β′F a

νβFbν′β′F
bνβ − 1

4

(
F a
νβF

aνβ
)2
]

− λ̃2F
8

[
F aν′β′ε τκ

νβ F a
τκF

bν′β′ενβρσF
bρσ − 1

4

(
F aνβενβτκF

a
τκ

)2
]

−λR′ λ̃F
4κ4

[
Rν′β′

νβF
aτ ′κ′ενβτκF

aτκ − R
4
F aνβε τκ

νβ F a
τκ

]
−λF ′ λ̃F

4κ4

[
F aν′β′F a

νβFbν′β′ε
νβ
τκF

bτκ − 1
4
F aηθF a

ηθF
bνβε τκ

νβ F b
τκ

]
+
λR′λF ′

4κ4

(
Rν′β′

νβF
a
ν′β′F

aνβF a
ν′β′ − R

4
F aνβFaνβ

) ]
+O(A3) (6.26)
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When they do not equal to each other MD 6= κ;

Seff = −
∫

d4xCDDM
2
D(| − g|)1/2

[
κ2 +

λR′
4
R

+
λ′F
4
F aνβF a

νβ + λ̃F
4
F aνβε τκ

νβ F a
τκ

−λ2
F ′

8κ2

[
F aν′β′F a

νβFbν′β′F
bνβ − 1

4

(
F a
νβF

aνβ
)2
]

− λ̃2F
8κ2

[
F aν′β′ε τκ

νβ F a
τκF

bν′β′ενβρσF
bρσ − 1

4

(
F aνβενβτκF

a
τκ

)2
]

−λR′ λ̃F
4κ2

[
Rν′β′

νβF
aτ ′κ′ενβτκF

aτκ − R
4
F aνβε τκ

νβ F a
τκ

]
−λF ′ λ̃F

4κ2

[
F aν′β′F a

νβFbν′β′ε
νβ
τκF

bτκ − 1
4
F aηθF a

ηθF
bνβε τκ

νβ F b
τκ

]
+
λR′λF ′

4κ2

(
Rν′β′

νβF
a
ν′β′F

aνβF a
ν′β′ − R

4
F aνβFaνβ

) ]
+O(A3) (6.27)

We are going to consider (6.27) in our work.

6.2. Relation to Vector Inflation

Our goal is to derive dynamical equations for homogeneous and isotropic universe,

for FRW background and to demonstrate inflation comes naturally from our effective

action. To do that we should calculate traces of tensor fields in FRW background [44] as
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a second step.

Seff = −
∫

d4xCDDM
2
D(| − g|)1/2

[
κ2 +

λR′
4
R

+
λ′F
4
F aνβF a

νβ︸ ︷︷ ︸
1

+ λ̃F
4
F aνβε τκ

νβ F a
τκ︸ ︷︷ ︸

2

−λ2
F ′

8κ2

F aν′β′F a
νβFbν′β′F

bνβ︸ ︷︷ ︸
3

−1
4

(
F a
νβF

aνβ
)2


− λ̃2F

8κ2

F aν′β′ε τκ
νβ F a

τκF
bν′β′ενβρσF

bρσ︸ ︷︷ ︸
4

−1
4

(
F aνβενβτκF

a
τκ

)2


−λR′ λ̃F

4κ2

Rν′β′

νβF
aτ ′κ′ενβτκF

aτκ︸ ︷︷ ︸
6

−R
4
F aνβε τκ

νβ F a
τκ


−λF ′ λ̃F

4κ2

F aν′β′F a
νβFbν′β′ε

νβ
τκF

bτκ︸ ︷︷ ︸
7

−1
4
F aηθF a

ηθF
bνβε τκ

νβ F b
τκ


+
λR′λF ′

4κ2

Rν′β′

νβF
a
ν′β′F

aνβ︸ ︷︷ ︸
5

−R
4
F aνβFaνβ

]+O(A3) (6.28)

Calculation of the first term;

F aνβF a
0β = F a0βF a

0β + F aiβF a
iβ

= F a00F a
00 + F a0iF a

0i + F ai0F a
i0 + F aijF a

ij

= −a−2φ̇δaj δjiφ̇δ
a
i + a−2φ̇δaj δjiφ̇δ

a
i

+ a−4gφ2δkiδljεaklgφ
2εaij

= −a−2φ̇2δaa − a−2φ̇2δaa + a−4g2φ2εaklε
a
kl

= −6a−2φ̇2 + 6a−4g2φ4 (6.29)
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Calculation of the second term;

F aνβε τκ
νβ F a

τκ = F a0βε τκ
0β F a

τκ + F aiβε τκ
iβ F a

τκ

= F a0iε τκ
0i F a

τκ + F a0iε τκ
0i F a

τκ

+ F ai0ε τκ
i0 F a

τκ + F aijε τκ
ij F a

τκ

= −a−2φ̇δai ε
jκ

0i F a
jκ + a−2φ̇δai ε

jκ
i0 F a

jκ

− a−4gφ2εaij

(
ε 0κ
ij F a

0κ + ε kκ
ij F a

kκ

)
= −a−2φ̇δai

(
ε jk

0i F a
jk − ε

jk
i0 F a

jk

)
− a−4gφ2εaij

(
ε 0k
ij F a

0k + ε k0
ij F a

k0 + ε kl
ij F a

kl

)
= 2a−2gφ̇φ2ε jki

(
a−2ε jk

0i + a−4ε i0
jk

)
= 2gφ̇φ2ε jki

(
a−6ε0ijk + a−6εjki0

)
= 24gφ̇φ2a−6 (6.30)

Calculation of the third term;

F aν′β′F a
νβFbν′β′F

bνβ =
(
F aν′0F b

ν′0 + F aν′iF b
ν′i

)
F bνβF a

νβ

= F a
νβF

bνβ
(
F ai0F b

i0 + F a0iF b
0i + F ajiF b

ji

)
= F a

νβF
bνβ
(
−2a−2gφ̇2δab + a−4gφ4εajiε

a
ji

)
= 2δaba−4

(
−a2φ̇2 + g2φ4

) (
F a

0βF
b0β + F a

iβF
biβ
)

= 2δaba−4
(
−a2φ̇2 + g2φ4

)(
−2a−2φ̇2δab + g2φ4a−42δab

)
= 12a−8

(
g2φ4 − a2φ̇2

)2

(6.31)

38



Calculation of the fourth term;

F aν′β′ε τκ
νβ F a

τκF
b
ν′β′ε

νβ
ρσF

bρσ = F a0β′ε τκ
νβ F a

τκF
b
0β′ε

νβ
ρσF

bρσ

+ F aiβ′ε τκ
νβ F a

τκF
b
iβ′ε

νβ
ρσF

bρσ

= F a0iF b
0iε

τκ
νβ F a

τκε
νβ
ρσF

bρσ

+
(
F ai0F b

i0 + F aijF b
ij

)
ε τκ
νβ F a

τκε
νβ
ρσF

bρσ

= 2δaba−4
(
−a2φ̇2 + g2φ4

)
ε τκ
νβ F a

τκ

×
(
ενβ0σF

b0σ + ενβiσF
biσ
)

= 2δaba−4
(
−a2φ̇2 + g2φ4

)
×

(
−2a−2φ̇δbi ε

νβ
0i − gφ

2a−4εbaijε
νβ
ij

)
×

(
ενβ0kF

a
0k + ενβk0F

a
k0 + ενβklF

a
kl

)
= 2a−4

(
g2φ4 − a2φ̇2

)
×

(
24a2φ̇2 − 24a−4g2φ4

)
(6.32)

Calculation of the fifth term;

Rν′β′

νβF
a
ν′β′F

aνβ = R0β′

νβF
a
0′β′F

aνβ

+ Riβ′

νβF
a
iβ′F

aνβ

= −4φ̇2a−2δijR
0i

0j + g2φ4a−4εaijε
a
klR

ij
kl

= 6a−4

[(
ä

a
+ a

(
ȧ

a

)2
)(
−2φ̇2a2 + g2φ4

)]
(6.33)
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Calculation of the sixth term;

Rν′β′

νβF
a
ν′β′ε

νβ
τκF

aτκ =
(
R0β′

νβF
a
0β′ +Riβ′

νβF
a
iβ′

)
×

(
ενβ0κF

a0κ + ενβjκF
ajκ
)

=
(

2φ̇δaiR
0i
νβ − gφ2εaikR

ik
νβ

)
×

(
−2a2φ̇δaj ε

νβ
0j − a

−4gφ2εajlε
νβ
jl

)
= 4a−6gφ̇φ2

(
ä

a
+ 2

ȧ2

a2

)
εi jlε0ijl

+ 2a−6gφ̇φ2

(
ä

a
+ 2

ȧ2

a2

)
εj ikεik0j

= 36a−6gφ̇φ2

(
ä

a
+ 2

ȧ2

a2

)
(6.34)

Calculation of the seventh term;

F aν′β′F a
νβF

b
ν′β′ε

νβ
τκF

bτκ = F aν′β′F a
νβF

b
ν′β′

(
ενβ0κF

b0κ + ενβiκF
biκ
)

= 0 (6.35)

Inserting the terms into the equation (6.28);

Seff = −
∫

d4xCDDM
2
D(| − g|)1/2

[
κ2 +

λR′
4
R

+
λ′F
4
− 6a−2φ̇2 (+6a−4g2φ4) + λ̃F

4
24gφ̇φ2a−6

−λ2
F ′

8κ2

[
12a−8

(
g2φ4 − a2φ̇2

)2

− 1
4

(
F a
νβF

aνβ
)2
]

− λ̃2F
8κ2

[
48a−8

(
g2φ4 − a2φ̇2

)2

− 1
4

(
F aνβενβτκF

a
τκ

)2
]

−λR′ λ̃F
4κ2

[
36a−6gφ̇φ2

(
ä
a

+ 2 ȧ
2

a2

)
− R

4
F aνβε τκ

νβ F a
τκ

]
−λF ′ λ̃F

4κ2

[
−1

4
F aηθF a

ηθF
bνβε τκ

νβ F b
τκ

]
+
λR′λF ′

4κ2
6a−4

[(
ä
a

+ a
(
ȧ
a

)2
)(
−2φ̇2a2 + g2φ4

)]
−λR′λF ′

4κ2
R
4
F aνβFaνβ

]
(6.36)
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We can rearrange the action;

Seff = −
∫

d4xCDDM
2
D(| − g|)1/2

[
κ2 +

3λR′
2

(
ä
a

+ a
(
ȧ
a

)2
)

+
3λ′F

2
− a−4

(
−a2φ̇2 + g2φ4

)
+ 6λ̃Fgφ̇φ

2a−6

−λ2
F ′

8κ2

[
12a−8

(
g2φ4 − a2φ̇2

)2

− ga−8
(
g2φ4 − a2φ̇2

)2
]

− λ̃2F
8κ2

[
48a−8

(
g2φ4 − a2φ̇2

)2

− 144a−12g2φ̇2φ4

]
−λR′ λ̃F

4κ2

[
36a−6gφ̇φ2

(
ä
a

+ 2 ȧ
2

a2

)
− 36a−6gφ̇φ2

(
ä
a

+ ȧ2

a2

)]
−λF ′ λ̃F

4κ2

[
−36a−10gφ̇φ2g2φ4 − a2φ̇2

] ]
(6.37)

Action takes the form as;

Seff = −
∫

d4x4M2
D(| − g|)1/2

[
κ2 +

(
3λR′

2
a−1 +

3λR′λF ′
4κ2

a−5g2φ4 +
3λR′λF ′

4κ2
a−3φ̇2

)
ä(

3λR′
2
a−2 − 3λR′λF ′

4κ2
a−6g2φ4 +

15λR′λF ′
4κ2

a−4φ̇2
)

(ȧ2)(
3λ′F

2
− a−4g2φ4 − 3λ′F

2
a−2φ̇2 + 9

λF ′ λ̃F
κ2

a−8gφ̇3φ2
)

−3
λ2
F ′

8κ2
a−8g2φ4 − 6

λ2
F ′
κ2
a−8g2φ4 − 3

λ2
F ′

8κ2
a−6φ̇2

]
(6.38)

To find the dynamics;

ρ =
∂Lred
∂φ̇

φ̇− Lred

p =
∂a3Lred
∂a3

(6.39)

∂Lred
∂φ̇

φ̇ =
3λR′λF ′

2κ2
a−3φ̇ä+

(
15λR′λF ′

2κ2
a−4φ̇− 9λR′λ̃F

κ2
a−8gφ2

)
ȧ2

− 3λF ′φ̇a
−2 − 27λF ′λ̃F

κ2
gφ2φ̇3a−2 +

(
3λF ′

4κ2
+

12λF ′λ̃F
κ2

)
a−6φ̇2

+ 6λ̃Fgφ̇φ
2a−6 +

9λF ′λ̃F
κ2

g3φ6φ̇a−10 +
36λ̃F
κ2

gφ4φ̇2a−12 (6.40)
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According to equation (6.39);

ρ = −4M2
D

[
− κ2 −

(
3λR′

2
a−1 +

3λR′λF ′

4κ2
a−5g2φ4 − 3λR′λF ′

4κ2
a−3φ̇2

)
ä

−
(

3λR′

2
a−2 − 3λR′λF ′

4κ2
a−6g2φ4 +

15λR′λF ′

4κ2
a−4φ̇2

)
ȧ2

− 3λF ′

2
a−4g2φ4 +

3λF ′

2
a−2φ̇2 − 18λF ′λ̃F

κ2
a−2gφ2φ̇3

+

(
3λ2

F ′

8κ2
+

6λ̃2
F

κ2

)(
a−8g2φ4 + a−6φ̇2

)
+

18λ̃2
F

κ2
a−12φ̇2g2φ4

]
(6.41)

and

p = −4M2
D

[
κ2 +

(
λR′a

−1 − 3λR′λF ′

2κ2
a−5g2φ4

)
ä

+

(
λR′

2
a−2 +

3λR′λF ′

4κ2
a−6g2φ4 − 5λR′λF ′

4κ2
a−4φ̇2 +

15λF ′λ̃F
κ2

a−8gφ2φ̇

)
ȧ2

− λF ′

2
a−4g2φ4 +

λF ′

2
a−2φ̇2 − 21λF ′λ̃F

κ2
a−10g3φ6φ̇− 15λF ′λ̃F

κ2
a−8gφ2φ̇3

+

(
5λ2

F ′

κ2
+

10λ̃2
F

κ2

)
a−8g2φ4 −

(
3λ2

F ′

8κ2
+

6λ̃2
F

κ2

)
a−6φ̇2

− 6λ̃Fa
−6gφ̇φ2 +

54λ̃2
F

κ2
a−12φ̇2g2φ4

]
(6.42)

As mentioned in Chapter 3; to determine inflation conditions we should derive slow-roll

parameters. First step is to write down the Hubble Constant H, Ḣand H2;

H2 = − 4M2
D

[
− κ2

3
−
(
λR′

2
a−1 +

λR′λF ′

4κ2
a−5g2φ4 − λR′λF ′

4κ2
a−3φ̇2

)
ä

−
(
λR′

2
a−2 − λR′λF ′

4κ2
a−6g2φ4 +

5λR′λF ′

4κ2
a−4φ̇2

)
ȧ2

− λF ′

2
a−4g2φ4 − λF ′

2
a−2φ̇2 +

6λF ′λ̃F
κ2

a−2gφ2φ̇3

+

(
λ2
F ′

8κ2
+

2λ̃2
F

κ2

)(
a−8g2φ4 + a−6φ̇2

)
+

6λ̃2
F

κ2
a−12φ̇2g2φ4

]
(6.43)
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Ḣ = − 4M2
D

[(λR′
2
a−1 +

5λR′λF ′

4κ2
a−5g2φ4 − 3λR′λF ′

4κ2
a−3φ̇2

)
ä

+

(
λR′a

−2 − 3λR′λF ′

8κ2
a−6g2φ4 +

5λR′λF ′

κ2
a−4φ̇2 − 15λR′λF ′

κ2
a−8gφ̇φ2

)
ȧ2

+
2λF ′

κ2

(
a−4g2φ4 + a−2φ̇2

)
+

21λF ′λ̃F
κ2

a−10g3φ6φ̇

− 33λF ′λ̃F
κ2

a−8gφ2φ̇3 −

(
λ2
F ′

κ2
+

16λ̃2
F

κ2

)
a−8g2φ4

+ 6λ̃Fa
−6gφ̇φ2 +

36λ̃2
F

κ2
a−12φ̇2g2φ4

]
(6.44)

To supply inflation conditions, we should interpret the ratio of Ḣand H2 since

ε = − Ḣ

H2

− Ḣ

H2
� 1 (6.45)

Then in view of absolute value;

∣∣∣∣∣ ḢH2

∣∣∣∣∣� 1 (6.46)

The Friedmann equations above may seem too complicated to draw a conclusion about

slow roll behavior. However, their a(t) dependence already gives some clues on their

evolutionary character. Both H2 and Ḣ have two pieces; one piece that depends on φ(t)

and another piece that does not. By simply examining those terms up to O(a−2) one

sees that Ḣ/H2 � 1. Though a numerical computation might give better view of the

solutions, still one concludes that the slow-roll conditions are satisfied for a wide range of

parameter values.
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CHAPTER 7

CONCLUSION

In this work, we have established a new gravitational theory that we name as Born-

Infeld-Riemann gravity. This theory is based on the Riemann tensor in the action. Among

other features, it has the important property that, it allows for unification of Yang-Mills

fields and gravity in one single formalism. This feature is completely new, and has not

been found in other gravitational theories.

For both extracting the physics implications of the model and performing an appli-

cation to a physical phenomenon, we have discussed, after building the model, the gauge

field inflation. In this scenario, cosmic inflation is caused by a non-Abelian gauge field in

homogeneous and isotropic background.

This thesis work, supplemented by a number of appendices, concludes that Born-

Infeld-Riemann gravity is a physically consistent extension of the GR, and it brings strik-

ing novelty in the treatment of non-Abelian gauge fields. Moreover, it covers inflationary

epoch for a wide range of parameters.

This theory is an extension of the Born-Infeld theory to non-Abelian fields, and it

can explain a number of cosmological phenomena.
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APPENDIX A

INVARIANT VOLUME AND DETERMINANT OF

TENSORS

Einstein’s Special Relativity Theory shows that we live in a four dimensional

world which is called space-time. With the Theory of General Relativity, space-time

is considered in a geometrical nature. Basically the theory is based on a geometrical

structure which is called manifold. A manifold is smooth and locally flat [13, 66, 67].

Because of its smoothness, manifolds are differentiable. We are going to mention about

tensor fields which are defined on manifold, briefly.

First of all is the metric tensor. Metric tensor is a purely mathematical object and benefits

to measure space-time intervals. Coordinates can be choosed as xµ ≡ [x0, x1, x2, x3].

Here Greek indices label space-time coordinates. For any point of space-time we can find

a point that locally inertial: ζµ ≡ [ζ0, ζ1, ζ2, ζ3]. The line element is;

ds2 = ηµνdζ
µdζν (A.1)

where ηµν is Minkowski metric of flat space-time.

ds2 = ηµν
dζµ

dxτ
dζν

dxρ
dxτdxρds2 = gτρdx

τdxρ (A.2)

As seen from equation (2) gτρ is n×n diagonal, symmetric matrix. The symmetric part of

the metric tensor is different from zero so that norm can be measured. If the metric tensor

is defined in a theory, it is also used for raising or lowering indices. .The discussions still

go on about metric tensor: Should a theory include metric tensor, is it necessity? We are

going to explain these type of theories in Chapter 2.

In curved space-time how can we parallel transport [13, 41, 53, 67] a vector along

a curve? Clearly the transportation is not going to be the same with flat space. Riemann
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Curvature Tensor comes from this argument.

Rµ
ανβ = ∂νΓ

µ
βα − ∂βΓµνα + ΓµνλΓ

λ
βα − ΓµβλΓ

λ
να (A.3)

Riemann curvature tensor [46] contains everything about the curvature of space-time. We

mention flat space if and only if curvature tensor equals zero.

The last structure is connection. It appears in geodesic equation which means

that the path of moving object is determined by connection. It is not a tensorial structure

that changes with respect to the chosen coordinate system. The symmetrization or anti-

symmetrization in lower indices of connection gives us torsion of the space-time. As

mathematically we know that the difference between two non-tensorial structure gives

a tensorial structure that means torsion is a tensorial structure. Therefore if determined

connection is anti-symmetric in its lower indices;

Γλαβ − Γλβα = Sλαβ (A.4)

If determined connection is symmetric in its lower indices, torsion of the curved space-

time is zero.

In classical mechanical systems [41] we use action functional, in general. To un-

derstand features of a motion, we take the variation of the action with respect to dynamical

variables of motion. In General Relativty(GR) Theory action plays an important role, too.

We construct our theories upon Lagrangian Density which is symbolically called L. Be-

side the great success of GR, it is unfortunately an incomplete theory. It can not explain

such big problems that cosmological constant problem, inflation etc. Because of that for

years people have tried to modify Einstein’s GR Theory in several ways. An appropriate

action functional is constructed due to our theory and then equations of motion are de-

rived. Finally due to the equations of motion the results are interpreted. One way to check

a theory whether it survives or not, it should be examined that does the theory include GR

for limiting cases. The other way, for limiting cases, is to search the results are compatible

with the cosmological observations.

First of all the question is that how we can form an invariant action. Basically we define
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the action;

S =

∫
dtL(t) (A.5)

where L is called Lagrange function. If it is applied on a space-time manifold for four

dimensions;

S =

∫
d4xL(g,Γ, φ, φ̇...) (A.6)

Here L is called Lagrangian density and g is metric tensor, Γ is connection, φ is an arbi-

trary scalar field, φ̇ is the derivation of scalar field with respect to time. As long as we

obey some basic rules, we can add inifinite number of terms to Lagrangian density. Now

we are going to mention about these basic rules. As we know action is called a scalar-

quantity which means it is an invariant under all of the changes. For example; action

should be an invariant under coordinate transformations, gauge transformations, confor-

mal transformations.. etc. It makes sense because we don’t want the equations of motion

to change when the system is in a different frame.

Our primary aim is to make action Lorentz invariant. Suppose that Lagrangian

depends only on connection and partial differentiation of connection. On a D dimensional

space-time manifold;

S =

∫
dDxL(Γ, ∂Γ) (A.7)

where

dDx = dµ0x ∧ dµ1x ∧ · · · ∧ dµD−1x (A.8)

Changing coordinate system x→ x′ [3, 13, 67];

dDx =

∣∣∣∣ dx

dx′

∣∣∣∣ dDx′ (A.9)
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Since dDx 6= dDx′;dDx is not a tensor! We call these type of quantities as tensor density.

The coefficient of transformation in the form of determinant
∣∣ dx

dx′

∣∣ is called the Jacobian.

According to power of the Jacobian the weight of tensor density is defined. dDx is a

tensor density of weight ”+1”. In this situation action is obviously not an invariant. To

persist invariance of action, Lagrangian must involve a tensor density of weight ”-1”. The

best way of succeeding that is to use the notion of determinant.

Lorentz coordinate transformation of an arbitrary rank (0,2) tensor fieldRµν ;

Rµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
Rµν (A.10)

∂xµ
′

∂xµ
∂xν

′

∂xν
Rµ′ν′ = Rµν (A.11)

Taking determinant of both sides;

|Rµν | =
∣∣∣∣∂x′∂x

∣∣∣∣2 |Rµ′ν′ | (A.12)

where |Rµν | = Det [Rµν ]. Since the coefficient of |Rµ′ν′| is
∣∣∂x′
∂x

∣∣2, then the determinant

of a rank (0,2) tensor field is a tensor density of weight ”-2”.

In the same way Lorentz coordinate transformation of an arbitrary rank (1,3) ten-

sor field Qµανβ;

Qµ
′

α′ν′β′ =
∂xµ

′

∂xµ
∂xα

∂xα′
∂xν

∂xν′
∂xβ

∂xβ′
Qµ ανβ (A.13)

∂xµ

∂xµ′
∂xα

′

∂xα
∂xν

′

∂xν
∂xβ

′

∂xβ
Qµ

′

α′ν′β′ = Qµ ανβ (A.14)
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Taking determinant of both sides;

∣∣∣∣Qµ ανβ

∣∣∣∣ =

∣∣∣∣∂x′∂x

∣∣∣∣4 ∣∣∣∣∣∣Qµ′α′ν′β′∣∣∣∣∣∣ (A.15)

where
∣∣∣∣Qµ ανβ

∣∣∣∣ = DDet
[
Qµ ανβ

]
. Then the determinant of a rank (1,3) tensor field

is a tensor density of weight ”-4”.(Double Determinant is going to be called DDet in the

rest of thesis). As we see in equation, the notion of determinant differs from rank(0,2)

tensor field. The reason lies under the definition of determinant.

|Rµν | =
1

D!
∈µ0µ1µ2µ3∈ν0ν1ν2ν3 Rµ0ν0Rµ1ν1Rµ2ν2Rµ3ν3 (A.16)

and

∣∣∣∣Qµ ανβ

∣∣∣∣ = 1
D!2

∈µ0µ1µ2µ3∈α0α1α2α3∈ν0ν1ν2ν3∈β0β1β2β3

× Qµ0α0ν0β0
Qµ1α1ν1β1

Qµ2α2ν2β2
Qµ3α3ν3β3

(A.17)

where ∈µ0µ1µ2µ3 is totally anti-symmetric Levi-Civita Symbol [3, 13]. It’s not a tensor

or a tensor density. Because under the coordinate transformations, components stay the

same.

In any coordinate system;

If µ0µ1µ2µ3 is an even permutation of 0,1,2,3; then ∈µ0µ1µ2µ3= 1

If µ0µ1µ2µ3 is an odd permutation of 0,1,2,3; then ∈µ0µ1µ2µ3= −1

Otherwise ∈µ0µ1µ2µ3= 0

Using the definition of determinant [61, 62];

εµ0µ1...µD = |R|1/2 ∈µ0µ1...µD (A.18)

or

εµ0µ1...µD = ||Q||1/4 ∈µ0µ1...µD (A.19)
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and

εµ0µ1...µD = |R|−1/2 ∈µ0µ1...µD (A.20)

or

εµ0µ1...µD = ||Q||−1/4 ∈µ0µ1...µD (A.21)

Since εµ0µ1...µD is no longer a symbol, indices can be raised or lowered.

Our aim was to make action stay invariant. As mentioned before according to equation

(5) L 3 ”a tensor density of weight ”-1”. After all these discussions;

L 3 |R|1/2 , ||Q||1/4 (A.22)

In our work, we use these fundamental concepts and construct our theory based on

determinant of rank (0,4) tensor fields and our metric convention is (-+++). Finally, here

are some properties used in this work of completely anti-symmetric Levi-Civita Tensor

which are exemplified for 3D:

εaijεaij=̇

∣∣∣∣∣∣∣∣
δaa δai δaj

δia δii δij

δja δji δjj

∣∣∣∣∣∣∣∣ = 6 (A.23)

εaijεbij=̇

∣∣∣∣∣∣∣∣
δab δai δaj

δib δii δij

δjb δij δjj

∣∣∣∣∣∣∣∣ = 2δab (A.24)
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and some of them are examplified for 4D:

ε 0i
kl ε

kl
0i = g0kgblε

ab0iεkl0i = εab0iεab0i

=̇

∣∣∣∣∣∣∣∣∣∣∣

δkk δkl δk0 δki

δlk δll δl0 δli

δ0
k δ0

l δ0
0 δ0

i

δik δil δi0 δii

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

3 δkl 0 δki

δlk 3 0 δli

0 0 1 0

δik δil 0 3

∣∣∣∣∣∣∣∣∣∣∣
= −6 (A.25)

ε 0i
lm εlmkj = glagmbε

ab0iεlmkj = εab0iεabkj

=̇

∣∣∣∣∣∣∣∣∣∣∣

δlk δlm δlk δlj

δml δmm δmk δmj

δ0
l δ0

m δ0
k δ0

j

δil δim δik δij

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

3 δkl 0 δki

δlk 3 0 δli

0 0 1 0

δik δil 0 3

∣∣∣∣∣∣∣∣∣∣∣
= 0 (A.26)
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APPENDIX B

VARIATIONAL APPROACH

In the previous chapter, we explained the meaning of gravity, and the fundamental

notions. By using knowledge obtained from introduction, let us continue with explaining

variational procedures, to obtain field equations, and extended theories of gravity. Firstly

we explain variational method [1, 13, 39, 41, 43, 49].

In classical field theory, the way of finding equations of motion is called varia-

tional method. To understand what this method is, let us consider a Lagrangian density

L(φ, φ̇) and the action is given as;

S =

∫
dtL =

∫
d4xL

(
φi, ∂µφ

i
)

(B.1)

By considering small variation in this field;

φi → φi + δφi

∂µφ
i → ∂µφ

i + δ(∂µφ
i) = ∂µφ

i + ∂µ(δφi) (B.2)

Lagrangian Density varies;

L(φi, ∂µφ
i)→ L(φi + δφi, ∂µφ

i + ∂µ(δφi)) (B.3)

thus action varies by virtue of this small variation S → S + δS. Hence;

δS =

∫
d4xδφi

[
∂L
∂φi
− ∂µ

(
∂L
∂∂µφi

)]
(B.4)

We assume that φi is the same at the end points of the integral. Thus, by using this assump-

tion, we conclude that δS should be zero. This leads to field equations [13]. Therefore,

by using variational principle, we obtain the eqaution of motion for a Lagrangian which
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has one dynamical variable.

In general relativity, we use the same procedure to obtain field equations. How-

ever, there are some different methods according to dynamical variable in the Lagrangian.

We examined these methods in three parts in Chapter 2: Metric formulation, Metric Affine

formulation and Affine formulation [7, 12, 13, 15, 30, 43, 51].
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APPENDIX C

FIELD-STRENGTH TENSOR

Field Strength Tensor which is an antisymmetric, traceless rank (0,2) tensor field

depends on the electromagnetic field of particles. For a 4 dimensional space-time mani-

fold covariant field strength tensor takes the form as;

Fµν=̇


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (C.1)

and contravariant field strength tensor which is constructed via two contractions of field

strength tensor by metric takes the form as

F µν=̇


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 (C.2)

Field strength tensor includes all the information about electromagnetic fields.

Since it is an antisymmetric tensor, there are six independent components. The other

important notion is the dual of Field Strength Tensor which is;

F ∗µν=̇


0 −Bx −By −Bz

Bx 0 −Ez Ey

By Ez 0 −Ex
Bz −Ey Ex 0

 (C.3)

Dual field strength tensor is an atisymmetric tensor field, too. One may associate the

duality with rotation. Electric field and Magnetic field are transformative quantities. Dual
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field strength tensor is a good way to show this transformation. We obtain dual field

strength tensor with the help of totally antisymmetric tensor field.

F ∗µν =
1

2
εµναβF

αβ (C.4)

As seen in Appendix A, it is also important to construct invariant volume elements

in GR. Dual field strength tensor is one of the ways to construct. Both F µνFµν and F µνF ∗µν

are Lorentz invariant quantities. With this analysis we understand the field strength tensor

and its dual.

The next step is to examine Field Strength Tensor in the view of Particle Physics.

Field Strength Tensor is built up from the four-potential which is Aµ = (A0, ~A). Here,

A0 is electric potential and ~A is 3D vector potential. Under Gauge Transformation field

strength tensor remains unchanged. For abelian theories field strength tensor is

Fµν = ∂µAν − ∂νAµ (C.5)

If we consider consider non-abelian theories, what does field strength tensor re-

acts? Would it be remain unchanged? To answer this question, from (C.5) under local

gauge transformation Aµ → i
g
Aµfield strength tensor takes the form as;

F ′µν = GFµνG
−1

= ∂µ

(
GAνG

−1 +
i

g
(∂νG)G−1

)
− ∂ν

(
GAµG

−1 +
i

g
(∂µG)G−1

)
= G (∂µAν − ∂νAµ)G−1 + ((∂νG)Aµ − (∂µG)Aν)G

−1

+ G
(
Aµ(∂νG

−1) + Aν(∂µG
−1)
)

+
i

g

(
(∂µG)(∂νG

−1)− (∂νG)(∂µG
−1)
)

6= GFµνG
−1 (C.6)

Field Strength Tensor changes under local gauge transformations. It means that an addi-

tional term should be added to field strength tensor. This term comes from the non-abelian

group structure. Since Fµν = 1
iq

[Dµ, Dν ] with Dµ = ∂µ + iqAµ Consequently for non-
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abelian group structures, Field Strength Tensor takes the form as;

Fµν = ∂µAν − ∂νAµ + iq [Aµ, Aν ] (C.7)

Field strength tensor is no longer changable in local gauge transformations. If we rear-

range equation(C.8), considering group index,

F a
µν = ∂µA

a
ν − ∂νAaµ − gεabcAbµ, Acν (C.8)

In our work, we choose the condition [44] Aa0 = 0 and

µ = i⇒ Aaµ = φ(t)δaµ

µ = 0⇒ Aaµ = 0

Then inflation is caused only by spatial terms which depend only on t. In the

precense of that Field Sterngth Tensor components are;

F a
00 = 0 (C.9)

F a
0i = φ̇δai (C.10)

F a0i = −a2φ̇δai (C.11)
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APPENDIX D

EXPANSION

In this appendix, we are going to examine the expansion of Determinant expres-

sion. It is going to be concluded that the expansion of determinant and the expansion of

double determinant expressions are the same. The best way is to examine determinant

expression, firstly [3, 67].

DetM = eTr(lnM) (D.1)

Det(I + A) =
∞∑
k=0

1

k!

[
−
∞∑
j=1

(−1)j

j
Tr(Aj)

]k

= exp

[
−
∞∑
j=1

(−1)j

j
Tr(Aj)

]

= exp

[
Tr

(
−
∞∑
j=1

(−1)j

j
Tr(Aj)

)]
= exp [Tr(ln(I + A))] (D.2)

We are going to express the terms of summation on j;

Det(I + A) =
∞∑
k=0

1

k!

[
−
∞∑
j=1

(−1)j

j
Tr(Aj)

]k

=
∞∑
k=0

1

k!

[
TrA− 1

2
Tr(A2) +

1

3
Tr(A3)− 1

4
Tr(A4) +

1

5
Tr(A5) + ...

]k
(D.3)
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Now we are going to express the terms of summation on k;

Det(I + A) = 1︸︷︷︸
k=0

+TrA− 1

2
Tr(A2)︸ ︷︷ ︸

k=1

+
1

2

[
(TrA)2 − (TrA)Tr(A2) +

1

4
(Tr(A2))2

]
︸ ︷︷ ︸

k=2

+... (D.4)

If we cut the expansion in the order of cubic level;

Det(I + A) = 1 + TrA− 1

2
Tr(A2) +

1

2
(TrA)2 +O(A3) (D.5)

We know binomial series expansion (Arfken, )

(1 + x)α =
∞∑
k=0

(
α

k

)
xk (D.6)

(Det(I + A))1/2 =

1 + TrA− 1

2
Tr(A2) +

1

2
(TrA)2︸ ︷︷ ︸

x


1/2

(D.7)

Due to expansion in equation (D.6), one can expand equation (D.7);

(Det(I + A))1/2 = 1 + 1
2

(
TrA− 1

2
Tr(A2) + 1

2
(TrA)2

)
− 1

8

(
TrA− 1

2
Tr(A2) + 1

2
(TrA)2

)2

(Det(I + A))1/2 = 1 + 1
2
TrA− 1

4
Tr(A2) + 1

8
(TrA)2 +O(x3) (D.8)

Since Double Determinant expression is the same with Determinant expression as in equa-
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tion (D.1), the form of expansion must be the same. According to (D.2);

DDet(I + A) =
∞∑
k=0

1

k!

[
−
∞∑
j=1

(−1)j

j
Tr(Aj)

]k
= 1 + TrA− 1

2
Tr(A2) + 1

2
(TrA)2 + . . . (D.9)

Due to equation (D.6);

(1 + x)1/4 = 1 +
1

4
x− 3

32
x2 +O(x3) (D.10)

and arranging equation (D.11)

[DDet(I + A)]1/4 =

1 + TrA− 1

2
Tr(A2) +

1

2
(TrA)2︸ ︷︷ ︸

x


1/4

[DDet(I + A)]1/4 = 1 + 1
4
TrA− 1

8
Tr(A2) + 1

32
(TrA)2 (D.11)

We are going to use these expansions during our work.
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APPENDIX E

TRACE OF A MATRIX

In this thesis, we try to construct a new theory. Expansions make us to calculate

traces of the rank-4 tensors. In this Appendix, we try to formulate what trace is [3, 50].

Basicly, trace of a matrix is the sum of diagonal elements of matrix. Consider an

arbitrary matrix Mab. Trace of M;

Tr(M) = Ma
a (E.1)

Mathematically we use some features of trace such as:

Tr(M −N) = Tr(M)− Tr(N) (E.2)

and

Tr(MN) 6= Tr(M)Tr(N) (E.3)

On the contrary, it should be pointed that

Tr (MN) =
∑
i

(MN)ii =
∑
i

(∑
j

mijnji

)

=
∑
j

∑
i

njimij =
∑
j

(MN)jj

= Tr (NM) (E.4)

It indicates that we should displace the matrices wit each other in this way.

For tensorial structures, the contraction is caused by metric tensor. For example,
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trace of an arbitrary rank-2 tensor field, Aµν , is

Tr(A) = Aµµ (E.5)

It should be used either metric tensor gµν or (especially for affine theories) δµν

Tr(A) = Aµµ = gµνAµν (E.6)

or

Tr(A) = δνµA
µ
ν (E.7)

In this thesis, we write down the traces of terms in this way:

Tr(F aν′β′F a
νβ) = Iνβν′β′F

aν′β′F a
νβ

=
1

2

(
δνν′δ

β
β′ − δ

ν
β′δ

β
ν′

)
F aν′β′F a

νβ

=
1

2

F aνβF a
νβ − F aβν︸︷︷︸

−Faνβ
F a
νβ


= Tr(F aνβF a

νβ) (E.8)

and

Tr(F aν′β′ε τκ
νβ F a

τκ) = Iνβν′β′F
aν′β′ε τκ

νβ F a
τκ

=
1

2

(
δνν′δ

β
β′ − δ

ν
β′δ

β
ν′

)
F aν′β′ε τκ

νβ F a
τκ

=
1

2

F aνβε τκ
νβ F a

τκ − F aβν︸︷︷︸
−Faνβ

ε τκ
νβ F a

τκ


= F aνβε τκ

νβ F a
τκ (E.9)
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