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ABSTRACT 

HEAT AND FLUID FLOW ANALYSIS IN A CHANNEL PARTIALLY 

FILLED WITH PERMEABLE ISOTROPIC POROUS LAYER 

A theoretical study is performed on heat and fluid flow in a parallel plate 

channel completely and partially filled with porous medium. An asymmetric heat flux is 

imposed onto the boundary conditions of the channel fully filled with porous media. 

However, a symmetrical heat flux is applied to the channel partially filled with porous 

medium. Dimensional analysis is performed on three parallel plates having different 

permeability and effective thermal conductivity values. The dimensionless analysis is 

performed for parallel plates with different values of Da and thermal conductivity ratio. 

Darcy-Brinkman model is used to investigate the velocity distribution in porous media. 

The dimensional and dimensionless energy equation and appropriate boundary 

conditions are written for the analyzed channels. The dimensional equations of motion 

and heat are solved by numerical methods, while the dimensionless form of those 

equations are analytically solved to obtain analytical expressions for the velocity and 

temperature fields in the channel. The dimensional temperature and velocity profiles, 

obtained by numerical methods, are compared with the analytical expressions of 

dimensionless temperature and velocity profiles and good agreement between the 

results were observed. For both fully filled asymmetric heated channel and partially 

filled symmetrical heated channel, it is observed that the traditional temperature 

difference (difference between surface and mean temperatures) is not proper to be used 

in the individual heat transfer coefficient since heat transfer coefficient approaches to 

infinity and changes sign without changing of heat transfer direction. Hence, a proper 

temperature difference is required to be defined.  
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ÖZET 

GEÇİRGEN İZOTROPİK GÖZENEKLİ KATMAN İLE KISMİ 

OLARAK DOLDURULMUŞ KANALDA ISI VE AKIŞ ANALİZİ 

 

Bu çalışma, tamamen ve kısmen gözenekli ortamla doldurulmuş paralel kanallar 

içerisindeki ısı ve akışkan akışının teorik olarak incelenmesidir. Tamamen gözenekli 

ortamla doldurulmuş kanalların üst ve alt duvarlarına sabit fakat farklı miktarda ısı akısı 

verilirken, kısmen doldurulmuş kanalın duvarlarına sabit ve eşit miktarda ısı verilmiştir. 

Boyutsal analiz; farklı geçirgenliklere ve farklı etkin ısı iletim katsayılarına sahip üç 

paralel kanala yapılmıştır Boyutsuz analiz de farklı Darcy numarasına ve farklı ısı iletim 

oranına sahip paralel kanallar üzerine yapılmıştır. Gözenekli ortam içerisindeki hız 

dağılımları Darcy- Brinkman modeli kullanılarak elde edilmiştir. İncelenen kanallar için 

boyutlu ve boyutsuz enerji denklemleriyle sınır koşulları yazılmıştır. Boyutlu hız ve 

enerji denklemleri nümerik olarak çözülürken, boyutsuz hız ve enerji denklemleri 

analitik olarak çözülmüştür. Boyutlu nümerik analizlerin sonuçlarıyla boyutsuz analitik 

analizlerin sonuçları karşılaştırılmış ve birbirleri arasında uyum olduğu 

gözlemlenmiştir. Zorlanmış taşınımda genel olarak kullanılan ısı farkı ifadesinin, 

asimetrik bir biçimde ısıtılan tam doldurulmuş kanallarda ve simetrik ısıtılan kısmen 

doldurulmuş kanallarda kullanılmasının, ısı taşınım katsayısının sonsuza gitmesi ve ısı 

transferinin yönü değişmezken ısı taşınım katsayısının işaretinin değişmesi gerekçesiyle 

bu tip çalışmalar için uygun olmadığı gözlemlenmiştir. Dolayısıyla yeni bir ısı farkı 

ifadesinin tanımlanması gerekmektedir.  
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CHAPTER 1 

INTRODUCTION 

A heat transfer phenomenon is widely faced in the most engineering 

applications. The enhancement of heat transfer is one of the topic gains attentions of 

researchers in recent years. By enhancing of heat transfer not only the size of the 

equipment can be reduced but also the equipment thermal efficiency can be 

significantly improved. That’s why the heat transfer enhancement techniques are being 

developed over 140 years. A.E.Bergles [1] identified fifteen different heat transfer 

enhancement techniques. These techniques are classified as passive methods and active 

methods. The list of active and passive techniques is given in Table 1.1. 

 

Table 1.1. A list of various methods [1] 

Passive Techniques Active Techniques 

Treated surfaces Mechanical aids 

Rough surfaces Surface vibration 

Extended surfaces Fluid vibration 

Displaced enhancement 

devices 
Electrostatic fields 

Swirl flow devices Injection 

Coiled tubes Suction 

Surface tension devices Jet impingement 

Additives for liquids 
 

 

The difference between passive and active methods is the passive techniques do 

not require direct input of external power. The active techniques need addition of 

external power, this external power facilitates desired flow modification and provides 

improvement in the rate of heat transfer. In the case of passive techniques, 

modifications of surface or geometry of channels is required. Sometimes, incorporation 

of an insert or material can also be used to enhance the heat transfer. 
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As Vafai stated in his book [2], the enhancement of heat transfer basically can 

be made by reducing the thermal resistance of the heat transfer process. The definition 

of the thermal resistance should be made according to the mode of heat transfer; 

convection, conduction or radiation. This thesis is concerning about forced convection 

that’s why the following equation is used to define heat transfer process: 

 

 refw TTAhq   (1.1) 

 

In Equation 1.1,q is the heat transfer rate (W),  
refw TT   is the temperature 

difference, h is the convective heat transfer coefficient (W/m
2
k), and A is the heat 

transfer area (m
2
).There are two ways to provide a low the thermal resistance as a) 

increasing the heat transfer coefficient h and/or b) increasing the heat transfer area A. 

This thesis focuses on enhancing the convection heat transfer with both increasing of 

heat transfer area A and increasing of the heat transfer coefficient, h, by using porous 

media. The causes of the improvement of the heat transfer coefficient due to the usage 

of porous media are: a) the porous substrate provides mixing effect between the fluid 

and the wall, b) increasing the fluid effective thermal conductivity, c) making a thinner 

hydrodynamic boundary layer. 

Porous medium is defined as a material consisting of  finite volume solids with 

an interconnected void [3]. The solids can be either rigid or under a small deformation. 

The flow can be passed in the voids between the solids. The distribution of voids is 

irregular as well as their shape in a natural porous medium. Beach sand, sandstone, 

wood, and the human lung can be the examples of natural porous media. Rather than 

natural porous medium, there are artificial porous medium as regular shaped. Figure 1.1 

shows an example of the natural porous medium as limestone used in constructive 

industry [3]:  
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Figure 1.1. The examples of porous medium; Granular porous materials used in the 

construction industry [3] 

 

Convective heat transfer in porous media has received increasing interest over 

30 years, because it has numerous applications in many engineering areas. The 

applications for the use of porous media as an improving factor of convection heat 

transfer are electronic cooling applications, heat exchangers, heat pipes etc. Porous 

media provides the augmentation of the heat transfer as well as a decrease the size of 

these devices due to the increment of the amount of heat dissipation per unit area. 

However, completely filling the system with the porous media may be penalized 

by increasing pressure drop too much which in turns increases the cost of the pumping 

work of the system. In fact, the major challenge in designing a system is to achieve a 

high heat transfer rate using minimum pumping power. Therefore engineers prefer 

partially filling of the channels or duct in which heat transfer occurs, rather than 

complete fill of the channel to reduce the pressure drop. That’s why a considerable 

attention is paid to study heat transfer in channels partially filled with porous materials.   

In the present study, forced convection heat transfer enhancement in parallel 

plate channels by using porous media is theoretically investigated. The steady state 

analysis is performed for all cases in the study. Pressure drop and heat transfer effects 

are investigated both numerically and analytically. The comparison between analytical 

solutions results and numerical solutions are shown for the studied cases.  

The present study starts with the comprehensive review of the literature on 

forced convection heat transfer in channels or ducts partially filled with porous medium 

in Chapter 2. In Chapter 3, information about basic concepts is given to provide a 

background for the next chapters of the study. It provides knowledge about the 

definition of porous media with all relevant terms, definition of dimensional and 

dimensionless parameters, analyzing energy and momentum equation used in porous 

media and theoretical background of the forced convection in the clear fluid channel.  
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In this thesis, four different analyses are made. In all cases, steady laminar flow 

is considered. Efforts are focused on identifying the influence of dimensional and 

dimensionless parameters on velocity field, heat transfer and pressure drop properties in 

completely and partially filled channels. The analysis starts with a dimensional study on 

a parallel plate channel completely filled with porous medium in Chapter 4. 

The dimensional momentum and energy equations with asymmetrical heat flux 

boundary conditions are presented. A dimensionless study on channel completely filled 

with porous medium with asymmetrical heat flux boundary conditions is performed in 

Chapter 5. In this case, all the governing equations are made dimensionless and solved 

analytically. The pressure drop along the considered channel is calculated by 

analytically. In Chapter 6, a dimensional study is made about a channel which partially 

filled by porous medium with symmetric heat flux boundary conditions. For the last 

case, dimensionless form of equations of momentum, energy and pressure drop are 

solved analytically for the channel partially filled by porous medium which has 

symmetrical heat flux boundary conditions. In Chapter 8, numerical approach for the 

solutions of dimensional form of the governing equations is given. Results and 

discussions are presented for the all aforementioned cases in Chapter 9.  In this chapter, 

numerical results which are velocity, temperature and pressure drop for the dimensional 

problems are given. Furthermore the results of dimensionless velocity and temperature 

expressions are given. The results are presented via graphics and tables. The conformity 

between numerical result and analytical results are also examined for three different 

type porous media and it is given in Chapter 9. The studies issues in this thesis are 

concluded in Chapter 10.  
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CHAPTER 2 

 

A REVIEW ON HEAT AND FLUID FLOW IN 

CHANNEL/DUCT PARTIALLY FILLED WITH POROUS 

MEDIUM 

The use of porous media to improve forced convection heat transfer in channels 

has wide range of applications. That is why; several numerical and experimental studies 

on internal flows in a channel or duct have been examined in order to provide a deeper 

understanding of the transport mechanism of momentum and heat transfer in porous 

media. In some application area of porous media, the channel is not completely filled 

with porous medium. That is why; several studies on the heat and fluid flow in partially 

porous medium filled channels can be found in literature. In this section, an extended 

review has been performed on the reported studies about heat and fluid flow in the 

partially porous medium filled channels.  

A considerable number of investigations on forced convection in partially filled 

porous channel and ducts have been performed for steady state assumption. Poulikakos 

and Kazmiercak [4] investigated the problem of forced convection in a duct partially 

filled with a porous medium, analytically and numerically. They used two channel 

geometries and two types of boundary conditions; parallel plates and circular ducts with 

constant heat flux and constant wall temperature. The Brinkman extended Darcy model 

was used to describe the flow within the porous material. The impact of the presence of 

a porous region near an impermeable wall on the heat and fluid flow characteristics of 

the considered channels was investigated. They concluded that thickness of the porous 

region, Darcy number (Da) and the ratio of effective thermal conductivity of the porous 

medium to the fluid thermal conductivity have similar effects on the heat and fluid flow 

for both channel geometries and boundary conditions. The study also states that, the 

dependence of the Nusselt number (Nu) on the thickness of the porous region is not 

uniform so they found a thickness at which the Nu value reaches minimum. 

Al-Nimr et al. [5] employed a porous substrates in a tubeless solar collector to 

improve the convective heat transfer between the absorber plate and the fluid. The 

collector efficiency has been improved by 3-32 % under favor of porous substance and 
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also the study concluded with that there is an optimum porous substrate thickness 

beyond which the collector efficiency does not considerably change due to the 

increasing cost of the compensation the pressure drop with pump. Pulsating flow and 

heat transfer in a channel whose walls are layered by a porous medium was considered 

by Guo et al. [6] for constant heat flux thermal condition on the outer surface. The 

Birnkman-Forcheimer extended Darcy model was used to obtain velocity profile in the 

channel. The study focuses the effects of pulsation in partially filled channel on heat 

transfer and an optimum porous layer thickness for the maximum effective thermal 

diffusivity. Kuznetsov investigated the problem of forced convection partially porous 

medium filled channel with Coutte flow [7 - 8]. Kuznetsov used the Birnkman-

Forcheimer extended Darcy model and obtain analytical expressions for velocity and 

temperature distributions. Different thermal boundary conditions for Coutte flow were 

studied and the long expressions for velocity and temperature profile were obtained. 

The influence of Da number on the velocity profile and Nu were discussed. The 

optimum porous thickness ratio for partially filled ducts or channels with concerning 

about pressure drop were obtained by Mohamad [9]. He stated that the inertia term has 

significant effect on Nu, but not for highly porous domains. The author also studied on 

the relation between the length of developing region of the channel and Da number. It 

was concluded that the flow developing length is not strong function of Da number. 

Developing flow characteristics of fluid flow and enhanced heat transfer in a 

partially filled channel was examined by Jen and Yan [10]. They developed a three 

dimensional computational model and they solved all Navier-Stokes equations for 

considered domain. The authors presented the variation of friction factor and Nu as a 

function of axial position. Moreover, the authors analyzed the effects of the size of 

porous layer inside the channel partially filled with porous medium on heat and fluid 

flow. The effects of porous layer thickness and permeability of layer on the rate of 

entropy generation in the developing and fully developed region of a partially filled duct 

was investigated by Morosuk [11]. Morosuk performed analytical and numerical study 

on entropy generation in a channel and duct whose center is filled with a porous layer. 

They concluded that the mechanism of entropy generation is mainly dominated by 

friction and drag force in the porous medium. The author also stated that the maximum 

entropy generation occurs at the interface and the entropy generation has the highest 

value at the entrance region. A detailed numerical study was performed by Sayehvand 

and Shokouhmand [12] on a channel with porous layers on its wall. The studied the 
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effects of thickness of porous layer, Da, and the conductivity ratio. They mainly showed 

that for highly conducting porous media, heat transfer is systematically augmented 

independent of Darcy value. Yang et al. [13] studied about optimum porous fractions 

for forced convection in a partially filled tube. An expression for the optimal porous 

core diameter ratio was presented in this study. Steady and pulsatile flow for the local 

thermal non equilibrium condition was numerically investigated by Forooghi et al.  [14] 

for the partially filled duct with center located porous layer. They show that, solid to 

fluid thermal conductivity ratio is very important. As the solid to fluid thermal 

conductivity ratio increases Nu increases. It is also stated that when the thickness of 

porous media is very low, Nu is negatively affected by the porous media. An analytical 

investigation for the channel which is partially filled by bidisperse porous medium was 

presented by Kuznetsov and Nield [15]. One side of the channel is filled with porous 

layer while fluid flow in the other side. The effects of conductivity ratio, velocity ratio, 

volume fraction, internal heat exchange parameter, and the position of the porous-fluid 

interface on to the Nu were investigated for both symmetrical and asymmetrical heat 

flux boundary condition. A singular behavior of the Nu was found for the asymmetric 

case. Satyamurty and Bhargavi [16] studied the forced convection in a thermally 

developing region of a parallel plate channel with one side located porous layer. The 

walls of the channel are maintained at a constant temperature. It was found that the 

maximum enhancement in heat transfer occurs at a porous fraction of 0.8 at a Da of 

0.001 and the maximum enhancement per unit pressure drop occurs at a porous fraction 

of 0.7.Ananalysis for fully developed steady state of forced convection in a parallel 

plate channel partly occupied by porous medium was made by Nield and Kuznetsov 

[17]. The porous layer is located at the center of channel and lateral boundaries. The 

authors investigated the change of Nu according to the predetermined criteria such as 

thermal conductivity ratio, thickness of porous medium, the interface position etc. They 

showed that, Nu is strongly affected from the thickness of porous layer and thermal 

conductivity ratio rather than the other parameters.  Shokouhmand et al. [18] studied the 

effect of porous insert position on enhance heat transfer in a parallel plate channel 

partially filled with a fluid saturated porous medium. Two type of porous insert position 

are studied as porous layer was attached to the walls and porous layer oriented the 

center of the channel. In this paper, it was found that the pressure loss was higher when 

the location of the porous media is in the channel core. However, the inserting porous 

layer in the channel core results in higher Nu, so the location should be determined 
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according to the type of the system. Recently, Teamah et al. [19] have presented a 

numerical study on the effect of the shape of the porous layer on heat and fluid flow in a 

cylindrical duct. The shapes of the porous layer have been taken as; cylindrical shape 

placed at the centerline of the pipe, annular shape, and finally a cylindrical shape porous 

layer is located at the center of pipe but far from the channel inlet.  In the study, a 

critical radius was determined and it was obtained that the pressure drop and Nu have 

the highest value when the porous has a cylindrical shape placed at the centerline of the 

pipe. The conclusion of the study consistent with the conclusion of the study of  

Shokouhmand et al. [18]. 

The interfacial conditions between a porous medium and a fluid layer was 

examined in several studies. One of the study about the interfacial condition of partial 

filled channel was examined by Beavers and Joseph [20]. In their work, the authors 

presented an empirical correlation for the boundary conditions at the porous-fluid 

interface. An extensive analytical investigation on the momentum transportation in 

partially porous channel was conducted by Kuznetsov [21]. Kuznetsov showed that 

accounting for a jump in the stress and for the difference between the fluid and effective 

viscosity can essentially influence velocity profiles in the fluid layer. This influence 

decreases with an increase in the inertial parameter and a decrease in the Da. Kuznetsov 

[22] also investigated the heat and fluid transfer in a parallel plate channel with a porous 

layer core analytically. The stress jump factor at the interface region was studied and the 

effects of this factor were explained in detail. It is stated that, Nu has a different value 

for different thickness ratios and it has a maximum value for a specified thickness 

whose magnitude and position depend on the Da. Alazmi and Vafai [23] investigated 

the different interfacial conditions between a porous medium. The studied configuration 

consists of a fluid layer sandwiched between a porous medium from above and the solid 

boundary from below. In the study, it was presented that the variances have a more 

pronounced effect on the velocity field and a substantially small effect on the 

temperature field and yet even smaller effect on the Nu distribution. Goyeau et al. [24] 

concerned with the momentum balance at the interface between a liquid and a porous 

substrate. The study presents a new interfacial model which has a good agreement 

between their numerical modeling and some existing models in the literature. The 

validity of one type of the interfacial boundary condition (BJ boundary condition) was 

examined by Auriault [25]. The study stated that an intrinsic boundary condition should 

be used when BJ condition is not appropriate because of the separation of scales. 
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The transient heat transfer characteristics of the partially filled channels are the 

main subject of the several studies. A numerical study was presented by Alkam and Al-

Nimr [26] for a transient non-Darcian forced convection flow in two dimensional 

cylindrical coordinate system by using Birnkman-Forcheimer extended Darcy model. 

The porous layer is placed at the wall of the cylinder. The study concluded that porous 

substrates could give rise to considerably augmentation of Nu. In their study, it was also 

mentioned that the porous medium thickness has effects on the steady state time of the 

problem. The unsteadiness of the partially filled channel problem was also investigated 

by Al-Nimr and Alkam [27]. They solved transient fluid flow in a parallel plate 

channels partially filled with porous layer by using Green’s function method. The 

effects of the geometry, solid matrix and the fluid on the hydrodynamic behavior were 

investigated. The Brinkman extended Darcy model is used to simulate the flow inside 

the porous medium. Later, the same previous group gave a mathematical model that 

uses Green’s function to simulate the transient hydrodynamics of a non-Darcian fluid 

flow in circular channels partially filled with its core [28].  Alkam et al. [29] performed 

a numerical study about the transient region of the partially filled channels. The porous 

layer is located on a wall of the parallel plate channel. In this paper, they used the 

Darcy-Brinkman-Forceheimer model to simulate the flow inside the porous domain. 

The study reports heat transfer can be enhanced using higher thermal conduction ratio, 

decreasing Da and increasing microscopic inertial coefficient. Another study about 

developing region in parallel plate channel partially filled with two porous substance of 

equal thickness mounted at inner walls was done by Alkam et al. [30]. They found that 

splitting of the same amount of porous substrate on the inner channel walls is more 

efficient than using the same amount as a single porous substrate mounted on one side 

of the inner channel. Moreover, if the porous layer is used on one wall, the pressure 

gradient has been found to be higher for all porous layer thickness. 

The summarized studies are shown in the Table 2.1. to simplify comprehension 

of the problems according to the dimensions, governing equations, outer surface thermal 

conditions and solution methods. The figures of the studies also are given in the table. 



 

Table 2.1. The summary of the literature survey 

Authors Dimension 
Governing 

equations 

Outer 

surfaces 

thermal 

condition 

Interface 

condition 

(Velocity and 

thermal) 

Solution method Figure of studied channel/duct 

Beavers and 

Joseph  [20] 

2D 

Cartesian 

coordinate 

system 

Darcy 

Equation 
- 

B-J model 

Experimental and 

Analytical 

 

Kuznetsov 

[21] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

- B-J model Analytical 

 

 

 

(cont. on next page) 

1
0
 



 

Table 2.1 (cont.) 

Kuznetsov 

[22] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

heat flux. 

Axisymmetri

c B.C. 

B-J model 

Continuity of 

heat flux 

Analytical 

 

Alazmi and 

Vafai [23] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

wall 

temperature 

All different 

models 
Analytical 

 

Goyeaua et al. 

[24] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

extended 

Darcy 

- 

Continuity of 

shear stress and 

B-J Model 

Analytical and  

Numerical 

 

(cont. on next page) 

1
1
 



 

Table 2.1 (cont.) 

Auriault [25] 

2D 

Cartesian 

coordinate 

system 

Darcy 

Equation 

- B-J Model 
Analytical and 

Experimental 

 

Poulikakos and 

Kazmiercak 

[4] 

2D 

Cartesian 

coordinate 

system   and 

Cylindrical 

coordinate 

system 

Brinkman 

extended 

Darcy 

Constant 

heat flux and 

Constant 

wall 

temperature 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Analytical and  

Numerical 

 

(cont. on next page) 

1
2
 



 

Table 2.1 (cont.) 

Al-Nimr and 

Alkam [5] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Upper plate 

subjected to 

a constant 

heat flux 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Numerical 

 

Guo et al. [6] 

2D 

Cylindrical 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

heat flux 
- Numerical 

 

Kuznetsov [7] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Moving plate 

is subject to 

a uniform 

heat flux 

The fixed 

plate is 

adiabatic. 

B-J Model 

Continuity of 

heat flux 

Analytical 

 

(cont. on next page) 1
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Table 2.1 (cont.) 

Kuznetsov [8] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Moving plate 

is adiabatic. 

The fixed 

plate is 

subject to a 

uniform heat 

flux 

B-J Model 

Continuity of 

heat flux 

Analytical 

 

Mohamad [9] 

2D 

Cartesian 

coordinate 

system   and 

Cylindrical 

coordinate 

system 

Complete 

momentum 

equations 

Constant 

wall 

temperature 

- 

Numerical 

Analytical Eq. given 

(No solutions)  

Jen and Yan 

[10] 

3D 

Cartesian 

coordinate 

system 

Complete 

momentum 

equations 

Constant 

wall 

temperature 

- Numerical 

 

(cont. on next page) 
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Table 2.1 (cont.) 

Morosuk [11] 

2D 

Cylindrical 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

wall 

temperature 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Analytical and  

Numerical 

 

Sayehvand and 

Shokouhmand 

[12] 

2D 

Cylindrical 

coordinate 

system 

Complete 

momentum 

equations 

Constant 

heat flux 
- Numerical 

 

Yang et al. 

[13] 

2D 

Cylindrical 

coordinate 

system 

Brinkman 

extended 

Darcy 

Constant 

heat flux 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Analytical and  

Numerical 

 

(cont. on next page) 
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Table 2.1 (cont.) 

Forooghi et al. 

[14] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

Heat Flux. 

Continuity of 

shear stress  

and a new B.C. 

is derived 

Numerical 

 

Nield and 

Kuznetsov 

[15] 

2D 

Cartesian 

coordinate 

system 

Darcy’s Law 
Constant 

Heat Flux. 

B-J Model and 

Variable 

Porosity model 

Analytical 

 

Satyamurty 

and Bhargavi 

[16] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

extended non-

Darcy model 

Constant 

wall 

temperature 

B-J Model and 

Continuity of 

heat flux 

Analytical; Velocity 

Numerical; 

Temperature 

 

(cont. on next page) 
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Table 2.1 (cont.) 

Kuznetsov and 

Nield [17] 

2D 

Cartesian 

coordinate 

system 

Darcy’s Law 
Constant 

Heat Flux. 

B-J Model and 

Variable 

Porosity model 

Analytical 

 

Shokouhmand 

et al. [18] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

extended 

Darcy model 

Constant 

wall 

temperature 

Analytical 

Equations taken 

from [4] and 

[11] 

Numerical 
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Table 2.1 (cont.) 

Teamah et al. 

[19] 

2D 

Cylindrical 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

wall 

temperature 

- Numerical 

 

Alkam and Al-

Nimr [26] 

2D 

Cylindrical 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

wall 

temperature 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Numerical 

 

Al-Nimr and 

Alkam [27] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

extended 

Darcy 

Constant 

heat flux and 

Constant 

wall 

temperature 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Analytical and 

Numerical 

 

(cont. on next page) 
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Table 2.1 (cont.) 

Alkam and Al-

Nimr [28] 

2D 

Cylindrical 

coordinate 

system 

Complete 

momentum 

equations 

Constant 

wall 

temperature 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Analytical 

 

Alkam et al. 

[29] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

wall 

temperature 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Numerical 

 

Alkam et al. 

[30] 

2D 

Cartesian 

coordinate 

system 

Brinkman 

Forchhimer 

extended 

Darcy 

Constant 

wall 

temperature 

Continuity of 

shear stress  

and  Continuity 

of heat flux 

Numerical 
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CHAPTER 3 

 

BASIC CONCEPTS 

Porous medium is basically material containing voids between some particulate 

phases. Groundwater flows, or blood flowing into the lungs are examples of the fluid 

flow through a porous medium. Before discussing the appropriate modeling equations, 

it might be useful to review the commonly used terms in porous media. 

Figure 3.1 shows a sample of the porous media studied in some chapter of this 

thesis. It consists of two phase as solid phase (impermeable rigid material) and fluid 

phase. The studied fluid in this study is assumed Newtonian fluid.  

 

 

Figure 3.1. Schematic demonstration of a porous medium 

 

The microscopic analysis which has to be done for each voids or particulate 

substance may not be appropriate due to the difficulty of determination of velocity and 

heat transfer mechanisms in each void or solid in the porous media. That’s why; fluid 

flow through porous medium is analyzed in terms of the method of volume averaging 

which is called as “macroscopic approach”. Figure 3.2 shows the fluid flow from 

microscopic and macroscopic view of point.  As is seen, for microscopic analysis of 

fluid flow in a porous media, flow in each direction should be considered. Unlike the 

microscopic approach, macroscopic approach of the fluid flow in porous medium 

provides taking unidirectional flow through the porous channels as seen in Figure 3.2 

(b). In this study, all presented governing equations have been derived based on 
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macroscopic assumption. So the reader should be aware of that the flow parameters 

such as u, v, T, P are averaging quantities. 

 

 

 

(a) Microscopic approach (b) Macroscopic approach 

Figure 3.2. Microscopic and macroscopic view 

 

3.1. Porosity, Permeability and Fluid Flow in Porous Media 

 

Darcy’s law is the basic law to define in the macroscopic view of the fluid flow 

in the porous medium. By considering a control volume of porous medium, let the fluid 

flow through the control volume is Q, and the cross section area of the control volume is 

A, thus the superficial velocity U0, is the total flow rate divided by cross section area. 

 

A

Q
U 0


 (3.1) 

 

The presence of the solid particles within the control volume reduces the area 

available for fluid flow. The fluid has to squeeze through smaller area to preserve fluid 

continuity with the entering superficial flow. Hence the velocity within the control 

volume named “pore velocity, U
f
” will be greater that the superficial velocity and 

defined with volume fraction of solids. Void fraction of a porous media is volume of 

voids between solids divided by total porous media volume. The void fraction is called 

as the porosity of the porous medium. Porosity is shown with ε. 
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t

f

V

V
  (3.2) 

 

As it can be seen in Equation 3.2, porosity can be calculated as the ratio of the 

volume occupied by the fluid Vf , to the total volume Vt.  The pore velocity can befound 

from the following relation: 

 


0U

U f




  (3.3) 

 

Porosity can be related to resistance to fluid flow through the porous medium. 

Considering Equation 3.3, it is obvious that when no solid are present, the porosity 

equals unity and that brings the pore velocity will be the same as the superficial 

velocity. On the other hand, when the control volume is full of solids, porosity becomes 

zero and the resistance in the channel becomes infinity. For a porous medium with 

uniform porosity distribution, the resistance to fluid flow due to the porosity increases 

pressure drop along the channel.  So, it can be said that the porosity in a channel with 

uniform porosity causes a pressure gradient with respect to distance. Henry Darcy 

(1803-1858) observed this pressure gradient over sand filters at France during [3] and 

concluded that macroscopic velocity of the porous medium is directly proportional to 

the pressure gradient established along the channel and the permeability of the space 

and inversely proportional to the viscosity of the fluid. So Darcy stated the following 

equation to define macroscopic velocity in the porous channels: 

 

dx

Pd
U

K




0


 (3.4) 

 

where μ stands for the dynamic viscosity of fluid flows in the void between solids and K 

is the permeability in Equation 3.4. The permeability is a feature of porous media 

permits for flowing of the fluid. There are many numerical and numerical studies for 

determination of permeability for different types of porous media. Many relations have 

been suggested by researchers. However, the most common relation is the equation 
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called as Carmen-Kozeny relation. The equation depends on the shape of the porous 

medium in channel [31] as:  

 

 2
23

1 






k

H
K  (3.5) 

 

where k  is the Kozeny constant and H is characteristic length. Darcy equation 

(Equation 3.4) is not sufficient for all systems. A modification should be done for 

boundary effects particularly for internal flow. The modified Darcy equation called as 

Brinkman-extended Darcy law: 

 

dx

Pd
U

Kdy

Ud
eff






 02

0

2 
  (3.6) 

 

The constant of μeff seen in Equation 3.6 is “effective dynamic viscosity”, which 

depends on fluid and structure of the porous medium. The ratio between effective 

dynamic viscosity, μeff and fluid dynamic viscosity can be found with the help of 

porosity [3]: 

 



 1


eff
 (3.7) 

 

Darcy equation is also insufficient for high velocity problems in porous media. 

The inertial effects should be considered when the analysis is made for high velocity 

flows. Another modification should be done to observe the inertial effects of the porous 

medium. Therefore the final form of the Darcy equation is: 

 

0
2

02/102

0

2

 U
K

F

dx

Pd
U

Kdy

Ud
eff








  (3.8) 

 

The first term in the above equation is Brinkman term, the second and third 

terms are Darcy law and finally the fourth term includes the effect of inertial forces.  

The new parameter, F, is the Forchheimer constant and stands for the inertial 
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contribution of the porous medium.  For most of the studies, the Brinkman-Forchheimer 

extension of the Darcy law is used to describe fluid flow through a porous medium. It is 

possible to account for non-Darcian effects, which are of importance in many 

engineering applications by using this form of motion equation.  The Brinkman term 

describes viscous effects and adds possibility to apply a nonslip boundary condition at 

the walls of a considered channel. The Forchheimer term describes forming drag of the 

channels, and counting for this term is important for high flow velocity. In this thesis, 

the   Brinkman extended Darcy Law is considered to determine the fluid flow field in 

the porous medium due to the small velocities are assumed during the analysis. 

 

3.2. Heat Transfer Analysis in Porous Media 

 

The flow is steady, two dimensional and the assumption of neglecting viscosity 

is considered throughout the study. The working fluid is Newtonian and flow is 

thermally developed. As the first law of thermodynamics states, the total energy of the 

system should be conserved. So there is a thermal equilibrium between fluid and solid 

material. The energy balance of the system: 
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The new term keff is the effective thermal conductivity and can be found with the 

help of porosity and conductivities of solid and fluid in the flow as: 

 

  sfeff kkk   1  (3.10) 

 

In Equation 3.9, the gradient of temperature in x direction is much greater than 

temperature gradient in y-direction. Hence, under the fully developed assumption, the 

final form of the energy equation for porous media is: 
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3.3. Theoretical Background of the Forced Convection in the Clear 

Fluid Channel 

 

Brief information about forced convection in clear fluid flow should be given to 

simplify the comprehension of the study. The given equations are to define an 

incompressible, hydrodynamically and thermally fully developed clear fluid channel.  

The v velocity component of the flow is zero. The laminar flow is considered and the 

fluid is considered as Newtonian.  The fluid flow equation which is driven from Navier- 

Stokes equations for channel with height of 2H, and its boundary conditions can be 

written as [32]: 

 

  00
2

2










Hu

x

P

y

u
  (3.12) 

 

 

 The heat flow analysis equation for clear fluid channel which have height of 2H 

can be written as Equation 3.13. The viscous dissipation terms are neglected and it is 

assumed that the temperature gradient term in y-direction is much greater than 

temperature gradient term in x-direction. The final form of the energy equation for clear 

fluid flow is [32]: 

 

 
2

2

y

T
k

x

T
uC ffp









  (3.13) 

 

The subscript of f stands for to show the parameters belong to the fluid. The 

energy equation for clear flow channel and porous channel is almost the same except 

the effective thermal conductivity term in Equation 3.11. 

As the Newton’s law of cooling stated, the heat flux per unit area q” is 

proportional to the temperature difference: 
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 TThq w "  (3.14) 

 

The dimensionless form of the heat transfer coefficient h is called as Nu. It is 

defined as the ratio of convection heat transfer to fluid conduction heat transfer. If a 

layer with length of L is considered as a moving plate than the problem is convection so 

the Equation 3.14 is valid. However, if the problem is about a layer with length of L 

which is static then the problem becomes conduction problem so: 

 

  LTTkq w /"   (3.15) 

 

So the Nu  is the ratio of Equation 3.14 and 3.15: 

 

k

hL
Nu   (3.16) 

 

Our considered problem is the layer of problem L taken as 2H: 

 

k

Hh
Nu

2
  (3.17) 

 

The Nu for forced convection in parallel plate clear fluid channel with symmetrical 

constant heat flux boundary condition is known as [32]: 

 

1176.4Nu  (3.18) 

 

The pressure drop along the clear fluid channel can be calculated with the help 

of friction factor “f”. If we consider a channel which has the mean velocity of umean, the 

friction factor for this channel can be written as: 
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2

2

1

2

mu

H
dx

dP

f













  (3.19) 

 

By finding dimensionless mean velocity and making some mathematical manipulations 

the multiplication of Reynolds number and friction factor is found as 24 [32] for the 

clear fluid channel. This result will be used to compare the pressure drop between the 

fulfilled and partially filled porous channels. 
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CHAPTER 4 

 

DIMENSIONAL STUDY ON CHANNEL COMPLETELY 

FILLED WITH POROUS MEDIUM, ASYMMETRIC HEAT 

FLUX BUNDARY CONDITION 

In this chapter, the dimensional heat and fluid flow equations for a channel 

completely filled with porous medium are presented. The boundary conditions are also 

written. These equations with the presented boundary conditions are solved 

numerically. The numerical solution method is described in Chapter 8. The obtained 

results from numerical dimensional solution are presented in Chapter 9. 

 

4.1. The Considered Problem 

 

The considered channel is shown in Figure 4.1. The distance between the plates 

is 2H. An incompressible, hydrodynamically and thermally fully developed and steady 

flow in a channel bounded by two parallel plates is considered. The flow is laminar and 

the fluid is assumed to be Newtonian. The viscous dissipation terms are neglected and it 

is also assumed that the temperature gradient in y-direction is much greater than it is in 

x-direction. The Brinkman-Darcy equation and energy equation for a channel 

completely filled with porous medium are given. The porous medium is considered as 

isotropic with permeability of constant K. The upper and lower channel walls are 

subjected to asymmetric heat flux boundary condition.  The uniform heat fluxes are 

donated as 
1"wq  and

2"wq , they have opposite sides (-) and (+) respectively.  
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Figure 4.1. Schematic view of the considered channel 

 

4.2. Mathematical Formulation and Governing Equations 

 

4.2.1. Fluid Flow Analysis 

 

The flow in the channel considered as hydrodynamically and thermally fully 

developed, laminar and unidirectional which is parallel to the x-axis. The y- component 

of velocity is zero so it can be written that: 

 

0,0,0 










y

P

x

u
v  (4.1) 

 

According to assumptions mentioned, the appropriate Brinkman –extended 

Darcy Equation as written below. 

 

0
2

2


dx

dP
u

Kdy

ud
eff


  (4.2) 
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In Equation (4.2) µeff represents the effective viscosity of fluid and the porous 

structures, µ is dynamic viscosity of the fluid, K is the permeability of the porous 

medium. The ratio of effective dynamic viscosity and the dynamic viscosity of fluid can 

be written as follows: 

 



 1


f

eff
 (4.3) 

 

In Equation (4.3), subscripts f and s refer to the fluid and solid substrate, 

respectively. The term “ε” which is seen in Equation (4.3) is porosity. The porosity can 

be found as the ratio of the volume occupied by the fluid to the total volume. 

 

V

V f
  (4.4) 

 

It can be assumed that the maximum velocity should be in the middle of channel 

and no-slip conditions at the channel walls. So we can write the boundary conditions to 

solve the Equation (4.5) as: 

 

0

0

0

0










y
y

u

uHy

uHy

 
(4.5) 

 

The mean velocity of the fluid in the channel can be calculated by using 

following definition as Equation (4.6). 

 









H

H

H

H
mean

dy

udy

u  (4.6) 
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4.2.2. Heat Flow Analysis 

 

Under the assumptions of neglecting viscous dissipation effect and heat 

generation, final form of the energy equation: 

 

 
2

2

y

T
k

x

T
uC efffp









  (4.7) 

 

where ρ is density, Cp is specific heat at constant pressure and keff indicates the effective 

conductivity of the fluid and solid porous material. The effective conductivity can be 

written as Equation (4.8). 

 

  sfeff kkk   1  (4.8) 

 

The boundary conditions for defined energy equation can be written by using the 

fluxes on the wall so they can be written as: 

 

i
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Hy
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TTx
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T
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















0

"

"

2

1

 (4.9) 

 

The given equations for the considered problem are solved numerically and the 

results will be given in Chapter 9. The boundary condition at x = 0 for the Equation 

(4.7) is considered as the entrance temperature of the fluid to the channel. 

 

4.2.3. Pressure Drop Calculation 

 

Pressure drop calculation for dimensional problem is done by numerically. 

Calculations start with a given specific flow rate and an assumed negative pressure 
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gradient value. Equation (4.2) and related boundary conditions, Equation (4.5), are 

solved numerically with using this assumed pressure gradient value. The mean velocity 

is calculated by numerically with using the solution of Equation (4.2).The calculation 

continues until the mean velocity which is found by the solution of Equation (4.2) 

converges to the given specific flow rate. 
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CHAPTER 5 

 

DIMENSIONLESS STUDY ON CHANNEL COMPLETELY 

FILLED WITH POROUS MEDIUM: ASYMMETRIC 

HEAT FLUX BUNDARY CONDITION 

In this chapter, the dimensionless form of the heat and fluid flow equations for a 

channel filled with porous medium and an asymmetric heat flux boundary condition are 

presented. The dimensionless boundary conditions are also written. These equations 

with the presented boundary conditions are solved analytically and the obtained 

mathematical expressions for velocity, temperature, Nu and pressure gradient are also 

presented. The results of the solutions are shown in Chapter 9. 

 

5.1. The Considered Problem 

 

Figure 5.1 depicts the schematic diagram of the problem. The Brinkman-Darcy 

equation and energy equation are solved for a channel completely filled with porous 

medium. The upper and lower channel walls are subjected to asymmetric heat flux 

boundary condition. The uniform heat fluxes are donated as 
1"wq and

2"wq . They have 

opposite sides (-) and (+) respectively. 
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Figure 5.1. Schematic view of the considered channel 

 

An incompressible, hydrodynamically and thermally fully developed and steady 

flow in a channel bounded by two parallel plates is considered. The distance between 

the plates is 2H. The fluid is assumed to be Newtonian and its thermophysical properties 

are assumed to be constant. The porous medium is considered as isotropic with 

permeability of constant K. The viscous dissipation terms are neglected and also it is 

assumed that the temperature gradient in y-direction is much greater than it is in x-

direction. 

 

5.2. Mathematical Formulation and Governing Equations 

 

5.2.1. Fluid Flow Analysis 

 

Considering Figure 5.1, since flow in the channel is hydrodynamically fully 

developed, laminar and unidirectional u = u(y), which is parallel to the x-axis, the 

following assumptions can be made: 

 

0,0,0 










y

P

x

u
v  (5.1) 
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The v parameter which is the velocity in y-direction it cancels out. So the 

considered problem can be analyzed by using Brinkman –extended Darcy Equation as 

written below: 

 

0
2

2


dx

dP
u

Kdy

ud
eff


  (5.2)     

 

where µeff represents the effective viscosity of fluid and the porous structures, µ is 

dynamic viscosity of the fluid. At this point the boundary conditions for the Equation 

(5.2) should be defined. Equation (5.3) indicates the boundary conditions for the 

Equation (5.2). 

 

0

0
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








y
y

u

uHy

uHy

 
(5.3) 

 

The following non-dimensional variables have been introduced to obtain 

dimensionless form of the Brinkman-extended Darcy equation, Equation (5.2). 

 

22
,,,,

GH

u
U

H

K
Da

x

P
GM

H

y
Y

eff 









  (5.5) 

 

The G term which is seen at dimensionless velocity parameter indicates the 

negative pressure gradient along the axis. By using defined dimensionless parameters, 

the governing equation, Equation (5.2), transforms into the following form.  

 

01
1

2

2

 U
DadY

Ud
M  (5.6) 

 

At this point another parameter which is porous media shape factor, S, can be 

defined by Equation (5.7). By combining this coefficient with the Equation (5.6), final 
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form of the dimensionless Brinkman-extended Darcy equation can be rewritten as 

Equation (5.8).  

 

DaM
S

1
  (5.7) 

0
12

2

2


M

US
dY

Ud

 

(5.8) 

 

To find a dimensionless form of boundary conditions Equation (5.5) can be used 

again and the final form of boundary conditions can be obtained as;  

 

0

01

01

0









YY

U
UY

UY

 
(5.9) 

 

Now, solving Equation (5.8) with using Equation (5.9) gives the dimensionless 

velocity distribution as; 

 

 
   

2

1

MS

SSechYSCosh
YU


  (5.10) 

 

The mean velocity of the fluid in the channel can be calculated by using 

following definition as Equation (5.11). 

 









H

H

H

H
mean

dy

udy

u  (5.11) 

 

The dimensionless parameter can be used again to derive a dimensionless mean 

velocity definition which is: 
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 






1

1
2

1
dYYUUm  (5.12) 

 

According to this definition, the expression for dimensionless mean velocity can 

be found: 

 

 
3MS

STanhS
Um


  (5.13) 

 

The normalized velocity can be calculated by dividing Equation (5.10) to the 

Equation (5.13) which gives Equation (5.14). 

 

    
 STanhS

SSechYSCoshS
u






1
ˆ  (5.14) 

 

5.2.2. Heat Flow Analysis 

 

The energy equation, while neglecting viscous dissipation effect and heat 

generation, may be written under the assumptions such as hydrodynamically and 

thermally fully developed laminar flow channel as: 

 

 
2
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T
k

x

T
uC efffp









  (5.15) 

 

where ρ is density, Cp is specific heat at constant pressure and keff indicates the effective 

conductivity of the fluid and solid porous material. For obtaining dimensionless form of 

energy equation firstly we should define the average wall temperature Twµ, the average 

wall heat flux, 
"q and the dimensionless temperature such as: 
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The mean temperature Tm which is seen in Equation (5.16) can be defined as: 

 








1

1

1

1

dyuC

dyTuC
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p

p

m





 (5.17) 

 

Writing the dimensionless temperature definition, Equation (5.16), and the other 

dimensionless variables Equation (5.5) onto the Equation (5.15) gives the following 

form: 
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If we consider the heat fluxes are constant and the gradient of the wall heat 

fluxes with respect to x-direction must be zero, the followings can be written: 
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 (5.19) 

 

The thermally and hydrodynamically fully developed assumption brings the 

dimensionless temperature gradient in x-direction be zero. By using this assumption and 

Equation (5.19), the energy equation becomes: 

 

 
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TTk
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uC wmeff

m

fP







 
   (5.20) 

If we consider a differential volume such as Figure 5.2 the total energy of the 

fluid is conserved. It should be reminded that there is no heat generation.  
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Figure 5.2. Differential volume from the considered duct 

 

The energy entering must be equal to the energy leaving the boundaries so: 
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 (5.21) 

  

The definition of overall Nu is considered as applied heat fluxes at the walls will 

be transferred to the fluid. The heat transfer rate to the fluid can be also expressed as 

equation (5.22):  

 

 mw

eff

TThq

k
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 (5.22) 

 

The overall Nu for the considered problem can be defined as: 

  

 mweff TTk

Hq
Nu







"2

 (5.23) 

 

At this point after some mathematical manipulation with Equation (5.18), 

Equation (5.21) and using the definition of overall Nu yields the following second order 

ordinary differential equations: 
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Two boundary conditions are needed to solve second order ordinary differential 

equation shown above, so according to considered problem another parameter for 

specifying boundary temperature can be defined such as: 
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By considering the definition of β, the related boundary conditions can be given 

as: 
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When the dimensionless heat transfer equation, Equation (5.24), solve with 

related boundary conditions, Equation (5.26), the equation for dimensionless 

temperature distribution can be found like: 
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If we want to investigate the distribution of dimensionless temperature 

according to Equation (5.27), we should find more clear definition for β, for that reason 

we can use the heat fluxes at the walls and making the fluxes dimensionless as: 
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If another dimensionless parameter rq is defines as the ratio between 
1"wq and 

2"wq , the relation between in Equation (5.28) gives another definition for β in terms of

rq : 
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To obtain an expression for Nu we can use the compatibility condition[32]: 
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The dimensionless temperature and the normalized velocity were found in 

Equation (5.27) and Equation (5.14). So the overall Nu can be found as: 
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The definition of individual Nu for each wall can be expressed as by using 

overall Nu expression. 
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We can apply the conservation of energy onto each wall which gives: 
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To determine the individual Nu the following mathematical manipulations are 

done with using Equation (5.33): 
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(5.34) 

 

The same procedure can be applied to the lower wall so: 
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(5.35) 

 

By using Equation (5.34), Equation (5.35), and Equation (5.27) with Equation 

(5.29) gives following individual Nu equations: 
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5.2.3. Pressure Drop Calculations 

 

It can be predictable that the porous media in the channel brings pressure drop 

increments. To calculate this pressure drop in the channel, friction factor f can be 

defined. If we consider a channel which has the mean velocity of umean, the friction 

factor for this channel can be written as: 
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According to fully developed assumption, the flow has a constant pressure 

gradient along the x-axis and this negative gradient is denoted by G, as given in 

dimensionless parameters, Equation (5.5), so: 
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HG
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
  (5.38) 

 

The definition of dimensionless velocity, Equation (5.5), brings more clear 

equation for friction factor. 

 

HuU
f

mm 

4
  (5.39) 

 

With using the definition of Reynolds number for internal flow final form for the 

equation of friction factor can be written as the following form. 

 

mU
f

8
Re   (5.40) 

 

The mean velocity term was found like Equation (5.13), so by using Equation 

(5.40) the friction factor for specified Reynolds number can be found as: 
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CHAPTER 6 

 

DIMENSIONAL STUDY ON CHANNEL PARTIALLY 

FILLED WITH POROUS MEDIUM; SYMMETRIC HEAT 

FLUX BOUNDARY CONDITION 

 

In this chapter, a channel which is partially filled with porous medium is 

investigated numerically. The porous medium layer is mounted to a one wall while the 

other wall of the channel is in contact with clear fluid. The dimensional heat and fluid 

flow equations and appropriate boundary conditions are presented. The numerical 

solution method is described in Chapter 8. The obtained results are presented in Chapter 

9. 

 

6.1. The Considered Problem 

 

The considered channel is partially filled with porous medium. As it can be seen 

in Figure 6.1., the distance between the plates is 2H. A new variable, ξ, represents the 

distance between core of the channel and layer of interface. The value of ξ changes 

between -H and +H. The porous medium is considered as isotropic with permeability of 

constant K. An incompressible, hydrodynamically and thermally fully developed and 

steady flow in a channel bounded by two parallel plates is considered. The flow is 

laminar and the fluid is assumed to be Newtonian. The viscous dissipation terms are 

neglected and also it is assumed that the temperature gradient in y-direction is much 

greater than it is in x-direction. The Brinkman-Darcy equation and energy equation for a 

channel partially filled with porous medium are given. The upper and lower channel 

walls are subjected to symmetric heat flux boundary condition. The uniform heat flux is 

donated as "q and it has opposite sides (-) and (+) for upper and lower wall respectively.  
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Figure 6.1. Schematic view of the considered channel 

 

6.2. Mathematical Formulation and Governing Equations 

 

6.2.1. Fluid Flow Analysis 

 

Two different equations for fluid flow can be written; for clear region and 

porous region. The momentum equation for clear region can be written as: 

 

 (6.1) 

 

Considered channel flow is hydrodynamically and thermally fully developed, 

laminar and unidirectional which is parallel to the x-axis and the y- component of 

velocity is zero. In the channel, there are two regions as a) a region in which pure fluid 

flows and b) a region in which fluid flows through the porous media.   

After mentioned assumptions, the equation of motion for clear fluid region can 

be written as:  
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 (6.2)     

 

For more clear understanding the subscript, c, is used. It indicates that the term 

belongs to the clear fluid part of channel. 

As previous chapters the porous part fluid flow of the channel can be analyzed 

by using Brinkman –extended Darcy equation. In this equation the subscript, p, is used 

to indicate that term belongs to the porous part.  

 

 (6.3)     

 

In Equation (6.3) µeff represents the effective viscosity of fluid and the porous 

structures, µ is dynamic viscosity of the fluid, K is the permeability of the porous 

medium. The subscript of p stands for porous portion and up shows the fluid velocity in 

porous layer. Boundary conditions for the Equations (6.2) and (6.3) can be written as: 

 

 (6.4) 

 

The τ in Equation (6.4) represents the shear stress. As seen from Equation (6.4), 

continuous shear stress model is used to define boundary condition at the interface 

boundary between porous layer and clear fluid region and there is no slip for velocity 

value at the boundary.  

The mean velocity of the fluid in the channel can be calculated by using 

following definition. 
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6.2.2. Heat Flow Analysis 

 

Under the assumptions of thermally and hydrodynamically fully developed 

laminar flow in a parallel plate channel, neglecting viscous dissipation effect and heat 

generation, final form of the energy equation: 

 

 (6.6) 

 

where ρ is density, Cp is specific heat at constants pressure and k indicates the 

conductivity of the material considered. There are two different material (i.e. clear 

region and porous region) in the channel so two energy equation obtained. For 

simplicity, the compact form of the energy equation for both clear flow part and porous 

part can be written as: 

 

 (6.7)     

 

where kf and keff are the thermal conductivity of the fluid and the effective conductivity 

of the porous structures. The parameter of λ is defined as: 

 

 (6.8)     

 

The boundary conditions for defined energy equation can be written by using the 

fluxes on the wall. It also can be assumed that conduction heat fluxes and the interface 

temperature are equal between the porous and clear media so: 
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(6.9) 

 

The given equations for the considered problem are solved numerically and the 

results will be given in Chapter 9. It can be seen from Equation (6.9), the boundary 

condition at x = 0 for the Equation (6.7) is considered as the entrance temperature of the 

fluid to the channel.  

 

6.2.3. Pressure Drop Calculation 

 

Pressure drop calculation for dimensional problem is done, numerically. 

Calculations start with a specific flow rate and an assumed negative pressure gradient 

value. Equation of motion for clear fluid region and porous region, Equation (6.2) and 

Equation (6.3), are solved numerically with using this assumed pressure gradient value. 

The mean velocity is calculated by numerically with using the solution of Equation 

(6.2) and Equation (6.3).The calculation continues until the mean velocity which is 

found by the numerical solution converges to the given specific flow rate. 
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CHAPTER 7 

 

DIMENSIONLESS STUDY ON CHANNEL PARTIALLY 

FILLED WITH POROUS MEDIUM; SYMMETRIC HEAT 

FLUX BOUNDARY CONDITION 

 

In this chapter, a channel which is partially filled with porous medium is 

investigated analytically. A symmetrical heat flux is imposed to the channel walls. The 

heat and fluid flow equations and appropriate boundary conditions are presented into 

dimensionless form. The analytical solutions of the given equations are also presented.  

 

7.1. The Considered Problem 

 

As it can be shown in Figure 7.1, the considered channel is partially filled with 

porous medium. The distance between the plates is 2H and ξ represents the distance 

between core of the channel and layer of interface. The value of ξ is between -1 and +1. 

The porous medium is considered as an isotropic with permeability of constant K. An 

incompressible, hydrodynamically and thermally fully developed and steady flow in a 

channel bounded by two parallel plates is considered.  The flow is laminar and the fluid 

is assumed to be Newtonian. The viscous dissipation terms are neglected and also it is 

assumed that the temperature gradient in y-direction is much greater than it is in x-

direction. The dimensionless form of equation for motion for clear fluid region, 

Brinkman-Darcy equation for porous region and energy equation are given. The upper 

and lower channel walls are subjected to symmetric heat flux boundary condition.  The 

uniform heat flux is donated as "q and it have opposite sides (-) and (+) for upper wall 

and lower wall respectively.  
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Figure 7.1. Schematic view of the considered channel 

 

7.2. Mathematical Formulation and Governing Equations 

 

7.2.1. Fluid Flow Analysis 

 

Two different equations for fluid flow can be written; for clear region and 

porous region. The momentum equation for clear region can be written as: 

 

































2

2

2

21

y

u

x

u

x

P

y

u
v

x

u
u 


 (7.1) 

 

 Considered channel flow is hydrodynamically and thermally fully developed, 

laminar and unidirectional which is parallel to the x-axis and the y- component of 

velocity is zero. In the channel, there are two regions as a) a region in which pure fluid 

flows and b) a region in which fluid flows through the porous media. 

After mentioned assumptions, the equation of motion for clear fluid region can 

be written as:  
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For more clear understanding the subscript, c, is used. It indicates that the term 

belongs to the clear fluid part of channel. 

As previous chapters the porous part fluid flow of the channel can be analyzed 

by using Brinkman –extended Darcy equation. In this equation the subscript, p, is used 

to indicate that term belongs to the porous part.  
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In Equation (7.3) µeff represents the effective viscosity of fluid and the porous 

structures, µ is dynamic viscosity of the fluid, K is the permeability of the porous 

medium. The subscript of p stands for porous portion and up shows the fluid velocity in 

porous layer. Boundary conditions for the Equations (7.2) and (7.3) can be written as: 

 

Hy

p

eff

Hy

c

pc
dy

du

dy

du
HH

uHy










)()(

0

 
(7.4) 

 

The τ in Equation (7.4) represents the shear stress. As seen from Equation (7.4), 

continuous shear stress model is used to define boundary condition at the interface 

boundary between porous layer and clear fluid region and there is no slip for velocity 

value at the boundary. To reduce the number of the parameters for the problem, the 

dimensionless form of Equation (7.2) and (7.3) and related boundary conditions, 

Equation (7.4), can be found by using the following dimensionless parameters: 
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Da, M and S are Darcy number, viscosity ratio and porous media shape 

parameter, respectively. After applying the above dimensionless parameters into 

Equations (7.2) and (7.3), the dimensionless form of the momentum equation for fluid 

flow in clear region and Darcy-Brinkman equations for fluid flow in porous region is 

obtained: 
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Uc and Up are the dimensionless velocity of fluid at the clear and porous regions.  

The dimensionless forms of boundary conditions Equation (7.4) can also be obtained by 

using the dimensionless parameters of Equation (7.5). 
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(7.7) 

 

In the Equation (7.7) the τ shows stress at the interface and Ui is the 

dimensionless velocity at the interface between porous and clear region. 

The solutions of Equation (7.6) with boundary conditions given in Equation 

(7.7) yield velocity distribution equations for each region. The velocity distribution 

equation for clear region is found as: 
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According to the solution of Equation (7.6), the velocity distribution equation 

for porous region is found as: 
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Since shear stress is continuous at the surface, the interface velocity can be 

found as: 
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The dimensionless form of mean velocity of the fluid in the channel can be 

calculated as: 
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The solution of the Equation (7.13) with Equation (7.8) and (7.10) gives: 
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Finally, the dimensionless normalized velocity for each region can be 

determined as: 

 

meanU

U
u ˆ  (7.15) 

 

The solution of Equation 7.15 is found by the help of Equation 7.8, Equation 

7.10 and Equation 7.14. 

 

7.2.2. Heat Flow Analysis 

 

Under the assumptions of thermally and hydrodynamically fully developed 

laminar flow in a parallel plate channel, neglecting viscous dissipation effect and heat 

generation, final form of the energy equation: 
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where ρ is density, Cp is specific heat at constants pressure and k indicates the 

conductivity of the material considered. There are two different material (i.e. clear 
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region and porous region) in the channel so two energy equation obtained. For 

simplicity, the compact form of the energy equation for both clear flow part and porous 

part can be written as:  
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Where kf and keff are the thermal conductivity of the fluid and the effective conductivity 

of the porous structures. The parameter of λ is defined as: 
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Writing the dimensionless temperature definition and the other dimensionless 

variables Equation (7.5) onto the Equation (7.17) gives the following form: 
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If we consider the heat fluxes are constant and the gradient of the wall heat 

fluxes with respect to x-direction must be zero, the followings can be written: 
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The thermally and hydrodynamically fully developed assumption brings the 

dimensionless temperature gradient in x-direction be zero. By using this assumption and 

Equation (7.19), the energy equation becomes: 
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If we consider a differential volume such as Figure 7.2 the total energy of the 

fluid is conserved. It should be reminded that there is no heat generation.  

 

 

Figure 7.2. Differential volume from the considered duct 

 

The energy entering must be equal to the energy leaving the boundaries so: 
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A new variable such as “overall Nu” is considered as Equation (7.23). If it is 

considered as applied heat fluxes at the walls will be transferred to the fluid, the overall 

Nu based on fluid thermal conductivity and heat transfer rate to the fluid can be also 

expressed as equation (7.23):  
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The overall Nu for the considered problem can be defined as:  



 58 

 

 mwf TTk

Hq
Nu






"2
 (7.24) 

 

At this point after some mathematical manipulation with Equation (7.21) and 

(7.22) with using the definition of overall Nu yields two dimensionless temperature 

distribution equations: a) for clear flow region, b) for porous region. The dimensionless 

temperature distribution equation for clear region can be found as: 
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According to the definition of overall Nu, the dimensionless temperature 

distribution equation for porous region can be found as: 
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Two boundary conditions are needed to solve second order ordinary differential 

equation shown above, so according to considered problem another parameter for 

specifying boundary temperature can be defined such as: 
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By considering the definition of β, the related boundary conditions can be given 

as: 
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In the above boundary conditions, the term, θi, designates the dimensionless 

interface dimensionless temperature of porous and clear region. When the 

dimensionless heat transfer equation for clear region, Equation (7.25), solve with related 

boundary conditions, Equation (7.28), the equation for dimensionless temperature 

distribution for clear region can be found like: 
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The coefficients of C0, C1, and C2are given by Equation (7.9) before. The 

dimensionless heat transfer equation for porous region, Equation (7.26), can be solved 

with related boundary conditions, Equation (7.28). The solution of the equation for 

dimensionless temperature distribution for porous region can be found as: 
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The coefficients of P0, P1, and P2 are given by Equation (7.11) before. If we 

want to investigate the distribution of dimensionless temperature throughout the channel 

according to Equation (7.29) and Equation (7.30), we should find more clear definition 

for β, θi and Nu. Additional definition for β can found as dividing the heat fluxes at the 

walls with making the fluxes dimensionless as: 
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The derivative of dimensionless clear fluid and porous medium temperatures 
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can be found from equations of 7.30 and 7.29 for Y= -1 and Y= 1 
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locations. If the derivatives for Y= 1 and -1 are substituted to Equation (7.31), following 

extra equations can be found. This equation provides an extra relation between, β, Nu 

and θi. 

 

ibNub  21   (7.32) 

 

The constants b1 and b2 are given in Equation (A.1) and Equation (A.2) in 

Appendix A. 

Additional definition for θi can found as using continuity of the heat flux as an 

interface boundary condition: 
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Dimensionless temperature equations for clear region and porous region are 

shown in Equations of (7.29) and (7.30). If the derivatives of these equations for Y=ξ 

are substituted to Equation (7.33), following extra equations can be found. This 

equation provides another extra relation between, β, Nu and θi.  

 

 21 tNuti   (7.34) 

 

The constants t1 andt2 are given in Equation (A.3) and Equation (A.4) in 

Appendix A. 

To obtain an expression for overall Nu we can use the compatibility 

condition[32]: 
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The dimensionless temperature for clear region and porous region and the 

normalized velocity were found in Equation (7.29), Equation (7.30) and Equation 

(7.15). If these expressions are substituted to Equation (7.35) and after taking integral 

between -1 and ξ for porous part and ξ and 1 for clear part, the following relation can be 

obtained for overall Nu: 

 

innnNu  321   (7.36) 

 

The constants n1, n2 and n3 are given in Equation (A.5), Equation (A.6) and 

Equation (A.7) in Appendix A. For three unknown; β, θi and Nu, we have three equation 

which are Equation (7.32), Equation (7.34) and Equation (7.36). If we solve three 

equations simultaneously, β, θi and Nu can be found in terms of known parameters: 
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(7.37) 

 

The constants b1, b2, t1, t2, n1, n2 and n3are given in Equations of (A.1), (A.2), 

(A.3), (A.4), (A.5), (A.6) and (A.7) in Appendix A. 

The definition of individual Nu for each wall can be expressed as by using 

overall Nu expression. 
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We can apply the conservation of energy onto each wall which gives: 
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To determine the individual Nu, Equation (7.38), the following mathematical 

manipulations are done with using Equation (7.39): 
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(7.40) 

 

The same procedure can be applied to the lower wall so: 
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The individual Nu, Nu1 and Nu2, can be found by solving Equation (7.40) and 

Equation (7.41) with using Equation (7.29), Equation (7.30).  

 

       
  

        

  112

11
1221*4

1112

2236124

211020

2

2120

2

1































 








 


















K

S
SinhSPP

S
CoshPSPSPPNuK

Nu

CCCCNu
Nu

i

i

 

(7.42) 

 

where C0, C1 and C2are given in Equation (7.9), P0, P1 and P2are given in (7.11), and 

Nu, β and θi are found in Equation (7.37). 

 

7.2.3. Pressure Drop Calculations 

 

The porous media in the channel brings pressure drop increments. The pressure 

drop can be calculated as previous chapters. Firstly, friction factor “f” should be 

defined. If we consider a channel which has the mean velocity of umean, the friction 

factor for this channel can be written as: 
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The flow has a constant pressure gradient along the x-axis according to fully 

developed assumption and this negative gradient is denoted by G, as given in 

dimensionless parameters, Equation (7.5), so: 
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The definition of dimensionless velocity, Equation (7.5), brings more clear 

equation for friction factor. 
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The equation of friction factor can have following form with using the definition 

of Reynolds number for internal flow: 

 

mU
f

8
Re   (7.46) 

 

The mean velocity term in Equation (7.46) was found in Equation (7.14), so by 

using Equation (7.46) the friction factor for specified Reynolds number can be found. 
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CHAPTER 8 

 

NUMERICAL APPROACH FOR THE SOLUTION OF 

GOVERNING EQUATIONS 

 

The dimensional governing equations given in Chapter 4 and Chapter 6 are 

solved numerically. The solutions of dimensional differential equations are found with 

related boundary conditions by using finite difference method by the help of MATLAB 

software. In this chapter, the information about numerical procedure and the derivation 

of nodal equations for each dimensional problem are given.  

 

8.1. Numerical Solution Procedure for Completely Filled Problem 

Discussed in Chapter 4 

 

The momentum and energy equations with boundary conditions for forced 

convection in a channel filled with porous medium are presented in Chapter 4. The 

numerical solution approach for these governing equations is finite difference method. 

For reminding the method; the definition of the derivatives used in finite difference 

methods are written in Equation 8.1. For a function of f(x) and with a distance of Δx; 

Forward difference approximation for a point can be defined as: 
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Backward difference approximation for a point can be defined as: 
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Central difference approximation for a point can be defined as: 
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For calculation of second derivative the following equation can be used: 
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8.1.1. Solution of the Momentum Equation 

 

The momentum equation for completely filled problem Equation 4.2 and related 

boundary conditions Equation 4.5 are solved by using finite difference methods with 

using n+ 1 node. Solution procedure starts with a given specific flow rate (in the 

laminar flow region) and an assumed negative pressure gradient value. The mean 

velocity is calculated by numerical solution of the momentum equations with using the 

assumed pressure value. The calculation continues until the mean velocity which is 

found by numerically converges to the given specific flow rate. The flowchart of the 

solution of the momentum equation can be shown as: 
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Figure 8.1. The flowchart for the solution of the momentum equation 

 

The domain from –H to +H is divided in n+1 nodes. Number of nodes n+1, 

taken as 101 for this problem. So: 
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  (8.2)     

 

The direction of j can be shown as: 
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Figure 8.2. The node direction used in momentum equation 

 

Nodal equation for internal nodes for the velocity distribution in completely 

filled channel with porous material can be derived as: 
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 (8.3)     

 

Nodal equation for no-slip boundary conditions can be written as: 

 

    0101  nuu  
(8.4)     

 

8.1.2. Solution of the Energy Equation 

 

The dimensional heat flow analyzes are made numerically with the help of finite 

difference method. The energy equation is second order partial difference equation so a 

2-dimensional domain is set off to obtain the solution of the Equation 4.7. The velocity 

distribution values which are obtained from the solution of momentum equation are 

used. The flowchart of the solution of the energy equation can be shown as: 
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Figure 8.3. The flowchart for the solution of the energy equation 

 

The channel is divided in m+1 node from 0 to L in x-direction. Number of nodes 

in x- direction m+1 is taken as 301 for this differential equation. So: 
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The domain can be shown as: 

 

 

Figure 8.4. The node directions used in energy equation 
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Nodal equation for internal nodes of the dimensional temperature distribution in 

completely filled channel with porous material can be derived by applying Equations 

8.1 on to the Equation 4.7: 
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 (8.6)     

 

Where C1 and C2 is the constants as: 
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The nodal equations for asymmetrical constant heat flux boundary conditions 

Equation 4.9 and the boundary condition for x=0 can be found as: 
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where Ti is the entrance temperature and taken as 0
o
C. 

The error is taken as 10
-6

on each iteration step for the convergence of the 

numerical solution. 

 

8.2. Numerical Solution Procedure for Completely Filled Problem 

Discussed in Chapter 6 

 

The discussed problem in Chapter 6 is a problem about forced convection in a 

partially filled channel. The momentum and energy equations with boundary conditions 
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for this channel are presented in Chapter 6. The numerical solution approaches for these 

governing equations are given in following sections.  

 

8.2.1. Solution of the Momentum Equation 

 

The momentums equations for partially filled problem Equation 6.2 and 

Equation 6.3 and related boundary conditions Equation 6.4 are solved by using finite 

difference methods with using n+1 nodes. Like Section 8.1, the solution procedure 

starts with a given specific flow rate (in the laminar flow region) and an assumed 

negative pressure gradient value. The mean velocity is calculated by numerical solution 

of the momentum equations with using the assumed pressure value. The calculation 

continues until the mean velocity which is found by numerically converges to the given 

specific flow rate. The flowchart of the solution is the same as Figure 8.1. 

The domain from –H to +H is divided again in n+1 nodes and n is taken as 100. 

So Equation 8.1 and Figure 8.2 are also valid in this section. 

Like Equation (8.3), nodal equation for internal nodes of the velocity 

distribution in the clear region which derived with the help of Equation 8.1 is calculated 

as: 
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Nodal equation for internal nodes of the velocity distribution in the porous 

region which derived with the help of Equation 8.1 is calculated as: 
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Nodal equation at the interface can be written as: 
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ξl indicates which node is ξ and it can be found as  
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Nodal equation for no-slip boundary conditions can be written as: 

 

    0101  nuu  
(8.13)     

 

8.2.2. Solution of the Energy Equation 

 

The dimensional heat flow analyzes for partial filling problem are made 

numerically with the help of finite difference method. The energy equation is second 

order partial difference equation so a 2-dimensional domain is set off to obtain the 

solution of the Equation 6.7. The velocity distribution values which are obtained from 

the solution of momentum equation are used. That’s why the channel is again divided in 

m+1nodes from 0 to L in x-direction and m is taken as 300. So equation 8.4 and Figure 

8.4 is valid at this section. The flowchart of the energy equation is same as Figure 8.3.  

The nodal equation for dimensionless temperature is found separately for clear 

fluid and porous region. By following the same procedure with Equation (8.6), nodal 

equation of the dimensional temperature distribution for internal nodes of the clear 

region in partially filled problem can be derived as: 
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where C1 and C3 is the constants as: 
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Nodal equation of the dimensional temperature distribution for internal nodes of 

the porous region in partially filled problem is derived as: 
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where C1 and C2 is the constants as: 
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Like Equation 8.11, the nodal equations for the interface region can be found as: 
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The nodal equations for symmetrical constant heat flux boundary conditions and 

the boundary condition for x=0 can be found as: 
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where Ti is the entrance temperature and taken as 0
o
C. The number of nodes in y 

direction n+1 is taken as 101 and the number of nodes in x direction m+1 is taken as 

301 for this case.  

The error is taken as 10
-6 

on each iteration step for the convergence of the 

numerical solution. 
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CHAPTER 9 

 

RESULTS AND DISCUSSION 

 

The dimensional and dimensionless heat and fluid flow equations are given in 

previous chapters. The results of the heat and fluid flow analysis for considered 

channels discussed in Chapter 4, Chapter 5, Chapter 6, and Chapter 7 are presented in 

this chapter respectively. The effects of several parameters are discussed.   

The consistency of the dimensional and dimensionless solutions is also 

investigated in this chapter. 

 

9.1. Results for a Channel with Symmetrical Heated Walls 

 

The first analysis is made for symmetrical heated walls in order to find the 

effects of parameters such as Da, porosity, permeability on fluid flow and heat transfer.  

 

9.1.1. Dimensional Analysis 

 

A two-dimensional computational model is developed to analyze fluid and heat 

flow in a channel completely filled with porous medium. The governing equations are 

given in Chapter 4. 

 

9.1.1.1. The Analyzed Channels 

 

For the dimensional symmetrical heated problem, the channels of Figure 9.1 are 

considered. A constant heat flux of 100 W is imposed to the channel walls. The total 

height of the channel is taken as 0.1 m while length of channel 30 m. Three channels are 

analyzed to find the effect of permeability on heat and fluid flow named as high 

permeable, medium permeable and low permeable channels. The channels are filled 

with square bars and fluid flows to the bars perpendicularly. The height (or width) of 
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bars are different as 0.2, 1.5 and 3.75 mm. The distances between two bars are 1.8, 2.5 

and 1.25 mm. The fluid in the channel is considered as air and it flows to the channel at 

273 K. The study is performed for bar materials of glass and Aluminum alloy. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 9.1. Three channels filled with square bars analyzed in this section: (a) High 

Permeable channel (b) Medium Permeable channel (c) Low Permeable 

channel 
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Air flow in the voids between bars and heat is transferred from the channel walls 

to both bars and fluid. A thermal equilibrium exists between the bars and fluid. 

Radiation heat transfer among the particles and particles and walls is omitted. The flow 

is laminar in the channel. The bars are too long that is why the heat and fluid flow can 

be accepted as two dimensional. The thermophysical properties of fluid and solid are 

assumed constants and they are taken at T = 300 K. The thermophysical properties of 

the fluid and solids are given in Table 9.1. The mean velocity of the fluid is taken as 

0.38 m/s. The air flow is laminar and a fully developed velocity profile is assumed 

through the channel. In the other words, the velocity profile is function of y and it is not 

changed along the channel in x direction. 

 

Table 9.1. Thermophysical properties of fluid and solids 

Thermophysical Properties of Fluid (Air) Thermal Conductivities of Solids 

Viscosity (µ) 1.983*10-5 kg/m s Glass 1.1 W/m K 

Density (ρ) 1161 kg/m3 Aluminum Alloy 120 W/m K 

Conductivity (k) 0.025 W/m K   

Specific Heat Capacity (Cp) 1.005 kj/kg K   

 

The porosity and permeability of the porous media in the channel are given in 

Table 9.2. Porosity values should be known before doing any calculation. A micro-view 

of a bar in the channel is shown in Figure 9.2. As seen, the width (or height) of the 

square bar is shown by a. The distance between two bars is shown by b. The values of 

“a” and “b” for three high permeable, medium permeable and low permeable channel 

are given in Table 9.2. Based on the equation derived for this kind of porous medium 

(Equation 9.1), the porosity values for three channels are calculated and porosity values 

are given in Table 9.2.  
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Figure 9.2. A micro-view of a square bar 

 

Permeability value is another parameter which should be known before 

analyzing heat and fluid flow in the channel. Many correlations have been proposed by 

researchers for determination of permeability. Peng and Du made a literature survey and 

presented different correlations of various researchers for determination of permeability. 

However; one of the common relations for determination of permeability is Carman-

Kozeny relation.  
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where “H” is the height of the channel which is 0.1 m for the present study . The 

parameter of k is Kozeny constant and its value for square rods is120. 

Another characteristic parameter of the fluid flow in porous media is the 

effective viscosity of the fluid and the porous structure shown by µeff and the dynamic 

viscosity of the fluid shown by µf. The ratio of µeff and µf is found by using the 

Equation 4.3.  
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Table 9.2. The flow parameters for the considered channels. 

 
a b 

Number of squares 

in vertical plane 
Porosity 

Permeability 

(m2) 
Darcy µeff/µf 

High 

permeable 
0.2 1.80 50 0.99 3.23*10-6 1.29*10-3 1.01 

Medium 

permeable 
1.5 2.50 25 0.86 6.02*10-7 2.41*10-4 1.16 

Low 

permeable 
3.75 1.25 20 0.44 3.10*10-8 1.24*10-5 2.29 

 

 9.1.1.2. Results 

 

In chapter 4, the dimensional form of heat and fluid flow equations for a channel 

completely filled with porous medium are presented. According to the given equations 

and boundary conditions, heat and fluid flow in the channels described in the previous 

sections are investigated. Moreover, the heat transfers through the channels are also 

investigated for two solid materials as Glass and Aluminum alloy. The thermal 

conductivity for the glass and Aluminum alloy are 1.1 W/mK and 120 W/mK 

respectively. 

Figure 9.3 shows the velocity profiles for the channels with three different 

permeability coefficients given in Table 9.2. As seen in this figure, the velocity profiles 

in the channel are not highly changed with the considered three permeability values. 

The profiles are similar to the profiles of a turbulent flow since square bars causes 

mixing of fluid in the channel. As expected, the velocity values are zero at the 

boundaries and a steep velocity gradient is observed at the wall region. The velocity 

variation is almost uniform at the channel center. Velocity value decreases at the center 

region decreases with decrease of permeability value. The velocity gradient at the wall 

region increases with decrease of permeability value.  
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Figure 9.3. Dimensional velocity distributions for the flows with different 

permeabilities. 

 

Figure 9.4 shows isotherms in the channels with three different permeability 

coefficients when the material of the solid is glass. Figure 9.4(a) shows the isotherms 

for the high permeable channel. As seen, the isotherms are symmetrical respect to the 

centerline since a symmetrical heat flux is imposed to the channel. The maximum air 

temperature is observed at the walls. The temperature decreases towards the centerline. 

The minimum temperature for a cross section is at the center of the channel since heat is 

transferred from the boundaries.  Although isotherms are similar with each other, they 

are not identical and they change along x axis. Figure 9.4(b) indicates isotherms in the 

medium permeable channel. There are similarities between isotherms of medium and 

high permeable channels. Maximum temperature is observed at the walls and its value 

decreases towards the channel center. The isotherms are symmetrical respect to channel 

center. The permeability of medium permeable (k =6.02*10
-7

 m
2
) is lower than high 

permeable channel. It brings higher effective thermal conductivity so it causes the heat 

transfer is enhanced in y direction and the temperature changes in y direction becomes 

smaller. Figure 9.4(c) shows isotherms in a low permeable channel. As seen, the 

temperature change in y direction becomes smaller due to the increase of thermal 

conductivity for a low permeable channel and almost a flatten isotherms are seen. 
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(a) 

 

(b) 

 

(c) 

Figure 9.4. Isotherm lines through the low conductive solid used channel: (a) High 

Permeable channel (b) Medium Permeable channel (c) Low Permeable 

channel 

 

The isotherms of the channels with three different permeability coefficients 

when the material of the solid is aluminum alloy are seen in Figure 9.5. Due to the 

symmetrical heat flux is imposed to the channel; the isotherms are symmetrical respect 

to the centerline. The isotherms seem similar with each other and they are not change 

along the x direction because of the high conductivity of solid. Figure 9.5(a) shows the 

isotherms in the high permeable channel. In high permeable channel, the maximum air 

temperature is observed at the walls. The high temperatures drop through the center of 
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the channel. The minimum temperature for a cross section is at the center of the channel 

since heat is transferred from the boundaries.  Figure 9.5(b) indicates isotherms in the 

medium permeable channel. The isotherms are almost flat due to the decreased 

permeability and high conductivity of aluminum alloy. Figure 9.5(c) shows isotherms in 

a low permeable channel. There is very small difference between Figure 9.5(b) and 

Figure 9.5(c). The isotherms are symmetrical respect to channel center and they are 

almost flat. The low permeability of the channel and high conductivity of the solid 

cause the enhancement of heat transfer in y direction and the temperature changes in y 

direction is almost zero.  
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(a) 

 

(b) 

 

(c) 

Figure 9.5. Isotherm lines through the high conductive solid used channel:(a) High 

Permeable channel (b) Medium Permeable channel (c) Low Permeable 

channel 

 

Figure 9.6 shows mean temperature values for low permeable channel and wall 

temperature values through the considered channels with three different permeability 

coefficients when the material of the solid is glass (ks=1.1 W/mK). The mean 

temperature and wall temperature values for the aluminum alloy filled channel are 
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almosts identical for all permeability values. These temperatures are also the same with 

mean temperature of the glass filled channel. However, when the material of the solid is 

glass, the wall temperature values are different than mean temperature. The wall 

temperature value of the glass-used channel is grater than the mean temperature value. 

In this channel, the difference between wall temperature and mean temperature values is 

increasing in x direction at the entrance region but the difference become constant at a 

certain point,  the flow can be assumed as fully developed flow after this point when the 

material of the solid is glass. As permeability decreases or conductivity of solid 

increaeses, the difference between the wall temperatures and mean temperatures 

become smaller.  

 

 

 

Figure 9.6. Mean Temperature and wall temperature values through the channels. 

 

Another analyzed parameter is Nu. Figure 9.7 shows Nu variation through the 

channels. The Nu is given by Equation 5.32 to define heat transfer at a boundary within 

a fluid. The heat flux term in Equation 5.32 can be solved by using Equation 4.9.  In this 

figure, the blue lines indicate the channel which the material of the solid is glass (ks = 

1.1 W/mK) while black lines indicate the channel which the material of solid is 

aluminum alloy (ks = 120W/mK). As seen in this figure, the Nu decrease until the flow 

become fully developed. If the conduction of material increases, the flow become fully 
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developed more quickly. If the permeability of flow decreases, the flow also become 

fully developed earlier due to the mixing affect of the porosity. According to the figure, 

Nu only depends on the permeability of the flow. Conduction of the solid does not 

affect the Nu of fully developed region. 

 

 

 

Figure 9.7. Nu values through the channels: Blue lines indicate glass used channel while 

black lines indicate aluminum alloy used channel 

 

The solution prosedure for pressure drop are given at the end of the Chapter 4. 

Acoording to the numerical results, the negative gradient values of the pressure along 

the x axes for the high permeable, medium permeable and low permeable channels are 

calculated as  2.4230, 12.79, 246.308 respectively. 

 

9.1.2. Dimensionless Analysis 

 

In Chapter 5, the heat and fluid flow in a channel which is completely filled with 

porous medium with constant heat flux boundary conditions is investigated analytically. 

In this section, firstly, the numerical results which are given in Section 9.1.1 are 

compared with the analytical results, after checking compatibility, the effects of Da on 
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the normalized velocity profile; dimensionless temperature profile, Nu and pressure 

drop are analyzed. 

The numerical results which are given in Section 9.1 are converted to the 

dimensionless results with using defined dimensionless parameters as Equation 5.5. The 

converted results are compared with the results from the solutions of the analytical 

equations presented in Chapter 5. 

 

9.1.2.1. Comparison of the Numerical with Analytical Results 

 

The comparison of the numerical solution with the analytical solution is done 

with the calculation of dimensionless parameters of the analytical equations such as Da, 

M, Y, S, U, H, K, θ by using the dimensional parameters of analyzed channels in 

Section 9.1.1.1. The normalized velocity profiles from the converted forms of numerical 

solutions to the dimensionless results and the normalized velocity profiles from 

analytical solutions which are given in Chapter 5 are shown in Figure 9.8. As it can be 

seen in Figure 9.8, the analytical results are consistent with the numerical results.  
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(a) 

 

(b) 

 

(c) 

Figure 9.8. Comparison of the converted normalized velocity profiles, which are 

obtained by numerical results, with the analytical results: (a) High 

Permeable channel (b) Medium Permeable channel (c) Low Permeable 

channel 
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Figure 9.9 shows the comparison of dimensionless temperature profiles from the 

converted forms of numerical solutions and the dimensionless temperature profiles from 

analytical solutions. Figure 9.9(a) belongs to the dimensionless temperature profile of 

the medium permeable channel when the material of the solid is glass and Figure 9.9(b) 

belongs to the low permeable channel when the material of solid is aluminum alloy. 

According to the Figure 9.9, the results obtained by numerical solutions are consistent 

with the results obtained by analytical solutions. Only two of the figures are shown 

because of the all of the dimensionless temperature profiles of the numerical solution 

for high permeable, medium permeable and low permeable channels are consistent with 

the dimensionless temperature profiles of the analytical solution. 
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(a) 

 

(b) 

Figure 9.9. Comparison of the converted dimensional temperature profiles which are 

obtained by numerical results with the analytical results: (a) The medium 

permeable channel when the material of the solid is glass (b) The low 

permeable channel when the material of solid is aluminum alloy 

 

Table 9.3 shows the Nu calculated both numerically and analytically for all 

considered channels. As seen, there is not a big difference between results. This table 

shows accuracy of our solutions for numerical and analytical. 
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Table 9.3. Comparison of the analytical and numerical results for the Nu 

 Conductivity of Solid=1.1 W/mK Conductivity of Solid=120 W/mK 

 Nu  

 From Numerical 

Solution 

Nu  

 From Analytical 

Solution 

Nu  

From Numerical 

Solution 

Nu  

From Analytical 

Solution 

High Permeable 5.5934 5.6161 5.5925 5.6161 

Medium 

Permeable 
5.7624 5.8104 5.7623 5.8104 

Low Permeable 5.86 5.9373 5.86 5.9373 

 

 

9.1.2.2. Effect of Da 

 

The effects of Da on the normalized velocity profile, dimensionless temperature 

profile, Nu and pressure drop are analyzed according to the equations given in Chapter 

5. Da is changed between 10 and 10
-5

 to obtain the effect of it. The relation between 

µeff/µ is taken as 1.3 for the porosity value as 0.75. The ratio of fluxes is 1 for the 

symmetrical heat flux boundary condition.    

The analyzing of velocity profile for the low Da is hard to observe so the 

normalized velocity profiles are investigated in Figure 9.10. The velocity profiles are 

similar to the profiles of a turbulent flow since the obstacles in the channel causes 

mixing of fluid in the channel. The velocity values are zero at the boundaries because of 

the no-slip boundary condition and a sharp velocity gradient is observed at the wall 

region. The velocity gradient at the wall region increases with decrease of Da. The 

velocity variation is almost uniform at the channel center. If Da decreases, the effect of 

porous media increases in the channel so velocity value decreases at the center region 

by reducing Da.  
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Figure 9.10. Normalized velocity distributions for the flows with different Da. 

 

Figure 9.11 indicates the dimensionless temperature profiles for the flows with 

different Da. The dimensionless temperature values are zero at the boundaries because 

of the symmetrical heating. The gradient of the dimensionless temperatures at the 

surface for flows with low Da is larger than high Da because the mixing effects of Da 

increase the conduction between surface and fluid. The gradients of the dimensionless 

temperatures are zero and the dimensionless temperatures take the largest value at the 

center of the channel.  
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Figure 9.11. Dimensionless temperature distributions for the flows with different Da. 

  

The variation of Nu with increasing Da can be seen in Figure 9.12. Da is plotted 

using a logarithmic scale to observe the variation of Nu more clearly. When Da 

increases, the Nu decreases. For flows with low Da, the Nu increases and consequently 

we have enhancement of heat transfer.  When Da increases, the effect of porous media 

become smaller and Nu becomes closer to 4.1176, which indicates the flow through a 

clear channel. 

 

 

Figure 9.12. Logarithmic plot of Da vs. Nu 
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The Nu for clear fluid fully developed channel with constant heat flux is given 

as 4.1176. The heat transfer enhancement in porous media can be observed with the 

help of Nu for clear fluid channel and Nu based on fluid thermal conductivity as: 

 

*KNuNu pc   (9.2) 

 

Where Nupc is the Nu based on fluid thermal conductivity, Nu is Nu of channel and K* 

is the ratio of effective thermal conductivity to the fluid thermal conductivity. Heat 

transfer improvement ratio, εth, can be calculated by dividing Nu based on fluid thermal 

conductivity to the Nu for clear fluid channel which is 4.1176. Figure 9.13 shows the 

heat transfer improvement ratio by using porous media for three different effective 

thermal conductivity ratios. The figure is plotted using a logarithmic scale to observe 

the variation of the heat transfer increment ratio more clearly. As seen in the figure, 

decreasing Da increases the heat transfer.  

 

 

Figure 9.13. Logarithmic plot of Heat transfer increment ratio vs. the Da 

 
The porous media in the channel brings pressure drop defined as friction 

coefficient in Chapter 5.1.3. The friction coefficient can be found by using Equation 

(5.40) which its variation can be seen in Figure 9.14. The figure is plotted using a 

logarithmic scale to observe the variation of friction coefficient more clearly.  When Da 
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increases, the friction coefficient decreases. While there is not a very large friction 

coefficient in Da greater than 10
-2

. For the Da less than Da = 10
-2

, the friction 

coefficient takes extremely large values.   

 

 

Figure 9.14. Logarithmic plot of friction coefficient vs. Da 

 

Pressure drop increment ratio, εp, can be found by using the same procedure 

with finding heat transfer increment ratio. The pressure drop increment ratio for clear 

fluid fully developed channel with constant heat flux is given as 24. The increment of 

pressure drop by using porous media can be observed with the help of pressure drop 

increment ratio for clear fluid channel. Pressure drop increment ratio, εp, can be 

calculated as dividing friction coefficient of the porous channel in to the friction 

coefficient of a flow in a clear channel which is 24. Figure 9.15 shows the pressure drop 

increment ratio by using porous media. Da is plotted using a logarithmic scale to 

observe the variation of the pressure increment ratio more clearly. As seen in the figure, 

decreasing Da increases pressure increment ratio. Like Figure 9.14, there is a huge 

increment for smaller than 10
-2

 Da.   
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Figure 9.15. Logarithmic plot of pressure drop increment ratio vs. Da
 

 

The ratio of εth and εp is called as overall performance, ε. For the values of ε 

greater than 1 means the heat transfer enhancement is greater than the increase of 

pressure drop while for the values of ε less than 1 means the increase of pressure drop is 

greater than the heat transfer enhancement in the channel. Figure 9.16 shows the 

variation of overall performance of the channels with Da. The overall performance is 

rising with increased Da and increased the ratio of effective thermal conductivity the 

fluid thermal conductivity (K*).  For Da greater than 1 which means almost clear 

channel there is a constant overall performance. The increased overall performance is 

coming from only K* ratio for Da greater than 1. The figure shows channels completely 

filled with the solids which have K* = 1 is not useful for heat transfer enhancement if 

the pressure drop is considered. The Da number should be chosen at least between 

0.001 and 0.01 for the K* = 100. Almost all Da number gives a reasonable overall 

performance value for the ratio of K* is 10000. 
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Figure 9.16. Logarithmic plot of overall performance vs. the Da 

 

Thermal conductivities for several fluids and solids are given in Table 9.4. The 

table helps comprehension of the ratio between effective conductivity over conductivity 

of fluid, K*. 

 

Table 9.4. Thermal Conductivities of several solids and fluids [33]-[34]-[35]-[36] 

Fluid 

Fluid 

Conductivity 

(kf) (w/mK) 

Solid 

Solid 

Conductivity 

(ks)(w/mK) 

Porosity 

ε 
keff 

K* 

(keff/kf) 

Air  0.025 Wood 0.21 0.99 0.03 1.07 

Air  0.025 Glass 1.1 0.99 0.04 1.43 

Air  0.025  Cast Iron 55 0.99 0.57 22.99 

Air  0.025 Aluminum alloy 120 0.99 1.22 48.99 

Air  0.025 Gold 315 0.99 3.17 126.99 

Hydrogen 0.172 Wood 0.21 0.99 0.17 1.00 

Hydrogen 0.172 Glass 1.1 0.99 0.18 1.05 

Hydrogen 0.172  Cast Iron 55 0.99 0.72 4.19 

Hydrogen 0.172 Aluminum alloy 120 0.99 1.37 7.97 

Hydrogen 0.172 Gold 315 0.99 3.32 19.30 

Air  0.025 Wood 0.21 0.86 0.05 2.04 

Air  0.025 Glass 1.1 0.86 0.18 7.05 

Air  0.025  Cast Iron 55 0.86 7.76 310.23 

Air  0.025 Aluminum alloy 120 0.86 16.90 675.86 

Air  0.025 Gold 315 0.86 44.32 1772.73 

Hydrogen 0.172 Wood 0.21 0.86 0.18 1.03 

(cont. on next page) 
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Table 9.4. (cont.) 

Hydrogen 0.172 Glass 1.1 0.86 0.30 1.76 

Hydrogen 0.172  Cast Iron 55 0.86 7.88 45.83 

Hydrogen 0.172 Aluminum alloy 120 0.86 17.02 98.97 

Hydrogen 0.172 Gold 315 0.86 44.44 258.40 

Air  0.025 Wood 0.21 0.44 0.13 5.14 

Air  0.025 Glass 1.1 0.44 0.63 25.08 

Air  0.025  Cast Iron 55 0.44 30.81 1232.44 

Air  0.025 Aluminum alloy 120 0.44 67.21 2688.44 

Air  0.025 Gold 315 0.44 176.41 7056.44 

Hydrogen 0.172 Wood 0.21 0.44 0.19 1.12 

Hydrogen 0.172 Glass 1.1 0.44 0.69 4.02 

Hydrogen 0.172  Cast Iron 55 0.44 30.88 179.51 

Hydrogen 0.172 Aluminum alloy 120 0.44 67.28 391.14 

Hydrogen 0.172 Gold 315 0.44 176.48 1026.02 

 

 

9.2. Results for a Channel with Asymmetrical Heated Walls 

 

The second analysis is made with same channels which used in Chapter 9.1 but 

asymmetrical heated walls is used in order to find the effects of heat flux ratio on to the 

heat transfer and Nu.  

 

9.2.1. Dimensional Analysis for Completely Filled Channels 

 

A two-dimensional computational model is developed to analyze heat flow in a 

channel completely filled with porous medium with imposing different heat fluxes on to 

the walls. The governing equations are given in Chapter 4. 

 

9.2.1.1. The Analyzed Channels 

 

For the dimensional asymmetrical heated problem, the channels of Figure 9.1 

are considered again. All of the properties of considered channels are the same with the 

analyzed channels which is mentioned in Chapter 9.1 except heat fluxes on the walls. 

Different amount of heat fluxes are imposed into the channel walls.  A constant 100 W 
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heat flux is imposed to the upper wall while a constant 50 W heat flux is imposed lower 

wall as seen in Figure 9.17. 

 

 

Figure 9.17. The considered channel with exposed heat fluxes on to the walls 

 

The thermophysical properties of the fluid and solids are the same with Chapter 

9.1. Tables 9.1 and 9.2 can be used to remind the thermophysical properties of the fluid, 

solids and the flow parameters of considered channels. The mean velocity of the fluid is 

the same with Chapter 9.1 which is 0.38 m/s. The same assumptions for the flow are 

also valid in this chapter and the velocity profile is not analyzed because the velocity 

profile is not a function of heat fluxes. The comments on the velocity profiles in 

Chapter 9.1 are valid for this chapter. 

 

 9.2.1.2. Results 

 

Heat flow in the channels described in the previous sections is investigated for 

symmetrical boundary conditions. In chapter 4, the dimensional form of heat and fluid 

flow equations for a channel completely filled with porous medium are presented. In 

this section, a constant 100 W heat flux is imposed to the upper wall while a constant 50 

W heat flux is imposed lower wall. According to the given equations and boundary 

conditions, the heat transfer through the channels is investigated for the same two solid 
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materials as Glass and Aluminum alloy. The thermal conductivity for the glass and 

Aluminum alloy are 1.1 W/mK and 120 W/mK respectively. 

The velocity profiles for the channels are not examined in this section because 

the velocity profile is not a function of heat fluxes. The velocity profiles in Figure 9.3 

can be seen to remind the velocity profiles and their properties according to the different 

permeabilities. 

Figure 9.18 shows the isotherms in the asymmetrical heated channels with three 

different permeability coefficients when the material of the solid is glass. Figure 9.18(a) 

shows the isotherms for the high permeable channel. The effect of convection can be 

seen clearly towards the center of the channel. However, the isotherms are not 

symmetrical respect to the centerline since asymmetrical heat fluxes are imposed to the 

channel walls which are 100 and 50 W for upper and lower wall, respectively. The 

maximum air temperature is observed at the upper wall. The temperature decreases 

towards the centerline but the minimum temperature for a cross section is closer to the 

lower wall since the lower wall is imposed lower heat flux (q”w1=100 Watt and q”w2=50 

Watt). Although isotherms are similar with each other, they are not identical and there 

are small changes along x axis.  Figure 9.18(b) indicates the isotherms in the medium 

permeable channel. There are similarities between isotherms of medium and high 

permeable channels but the effect of convection for medium permeable channel 

decreases. Maximum temperature is observed at the upper wall and its value decreases 

towards the channel center. The minimum temperature point is closer to the lower wall 

because of the asymmetrical heating. The permeability of medium permeable (k 

=6.02*10
-7

 m
2
) is lower than high permeable channel. It brings higher effective thermal 

conductivity so it causes the enhancement of heat transfer in y direction and 

consequently the temperature changes in y direction become smaller. Figure 9.18(c) 

shows isotherms in a low permeable channel. As seen, the temperature change in y 

direction becomes smaller due to the increase of thermal conductivity for a low 

permeable channel and more flatten isotherms are seen.  
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(a) 

 

(b) 

 

(c) 

Figure 9.18. Isotherm lines through the low conductive solid used channel with 

asymmetrical heating:(a) High Permeable channel (b) Medium Permeable 

channel (c) Low Permeable channel 

 

The isotherms of the channels with three different permeability coefficients 

when the material of the solid is aluminum alloy are seen in Figure 9.19. Due to the 

asymmetrical imposed heat fluxes onto the channel wall; (q”w1=100 Watt and q”w2=50 

Watt) the isotherms should not be symmetrical with respect to the centerline. The 

isotherms seem similar with each other and they are not change along the x direction 
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because of the high conductivity of solid. Figure 9.19(a) shows isotherms in the high 

permeable channel. In high permeable channel, the maximum air temperature is 

observed at the upper wall because of the higher flux. The high temperatures at the 

upper wall drop through the center of the channel. However, the isotherms become 

almost flatten in the region between center and lower wall of the channel. Figure 

9.19(b) indicates isotherms in the medium permeable channel. The isotherms are almost 

flat due to the decreased permeability and high conductivity of aluminum alloy. Figure 

9.19(c) shows isotherms in a low permeable channel. There is very small difference 

between Figure 9.19(b) and Figure 9.19(c). The isotherms are almost symmetrical 

respect to channel center and they are almost flat because of the increasing effect of low 

permeability and the conductivity of aluminum alloy on the effective conductivity of the 

flow. The low permeability of the channel and high conductivity of the solid cause the 

heat transfer is enhanced in y direction and the temperature changes in y direction is 

almost zero.  
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(a) 

 

(b) 

 

(c) 

Figure 9.19. Isotherm lines through the high conductive solid used channel with 

asymmetrical heating: (a) High Permeable channel (b) Medium Permeable 

channel (c) Low Permeable channel 

 

The variation of the individual Nu for upper and lower wall are analyzed to 

understand heat transfer relation with heat flux ratio more clearly. The results belong 

only the high permable channel when the material of solid is glass because the Nu 

variation is similar for all permeability and effetive conduction values. The upper wall 

is hold fixed 100 Watt of heat flux while the lower heat flux is changed between 5 Watt 
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and 1000 Watt.  Figure 9.20(a) shows the upper wall Nu (Nu1) variation according to 

the changing heat flux ratio.  As seen, Nu takes negative values when the lower wall 

heat flux is increased between 5 Watt and 45 Watt. However, the Nu goes infinity at 

heat flux ratio at about 0.45, after this point Nu changes direction. The cause of the 

change of the direction of the Nu is the value of Tmean become smaller than the value of 

Twall after this point. Figure 9.20(b)shows the lower wall Nu (Nu2) variation according to 

the changing the heat flux ratio. Nu has positive value until the heat flux ratio become 2, 

the Nu goes infinity at the ratio about 2, and the Nu has negative values after the heat 

flux ratio (q”w1/q”w2) is greater than 2.2. 

The values of individual Nu for upper and lower wall and the overall Nu for the 

specific heat flux ratios given in Table 9.5.  

 

 

(a) 

 

(b) 

Figure 9.20. Nu1 (upper wall) and Nu2 (lower wall) variations vs. q”w1/q”w2 for high 

permeable channel when the material of solid is glass. 
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Table 9.5. The values of upper wall Nu (Nu1), lower wall Nu (Nu2) and overall Nu 

q"w1 q"w2 
q"w1/ 

q"w2 
Nu1 Nu2 Nu (Overall) 

100 5 20 3.17 -0.39 5.6 

100 50 2 3.99 29 5.6 

100 100 1 5.6 5.6 5.6 

100 150 0.67 9.39 4.41 5.6 

100 250 0.4 -26.52 3.77 5.6 

100 500 0.2 -2.51 3.4 5.6 

100 1000 0.1 -0.89 3.24 5.6 

 

While the individual Nu have negative and positive values, the overall Nu does 

not depend on the heat flux ratio because it varies only depend on to the permeability of 

the channel. The dimensional calculation of the overall Nu gives the value of 5.6, 5.77, 

and 5.86 for the high permeable, medium permeable and low permeable channel 

respectively. 

Figure 9.21 shows the outlet temperature for high permeable channel when the 

material of solid is glass. The heat flux of upper wall is held constant as 100 Watt and 

the heat flux of lower wall is imposed as 35 Watt, 45 Watt and 55 Watt to see the 

effects of the change of the direction of the Nu on the temperature distribution and 

outlet temperature. The temperature distribution and outlet temperature are not affected 

with the direction of Nu as seen Figure 9.21. The change of the direction of the Nu is 

caused the relation between Tmean and Twall. The sign of Nu is changed without changing 

of heat flux direction at the lower wall, as it can be seen from Figure 9.21. 
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Figure 9.21. The outlet temperatures of the considered channel while Nu2 changes its 

direction. 

 

The variations of upper, lower and mean temperature at the exit of channel with 

the ratio of imposed heat flux are shown in Figure 9.22. The differences between the 

mean temperature, and temperature of lower and upper walls vary with the change of 

q”w1/q”w2. The diagram can be divided into three regions. In the first region 

(q”w1/q”w2<0.48), the mean temperature is greater than the temperature of upper wall 

Tw1 and smaller than the temperature of lower wall Tw2, hence (Tw1 –Tmean)<0 while 

(Tw2–Tmean)>0. In the second region (0.48 < q”w1/q”w2< 2.2), the mean temperature is 

smaller than both the temperature of upper and lower walls and consequently (Tw1–

Tmean)>0 and (Tw2 –Tmean)>0. In third region (q”w1/q”w2>2.2), the mean temperature is 

smaller than the temperature of upper wall Tw1and greater than the temperature of lower 

wall Tw2, therefore (Tw1 – Tmean)>0   while (Tw2 –Tmean)<0. 
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Figure 9.22. The variation of mean, upper and lower walls temperatures at the outlet of 

the channel with heat flux ratio 

 

9.2.2. Dimensionless Analysis for Completely Filled Channels 

 

The equations of the heat and fluid flow in a channel completely filled with 

porous medium with asymmetric constant heat flux boundary conditions are given in 

Chapter 5. In this section, firstly, the numerical results which are given in Section 9.2.1 

are compared with the analytical results. After checking compatibility, the effects of Da 

on the dimensionless temperature profile, Nu and pressure drop are analyzed. The 

velocity profiles of the channels are not investigated because the velocity profiles are 

not function of heat flux ratio.  

 

 9.2.2.1. Comparison of the Numerical with Analytical Results 

 

The numerical results which are given in Section 9.2.1 are converted to the 

dimensionless results with using defined dimensionless parameters as Equation 5.5. The 

converted results are compared with the results from the solutions of the analytical 

equations in Chapter 5. 
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Comparison of the numerical solution with the analytical solution is done with 

the calculation of dimensionless parameters of the analytical equations such as Da, M, 

Y, S, U, H, K, θ by using the dimensional parameters of analyzed channels in Section 

9.2.1.1. The comparison of the normalized velocity profiles are not investigated because 

the normalized velocity profiles do not depend on the heat flux ratio. 

Figure 9.23 shows the dimensionless temperature profiles from the converted 

forms of numerical solutions to the dimensionless results and the dimensionless 

temperature profiles from analytical solutions. Figure 9.23(a) belongs to the 

dimensionless temperature profile of the medium permeable channel when the material 

of the solid is aluminum alloy and Figure 9.23(b) belongs to the low permeable channel 

when the material of solid is glass. According to the Figure 9.23, the results obtained by 

numerical solutions are consistent with the results obtained by analytical solutions. Only 

two of the figures are shown since all dimensionless temperature profiles of the 

numerical solution for high permeable, medium permeable and low permeable channels 

are consistent with the dimensionless temperature profiles of the analytical solution. 
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(a) 

 

(b) 

Figure 9.23. Comparison of the dimensionless temperature profiles which are obtained 

by numerical results with the analytical results: (a) The medium permeable 

channel when the material of the solid is aluminum alloy (b) The low 

permeable channel when the material of solid is glass 

 

Table 9.6 shows the Nu calculated both numerically and analytically for 

different channels with different heat flux ratios. The results of three cases are only 

shown and as seen from this table a good agreement exists between the numerical and 

analytical results. 
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Table 9.6. Comparison of the analytical and numerical results for the Nu 

    

Analytical Solution Numerical solution 

 Permeability 
Material 

of Solid 

Upper 

Wall 

Lower 

Wall 
Nu1 Nu2 

Nu 

(overall) 
Nu1 Nu2 

Nu 

(over

all) 

High 

Permeable 

Glass 

(ks=1.1 

W/mK) 

100 

Watt 

90 

Watt 
5.1505 6.2432 5.6161 5.1825 6.153 5.6 

Medium 

Permeable 

Aluminu

m Alloy 

(ks=120 

W/mK) 

100 

Watt 

50 

Watt 
3.9358 122.589 5.7906 3.9224 121.583 

5.810

4 

Low 

Permeable 

Glass 

(ks=1.1 

W/mK) 

100 

Watt 

10 

Watt 
3.1483 -0.7555 5.9373 3.1371 -0.7613 

5.866

8 

 

9.2.2.2. Effect of Da 

 

The effects of Da on dimensionless temperature profile, Nu and pressure drop 

are analyzed when asymmetric heat fluxes are imposed to the channel walls. The 

equations given in Chapter 5 are used to analyze the channels. Da is changed between 

10 and 10
-5

 to obtain its effect. The relation between µeff/µ is taken as 1.3 for the 

porosity value as 0.75.   

The velocity profiles of the channels are not investigated because the velocity 

profiles are not affected by different heat flux ratios. Figure 9.24 indicates the 

dimensionless temperature profiles for the flows with different Da. Figure 9.24(a), 

9.24(b) and 9.24(c) show the dimensionless heat profiles when the heat flux ratio is 0.5, 

5 and 50, respectively. The maximum value of dimensionless temperatures changes 

according to the heat flux ratio and maximum point is closer to the more heated wall for 

all Da. The maximum value of dimensionless temperature is increased when Da is 

decreased. The dimensionless temperature values are different at the boundaries because 

of the asymmetrical heating. The gradient of dimensionless temperature at the upper and 

lower walls has opposite sign of the same value for all Da.   
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(a) 

 

(b) 

 

(c) 

Figure 9.24. Dimensionless temperature distributions for the flows with different Da 

when (a) qr=0.5, (b) qr=5, (c) qr=50. 
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The variation of individual Nu for upper and lower walls with increasing Da can 

be seen in Figure 9.25 when qr equals 0.5. Da is plotted using a logarithmic scale to 

observe the variation of individual Nu more clearly. The individual Nu for upper wall 

(Nu1) have positive values while the individual Nu for lower wall (Nu2) have negative 

values for all Da. The individual Nu of upper and lower walls decrease, when Da 

increases. For flows with low Da, the individual Nu increases due to enhancement of 

heat transfer. The variation of overall Nu with respect to Da can be seen in Figure 9.12 

because the overall Nu does not depend on heat flux ratios. 

 

 

(a) 

 

(b) 

Figure 9.25. Logarithmic plot of Da vs. Nu for upper wall (Nu1) and Nu for lower wall 

(Nu2) for qr =0.5. 
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The upper and the lower wall Nu for clear fluid fully developed channel when 

asymmetrical heat flux used (when qr is 0.5) is found as 2.8936 and -3.6763 

respectively. The heat transfer enhancement in porous media can be observed with the 

help of individual Nu for clear fluid channel and Nu based on fluid thermal conductivity 

by using Equation 9.2. Heat transfer improvement ratio for each wall, εth-1 and εth-2, can 

be calculated by dividing individual Nu based on fluid thermal conductivity to the 

individual Nu for clear fluid channel which are 2.8936 and -3.6763. Figure 9.26 shows 

the heat transfer improvement ratios of upper wall and lower wall by using porous 

media for three different effective thermal conductivity ratios. The figure is plotted 

using a logarithmic scale to observe the variation of the heat transfer increment ratio 

more clearly. As seen in the Figure 9.26(a), Da does not affect the heat transfer 

increment of upper wall significantly; the effective thermal conductivity ratio has more 

importance. Figure 9.26(b) indicates the heat transfer increment ratio for lower wall. 

When Da increases, the heat transfer also increases for the lower wall. It should be 

reminded that the heat flux ratio between walls is qr=0.5. 
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(a) 

 

(b) 

Figure 9.26. Logarithmic plot of heat transfer increment ratio vs. the Da (a) The upper 

wall heat transfer increment (b) The lower wall heat transfer increment 

 

The porous media in the channel brings pressure drop defined as friction 

coefficient. However, the friction coefficient is not a function of heat flux ratio. 

Therefore, the friction coefficient, and pressure drop increment ratio, εp, can be known 

by checking Figure 9.14 and Figure 9.15.  

The overall performance for each wall, ε1 and ε2, can be found by calculating the 

ratio of εth and εp for upper and lower wall. For the values of ε greater than 1 means; the 

heat transfer enhancement is greater than the increase of pressure drop along the 
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channel, while for the values of ε less than 1 means; the increase of pressure drop is 

greater than the heat transfer enhancement in the channel. Figure 9.27 shows the 

variation of overall performance for upper and lower wall of the channels with Da when 

heat flux ratio is 0.5. Overall performance is rising with increased Da and increased the 

ratio of effective thermal conductivity to the fluid thermal conductivity (K*). For Da 

greater than 1 which means almost clear channel so there is a constant overall 

performance. The increased overall performance is coming from only K* ratio for Da 

greater than 1. The figure shows completely filling of channels with the solids which 

have K*=1 is not useful for heat transfer enhancement compared with the pressure drop 

in the channel. The Da number should be chosen at least between 0.001 and 0.01 for the 

K*=100. Almost all Da number give a reasonable overall performance value for the 

ratio of K* is 10000 when the heat flux ratio is 0.5. There is not a big difference 

between upper and lower wall overall performance of the channel. 

 

 

Figure 9.27. Logarithmic plot of overall performance for upper and lower wall vs. the 

Da 

 

The overall Nu should be considered due to the meaningless of the negative Nu 

(Figure 9.25). The results based on the individual Nu have also arguable validity (Figure 

9.26 and Figure 9.27). That’s why, the channel should be considered as a whole system. 

The average of the upper wall heat flux and lower wall heat flux should be calculated 

and the overall performance should be obtained as the channel with symmetrical heat 
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flux boundary condition. Therefore, the overall system performance becomes same with 

Figure 9.16. Besides, the K* values for several materials can be seen from Table 9.4.  

 

9.3.1. Dimensional Analysis for Partially Filled Channels 

 

The following section is about analysing fluid and heat flow in a partially filled 

channel according to the governing equations given in Chapter 6.  

 

9.3.1.1. The Analysed Channels 

 

A two dimensional computational model developed according to the channels 

shown in Figure 9.28. For the dimensional symmetrical heated problem, a constant heat 

flux of 100 W is imposed to the channel walls. The total height of the channel is taken 

as 0.1 m while the length of channel 30 m. Three channels are analysed to find the 

effect of the thickness and permeability of the filled region on heat and fluid flow. The 

channels are named as high permeable, medium permeable and low permeable channels 

with respect to their permeability value. The channels are partially filled with square 

bars from bottom wall up to half of the channel. The fluid flows in the clear region in 

the upper half of the channel while in the lower half of the channel it flows 

perpendicular to the bars. The height (or width) of bars are different as 0.2, 1.5 and 3.75 

mm. The distances between two bars are 1.8, 2.5 and 1.25 mm. The fluid in the channel 

is considered as air and it flows to the channel at 273 K. The study is performed for bar 

materials of glass and aluminium alloy. 

 

 



 115 

 

 

(a) 

 

(b) 

 

(c) 

Figure 9.28. Three channels filled with square bars analysed in this section: (a) High 

Permeable channel (b) Medium Permeable channel (c) Low Permeable 

channel 
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The assumptions for the heat and fluid flow in section 9.1.1 are also valid in this 

section. The thermophysical properties of the fluid and the thermophysical properties of 

solids, which are used in lower part of the channel, are the same with section 9.1.1. 

Table 9.1 and Table 9.2 can be used to remind the thermophysical properties of the 

fluid, solids and the flow parameters of considered channels. The mean velocity of the 

fluid is the same with section 9.1.1 which is 0.38 m/s. The fully developed velocity 

profile of air is assumed through the channel so velocity profile is function of y and it is 

not changed along the channel in x direction. 

 

 9.3.1.2. Results 

 

The dimensional form of heat and fluid flow equations for a channel partially 

filled with porous medium are presented in Chapter 6. According to the given equations 

and boundary conditions, heat and fluid flow in the channels described in the previous 

sections are investigated. Moreover, the heat transfers through the channels are also 

investigated for two solid materials as glass and aluminium alloy. The thermal 

conductivity for the glass and aluminium alloy are 1.1 W/mK and 120 W/mK 

respectively. 

The permeability values of the lower parts of the channels are given in Table 

9.2. Figure 9.29 shows the velocity profiles for the channels with three different 

permeability coefficients. As seen in this figure, the velocity values are zero at the 

channel walls because of the no-slip boundary condition and there are not great 

differences between velocity profiles. The maximum velocity values are in the upper 

part of the channel because of the clear fluid flow. The maximum velocity increases 

when the permeability of the lower part of the channel decreases. There is almost a 

uniform velocity distribution in the lower part of the channel and the velocity increases 

with the increased permeability. The difference is so small that the increment of 

velocity cannot be seen clearly.  

 



 117 

 

 

Figure 9.29. The dimensional velocity distributions for the flows with different 

permeability values for partially filled channel. 

 

Figure 9.30 shows the isotherms in the channels with three different 

permeability coefficients when the material of the solid is glass. Figure 9.30(a) shows 

the isotherms for the channel partially filled with high permeable material. As seen, 

although a symmetrical heat flux is imposed to the channel the isotherms are not 

symmetrical respect to the centreline because of the partial filling. The maximum air 

temperature is observed at the lower wall. The temperature decreases until the centre of 

the upper part of the channel, the temperature starts to increase from this point. The 

minimum temperature for a cross section is at the centre of the upper part of the 

channel. Although isotherms are similar with each other, they are not identical and they 

change along x axis. Figure 9.30(b) indicates the isotherms for the channel when lower 

part of the channel filled with medium permeable material. Maximum temperature is 

again observed at the lower wall and its value decreases towards the centre of the upper 

part channel. The isotherms almost have same slope at the lower part of the channel. 

The permeability of medium permeable channel is lower than high permeable channel. 

It provides higher effective thermal conductivity so it causes heat transfer enhancement 

in y direction. That’s why the temperature changes in y direction become smaller in the 

lower part of the channel. Therefore, the temperature value of the lower wall of the 

medium permeable channel is smaller than the temperature value of the lower wall of 

the high permeable channel. Figure 9.30(c) shows the isotherms for the channel bottom 

half filled with low permeable material. As seen, the temperature change in y direction 
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in the lower part of the channel becomes smaller due to the increase of thermal 

conductivity and flatter isotherms are seen. The upper parts of the high permeable, 

medium permeable and low permeable channels have almost same isotherms due to the 

fact that they are in the clear region. 

 

 

 

(a) 

 

 

(b) 

 

(c) 

Figure 9.30. Isotherm lines through the low conductive solid (glass) used channel: (a) 

Partially filled with high permeable material (b) Partially filled with 

medium permeable material (c) Partially filled with low permeable material 
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The isotherms of the partially filled channels with three different permeability 

coefficients when the material of the solid is aluminium alloy are seen in Figure 9.31. A 

symmetrical heat flux is imposed to the channel walls however the isotherms are not 

symmetrical respect to the centreline because of the partial filling. The isotherms for the 

channel partially filled with high permeable material when the solid is aluminium alloy 

is shown in Figure 9.31(a). The maximum air temperature is observed at the upper wall 

because of the effective conductivity in the lower part of the channel. The temperature 

decreases until the centre of the upper part of the channel, the temperature starts to 

increase at this point. The minimum temperature for a cross section is at the centre of 

the upper part of the channel because of the increased convection and decreased 

conduction effect of the heat transfer in the upper part of the channel. The isotherms are 

similar with each other but they are not identical and they change along x axis. Figure 

9.31(b) indicates the isotherms for the channel partially filled with medium permeable 

material when the solid is aluminium alloy. Maximum temperature is observed at the 

upper wall and its value decreases towards the centre of the upper part channel and then 

it again increases. The isotherms are almost perpendicular to the y axis in the lower part 

of the channel and the temperature value of the lower wall of the channel is smaller than 

the temperature of the lower wall of the high permeable channel. The decreased 

permeability provides higher effective thermal conductivity so it causes the heat transfer 

enhancement in y direction and the temperature changes in y direction becomes smaller 

in the lower part of the channel. Figure 9.31(c) shows the isotherms for the channel 

partially filled with low permeable material. There is a similarity between the isotherms 

of medium permeable channel and low permeable partially filled channel because the 

dominant cause of the increment of effective thermal conductivity is the usage of high 

conductive material (aluminium alloy). The difference between isotherms of medium 

permeable channel and low permeable channel is the temperature decrease for a cross 

section in the lower part of the channel. The upper parts of the channels have almost 

same isotherms because there is not any porous material in the upper parts of the 

channels.   
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(a) 

 

(b) 

 

(c) 

Figure 9.31. Isotherm lines through the high conductive solid (aluminium) used 

channel: (a) Partially filled with high permeable material (b) Partially 

filled with medium permeable material (c) Partially filled with low 

permeable material 

 

Figure 9.32 shows the wall temperature values for the channels which are 

partially filled with glass particles(a) and aluminium alloy(b) particles. The temperature 

distribuiton of the upper walls are same for all cases because the lower part of the 

channels filled with glass or aluminium alloy particles. As it can be seen in Figure 

9.32(a) and 9.32(b), when the permeability decrease, the wall temperature values 
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decrease for a cross section for both glass and aluminium alloy used channels. Figure 

9.32(a) and 9.32(b) also show that the permeability is more effective when the porous 

material is glass (less conductive material). 

 

 

(a) 

 

(b) 

Figure 9.32. Wall temperature values through the channels (a) The channel partially 

filled with glass particles (b) The channel partially filled with aluminium 

particles. 

 

The outlet temperatures of the partially filled channel are also investigated 

according to the permeability and effective conductivity of the filled region. Figure 
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9.33(a) indicates the distribution of the outlet temperatures of the partially filled 

channels when glass particles are used in the bottom half of the channel. As seen, the 

temperature distributions are not affected significantly with permeability in the upper 

part of the channel but the heat transfer increases in y direction with decreasing 

permeability in the bottom part of the partially filled channel. This enhanced heat 

transfer brings temperature decrease at the lower wall temperature. The outlet 

temperature distribution can be seen in Figure 9.33(b) when aluminium alloy particles 

are used in the lower half of the partially filled channel. The usage of aluminium alloy 

particles brings higher effective conductivity. The temperature values of lower wall are 

almost equal for all permeability values. The high permeable channel shows a little 

difference in the centre region of the channel but the temperature distribution for 

medium permeable and low permeable channel is almost same that’s why their 

distribution lines are coincides with each other. 
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(a) 

 

(b) 

Figure 9.33. Outlet temperature values through the channels (a) the channel partially 

filled with glass particles (b) the channel partially filled with aluminium 

particles. 
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Table 9.7. The fully developed Nu for upper and lower wall according to the particle    

types used in the lower part of the channel. 

Permeability Solid Nu1 Nu2 

High 
Glass 8.00458 1.58322 

Alum 7.87197 0.18752 

Medium 
Glass 8.06362 0.77674 

Alum 8.03994 0.01325 

Low 
Glass 8.16297 0.28731 

Alum 8.0794 0.00326 

 

Table 9.7 indicates the upper and lower wall Nu for glass filled and aluminium 

alloy filled channel. The Nu for lower wall (Nu2) have different values according to the 

permeability value and solid particle because of partially filling while the Nu for upper 

wall (Nu1)do not show much variation. The Nu for lower wall is smaller in the channel 

partially filled with aluminium alloy for all permeability values than the channel 

partially filled with glass. 

 

9.3.2. Dimensionless Analysis for Partially Filled Channels 

 

Heat and fluid flow in a channel which is partially filled with porous medium 

with constant heat flux boundary conditions is investigated analytically in Chapter 7. In 

this section, firstly, the numerical results which are given in Section 9.3.1 are compared 

with the analytical results. After checking compatibility, the effects of Da and the 

thickness of porous region on the normalized velocity profile; dimensionless 

temperature profile, Nu and pressure drop are analyzed. 

 

 9.3.2.1. Comparison of the Numerical with Analytical Results 

 

The channels which are shown in Figure 9.28 are used to analyze the 

consistency between numerical and analytical results. Numerical results which are given 

in Section 9.3 are converted to the dimensionless results with using defined 

dimensionless parameters as Equation 7.5. The converted results are compared with the 

results from the solutions of the analytical equations in Chapter 7. 
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Dimensionless parameters of the analytical equations such as Da, M, Y, S, U, H, 

K, θ are calculated according to the definition of these parameters which are given in 

Equation 7.5 with using the results of numerical solutions found in Section 9.3.1.2. The 

dimensionless results which are converted form of the numerical results and the 

dimensionless results from analytical solutions are compared with each other. The 

obtained dimensionless normalized velocity profiles from the converted forms of 

numerical solutions and the dimensionless normalized velocity profiles obtained from 

analytical solutions which are given in Chapter 7 are shown in Figure 9.34. As it can be 

seen in Figure 9.34, the analytical results are consistent with the numerical results.  

 

 

(a) 

Figure 9.34. Comparison of the normalized velocity profiles which are obtained by 

converted form of numerical results and the analytical results: (a) The 

channel partially filled with high permeable material (b) The channel 

partially filled with medium permeable material (c) The channel partially 

filled with low permeable material 

(cont. on next page) 
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(b) 

 

(c) 

Figure 9.34. (cont.) 

 

The dimensionless temperature profiles from the converted forms of numerical 

solutions and the dimensionless temperature profiles from analytical solutions are 

shown in Figure 9.35. Figure 9.35(a) indicates the dimensionless temperature profile of 

the high permeable channel when the material of the solid is aluminum alloy and Figure 

9.35(b) indicates the low permeable channel when the material of solid is glass. 

According to the Figure 9.35, the results obtained by numerical solutions are consistent 

with the results obtained by analytical solutions. All of the dimensionless temperature 
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profiles of the numerical solution for high permeable, medium permeable and low 

permeable channels are consistent with the dimensionless temperature profiles of the 

analytical solution, that’s why only two of figures are shown. 

 

 

(a) 

 

(b) 

Figure 9.35. Comparison of the dimensionless temperature profiles which are obtained 

by converted form of numerical results and the analytical results: (a) The 

high permeable channel partially filled with aluminum alloy particles (b) 

The low permeable channel partially filled with glass particles 
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Table 9.8 shows the individual Nu calculated both numerically and analytically 

for different channels. As seen from this table, there is a good agreement exists between 

the numerical and analytical results. 

 

Table 9.8. Comparison of the analytical and numerical results for the individual Nu 

  

From Numerical 

Solution 

From Analytical 

Solution 

Permeability Solid Nu1 Nu2 Nu1 Nu2 

High  
Glass 8.0046 1.5832 8.0493 1.579 

Alum 7.8720 0.1875 7.9092 0.1854 

Medium 
Glass 8.0636 0.7767 8.1004 0.771 

Alum 8.0399 0.0133 8.0943 0.013 

Low 
Glass 8.1630 0.2873 8.1916 0.2853 

Alum 8.0794 0.0033 8.1915 0.0031 

 

 

9.3.2.2. Effect of Da 

 

The temperature profiles of considered channels are investigated by equations 

given in Chapter 7. Da is changed between 10 and 10
-5

 to obtain the effect of it. The 

ratio of effective conductivity over conductivity of fluid (K*) is taken as 0.01, 1 and 100 

respectively. The dimensionless temperature profile distribution and Nu are analyzed 

when symmetric heat fluxes are imposed to the channel walls.  

The analyzing of velocity profile for the low Da is hard to observe so the 

normalized velocity profiles are investigated in Figure 9.36. The velocity profiles for 

upper region are different than lower region because of the partial filling. The maximum 

velocity occurs at the center of the upper region because of clear fluid flow. If Da 

decreases, the effect of porous media increases in the lower part of the channel so 

velocity value increases at the center region of upper part of the channel by reducing 

Da. The velocity values are zero at the boundaries because of the no-slip boundary 

condition and a sharp velocity gradient is observed at the lower wall region.  
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Figure 9.36. Dimensionless velocity distributions for the flows with different Da 

 

Figure 9.37 indicates the dimensionless temperature profiles for the flows with 

different Da. Figure 9.37(a), 9.37(b) and 9.37(c) show the dimensionless temperature 

profiles when the ratio of effective conductivity over conductivity of fluid (K*) is 0.01, 

1 and 100 respectively. In Figure 9.37(a), the effective conductivity of the upper side is 

higher than the lower side. The dimensionless temperature values increase when the Da 

number increases because maximum Da number means the presence of solid phase in 

the channel is at minimum. The dimensionless temperature values have almost constant 

value because of the higher effective conductivity in the upper side of channel. The 

maximum dimensionless temperature value is at the center of channel when Da equals 

10. In Figure 9.37(b), the effective conductivity and the conductivity of fluid are same. 

That’s why; a symmetrical behavior is observed when Da is 1 or 10. It is seen that, the 

dimensionless temperature values of the channel are increasing when Da number 

increase. Figure 9.37(c) shows the dimensionless temperature values when K* equals 

100. This means a solid which have higher conductivity then the fluid is present at the 

lower part of the channel. There is almost a linear temperature distribution at lower part 

because of the increased effective conductivity.   
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(a) 

 

(b) 

Figure 9.37. Dimensionless temperature distributions for the flows with different Da 

when (a) K*=0.01, (b) K*=1, (c) K*=100. 

(cont. on next page) 
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(c) 

Figure 9.37. (cont) 

 

The variation of individual Nu for upper and lower wall with increasing Da can 

be seen in Figure 9.38. Da is plotted using a logarithmic scale to observe the variation 

of individual Nu more clearly. The individual Nu for upper wall (Nu1) have almost 

same value for K* equals 1 and 100. Nu1 decreases when Da increases for K*=1 and 

K*=100. But Nu1 has a discontinuity for K* equals 0.01.  The individual Nu for lower 

wall (Nu2) has increasing positive values with increasing Da number for K* equals 0.01 

and 1. The value of Nu2 has also discontinuity when K*=100. 
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(a) 

 

(b) 

Figure 9.38. Logarithmic plot of Da vs. Nu for upper wall (Nu1) and Nu for lower wall 

(Nu2). 

 

The variation of Nu do not give an idea about the heat transfer in the upper and 

lower wall due to discontinues of values for certain Da numbers. Rather than individual 

Nu, the overall Nu can be investigated to make comments on the heat transfer 

mechanism in the partially filled channel. Figure 9.39 shows the variation of the overall 

Nu of the partially filled channel according to the Da number. Da is shown by using 

logarithmic scale to observe the overall Nu variation effectively. Figure 9.39 shows that 
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the channel is not able to benefit if K* is equal 0.01. The figure also indicates that; the 

overall Nu increases with the increment of Da number. The overall Nu reaches the value 

of 4.11 which is Nu of clear fluid channel when K* equals 1. However, there is more 

than two-fold increase in the overall Nu when K* equals 100. And also there is an 

optimum point for this increment. It can be said that the overall Nu has largest value 

when the Da is between 0.01 and 0.1 with using K* as 100. 

 

 

Figure 9.39. Logarithmic plot of Da vs. overall Nu 

 

The Nu for clear fluid fully developed channel when symmetrical heat flux used 

is found as 4.1176. The heat transfer enhancement by using partially porous media can 

be observed with the help of Nu for clear fluid channel and Nu based on fluid thermal 

conductivity by using Equation 9.2. Heat transfer improvement ratio, εth can be 

calculated by dividing overall Nu based on fluid thermal conductivity to the Nu for 

clear fluid channel. Figure 9.40 shows the heat transfer improvement ratios of overall 

system by using porous media for three different effective thermal conductivity ratios. 

The figure is plotted using a logarithmic scale to observe the variation of the heat 

transfer increment ratio more clearly. As seen in the Figure 9.40, Da does not affect the 

heat transfer increment of the channel significantly; the ratio of effective thermal 

conductivity over fluid thermal conductivity, K*, has more importance.  
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Figure 9.40. Logarithmic plot of heat transfer increment ratio vs. the Da for partially 

filled channel 
 

The partially porous media in the channel brings pressure drop defined as 

friction coefficient expressed in the Equation 7.46. The variation of friction coefficient 

is found by using mean velocity and it can be seen in Figure 9.41. The Da number is 

plotted using a logarithmic scale to observe the variation of friction coefficient more 

clearly.  When Da increases, the friction coefficient decreases. While there is not a very 

large friction coefficient in Da greater than 10
-2

,for numbers less than 10
-2

 Darcy, the 

friction coefficient reaches extremely big values.   

 

 

Figure 9.41. Friction coefficient vs. logarithmic plot of Da for partially filled channel 
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The pressure drop increment ratio for clear fluid fully developed channel with 

constant heat flux is given as 24. The increment of pressure drop by using partially 

porous media can be observed with the help of pressure drop increment ratio for clear 

fluid channel. Pressure drop increment ratio, εp, can be calculated as dividing friction 

coefficient of the porous channel in to the friction coefficient of a flow in a clear 

channel which is 24. Figure 9.42 shows the pressure drop increment ratio by using 

porous media in the partially filled channel. Da is plotted using a logarithmic scale to 

observe the variation of the pressure increment ratio more clearly. As seen in the figure, 

decreasing Da increases pressure increment ratio. And there is a huge increment for 

smaller than 10
-2

 Da.   

 

 

Figure 9.42. Friction coefficient vs. logarithmic plot of Da for partially filled channel 

 

The overall performance for the channel, ε, can be found by calculating the ratio 

of εth and εp for the channel. For the values of ε greater than 1 means the heat transfer 

enhancement is greater than the increase of pressure drop while for the values of ε less 

than 1 means the increase of pressure drop is greater than the heat transfer enhancement 

in the channel. Figure 9.42 shows the variation of overall performance of partially filled 

channel with Da for different K*. Overall performance is rising with increased Da and it 

is also increased with the ratio of effective thermal conductivity to the fluid thermal 

conductivity (K*). For Da greater than 1 which means almost clear channel there is a 

constant overall performance. The increased overall performance is coming from only 

K* ratio for Da greater than 1. The figure shows partial filling of channels with the 
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solids which have K* as 0.01 or 1 is not useful for heat transfer enhancement compared 

with the pressure drop in the channel. The important factor of partial filling with porous 

media is K*. It is seen that, for any Da number value the channel overall performance is 

greater than 1 when K* is 100.  

 

 

Figure 9.43. Logarithmic plot of overall performance vs. Da for partially filled channel 
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CHAPTER 10 

 

CONCLUSION 

 

The main focus on this thesis is investigating forced convection mechanism in a 

parallel plate channel with using porous media theoretically. Generally the effects of 

porous media on the fluid flow and the heat transfer in forced convection are examined. 

The numerical results of dimensional analysis and the analytical results of 

dimensionless analysis are given.  

The examination starts with a dimensional study about forced convection in a 

channel which is completely filled by porous media. In the guidance of given equations, 

two cases are analyzed; symmetrical and asymmetrical heated walls. Three different 

permeabilities and two different solids are used to analyze the effect of porous media. In 

the symmetrical heated case, the isotherms in the porous channels are obtained for each 

channel. It is found that, the decrease of permeability and the usage of more conductive 

solid (aluminum alloy) increase the conductivity in the channel. So the isotherms 

become straight lines in a cross section of the channel as effective conductivity increase. 

Also the mean and wall temperatures are obtained. It is seen that the wall temperature is 

very high for high permeable glass filled channel. The Nu is also studied for this case. 

For low conductive materials, the Nu approaches the fully developed case more slowly. 

The permeability of the channel also affects the fully developed location; if the 

permeability of the flow decreases, the flow also becomes fully developed earlier. 

According to the results, it is found that Nu is only a function of permeability of the 

flow. After making the dimensional study for symmetric case, a dimensionless study is 

done for it, as well. Before starting to the dimensionless analytical study, the 

consistency between analytical and numerical results is checked. Later, the analytical 

study is done with dimensionless parameters for symmetrical heated channel. It is 

resulted that the normalized velocity, the dimensionless temperature and Nu are 

influenced by Da. When Da increases, the Nu decreases. The heat transfer 

improvement, the friction drop and overall performance of the channel is studied. So, 

for specific ratios of effective conductivity over fluid conductivity, the overall 

performances of the channels are shown by figures. 
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Another dimensional study is done for asymmetrical heat flux boundary 

condition in a forced convection completely filled parallel plate channel. Three different 

permeability values and two different solids are used again in this channel. The 

isotherms through the channels are obtained. The isotherms are not symmetrical due to 

the asymmetrical heating. The variation of Nu for upper and lower wall vs. heat flux 

ratio is shown. Although an asymmetrical heating is imposed to the walls, the isotherms 

become almost identical for low permeable aluminum alloy filled channel because of 

high effective conductivity. It is found that, there are infinite and negative values in the 

Nu variations. The temperature distribution at the outlet of the channel for specific heat 

fluxes are examined to find the cause of the negative and infinite Nu. The reason of 

these infinite and negative values is found as the relation between mean temperature and 

wall temperatures and shown with a figure Before making the dimensionless analyses, 

the consistency of the dimensional and dimensionless analysis is checked. The 

distributions of normalized velocity, dimensionless temperatures and Nu are obtained 

by analytically. Like asymmetrical dimensional problem, the dimensionless results of 

the asymmetrical heated channels contain negative and infinite individual Nu. This 

behavior of Nu is not rational because there is no change in the direction of heat 

transfer. The heat flux is imposed from wall to the channel for all cases. For specific 

heat flux ratio, the overall performance is shown according to the obtained heat transfer 

increment ratio.  

The bottom half of the channel is filled with a porous medium to obtain the 

effects of permeability on heat and fluid flow in forced convection for parallel plate 

channel which partially filled with porous media. This analysis is made dimensionally 

for three channels which have different permeabilities and two different solids. The 

velocity profiles and the isotherms in the partially filled channel are shown. The 

isotherms of channels show that; the clear fluid part of channel do not highly effected 

by permeability, while the lower part is highly effected due to the porous media. The 

Nu, the distribution of the wall temperatures and the outlet temperatures are given for 

all type of channels. After checking the consistency between numerical and analytical 

results, an analytical investigation is done to the symmetrical heated partially filled 

channel. The normalized velocity, dimensionless temperature and individual Nu 

variations are observed with different ratio of effective conductivity over fluid 

conductivity. It is observed that, Da number highly affects the normalized velocity and 

the dimensionless temperature of the channel. There are infinite and negative values of 
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individual Nu for this case, too. The negative Nu do not give an idea about the 

enhancement of heat transfer, for this reason, the overall Nu is observed for this case. 

An optimum interval is found for overall Nu according to the Da. It can be said that the 

overall Nu has largest value when the Da is between 0.01 and 0.1 with using K* as 100. 

The friction coefficient is also shown for partial filling case. According to the required 

heat transfer enhancement and the pressure drop which can be tolerated, the channel can 

be completely filled or partially filled by checking the overall efficiency of the channel.  
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APPENDIX A 

CONSTANTS 

 

 



 

The constants in the Equation 7.32 are as following: 
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The constants in the Equation 7.36 are as following: 
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