PSEUDO RESIDUAL - FREE BUBBLE FUNCTIONS
FOR THE STABILIZATION OF CONVECTION -
DIFFUSION - REACTION PROBLEMS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Mathematics

by
Adem KAYA

Dec_emb_er 2012
IZM IR



We approve the thesis dfdem KAYA

Examining Committee Members:

Prof. Dr. Oktay PASHAEV
Department of Mathematics,
Izmir Institute of Technology

Prof. Dr. Turgut OZIS
Department of Mathematics,
Ege University

Assoc. Prof. Dr. Gamze TANGGLU
Department of Mathematics,
Izmir Institute of Technology

Prof. Dr. Oktay PASHAEV
Supervisor, Department of
Mathematics

Izmir Institute of Technology

Prof. Dr. Oguz YILMAZ
Head of the Department of
Mathematics

28 December 2012

Prof. Dr. Ali Ihsan NESLIT URK
Co-Supervisor, Department of

~Mathematics

Izmir Institute of Technology

Prof. Dr. R. Tu grul SENGER
Dean of the Graduate School of
Engineering and Sciences



ACKNOWLEDGMENTS

Foremost, | would like to express my sincere gratitude to oygdvisor, Prof. Dr.
Ali Ihsan NESLTURK, for his encouragement in preparation of this thesis shipport,
guidance and time spent in discussions throughout my stutieould like to also thank
Dr. Ali Sendur for his helps throughout my studies.



ABSTRACT

PSEUDO RESIDUAL - FREE BUBBLE FUNCTIONS FOR THE STABILIZATON
OF CONVECTION - DIFFUSION - REACTION PROBLEMS

Convection - diffusion - reaction problems may contain tf@gions in which the
solution varies abruptly. The plain Galerkin method may wotk for such problems
on reasonable discretizations, producing non-physiaallasons. The Residual - Free
Bubbles (RFB) can assure stabilized methods, but they aralyslifficult to compute,
unless in special limit cases. Therefore it is importantdeise numerical algorithms that
provide cheap approximations to the RFB functions, coutnily a good stabilizing effect
to the numerical method overall. In my thesis we will examargabilization technique,
based on the RFB method and particularly designed to treanthst interesting case of
small diffusion in one and two space dimensions for bothdstead unsteady convection
- diffusion - reaction problems. We replace the RFB funcdiby their cheap, but efficient
approximations which retain the same qualitative behaVia compare the method with
other stabilized methods.



OZET

KONVEKSIYON - DIFUZYON - REAKSIYON PROBLEMLERININ
STABILIZASYONU ICIN HEMEN HEMEN KALANSIZ FONKSIYONLAR

Konveksiyon - difiizyon - reaksiyon problemleri ¢coziimaniden degistigi dar
alanlar icerebilirler. Standard Galerkin metodu makuligtyrmalarda bu tur problem-
ler icin fiziksel olmayan salinimlar Greterek calisrabilir. Residual - Free Bubbles
(RFB) metodu bu durumu ¢odzen stabilize edilmis bir mégiotama RFB fonksiyonlarini
bazi 6zel durumlar hari¢ elde etmek zordur. Bu yuzden Rétiksiyonlarina ucuz bir
sekilde yaklasimlar saglayan sayisal algoritmalagriidir. Bu tezde RFB metoduna
dayanan bir boyutta ve iki boyutta hem duragan hemde duraimayan konveksiyon -
diftizyon - reaksiyon problemleri igin 6zellikle difyian katsayisinin kiigcik oldugu du-
rumlar i¢in ¢alisan bir stabilizasyon teknigini inegecegiz. RFB fonksiyonlarini ayni
kaliteyi gosteren kolay elde edilir ama etkili yaklasamlile yer degistirecegiz. Metodu
baska stabilize edilmis metodlar ile kiyaslayacagiz.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Convection - diffusion - reaction (CDR) problem is one of thest frequently
used model problem in science and engineering. This modélgmn describes how the
concentration of a number of substances (e.g., polluteinésnicals, electrons) distributed
in a medium changes under the influence of three processas)yneonvection, diffusion
and reaction.Convectiorrefers to the movement of a substance within a medium (e.qg.,
water or air). Diffusion refers to the movement of the substance from an area of high
concentration to an area of low concentration, resultinpéuniform distribution of the
substance. A chemicedactionis a process that results in the inter-conversion of chdmica
substance. Thus simulations of convection - diffusion etiea equations are required in
various applications. Numerical simulations of convettidiffusion - reaction problems
have been studied actively during the last thirty five years.

A characteristic feature of solutions of convection - dsffan - reaction problems
is the presence of sharp layers. When convection or readtionnates, there are physical
effects in the problem that occur on a scale which is muchlsmidan the smallest one
representable on the computational grid. However sucletsfleave a strong impact on
the larger scale. It is known that plain Galerkin method piess undesired oscillations
that pollute whole domain in the presence of under-resdigets.

Petrov-Galerkin method changing the shape of the testifumgts one of the ear-
liest attempts to cure this situation. In order to gain theticm of derivatives Streamline-
Upwind Petrov Galerkin (SUPG) method which is first proposedBrooks & Hughes
1982) is a much more general approach where the variatiomallation is augmented.
The advantages of this method are its great generality tlyzmand to derive the error
bounds. The main drawback of SUPG method is the presencetabiéizng parameter
that needs to be properly chosen.

Another approach is Residual-Free-Bubble (RFB) methodhwis based on en-
riching the finite element space. It is first studied in (Baldcet al. 1993) to find a
suitable value of stabilizing parameter for SUPG methode Tirfain problem with this
method is that it requires the solution of a local PDE. Chggp@&imate solutions to this
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local problem were designed by several researchers (Baiet@l. 1993), (Nesliturk
1999), (Brezzi et al. 1998), (Brezzi et al. 2003), ( SenduNé&sliturk 2011). Link-
Cutting Bubble (LCB) strategy aims to stabilize the Galenkiethod by using a suitable
refinement near the layer region. LCB strategy uses theisedinear bubble functions
to find the suitable sub-grid nodes. It works as the plain (Radlenethod on augmented
meshes. It is extended to time-dependent convection -Silbifu- reaction problem in one
dimension in (Asensio et al. 2007). One of the drawback &f shiategy is that in limit
regimes sub-grid nodes are very close to the original noolesdesired oscillations may
occur at sub-grid nodes near layers for unsteady probleraacé] in numerical simula-
tions one has to exclude the sub-grid nodes. Another drandfdcCB strategy is that in
two dimensions it is very difficult to implement because sftéchnique.

Pseudo Residual-Free Bubble (P-RFB) method aims to gegjsdimodes to ap-
proximate bubble functions cheaply using piecewise lirfaactions ( Sendur & Nes-
litirk 2011). The main advantage of P-RFB method is thaait be implemented in two
dimensions ( Sendur et al. 2012). Another advantage ofbifiod is that since integrals
of P-RFB functions are directly used when constructing tlassmmatrix, a smaller mass
matrix is used with respect to the mass matrix construct&id strategy.

In my thesis we will examine P-RFB method for both steady amsteady con-
vection - diffusion - reaction problems in one and two spadogedsions.

1.2. Layout of the Thesis

Chapter 2 reviews RFB method and P-RFB method in one dimefigicsteady
convection - diffusion - reaction problems. Comparisorstime between P-RFB method,
LCB strategy and SUPG method in different regimes. Appr@tersolutions and error
rates inL, norm are given.

Chapter 3 deals with steady convection - diffusion - reacpooblems in two
dimensions and examines P-RFB method in different reginfegomparison is done
between P-RFB and SUPG methods. Approximate solutionsfiareint regimes are
given.

Chapter 4 is devoted to extension of P-RFB method to unsteaalyection - dif-
fusion - reactions problems. Variational formulations eRPB method, LCB strategy
and SUPG method are given in one dimensiOif . numbers at which P-RFB method,
LCB strategy and SUPG method work best with Crank-Nicolsdreme are determined.
Then comparisons between the methods at tli&€sé. numbers are done. Finally, the
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thesis extends P-RFB method to unsteady convection - @ffusreaction problems in
two dimensions. Variational formulations of P-RFB and SUR&thods are given. A
comparison between these two methods with Bacward-Eubanse is established.



CHAPTER 2

PSEUDO RESIDUAL - FREE BUBBLES FOR STEADY
CONVECTION - DIFFUSION - REACTION PROBLEMS IN
ONE DIMENSION

In this section, we will show a stabilization method for ordimensional steady
convection - diffusion - reaction problems, designed tatttee most interesting case of
small diffusion, but able to adapt one regime to anotherinantisly which is studied in
( Sendur & Neslitirk 2011). This method aims to approxientdite RFB functions effi-
ciently but cheaply without compromising the accuracy. peeudo bubbles are chosen
to be piecewise linear on a suitable sub-grid that, the joostf whose nodes are deter-
mined by minimizing the residual of local differential ptems with respect td.,; norm
( Sendur & Nesliturk 2011). Location of sub-grid nodes irsgndur & Nesliturk 2011)
coincides with the location of sub-grid nodes in (Brezzile@03) when the problem is
in reaction - dominated regime.

2.1. A Review of RFB Method in One Dimension
Consider the two point boundary value problem

{ Ly =—eu" + pu' +ou= f(x)on I, 2.1)

u(0) =u(1l) =0,

wherel = (0,1). Let T}, = {K} be a decomposition of where X' = (z4_1, %), k =

1, ..., N. For simplicity we shall assume that the subintervals aréoun so that length
of each subinterval is8. We also assume that diffusion coefficiernis positive constant
and convection fielgd and reaction fieldr are non-negative constants. It is well known
that when diffusion coefficiertis small with respect t6 or o, Galerkin method produces
oscillations as depicted in Fig. 2.1. To treat this casers¢géabilized methods have been
introduced such as SUPG (Streamline - Upwind Petrov/Gilerkethod which is first
described in (Brooks & Hughes 1982) and the RFB method wisibased on augmenting
the finite element space of linear basis functions. RFB ntkttam be summarized as
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Figure 2.1. Standard Galerkin finite element method with 0.001, 3 = 1,0 = 1
andh = 0.02 subject to homogeneous boundary condition.

follows. Let start with recalling abstract variational fioulation of problem (2.1): Find
u € Hi(I) such that

a(u,v) = (f,v), Vv € Hy(I), (2.2)
where
a(u,v) = e/u'v’dx+ /(6u)'vdx+ /qudx. (2.3)
I I I

DefineV}, subspace off}(I) as finite - dimensional space. Then Galerkin finite element
method reads: Find;, € V}, such that

a(un, vn) = (f,vn), Yoy, € V. (2.4)

Now, decompose the spatg asV}, = V. @ Vi, whereV/, is the space of continuous
piecewise linear polynomials aid; = @, Bx with By = H}(K). From this decom-
position everyv;, € V,, can be written in the form;,, = v, + vg, wherev;, € V;, and
vg € Vp. Bubble component of u; satisfy the original differential equation in an
element K strongly, i.e.

LUB = —EuL —+ f in K, (25)



subject to boundary condition,

ug =0 on oK. (2.6)

Since the support of bubbles is contained within the elemerif we can make a static
condensation for the bubble part, getting directly the projectionu;, of the solutionu,,
(Brezzi & Russo 1993). This can be done as follows. Usihg= V;, @ V3, the finite
element approximation reads: Fingl = u;, + ug in V}, such that

a(ur,vr) + alup,vy) = (f,vr), Vv € V. (2.7)

From equations (2.5) and (2.8) is identified by the linear part; and source function

"RFB" ‘ ‘ ‘ ‘ "RFB"

1} "P-RFB" —— 1 1} "P-RFB" ——
0.8 1 0.8
0.6 1 0.6
04t 1 04t
0.2 1 0.2}

0 L L L L 0 L L L L

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

Figure 2.2. Comparison of exact solution (curved line) @ tptimal bubble with its
piecewise linear approximation for problem parametes0.005, 5 = 1,
o = 0.001 (left) ande = 0.0001, 3 = 1, ¢ = 0.001 (right).

f, which is as complicated as solving the original differah&iquation. Therefore, it is
important to bring a cheap approximation to the bubble fioncivhich gives a similar
stabilization effect as shown in Fig. 2.2..

2.2. Pseudo - RFB in One Dimension

In order to make an efficient linear approximation to the bebplocations of
sub-grid nodes are crucial. This is accomplished by a miration process with respect
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to L, norm in the presence of layers ( Sendur & Neslitirk 20119t 4, and z; be two
sub-grid in a typical elememt’ = (z;_1,x)) such thatr,_; < 21 < 2o < x; on which
we approximate the bubble functions. Assume that a piecewise linear function with
respect to discretization. Then the residual in (2.5) bexomlinear function and it is
reasonable to consider bubble functid®s(i = 1, 2) defined by

LB; = —Ly; in K, B; =0 onoK, i=1,2, (2.8)

where o1, p, are the restrictions of the piecewise linear basis funstifum V;, to K.
Further defineB; such that

LBy =f in K, By =0 onoK. (2.9)

Let B} (z) = «;b;(x) be the classical Galerkin approximation®fthrough (2.8), that is

a(B}, bi)k = (—Lpi, bi)k, 1=1,2, (2.10)

whereb; is a piecewise linear function with

bi(xk—l) = bZ(ZEk) = 0, bi(zi) = 1, = 1,2 (211)

Using numerical integration and properties of bubble fioms one can get explicit ex-
pressions ofy; andas as follows:

38+ (€ —2h)o 38+ (2h —n)o
oy = ﬁh (i ) = — Bh (36 n) , (2.12)
2W(g=g T ) 2h(Gasy + o)

whereé = 2y —xy_1,7 = xp— 22,0 = 29—2;. NOw it remains to choosg. The mainidea
behind determining the locations of sub-grid nodes is toimire residual with respect
to L; norm coming out from equation (2.8). That is, choessuch that

K

is minimum ( Sendur & Neslitirk 2011).



2.2.1. Diffusion - Dominated Regime

The problem is assumed to be diffusion - dominated wier 5h?/9 ( Sendur
& Neslitirk 2011). In this regime, stabilization is not weel and a uniform sub-grid is
chosenag =n =0 = h/3 (Sendur & Nesliturk 2011).

2.2.2. Convection - Dominated Regime

The problem is convection - dominatedif < Sh?/9 with 33 > oh. The follow-
ing lemma which is given in ( Sendur & Neslitiirk 2011) susgigean optimal position for
29.
Lemma 1 In convection - dominated case, the paijpnt= I Vi o V;ﬁ% minimizes the
integral (2.13) fori = 2.
There are several possibilities foiin convection - dominated regime. To determine the
optimal&, we look at the errors ik, norm for various values of. We set the diffusion
coefficiente = 10~°, the convective field t& = 1 and reaction term te = 1 with exter-
nal sourcef = 1. From Fig. 2.3 we can see that optingak h — n and error inL, norm
is of order 2. Thus in convection - dominated regime we taken, and{ = h — .

2.2.3. Reaction - Dominated Regime

In reaction - dominated regime position of is as in convection - dominated
regime. Note that the problem is in reaction - dominatedmegif 6e < 3h?/9 with
3 < oh. After the minimization of the integral;, £, n and¢ are suggested as follows in
( Sendur & Neslitiirk 2011):

3B+ /9B% + 24e0
N 20

ge ) 1 = Te, gzmin{h_nvge}a 5:(h_77_§)

(2.14)

2.3. Numerical Experiments

In this section, we report some numerical experimentsuetitate the performance
of P-RFB ( Sendur & Neslitirk 2011), Link - Cutting Bubbleé&egy (Brezzi et al. 2003)
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Figure 2.3. Optima{ in convection - dominated regime.

and SUPG method. Stabilization parametet 1/(20 + % + 25) for SUPG method is
taken from (Asensio et al. 2007). In this chapter all tesésdone in the unit interval
(0.1) and uniform meshes are used.

2.3.1. Test1 (Diffusion - Dominated Regime)

We start with the advection - diffusion - reaction problemlj2subject to ho-
mogeneous Dirichlet boundary condition when the problediffasion dominated. The
diffusion coefficient is set te = 1. The convective field is set t6 = 1 and the reaction
term too = 1 with external forcef = 1. Table 2.1. and Table 2.2. show the values of
errors inL, and H; norms forh = 0.05,0.025,0.0125, 0.00625, respectively. Fig 2.4.

Table 2.1. Errors inl, norm for various values ok when the problem (2.1) is in
diffusion - dominated regime.

h=0.05 h=0.025 h=0.0125 h=0.00625

P-RFB 0.00018 0.000046 0.000011 0.0000029
LCB 0.00019 0.000047 0.000011 0.0000030
SUPG 0.00018 0.000045 0.000011 0.0000028

shows the error rates ih, and H; norms. In diffusion dominated regime all the three



Table 2.2. Errors inH; norm for various values ok when the problem (2.1) is in
diffusion - dominated regime.

h=0.05 h=0.025 h=0.0125 h=0.00625

P-RFB 0.012 0.0061  0.0030 0.0015
LCB 0.012 0.0061  0.0030 0.0015
SUPG 0.012 0.0061 0.0030 0.0015

10° . 10"
—#&— P-RFB —#— P-RFB
—a—LcB —8—LCB

— © — SUPG — © — SUPG

10

llu=y I},
lluy, I,
)

o

5

10°F

1076 -3 "Z -1 1073 -3 "Z -1
10 10 10 10 10 10

Figure 2.4. Error rates ih, and H; norms when the problem (2.1) is in diffusion -
dominated regime.

methods turn into Standard Galerkin finite element methabithey give approximately
the same results.

2.3.2. Test 2 (Convection - Dominated Regime)

Our second numerical experiment is a test problem taken fi@rezzi et al.
2003) which is an advection - diffusion - reaction probleml}2subject to homoge-
nous Dirichlet boundary condition when the convection tésndominated. 11 nodes
are used for numerical approximations. The diffusion codfit is set ta= = 0.00001,
convection term tg = 1 and reaction term is set ® = 1. We assume external force
f = 1. Fig 2.5 shows the numerical approximations. Errord.4nand H; norms are
reported in Table 2.3. and Table 2.4. respectively. Fig. sh@ws the error rates for

10



h = 0.05,0.025,0.0125,0.00625. In convection - dominated regime error in norm is
of order2 and inH, norm is of orden for the three methods. SUPG method produces an
oscillation near boundary layer.

2.3.3. Test 3 (Reaction - Dominated Regime)

We now consider the advection - diffusion - reaction prob{@m) subject to ho-
mogenous Dirichlet boundary condition when reaction tegmaminated. The diffusion
coefficient is set t& = 0.00001, convective field tg3 = 1 and reaction term is set to
o = 100. We assume = 100. For numerical approximations (Fig. 2.Z) nodes
are used. All the methods works fine in reaction dominatednmedut SUPG method
produces oscillations again near boundary layers.

2.3.4. Test 4 (Internal Layer Problem)

Our last experiment is as in previous one advection - diffiusireaction problem
(2.1) subject to Dirichlet boundary condition when reagtterm is dominated but an
internal layer exists. The diffusion coefficient is setete= 0.00001, convection term
to 4 = 1 and reaction term is set @ = 50. External forcef is piecewise defined
such thatf = —50 for x < 0.5 andf = 50 for z > 0.5. 41 nodes are used for numerical
approximations. From Fig 2.8 we can say that Pseudo - RFBegabapture the internal
layer more accurately than the other ones. SUPG method gesdiscillations near both
internal layer and boundary layer.
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Table 2.3. Errors inL, norm for various values ok when the problem (2.1) is in
convection - dominated regime.

h=0.05 h=0.025 h=0.0125 h=0.00625

P-RFB 0.00014 0.000036 0.0000092 0.0000023
LCB 0.00014 0.000036 0.0000092 0.0000023
SUPG 0.00014 0.000036 0.0000091 0.0000022

Table 2.4. Errors irf{; norm for varioush when the problem (2.1) is in convection -
dominated regime.

h=0.05 h=0.025 h=0.0125 h=0.00625

P-RFB 0.0093 0.0046  0.0023 0.0011
LCB 0.0093 0.0046  0.0023 0.0011
SUPG 0.0093 0.0046  0.0023 0.0011

" "P-RFB" ‘ ‘ " "LCB" -
1.2 "exact" 1.2 "exact"
1 1
0.8 1 0.8
0.6 [ 1 0.6 [
0.4 E 0.4t
0.2 0.2
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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12 + "exact"
1
0.8
0.6 r
04
0.2
0 .
0 0.2 0.4 0.6 0.8 1

Figure 2.7. Numerical approximations when the problem)(&1in reaction domi-
nated regime.
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CHAPTER 3

PSEUDO RESIDUAL - FREE BUBBLES FOR
CONVECTION - DIFFUSION - REACTION PROBLEMS IN
TWO DIMENSIONS

This section is devoted to the application of the Pseudodrest free Bubble
functions for the stabilization of two - dimensional steayvection - diffusion - reac-
tion problems. In one dimension two sub-grid nodes are seifficBut in two dimensions
three sub-grid nodes are necessary in each triangular etemapproximate the bubble
functions. Presence of three sub-grid nodes in an elemédwasnaCB strategy very diffi-
cult to apply in two dimensions. However, since only intégef Pseudo Residual - free
bubble functions are directly used in calculations withimadifying the given mesh, it
is easier to implement P-RFB method in two dimensions wherptsitions of sub-grid
nodes are in hand. Positions of these three sub-grid nodeteggrmined by minimizing
the residual of local differential problems with respecitonorm as in one dimension
(Sendur et al. 2012).

3.1. A Review of RFB Method in Two Dimensions

Consider the elliptic convection - diffusion - reaction plem on polygonal do-
main {2 in 2D

(3.1)

Lu=—eAu+ .Vu+ou= fon {2,
u =0 on 012,

where the diffusion coefficientis positive constant, convection teffrand reaction term
o are non-negative constants. ligtbe a decomposition of the domafhin to triangles
K, and lethy, = diam(K) with h = maz ke, hy. We assume thdf, is admissible (non
- overlapping triangles, their union reproduces the doinama shape regular (the trian-
gles verify a minimum angle condition). We start by consiagithe abstract variational
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formulation of the problem (3.1): Find € H}({2) such that
a(u.v) = (fv) Vo€ HY(Q) (3.2)

wherea(u,v) = € [, Vu.Vv + [,(8.Vu)v + [,ouv and(f,v) = [, fv. DefineV, as
a finite dimensional subspace Hf ({2). Then standard Galerkin finite element method
reads: Findi;, € V}, such that

a(up,vn) = (f,vn)  Yop € Vi (3.3)
We now decompose the spakg such thatV,, = V, @ Vg, whereV;, is the space of
continuous piecewise linear polynomials arigl = €, Bx With B = Hj(K). Then
v, = vr, + v can be uniquely written wherg, € V;, andvg € Vz. From the decom-

position ofV/}, into V;, and Vg, we require the bubble componan of u,, to satisfy the
original differential equation ik strongly i.e.,

subject to boundary conditions,
ug =0 onokK. (3.5

By the static condensation procedure, (Brezzi & Russo 1883)method reads: Find
up, = ur, + upg in V3, such that

a(ur,vr) + a(ug,vr) = (f,vr) Vv, € V. (3.6)

The bubble component should be computed to solve (3.6). Eprations (3.4) and (3.5)
bubble function, is identified by the linear patt; and the source functiofiwhich is as
complicated as solving the original differential equati®o it is important to get a cheap
approximation for the RFB functions which gives a similatslization effect ( Sendur
etal. 2012).

16



3.2. Pseudo RFB in Two Dimensions

In order to make an efficient linear approximation to the belfbnctions, loca-
tions of sub-grid nodes are crucial. LBt (i = 1,2, 3) be these sub-grid nodes. Location
of those sub-grid nodes are determined by a minimizatiooge®with respect tb; norm
in the presence of layers ( $Sendur et al. 2012). Assumeftisah piecewise linear func-
tion with respect to discretization. Then the residual i ®ecomes a linear function
and it is reasonable to consider bubble functi®$: = 1, 2) defined by

LB; = —Ly; in K, B; =0 onoK, 1=1,2,3 (3.7)

wheregp, o, andys are the restrictions of the piecewise linear basis funstionl’, to
K. Further defing3; such that

LBy =f in K, By =0 onokK. (3.8)
Since
3
UL|K = ZCi% (3.9)
=1
we can write
3

i=1

with the same coefficient. From here

That is, equation (3.4) is automatically satisfied ( Seretual. 2012). LetB(z) =
a;b;(z) be the classical Galerkin approximation®fthrough (3.7) that is,

a(Bf,bi)k = (—Lpibi)x,  i=1,2 (3.12)
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whereb; is a piecewise linear function such that
b(V;)=0 and bi(P)=1 Vi,j=1,2,3 (3.13)

whereV; are the vertices of. From equation (3.12) one can easily get

T oalbi b)) €|[Vb|[% + ol bl %

i=1,2,3 (3.14)

where in equation (3.14) the following fact is used ( Serefwal. 2012);

/K(ﬁ-Vbi)biZ/I(V.(ﬁbi)bi—/K(Vﬂ)bibi:/aK(Bbibi).da—/KO*bibi:0+0:0.
(3.15)

To determine the location of internal points; minimization process is applied to the
following integral coming out from the bubble equation (3(/Sendur et al. 2012)

K

Before giving the explicit expression of internal nodesdtferent regimes, we will give
additional notation about element geometry. Edgek @fre denoted by; opposite td/;,

length ofe; by |e;|, the midpoint of edge; by M;, the outward unit normal te; by n’,

v; = |le;In' andB,, = (8,1;). If B,, <0, B,, > 0andp,, > 0 then the element has only
one inflow edge and if,, > 0, 5,, < 0 andpj,, < 0 then the element has two inflow
edges as depicted in Fig 3.1.

3.2.1. Diffusion - Dominated Regime

Location of P; along the median fron; is defined as
t1,ts, andts are defined for both one inflow and two inflow edgeas- ¢, = t3 = 1/3

( Sendur et al. 2012). That is when the problem is in diffasiominated regime the
sub-grid nodes are at the barycentre of triangular element.
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Figure 3.1. Configuration of internal nodes for element hasiaflow edge (left) and
two inflow edge (right).

3.2.2. Convection - Dominated Regime

We consider the both one inflow edge element and two inflow dgament and
we start with one inflow edge.

3.2.2.1. One Inflow Edge

Location of P, along the median fron; is defined as
Pi=0—-t)M;+tV;, 0<t; <1, i=123. (3.18)

The problem is in convection - dominated regime # ¢} with 20| K| < min{5,,, 5., }

where

*

o 2AK|(=36,, + ol K])
L B e Jesl?)

(3.19)

The following lemma which is given in ( Sendur et al. 2012)gests an optimal position
for P, along the median froni;.

Lemma 1If the inflow boundary make up of one edge, then the pgirt 1—%
minimizes the integral (3.16) for = 1 in convection - dominated flows wheyg =
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bl_e_0.01 b2_e_0.01 b3_e_001

bl_e_0.001 b2_e_0.001 b3_e_0.001

b1 e 0.0001 b2_e 0.0001 b3_e_0.0001

Figure 3.2. Pseudo - bubble functidnsb, andbs in a typical element with one inflow
edge, wher) = 72°,.N = 20,e = 102,103, 10~*.

—QﬁyllKl + 36|62 — 63|2 and)\l = 2460‘|K|2(|62|2 + |63|2).
The choice of other two point&, and P; should be consistent with the physics of the
problem. Thus in convection dominated regime we take

ty =1} if € < €,
t1=1/3 otherwise (3.20)
to =13 = mln{l/s, 1— tT}

In Fig 3.2 the behaviours of approximate bubble functiorestypical elemenis with one
inflow edge, fors = (cos 72°,sin 72°), ¢ = 0.001 and various are displayed. The first
column of the figure represents the bubble functipfor decreasing values of diffusion
(e =1072,1073,10~%). The corresponding numerical results fgrandb; are shown in
columns2 and3 respectively.
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3.2.2.2. Two Inflow Edges

Now let the inflow boundary make up of two edges andJeinde; be the inflow

ones. The problem is convection dominated # min{ej, €5} where

o _ 2K|(=3By + 0| K])

- _ — 1.2 3.21
T 00 T Jeal + Jeal?) (3:21)

The following lemmas suggest optimal positions farand P;. Proof of the lemmas are
givenin ( Sendur et al. 2012).

Lemma 2 If the inflow boundary make up of two edges, then the peint= 1 —
%ﬂé*—h minimizes the integral (3.16) for = 2 in convection - dominated flows
wherep, = —28,,| K| + 3ele; — e3]? and )y = 24ea| K |*(Je1]? + |es]?).

Lemma 3 If the inflow boundary make up of two edges, then the point= 1 —
%”E’L—A?’ minimizes the integral (3.16) for = 3 in convection - dominated flows
whereps = —28,.| K| + 3ele; — es]? and s = 24ea| K 2(Je1]? + |ea]?).

For convection dominated regime, the choice of other pBjrghould be consistent with

the physics of the problem. Thus we take

In Fig 3.3 the behaviours of pseudo - bubble functions in &glpgelementi with two
inflow edge, fors = (cos 72°,sin 72°), ¢ = 0.001 and various are displayed. The first
column of the figure represents the bubble functipofor decreasing values of diffusion
(e = 1072,1073,10~%). The corresponding numerical results fgrandb; are shown in
columns2 and3 respectively.

3.2.2.3. Numerical Tests

In this section, we present some numerical experimentsstesaghe accuracy and
performance of P-RFB method. We shall report erroré4rand H; norms and a com-
parison is done between SUPG and P-RFB methods in termhgs ahd H; norms. In
our calculations we take different partitions of dom&in N represents the number of
element in each andy direction for uniformly partitioned domains.
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bl e 0.01 b2 e 0.01 b3 _e 0.01

bl e 0.001 b2 e 0.001

b2_e_0.0001 b3_e_0.0001

Figure 3.3. Pseudo - bubble functidnsb, andbs in a typical element with two inflow
edge, wher) = 72°,.N = 20,e = 1072,1073,10~*.

Test 1 (Convection - dominated regime)

We start with considering the advection - diffusion - reactequation (3.1) on a
unit square that can be solved analytically. We considéoahg problem

—eAu+ (1,0).Vu+ ou =0, (3.23)

subject to boundary conditions (see Fig 3.4)

(

0, ify=00<z<1,
0, ifr=10<y<I,
w = o =Y= (3.24)
0, fy=10<z<1,

sin(my), ifz=00<y<]1.

Analytical solution of test problem 1:

Let u(z,y) = h(z)g(y) be our solution. Substituting(z,y) into the equation (3.23)
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Y
1 u=0
=(1,0
u = sin(ry) u w=0
0 u=20 1

Figure 3.4. Configuration of test problem 1.

we get
—eh"g—eg” +h'g+ ohg = 0. (3.25)

Seperating the variables in equation (3.25)

" h/ g//
—e— 4 — el = — 2
eh+h+a Eg A (3.26)

where) is a constant. From equation (3.26) and the given boundangitons

eg"+Ag=0, g(0)=0, g(1)=0 (3.27)

eh” —h' — h(\ + o), h(1) = 0. (3.28)

Equation (3.27) is a two point boundary value problem andatation is of the form

9y) = sin(\/gy) (3.29)

where)\, = en?7%, n = 1,2,3, ... andc, is a constant. Solution of equation (3.28) is of
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the form

h(x) = e <02 sinh <\/1 +delo + en*m?) (x — 1))) (3.30)

2¢

wherec, is a constant. From superposition principle

u(z,y) = i Ape2 sinh <\/1 i 46(56+ en’r’) (x — 1)) sin(nmy). (3.31)

n=1
Using orthogonality o&in function and last boundary condition

1
A = A, =0 forn=2,3,.... (3.32)

sinh <__\/ 1+46<o+ew2>) ’

2e

Hence our solution is

1 144 2
. sinh <\/ - 62(0 e )(:E — 1)) sin(my).
. 14+4e(o+en?) €
sinh <_7v )

u(z,y) = e

2e

(3.33)
Elevation plots of approximate and exact solutionsdoe= 10~3 and for different dif-
fusions € = 1072,1073,10~%) with N = 10, 20, 40 are represented respectively in Fig
3.5 and Fig 3.6. The columns represent the solutions withitaioe and increasingV.
Corresponding contour plots are represented in Fig 3.7 an8.8 respectively. In Table
3.1 and Table 3.2 errors ih, and H; norms are reported respectively. In Fig 3.9 error
rates are represented i3 and H; norms respectively. It can be seen from numerical
calculations that the error ib, norm is of orderR and in/; norm is of orderl which are
the expected orders. The method works fine in limit regimag=id) 3.10 a comparison
between SUPG and P-RFB method is represented with respégtand /; norm. Sta-
bilization parameter for SUPG methed= 1/(3—% + %j' + o) wherehy, is an appropriate
measure for the size of the mesh cell, is taken from (Codir®819SUPG and P-RFB
methods approximately have the same quality in convectonidated regime.

Test 2(Thermal boundary layer problem)

Now we consider a problem taken from (Nesliturk 1999). Lstoonsider a
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N=10, epsilon=0.01 N=10, epsilon=0.001 N=10, epsilon=0.0001
min =0, max = 1.298 A min =0, max = 1.1536 min =0, max = 1.09959
17

)

2 Yl RN p \
270NN | 277NN 77 /AN
2NN | 77NN | 277N
N=20, epsilon=0.01 N=20, epsilon=0.001 N=20, epsilon=0.0001

min =0, max =1.2125 min =0, max = 1.22 5 min =0, max =1.11071

N=40, epsilon=0.01 N=40, epsilon=0.001
min=0, max=1

N=40, epsilon=0.0001
min =0, max = 1.12582
o

min=0, max=1.3

Figure 3.5. Elevation plots of approximate solutions of test problem 1 for =
1073, ¢ = 1072,1073,10~* with N = 10, 20, 40.
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Figure 3.6. Elevation plots of exact solutions of the testopgm 1 foroc = 1073,
e =10"2,10"2,10~* with N = 10, 20, 40.



N=10, epsilon=0.01

N=10, epsilon=0.001

N=10, epsilon=0.0001

min =0, max = 1.29804

min =0, max = 1.1536

min =0, max = 1.09959
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e =10"2,1073,10~4 with N = 10, 20, 40.

Figure 3.7. Contour plots of approximate solutions of tis peoblem 1 fowr = 1073
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Figure 3.8. Contour plots of exact solutions of the test [@wbl forc = 1073, € =
1072,1073,10~* with N = 10, 20, 40.
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Figure 3.9. Error rates i, (left) and H; (right) norms for the test problem 1 for
different diffusionse = 1,1072,1073,10~*.
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Figure 3.10. Comparison of two method with respecitonorm (left) andH; norm
(right) fore = 107, o = 1073 with N = 10, 20, 40, 80.
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Table 3.1. Errors of the test problem 1/n norm for variousV with o = 10~2 and
different diffusionse = 1,1072,1073, 1074

N=10 N=20 N=40 N=80
e=1 0.003202 0.000804 0.000200 0.0000501
€=0.01 0.0486  0.00905 0.000369 0.0000899
e=0.001 0.0201 0.00489 0.000903 0.000113
€=0.0001 0.0131 0.00193 0.000314 0.0000587

Table 3.2. Errors of the test problem 14 norm for variousV with ¢ = 103 and
different diffusionse = 1,1072,1073, 10~

N=10 N=20 N=40 N=80
e=1 0.105 0.0530 0.0263 0.01288
e=0.01 0.832 0.273 0.0263 0.0129
e=0.001 0.285 0.140 0.0585 0.0156
€=0.0001 0.19 0.0611 0.0275 0.0137

rectangular domain of sidés) and0.5, subject to following boundary conditions

(

1, if x=0,0<y<0.5,
1, ify=050<x<1,
y— _y == (3.34)
0, ify=00<z<1,
2y, ifxr=10<y<0.5.

\

The flow is taken ag = (2y,0) (see Fig 3.11). In each element we consider the vari-
able component of flow as constant i.e. we take the average @2y at nodes in each
element. This problem may be viewed as the simulation of éveldpment of a thermal
boundary layer on a fully developed flow between two parallales, where the top plate
is moving with velocity equal to one and the bottom plate igdix In our test we take
the diffusione = 10~° and the reaction term = 10~3. In Fig 3.12 the elevation plots of
approximate solutions and corresponding contour plotpaagented forvV = 10, 20, 40.

Test 3(Propagation of discontinuity on boundary through the wind
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0 U=0 | x

Figure 3.11. Statement of thermal boundary layer problem.

Our last problem for convection - dominated regime is abeopagation of dis-
continuity on boundary. We use a uniform triangulations ait square. We take diffu-
sionse = 1072, 1073, convective field3 = (cos 72°, sin 72°) and reaction termr = 103
with N = 20, 40, 80. In Fig 3.13 elevation plots of approximate solutions arelrthor-
responding contour plots are presented. The first colummeffigure represents the
approximate solutions and their corresponding contoutspiior decreasing diffusions
(e =1072,1079).

3.2.3. Reaction - Dominated Regime

Again we consider both one inflow edge element and two inflogesclement.
We start with considering the two inflow edges element.

3.2.3.1. Two Inflow Edges

The problem is reaction - dominatedtiK min{e}, €5} with o| K| > 35,,
( Sendur et al. 2012). Position 6% and P; are as in convection - dominated regime. It
remains to define location d@?,. Location of P, along the median frori; is defined as

The following lemma suggests optimal position fér. Proof of the lemma is given in
(Sendur et al. 2012).
Lemma 4 If the inflow boundary make up of two edges, then the pojfit= 1 —
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2
’”20_7 W minimizes the integral (3.16) far= 1 in reaction - dominated flows where
p1 = 2B, |K| — 3€lea — e3]? and\; = 24ea| K |*(|ea)® + |es|?).

Thus we take, t, andt; as follows ( Sendur et al. 2012) :

tz - t;,
ty = t3, (3.36)
ty =max{min{1/3,1 —t5, 1 — t3},¢7* }.

In Fig 3.14 the behaviours of pseudo - bubble functions irp&cgt elementx” with two
inflow edges, for3 = (cos 72°,sin 72°), ¢ = 1073 and variousr are displayed. The first
column of the figure represents the bubble functioifior increasing values of reaction
(¢ = 10,100,500). The corresponding numerical results fgrand b3 are shown in

column2 and3 respectively.

3.2.3.2. One Inflow Edge

In this case, the problem is reaction - dominated if ( Semdat. 2012)
e <€ with o|K| > 3max{f.,, Bu}- (3.37)

Position of P; is as in convection - dominated regime. It remains to defigatlons of
P, and P;. The following lemmas suggests optimal positionsfand P;. Proofs of the
lemmas are given in ( Sendur et al. 2012).

Lemma 5If the inflow boundary make up of one edge, then the pgine 1— %
minimizes the integral (3.16) far= 2 in reaction-dominated flows whepe = 25, | K| —
3eler — e3]? andy = 24ea| K |(|er]® + |es]?).

Lemma 61f the inflow boundary make up of one edge, then the pdinte 1— %
minimizes the integral (3.16) far= 3 in reaction - dominated flows whepg = 25, | K'|—
3eler — eo]? andz = 24ea| K|2(|e1]? + |ea]?).

Thus we take, t, andt; as follows ( Sendur et al. 2012) :

t = t7,

ty = max{l —t,, 5"}, (3.38)
ts = max{l —t;,t5*}.
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In Fig 3.15 the behaviours of pseudo - bubble functions inpaclt elementi with
one inflow edge, fod = 72°, ¢ = 10~ and variousr are displayed. The first column
of the figure represents the bubble functignfor increasing values of reactiofw =
10,100, 500). The corresponding numerical results fgrandb; are shown in columa

and3 respectively.

3.2.3.3. Numerical Tests

Now we presents three numerical experiments to asses thgqd&-RFB method
in reaction dominated regime. Our first and second test sbotious transition of sub-
grid nodes from one regime to another. Third test is done wherproblem is reaction
dominated without external source.

Test 4 (Continuous transition from one regime to another)

This test problem is convection - diffusion - reaction peshl(3.1) taken from
(Asensio et al. 2004). We take= 10~%, 3 = (cos 72°,sin 72°) with various reaction
terms ¢ = f = 0.001, 1, 10, 20, 50, 1000) with N = 20. Elevation plots of approximate
solutions and their corresponding contour plots are ptegdn Fig 3.16. From Fig 3.16
we can say that P-RFB method has continuous transition leeta@nvection - dominated
regime and reaction - dominated regime.

Test 5(Continuous transition from one regime to another)

Now, we consider convection - diffusion - reaction probledilj withe = 1073,
f =1landg = (cos72°ssin72°) with homogenous Dirichlet boundary conditions. In
Fig 3.17 elevation plots of approximate solutions for thesgidata are presented with in-
creasing reaction from left to right and from top to bottonorh Fig 3.17 we can say that
P-RFB method satisfies continuous transition between abiove- dominated regime and
reaction dominated regime for this problem.

Test 6 (Reaction - dominated regime)

Our last test problem is taken from (Franca & Valentin 200Byoblem con-
figurations are displayed in Fig 3.18. In this problem we tastmethod with uniform
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and nonuniform meshes (see Fig 3.19). Our discretizationsist 0f200 and 400 el-
ements. We take = 107*, 3 = (0.15,0.1) and f = 0 for various values of reaction
(o = 10,102 10%). In Fig 3.20 and Fig 3.21 elevation plots of approximate sohs and
corresponding contour plots for uniform and nonuniformcti$izations are presented
respectively. As we see from Fig 3.20 and Fig. 3.21 when tloblpm is in reaction
dominated regime, P-RFB method works perfect.
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Figure 3.13. Elevation plots of approximate solutions & test problem 3 (top) and

corresponding contour plots (below).



b2 sigma=100

Figure 3.14. Pseudo - bubble functidnsb, andbs in a typical element with two inflow
edge, wherd = 72°,N = 10,e = 10~2 ando = 10, 100, 500.

bl sizma=100

Figure 3.15. Pseudo - bubble functidnsb, andbs in a typical element with one inflow
edge, wherd = 72°,N = 10,e = 10~2 ando = 10, 100, 500.
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reaction termso = f = 0.001, 1, 10, 20, 50, 1000).

Figure 3.16. Elevation plots (top) of approximate solusi@amd corresponding contour
plots of test problem 4 for = 107* 3 = (cos 72°,sin 72°) and various
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Figure 3.17. Elevation plots (left) of approximate solasoof the test problem 2 and
corresponding contour plots (right).
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u="1

u=0 1

Figure 3.18. Configuration of test problem 6.

Figure 3.19. Uniform (top) and nonuniform (below) trianguklements used in dis-
cretization of the domain of the test problem 6.
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min =-0.13, max = 1

N=10, sigma=100
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min =-0.184943, max=1

N=20, sigma=100
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min =-0.122981, max =1

min =-0.115838, max =1

Figure 3.20. Elevation plots (top) of approximate solusiohtest problem 6 and corre-

sponding contour plots (below) in reaction dominated regivith uniform

meshes.
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sigma=10, 200 nonuniform mesheg| sigma=100, 200 nonuniform meshels sigma=1000, 200 nonuniform meshes

\4

min =-0.147885, max =1 min =-0.134069, max =1 min =-0.132333, max =1
sigma=10, 800 nonuniform mesheg| sigma=100, 800 nonuniform meshéls sigma=1000, 800 nonuniform meshes

min =-0.199935, max =1 min =-0.149122, max =1 min =-0.144302, max =1
sigma=10, 200 nonuniform mesheg| sigma=100, 200 nonuniform meshéls sigma=1000, 200 nonuniform meshes

min =-0.14, max = 1 min =-0.13, max = 1 min =-0.13, max =1
sigma=10, 800 nonuniform mesheg| sigma=100, 800 nonuniform meshels sigma=1000, 800 nonuniform meshes

min =-0.19, max = 1 min =-0.14, max = 1 min =-0.14, max = 1

Figure 3.21. Elevation plots (top) of approximate solusiohtest problem 6 and corre-
sponding contour plots (below) in reaction dominated rexgmith nonuni-
form meshes.
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CHAPTER 4

PSEUDO RESIDUAL - FREE BUBBLES FOR UNSTEADY
CONVECTION - DIFFUSION - REACTION PROBLEMS

4.1. Pseudo Residual - Free Bubbles for Unsteady Convectien

Diffusion - Reaction Problems in One Dimension

In this section we focus on unsteady convection - diffusiogaction problem for
the case of small diffusion. The standard Galerkin methodyxes undesired oscillations
with well - known time discretizations. To cure this sitwatiwve apply Pseudo - RFB
method to unsteady convection - diffusion - reaction prot(é.1) and we compare results
with SUPG and LCB for different initial conditions and prebt parameters. For the
unsteady problem we have two types of partial differerdiadf different nature. On the
one hand we discretize first in space then we use a time integrich is referred as
FFEs_FDt. On the other hand we first discretize time derivative thegrdttize in space
resulting family of steady differential equations whicheserred ad"Dt_F' E's. The first
is generally known asethod of linesand second is known dwrizontal method of
lines. In both cases we use Crank - Nicolson scheme which is seaded accurate and
unconditionally stable. For space discretization we uskikted finite element methods
Pseudo - RFB ( Sendur & Nesliturk 2011), Link - Cutting BiBLCB) (Brezzi et
al. 2003) and Stream Line Upwind Petrov Galerkin (SUPG) wethWe consider the
following problem,;

Up — EUgy + LUy + ou = f(x) in I x (0,7,
u=20 on 9l x (0,7T), (4.2)

u=u’ on I x {0},

where! is the interval(0, L) and the coefficients > 0 ando > 0 andg are assumed to
be piecewise constants for the sake of simplicity. [DeT’] be the time interval. Consider
uniform partition{0 = t, < ¢;... < ty = T} of this time interval with time - step size
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At = T/N. Then time discretization of (4.1) by Crank - Nicolson scleagives

U S Lum = (P 4 )+ Su — L

2 4.2)
n=0,1,...,.N —1 u® = u(0),

wherel = —ed,,+ 0,40l andl denotes the identity operator. After time discretization
standard Galerkin reads: For= 0, 1..., N — 1, findu}*! € V, such that/v;, € V,

ALt(uZ—Hv vh) + %a(uz—i_lv Uh) = %(fnJrl =+ fnv Uh) + A%(“Za Uh) - %a(uzv Uh)v (43)

wherea(uy ™, vy) = e((up™),vy) + B((upr™) vn) + o(u) ™, v,). Discretizing first in
space then in time, one get the same equation (4.3) for sth&karkin method. LCB
strategy reads the same equation with standard Galerkinothein augmented meshes
(Asensio et al. 2007). But when calculating the sub-gridesoit /' Dt_ F E's modified
problem parameters are used. SUPG methods reads: Fax, 1..., N—1, findu} ™ € V,
such thatvv,, € V),

A%(uﬁ“, vp) + T(ul T, Buy) + La(upt™ op) + Tia(upt, Bu,) =

LUt o) + T M Boy) + A (ul, on)+ (4.4)

Tﬁ(uzv ﬁv;) - %a(uzv Uh) - T%a(uzv ﬁv;z)

Stabilization parameter is taken from (Asensio et al. 20807 for FDt_FFEs it is
defined as

2 18] 6e\
(= L B 4.5
T (At+a+hk+hi) : (4.5)

and forFEs_FDtitis defined as

218 12\
—(20+22 422 . 4.6
! (U+ e+ hi) (4.6)

In extended spac®, = V@ Vi, P-RFB method reads: For = 0,1..., N — 1, find
uptt € V, such thattv, € V,

1 n ’ ’ 1 n ’ o 1 n 1 n 1 n
5€ ((uh+1) ,vh>+§ ((uh+1) ,vh>+<§ + E) (uh+1,vh) = E(uh,vh)—éa(uh,vh)
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whereu) = ci1 + c§ps + cfarby + chasby + Aianby + Aaasbs. Herec} andch are
solutions at time step at one element nodeg:; and), are linear basis functions and
A = Ay = —f/o. Sincee/2, 3/2 ando /2 + 1/At play the role of diffusion, advection
and reaction coefficients, when calculating sub-grid nadeSDi¢_F E's we use these
modified parameters. FdrEs_F Dt original problem parameters are used to calculate
the sub-grid nodes.

4.1.1. Numerical Tests

In this section we report some numerical experiments tetilate the performance
of the P-RFB method, SUPG method and LCB strategy. We contharthree methods
with L°°(0,T; L'(I)) norm and give numerical simulations for different probleangm-
eters and different initial conditions. We take a unifornrtpi@n of unit interval into
subintervals of length = 1/M whereM is an integer.

4.1.1.1. Test 1 (Choice of CFL Numbers)

Ouir first test is unsteady convection - diffusion - reactiooigbem (4.1) subject to
homogenous Dirichlet boundary condition.We choose a simiadtal condition which is
defined in equation 4.7. We set diffusion coefficient te 10~*, advection coefficient to
S = 1 and reaction term te = 102 with f = 0. We set final time td" = 0.2. We use
20, 40, 80, 160, 320 uniform meshes to calculate the errorfifr (0, T'; L' (1)) norm when
CFL = 1,0.05,0.025,0.01 whereCFL = AtT‘m. We compare the three methods with
respect td.>(0,7; L' (I)) norm at whichC'F . they work best in convection - dominated
regime. In this respect we také, 40 and80 meshes to do comparisons of methods in this
regime. From Fig. 4.2 we say that Pseudo - RFB method workshdenC'F'L = 1 for
both FDt_FFEsandFEs_F Dt, LCB strategy method works best whéif' L = 0.025
which is consistent with proposed in (Asensio et al. 2007)both FDt_FEs and
FFEs_FDt. SUPG method works best whén"'L = 0.025 for F'Dt_F Es and works
best whenCFL = 0.5 for FEs_FDt. From Fig. 4.1 it is easy to see that in limit
regime P-RFB is the best. It is consistent because in lirgitme Pseudo - RFB functions
approximate RFB functions better in limiting case.
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. . 10° . .
—o— P-RFB, cofl=1 - —o— P-RFB, cfl=1
10 —a— LcB, cfi=0.25 - 1 —&— LCB, ¢fl=0.25
— 6 - SUPG, cfl=0.25 e — 6 - SUPG, cfi=05

ERRORL1
ERRORL1
=
5]

L L L L L L L L L L
1071 1078 1077 1076 1078 107 107 1078 1077 1076 1078 107

(@) FDt_FEs (b) FEs_FDt

Figure 4.1. Comparisons of three methods in convection -idated regime with re-
spect toL> (0,T; L'(I)) norm.

£(0,2) = { sin(2rz) if x <0.5, 4.8)

1o if z>005.

4.1.1.2. Test 2 (Convection - Dominated Regime)

In this test problem we have considered the equation of ésitgroblem one but
with e = 10~¢ and with initial data

(0.2) 1 if |z —0.3] <0.1, 4.9)
u(0,x) = . .
0 otherwise

We takel80 uniform meshes. In Fig. 4.3 approximate solutions for tne¢hods are pre-
sented at whicl®’ F' L they work best for botl# Dt _FEs and FEs_F Dt. \We see from
Fig. 4.3 that results of P-RFB method are perfect for botht_ FEs andF Es_F Dt.
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4.1.1.3. Test 3 (Convection - Dominated Regime with Differd Initial
Condition)

This test is devoted to a different initial condition:

u(0,z) =

e sin(10rz) if 0<x <0.1,
(4.10)

0 otherwise

We set diffusion coefficient te = 109, convective field tg3 = 1 and reaction term to
o = 107% with f = 0. We takeM = 80 and set the final tim& = 0.4. In Fig. 4.4
approximate solutions for three methods are presentediahwh' I, number they work
best. As in the previous results of test problem results eti's - RFB method are perfect
for this delicate initial condition.

4.1.1.4. Test4 (Reaction - Dominated Regime)

In this test we consider the reaction dominated case with irgtial condition.
We set diffusion coefficient te = 1075, convective field tg3 = 1 and reaction term and
external source to = f = 100. We takeM = 40 and set the final tim& = 1.0. In Fig.
4.5 approximate solutions for three methods are presemtettiah C' F' number they
work best. Pseudo - RFB and LCB give good results. However&@hiethods produces
undesired oscillations near boundary layer.

4.2. Pseudo Residual - Free Bubbles for Unsteady Convectien

Diffusion - Reaction Problems in Two Dimensions

This section is devoted to time - dependent convection usiidin - reaction prob-
lems in two dimensions. As in one dimensional case standatdrkén produces un-
desired oscillations for unsteady convection - diffusioreaction problems in 2D. We
apply P-RFB method and SUPG method to cure this situationdigdgetize first in space
then we use Backward-Euler for time integration which issgjly stable. Consider the
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parabolic convection - diffusion - reaction problem

Boe (G i) o (B5) + ou=fltay) on 2 (0.7)

(4.11)
u=00ndN x (0,T), u(0,z,y) = u’ on 2 x {0},

where the diffusion coefficientis positive constant, convection teffrand reaction term
o are non-negative constants. ligtbe a decomposition of the domafhin to triangles
K and leth, = diam(K) with h = mazker, hy. We assume thdf}, is admissible
(non-overlapping triangles, their union reproduces theaao) and shape regular (the
triangles verify a minimum angle condition). LEL 7' be the time interval. Consider
uniform partition{0 = ¢, < ¢,... < txy = T'} of this time interval with time-step size
At = T'/N. Then standard Galerkin reads with time discretizatio®df1) by Backward

- Euler scheme: Fat = 0,1..., N — 1, findu}"' € V}, such that

unJrl — oy
(hTth, Uh) +a (UZ‘H, Uh) = (f(7 tn—f—l’ Uh)) Yo, € V), (412)

whereu] represents the approximation«f., t") and

n B ouy Oup vy, Ovy, / ouy Oup / "
i = [ (GH50)- (5 ) + L2 (G5 ot [
(4.13)
Pseudo - RFB method reads in extended spgce V;, @ Vp: Forn = 0,1..., N — 1,

find u}*! € Vj, such thatvuy, € V,

UZ“ — U n+1 n+1
(T,vh) +a (upt o) = (f(L "), o) (4.14)
whereu) = ¢y + c§ps + c§1Ps + cF o by + chanbs + c§aisbs + A1 by + Aaciabs + Azaisbs.
Herec}, ¢ andcy are solutions at time stepat one element nodesy, ¢, andqy; are
linear basis functions\; = A\; = A3 = — f /o for external sourcg is constant.
SUPG methods reads: For=0,1..., N — 1, find uZ“ € Vj, such that/v, € V},

= (up o) + T(up T B.V) 4 a(up T o) + Ta(uptt, BV) =

(M o) + T (M A+ L B.V) + R (uf, o)+ (4.15)

Tﬁ(uZ,B.Vvh).
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Stabilization parameter is taken from (Asensio et al. 2@0id) it is defined as

218 12¢\
= (20+22+=) . 4.16
" <U+ e hi) (4.10)

4.2.1. Numerical Tests

In this section we report a test problem to compare PseudoB- &fd SUPG
method. LCB strategy has not being extended to two dimessorfar. We do our test
with discretizing first in space then in time with Backwardw& scheme. We use 12800

uniform triangular elements on unit square.

4.2.1.1. Test5 (Convection - Dominated Regime)

We set diffusion coefficient toe= 1075, advection coefficient t& = (cos(w/4),
sin(m/4)) and reaction term te = 1073 with f = 0. We set final time td" = 0.5. We
do 50 time steps. In Fig.4.6 and Fig.4.7 approximate saistare presented at different

time steps.
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Figure 4.2. Error rates ih>(0, T'; L' (I)) norm for various” F'L numbers.
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Figure 4.3. Approximate solutions of test problem 2.
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Figure 4.4. Approximate solutions of test problem 3.
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Figure 4.5. Approximate solutions of test problem 4.
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Figure 4.6. Approximate solutions of test problem 5 at défe time steps.






CHAPTER 5

CONCLUSION

Here we studied Pseudo Residual-Free Bubbles method fhrdbeady and un-
steady convection-diffusion-reaction equations in ong o dimensions. In detail we
primarily applied the method to steady problem . We appraxéd the RFB functions
with piecewise linear functions using two sub-grid nodesme dimension. We com-
pared P-RFB method with LCB strategy and SUPG method.

For the case of two dimensions, three sub-grid nodes aretasgibroximate the
bubbles with piecewise linear functions. Numerical expemnts have been given to asses
the performance of the method. We looked at the error ratés and H; norms.

For unsteady problems in one dimension, two kinds of diszagbns have been
considered. The first one is discretization first in time tliseretization in space which is
known as horizontal method of lines. The second one is digat®n first in space then
in time which is known as method of lines. For the horizontatimod of lines modified
sub-grid nodes are used. We have tested the method with Gliaokson scheme and
compared with other stabilized methods.

Finally, we adapted P-RFB method to unsteady convectitinsitbn-reaction prob-
lems in two dimensions with Backward-Euler scheme. We apglist method of lines
and compared P-RFB with SUPG method at different time steps.

54



REFERENCES

ASENSIO M.I., Avyuso, B. & SANGALLI, G. (2007) Coupling stabilized finite
element methods with finite difference time integration &olvection-diffusion-
reaction problemsComput. Methods Appl. Mech. Engrj96, 3475-3491.

ASENSIQ, M.l., Russq A. & SANGALLI, G. (2004) The Residual-Free Bubble nu-
merical method with quadratic elemenkdath. Models Methods Appl. Scil4,
641-661.

BaloccHI, C., BRezzl, F. & FRANCA, L.P. (1993) Virtual bubbles and the GaLS.
Comput. Methods Appl. Mech. EngrQ5, 125-141

BREzzI, F., BRISTEAU, M.O., FRANCA, L.P., MALLET, M. & ROGE G. (1992)
A relationship between stabilized finite element methodsthe Galerkin method
with bubble functionsComput. Methods Appl. Mech. Engr§g, 117-129.

BREzzI, F., HAUKE, G., MARINI, L.D. & SANGALLI, G. (2003) Link-cutting bub-
bles for the stabilization of convection-diffusion-raactproblemsMath. Models
Methods Appl. Scil3, 445-461

BREZzzI, F., MARINI, L.D. & Russqg, A. (1998) Applications of pseudo residual-free
bubbles to the stabilization of convection-diffusion geoshs. Comput. Methods
Appl. Mech. Engrg.166, 51-63

BREzzI, F., MARINI, L.D. & RussQ, A. (2004) On the choice of a stabilizing subgrid
for convection-diffusion problem&omput. Methods Appl. Mech. Engig4, 127-
148.

BREzzI, F. & MARINI, L.D. (2002) Augmented spaces, two-level methods, and sta-
bilizing subgridsint. J. Numer. Meth. Fluid40, 31-46.

BREzzI, F. & Russq, A. (1993) Choosing bubbles of advection-diffision probdem
Math. Models Methods Appl. Sch,571-587

BRoOOKS, A.N. & HUGHES, T.J.R. (1982) Streamline upwind/Petrov-Galerkin for-
mulations for convection dominated flows with particular@rasis on the incom-
pressible Navier-Stokes equatio@mput. Methods Appl. Mech. Engrg2, 199-
259.

CODINA, R. (1998) Comparison of some finite element methods foiisglthe diffu-
sion - convection - reaction equatiddomput. Methods Appl. Mech. Engr§56,
185-210.

55



ELMAN, H.C., SLVESTER, D.J. & WATHEN, A.J. (2005) Finite Elements and Fast
Iterative Solvers with Applications in Incompressiblei@lDynamics Oxford Uni-
versity Press.

FRANCA, L.P. & VALENTIN, F. (2000) On an improved unusual stabilized finite ele-
ment method for the advective-reactive-diffusive equati@omput. Methods Appl.
Mech. Engrg.,190, 1785-1800.

FRANCA, L.P., NESLITURK, A.l. & STYNES, M. (1998) On the stability of residual-
free bubbles for convection-diffusion problems and thppraximation by a two-
level finite element methoomput. Methods Appl. Mech. Engff6, 35-49.

FRANCA, L.P. & ToBISKA, L. (2001) Stability of the Residual Free Bubble Method
for Bilinear Finite Elements on Rectangular GritMA J. Numer. Anal22, 73-87.

JoHNSON, C. (1987) Numerical solution of partial differential edqoas by the finite
element methodCambridge University Press.

NESLITURK, A.l. (1999) Approximating the incompressible navier sslequations
using a two level finite element methothesis of Doctor of Philosophy

NESLITURK, A.l. (2010) On the choice of stabilizing sub-grid for contien - diffu-
sion problem on rectangular gridSomputers and Mathematics with Applications,
59, 3687-3699.

NESLITURK, A.l.,, AYDIN, S.H. & SEzGIN, M.T. (2008) Two-level finite element
method with a stabilizing subgrid for the incompressibleidaStokes equations.
Int. J. Numer. Meth. Fluid£8, 551-572.

QUARTERONI, A., SAcco, R. & SALERI, F. (2000) Numerical Mathematics.
Springer.

SANGALLI, G. (2000) Global and local error analysis for the residusg- bubbles
method applied to advection-dominated problegiaM J. Numer. Anal38, 1496-
1522.

STRICKWERDA, J. (1989) Finite Difference Schemes and Partial DiffeetrEEqua-
tions.WadWorth and Brooks/Cole, Pacific Grove.

SuLl, E. (2007) Finite Element Methods For Partial Differentmjuations Lecture
Notes.

SENDUR, A. & NESLITURK, A.l. (2011) Applications of the pseudo residual-free
bubbles to the stabilization of convection-diffusionatan problemsCalcolo,49,
1-19

56



SENDUR, A., NESLITURK, A.l. & KAYA, A. (2012) Applications of RFBs to the sta-
bilization of the convection-diffusion-reaction problsimm 2D.Computer Methods
in Applied Mechanics and Engineeriiigubmitted)

57



