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December 2010
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ABSTRACT

CONFORMAL TRANSFORMATIONS IN METRIC-AFFINE GRAVITY

Conformal transformations play a widespread role in gravitation in regard to their

cosmological and the other implications. In this thesis, the effects of conformal transfor-

mations on General Relativity comparatively in metric formulation and in metric-affine

formulation are analyzed.

In the metric formulation of General Relativity ( pure metric theory of gravity ),

conformal transformations, like gauge transformations, add a new degree of freedom to

the system - the conformal factor. In this sense, they change a frame to a new one involv-

ing an additional degree of freedom. However, this new degree of freedom turns out to

be a ghost field in pure metrical formulation i.e. Einstein-Hilbert action. This possesses a

serious problem since ghosts are manifestly unphysical.

To overcome this problem, we explore conformal transformations in metric-affine

formulation of General Relativity ( metric-affine theory of gravity ) in which the metric

and connection are treated as independent variables from the scratch. In metric-affine for-

mulation, there is no a priori relation between metric and connection, and thus, their trans-

formations under conformal transformations do not need to exhibit the correlation present

in pure metrical formulation. We thus exploit this fact by assigning different transforma-

tion rules for connection to have ghost-free Lagrangians. Firstly, we use the conformally

invariant connection, while the metric changes as in metric formulation. After these trans-

formations, there is no ghost field generated by conformal factor. Indeed, there appears no

kinetic term of the scalar field (auxiliary field-nondynamical field). This result is not suf-

ficient for us. Because the main goal of our study is the obtaining a conformally invariant

theory for gravity with a dynamical scalar field. Then, we use the multiplicatively trans-

forming connection. This transformation does not give the result corresponding to our

aim. Finally, we find that if connection transforms additively yet differently than in met-

rical formulation, the ghost generated by the conformal factor disappears. Additionally,

we discuss the physical implications of these transformation rules.
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ÖZET

METRİK-AFİN KÜTLE ÇEKİM KURAMINDA UYUMLU DÖNÜŞÜMLER

Uyumlu dönüşümler, kozmolojik ve diğer anlamları bakımından kütle çekim

teorisinde çok yaygın bir rol oynamaktadır. Bu tezde, uyumlu dönüşümlerin genel görelilik

üzerine etkisi, karşılaştırılmalı olarak metrik formulasyonunda ve metrik-afin formulasy-

onunda incelenmiştir.

Genel Göreliliğin metrik formulasyonunda (saf metrik kütleçekim teorisi), uyumlu

dönüşümler, ayar dönüşümleri gibi, sisteme yeni bir serbestlik derecesi ekler - uyumlu

faktör. Bir anlamda, bir çerçeveyi ek bir serbestlik derecesi içeren diğer bir çerçeveye

dönüştürür. Fakat, bu yeni serbestlik derecesi saf metrik formulasyonunda bir hayalet

alana dönüşür, yani Einstein-Hilbert aksiyonunda. Hayalet alanlar açık olarak fiziksel

olmadıkları için bu durum ciddi bir probleme sahiptir.

Bu problemi çözebilmek için uyumlu dönüşümleri, metrik ve bağlantının bir-

birinden bağımsız değişkenler olarak davrandığı genel göreliliğin metrik-afin formulasy-

onunda inceledik (metrik-afin kütleçekim teorisi). Metrik-afin formulasyonunda, metrik

ve bağlantı arasında önceden belirlenmiş bir ilişki yoktur ve bu yüzden uyumlu dönüşümler

altındaki dönüşümleri, saf metrik formulasyonundaki gibi karşılıklı bir ilişki göstermek

zorunda değildir. Böylece hayaletsiz bir Lagrangian elde etmek için bağlantıya farklı

transformasyon kuralları tayin ederek bu gerçekten yararlandık. İlk olarak metrik, metrik

formulasyonundaki gibi değişirken uyumlu dönüşümler altında değişmez bir bağlantı kul-

landık. Bu transformasyondan sonra uyumlu faktörden ortaya çıkan hayalet alan yok

oldu. Aslında, skaler alanın kinetik terimi ortaya çıkmadı (yardımcı alan- dinamik ol-

mayan alan). Bu sonuç bizim için yeterli değildir. Çünkü bizim çalışmamızın asıl amacı,

kütle çekimi için dinamik bir skaler alan içeren, uyumlu dönüşümler altında değişmez

bir teori elde etmektir. Bunun için, çarpımsal olarak dönüşen bağlantı kullandık. Bu

dönüşüm, amacımıza karşılık gelen bir sonuç vermedi. Son olarak, bağlantı, toplamsal

olarak fakat metrik formulasyonundakinden farklı bir biçimde dönüşürse, uyumlu faktör

tarafından oluşturulan hayalet alanın yok olduğunu bulduk. Ek olarak, bu dönüşüm ku-

rallarının fiziksel anlamlarını tartıştık.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. CONFORMAL TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Conformal Transformations of Geometrical Quantities . . . . . . . . . . . . . 8

2.2. Conformal Transformations in the Matter Sector . . . . . . . . . . . . . . . . . . . 18

2.3. Scale Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. Conformal Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 3. CONFORMAL TRANSFORMATIONS IN GENERAL

RELATIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1. Metric Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2. Metric-Affine Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1. Conformal-Invariant Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2. Conformal-Variant Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3. Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 4. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

APPENDIX A. GEOMETRICAL QUANTITIES IN GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

APPENDIX B. EINSTEIN FIELD EQUATIONS IN RIEMANNIAN SPACE . . . . . . 65

vi



LIST OF FIGURES

Figure Page

Figure 2.1. The change in meter-stick from x to x+dx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vii



CHAPTER 1

INTRODUCTION

Einstein’s General Relativity (GR) is a major scientific success of last century due

to its extraordinary definition of gravity. Although, it is a comprehensive theory of gravity,

spacetime and matter, there are several shortcomings which come out from cosmology

and quantum field theory. For instance, the Big bang singularity, horizon problem and

flatness (Guth, 1981) are issues for cosmology. Because of these problems, Standart

Cosmological Model (Weinberg, 1972), depended on GR, can not describe the universe

at extreme regimes. On the other hand, because spacetime can not be quantized, GR can

not be considered as a fundamental theory. In a sense, there is no complete quantum

definition of gravity. Accordingly, these defects lead to new theories of gravity which

cover the GR and its positive results. Though there is a huge number of gravitational

theories which are alternative to GR, there is no one which can solve the problems of GR

completely. However, they are needed as the way to solve them.

One of the most successful examples of alternative theories is “Extended The-

ories of Gravity”(ETG). These kind of theories are the extension of the standard Ein-

stein’s theory (GR) by adding some correction terms like higher-order curvature invariants

(R2, RµνRµν , R
αβµνRαβµν) or minimally or nonminimally coupled scalar fields (ϕ2R)

into dynamics. These corrections come from the effective action of quantum gravity

(Buchbinder, 1992) and are needed to obtain the effective action of quantum gravity on

nearly Planck scale. On the other hand, by conformal transformations ( rescaling ), it is

possible that the gravitational theories, which contain the higher-order and nonminimally

coupled terms, turn into Einstein’s GR plus one or more than one minimally coupled

scalar fields. (Maeda, 1989) (Capozziello, 1998) (Allemandi, 2006), (Pulice, 2010) In

other words, it is possible to change frame via conformal transformations. The frames

related to each other by conformal transformations are called conformal frames. These

frames are mathematically equivalent. However, the physical equivalence of them has

been a debate among the physicists. (Flanagan, 2004), (Faraoni, 1999) Although there are

several conformal frames, two of them have special names, Einstein frame and Jordan

frame. Einstein frame implies the frame that there is only minimal coupling terms. On

the other hand, Jordan frame possesses the non-minimal couplings between gravitational

fields and the scalar fields.
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Conformal transformations mentioned above are the local unit transformations

(rescaling of the distances). They were first considered by H. Weyl in gravitation. (Weyl,

1952) However, Weyl called these transformations gauge transformations. Following

Weyl, Dicke (Dick, 1962), Hoyle and Narlikar (Hoyle, 1974) and Hoyle (Hoyle, 1975)

discussed them. After these studies, people called these transformations conformal trans-

formations and the invariance under them conformal invariance. Conformal transforma-

tions will be explained particularly in the next chapter.

As we can obtain the standard Einstein’s theory from the ETG by conformal trans-

formations, it is also possible to obtain a conformally invariant theory, which contains the

nonminimally coupled scalar field, from the standard GR by conformal transformations.

However, after conformal transformations, there appears an unphysical situation such as

a ghost field. Let us explain this unphysical situation briefly. For a real scalar field the

energy density involves several contributions like kinetic energy
1

2
ϕ̇2 and gradient energy

1

2
(∇ϕ)2 and the potential energy V (ϕ). (Carroll, 2004) Though the potential energy is

Lorentz invariant, the others are not by themselves. However, it is possible that they are

combined into a Lorentz invariant form like

−1

2
ηαβ(∂αϕ)(∂βϕ) =

1

2
ϕ̇2 − 1

2
(∇ϕ)2 (1.1)

where ηαβ is the flat space metric and its sign convention is (-, +, +, + ...) Thus, the

Lagrangian takes the form as

L = K − V

= −1

2
ηαβ(∂αϕ)(∂βϕ)− V (ϕ) (1.2)

In a Lagrangian formulation, if there appears a term like
1

2
ηαβ(∂αϕ)(∂βϕ for the metric

sign convention (-, +, +, + ...), the scalar field ϕ possess a negative kinetic energy and it is

called as ghost field. Such a field is unphysical and undesired situation. According to the

minimum energy principle in a closed system with a positive defined kinetic energy, the

total energy is minimized in the equilibrium but if there is a ghost field, the total energy

can not be minimized and there is no stability in the system. Because of this unphysical

situation, it is noneligible to apply the conformal transformations to the standard GR. To

get rid of this problem, it is convenient to apply conformal transformations to different
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formulation of GR like metric-affine formulation (Metric-Affine Gravity:MAG) .

Metric-affine formulation is one of three variational formulations of GR, met-

ric formulation, metric-affine formulation and purely affine formulation. (Poplawski,

2008) (Poplawski, 2009) (Ferraris, 1982) In metric formulation, as we know from the

standard General Relativity, the metric is an only geometrical variable and the connection

is the Levi-Civita connection of metric tensor. On the other hand, in the purely affine for-

mulation, the geometrical variable of the gravitational field is the symmetric connection.

In metric-affine formulation, metric and connection are considered as independent geo-

matrical variables. There is one more formulation known as Palatini formulation which

is very similar to metric-affine formulation but not same with it. Because of the histor-

ical misunderstandings this formulation is called Palatini formulation. (Palatini, 1919)

(Ferraris, 1982). Actually, it was introduced by Einstein. (Einstein, 1925) The difference

between these two formulations is that in Palatini formulation the matter field does not

interact with the connection whereas in metric-affine formulation it does. Although, this

difference seems to be trivial, indeed it has an essential physical meaning. More detail

can be found in (Sotiriou, 2010), (Sotiriou, 2009) In this thesis we will deal with the

metric-affine formulation. Here there should be a question to ask : Why MAG instead

of metric formulation? It can be easily anwered. As we mention before, although GR

explains the gravitational interactions on macroscopic scale very well, it is not successful

on microscopic scales. In other words, it can not work at quantum level. Because space-

time has Riemannian geometry in GR, there are restrictions to add quantum corrections.

These restrictions are that the connection is assumed to be symmetric (torsion-free) and

metric compatible (parallel transport leave the lenghts and angles invariant). Hence, GR

is not most general geometric theory of gravity. There should be a more general geome-

try called as non-Riemannian. Non-Riemannian geometry possesses some new structures

like torsion and nonmetricity in the most general setting. (Lecian, 2007) These new geo-

metrical structures lead to a modification of the gravitational Lagrangian. Let us explain

these quantities.

• Torsion

In GR, it is said that curvature tells the matter how to move and the matter tells the

space how to curve. At macroscopic level it is true. However at microscopic level,

there is another physical quantitiy:spin (intrinsic angular momentum). In particle

physics, the spinor fields are essential ingredients in the definiton of natural law.

The spin current of matter fields produce the torsion of spacetime. Thus, to bring

spinors into the curved spacetime, torsion should be taken into account. (Watanabe,

3



) The torsion tensor is defined by the anti-symmetric part of the connection

Sλ
αβ = Γλ

αβ − Γλ
βα (1.3)

• Nonmetricity

Nonmetricity is induced by dilation and shear currents. Dilation field is the primor-

dial scalar field. This field caused the inflation and the evolution of universe. On the

other hand, the shear current can be related to the hadronic quadrupole excitation

The non-metricity is defined as

Qαµν = −∇αgµν (1.4)

In the MAG, there are not limitations for these structures in contrast with standard

GR. (Sotiriou, 2007) Because MAG allows the non-Rieamannian geometry, it is more

general geomatrical theory of gravity. These three formulations mentioned above will

be explained particularly in the Chapter 3. Here, the most important point is that af-

ter conformal transformations MAG gives a conformally invariant theory without ghosty

problem.

In Chapter 2 we will give the conformal transformation rules of geometrical quan-

tities and the effects of conformal transformations on matter sector. In Section 2.2 we also

see that empty Minkowski space after conformal transformations create an extra non-zero

energy momentum tensor to bend the spacetime. Then, in Section 2.3 and 2.4 we will

explain the scale and conformal invariance by giving the examples.

In Chapter 3 we will explain the three different formulations of GR. In Section 3.1

we will apply the conformal transformations to the action of gravitational field (Einstein-

Hilbert action) in standard GR and give the positive and negative results. As we mention

above, this negative result is the ghosty problem. Following this, for solving this problem

we will apply the conformal transformations in MAG in Section 3.2. We will see that the

ghosty problem can be solved in MAG under some conditions. In Section 3.3 we will

obtain the equations of motion in metric-affine formulation of GR.

Finally, we will conclude in Chapter 4.
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CHAPTER 2

CONFORMAL TRANSFORMATIONS

Symmetry is essential to understand the physical process deeply. In the other

words, it makes the physics more intelligible and because of this feature it has been used

as a guide to develop physical theories. For instance, continuous symmetries explain

the emergence of conservation laws and conserved quantities or the existence of the new

particles and anti-particles are predicted in the ligth of the symmetries. Symmetries are

considered in two types: Global and Local. Global symmetries have constant parame-

ters whereas the local symmetries have space-time dependent parameters. If a physical

theory is invariant under a global or local transformation, it has a symmetry (invariance)

correponding to this transformation. All physical theories respect the global unit invari-

ance. This means that the laws of these theories are the same in the cgs system and

the mks system. However, it is widely accepted in modern physics that the fundamental

transformations and symmetries should be local. Such transformations in physics were

first proposed by Weyl in 1918 as conformal transformations. (Weyl, 1952) Because of

this, conformal transformations are sometimes called as Weyl transformations. After Ein-

stein introduced the gravity in the geometrical framework, Weyl wondered if electromag-

netism and gravitation can be formulated in a single geometrical framework. It was shown

that electromagnetism respect the local scale invariance. (Cunningham, 1909), (Bateman,

1910) However, local scale transformations does not preserve the length of vectors as they

move in spacetime. In Riemannian geometry, the nonvanishing curvature denotes that the

direction of a vector on parallel transport around loop changes compared to the original

vector, while its norm remains uncahnged. Weyl put forward that the norm of a vector

should change around the loop and this change depends on its spacetime location. The

parallel transport of a vector implies a condition of integrability for the direction of this

vector such as

∇µξ
α = 0 → Rα

µνσξ
σ = 0 (2.1)

5



while no such condition exists for its norm. Weyl wanted a similar integrability condition

on the norm as well. In Riemannian geometry, the norm of a vector is given by

l2 = gµνξ
µξν (2.2)

The total derivative of the expression (2.2) is

2ldl = (∂αgµνdx
α)ξµξν + gµνdξ

µξν + gµνξ
µdξν (2.3)

The total derivative of the vector can be written as

dξµ = −Γµ
αβξ

αdxβ

dξν = −Γν
αβξ

αdxβ (2.4)

After substitution of these expressions into the (2.3) and rearrangement of the indices,

2ldl = ∂αgµνdx
αξµξν − Γλ

µαgνλdx
αξµξν − Γλ

ναgµλdx
αξµξν

=
(
∂αgµν − Γλ

µαgνλ − Γλ
ναgµλ

)︸ ︷︷ ︸
∇αgµν

ξµξνdxα (2.5)

In Riemannian geometry the covariant derivative of the metric tensor vanishes due to the

metric compatibility. Thus, the change in the length of the vector is zero. On the other

hand, Weyl realized that Riemannian geometry must be modified to allow the possibility

of varying norm. For this purpose he assumed that the metricity condition of Riemannian

space could be replaced by a less restrictive conformal condition

∇αgµν ∼ gµν (2.6)

and he considered an alteration

g̃µν = e2ϵλ(x)gµν ≈ (1 + 2ϵλ(x))gµν (2.7)

6



Using the new metric g̃µν the change of the vector magnitute

dl̃ = ϵ(∇αλ)l̃dx
α (2.8)

This means that for a vector transported around a closed loop by parallel displacement not

only its direction but also its length can change. Thus, Weyl achieved the varying norm

by rescaling the metric tensor gµν → e2ϵλ(x)gµν = Ω2gµν

Conformal transformation is the rescaling of a system by a spacetime dependent,

nonvanishing positive function Ω(x) called conformal factor. These local unit trasforma-

tions can be applied to a system in two different ways. Because a line element defines

distance, these two different ways can be shown by using it. One of them is the rescaling

of all lengths of the system by multiplying them separately with conformal factor Ω(x)

ds̃2 = gµνΩ(x)dx
µΩ(x)dxν

= Ω2(x)gµνdx
µdxν (2.9)

and the other way is the rescaling of the metric tensor gµν (meausurement tool) by multi-

plying it directly with the square of conformal factor while the all lengths are assumed to

remain unchanged.

ds̃2 = Ω2(x)gµνdx
µdxν (2.10)

The resulting transformed line elements are equal naturally. The second way is simply

analogue to a meter-stick whose size depends on its location in space-time as in the figure

2.1

7



Figure 2.1. The change in meter-stick from x to x+dx.

Conformal transformation affects the distances between two points in the same

coordinate system by a rate that differs from point to point on spacetime manifold with-

out any direction specified. This means that it changes the rate isotropically, namely

changes in spatial distance and changes in time interval at the same rate. However, the

angle between any two vectors and the light cones are preserved. In the other words, the

spacetimes (M, gµν) and (M,Ω(x)gµν) have the same causal structure. (Wald, 1984)This

is the reason why it is called conformal.

Conformal transformatons turn into scale transformations when we take the con-

formal factor constant Ω(x) = Ω. In a sense, conformal transformations are the localized

scale transformations. This implies that meter-sticks and unit of clock are changed by

multiplying the same number.

2.1. Conformal Transformations of Geometrical Quantities

In this section, we will give the conformal transformations of the geometrical

quantities like the points, coordinates, tensors (Fulton, 1962) and the conformal transfor-

mations of some geometrical structures of general relativity like connection, Riemann cur-

vature tensor, Ricci tensor and Ricci scalar (Dabrowski, 2008), (Faraoni, 1999), (Wald,

1984). Moreover, this section will show us the difference between coordinate transforma-

tions and the conformal transformations.

• Conformal transformations of the points

In this part, two different points in the same coordinate frame are denoted by x, x̄

and the point which is measured in two different coordinate systems is x and x′.

8



A point transformation generally is given by

x̄ = fµ(x) (2.11)

which determines the components of the point x̄ in S when the components of the point

x are known in the same coordinate system S.

The line element of a time-like curve is given by

dτ 2(x) = gµν(x)dx
µdxν (2.12)

The point transformation (2.11) leads to

dx̄µ = ∂αx̄
µdxα (2.13)

which determines the difference of two infinitesimally close points x̄ and x̄ + dx̄ into

which two nearby points x and x+ dx.

The property that the line element dτ(x̄) at the point x̄ is related to the line element

at x by a scalar function Ω(x) determines the conformal transformation of a point,

dτ 2(x̄) = Ω2(x)dτ 2(x) (2.14)

Then, the relation between the line elements at the different points can be written explic-

itly as

gµν(x̄)dx̄
µdx̄ν = Ω2(x)gαβ(x)dx

αdxβ (2.15)

where Ω(x) is a positive function. By using the (2.13), (2.15) takes the form as

gµν(x̄)∂αx̄
µ∂βx̄

ν = Ω2(x)gαβ(x) (2.16)

9



It can be seen that (2.16) is equivalent to (2.14). Thus, it can be said that (2.16) describes

the conformal point transformation. In addition to this, ∂αx̄µ = δµα and ∂βx̄ν = δνβ , then,

(2.16) takes the form

gαβ(x̄) = Ω2(x)gαβ(x) (2.17)

It is important to distinguish the coordinate transformation and conformal trans-

formation. We can see that (2.16) is different from the coordinate transformation. A

coordinate transformation is given as

gµ′ν′(x
′)∂αx

µ′
∂βx

ν′ = gαβ(x) (2.18)

whereas the conformal transformation of a point is given by (2.16).

• Conformal transformations of the coordinates

Coordinate transformation from S to S ′ is given by

xµ
′
= hµ′(x) (2.19)

which is components of the points x as seen by two different coordinate systems. In-

finitesimally close points transform as

dxµ
′
= ∂αx

µ′
dxα (2.20)

Then, the metric tensor

gµ′ν′(x
′) = ∂µ′xα∂ν′x

βgαβ(x) (2.21)

10



It can be seen from the (2.21) that the line element in the coordinate system S is equal the

line element in the coordinate system S ′,

dτ 2(x′) = dτ 2(x) (2.22)

whereas in (2.14) they are not equal each other unless Ω2(x) = 1.

The relation (2.21) is a characteristic transformation of a tensor field T µν...
αβ... gener-

ally given as

T µ′ν′......
α′β′.... (x

′) = ∂µx
µ′
∂νx

ν′ ....∂α′xα∂β′xβ....T µν....
αβ....(x) (2.23)

It is needed to relate the coordinate transformation to point transformation for

the definition of the conformal transformations of the coordinates corresponding to the

conformal transformations of the points. A point transformation is related to a coordinate

transformation by requiring the relationship

x̄µ′
.
= xµ (2.24)

This means that for a given relation of the components of the point x in two different

coordinate systems, a point x̄ is associated with x in such a way that the components of

x̄ with respect to S ′ are the same as the components of x with repect to S. The dot equal

sign in (2.24) implies that this equality is valid only in the coordinate systems indicated

in the equation.

By the definition of (2.24), the relation between coordinate transformation and

point transformation is given as follow

x̄µ
′
= hµ

′
(x̄) = hµ

′
(f(x))

.
= xµ (2.25)
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means that the function hµ in (2.19) is the inverse transformation to (2.11); if (2.11)

implies

xµ = F µ(x̄) (2.26)

Then, (2.19) is

xµ′ = F µ′(x̄) = hµ′(x) (2.27)

This relation can also be given by

x̄µ = fµ(x)
.
= fµ(x̄′) (2.28)

from which follows, using (2.24)

∂x̄µ/∂xα
.
= ∂x̄µ/∂x̄α

′
(2.29)

It can be written now that conformal transformation of the coordinates corresponding to

the conformal transformation of the points as

xµ = fµ(x′) (2.30)

where fµ is the same function as in (2.11) and is such that it implies (2.16). It can be seen

that (2.14) and (2.22) are consistent equations. By substituting (2.29) into (2.16), we can

obtain

gµν(x̄)
∂x̄µ

∂x̄α′

∂x̄ν

∂x̄β′
.
= Ω2(x)gαβ(x) (2.31)

12



Using (2.21) for x̄, it gives

gα′β′(x̄′)
.
= Ω2(x)gαβ(x) (2.32)

Thus, with (2.16),

dτ 2(x̄′)
.
= Ω2(x)dτ 2(x) (2.33)

This equation shows the consistency of (2.14) and (2.22):

dτ 2(x̄′) = dτ 2(x̄) = Ω2(x)dτ 2(x) (2.34)

• Conformal Transformations of the tensor fields

A coordinate transformation of covariant component of a vector field Aµ(x) is

written, by using (2.23), as

Aα′(x̄′) = ∂̄α′x̄µAµ(x̄) (2.35)

which, by means of (2.29), is

Aα′(x̄′)
.
= ∂αx̄

µAµ(x̄) (2.36)

Then, we can define a new vector field Aα(x) as

Aα′(x̄′)
.
= Āα(x) (2.37)

A similar relation for the contravariant components holds.

13



However, it now follows from (2.16) and (2.37) that one can not identify Āα(x)

with Aα(x) and Āα(x) with Aα(x), but only either

Āα(x) = Aα(x)

Āα(x) = Ω2(x)Aα(x) (2.38)

or

Āα(x) = Aα(x)

Āα(x) = (1/Ω2(x))Aα(x) (2.39)

Identities (2.38) can be proven by substitution of the first equation (2.38) into (2.16);

similarly for equation (2.39).

The result of (2.38) and (2.39) can be stated as follows: If the components of a

field A(x) transform as a covariant vector under a conformal point transformation, then the

contravariant components transform as an affine contravariant vector with weight factor

Ω−2,

Aµ(x̄) = (1/Ω2)∂αx̄
µAα(x) (2.40)

Conversely, if under a conformal point transformation we have a contravariant vector,

then the corresponding covariant components transform like

Aµ(x̄) = Ω2∂̄µx
αAα(x) (2.41)

As a consequence, the length of a vector A(x) transforms under conformal point transfor-

mation (2.11) and (2.16) as

Aµ(x̄)A
µ(x̄) = [1/Ω2(x)]Aν(x)A

ν(x) (2.42)
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whereas the length of a contravariant vector transforms as

Aµ(x̄)A
µ(x̄) = Ω2(x)Aν(x)A

ν(x) (2.43)

• Conformal transformations of the metric tensor

As we mention before, metric tensor is responsible for measuring the distances.

The metric tensor is a rank-2 tensor, therefore we can use the transformation rule of

tensors (2.23) for the metric. The metric tensor must be dimension of square of length

according to its definition. Thus, conformal transformation of the metric tensor can be

written according to

g̃µν(x) = Ω2(x)gµν(x) (2.44)

where g̃µν refers to the transformed metric tensor. Then the Eq. (2.16) takes the form,

g̃µν(x) = ∂µx̄
α∂ν x̄

βgαβ(x̄) (2.45)

Even if this equation looks like a coordinate transformation, x and x̄ refer to two different

points in the same coordinate system rather than to different coordinates of the same point.

The conformal point and coordinate transformations are seen to be combination

of the conformal transformation of the metric (2.44), with equation of the type (2.45) and

(2.21) characterizing the tensor nature of gµν .

Conformal transformation of inverse metric is

g̃µν = Ω−2gµν (2.46)

and the determinant of metric g = det[gµν ] transforms as

√
−g̃ = ΩD

√
−g (2.47)
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• Conformal transformation of the connection

In Einstein’s Theory of General Relativity, connection, namely Levi-Civita con-

nection, depends on metric gµν and inverse metric gµν linearly and governs the curving of

spacetime. Connection has not a tensorial structure. Its relation with the metric is given

as follows

Γλ
αβ =

1

2
gλρ (∂αgβρ + ∂βgρα − ∂ρgαβ) , (2.48)

By using (2.44), Levi-Civita connection takes the form

Γ̃α
µν =

1

2
g̃αρ[∂µg̃νρ + ∂ν g̃ρµ − ∂ρg̃µν ]

=
1

2
Ω−2gαρ[∂µ(Ω

2gνρ) + ∂ν(Ω
2gρµ)− ∂ρ(Ω

2gµν)]

=
1

2
gαρ[∂µgνρ + ∂νgρµ − ∂ρgµν ]

+
1

2
Ω−2gαρ[2Ω(∂µΩ)gνρ + 2Ω(∂νΩ)gρµ − 2Ω(∂ρΩ)gµν ]

= Γα
µν + Ω−1[δαν (∂µΩ) + δαµ(∂νΩ)− (∂αΩ)gµν ]

= Γα
µν +∆α

µν (2.49)

where

∆α
µν = Ω−1[δαν (∇µΩ) + δαµ(∇νΩ)− (∇αΩ)gµν ]

= δαν ∂µ lnΩ + δαµ∂ν lnΩ− gµν∂
α lnΩ . (2.50)

where we use ∇ instead of ∂ at the first line of Eq. (2.50) because Ω is a scalar function.

It does not matter if it is partial derivative or covariant derivative for a scalar. ∆α
µν is a

(1,2) tensorial structure. The other components of the connection appearing in Riemann

curvature tensor Rα
µβν like Γ̃α

µβ , Γ̃α
βλ, Γ̃α

νλ, Γ̃λ
µν , Γ̃λ

µβ can be derived with the same way.

It can be deduce that if connection does not depend on metric in this way, there

is nothing obvious about its transformation. This situation will be discussed in the next

chapter (in the section of metric-affine formulation).

After giving the conformal transformation rules of the fundamental dynamics of

gravity like the metric tensor and the connection, we can now give the conformal transfor-
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mations of the other geometrical quantities like Riemann curvature tensorRα
µβν , Ricci ten-

sor Rµν , Ricci scalar R, Einstein tensor Gµν and d’Alembertian operator 2 = gµν∇µ∇ν .

Firstly, we apply the conformal transformations to the Riemann curvature tensor

via transformed Levi-Civita connection,

R̃α
µβν = ∂βΓ̃

α
µν − ∂νΓ̃

α
µβ + Γ̃α

βλΓ̃
λ
µν − Γ̃α

νλλ̃µβ

= ∂β(Γ
α
µν +∆α

µν)− ∂ν(Γ
α
µβ +∆α

µβ)

+ (Γα
βλ +∆α

βλ)(Γ
λ
µν +∆λ

µν)− (Γα
νλ +∆α

νλ)(Γ
λ
µβ +∆λ

µβ) (2.51)

By adding and subtracting the same term Γλ
βν∆

α
λµ into (2.51) and using the definition of

covariant derivatives of the tensorial fields, (2.51) takes the form as

R̃α
µβν = Rα

µβν(Γ) +∇β∆
α
µν −∇ν∆

α
µβ +∆α

βλ∆
λ
µν −∆α

νλ∆
λ
µβ (2.52)

It can be seen that the Riemann curvature tensor changes as additively under conformal

transformations. Then, substitute (2.50) into (2.52),

R̃α
µβν = Rα

µβν(Γ) + Ω−1(∇β∇µΩδ
α
ν −∇ν∇µΩδ

α
β +∇ν∇σΩgβµg

ασ −∇β∇σΩgµνg
ασ)

+ Ω−2(2∇βΩ∇σΩgµνg
ασ − 2∇νΩ∇σΩgµβg

ασ

+ ∇σΩ∇σΩδ
α
ν gµβ −∇λΩ∇λΩδ

α
βgµν)

= Rα
µβν − [δαβ δ

λ
ν δ

ρ
µ − δαν δ

λ
βδ

ρ
µ + gµνδ

λ
βg

αρ − gµβδ
λ
ν g

αρ]Ω−1(∇λ∇ρΩ)

+ 2[δαβ δ
λ
ν δ

ρ
µ − δαν δ

λ
βδ

ρ
µ + gµνδ

λ
βg

αρ − gµβδ
λ
ν g

αρ]Ω−2(∇λΩ)(∇ρΩ)

+ [gµβδ
α
ν g

λρ − gµνδ
α
βg

λρ]Ω−2(∇λΩ)(∇ρΩ) (2.53)

Conracting the indices α and β yields the Ricci tensor

R̃µν = Rµν − [δααδ
λ
ν δ

ρ
µ − δαν δ

λ
αδ

ρ
µ + gµνδ

λ
αg

αρ − gµαδ
λ
ν g

αρ]Ω−1(∇λ∇ρΩ)

+ 2[δααδ
λ
ν δ

ρ
µ − δαν δ

λ
αδ

ρ
µ + gµνδ

λ
αg

αρ − gµαδ
λ
ν g

αρ]Ω−2(∇λΩ)(∇ρΩ)

+ [gµαδ
α
ν g

λρ − gµνδ
α
αg

λρ]Ω−2(∇λΩ)(∇ρΩ)

= Rµν − [(D − 2)δλν δ
ρ
µ + gµνg

λρ]Ω−1(∇λ∇ρΩ)

+ [2(D − 2)δλν δ
ρ
µ − (D − 3)gµνg

λρ]Ω−2(∇λΩ)(∇ρΩ) (2.54)
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where δαα = D, named as number of dimension. we obtain the Ricci scalar by contracting

the transformed Ricci tensor with g̃µν

R̃ = Ω−2R− 2(D − 1)Ω−3gλρ(∇λ∇ρΩ)

− (D − 1)(D − 4)gλρΩ−4(∇λΩ)(∇ρΩ) (2.55)

After conformal transformation, d’Alembertian operator takes the form as

2̃ϕ = g̃µν∇̃µ∇̃νϕ

= Ω−2gµν [∇̃µ(∇νϕ)]

= Ω−2gµν [∂µ(∇νϕ)− Γ̃λ
µν(∇λϕ)]

= Ω−2gµν{∂µ(∇νϕ)− [Γλ
µν + Ω−1(δλν∇µΩ + δλµ∇νΩ− gµν∇λΩ)]∇λϕ}

= Ω−2gµν
[
∇µ∇νϕ− (δαµδ

β
ν + δβµδ

α
ν − gµνg

αβ)Ω−1(∇αΩ)(∇βϕ)
]

= Ω−2
[
2ϕ+ (D − 2)gαβΩ−1(∇αΩ)(∇βϕ)

]
(2.56)

Einstein tensor is the geometrical part of the Einstein equations and it is explicitly written

as

Gµν = Rµν −
1

2
gµνR (2.57)

After substitution of conformally transformed Ricci tensor and Ricci scalar into this equa-

tion, the conformally transformed Einstein tensor is obtained as

G̃µν = R̃µν −
1

2
g̃µνR̃

= Gµν +
D − 2

2Ω2
[4∂µΩ∂νΩ + (D − 5)∂βΩ∂

βΩgµν ]

− D − 2

Ω
[∇µ∇νΩ− gµν2Ω] (2.58)
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2.2. Conformal Transformations in the Matter Sector

Until now, we have given only the conformal transformations of the geometrical

quantities. For the matter part of the gravity, the action is written as

S =

∫ √
−gdDxLm(g, ψm) (2.59)

where the matter Lagrangian contains the metric tensor and the matter fields ψ

We assume that the matter Lagrangian changes under conformal transformations

like

L̃m = Ω−DLm (2.60)

Then, we can write the transformed matter action as

S̃m =

∫ √
−g̃dDxL̃m (2.61)

=

∫ √
−gΩDdDxΩ−DLm

=

∫ √
−gdDxLm

= Sm

It can be seen that the matter action is invariant under conformal transformations. This

means that the matter part of the gravity can be studied in any conformal related frames

as invariant quantity.

The energy momentum tensor T m
µν is obtained from this action by taking the vari-

ation with respect to the metric tensor gµν . Thus, the energy momentum tensor is in the

form

T m
µν =

2√
−g

δ

δgµν
(
√
−gLm) (2.62)
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After the conformal transformations, the energy momentum tensor takes the form,

T̃ m
µν =

2√
−g̃

δ

δg̃µν
(
√

−g̃L̃m) (2.63)

= Ω−D 2√
−g

Ω2∂g
αβ

∂gµν
δ

δgαβ
(
√
−gLm)

= Ω−D+2 ∂g
αβ

∂gµν︸ ︷︷ ︸
δαµδ

β
ν

2√
−g

δ

δgαβ
(
√
−gLm)︸ ︷︷ ︸

T m
αβ

(2.64)

Then,

T̃ m
µν = Ω−D+2T m

µν (2.65)

If we take the trace of the Eq.(2.65), we obtain

T̃ m = Ω−DT m (2.66)

The conservation law in the first frame:

∇µT µν
m = 0 (2.67)

The conservation law in the second frame leads to

∇µT̃ µν
m = −∇νΩ

Ω
T̃m (2.68)

From (2.68) it is obvious that the transformed energy-momentum tensor is conserved

only if the trace of it vanishes (T̃m = 0). If the trace of an energy-momentum tensor in

a frame vanishes, it can be easily seen from (2.66) that it is necessary that the trace of

the energy-momentum tensor in the conformally related frame vanishes. This means that

only traceless type of matter provide the energy conservation.

After giving the conformal transformations rules of the Einstein tensor and the
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energy-momentum tensor, we can now discuss how the conformal transformations effect

the Einstein field equations. Firstly, the Einstein field equations are generally written in a

untransformed frame in the form as

Gµν = κ2T µν
m (2.69)

Conformally transformed Einstein field equations are

G̃µν = κ2T̃ µν
m (2.70)

For the energy conservation, the application of Bianchi identity on this equation leads to

∇µG̃
µν = 0 −→ ∇µT̃ µν

m = 0 (2.71)

By using (2.58) and (2.65)

G̃µν = Gµν + T Ω
µν (2.72)

(2.73)

or in the contravariant form,

G̃µν = Ω−4 (Gµν + T µν
Ω ) (2.74)

where

T Ω
µν = −D − 2

2Ω2

[
4∇µΩ∇νΩ + (D − 5)∇λΩ∇λΩgµν

]
− D − 2

Ω
[∇µ∇νΩ− gµν2Ω] (2.75)
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The field equations (2.70) take the form

Gµν + T Ω
µνΩ = κ2Ω−D−2T m

µν (2.76)

or, alternatively

Gµν = κ2Ω−D+2T µν
m − T µν

Ω (2.77)

Imposition of Bianchi identity yields

∇µG
µν = 0 = κ2∇µ

(
Ω−D+2T µν

m

)
−∇µT µν

Ω (2.78)

with (2.67),

κ2(−D + 2)Ω−D+2∇µΩ

Ω
T µν
m = ∇µT µν

Ω (2.79)

If we assume that there is no matter energy-momentum tensor T µν
m = 0, then the Einstein

tensor Gµν which is the geometrical part of the Einstein equations vanishes. In this case,

we can said that the space-time is flat. However, in the conformally transformed frame, it

can be easily seen from (2.58) that the Einstein tensor G̃µν does not vanish.

G̃µν = −T̃ µν
Ω ̸= 0 (2.80)

Consequently, it can be said that an empty Minkowski space after conformal transforma-

tions can create an extra non-zero energy momentum tensor composed of the conformal

factor Ω to bend the space-time. (Dabrowski, 2008)
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2.3. Scale Invariance

Invariance of a system under scale transformations is called scale invariance. The

necessary and the sufficient condition for the scale invariance is that the system should

have no fixed wavelength, mass or any other dimensionful coupling constants. For exam-

ple, the Compton wavelength formula is given by

λ =
h

mc
(2.81)

where c and h are constants. Studying in a system of units in which c and h are taken

to be unit is convenient. Thus, three dimension, length, time and mass reduce to a single

dimension and inverse of mass provides units of length and time,

λ =
1

m
→ [L] =

1

[M ]
(2.82)

If mass goes to zero, wavelength goes to infinity and we can stretch or contract the system

freely. For the system have the nonzero mass, there is no scale invariance. Because

mass is intrinsic quantity of the fundamental particles which constitute the matters and

it is constant. If it is measured by using different meter-sticks or clocks, it should take

different values. However, this is not possible. Thus, scale invariance of the system is

broken by mass. (Yasunori, 2003)

On the other hand all physical theories having zero masses and no dimensionful

coupling constants respect a scale invariance (global unit invariance), the fundamental

symmetry in physics which prevent us from adding two physical quantities with different

dimensions. The scaling of physical quantities are encoded in their weights. For instance,

the fields of a theory under scale invariance transoform as

ϕi → Ωwiϕi (2.83)

where Ω is scale factor and w is the weight of the physical quantity. Then, the scale
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invariance requires

S[ϕi] = S̃[Ωwiϕi] (2.84)

This equation can be used to find the weight of the field ϕi. Let us consider the action of

a scalar field

S[g, ϕ] =

∫
dDx

√
−g1

2
gµν∂µϕ∂νϕ (2.85)

Then the globally rescaled action is

S̃[ϕ̃] =

∫
dDx

√
−g̃1

2
g̃µν∂µϕ̃∂νϕ̃

=

∫
dDxΩD

√
−g1

2
Ω−2gµν∂µ(Ω

wϕ)∂ν(Ω
wϕ)

=

∫
dDxΩD−2+2w

√
−g1

2
gµν∂µϕ∂νϕ (2.86)

From the equivalence of these two action, the weight of the scalar field,

ΩD−2+2w = Ω0

D − 2 + 2w = 0
weight−−−−→ w = −D − 2

2
(2.87)

Now, we will go on with a massless scalar field ϕ in D = 4 dimension as an

example. Lagrangian density of a massless scalar field ϕ is

L =
1

2
gµν∂µϕ∂νϕ (2.88)

with the corresponding action in four dimensions

S[g, ϕ] =

∫
d4x

√
−gL

=

∫
d4x

√
−g
{1
2
gµν∂µϕ∂νϕ

}
(2.89)
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Let us apply the scale transformations to this system by using the transformations

g̃µν = Ω2gµν√
−g̃ = Ω4

√
−g

while it is demanded that the scalar field ϕ transforms as

ϕ̃ = Ω−1ϕ (2.90)

The transformed action is obtained as the following

S̃[g̃, ϕ̃] =

∫
d4x(Ω4

√
−g)

{1
2
(Ω−2gµν)∂µ(Ω

−1ϕ)∂ν(Ω
−1ϕ)

}
=

∫
d4x

√
−g
{1
2
gµν∂µϕ∂νϕ

}
= S[g, ϕ] (2.91)

Because Ω is a constant, it is not effected by derivatives. It can be seen that the action

(2.89) is invariant under scale transformations.

S̃[g̃, ϕ̃] = S[g, ϕ] (2.92)

This equation implies that physics is independent of the global choice of unit system.

In addition to this, a theory can be accepted as scale invariance at energies so

high that rest masses of the particles can be ignored. Furthermore, it can be said that

at the beginning of the universe, before the particles get their masses by spontaneously

symmetry breaking, there is completely scale invariance in the universe.

2.4. Conformal Invariance

Similar to scale invariance, the invariance of a system under conformal transfor-

mations is called conformal invariance. For the conformal invariance, the necessary con-
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dition is the same as for scale invariance. However, it is not sufficient condition for all

systems. For example, whereas the electromagnetic fields are conformally invariant un-

der this condition, massless scalar fields are not. For the scalar fields, in addition to this

necessary condition, the sufficent condition is that the scalar field should couple to cur-

vature R of the background spacetime directly (non-minimally). Furthermore, all fields

whose energy-momentum tensors are traceless respect the conformal invariance. (Salehi,

2000) For instance, the Maxwell theory of electromagnetism is invariant under confor-

mal transformations. This can be seen from the traceless energy-momentum tensor of the

theory.

Tµν = FµλF
λ
ν − 1

4
gµνFρσF

ρσ (2.93)

Trace of (2.93) is

T µ
µ = 0 (2.94)

On the other hand, massless scalar fields do not have traceless energy-momentum

tensor. Before seeing this, we will obtain the energy-momentum tensor of scalar fields

by using the principle of least action. The most common way of obtaining the energy-

momentum tensor is the taking variation of the corresponding action by varying the metric

gµν → gµν + δgµν . The notation for energy-momentum tensor is introduced

δS =

∫
d4
√
−g1

2
Tµνδg

µν (2.95)

Tµν is identical to energy-momentum tensor and it is symmetric. (Landau, 1975) Ac-

cording to (2.95), we can obtain the energy-momentum tensor for scalar fields from the

variation of the action (2.89) with respect to metric.

δS = δ

∫
d4x

√
−gL =

∫
d4x(δ

√
−gL+

√
−gδL) (2.96)
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Here, variation of the
√
−g is:

δ
√
−g = − 1

2
√
−g

δg = −1

2

√
−ggµνδgµν (2.97)

δL =
∂L
∂gµν

δgµν (2.98)

After substitute (2.97) and (2.98) into (2.96), we can obtain the energy-momentum tensor:

Tµν = 2
∂L
∂gµν

− gµνL (2.99)

By using the Lagrangian density of the massless scalar field (2.88), Tµν takes the form as

Tµν = ∂µϕ∂νϕ− 1

2
gµν∂λϕ∂

λϕ (2.100)

Then, the trace of (2.100) is

T µ
µ = −∂µϕ∂µϕ ̸= 0 (2.101)

Thus, it can be seen that the massless scalar fields do not exhibit conformal invariance.

However, its generalization to

L = −1

2
gµν∂µϕ∂νϕ+

1

2
ζDRϕ

2 (2.102)

where ζD is the conformal coupling constant

ζD =
(D − 2)

4(D − 1)
(2.103)
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is conformally invariant. (Demir, 2004)

Let us proceed with the conformal transformation of this system. By using the

(2.44), the transformed Ricci scalar is obtained in four dimension as

R̃ = Ω−2(x)R− 6Ω−3(x)∇µ∇νΩ(x)g
µν (2.104)

The scalar field must transform as follows

ϕ̃ = Ω−1(x)ϕ (2.105)

Finally, by using the (2.104), (2.105) and (2.44)

√
−g̃L̃ =

√
−gΩ4[

1

2
gµνΩ−6∂µΩ∂νΩϕ

2 +
1

2
gµνΩ−4∂µϕ∂νϕ

− Ω−5gµνϕ∂µΩ∂νϕ+
1

12
Rϕ2Ω−4 − 1

2
Ω−5∇µ∇νΩg

µνϕ2]

≡
√
−g[1

2
gµν∂µϕ∂νϕ+

1

12
Rϕ2] +

√
−gQ (2.106)

where in an inertial frame (Christoffel symbols are zero),

Q = −1

2
gµν
{
[−Ω−2∂µΩ∂νΩ + Ω−1∂µ∂νΩ]ϕ

2 + 2ϕ∂νϕΩ
−1∂µΩ

}
= −1

2
gµν
{
∂ν
[
(∂µΩ)Ω

−1
]
ϕ2 + ∂µΩΩ

−1∂ν(ϕ
2)
}

= −1

2
gµν∂ν

[
(∂µΩ)Ω

−1ϕ2
]

= −1

2
∂µ
[
(∂µΩ)Ω−1ϕ2

]
(2.107)

The term in the square brackets transform as a vector-component. Let us define χµ =

(∂µΩ)Ω−1ϕ2 and using the following formula

∇µχ
µ =

1√
−g

∂µ(
√
−gχµ) (2.108)
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Then, the
√
−g in front of the term is cancelled and a total derivative is obtained

∫
d4χ

√
−g∂µχµ →

∫
V

dV ∂µ(
√
−gχµ) =

∫
S

dS
√
−gχµ (2.109)

As we see from (2.109),
√
−gQ does not contribute to the action. Thus, it can be seen

that the (2.106) is invariant under conformal transformations. (Tywoniuk, 2004)

In addition to this, null geodesics are invariant under conformal transformations,

g̃µν
dxµ(λ)

dλ

dxν(λ)

dλ
= Ω2(x)gµν

dxµ(λ)

dλ

dxν(λ)

dλ
= 0 (2.110)

This means that a null curve xµ(λ)(curves on the surface of the light cone)is not affected

by conformal transformations. Because its tangent vector
dxµ(λ)

dλ
does not change af-

ter conformal transformations. Thus, it can be said that the light cone is conformally

invariant.

Consequently, theories of massless fermions and vector fields ( such as electro-

magnetic field ) are conformally invariant. However, massless scalar fields are not con-

formal invariant unless they couple to scalar curvature R.

Conformal invariance is essential to investigate a theory at the requested unit sys-

tems. If a theory is conformally invariant, it can be studied at all conformally related

frames. This leads to the mathematical simplicity of the calculations.
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CHAPTER 3

CONFORMAL TRANSFORMATIONS IN GENERAL

RELATIVITY

General Relativity is a theory which explains the gravity and relation between the

geometric structures of spacetime and matter. Although, it gave the consistent results with

the observations at the first times, there appeared some shortcomings from the cosmol-

ogy and the quantum field theory by the improvements in the observation techniques. To

overcome these shortcomings, a huge number of generalizations of the classical Einstein-

Hilbert Lagrangian formulation of GR have been put forward. In this chapter, we will

consider some alternative variational principles, based on different choices of the gravi-

tational field variables like metric, connection or both. These alternative variational prin-

ciples are known as different formulations of GR or modified theories of GR in terms of

different gravitational fields. One of them is the metric formulation of GR as we know

from the Einstein’s theory of GR. Second one is the metric-affine formulation of GR. Last

of them is the purely affine formulation of GR. These three formulations are dynamically

equivalent formulations in Riemannian spacetime and this can be seen after obtaining the

equations of motion. Let us explain these three formulations briefly.

• Metric formulation of GR

In metric formulation of GR, the only independent variable which represents the

gravitational field is the metric tensor. The other geometrical quantities like con-

nection, Riemann tensor, Ricci tensor and Ricci scalar depend on metric and deriva-

tives of metric. Thus, Lagrangian density of the gravitational fields can be generally

written as:

LM(g, ∂g, ∂2g) = R(g, ∂g, ∂2g)[−det(gαβ)]1/2 (3.1)

Then, by taking the variation of the corresponding action with respect to the metric

gαβ , we obtain ten vacuum Einstein equations:

Gµν(g) = Rµν(g)−
1

2
gµνR(g) = 0 (3.2)
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There are also two important properties of the metric formulation as we mention

in Introduction. These are the ’metric compatibility’ and ’torsion-free connection’.

The first one means that the covariant derivative of metric is zero

∇αgµν = 0 (3.3)

and the latter one means that the connection is symmetric in its lower indices.

Γλ
αβ = Γλ

βα (3.4)

• Metric-Affine formulation of GR

In metric-affine formulation of GR, the metric tensor and the connection are con-

sidered as independent variables. There is no a priori relation between connection

and metric. Therefore, the gravitational fields can be represented by the metric and

connection.Then, the Lagrangian density can be written as:

LMA(g,Γ) = gµνRµν(Γ, ∂Γ)[−det(gµν)]1/2 (3.5)

Then, the equations of motion are obtained by taking the variation of corresponding

action separately with respect to metric tensor gµν and the connection Γα
µν . Respec-

tively, these equations are:

Gµν(g,Γ, ∂Γ) = Rµν(Γ, ∂Γ)−
1

2
gµνR(Γ, ∂Γ) = 0 (3.6)

∇Γ
σgµν = 0 (3.7)

where ∇Γ
σ denotes the covariant derivative of the general connection Γ. From (3.7)

it follows that the general connection Γ coincides with the Levi-Civita connection

of g. In a sense, there appears a relation between connection and metric, a posteri-

ori. Thus, the equations in (3.6) are the usual vacuum Einstein equations. It can be
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seen that the metric formulation and the metric-affine formulation are dynamically

equivalent formulations in Riemannian geometry. However, in non-Riemannian ge-

ometry these formulations are not identical. Because there are new structures com-

ing from non-Riemannian geometry like torsion, nonmetricity and anti-symmetric

Ricci tensor.

• Purely Affine formulation of GR

In purely affine formulation of GR, the only dynamical variable is a symmetric

linear connection Γα
µν . The Lagrangian density of gravitational fields is represented

in most general form as LPA(Γ, ∂Γ) and the first example of the purely affine action

has been introduced by Einstein and Eddington:

LPA = LEE(Γ, ∂Γ) =
√
|detR(µν)(Γ)| (3.8)

where the metric structure is determined by prescription:

gµν
√

|g| = ∂LEE

∂R(µν)(Γ)
(3.9)

For the (3.8), the metric turns out to be proportional to the Ricci tensor of gen-

eral connection Γα
µν . Then, the variation of the corresponding action of (3.8) with

respect to the connection gives the second order Euler-Lagrange equation. By in-

serting of (3.9),

∇ν(g
αβ
√

|g|) = 0 (3.10)

As we mention in the metric-affine formulation, the last equation can be satisfied

only if Γα
µν = Γ̌α

µν . Here Γ̌α
µν denotes the Levi-Civita connection. Metric tensor

gµν is necessarily proportional to its own Ricci tensor. Thus, solutions of vacuum

equations of motion which are generated by the (3.8) are the same as the solutions

of the vacuum Einstein equations. It can be said that the purely affine formulation

is dynamically equivalent to metric formulation.

In next sections, we will investigate the effects of conformal transformations on the metric

formulation and metric-affine formulation of GR.
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3.1. Metric Formulation

The aim of this section is to indicate how the conformal transformations affect

the dynamical variables of general relativity via only transformation of the metric tensor

(2.44). In General Relativity, we apply conformal transformations only to metric because

there is a linear relation between the metric tensor and connection coefficient, namely

Levi-Civita connection. Then all the other dynamics like Riemann curvature tensor, Ricci

tensor and Ricci scalar, which depend on metric tensor and Levi-Civita connection, can

be obtain from these two transformed geometric variables. Conformal transformations of

them have been given in the previous chapter by using metric formulation.

The Einstein-Hilbert action in an arbitrary dimension D reads in (g,Γ) frame as

SEH [g] =

∫
dDx

√
−g
[
1

2
MD−2

⋆ R− Λ⋆ + Lm (g,Ψ)

]
(3.11)

where M⋆ is the fundamental scale of gravity in D dimensions, Λ⋆ is the cosmological

term, and Lm is the Lagrangian of the matter and radiation fields, collectively denoted by

Ψ. By using the conformally transformed geometrical quantities of gravity, Let us form

the transformed Einstein-Hilbert action in
(
g̃, Γ̃
)

frame. For the metric (−,+, . . . ,+)

convention, Einstein-Hilbert action takes the form as

SEH

[
g, ϕ
]

=

∫
dDx

√
−g

{
1

2
MD−2

⋆

[
ΩD−2R− 2(D − 1)ΩD−3gαβ∇α∇βΩ

− (D − 1)(D − 4)ΩD−4gαβ∇αΩ∇βΩ
]
− Λ⋆Ω

D + L̃m

(
g̃, Ψ̃

)}

=

∫
dDx

√
−g

{
1

2
MD−2

⋆

[
ΩD−2R− 2(D − 1)ΩD−2gαβ∇α∇β lnΩ

−2(D − 1)ΩD−4gαβ∇αΩ∇βΩ− (D − 1)(D − 4)ΩD−4gαβ∇αΩ∇βΩ
]

−Λ⋆Ω
D + L̃m

(
g̃, Ψ̃

)}

=

∫
dDx

√
−g

{
1

2
MD−2

⋆

[
ΩD−2R− 2(D − 1)ΩD−22 lnΩ

−(D − 1)(D − 2)ΩD−4gαβ∇αΩ∇βΩ
]
− Λ⋆Ω

D + L̃m

(
g̃, Ψ̃

)}
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where 2 = gαβ∇α∇β

≡
∫
dDx

√
−g
[
1

2
gµν
(
∂µϕ
) (
∂νϕ
)
+

1

2
ζDϕ

2
R

− λD

(
ζDϕ

2
) D

D−2
+ L̃m

(
g̃, Ψ̃

)]
(3.12)

where the two dimensionless constants

ζD =
D − 2

4(D − 1)
, λD =

Λ⋆

MD
⋆

(3.13)

designate, respectively, the conformal coupling of ϕ to R and the self-coupling of ϕ. The

scalar field ϕ

ϕ =
1√
ζD

(M⋆Ω)
(D−2)

2 (3.14)

derives from the conformal factor Ω in order to have canonical kinetic term. The quantity

L̃m

(
g, Ψ̃

)
in (3.12) is the transformed matter Lagrangian, where each matter field Ψ

transforms, together with the metric, by an appropriate conformal weight.

This new action executes local conformal invariance (Weyl invariance) under the

transformations

gαβ −→ ψ2 gαβ , ϕ −→ ψ− (D−2)
2 ϕ (3.15)

where inhomogeneous terms generated by the kinetic term of ϕ are neutralized by the

terms generated by the transformation of the curvature scalarR.This happens thanks to the

special, conformal value of ζD. Therefore, the transformed action (3.12) provides a locally

conformal-invariant representation of the original Einstein-Hilbert action (3.11). Notably,

the original action (3.11) exhibits no sign of conformal invariance but the transformed one

does and the reason behind it is the dressing of M⋆ and Λ⋆ by the transformation field Ω

(Bekenstein, 1980), (Deser, 1970)

As we see from the (3.12), conformal transformations change the Einstein frame
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to the Jordan frame. Thus, a scalar field coupling non-minimally to the gravitational field

occurs in the system. However, there is a point to notice about (3.12). The scalar field ϕ

(which is a function of the conformal factor Ω) is a ghost (Demir, 2004), (Aslan, 2006),

(Metaxas, 2009), (Gibbons, 1978). This is an unavoidable feature if gravity is to be an

attractive force. Its ghosty nature follows from its non-positive kinetic term, and it signals

that the system has no lower bound for energy. Such systems are inherently unphysical,

and there seems to be no way of avoiding it unless some nonlinearities are added as extra

features (Gabadadze, 2005).

3.2. Metric-Affine Formulation

As we mention before, metric-affine formulation (similar to Palatini formalism)

implies that metric and connection are independent geometric variables (Peldan, 1994),

(Magnano, 2005), (Dabrowski, 2008), as they indeed are. The related theory to this

formulation is called metric-affine gravity. One of the most important consequences of

this formulation is that conformal transformation of metric tensor gives rise to no direct

change in connection, as happens in metric formulation of GR. Thus, there is no telling

of how the general connection

Γλ
αβ ̸= Γλ

αβ(g) (3.16)

should transform under a rescaling of distances. In fact, the fact that connection has

nothing to do with measuring the distances can be taken to imply that the connection Γλ
αβ

is completely inert under (2.44). However, it is still possible that connection transforms

in some way, not necessarily like (2.49). Stating in a clearer fashion, there arise two main

categories to be explored:

• The connection Γ can be conformal-invariant: Γλ
αβ → Γλ

αβ despite (2.44) (Weyl,

1950),

• The connection Γ can transform in various ways: Multiplicatively, additively or

both while metric transforms as in (2.44).

Each of these two possibilities gives rise to novel effects not found in metrical GR, as

indicated by the dependence of the Riemann curvature tensor on the connection Therefore

in this section we shall analyze conformal transformations in two separate cases in regard
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to the transformation properties of the connection. In course of the analysis, the main

goal will be to find appropriate transformation rules for Γλ
αβ so that the resulting scalar

field theory (in terms of the conformal factor Ω) assumes physically sensible properties

like emergent conformal invariance and absence of ghosts. Indeed, the main problem

with the metrical GR discussed above is the unavoidable presence of a ghosty scalar in

the spectrum. We will find that metric-affine gravity is capable of realizing conformal

invariance and accommodating non-ghost scalar degrees of freedom.

In the metric-affine gravity, the Einstein-Hilbert action can be written as

SEH [g,Γ] =

∫
dDx

√
−g

{
1

2
MD−2

⋆ gµνRµν (Γ)− Λ⋆ + L
(
Γ− Γ̌, g, ψmatter

)}
(3.17)

in a general (g,Γ) frame. Here, ψmatter collectively denotes the matter fields, and L is

composed of

L = Lgeo (g,D) + L matter (g,D, ψmatter) (3.18)

which respectively stand for the geometrical and matter sector contributions. The geo-

metrical sector consists of the rank (1,2) tensor field

Dλ
αβ = Γλ

αβ − Γ̌λ
αβ (3.19)

as an additional geometrodynamical tensorial quantity. This variable is highly natural

to consider since in the presence of the metric gαβ one naturally defines its compatible

connection i. e. the Levi-Civita connection. Then difference between Γλ
αβ and Levi-Civita

connection becomes a tensorial quantity to be taken into account.

Here it is useful to clarify the meaning of Lgeo (g,D) in terms of the known dy-

namical quantities akin to non-Riemannian geometries. Non-Riemannian geometries are

characterized by torsion tensor,

Sλ
αβ = Dλ

αβ −Dλ
βα (3.20)
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non-metricity tensor,

Qαβ
λ = Dα

λρg
ρβ +Dβ

λρg
αρ (3.21)

Ricci curvature tensor,

Rµν (Γ) = Rα
µαν (Γ) (3.22)

and the anti-symmetric Ricci curvature tensor

R′
βν = Rα

αβν (Γ) (3.23)

All these tensor fields make up the geometrical sector of the theory. Clearly, torsion

vanishes for theories with symmetric connections, and this is also the case throughout the

present work. Moreover, R′
βν is an anti-symmetric tensor field whose curvature scalar

vanishes identically. This tensor can give contributions to Lagragrangian at the quadratic

and higher levels. The Lagrangian Lgeo (g,D) includes all these tensorial contributions

through the Dλ
αβ dependence

Lgeo (g,D) = Lgeo (g, S,Q,R,R′) , (3.24)

throughout the text. It is clear that, Lgeo can involve arbitrary powers and derivatives of

the tensorial connection Dλ
αβ .

The Lagrangian L, through its Γ or D dependence, gives rise to important modifi-

cations in the equations of motion (Burton, 1998) so that Γ = Γ̌ limit (which is what is be-

hind the Palatini formulation) does not necessarily hold. The contributions of Lgeo (g,D)

and Lm (g,D,Ψ) generically avoid the limit Γ = Γ̌. We will discuss this point in the

following section.

In two subsections to follow, we will not explicitly analyze L; our analysis will

take into account the minimal structure only for explicating the implications of the con-

formal transformations. This is done for the purpose of definiteness and simplicity. We

will turn on Lgeo in Sec. 3.3 for discussing the equations of motion for Dλ
αβ .
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3.2.1. Conformal-Invariant Connection

We start the analysis by first considering a conformal-invariant connection by

which we mean that connection is inert to rescalings of the metric. Therefore, along

with the transformation of metric (2.44), the connection transforms as (Weyl, 1950)

Γ̃λ
αβ = Γλ

αβ (3.25)

and hence,

R̃α
µβν

(
Γ̃
)
= Rα

µβν (Γ) , R̃µν

(
Γ̃
)
= Rµν (Γ) (3.26)

Since Riemann tensor (2.51) does not involve the metric tensor unless the connection

does. The only non-trivial transformation occurs for the Ricci scalar

g̃µνR̃µν

(
Γ̃
)
= Ω−2gµνRµν (Γ) (3.27)

which is nothing but an overall dressing by Ω−2. In particular, no derivatives of Ω are

involved in the transformations of curvature tensor. This implies that Ω can develop no

kinetic term. Indeed, under the transformation (3.27), the action (3.17) with conformal-

invariant connection goes over

SEH

[
g̃, Γ̃, ϕ

]
=

∫
dDx

√
−g
[
1

2
ζDϕ

2
gµνRµν (Γ)− λD

(
ζDϕ

2
) D

D−2

]
(3.28)

in
(
g̃, Γ̃
)

frame and in the absence of the geometrical and matter parts L. Obviously, this

action is locally conformal invariant under

gαβ −→ ψ2 gαβ , Γλ
αβ −→ Γλ

αβ , ϕ −→ ψ− (D−2)
2 ϕ (3.29)
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as was the case for metrical gravity, defined in (3.15). Therefore, though the original

action (3.17) exhibits no sign of conformal invariance and hence the new action (3.28)

arises, this transformed action exhibits manifest conformal invariance. The reason is as

in the metrical gravity; the conformal factor Ω dresses the fixed scales (M⋆ and Λ⋆) in

(3.17) to make them as effective fields transforming nontrivially under local rescalings of

the fields (Bekenstein, 1980).

Apart from this emergent conformal invariance, the action (3.28) possesses a

highly important aspect not found in metrical GR: It is that ϕ is not a ghost at all. It is a

non-dynamical scalar field having vanishing kinetic energy, and thus, the impasse caused

by the ghosty scalar field encountered in metrical GR is resolved. The non-dynamical na-

ture of ϕ continues to hold even if the matter sector is included. This result stems from the

affine nature of the gravitational theory under concern, and especially from the invariance

of the connection under conformal transformations.

At this point it proves useful to discuss the ‘non-dynamical’ nature of the scalar

field ϕ in the action (3.28). At the level of the transformations employed and the Einstein-

Hilbert action the non-dynamical nature of the conformal factor (and hence, the ϕ) is un-

avoidable. However, one immediately notices that this ‘non-dynamical’ structure depends

sensitively on the quantum fluctuations. Indeed, if quantum fluctuations are included into

(3.28) the scalar field ϕ is found to develop a kinetic term via the graviton loops (Shapiro,

1995), (Shapiro, 1997). We shall keep analysis at the classical level throughout the work.

However, one is warned of such delicate effects which can come from quantum correc-

tions or higher order geometrical invariants.

3.2.2. Conformal-Variant Connection

As an alternative to conformal-invariant connection, in this subsection we investi-

gate different scenarios where Γλ
αβ exhibits nontrivial changes along with the transforma-

tion of the metric in (2.44).

As a possible transformation property, we first discuss the multiplicative transfor-

mation of connection. Namely, connection transforms similar to the metric itself

Γ̃λ
αβ = f(Ω)Γλ

αβ (3.30)

where f(Ω) is a generic function of the conformal factor. Inserting this transformed
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connection into (2.51), one straightforwardly determines the transformed Riemann tensor

R̃α
µβν

(
Γ̃
)

= ∂βΓ̃
α
µν − ∂νΓ̃

α
µβ + Γ̃α

βλΓ̃
λ
µν − Γ̃α

νλΓ̃
λ
µβ

= ∂β(f(Ω)Γ
α
µν)− ∂ν(f(Ω)Γ

α
µβ) + f 2(Ω)Γα

βλΓ
λ
µν − f2(Ω)Γα

νλΓ
λ
µβ

= Γα
µν∂βf(Ω) + f(Ω)∂βΓ

α
µν − Γα

µβ∂νf(Ω)− f(Ω)∂νΓ
α
µβ

+ f 2(Ω)Γα
βλΓ

λ
µν − f2(Ω)Γα

νλΓ
λ
µβ + f(Ω)Γα

βλΓ
λ
µν − f(Ω)Γα

βλΓ
λ
µν

+ f(Ω)Γα
νλΓ

λ
µβ − f(Ω)Γα

νλΓ
λ
µβ

= f (Ω)Rα
µβν (Γ) + ∂βf(Ω)Γ

α
µν − ∂νf(Ω)Γ

α
µβ

+ f (Ω) (f (Ω)− 1)
[
Γα
βλΓ

λ
µν − Γα

νλΓ
λ
µβ

]
(3.31)

and by contraction, the transformed Ricci scalar

g̃µνR̃µν

(
Γ̃
)

= Ω−2

{
f (Ω)R (Γ) + ∂αf (Ω) g

µνΓα
µν − ∂νf (Ω) g

µνΓα
µα.

+ f (Ω) (f (Ω)− 1)
[
Γα
αλg

µνΓλ
µν − Γα

νλg
µνΓλ

µα

]}
. (3.32)

It is straightforward to check that the Γ–dependent terms at the right-hand side form a

true scalar under general coordinate transformations.

→ Ω−2∂αf(Ω)

[
∂xµ

∂xµ′

∂xν

∂xν′
gµ

′ν′
(
∂xα

∂xα′

∂xµ
′

∂xµ
∂xν

′

∂xν
Γα′

µ′ν′ +
∂xα

∂xα′

∂2xα
′

∂xµ∂xν

)

− ∂xµ

∂xµ′

∂xα

∂xα′ g
µ′α′
(
∂xλ

∂xλ′

∂xλ
′

∂xλ
∂xµ

′

∂xµ
Γλ′

λ′µ′ +
∂xλ

∂xλ′

∂2xλ
′

∂xλ∂xµ

)]

+Ω−2(f2 − f)

[(
∂xα

∂xα′

∂xα
′

∂xα
∂xλ

′

∂xλ
Γα′

α′λ′ +
∂xα

∂xα′

∂2xα
′

∂xα∂xλ

)
· ∂x

µ

∂xµ′

∂xν

∂xν′
gµ

′ν′
(
∂xλ

∂xλ′

∂xµ
′

∂xµ
∂xν

′

∂xν
Γλ′

µ′ν′ +
∂xλ

∂xλ′

∂2xλ
′

∂xµ∂xν

)
−
(
∂xα

∂xα′

∂xν
′

∂xν
∂xλ

′

∂xλ
Γα′

ν′λ′ +
∂xα

∂xα′

∂2xα
′

∂xν∂xλ

)
· ∂x

µ

∂xµ′

∂xν

∂xν′
gµ

′ν′
(
∂xλ

∂xλ′

∂xµ
′

∂xµ
∂xα

′

∂xα
Γλ′

µ′α′ +
∂xλ

∂xλ′
∂2xλ

′

∂xµ∂xα

)]
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= Ω−2∂αf(Ω)

[
∂xα

∂xα′ g
µ′ν′Γα′

µ′ν′ +
∂xα

α′
∂xµ

∂xµ′

∂xν

∂xν′
∂

∂xν

(
∂xα

′

∂xµ

)
gµ

′α′

− ∂xα

∂xα′ g
µ′α′

Γλ′

λ′µ′ −
∂xα

∂xα′

∂xλ

∂xλ′ g
µ′ν′ ∂x

µ

∂xµ′

∂2xλ
′

∂xλ∂xµ

]

+Ω−2(f 2 − f)

[(
∂xλ

′

∂xλ
Γα′λ′

)(
gµ

′ν′ ∂x
λ

∂xλ′Γ
λ′

µ′ν′ +
∂xλ

∂xλ′

∂xµ

∂xµ′ g
µ′ν′ ∂x

ν

∂xν′
∂2xλ

′

∂xµ∂xν

)]
−Ω−2(f 2 − f)

[(
∂xα

∂xα′

∂xλ
′

∂xλ
Γα′

ν′λ′ +
∂xα

∂xα′

∂xν

∂xν′
∂2xα

′

∂xν∂xλ

)

·
(
gµ

′ν′ ∂x
λ

∂xλ′

∂xα
′

∂xα
Γλ′

µ′α′ + gµ
′ν′ ∂x

µ

∂xµ′

∂xλ

∂xλ′

∂2xλ
′

∂xµ∂xα

)]

= Ω−2 ∂f

∂xα′

∂xα
′

∂xα
∂xα

∂xα′ g
µ′ν′Γα′

µ′ν′ − Ω−2 ∂f

∂xα′

∂xα
′

∂xα
∂xα

∂xα′ g
µ′α′

Γλ′

µ′λ′

+Ω−2(f 2 − f)
[
Γα′

α′λ′gµ
′ν′Γλ′

µ′ν′ − Γα′

ν′λ′gµ
′ν′Γλ′

µ′α′

]
= Ω−2∂α′f(Ω)gµ

′ν′Γα′

µ′ν′ − Ω−2∂ν′f(Ω)g
µ′ν′Γα′

α′µ′

+Ω−2(f 2 − f)
[
Γα′

α′λ′gµ
′ν′Γλ′

µ′ν′ − Γα′
ν′λ′gµ

′ν′Γλ′

µ′α′

]

This conformal transformation rule for Ricci scalar dictates what form the gravi-

tational action (3.17) in (g,Γ) frame takes in (g̃, Γ̃) frame. It is clear that the transformed

action will involve Ω as well as its partial derivatives. Therefore, contrary to the previous

case of conformal-invariant connection, Ω is a dynamical field. However, it does not pos-

sess a true kinetic term in the sense of a scalar field theory. Its derivative interactions are

always accompanied by the connection, Γλ
αβ .

As another transformation property of the connection, we now turn to analysis of

additive transformation of Γλ
αβ . We thus consider the generic transformation rule

Γ̃λ
αβ = Γλ

αβ +∆λ
αβ (Ω) (3.33)

where ∆λ
αβ (Ω), being the difference between Γ̃λ

αβ and Γλ
αβ , is a rank (1,2) tensor field.

It is a tensorial connection. This transformation of the connection is understood to run

simultaneously with the transformation of the metric in (2.44). Then, as follows from

(2.51), the Riemann tensor transforms as

R̃α
µβν

(
Γ̃
)
= Rα

µβν (Γ) +∇β∆
α
µν −∇ν∆

α
µβ +∆α

λβ∆
λ
µν −∆α

λν∆
λ
βµ (3.34)
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where the ∆–dependent part at the right-hand side, though seems so, is not a true curvature

tensor; it is not generated by any of the covariant derivatives induced by Γλ
αβ or Γλ

αβ . This

extra ∆–dependent piece is just a rank (1,3) tensor field induced by ∆λ
αβ alone.

In accordance with the transformation of Riemann tensor in (3.34), the Ricci scalar

transforms as

g̃µνR̃µν

(
Γ̃
)
= Ω−2gµν

{
Rµν (Γ) +∇α∆

α
µν −∇ν∆

α
µα +∆α

λα∆
λ
µν −∆α

λν∆
λ
αµ

}
.

(3.35)

This transformation rule is rather generic for connections which transform additively

(Demir, 2004). Nevertheless, it is necessary to determine physically admissible forms

of ∆λ
αβ so that the conformal factor Ω assumes appropriate dynamics in regard to absence

of ghosts and emerging of a new conformal invariance in the sense of (3.29).

At this stage, right question to ask is this: ‘How is ∆λ
αβ related to Ω ?’ To answer

this question, one has to check out a series of possibilities. Being a rank (1,2) tensor

field, ∆λ
αβ can assume a number of forms like V λgαβ or δλαVβ or V λTαβ , with Vα being a

vector field and Tαβ a symmetric tensor field. If the transformation of connection (3.33)

is to coexist with that of the metric in (2.44), then Vα, Tαβ or any other structure must

be related to gradients of Ω so that ∆λ
αβ vanishes when Ω is unity or, more precisely,

constant. Therefore, one can identify Vα with ∂αΩ, and Tαβ with ∇α∂βΩ or ∂αΩ ∂βΩ.

Consequently, ∆λ
αβ should be composed of ∂λΩ gαβ , δλα∂βΩ or relevant higher derivatives

of Ω or higher powers of ∂αΩ. Hence, at the linear level, ∆λ
αβ must be of the form

∆λ
αβ = c1

(
δλα∂β lnΩ + δλβ∂α lnΩ

)
+ c2gαβ∂

λ lnΩ (3.36)

where c1 and c2 are real constants. In here, one notices that a very similar form of this

connection was also found in (Park, 1997),?, in spacetimes with non-vanishing torsion.

One readily notices that the tensorial structures involved here are the same as the ones

appearing in the transformation of the Levi-Civita connection under conformal transfor-

mations. This is seen from direct comparison of (3.36) with (2.50). The difference is

the generality of (3.36) in terms of the constants c1 and c2 since c1 = −c2 = 1 in the

transformation (2.50) of the Levi-Civita connection. Under the transformation (3.36), the
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Ricci scalar R̃ in (3.35) takes the form as

R̃ = Ω−2R + Ω−2gµν
{
c1δ

α
µ∇α∂ν lnΩ + c1δ

α
ν∇α∂µ lnΩ + c2gµν∇α∂

α lnΩ
}

− Ω−2gµν
{
c1δ

α
µ∇ν∂α lnΩ + c1δ

α
α∇ν∂µ lnΩ + c2gµα∇ν∂

α lnΩ
}

+ Ω−2gµν
{
c21[δ

α
αδ

λ
µ∂λ lnΩ∂ν lnΩ + δααδ

λ
ν∂λ lnΩ∂µ lnΩ

+ δλµδ
α
λ∂α lnΩ∂ν lnΩ + δαλδ

λ
ν∂α lnΩ∂µ lnΩ]

+ c1c2[δ
α
αgµν∂λ lnΩ∂

λ lnΩ + δαλgµν∂α lnΩ∂
λ lnΩ]

+ c1c2[δ
λ
µgαλ∂ν lnΩ∂

α lnΩ + δλν gαλ∂µ lnΩ∂
α lnΩ]

+ c22gαλgµν∂
α lnΩ∂λ lnΩ

}
− Ω−2gµν

{
c21[δ

α
ν δ

λ
µ∂λ lnΩ∂α lnΩ + δαν δ

λ
α∂λ lnΩ∂µ lnΩ

+ δαλδ
λ
µ∂α lnΩ∂ν lnΩ + δλαδ

α
λ∂ν lnΩ∂µ lnΩ]

+ c1c2[δ
α
ν gµα∂λ lnΩ∂

λ lnΩ + δαλgµα∂ν lnΩ∂
λ lnΩ]

+ c1c2[δ
λ
µgνλ∂α lnΩ∂

α lnΩ + δλαgνλ∂µ lnΩ∂
α lnΩ]

+ c22gµαgνλ∂
α lnΩ∂λ lnΩ

}
= Ω−2

{
(c2 − c1)(D − 1)

}
∇α∂

α lnΩ

+ Ω−2
{
(d− 1)c21 + (D2 −D)c1c2 + (D − 1)c22)

}
∂α lnΩ∂

α lnΩ (3.37)

After substitution of (3.37) into the metric-affine action (3.17), we obtain the following

equation for transformed action

SEH

[
g̃, Γ̃
]

=

∫
dDx

√
−g

{
1

2
MD−2

⋆ ΩD−2R

+
1

2
MD−2ΩD−4[(D − 1)(c21 + c22 +Dc1c2 + 2c1 − 2c2)] g

αβ∇αΩ∇βΩ

− ΩDΛ

}
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Then, we introduce a new parameter for abbreviation

κD =
c21 + c22 +Dc1c2 + 2c1 − 2c2)

D − 2

=
(c1 + c2)

2 − 2c1c2 +Dc1c2 + 2c1 − 2c2
D − 2

=
(c1 + c2)

2 + (D − 2)c1c2 + 2(c1 − c2)

D − 2
(3.38)

The action takes the form as

SEH

[
g̃, Γ̃
]

=

∫
dDx

√
−g

{
1

2
MD−2

⋆ ΩD−2R

+
1

2
MD−2

⋆ (D − 1)(D − 2)
κD

| κD |︸ ︷︷ ︸
SignκD

| κD | ΩD−4gαβ∂αΩ∂βΩ− ΩDΛ

}

By using two new definitions, a canonical scalar field and a self coupling constant, re-

spectively

ϕ =
1√
ζ ′D

(M⋆Ω)
(D−2)

2 (3.39)

ζ ′D =
D − 2

4(D − 1) | κD |
=

ζD
| κD |

(3.40)

Finally, transformed action is obtained as

SEH

[
g̃, Γ̃, ϕ

]
=

∫
dDx

√
−g

{
1

2
Sign (κD) gµν∂µϕ∂νϕ

+
1

2
ζ ′Dϕ

2
gµνRµν (Γ)− λD

(
ζ ′Dϕ

2
) D

D−2

}
(3.41)

The action (3.41) is to be contrasted with the transformed action (3.12) in metrical

gravity. The differences between the two are spectacular, and it could prove useful to

44



discuss them here in detail:

• One first notes that, the action (3.41) is invariant under the emergent conformal

transformations

gαβ −→ ψ2 gαβ

Γλ
αβ −→ Γλ

αβ +∆λ
αβ(ψ)

ϕ −→ ψ− (D−2)
2 ϕ (3.42)

similar to what we have found in (3.15) for the metrical GR. This invariance guar-

antees that all the fixed scales in (3.17) are appropriately dressed by the conformal

factor Ω (Bekenstein, 1980).

• The conformal coupling ζD in (3.12) of the pure metric gravity changes to ζD/ |κD|
in the metric-affine action under concern. The presence of κD reflects the gener-

ality of the transformation of the connection, as noted in (3.36). This is a highly

important result since it generalizes the very concept of ‘conformal coupling’ be-

tween scalar fields and curvature scalar by changing ζD to ζ ′D. This modification

can have observable consequences in cosmological (Bauer, 2008), (Faraoni, 1999),

(Sokolowski, ) as well as collider observables (Giudice, 2001), (Aslan, 2006) of

the metric-affine gravity.

• In complete contrast to (3.12), the scalar field ϕ in (3.41) obtains an indefinite ki-

netic term. The sign of the kinetic term is determined by the sign of κD. One here

notes two physically distinct cases:

1. If κD > 0 then ϕ is a scalar ghost as in the metrical GR. In (3.12) κD = 1

(since c1 = 1 and c2 = −1 for the change of Levi-Civita connection (2.50)

under conformal transformations), and ϕ is necessarily a ghost if gravity is to

stay as an attractive force.

2. If, however, κD < 0 then ϕ becomes a true scalar field with no problems like

ghosty behavior. One notices from (3.41) that this very regime is realized with

no modification in the attractive nature of the gravitational force. Gravity is

attractive and ϕ is a non-ghost, true scalar field. This result follows form the

generality of the transformation of Γλ
αβ in (3.36) compared to that of the Levi-

Civita connection. The real constants c1 and c2 gives enough freedom to make
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κD negative for having a canonical scalar field theory, and this happens for

c2 > 1− 1

2
(D − 2)c1 −

1

2

√
D(D − 4)c21 − 4Dc1 + 4

and

c2 < 1− 1

2
(D − 2)c1 +

1

2

√
D(D − 4)c21 − 4Dc1 + 4

where c1 is restricted to lie outside the interval
[
4D−2

√
D

D(D−4)
, 4D+2

√
D

D(D−4)

]
forD > 4.

One can see that for any dimension D ≥ 4 there exist wide ranges of values

of c1 for which c2 takes on admissible negative or positive real values. In

particular, for D = 4 we find c1 < 1
4
. Similar considerations pertaining to the

metric-scalar-torsion system can be found in (Helayel-Neto, 2000).

3. The fact that the metric-affine gravity offers a true scalar field ϕ elevates the ar-

guments on the cosmological constant problem in (Polyakov, 2001), (Jackiw,

2005) to a more physical status since one then does not need to multiply the

scalar field by the imaginary unit to make sense of the resulting scalar field

theory. For κD < 0 and g̃µν = ηµν , the affine-gravitational action (3.41) can

realize infrared fixed point for ϕ with no artificial changes in the sign of its

kinetic term.

• The geometrical part of L (g,D,Ψ), which only consist of the metric and Dλ
αβ =

Γλ
αβ − Γ̌λ

αβ , will also transform under conformal transformation (2.44) with addi-

tively conformal-variant connection (3.33). Under the conformal transformations

(3.42), D changes as

D̃λ
αβ = Dλ

αβ + (c2 + 1)gαβ∂
λ lnψ + (c1 − 1)

(
δλα∂β lnψ + δλβ∂α lnψ

)

as expected from transformation properties of Γλ
αβ and Γ̌λ

αβ . This gives geometro-

dynamical terms and couplings of D with the emergent scalar field ψ.

The analysis above ensures that additively transforming connections, such as the

one (3.36), gives rise to a physically sensible mechanism where gravitational sector as

well as the emergent scalar field from conformal transformation are both physical. Re-

46



moval of the ghosty degree of freedom in metrical GR is a highly important aspect of the

metric-affine gravity. Essentially, freeing connection from metric enables one to reach

a physically consistent picture in regard to conformal frame changes in the gravitational

action.

3.3. Equations of Motion

We have found that metric-affine gravity provides a means of generating non-ghost

scalar field ϕ by executing a more general transformation property as indicated in (3.36).

However, we know that equations of motion relate Γλ
αβ to Levi-Civita connection, and it

is questionable if one can indeed realize such generalized transformation properties. For

a detailed analysis of the problem, we will proceed systematically by examining different

forms of geometrodynamical action densities.

• First of all, one notes that the affine gravitational action (3.17) becomes a highly

conservative one for L = 0. In this case, variation of action with respect to the

connection Γλ
αβ gives

∇Γ
λ

(√
−ggαβ

)
= 0 (3.43)

where the covariant derivative of the tensor densitiy is defined as

∇Γ
λ

√
−g = ∂λ

√
−g − Γα

αλ

√
−g (3.44)

Then the equation (3.43) is solved uniquely for

Γλ
αβ = Γ̌λ

αβ. (3.45)

Therefore, the action (3.17) is equivalent to the action for metrical gravity in (3.11).

The main advantage of metric-affine gravity (actually the Palatini formalism itself)

is that one arrives at the equations of GR with no need to extrinsic curvature (which

is needed in metrical gravity). In sum, with L = 0, (3.17) gives an equivalent

description of (3.11). We will elaborate more on this point below.
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• There can, however, be various sources of departure from the conservative ac-

tion (3.17). These sources of departure are contained in L. Let us first examine

Lgeo (g,D) which involves metric and the tensorial connection Dλ
αβ . The tensorial

connection Dλ
αβ gives rise to novel geometrodynamical structures not necessarily

governed by the curvature tensor Rα
µβν (Γ) and its contractions and higher powers

(though such sources of Dλ
αβ are to be also included in Lgeo (g,D)). Indeed, the

action can be added various new terms involving appropriate powers of Dλ
αβ as long

as general covariance is respected. One notices that only even powers of Dλ
αβ can

arise in the action (Pirinccioglu, ), (Demir, 2009). Needless to say, presence of

additional terms involving Dλ
αβ changes the equation of motion for Γλ

αβ . In particu-

lar, its dynamical equivalence to Levi-Civita connection, in the sense of (3.43), gets

lost.

For explicating these points we go back to (3.17) and switch on Lgeo (g,D) after

which the Dλ
αβ dependence of the action takes the form For explicating these points

we go back to (3.17) and switch on Lgeo (g,D) after which the Dλ
αβ dependence of

the action takes the form

SEH [g,D] =

∫
dDx

√
−g

{
1

2
MD−2

⋆ gµν
[
Rµν

(
Γ̌
)
+Rµν (D)

]︸ ︷︷ ︸
Rµν(Γ)

− Λ⋆ + Lgeo (g,D)

}
(3.46)

where we discarded L (g,D, ψ) momentarily, to analyze the effects of geometrical

part of L in isolation. Actually, as we have mentioned before in (3.24), Lgeo (D)

can always be expressed in terms of torsion (which vanishes in our case), non-

metricity, and curvature tensors. We here prefer to use generic function Lgeo (D)

instead of expressing it in terms of those tensor structures in (3.24). From (3.34) it

follows that

Rµν (D) = ∇αDα
µν −∇νDα

µα +Dα
λαDλ

µν −Dα
λνDλ

αµ (3.47)

in the action (3.46). Let us calculate the variation of (3.46) step by step. Firstly, we
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will calculate the variation of Ricci tensor with respect to Dλ
αβ

δRµν(D(x))

δDλ
αβ(z)

= ∇α

(
δDα

µν(x)

δDλ
αβ

)
−∇ν

(
δDα

µα(x)

δDλ
αβ

)

+
δDα

λα(x)

δDλ
αβ(z)

Dλ
µν(x) +Dα

λα(x)
δDλ

µν(x)

δDλ
αβ(z)

− δDα
λν(x)

δDλ
αβ(z)

Dλ
αµ(x)−Dα

λν(x)
δDλ

αµ(x)

δDλ
αβ(z)

= δαλδ
α
λδ

β
αDλ

µν(x)δ
D(x− z) + δλλδ

α
µδ

β
νDα

λν(x)δ
D(x− z)

− δαλδ
α
λδ

β
νDλ

αµ(x)δ
D(x− z)

− δλλδ
α
αδ

β
µDα

λν(x)δ
D(x− z) (3.48)

By using (3.48), variation of the action with respect to Dλ
αβ(z) gives the equations

of motion

δβλg
µν(z)Dα

µν + gαβ(z)Dν
λν(z)− gµβ(z)Dα

λµ(z)

−gβν(z)Dα
λν(z) + Gαβ

λ (g,D) = 0 (3.49)

where Gαβ
λ (g,D) stands for the variation of the geometrical part Lgeo (g,D) with

respect to Dλ
αβ(z).

– From (3.49) one immediately observes that, for Lgeo (g,D) = 0 (in addi-

tion to assumed vanishing of the matter contribution), the tensorial connection

identically vanishes, Dλ
αβ = 0. This implies that the general connection Γλ

αβ

equals the Levi-Civita connection Γ̌λ
αβ . In such a case, of course, Γλ

αβ is ex-

pected to exhibit the same transformation properties as Γ̌λ
αβ . Consequently, the

general conformal transformation property (3.36) as well as the conclusions

drawn from it will not hold for minimal Lagrangians, like (3.17) with L = 0.

In this sense, analysis of the previous section, though designed to show how

varying conformal transformation properties of Γλ
αβ modify the ghosty nature

of ϕ, is physically sensible yet incomplete for it does not take into account the

effects of non-vanishing L effects.

– We have just concluded that we need non-vanishing L for maintaining the in-

dependence of Γλ
αβ from Γ̌λ

αβ . Now it proves useful to check some reasonable
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forms of Lgeo (g,D) in light of the equations of motion (3.49). Leaving aside

the single-derivative terms as well as quadratic ones whose special forms are

already contained in the curvature tensor, the lowest-order terms which can

contribute to geometrical part take the form

Lgeo (g,D) = Aαβµνχξηκ
λρζϵ (g)Dλ

αβDρ
µνD

ζ
χξD

ϵ
ηκ (D)

+ Bαβµνρθ
λζ (g)∇µDλ

αβ∇νDζ
ρθ + · · · (3.50)

where A and B are tensorial structures composed of the metric tensor. They

are supposed to contain all possible combinatorics of the indices. It is clear

that, after computing Gαβ
λ (g,D) from this combination, the equations of mo-

tion (3.49) will yield non-vanishing Dλ
αβ even without including its deriva-

tives. Let us calculate the Gαβ
λ (g,D) by taking the variation of Lgeo (g,D)

with respect to Dλ
αβ .

Gαβ
λ (g,D) =

δLgeo (g,D(x))

δDλ
αβ(z)

= Aαβµνχξηκ
λρζϵ (g)

{
δDλ

αβ(x)

δDλ
αβ(z)

Dρ
µνD

ζ
χξD

ϵ
ηκ +

δDρ
µν(x)

δDλ
αβ(z)

Dλ
αβD

ζ
χξD

ϵ
ηκ

+
δDζ

χξ(x)

δDλ
αβ(z)

Dρ
µνDλ

αβDϵ
ηκ +

δDϵ
ηκ(x)

δDλ
αβ(z)

Dρ
µνD

ζ
χξD

λ
αβ

}

+ Bαβµνρθ
λζ (g)

{(
∇µ

δDλ
αβ(x)

δDλ
αβ(z)

)
∇νDζ

ρθ +

+

(
∇ν

δDζ
ρθ(x)

δDλ
αβ(z)

)
∇µDλ

αβ

}

= Aαβµνχξηκ
λρζϵ (g)

{
δλλδ

α
αδ

η
βδ

D(x− z)Dρ
µνD

ζ
χξD

ϵ
ηκ

+ δρλδ
α
µδ

β
ν δ

D(x− z)Dλ
αβD

ζ
χξD

ϵ
ηκ + δζλδ

α
χδ

β
ξ δ

D(x− z)Dρ
µνDλ

αβDϵ
ηκ

+ δϵλδ
α
ν δ

β
κδ

D(x− z)Dρ
µνD

ζ
χξD

λ
αβ

}

+ Bαβµνρθ
λζ

{
∇µ

(
δλαδ

α
αδ

β
βδ

D(x− z)
)(

∇νDζ
ρθ

)
+ ∇ν

(
δζλδ

α
ρ δ

β
θ δ

D(x− z)
) (

∇µDλ
αβ

)}
(3.51)

50



After some arrangement of (3.51), the equations of motion (3.49) take the

form

Dσ
ρθ

[
gρθδβλδ

α
σ + gαβδθσδ

ρ
λ − gθβδασδ

ρ
λ − gβθδασδ

ρ
λ

+ Dζ
χξD

ϵ
ηκ

(
Aαβρθχξηκ

λσζϵ + Aρθαβχξηκ
λσζϵ

)
+ Dζ

µνDϵ
χξ

(
Aρθµναβχξ

σζλϵ + Aρθµνχξαβ
σζϵλ

)]
− ∇ρ∇θDσ

µν

(
Bρθαβµν

λσ +Bρθµναβ
λσ

)
= 0 . (3.52)

These equations automatically suggest that Dλ
αβ ̸= 0 (or Γλ

αβ ̸= Γ̌λ
αβ) even

if Lgeo (g,D) does not include its derivatives (the coefficients B vanish). If

derivative terms vanish, then Dλ
αβ is obtained in terms of the metric tensor

with, however, a general structure which should resemble (3.36) in any case.

The details of the structure depend on how the coefficients Aαβµνχξηκ
λρζϵ are or-

ganized in terms of the metric tensor.

On the other hand, if the derivative terms are included then Dλ
αβ becomes a

dynamical field. In this case, again, one obtains a non-trivial Γλ
αβ not equaling

Γ̌λ
αβ .

From this analysis we conclude that, the analysis of the previous section,

which has clearly shown how ϕ becomes a non-ghost scalar for a general

Γλ
αβ transforming as in (3.36), in general, the connection Γλ

αβ does not reduce

to Γ̌λ
αβ , and a conformal transformation property as in (3.36) can result in a

multitude of ways.

– Another source of departure from (3.17) is the matter Lagrangian L (g,D, ψ).
By switching on this Lagrangian one can still find additional structures which

cause Γλ
αβ to be independent of Γ̌λ

αβ . Then the main difference from the previ-

ous analysis will be the dependence of the Γλ
αβ on the matter fields themselves

– a situation not discussed before. The question of how L (g,D, ψ) involves

Γλ
αβ is easy to answer given that, rather generically, connection-dependent

terms arise in scalar and spinor field theories already at the renormalizable

level (Deser, 1976), (Borunda, 2008). In such cases it could be difficult to

arrange general conformal transformations of the form (3.36) yet one should

keep such matter sector sources in mind in analyzing the conformal transfor-

mation properties in non-Riemannian geometries.
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CHAPTER 4

CONCLUSION

In this work we have discussed conformal transformations in metric-affine gravity.

The analysis is a comparative one between the metric formulation and the metric-affine

formulation of GR. The main result of the analysis is that metric-affine gravity admits, un-

der general additive transformations of the connection with two new parameters c1 and c2
, conformally-related frames in which both gravitational and scalar sectors behave physi-

cally. (Ateş, 2010) The transformed frame consists of no ghost field, and exhibits emer-

gent conformal invariance (sometimes called Weyl-Stückelberg invariance). The results

can have far-reaching consequences for collider experiments (Giudice, 2001,A), cosmo-

logical evolution (Bauer, 2008) as well as the electroweak breaking (Demir, 2004).

We have also analyzed equations of motion under general circumstances allowed

by general covariance, and concluded that general Lagrangians allow for generalized con-

formal transformations of the connection without spoiling the essence of the theory in the

transformed frame.

The affine gravitational action (3.17) can give rise to novel effects not found in

the minimal version (the Einstein-Hilbert action). The conformally-reached frame can

have various modifications in gravitational, matter as well as conformal factor (i.e. the

Ω related to ϕ) dynamics. The fact that the metric-affine gravity can accommodate cor-

rect gravitational dynamics plus non-ghost scalar degree of freedom under conformal

transformations is an important aspect. This feature can have important implications in

cosmological and other settings since transformation of system to a conformal frame now

involves no ghosty degree of freedom.
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APPENDIX A

GEOMETRICAL QUANTITIES IN GR

In General Relativity there are some geometrical quantities like metric tensor,

connection, Riemann curvature tensor, Ricci tensor, Ricci scalar to construct a definition

about the curvature of the space-time. We can give some brief explanations about them in

this part.

Metric tensor is a very important object in curved space. The main feature of it is

that it measures the shortest distances between two points and symbolized with gµν . It is

a symmetric rank (0, 2) tensor.

Connection is also very important geometrical dynamic. It connects the tangent

spaces on the manifold and responsible to warp the space. Because of these features, it

appears in generalized partial derivation, namely covariant derivative. In flat space, partial

derivatives determine how a quantity changes in spatial and temporal directions. But in

curved space in addition to partial derivative, there must be a correction term to show the

warping feature of spacetime. Covariant derivative of a contravector can be written as

∇µA
ν = ∂µA

ν + Γν
µλA

λ (A.1)

On the other hand, covariant derivative of a covector is

∇µAν = ∂µAν − Γλ
µνAλ (A.2)

and the general covariant derivative of a tensor Aµν....
αβ....

∇κA
µν....
αβ.... = ∂κA

µν....
αβ.... − Γλ

καA
µν....
λβ.... − .....+ Γµ

κλA
λν....
αβ.... + ..... (A.3)

If connection depend on metric tensor, it is called Levi-Civita connection (some-
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times it can be called the other name like Christoffel symbols). Connection is not a tensor.

It can be checked by changing coordinate system. The result does not give the tensorial

changing.

Γλ′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′

∂xν

∂xν′
Γλ
µν +

∂xλ
′

∂xλ
∂2xλ

∂xµ′∂xν′
(A.4)

Riemann curvature tensor carries all information about the curved spacetime struc-

ture. Similar to Riemann curvature tensor, Ricci tensor obtained by contraction of the up-

per indice and the one of the lower indice of the Riemannian curvature tensorRρ
αρβ = Rαβ

and the Ricci scalar obtained by the contraction of Ricci tensor with the metric tensor

gαβRαβ = R give the information about the warping structure of spacetime. The last one

takes part in the Lagrangian because of its scalar form.

Riemann curvature can be derived by using three different ways. One of them is

the commutator of covariant derivatives, the other one is the parallel transport around a

closed loop and the last of them is the repeated derivatives of connection. Let us derive

the Riemann curvature tensor from these different ways respectively.

• Commutator of covariant derivatives

Figure A.1. The commutator of two covariant derivatives.

Consider a vector goes from a point to another point in the curved spacetime by

using the two different way as in fig. When the vector goes to point B by using the

way 1, firstly the covariant derivative ∇β , then the covariant derivative ∇ν should

be applied to the vector V α. When the vector choose way 2 to go to point B, in this

case firstly ∇ν ,
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then ∇β is applied

[∇β,∇ν ]V
α = ∇β(∇νV

α)−∇ν(∇βV
α)

= ∂β(∇νV
α) + Γα

βσ(∇νV
σ)− Γκ

βν(∇κV
α)

− ∂ν(∇βV
α)− Γα

νσ(∇βV
σ) + Γκ

νβ(∇κV
α)

= ∂β(∂νV
α + Γα

νρV
ρ) + Γα

βσ(∂νV
σ + Γσ

νρV
ρ)

− Γκ
βν(∂κV

α + Γα
κρV

ρ)− ∂ν(∂βV
α + Γα

βρV
ρ)

− Γα
νσ(∂βV

σ + Γσ
βρV

ρ) + Γκ
νβ(∂κV

α + Γα
κρV

ρ)

= ∂β∂νV
α + ∂β(Γ

α
νρV

ρ)︸ ︷︷ ︸+ ︷ ︸︸ ︷
Γα
βσ(∂νV

σ)+Γα
βσΓ

σ
νρV

ρ − Γκ
βν(∂κV

α)

− Γκ
βνΓ

α
κρV

ρ − ∂ν∂βV
α −

︷ ︸︸ ︷
∂ν(Γ

α
βρV

ρ)−Γα
νσ(∂βV

σ)︸ ︷︷ ︸−Γα
νσΓ

σ
βρV

ρ

+ Γκ
νβ(∂κV

α) + Γκ
νβΓ

α
κρV

ρ

= (∂βΓ
α
νρ − ∂νΓ

α
βρ + Γα

βσΓ
σ
νρ − Γα

νσΓ
σ
βρ)V

ρ − 2Γκ
[βν]∇κV

α

= Rρ
αβνV

α − T κ
βν∇κV

α (A.5)

where

T κ
βν = 2Γκ

[βν] = Γκ
βν − Γκ

νβ (A.6)

is torsion tensor. If the connection is torsion free, this term vanishes.

• Parallel transport around the closed loop

The parallel displacement of a vector along an infinitesimal closed loop gives the

information about the geometry of spacetime. If the vector after parallel transport

remain unchanged, it can be said that the spacetime is flat. However, if the vector

transforms after this displacement, the space is curved and the transformation of the

vector depends on the total curvature. Let us see this by formulations.

The change in a vector Aµ after parallel displacements can be written as

∆Aµ =

∮
δAµ (A.7)
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Figure A.2. Parallel displacement in curved space.

and

δAµ = Γν
µλAνdx

λ (A.8)

After substitution of (A.8) into (A.7),

∆Aµ =

∮
Γλ
µνAλdx

ν (A.9)

The term Aλ is determined uniquely by its value at points inside the closed loop via

equation (A.8). By the derivative

∂Aλ

∂xν
= Γρ

νλAρ (A.10)

By Stoke’s theorem

∮
Aλdx

λ =

∫
dfµλ∂Aλ

∂xµ
=

1

2

∫
dfµλ

(
∂Aµ

∂xλ
− ∂Aλ

∂xµ

)
(A.11)
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After applying this theorem to the (A.9) ,

∆Aµ =
1

2

{
∂(Γλ

µβAλ)

∂xν
−
∂(Γλ

µνAλ)

∂xβ

}
∆f νβ

=
1

2

{
∂(Γλ

µβ)

∂xν
Aλ −

∂(Γλ
µν)

∂xβ
Aλ + Γλ

µβ

∂Aλ

∂xν
− Γλ

µν

∂Aλ

∂xβ

}
∆f νβ(A.12)

where ∆f νβ is the infinitesimal area enclosed by the closed curve. By substituting

of (A.10) into the last equation, the total change µ is

∆Aµ =
1

2
Rλ

µνβA
νβ
λ (A.13)

where Rλ
µνβ is the Riemann curvature tensor. If the spacetime is flat, Riemann

tensor is zero. Thus, the total change in the vectorAµ is zero. There is no difference

between the first vector and the parallel transported vector.

• Repeated derivatives

In an inertial frame, the equation of motion for a free relativistic particles can be

written as

dζα(τ)

dτ
= 0 (A.14)

and this equation give us the straight line trajectory of the particle in the flat space-

time.

Let us pass from inertial coordinate system ζ(τ) to any general coordinate system

xµ and consider that these two coordinate systems are related by invertible func-

tional relation

ζα = ζα(x) (A.15)

xµ = xµ(ζ)
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then, the (A.14) takes the form as,

d

dτ
(
∂ζα

∂xµ
∂xµ

∂τ
) =

∂2ζα

∂xµ∂xν
dxµ

dτ

dxν

dτ
+
∂ζα

∂xµ
d2xµ

dτ 2
= δλµ

d2xµ

dτ 2
+
∂xλ

∂ζα
∂2ζα

∂xµ∂xν
dxµ

dτ

dxν

dτ
= 0

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0 (A.16)

where

Γλ
µν =

∂xλ

∂ζα
∂2ζα

∂xµ∂xν
(A.17)

Eq. (A.16) is called geodesic equation of the particle in curved spacetime. If Γλ
µν =

0, this equation turns into the equation of motion of a particle in flat space.

By general coordinate transformation, as we mention before, the connection trans-

forms as

Γλ′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′

∂xν

∂xν′
Γλ
µν +

∂xλ
′

∂xλ
∂2xλ

∂xµ′∂xν′

It can be seen that the connection is not a tensorial structure,because there appears

an inhomogenous term. By invertible functional relation (A.15), the inhomoge-

neous term can be written as

∂2xλ
′

∂xµ∂xν
=
∂xλ

′

∂xλ
Γλ
µν −

∂xµ
′

∂xµ
∂xν

′

∂xν
Γλ′

µ′ν′ (A.18)

For eliminating the inhomogeneous term , we can take the derivative of (A.18) with

respect to xβ , and then by changing β ↔ ν and substracting the first one from the

second one,

∂3xλ
′

∂xβ∂xµ∂xν
− ∂3xλ

′

∂xν∂xµ∂xβ
= 0 (A.19)
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Then, the right hand side by taking the derivative of inhomogeneous terms

0 =
∂xλ

′

∂xλ

∂Γλ
µν

∂xβ
−
∂Γλ

µβ

∂xν
+ Γλ

βθΓ
θ
µν − Γλ

νθΓ
θ
µβ︸ ︷︷ ︸

Rλ
µνβ



− ∂xµ
′

∂xµ
∂xν

′

∂xν
∂xβ

′

∂xβ

∂Γλ′

µ′ν′

∂xβ′ −
∂Γλ′

µ′β′

∂xν′
+ Γλ′

β′θ′Γ
θ′

µ′ν′ − Γλ′

ν′θ′Γ
θ′

µ′β′︸ ︷︷ ︸
Rλ′

µ′ν′β′

 (A.20)

and,

Rλ′

µ′ν′β′ =
∂xµ

∂xµ′

∂xν

∂xν′
∂xβ

∂xβ′

∂xλ
′

∂xλ
Rλ

µνβ (A.21)

This is clearly tensor transformation law. Here, Rλ
µνβ is called Riemann curvature

tensor as we know.
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APPENDIX B

EINSTEIN FIELD EQUATIONS IN RIEMANNIAN SPACE

In this part, we will derive the equations of motion for two different formulations

of GR, metric formulation and metric-affine formulation. These two formulations are

dynamically equivalent formulations in Riemannian spacetime. This can be seen from

the equations of motion.

In metric formulation

Action of gravitational fields in empty space is given by

S[g] =

∫
d4x

√
−g
{1
2
M2

⋆R
}

(B.1)

In this formulation, the only geometrical variable is metric tensor. The principle of least

action tells us that the small perturbations around this metric tensor should be zero. Fol-

lowing the variation of the action with respect to metric tensor gµν :

δS

δgµν
δgµν =

∫
d4x
{δ(√−g)

δgµν
M2

⋆

2
R +

√
−gM

2
⋆

2

δ(gµνRµν)

δgµν

}
δgµν (B.2)

where

g = exp[tr ln (gµν)] (B.3)
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and

δ
√
−g = − exp[tr ln (gµν)]

1/2 (B.4)

= iexp[tr ln (gµν)]
1/2

= i
1

2
exp[tr ln (gµν)]

−1/2 exp[tr ln(gµν)](gµν)
−1δgµν

= i
1

2

1
√
g
ggµνδgµν

= −i1
2

1
√
g
ggµνδg

µν

= −i1
2

√
ggµνδg

µν

= −1

2

√
−ggµνδgµν

δ
√
−g

δgµν
= −1

2

√
−ggµν (B.5)

For obtaining the variation of the Ricci scalar Rµν , we begin with the variation of the

Riemann tensor:

δRρ
µσν = ∂σδΓ

ρ
µν − ∂νδΓ

ρ
µσ + δ(Γρ

σλ)Γ
λ
µν + δ(Γλ

µν)Γ
ρ
σλ − δ(Γρ

νλ)Γ
λ
µσ − δ(Γλ

µσ)Γ
ρ
νλ (B.6)

Since δΓ is the difference of two connection, it is a tensor and we can calculate its covari-

ant derivative as:

∇λδΓ
ρ
µν = ∂λδΓ

ρ
µν + Γρ

λσδΓ
λ
µν − Γσ

λµδΓ
ρ
σν − Γσ

λνδΓ
ρ
σµ (B.7)

By adding and substracting the Γλ
νσδΓ

ρ
µλ into (B.6), it can be easily seen that (B.6) is equal

to the difference of two such terms:

δRρ
µσν = ∇σ(δΓ

ρ
µν)−∇ν(δΓ

ρ
µσ) (B.8)
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Now, we can obtain the variation of the Ricci tensor by contracting two indices of the

variation of Riemann tensor:

δRρ
µρν = δRµν = ∇ρ(δΓ

ρ
µν)−∇ν(δΓ

ρ
µρ) (B.9)

Then, Ricci scalar is:

R = gµνRµν (B.10)

and variation of Ricci scalar is:

δR = δgµνR + gµνδR (B.11)

= δgµνR +∇σ(g
µνδΓσ

µν − gµσδΓρ
ρµ)

As we mention before, covariant derivative of the metric tensor is zero in the metric

formulation of GR (metric-compability). Thus, we used this property in the last line of

the last equation. The ∇σ(g
µνδΓσ

µν − gµσδΓρ
ρµ) is a total derivative and thus by Stokes’

theorem yields a boundary term when it is integrated. Because the variation of the metric

δgµν vanishes at infinity, there is no contributions from this term to the action. Thus, we

obtain:

δR

δgµν
= Rµν (B.12)

Finally, we substitute (B.12) and (B.5) into (B.2)

δS =

∫
d4x

1

2
M2

⋆

{
− 1

2
gµνR +Rµν

}√
−gδgµν (B.13)

According to principle of least action,

δS = 0 (B.14)
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Then, the basic equations of the general relativity:

Rµν −
1

2
gµνR = 0 (B.15)

These equations are called Einstein equations. Here, because the space is empty,Rµν = 0.

This situation does not imply that the spacetime is flat. For the flat spacetime, it is needed

Rρ
µσν = 0 as a sufficient condition.

In metric-affine formulation

As we mention before, metric formulation and the metric-affine formulation are

dynamically equivalent formulations only in Riemannian geometry. Now, we will show

this equivalence by deriving the equations of motion in metric-affine formulation.

Let us begin with the action in metric-affine formulation.

S[g,Γ] =

∫
d4x

√
−g
{1
2
M2

⋆ g
µνRµν(Γ)

}
(B.16)

Here, the connection is general connection which does not depend on metric. In this for-

mulation, because the metric and the connection are considered as independent variables,

equations of motion are obtained by taking the variation of action seperately with respect

to the metric and the connection. The first variation gives the Einstein equations as in

metric formulation. Let us calculate the second variation.

δS[g,Γ] =

∫
d4
√
−g
{1
2
M2

⋆ g
µνδRµν(Γ)

}
(B.17)

where

Rµν(Γ) = ∂αΓ
α
µν − ∂νΓ

α
αµ + Γα

µνΓ
β
βα − Γα

µβΓ
β
να (B.18)

and

δRµν(Γ) = ∂αδΓ
α
µν − ∂νδΓ

α
αµ + δΓα

µνΓ
β
βα + Γα

µνδΓ
β
βα − δΓα

µβΓ
β
να − Γα

µβδΓ
β
να (B.19)

68



Although the connection is not a tensor itself, the difference between two connections is

a tensor. Thus the variation of the connection is also a tensor. (Carroll, 2004) By using

this fact the variation of Ricci tensor can be written as

δRµν(Γ) = ∇Γ
α

(
δΓα

µν

)
−∇Γ

ν

(
δΓα

αµ

)
(B.20)

Then the variation of

δS[g,Γ] =

∫
d4
√
−g
{1
2
M2

⋆ g
µν
[
∇Γ

α

(
δΓα

µν

)
−∇Γ

ν

(
δΓα

αµ

)] }
(B.21)

After integating by parts and throwing away the surface terms by setting δαµν = 0 on the

boundary, Eq. (B.21) takes the form,

δS[g,Γ] = −1

2
M2

⋆

∫
d4x

[
∇Γ

α

(√
−ggµν

)
δΓα

µν −∇Γ
ν

(√
−ggµν

)
δΓα

αµ ]

= −1

2
M2

⋆

∫
d4xδΓσ

λµ

[
δλν∇Γ

σ

(√
−ggµν

)
− δλσ∇Γ

ν

(√
−ggµν

)]
(B.22)

According to least action principle δS = 0,

δλν∇Γ
σ

(√
−ggµν

)
− δλσ∇Γ

ν

(√
−ggµν

)
= 0 (B.23)

Contracting on the indices λ and ν yields

∇Γ
σ

(√
−ggµν

)
= 0 (B.24)

This equation can be solved uniquely for Γλ
αβ = Γ̌λ

αβ (Levi-Civita connection). Thus,

it can be said that the metric-affine formulation in Riemannian space, where there is no

quantum effects, gives the same equations of motion as in the metric formulation. How-

ever, in non-Riemannian space, as we mentioned before, there is an extra term from D
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tensorial structure and this term leads to an extra term in equations of motion like

∇Γ
λ(
√
−ggαβ) + Extra(Γ) = 0 (B.25)

This shows us Γλ
αβ ̸= Γ̌λ

αβ .
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