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ABSTRACT 

In this study of topic “Categorization of Web Sites in Turkey with SVM” after a 

brief introduction to what the World Wide Web is and a more detailed description of text 

categorization and web site categorization concepts, categorization of web sites including 

all prerequisites for classification task takes part. As an information resource the web has 

an undeniable importance in human life. However the huge structure of the web and its 

uncontrolled growth led to new information retrieval research areas to be risen in last years. 

Web mining, the general name of these studies, investigates activities and structures on the 

web to automatically discover and gather meaningful information from the web documents. 

It consists of three subfields: “Web Structure Mining”, “Web Content Mining” and “Web 

Usage Mining”. In this project, web content mining concept was applied on the web sites in 

Turkey during the categorization process. Support Vector Machine, a supervised learning 

method based on statistics and principle of structural risk minimization is used as the 

machine learning technique for web site categorization. 

This thesis is intended to draw a conclusion about web site distributions with 

respect to thematic categorization based on text. The popular web directory Yahoo’s 12 top 

level categories were used in this project. Beside of the main purpose, we gathered several 

statistical descriptive informations about web sites and contents used in html pages. 

Metatag usage percentages, html design structures and plug-in usage are some of these 

information. The processes taken through solution, start with employing a web downloader 

which downloads web page contents and other information such as frame content from 

each web site. Next, manipulating, parsing and simplifying the downloaded documents 

takes place. At this point, preperations for categorization task are completed. Then, by 

applying Support Vector Machine (SVM) package SVMLight developed by Thorsten 

Joachims, web sites are classified under given categories. The classification results 

obtained in the last section show that there are some over-lapping categories exist and 

accuracy and precision values are between 60%-80%.  In addition to categorization results, 

we saw that almost 17% of web sites utilize html frames and 9367 web sites include meta-

keywords. 



 

 

ÖZ 

Bu çalışmada, Türkiye’deki “.tr” uzantılı Web sitelerinin SVM (Support Vector Machine) 

ile sınıflandırılması yapılmıştır. Web’in kısa bir tanımı yapıldıktan sonra metin 

sınıflandırması ve web sitesi sınıflandırılması konuları anlatılmıştır. Sınıflandırma işlemi 

için gerekli kelime ayıklama, kelimelerin ağırlıklarını bulma gibi tüm önkoşullar yerine 

getirildikten sonra sınıflandırma işlemi tamamlanmıştır. Web’in devasa yapısı ve kontrol 

edilemeyen genişlemesi son yıllarda yeni araştırma alanlarının ortaya çıkmasını sağlamıştır. 

Bu çalışmaların genel tanımı olarak bilinen Web madenciliği web üzerindeki yapı ve 

hareketleri inceleyerek Web’den anlamlı bilgilerin otomatik bir biçimde alınmasını sağlar. 

Web madenciliği üç alt daldan oluşmaktadır: “Web Yapı Madenciliği”, “Web İçerik 

Madenciliği” ve “Web Kullanım Madenciliği”. Bu projede, “Web İçerik Madenciliği” 

yapılarak Türkiye’deki Web siteleri sınıflandırılmıştır. Sınıflandırma esnasında, yapısal risk 

minimizasyonu ve istatistik tabanlı denetlemeli öğrenme yöntemi olarak tanımlanan 

“Support Vector Machine” (SVM) algoritması kullanılmıştır. 

Bu tezle metin tabanlı bir sınıflandırma yöntemi ile web sitelerinin temalarına göre 

dağılışları elde edilecek ve aynı zamanda SVM gibi istatistiksel bir programın kullanım 

sürecinin hangi aşamalardan oluştuğu görülecektir. Sınıflandırma işlemi için Yahoo’nun üst 

katmanda yeralan 12 sınıfı kullanılmıştır. Tez sonuçları ayrıca web siteleri ve içerikleri 

hakkında özellikle html tasarımı ve sayfa yapısı ile ilgili birtakım bilgileri de içermektedir. 

Metatag kullanım yüzdeleri ve html tasarım yapıları gibi çıkarımlar bu bilgiler içinde 

yeralmaktadır. Sınıflandırma, sayfaların gövde metni bölümünde yeralan bilgiler ve 

Thorsten Joachims’in geliştirdiği SVMlight paketi kullanılarak yapılmıştır. 

Sınıflandırma sonuçları bazı sınıfların çakıştığını göstermektedir. Sonuçların 

doğruluk ve kesinlik değerlerinin 60%-80% aralığında olduğu gözlenmiştir. Sınıflandırma 

sonuçlarına göre html sayfa içeriklerinin homojen olmadığı ortaya çıkmış, bu nedenle 

sınıflandırma işleminin olumsuz yönde etkilendiği gözlenmiştir. Sınıflandırma sonuçlarının 

yanısıra, web sitelerinin yaklaşık 17% ‘si html çerçevelerini ve 9367 web sitesinin meta-

keyword etiketlerini kullandığı sonucuna varılmıştır. 

 



 

 

TABLE OF CONTENTS 

 

Chapter 1  INTRODUCTION......................................................................................1 

1.1 MOTIVATION...............................................................................................1 
1.2 OBJECTIVES.................................................................................................3 
1.3 STRUCTURE OF THE STUDY....................................................................4 

Chapter 2  WEB’S STRUCTURE AND KNOWLEDGE DISCOVERY...................5 

2.1 KNOWLEDGE DISCOVERY ON THE WEB .............................................7 
2.1.1 Web Content Mining ............................................................................9 
2.1.2 Web Structure Mining ..........................................................................10 

2.1.2.1 Authoritative Pages and HITS Algorithm..................................10 
2.1.2.2 PageRank Algorithm ..................................................................11 

2.1.3 Web Usage Mining...............................................................................11 
2.2 SEARCH ENGINES AND WEB DIRECTORIES........................................12 

Chapter 3  MACHINE LEARNING AND TEXT CATEGORIZATION...................18 

3.1 TEXT CATEGORIZATION..........................................................................19 
3.2 APPLICATIONS OF TEXT CATEGORIZATION ......................................20 

3.2.1 Document Organization........................................................................20 
3.2.2 Text Filtering ........................................................................................21 
3.2.3 Word Sense Disambiguation ................................................................21 
3.2.4 Hierarchical Categorization of Web Pages...........................................21 

3.3 MACHINE LEARNING APPROACH..........................................................22 
3.3.1 Training Set & Test Set ........................................................................23 
3.3.2 Document Indexing and Dimensionality Reduction ............................24 
3.3.3 Feature Selection Methods ...................................................................25 

3.3.3.1 Information Gain (IG) ................................................................25 
3.3.3.2 Chi-square Statistic (CHI) ..........................................................25 
3.3.3.3 Document Frequency (DF).........................................................26 
3.3.3.4 Term Strength (TS) ....................................................................26 

Chapter 4  SUPPORT VECTOR MACHINES ...........................................................27 

Chapter 5  CATEGORIZATION OF WEB SITES IN TURKEY...............................32 

5.1 STRUCTURE OF THE DATABASE............................................................33 
5.2 COLLECTING THE DATA SET ..................................................................38 
5.3 PARSING HTML DOCUMENTS.................................................................38 



 

 

5.4 PREPROCESSING OF DATA SET ..............................................................40 
5.4.1 Removal of Stop-words........................................................................40 
5.4.2 Stemming of Data Set...........................................................................40 
5.4.3 Feature Selection ..................................................................................41 
5.4.4 Feature Weighting ................................................................................41 
5.4.5 Constructing Initial Corpus Set ............................................................43 

5.5 SUMMARY OF THE DATA SET.................................................................44 
5.6 CATEGORIZING WEB SITES BY USING SVMlight PACKAGE...............46 

5.6.1 Creating Input Files ..............................................................................47 
5.6.1.1 Creating Training and Test Files ................................................47 
5.6.1.2 Creating Unlabeled Entries for Remaining Documents .............48 
5.6.1.3 Combining Labeled Entries with Unlabeled Entries..................49 

5.6.2 Creating Batch Files .............................................................................50 
5.6.3 Running the Program............................................................................52 
5.6.4 Converting Results to a Readable Form...............................................52 

5.7 RESULTS.......................................................................................................53 
5.7.1 Performance Values of Classifiers for Each Category .........................53 
5.7.2 Categorization Results..........................................................................54 

5.8 OTHER FINDINGS .......................................................................................56 

Chapter 6  RESULTS AND CONCLUSION ..............................................................58 

6.1 ANALYSIS OF RESULTS ............................................................................58 
6.2 OTHER STATISTICAL INFERENCES .......................................................59 
6.3 CONCLUSION...............................................................................................59 
6.4 FUTURE WORK............................................................................................60 

BIBLIOGRAPHY........................................................................................................61 

APPENDIX..................................................................................................................64 

 



 

 

LIST OF FIGURES 
 

Figure 2-1: The bow-tie shape of the Web [Broder et al. 2000]..................................7 

Figure 2-2: Taxonomy of web mining techniques [Zaiane 1999] ...............................8 

Figure 2-3: System structure of a search engine [Nansi and Murthy 2002] ................14 

Figure 3-1: Rule-based classifier for the WHEAT category [Sebastiani 2001] ..........22 

Figure 4-1: SVM hyperplane [Joachims 2001]............................................................27 

Figure 4-2: Choosing the hyperplane that maximizes the margin [Boswell, 2002] ....29 

Figure 4-3: Transductive Learning ..............................................................................30 

Figure 4-4: Inductive Learning ....................................................................................31 

Figure 5-1: Status of Web Sites ...................................................................................34 

Figure 5-2: A part from file created by parser program...............................................39 

Figure 5-3: Distribution of documents depending on distinct word counts.................45 

Figure 5-4: A partial fraction from train.dat file of HEALTH category......................48 

Figure 5-5: Symbolized display of splitted data set under categories. ........................50 

Figure 5-6:Output of transductive svm_learn(left) and converted output(right) .........51 

Figure 5-7: Number of frames in 4155 web sites’ home pages that use frames..........57 

Figure A-1: A densely linked set of hubs and authorities............................................64 

Figure A-2: Procedure of expanding Rσ to Sσ...............................................................65 

Figure A-3: The basic operations of I (left side) and O (right side) ............................66 

Figure A-4: Procedures that compute hubs and autorities in the subgraph G .............67 

Figure A-5: Backlinks and forward links.....................................................................67 

Figure A-6: Network of 4 nodes [Rogers 2002] ..........................................................69 
 



 

 

LIST OF TABLES 
 

Table 5-1: Domainlist table fields................................................................................34 

Table 5-2: Table structure of HTML_FRAME ...........................................................35 

Table 5-3: Table structure of HTML_LINK................................................................35 

Table 5-4: Table structure of META_INIT .................................................................36 

Table 5-5: Table structure of DOCUMENTVECTOR................................................36 

Table 5-6: Table structure of STEMMED_FINAL .....................................................37 

Table 5-7: Initial corpus set, consists of training set and test set.................................44 

Table 5-8: Data Set ......................................................................................................45 

Table 5-9: Contingency Table .....................................................................................53 

Table 5-10: Performance values ..................................................................................54 

Table 5-11: Web sites that assigned under different number of categories .................55 

Table 5-12: General categorization results in respect of number of sites....................55 

Table 5-13: Tag usage statistics...................................................................................56 

Table 5-14: HTML Frame Usage Information ............................................................57 
 

 



 

1 

Chapter 1 

 

INTRODUCTION 

1.1 MOTIVATION 

World Wide Web (the “Web” or “WWW” for short) is the large and single set of 

public web sites which is also defined as a network structure of hyperlinked environment. 

In the span of a decade, the Web has grown rapidly and become a complicated network 

system that serves as a huge repository of information. It has been adopted all over the 

world with a high degree of acceptance.  

 The Web does not have a structured architecture like other networks. It is now 

getting more complicated whenever a new web site is created. This leads to an uncontrolled 

growth in size of the Web. Therefore, most precious resources can not be located with just 

randomly surfing the Web. In this situation a user generally can not see the actual content 

that he/she wants to get from the Web. In order to overcome the lack of usage, researchers 

have been proposing ideas about how the users can optimally benefit from the Web. There 

are a number of research problems for which web studies have investigate the solutions.  

 Web site categorization is a task of research on the web. It deals with text data 

reside on the web documents. Text contents in web pages are valuable for organizing the 

data on the web. As the number of documents on digital devices increases, web site 

categorization studies have focused on automatic knowledge discovery tasks that employ 

statistical machine learning algorithms for generating a classifier. Vapnik's Support Vector 

Machine [Vapnik, 1995] is such a technique for pattern recognition, regression problem 

and learning of a classification function. Its effectiveness is proofed by many researches 

about the topic. Yiming Yang and Xin Liu, for instance, [Yand and Liu, 1999] compared 

performance of a number of machine learning algorithm in an automated text categorization 

process in which SVM showed the best accuracy performance. In this study, therefore, we 

preferred to use SVM in categorization task of the web sites in Turkey. 

 Web domain names are consisted of .com, .org, .net, .edu, .biz, .info domain names 

which are called gTLD (generic Top Level Domain) in international area and almost 200 
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country codes of .uk, .us, .dc, .tr, etc. which are called ccTLD (Country Code Top Level 

Domain) having ISO-3166 standards. Method and coordination of “.tr” up-level domain 

name and secondary level domain names under “.tr” have been maintained by Middle East 

Technical University (METU) since 1990 when it was recorded to Internic for the first 

time. Turkey has adopted “secondary level domain names model” following the decision 

taken by TÜVAKA (Türkiye Üniversiteler ve Araştırma Kurumları Ağı) in 1990. “DNS 

Çalışma Grubu” which works under “Internet Kurulu” and consisted of 11 company 

representatives determines the domain names strategies and rules. List of secondary level 

domain names that are deployed by “.tr” Domain Name Administration is given below: 

“.com.tr”, “.info.tr”, “.biz.tr” sub-domain names can be taken by companies and 

people in business. These sub-domain names were opened in order to increase the number 

of internet based services (web pages, e-mail, etc...) and domain names of companies under 

the up-level domain name “.tr”, by the way spreading the use of internet in business. 

The domain names can only be used by companies and people in business. 

However, “.com.tr” sub-domain name can be used by municipalities supplying that it is 

limited to city names and it is used to establish a city portal. 

“.net.tr” is a sub-domain name which is established for various internet service 

supplying companies. It is given to companies that provide net connection service, portal 

over internet, search engine, e-mail, wide range of services such as Web and application 

service. In addition to companies that provide connection service, it is aimed to contain 

projects that transmit the services to internet and projects that improve public benefit and 

public participations. 

“.org.tr” sub-domain name was established for foundations, associations, non-

profit organizations and such kind of public organizations.  

“.web.tr”, “.gen.tr” sub-domain names are established for formation, company and 

enterprises that will give public and/or business service on the web, but there is no 

limitation for assigning these names provided that there is no violation of general rules. It is 

aimed that persons, companies and formations would be present in the net. Personal and 

foundational applications can be accepted for these names. There are general rules like “no 

necessity for relationship between domain name and foundation” and “first comes, gets”.  
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They were established in order to increase the number of personal and company 

domain names under the “.tr” domain name, by the way spreading the use of internet.  

“.bbs.tr” was established for the use of persons and/or companies giving BBS 

(Bulletin Board System) service.  

“name.tr” sub-domain name was established for personal use of T.C. citizens and 

foreigners living in Turkey. It aims to increase the number of personal domains and 

services (web pages, e-mail etc…) under the “.tr” domain name. 

“.tel.tr” sub-domain name is set up for persons and companies staying in Turkey. 

The aim is to establish a unique sub-domain name for the purpose of publishing all personal 

or corporate phone numbers.  

“.gov.tr” sub-domain name is established to serve for institutions of Republic of 

Turkey (T.C.) government. Its usage is limited to only institutions of T.C. government. 

“.mil.tr” sub-domain name is established to serve for institutions of T.C. military.  

“.k12.tr” sub-domain name is established for primary and secondary schools 

approved by T.C. national education ministry. 

“.edu.tr” sub-domain name is setup for being used by universities and institutions 

accepted by T.C. Yüksek Öğretim Kurumu (YÖK). 

“.av.tr” sub-domain name is defined for being used by lawyers who are member of 

“Türkiye Barolar Birliği” (TBB). Self-employed lawyers, law offices and advocacy 

corporations can apply this sub-doman name. It aims to spread the professional use of 

internet and make it possible that lawyers present their social contributions and improve 

their professional progress. TBB is authorized to approve or refuse the requests. 

“.bel.tr” sub-domain name is established for being used by T.C. municipality 

organizations. Its usage is limited to only T.C. municipalities. 

“.pol.tr” sub-domain name is established for being used by T.C. police 

organizations. Its usage is limited to only T.C. police organizations. 

1.2 OBJECTIVES 

 Web sites in Turkey are logically grouped under certain sub-domain names that are 

mentioned above. The purpose of the naming scheme of domain names is to define a set of 
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classes that distinguish web sites of the same domain from others. Because of the huge web 

structure that increases rapidly and growing complexity of the web, Internet users mostly 

need some kind of classification upon web sites to see their ways on the net until they reach 

desired pages. The classes that arise from the structure of domain names are few and not 

flexible enough for covering users’ needs.  

 Some web directories like http://www.netbul.com serve categorization services to 

internet users for better navigation on the net. However categorization of web sites is done 

by hand or traditional methods like hard-coded conditional statements that decide the 

category of a web site by use of keywords. In last years, statistical machine learning 

algorithms have become popular for categorization of text content. With this issue in mind, 

we decided to categorize the web sites of which domain names end up with .tr by using a 

machine learning approach. During our research about the thesis topic, we have not 

encountered a study that categorizes web sites in Turkey by using statistical methods. 

 In this study, we classified web sites in Turkey under predefined categories. We 

employed a package called SVMLight that is an implementation of widely accepted effective 

machine learning algorithm “Support Vector Machines”. We selected a subset of categories 

from well known internet directory service, Yahoo, for this study.  

 In addition to categorization, valuable information was extracted from the web 

documents. Web sites were examined according to number of words for each type of 

metatag included in site. There are four types of tags that would be considered: Html Page 

Title, Meta-Description, Meta-Keywords and Body Text. Web sites were grouped into four 

groups for each type of tags listed above. These groups are sites that contain 0 words, 1-10 

words, 11-50 words and lastly 50 and more words. Moreover, html frame usage and plug-in 

usage ratio were investigated besides to classification task. 

1.3 STRUCTURE OF THE STUDY 

 Web mining is a great research area which branches into a number of sub-fields. In 

Chapter 2 we introduced knowledge discovery on the web and scope of web mining 

techniques including web structure mining, web content mining and web usage mining.  
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 Chapter 3 sets the focus from general web mining studies in Chapter 2 to a more 

specific topic, text categorization. After a brief introduction to text categorization 

applications, text categorization process is described in detail. Both traditional knowledge 

engineering approach and machine learning approach is mentioned stressing advantages of 

the machine learning. This chapter also covers all preprocessing tasks needed before 

learning a classifier and all performance calculations needed after classification in machine 

learning approach. 

 In chapter 4, we introduced SVM algorithm followed by a description of well 

known SVM implementation SVMLight. 

 Chapter 5 is concerned with all steps from project analysis to obtaining the 

classification results. It also covers the presentation and discussion of all the statistical 

findings gathered from structures of the web sites. 

Chapter 6 summarizes the results and mentions some possible future workings on 

the topic.                                                     
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Chapter 2 
 

WEB’S STRUCTURE AND KNOWLEDGE DISCOVERY 

World Wide Web is the large and single set of public web sites which is also 

defined as a network structure of hyperlinked environment. In this large network, while the 

nodes are represented by web pages, the hyperlinks between pages constitute the 

connection. The Web is a virtual network of pages and hyperlinks, with over a billion 

interlinked “documents” created by tens of millions of individuals not knowing each other 

[Kleinberg and Lawrence 2001]. 

In the span of a decade, the Web has become a huge repository of information. 

According to [Levene and Poulovassilis 2001] one way of measuring the size of the Web is 

to estimate the number of pages that can be indexed by well known public search engines 

such as Google and Altavista. This measure is often referred to the publicly indexable Web 

[Lawrence and Giles 1999]. The term “deep” Web is the name given to the invisible part of 

the web that reside in searchable databases [Levene and Poulovassilis 2001]. On the “deep” 

Web, pages are dynamically generated by web servers with server side scripting languages 

such as .jsp (Java Server Pages) and .asp (Active Server Pages). Besides, these databases 

are only available to and reachable from only the web server that generates pages. 

Therefore it is not possible to crawl, analyze and index those pages. The “deep” Web and 

searchable databases topic is a completely different topic, therefore this hidden part of the 

web is not included in scope of this thesis. In the rest of the research, we will imply the 

publicly indexable Web with the term “Web”. 

There are a number of research problems for which web studies have investigate the 

solutions. A study by Broder et al. about the graph structure of web was performed in 2000 

[Broder et al. 2000]. We obtained the results of this study from the articles in [Levene and 

Poulovassilis 2001, Kleinberg and Lawrence 2001, FürnKranz 2002] and made a summary 

as follows. The most interesting result is that the web structure looks like a huge bow tie 

with a strongly connected core component in which every page can reach every other by a 

path of hyperlinks. This core contains most of the famous sites. The remaining pages can be 

characterized by their relation to the core: Upstream nodes can reach the core but cannot be 



 

reached from it, downstream nodes can be reached from the core but cannot reach it, and 

“tendrils” contain nodes that can neither reach nor be reached from the core. 

 

 
Figure 2-1: The bow-tie shape of the Web [Broder et al. 2000] 

The core covers nearly 30% of the Web. While the left bow contains the “upstream” 

nodes, the right bow includes the “downstream” nodes. According to the results 75% of the 

time there is no directed path between randomly selected two web pages and the average 

path distance is 16 hyperlinks. 

2.1 KNOWLEDGE DISCOVERY ON THE WEB 

The Web provides lots of information to the internet users. However growth in size 

of the Web makes it increasingly difficult to find out relevant information on the Web. This 

section introduces the information retrieval techniques on the web, Web Mining, in general.  

The term Web Mining was originally thought by Etzioni [Etzioni 1996]. Web 

Mining applies data mining1 and machine learning2 to web data and link structure of the 
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1 the technology used to discover non-obvious, potentially useful and previously unknown 
information from data sources [www.mineit.com] 
2 learning approach that learn from experimence E with respect to some class of tasks T and 
performance measures P [Keller 2000] 



 

Web [FürnKranz 2002]. It investigates the content and activities on the Web and processes 

this data to automatically discover and gather meaningful information from the Web 

documents. It covers all studies that are related with web research and analysis. However, 

searching and using semi-structured information stored on the web is more difficult than 

the information that proprietary database systems store. To partially reduce the complexity 

of web mining studies, the research areas are grouped into three categories as Web 

Structure Mining, Web Usage Mining and Web Content Mining in general.   

Web Structure Mining defines the Web as a graph in which each web document 

forms a graph vertex and each hyperlink between pages forms an edge of the graph. It 

covers analysis of the logical structure of the Web that consists of web pages and links. 

Web Content Mining is actually mining of text. It deals with web document contents such as 

textual, image, audio and video to discover knowledge. The task of content mining covers 

applications like web page categorization, clustering, filtering and ranking. Web Page 

Content Mining and Search Result Mining are the two research areas of Web Content 

Mining [Zaiane 1999]. Lastly, Web Usage Mining is the mining of log files and associated 

data from a particular web site to discover knowledge on browser and buyer behaviour on 

that site [www.mineit.com]. While Web structure mining and Web content mining focus on 

the global network, Web usage mining concentrates on a specific web site to improve it for 

better navigation, easy usage and so on. 

 

 

Figure 2-2: Taxonomy of web mining techniques [Zaiane 1999] 
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2.1.1 Web Content Mining 

Basically, the Web content consists of several types of data such as textual, image, 

audio, video, metadata as well as hyperlinks. Recent research on mining multi types of data 

is termed multimedia data mining [Zaiane et al. 1998]. Thus multimedia data mining can be 

considered as an instance of Web content mining. However this line of research still 

receives less attention than the research on the text or hypertext contents [Zaiane et al. 

1998]. The research around applying data mining techniques to unstructured text is termed 

knowledge discovery in texts [Feldman and Dagan 1995], or text data mining [Hearst 

1999], or text mining [Tan 1999]. Hence we could consider text mining as an instance of 

Web content mining [Kosala and Blockeel 2000]. 

Web Content Mining is a subcategory of Web mining which deals with text data 

reside on the web documents. Text contents in web pages are valuable for organizing the 

data on the web. It is generally used for a number of applications such as web page 

categorization, clustering of web documents and web content filtering. There are two 

groups of web content mining strategies: Those that directly mine the content of documents 

and those that improve on the content search of other tools like search engines [Zaiane 

1999]. The latter, Search Result Mining, uses brief descriptions of search results that 

generated after a query is performed on a search engine  as an input to make further 

operations. Classifying the results into predefined categories and narrowing the search 

results are the examples of search result mining applications. 

Several applications of knowledge discovery which uses the web content as a 

resource exist. Text classification and clustering applications are the most interesting 

application types in this domain. One example is a hierarchical classification of Web 

content by S. Dumais and H. Chen [Dumais and Chen 1999] which uses SVM for text 

categorization process. The purpose of this study was to improve the ranked list view of 

results by organizing web search results into hierarchical categories. They used a large 

heterogeneous collection of pages from LookSmart’s web directory which consisted of 

370597 unique pages at the time of experiment (1999). Search results was classified under 

13 top-level categories which consist of a total of 150 second-level categories. 
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 In another study, Berkant Barla Cambazoğlu from Bilkent University [Cambazoğlu 

2001], applied some well-known classification techniques to text categorization. The study 

is mainly concentrates on application of text categorization to documents having content 

written or spoken Turkish. k-NN and naïve Bayesian algorithms are compared on two 

different Turkish datasets, each from different domains. 

2.1.2 Web Structure Mining 

Web Structure Mining defines the Web as a graph in which each web document 

forms a graph vertex and each hyperlink between pages forms an edge of the graph. The 

aim of Web structure mining is to extract knowledge from the interconnections of hypertext 

documents in the Web. There are two famous algorithms that mine structure of the Web. 

Next subsections describe these studies namely HITS and PageRank. A more detail 

analysis of HITS and PageRank is placed in Appendix. 

2.1.2.1 Authoritative Pages and HITS Algorithm 

Search engines such as Altavista return thousands of relevant pages on the Web 

when one enters a query like “computers”. Kleinberg defines this abundance problem of 

search engine results as “The number of pages that could reasonably be returned as relevant 

is far too large for a human user to digest” [Kleinberg 1998]. According to Kleinberg, one 

needs a way to filter among a huge collection of relevant pages, a small set of the most 

“authoritative” and “definitive” ones to provide effective search methods [Kleinberg 1998]. 

In his study, Kleinberg identifies two kinds of pages by analyzing web page links:  

• pages that are very important and authorities in a special topic (autorities),   

• pages that have great number of links to multiple relevant authority pages (hubs).  

Kleinberg proposed an algorithm to identify these pages on the web.  

Hyperlink-Induced Topic Search (HITS) algorithm was introduced to filter the most 

relevant resources, namely good authorities and good hubs, from enormous amout of 

information returned from search queries. HITS is a purely link structure based 
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computation that ignores the textual content entirely. The text that surrounds hyperlink 

definitions (href's) in Web pages is often referred to as anchor text. 

 The main drawback of the HITS algorithm is that the hub and authority score must 

be computed from the query result, which does not meet the real-time constraints of an on-

line search engine [Fürnkranz 2002]. It generates a different root set depending on the 

search results of given query string for each execution. Another limitation of HITS is that it 

filters the results of broad-topic queries to narrow the result set and neglects specific 

queries [Jing et al. 2001]. each filters The next subsection describes the implementation of 

a similar algorithm, namely PageRank that comes with a major advantages over HITS 

algorithm in respect to real time working status. 

2.1.2.2 PageRank Algorithm 

 Web pages vary on a wide range in respect to their quality and importance. In order 

to measure the relative importance of web pages Sergey Brin and Lawrence Page proposed 

PageRank, a method for computing rank of every web page based on the graph of the web. 

PageRank is a numeric value that represents how important a page is on the web [Craven 

2003]. It is an important part of the ranking function of the Google search engine. 

PageRank has applications in search, browsing and traffic estimation [Brin and Page 

1998a]. It ranks all web pages based on just the link structure of the Web. Google uses this 

technique to order search results so that more important and central Web pages have 

preference over other pages. It is an efficient and effective way of ranking web sites. 

2.1.3 Web Usage Mining 

 J. Fürnkranz defines Web usage mining as an analysis of user interactions with a 

Web server [Fürnkranz 2002]. Web servers logs an entry to log files for every access they 

get. Log entries includes but not limited to IP address of the user, time of every access, 

duration of every visit and URLs of accessed pages [Romanko 2002]. Romanko 

summarizes applications of Web usage mining as follows: 

• Grouping together visitors that have same behavior. 
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• Association of frequently visited pages. 

• Display of customer comments on e-commerce web sites. 

• Explicit feedback to get recommendations. 

• Reorganizing web pages according to users behavior. 

Web usage mining applications collect valuable, statistical information about a web site’s 

usage and investigate ways of improving web site design and quality for best navigation 

and performance.  

 Web usage mining, thus, differs from Web content mining and Web structure mining 

in that its application domain is limited to a single web site. Other two types of mining can 

be applied anywhere from a small portion of the Web to huge snapshots of the Web. 

2.2 SEARCH ENGINES AND WEB DIRECTORIES 

Searching on the Web is one of the most interesting topics. By uncontrolled growth 

of the Web size and unsystematic structure of the Web, it has become a difficult and 

disappointing research topic. Search engines and Web directory services are the two well 

known techniques that introduced as outcome of web mining studies for optimal usage of 

the web. Search engines have a usage based on keywords. User inputs one or more 

keywords and sends the query to the search engine. Engine searches its database for these 

keywords and returns all related documents that contain at least one keyword. There are a 

variety of researches to improve the search on the Web. In this part of the thesis we will 

discuss and categorize the Web search technologies.  

 A Web directory uses heavily human labour to review web sites and make decisions 

for classifying web sites into predefined categories or subjects. A web directory differs 

from a search engine in that, it present information in an organized way by using 

categorization. Keyword usage does not take place in directories rather user selects a 

category, then a sub-category until he/she reaches desired web sites and resources. In the 

last years machine learning techniques have been used to group web sites under predefined 

categories. 

 Search engines, however, are complicated than directory services. A search engine 

consists of three components: the crawler, the indexing software and the search and 
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ranking software [Yuwono and Lee 1996, Greenberg and Garber 1999]. Figure 2-9 shows 

the system structure of a search engine. 

 A crawler is a program that automatically traverses the Web page by page, read and 

store every web document. It follows hyperlinks on the visited site to find other relevant 

pages. Crawler is a typical application of web structure mining which views the Web as a 

huge graph with URLs treated as the nodes of the graph. The objects reside on the URLs 

could be HTTPs(Hypertext Transfer Protocols), FTPs(File Transfer Protocols), mailto(e-

mal), news, telnet, etc [Nansi and  Murthy 2002]. Crawlers use two common graph 

algorithms, breadth-first searches and depth-first searches, to find out relevant pages. 

 Chakrabarti introduced a new learning system called a focused crawler [Chakrabarti 

1999], which is a specialised crawler with the objective of seeking out Web pages on a 

predefined set of topics. Focused crawlers are different from general-purpose crawlers 

utilized by search engines to create their offline databases of Web pages. The focused 

crawler starts from a small set of relevant URLs on the same topic. While crawling, system 

uses a classifier that decides which links to follow from each visited page according to their 

relevance to the query. 
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Figure 2-3: System structure of a search engine [Nansi and Murthy 2002] 

 The information collected by a crawler is not appropriate for quick keyword search. 

Thus indexing software that constructs a data structure from collected items needed inside 

of the search engine system. Traditional search engines utilize the following information, 

provided by HTML files, to locate the desired Web pages: 

• Content: Most accurate and full-text information 

• Descriptions: Constructed from metatags or submitted by Webmasters 

• Hyperlinks: Contain high-quality semantic clues to a page’s topic 

• Hyperlink Text: A title or brief summary of the target page 

• Keywords: Can be extracted from content or metatags 

• Page title: Defines the title of an HTML document 

• Text with a different font: Shows the importance of the emphasized text 
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• The first sentence: Likely to give crucial information related to the document 

 During query processing search and ranking software searches indexed database 

and ranks the results of query according to importance of the web sites retrieved. The 

ranking can be dynamically performed just after scanning the indexed database or 

precedence values of each retrieved site can be statically stored in the database. The latter 

case which is the efficient approach is the most popular one.  

There are a number of search engines on the Web. The problems with search 

engines have never end. Thus, search engines have renovated themselves to keep up with 

accelerated growth of the Web since early 1990’s. Here is a quotient from a survey by  

M.Levene and A.Poulovassilis about search engine generations.  

 First-generation search engines were based on classical information 
retrieval models, such as the vector space model, and support HTML parsing 
and weighting. Second-generation search engines employ link analysis, such 
as the Google pagerank algorithm, and utilise anchor text in order to provide 
some navigational support. Third-generation search engines aim to reflect 
users’ needs by detecting the context of a query. This context could be 
spatial, textual, the user profile, or previous user queries based on data 
mining analysis. Third-generation search engines also have to deal with 
dynamic Web-page content. 

                                                          [Levene and Poulovassilis 2001] 

Search engines, now, are categorized in different classes according to their aspects and 

services they offer. Primary search engines are the best engines and more preferable than 

the others. Google, MSN Search, Teoma and Yahoo! get in this group. Secondary search 

engines group contains smaller search engines such as Gigablast, Hotbot, iWon and 

WiseNut. In the third group there are dead search engines. Following list shows a number 

of dead search engines which have abandoned their place in searching domain, although 

they still may have some kind of search functionality. 

• AlltheWeb (Switched to Yahoo! database in March 2004)  

• AltaVista (Switched to Yahoo! database in March 2004)  

• Deja.com (Dead Usenet search, bought by Google and became Google Groups)  

• Direct Hit (Dead, redirecting to Teoma)  

• Excite (Dead as a separate database, now uses an InfoSpace meta search)  

• Excite News (NewsTracker) (Dead)  

• Go (Dead as a separate database, took over Infoseek, but now just uses Overture)  
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• Go (Infoseek) News (Dead)  

• Infoseek (abandoned)  

• InvisibleWeb.com (a hidden Web directory, dead by 2003)  

• Flipper (Hidden Web databases from Quigo, dead by Fall 2003)  

• iWon (Old Inktomi version dead. Now uses Google "sponsored" ads and Web and 

image databases)  

• Lycos (Switched to Yahoo!/Inktomi database in April 2004, still using 10 

LookSmart directory results.)  

• Magellan (Dead, redirects to WebCrawler)  

• MessageKing (Dead Web forum search engine as of Fall 2003)  

• NBCi (formerly Snap) (Dead, now uses metasearch engine Dogpile)  

• NBCi Live Directory (formerly Snap) (Dead directory)  

• Northern Light (Dead as a Web search engine as of 2002.)  

• Northern Light Current News (Dead. Updates ceased as of Feb. 28, 2003.)  

• Openfind (Under "reconstruction" as of 2003)  

• WebCrawler (Dead as a separate database, Same as Excite)  

• WebTop (Dead) 

Furthermore, there are web directories that are completely different from the search 

engines. The information is organized by topic in web directories. A web directory 

organizes the sites by categories to help the user in browsing and finding relevant pages. 

Most of the directory services are maintained by human. The directories are constructed 

according to the web pages downloaded by using registered site lists. Sites are registered by 

web site owners who want to be listed on a specific web directory. In addition, the web 

topics are also populated with some interesting web sites by fully using human effort in 

randomly searching and browsing the web. Due to the different approaches for presenting 

web content, directories and search engines have different uses, as the difference between a 

book’s table of contents and index [www.yahoo.com]: 

• When looking for a specific site (something known by name), a directory is used 

• When looking for limited lists of the best sites in the given subject, a directory is 

used 

http://quigo.com/
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• When looking for a wide list of results related to keywords, a search engine is used  

The commonly used web directories are Britannica, LookSmart, The Open Directory 

(Dmoz) and Yahoo!. More detailed search engine categorization and statistics can be found 

at http://searchengineshowdown.com/reviews/ which we take search engine categorization 

data from. 

http://searchengineshowdown.com/reviews/
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Chapter 3 
 

MACHINE LEARNING AND TEXT CATEGORIZATION 

 In the last years number of documents in digital form increased rapidly. 

Management of these documents takes an important place in the information systems area. 

Text categorization (or text classification) is one of the studies to organize documents 

according to their contents. Text categorization is being utilized in many circumstances 

such as document indexing, document filtering, any application that requires document 

organization, web page categorization and so forth. 

 There are two approaches used in text categorization. The first one is the 

conventional knowledge engineering that was popular in the text categorization field before 

machine learning techniques were introduced. In this approach, domain experts define a set 

of rules manually to classify documents under certain categories. Machine learning 

approach on the other hand, applies a general inductive process and a set of preclassified 

documents under predefined categories to automatically construct an automatic text 

classifier. The advantages of machine learning are an acceptable accuracy and a 

considerable savings in terms of expert manpower, since no intervention from either 

knowledge engineers or domain experts is needed for the construction of the classifier or 

for its porting to a different set of categories [Sebastiani 2001]. 

 In machine learning we have two primary approaches namely  supervised learning 

and unsupervised learning. In supervised learning approach, machine learning algorithm 

builds the classifier from a collection of precategorized documents. Text categorization 

process is a good example for supervised learning. However there is no any precategorized 

data in unsupervised learning approach. All categories are dynamically defined. Algorithms 

use document similarity techniques to discover similarities and automatically cluster 

documents to dynamically generated groups. Text clustering, for instance, is an 

unsupervised learning application domain that clusters incoming documents into categories 

dynamically by a function defined based on document similarity. There are two types of 

clustering algorithms, namely hierarchical clustering and non-hierarchical clustering. The 



 

k-nearest neighbor method is the most widely used hierarchical clustering method. For non-

hierarchical clustering, one of the most common approaches is the K-means algorithm. 

 In order to categorize web sites into predefined categories we will use a successful 

supervised learning algorithm, Support Vector Machines (SVM) after collecting some web 

sites into predefined categories. In this chapter we will discuss the text categorization 

process in general excluding any machine learning algorithm. 

3.1 TEXT CATEGORIZATION 

In his survey Fabrizio Sebastiani (2001) reports how a text categorization process 

can be performed automatically by using the machine learning techniques. He defines text 

categorization and its applications. He also makes a summary of preprocessing steps 

involved in this process. In this chapter we will benefit from the study written by Fabrizio 

Sebastiani and some other workings in text categorization literature. 

Sebastiani defines text categorization as follows: “Text categorization is the task of 

assigning a Boolean value to each pair ,j id c DxC〈 〉 ∈ , where D is a domain of documents 

and C =  is a set of predefined categories.” A false value F assigned to 

the pair  shows that dj does not belong among ci whereas a true value T shows that dj 

belongs among ci. Machine learning techniques generate and utilize a classifier function 

 that decides how documents could be classified. This function 

estimates real results of the unknown target function 

1 2 3 | |{ , , ,....., }cc c c c

,j id c〈 〉

: D C {T, F}× →Φ
(

: D C {T, F}× →Φ . The measure of 

closeness in results is called the effectiveness of the classifier utilized. Performance 

measures can be considered by calculating the precision and recall values of results. 

Descriptions of both concepts will be covered later in this chapter.  

 According to the application different constraints can be applied in text 

categorization. In a multi-label categorization process a document dj∈D may be put into the 

zero or more categories while in a single-label categorization a document dj∈D should be 

located in exactly 1 category. Binary text categorization is a special type of single-label in 

which each dj∈D should be located in category (i = 1,….,|c|) or in its complement ic ic . 

Because binary categorization is more general it can be used in applications instead of 
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multi-label categorization. Binary text categorization splits the classification problem under 

categories C = , into |C| independent smaller problems. Therefore there is 

a classifier function  for each . It applies each function sequentially 

to obtain boolean results T and F. Binary case solves a wide range of problems thus most of 

the machine learning algorithms support and include binary categorization. 

1 2 3 | |{ , , ,....., }cc c c c

i : D C {T,F}× →Φ
(

ic

 In some critical applications automated text categorization is not desired. Final 

decision of assigning documents to categories should be done manually by human experts. 

Thus instead of full automation of text categorization a different task that ranks categories 

according to documents should be considered. This approach is called ranking 

categorization whereas the full automation of text categorization is called hard 

categorization. In ranking categorization, for a document dj∈D the function ranks the 

categories C =  according to their closeness with the document dj. 

Ranking categorization is not covered in this study. We will make a hard categorization of 

web sites in Turkey.  

1 2 3 | |{ , , ,....., }cc c c c

3.2 APPLICATIONS OF TEXT CATEGORIZATION 

Text categorization is used in a range of applications. We will briefly list the most 

important applications in this section. The applications covered here are document 

organization, text filtering, word sense disambiguation and hierarchical categorization of 

Web pages. 

3.2.1 Document Organization 

Many issues related to document organization can be addressed by text 

categorization techniques. For instance, at the offices of a newspaper incoming documents 

must be, prior to publication, categorized under categories such as Personals, Cars for Sale, 

Real Estate, etc [Sebastiani 2001]. It may be also used for grouping academic papers by 

topic in universities and research institutions. 
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3.2.2 Text Filtering 

Text filtering is the activity of classifying a stream of incoming documents 

dispatched in an asynchronous way by an information producer to an information consumer 

[Belkin and Croft 1992]. A good example is a situation where the producer is a news 

agency and the consumer is a newspaper [Hayes et al. 1990]. Filtering system should block 

the documents the consumer is not interested in (e.g. all news not related with sports, in the 

case of a sports newspaper). 

3.2.3 Word Sense Disambiguation 

Word sense disambiguation (WSD) is the activity of finding the sense of an 

ambiguous (i.e. polysemous or homonymous) word in a given text. WSD may be seen as a 

text categorization task when we view word occurrence contexts as documents and word 

senses as categories. 

3.2.4 Hierarchical Categorization of Web Pages 

 Classifying Web pages or web sites under the hierarchical categories is a recent 

interest that for automatic text classification. When Web documents are catalogued in this 

way, rather than issuing a query to a general-purpose Web search engine a searcher may 

find it easier to first navigate in the hierarchy of categories and then restrict her search to a 

particular category of interest [Sebastiani 2001]. Since the traditional manual categorization 

of the huge subsets of the Web is infeasible, automation of the classification task is needed 

by issuing machine learning techiniques. Sebastiani states two important peculiarities of 

automatic web page categorization as follows:  

1. The hypertextual nature of the documents: links are a rich source of information, as 

they may be understood as stating the relevance of the linked page to the linking 

page. 

2. The hierarchical structure of the category set: this may be used e.g. by 

decomposing the classification problem into a number of smaller classification 



 

problems, each corresponding to a branching decision at an internal node. 

Techniques exploiting this intuition in a TC context have been presented in [Dumais 

and Chen 2000].  

3.3 MACHINE LEARNING APPROACH 

 In the ’80s the most popular approach of automatic document classifiers was the 

manually builded knowledge engineering techniques, an expert system capable of taking 

text categorization decisions. An expert system consists of a set of manually defined logical 

rules for each category. CONSTRUE system is such a system built by Carnegie Group for 

the Reuters news agency. This system is described by an example from Sebastiani (2001) in 

Figure 3-1 : 

 

 
Figure 3-1: Rule-based classifier for the WHEAT category [Sebastiani 2001] 

General form of the the formula is given below: 

 
A DNF (disjunctive normal form) formula is a disjunction of conjunctive clauses; the 
document is classified under “category” if and only if it satisfies the formula. 
 
 Knowledge acquisition bottleneck  is a problem in this approach in which the rules 

must be manually defined by a knowledge engineer with the help of a domain expert. If the 

set of categories is updated, then these two professionals must work togather again. In fact, 

when the classifier is tranferred to a completely different domain (set of categories) a 

different domain expert needs to be employed and the work has to be done from the 

beginning. 

Machine learning approach to text categorization has been used since the early ’90s, 

and has become the dominant one, at least in the research groups. In this approach a general 

inductive process (called the learner) automatically builds a classifier for a category ci by 
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observing the characteristics of a set of documents manually classified under ci or ci by a 

domain expert; from these characteristics, the inductive process gleans the characteristics 

that a new unseen document should have in order to be classified under ci [Sebastiani 

2001].  

The advantages of the machine learning approach on the knowledge engineering 

approach are apparent. The engineering effort is not used in construction of such a 

classifier, rather, it is used in constructing automatic builder of classifiers (the learner). 

This means that once a learner is available, all that is needed is the inductive, automatic 

construction of a classifier from a set of manually classified documents. The learner 

program is a generic program that is not changed when original set of categories is updated, 

or if the classifier is ported to a completely different domain.  

Classifiers are created for each category independently. For each category there 

must be a set of preclassified documents for construction of a classifier for each category. 

Therefore selection of the base document set is very important in machine learning. Even if 

there is no any manually classified documents available, machine learning is still a better 

choice than the knowledge engineering approach because it is easier to manually classify a 

set of documents than to create and test a full set of rules for categorization process.  

3.3.1 Training Set & Test Set 

The ML approach relies on the availability of an initial corpus Ω = {d1, . . . , d|Ω|} 

⊂ D of documents preclassified under C = {c1, . . . , c|C|} [Sebastiani 2001]. This is the base 

initial set of documents that includes training and test sets. The initial corpus is divided into 

two subsets not necessarily be equal in size. While one subset is used for training 

documents, other subset is used as the test set.  

In machine learning, construction of each classifier is binary, this means that for 

each category a classifier is constructed. A classifier determines whether incoming 

documents should be categorized under the category ci or not. Training set and test sets, 

each contains same category labels C = {c1, . . . , c|C|} under which positive and negative 

document examples take place. A document dj is a positive example of ci if the result of 



 

function  for  the pair < dj, ci > ∈ Ω × C is true (T), whereas it is a 

negative example when result is false (F). 

: D C {T, F}× →Φ

The classifier for each category is inductively built by observing documents in 

training set. Test set is used for testing the effectiveness of the classifiers. If the classifier 

for category ci, after testing, is not satisfactory to be generalized for remaining whole 

document set, then first the training set should be revised and be determined whether it is a 

good sample of the category ci or not. The documents in test set cannot participate in the 

inductive construction of the classifiers; if this condition were not satisfied the 

experimental results obtained would be unrealistically good, and the evaluation would thus 

have no scientific character [Mitchell 1996]. This is called the train-and-test approach. 

3.3.2 Document Indexing and Dimensionality Reduction 

A classifier building algorithm cannot interpret texts directly. Because of this, an 

indexing procedure that maps a text dj into a different representation is needed for training 

and test documents. There are two issues considered in this convertion:  

1. Different ways to understand what a term is 

2. Different ways to compute term weights 

The most popular choice in defining a term is that, accepting individual words as terms. 

This is called the bag of words approach. When it comes to the second issue, there are a 

number of methods to compute term weights.  

 Weights usually range between 0 and 1 (non-binary). As a special case, binary 

weights may be used (1 denoting presence and 0 absence of the term). Binary or non-binary 

weights usage depends on the classifier learning algorithm used. Support Vector Machine 

algorithm uses non-binary style. A simple scaling on the data must be performed to avoid 

attributes in greater numeric ranges dominate those in smaller numeric ranges in non-binary 

form. Formulation of non-binary term weighting is  included in Chapter 5.  
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3.3.3 Feature Selection Methods 

Feature selection should be done before feature weighting because weighting is 

directly dependent on the features on the data set. There are four popular feature selection 

methods exist in the information retrieval domain. Next sub-sections define these methods. 

After feature selection and weighting procedures data set is transformed to a new 

format that represents words as attributes and frequencies (or occurrences) of words as 

values. Namely, each text document will be converted to an attribute vector that contains 

attribute:value pairs. SVM requires that each document is represented as a vector of real 

numbers.  

3.3.3.1 Information Gain (IG) 

 Information gain [Yang Pedersen, 1997] of a term measures the number of bits of 

information obtained for category prediction by the presence or absence of the term in a 

document. Let m be the number of classes. The information gain of a term t is defined as: 

 
where c ranges over the classes (where a document might belong to several categories and 

we treat each category as an individual two-class problem, c can be either positive or 

negative). It measures how much we learn about c by knowing t, hence the term is called 

“information gain”. 

3.3.3.2 Chi-square Statistic (CHI) 

 The  statistic measures the association between the term and the category [Yang 

Pedersen, 1997]. It is defined to be : 
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The first equation procudes the chi-square of each term for every category. 

However a general value for each term is needed in the whole dataset. Therefore in the 

second equation average value of all results produced in the first equation is calculated for 

every term in the dataset. m is the number of categories and i is the sequence number 

between 1 and m.  

3.3.3.3 Document Frequency (DF) 

 Document frequency is the number of documents in which a term occurs in a 

dataset. It is the simplest criterion for term selection and easily scales to a large dataset. It is 

a simple but effective feature selection method for text categorization [Yang, Pedersen 

1997]. We used Document Frequency method in this study. 

3.3.3.4 Term Strength (TS) 

 Term strength is computed based on the conditional probability that a term occurs in 

the second half of a pair of related documents given that it occurs in the first half [Yang, 

Pedersen 1997]: 

       
 
where di and dj are similar documents, D is the document set and β is the parameter to 

determine the related pairs. Since we need to calculate the similarity for each document 

pair, the time complexity of TS is quadratic to the number of documents. 
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Chapter 4 
 

SUPPORT VECTOR MACHINES 

Support Vector Machines (SVM's) are a new learning method used for binary 

classication. It tries to find a hyperplane which separates the d-dimensional data into its two 

classes. SVM's are well-founded, and have shown to be practically successful. SVM's have 

also been extended to solve regression tasks (where the system is trained to output a 

numerical value, rather than yes or no in classification). Support Vector Machines were 

introduced by Vladimir Vapnik and colleagues. The earliest mention was in [Vapnik, 

1979], but the first main paper is published in [Vapnik, 1995]. 

Support Vector Machines (SVM) solves a binary classification problem (+ vs. -) in 

two dimensions. The hyperplane h* separates positive and negative training examples with 

maximum margin δ. The examples closest to the hyperplane are called support vectors 

(marked with circles). Figure 4-1 demonstrates the SVM hyperplane.  

 

 
Figure 4-1: SVM hyperplane [Joachims 2001] 
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We are given l training examples {xi; yi} i = 1,.........l , where each example has d 

inputs and a class label with one of two values ( iy { 1,1∈ − ). Now, all hyperplanes in Rd 

are parameterized by a vector (w), and a constant (b), expressed in the equation  



 

 

 w x + b = 0          4-1 

 

(Recall that w is in fact the vector orthogonal to the hyperplane.) Given such a hyperplane 

(w,b) that separates the data, this gives the function  

 

 f(x) = sign(w x + b)          4-2 

 

which correctly classifies the training data (and other testing data it hasn't seen yet). 

However, a given hyperplane represented by (w,b) is equally expressed by all pairs  

{ w, b}λ λ  for . So we define the canonical hyperplane to be that which separates 

the data from the hyperplane by a “distance" of at least 1. That is, we consider those that 

satisfy: 

R+λ∈

 

                                                                                

4-3

4-4
 

or more compactly:  

4-5                 
 

All such hyperplanes have a “functional distance" ≥  1 (quite literally, the function's value 

is  1). This shouldn't be confused with the “geometric" or ”Euclidean distance" (also 

known as the margin). For a given hyperplane (w,b), all pairs { w

≥

, b}λ λ  define the exact 

same hyperplane, but each has a different functional distance to a given data point. To 

obtain the geometric distance from the hyperplane to a data point, we must normalize by 

the magnitude of w. This distance is simply: 

 

4-6
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Intuitively, we want the hyperplane that maximizes the geometric distance to the closest 

data points. Figure 4-2 shows hyperplane selection.  

 

 
Figure 4-2: Choosing the hyperplane that maximizes the margin [Boswell, 2002] 

From the equation we see this is accomplished by minimizing w  (subject to the distance 

constraints). The main method of doing this is with Lagrange multipliers. (See (Vapnik, 

1995), or (Burges, 1998) for derivation details.) The problem is eventually transformed into 

following formula where α  is the vector of l non-negative Lagrange multipliers to be 

determined, and C is a constant: 

 
 

Two common methods in SVM exist. These are transductive and inductive. 

Transductive Support Vector Machines has advantages then inductive SVM in text 

categorization process. The following two figures summarize the difference between 

transductive and inductive learning.  
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Figure 4-3: Transductive Learning 

 The text classification task is characterized by a special set of properties. They are 

independent of whether text classification is used for information filtering relevance 

feedback or for assigning semantic categories to news articles [Joachims 1999]. In such 

applications there are lots of unlabeled documents whereas a small number of training 

documents exists. When transductive approach is applied every unlabeled document 

orderly included in the learning process. While learning process, unlabeled documents are 

also classified getting the a negative or positive value if classification mode is active.  

 Performance of SVM is evident by many studies performed all over the world. In a 

study from Y. Yang and X. Liu (1999), five automatic text categorization methods, Support 

Vector Machines (SVM), a k-Nearest Neighbor (kNN) classifier, a neural network (NNet) 

approach, the Linear Least-squares Fit (LLSF) mapping and a Naive Bayes (NB) classifier 

were examined. For the performance on category assignments, both a sign test and an error-  
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Figure 4-4: Inductive Learning 

 

based proportion test suggest that SVM and kNN significantly outperform the other 

classifiers. 
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Chapter 5 
 

CATEGORIZATION OF WEB SITES IN TURKEY 

Categorization of web sites in Turkey is a multi-step study that categorizes the web 

sites of which domain names end up with “.tr” by using a machine learning approach. This 

chapter covers all tasks performed from beginning of the study. A supervised learning 

technique is used in classification process. The main requirement of supervised learning 

approach is that, there should be an initial precategorized set of documents for each 

category in order to classify remaining documents. Categories also should be defined 

before any other task in this approach. Therefore, as an initial work, we decided the 

categories that would be used in the study. Predetermined categories are selected from 

web’s popular directory Yahoo. Selected subset of Yahoo’s top categories is listed below:  

 

1. Business & Economy (Finance, Organizations etc.) 
2. Education (college and universities) 
3. Computers & Internet (www, software, games, hardware etc.) 
4. Commercial (corporate web sites) 
5. News & Media (newspapers, tv, radio etc.) 
6. Entertainment (movies, music, cinema etc.) 
7. Recreation & Sports (sports, travel, outdoor, indoor, autos etc.) 
8. Health (diseases, drugs, fitness etc.) 
9. Government (elections, military, law, taxes, municipalities etc.) 
10. Society & Culture (people, environment etc.) 
11. Reference (dictionaries, indexes etc.) 
12. Online Shopping 

 

 There are over 50,000 web sites registered to the public DNS servers of Middle East 

Technical University (METU). Our main topic, as mentioned earlier, is classifying web 

sites in Turkey into 12 predefined thematic categories. We started with collecting contents 

of these web sites first, then parsed each web content to clear any html tag, stop words, 

punctuation marks etc. All contents were carried to a database for later steps. After a 

number of preprocessing operations such as stemming, feature selection, feature weighting 

performed on the data, the data is converted to a numeric format that represents web 
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documents as a vector of attribute : value  pairs. Next step was to create a preclassified set 

of documents for each category manually, perior to classification process. Then, SVMlight is 

employed whenever all documents are ready to be processed by the software.  

 In addition to this, we gathered several important information about web sites such 

as type of plug-in contents (use of flash, applet, activeX), html design methods (frames vs. 

non-frame), metatag usage, title statistics and link information.  

 Support Vector Machine relies on good quality texts, especially for training. Unlike 

well known collections like Routers, the web pages are not homogeneous and consistent. 

Moreover web page content is usually established on images and plug-ins not based on text. 

Besides, metadata tags that contain valuable information about page content are not 

included in most web pages. Before starting the classification study we should be aware of 

the limitations and difficulties of dealing with web content during web site classification. 

Since the classification itself is text based, it is important to know the amount and quality of 

text based features that typically appear in web sites.  

 Following sections focus on the details of tasks which are shortly touched on above. 

5.1 STRUCTURE OF THE DATABASE 

The thesis project has had many steps that need different representations of data and 

so storage requirements. While we used file system structure for raw data, log files, 

temporary files, training sets, test sets and results, we employ Microsoft’s MS Access 

database to store, query and manipulate structural data. The database, master.mdb, includes 

10 tables, several queries, forms and a Visual Basic module for accomplishing several tasks 

during the study. Structure of each table in our database is described below. 

“DOMAINLIST table”:  Created for storing the web sites’ domain names, 

downloaded web document’s size in byte and availability status of the web sites. It is 

employed during data collection. Fields of the table are showned in Table 5-1. The NAME, 

LEVEL1, LEVEL2 fields constitute domain name of the web site. For example, when storing 

the domain name “iyte.edu.tr”, “iyte” is stored in NAME, “edu” is stored in LEVEL1 and “tr” 

is stored in LEVEL2 fields. AVAILABLE field describes the status of web site in terms of 

availability. 



 

 

Table 5-1: domainlist table fields 

Field Name Data Type Description 
ID AutoNumber Primary key, id of the site
NAME Text domain name portion-1 
LEVEL1 Text domain name portion-2 
LEVEL2 Text domain name portion-3 
AVAILABLE Number Availability 
SIZE Number size in bytes  

 

Figure 5-1 shows number of the sites that are ready to manipulate and other sites that are 

either not found or reserved for future use. Reserved sites are recognized by looking home 

pages. Every reserved site has a home page of unique content  and same document size 

(3883 bytes).  
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Figure 5-1: Status of Web Sites 

 “HTML_FRAME table”:  Created for storing the name and link information of 

target frames in a framed home page. Table 5-2 defines field names of table HTML_FRAME. 

In order to download framed home page contents we looked at this table from SaveURL 

program.  

 “HTML_TITLE table”:  Created for storing the html page title information. It is 

used as a resource for statistical analysis of web sites. It is not included in actual work of 

categorization. It gives an idea about title employment in web sites of .tr domain. 

DOMAIN_ID, TITLE, WORDCOUNT are fields of this table.  
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Table 5-2: Table structure of HTML_FRAME 

Field Name Data Type Description 
DOMAIN_ID Number Primary key, id of the site 
NO Number Primary key, frame id 
FRAME_NAME Text Name of the frame written in frameset tag 
FRAME_SRC Text A href, destination address of the frame 
TYPE Number internal vs. xternal frame (0:internal;1:external) e 

 

 “HTML_LINK table”:  Created for storing the html link information obtained 

from downloaded home page. It is used as a resource for statistical analysis of web sites. It 

can also be useful for future work on web categorization by using anchor text that 

surrounds the link information rather than the body text. It is not included in actual work of 

categorization. Table 5-3 shows the name, data type and description of fields. TYPE field 

entries are composed of two logical values. First logical value is the type of link based on 

address. A link is either an internal link that refers to a page just in the same web site or an 

external link points to a different web site’s page. Other logical value is obtained from the 

decision whether it is an image link or a text based “a href” link. Link code descriptions are 

listed below: Internal link:1, External link:2 Image:4 Href(text):8. Possible values of TYPE 

field are 1+4=5, 1+8=9, 2+4=6, 2+8=10. Besides 105,106,109,110 are for javascript 

created links. 

Table 5-3: Table structure of HTML_LINK 

Field Name Data Type Description 
DOMAIN_ID Number Primary key, id of the site 
NO Number Up to 255 links is collected per site 
LINK Text Address of the destination page 
LINK_TEXT Text Anchor text of the link 
TYPE Number Values(5,6,9,10)  

 

 “META_INIT table”:  Created for storing the html meta information obtained 

from downloaded home page. It is used as a resource for statistical analysis of web sites. It 

can also be useful for future work on web categorization by using meta keywords as an 

alternative to the body text. Table 5-4 shows the details about META_INIT table. NO defines 

the metatag id. It has a default value of 0 and incremented for each metatag encountered in 
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the page. META stores the tag content. When a tag content is greater than 255 characters 

PARTITION is incremented and additional record is created for remaining content. It is 

incremented until remaining content is not greater than 255. 

 For statistical and future workings we also stored link, title and metatag related 

information that referred frame pages include. META_INIT_F, HTML_LINK_F, HTML_TITLE_F 

tables contain metatag, link and title knowledge in frames, respectively. 

Table 5-4: Table structure of META_INIT 

Field Name Data Type Description 
DOMAIN_ID Number PK, id of the site 
NO Number PK, Meta id, sites may contain more than 1 meta tag 
META Text Meta tag contents 
PARTITION Number PK, default:0, incremented when meta > 255 characters.  

 

 “DOCUMENTVECTOR table”:  Collected web sites are, after parsing and 

removal of all html tags and punctuation marks, read into this table from text files. It is 

used as the base table that represents all of the data collection before and during stop-word 

clearing operations. It contains records for distinct words that occur in a web document. It 

has no any PK constraint. FEATURE stores a single word. The number of occurrences is 

stored in VAL field. Documentvector is the initial table that represents the collection in a 

structural way. Its structure is displayed in Table 5-5 below. Mission of this table is 

completed after removal of stop-words (conjunctions, prepositions etc.). 

DOCUMENTVECTOR_STEMMED table substitutes for DOCUMENTVECTOR table.  

DOCUMENTVECTOR_STEMMED has an additional field named FLAG which was used in and 

feature stemming process.  

Table 5-5: Table structure of DOCUMENTVECTOR 

Field Name Data Type Description 
DOMAIN_ID Number id of the site 
FEATURE Text distinct word 
VAL Number Number of occurrances of FEATURE in DOMAIN_ID  
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 “STOPWORDS table”: Stores stop-word list that is used with a query to delete the 

words from DOCUMENTVECTOR table. It as one field called FEATURE of text data type. We 

found 191 stop-words and removed all of them from data collection. 

 “SOZLUK table”: Stores a dictionary in its single field. It contains nearly 43000 

word stems. We used this table in stemming process. It as one field called FEATURE of text 

data type.  

 “STEMMED_FINAL table”: This table is utilized for two reasons. First, text 

based feature representation should be converted to numeric representation after stemming 

process. Secondly, additional fields are defined for feature weighting which is the last 

process before generating input files of SVM. The table structure is shown in Table 5-6. 

Table 5-6: Table structure of STEMMED_FINAL 

Field Name Data Type Description 
DOMAIN_ID Number PK, id of the site 
FEATURE_ID Number PK, id of the feature 
VAL Number Number of occurrances of FEATURE_ID in DOMAIN_ID (val>0)
TFTKDJ Number 1 + log(VAL) 
TRTK Number Number of documents in which feature_id occurs at least once 
TFIDFTKDJ Number TFTKDJ*LOG(20225/TRTK) 
WKJ Number Normalized weights obtained from tfidftkdj   

 

Its data is collected from DOCUMENTVECTOR_STEMMED, FEATURE and TRTK tables by 

issuing a joined query. TJTKDJ, TRTK, TFIDFTKDJ, WKJ fields take part in weighting of 

features. We will discuss the feature weighting process later in this chapter.  

 “FEATURE table”: We defined FEATURE (id as number; feature as text) table to 

give a distinct number to every feature in the collection and represent features by integer 

numbers.  

 “TRTK table”: TRTK (feature as text; val as number) table stores number of 

documents in which feature occurs at least once. These values are copied to TRTK field of 

STEMMED_FINAL table. 

 “TRAINING_SET table”: Contains training document id’s for all categories. A 

column is defined for each category. With STEMMED_FINAL table, is used in 

construction of training input files. 
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5.2 COLLECTING THE DATA SET 

We communicated with authorized members of Internet Committee which works 

under Ministry of Communications for getting the whole list of domain names in Turkey. 

After receiving the list of 53,172 web site domain names we transmit the list to 

DOMAINLIST table in MS Access database from text file for use in data collection 

procedure.   

We implemented a multithreaded program with Java that is responsible for saving 

home page contents. The SaveURL program takes the site’s domain name from the 

DOMAINLIST table and attempts to connect the URL. Once the connection is successfully 

established, the web site’s home page is downloaded and saved to local disk. To do so, the 

program creates a file named with <web-site-name>.html on the disk and writes all source 

code of the home page to the file object. If downloaded file’s text content is not adequate 

for text mining because of “html frame” usage then the SaveURL is later employed for 

downloading frame file contents by following links that inside the framesets of html 

frames.  

 In order to determine the available web sites, we examined all downloaded files. We 

grouped sites into three categories namely “available”,”reserved for future” and “not 

found”. We assigned codes in the DOMAINLIST database to distinguish these groups. After 

this step, we went on our study ignoring web sites other than “available” web sites. 

5.3 PARSING HTML DOCUMENTS 

Data collection process is completed with a file on the disk for each web site. 

Because SVM, as other supervised learning approaches, needs relevant text without any 

noisy content, now, we should analyze every file syntactically to remove any irrelevant 

symbols, html tags, javascript codes etc.  

To filter the raw data first the original document corpora have been parsed and the 

terms that will be used as the attributes were selected. Spaces and punctuation were used as 

delimiters for detecting the terms. All terms found were converted to lower-case. 



 

We developed a parser for this task with Java. The parser performs lots of work in a 

single run. Flow of this procedure is shortly described as follows:  

• It reads the initial <web-site-name>.html file for every available web site.  

• Locates on “<metatag…>” part of the file and writes all tags to META_INIT table. 

• Locates on “<title…>” part of the file and writes title content to HTML_TITLE table. 

• Locates on “links” on the page, iterate on “links”, determines each link’s type, and 

writes gathered information to HTML_LINK table. 

• Detects frames by looking for <frame…>” tags, parse the tags, determines each 

frame name, type and address, writes gathered information to HTML_FRAME table. 

• Excludes any content that is part of the html source until only the natural language 

text remains. 

• Creates a new file for every group of 50 web sites to store natural text specified in 

previous step. Figure 5-2 shows a part from file created. 

 

 
Figure 5-2: A part from file created by parser program 

 At this point, data is ready to be ported to MS Access database for applying 

preprocessing tasks on data. We implemented a procedure to transform data from text file 
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to DOCUMENTVECTOR table in the master.mdb database. We did not include any other 

content other than Turkish while transmitting the data because of performance issues.  

5.4 PREPROCESSING OF DATA SET 

In order to transform a document into a feature vector, preprocessing is needed. 

This includes stop-word removal, stemming, feature selection, and feature weighting 

calculations.  

Feature selection has been studied by [Yang, 1999], where information gain and 

chi-square methods are found most effective methods. Term selection based on document 

frequency is simple but has similar performance to information gain and chi-square 

methods. We benefit from document frequency for term selection process. 

5.4.1 Removal of Stop-words 

There are lots of words in documents that occur very often and are so general that 

their usage does not effect the text categorization. In fact, if these words are not removed 

effectiveness of categorization process will be reduced. The goal of stop-word removal 

process is to decide which words can be thought as stop-word, make a list of them and 

remove all stop-words that occur in the dataset. For this purpose a stop-word list containing 

the most common stop-words in Turkish has been used. The list was entered into the 

STOPWORDS table. A simple operation was done to remove these words from the dataset.  

5.4.2 Stemming of Data Set 

Stemming is the activity that groups words that share the same stem.  The main goal 

of this process is to reduce diversity of words in common. “The word stem is derived from 

the occurrence form of a word by removing case and affix information [Porter, 1980]. For 

example “okul", “okulda" and “okullar" are all mapped to the same stem “okul".  

We used a Turkish dictionary which contains 42989 distinct words for stemming 

operation. We implement a Visual Basic module in MS Access database that reads each 
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item the  dictionary in descending order and replaces the words in the 

DOCUMENTVECTOR_STEMMED table that begin with this item.  

5.4.3 Feature Selection 

There are a number of feature selection strategies in text categorization task. To 

facilitate efficient and effective feature selection we used a simple Document-Frequency 

criterion for selecting features to use in categorization. This is very efficient, and has been 

shown [Yang, 1999] to be competitive with more sophisticated methods. We included some 

critical issues from Yang’s study, comparison of feature selection methods, in the Chapter 

3. Document frequency of a feature is the number of documents in which that feature takes 

place at least once. In automatic text categorization, features that have frequency of 3 or 

less treated as too specific to use in categorization process. Therefore we eliminate those 

features that match this criterion. To do so, we created a query which deletes related rows 

in STEMMED_FINAL table.  

 By applying feature selection on dataset, preprocessing of the data is completed. 

The average number of words per document is 55 after stop-word removal, stemming and 

feature selection.  

 There are 1117752 words, 22253 of which are unique in the dataset after 

preprocessing operations. 

5.4.4 Feature Weighting 

 Selected features must be associated with a numerical weighted value to be ready 

for classification. Most types of feature weighting methods in text categorization are taken 

from the field of information retrieval. The most frequently used weight is TFIDF [Salton 

and Buckley, 1988]. The original TFIDF is displayed in Eq.  5-1.  

 There are three assumptions that appear in all weighting methods:  

(i) “rare terms are no less important than frequent terms” (the (inverse 

document frequency, IDF, assumption);  



 

(ii) “multiple appearances of a term in a document are no less important than 

single appearances” (the term frequency, TF, assumption);  

(iii) (iii) “for the same quantity of term matching, long documents are no more 

important than short documents” (the normalization assumption).  

These assumptions are well exemplified by the tfidf function [Debole,Sebastiani 2002].  

   is the number of documents in Tr (training set) in which t occurs at least once. 
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5.4.5 Constructing Initial Corpus Set 

Initial corpus set consists of 328 randomly selected web documents from the 

dataset. To facilitate a good selection we implemented a Java program module that 

generates random numbers. Java’s random number generator is well suited to uniform 

distribution. Therefore we certainly trust the results as a good sample of the collection.  

Later we manually categorized 328 documents into selected categories and training set and 

test set is formed for each category. While the commercial and computer categories are 

populated with 117 documents which constitutes one third of the initial corpus set, “society 

& culture” contains a total of 12 pages for both training and test sets. We used 210 

documents for constructing the training set and remaining 118 documents as test set to 

validate the effectiveness of classifiers. All work is performed with unique document ids 

defined in the beginning of the project. After assigning documents to categories we inserted 

classified document ids to the TRAINING_SET table of which column names are equal to 

the given categories.  

 Table 5-7  shows the training and test sets of categories. Given values were used as 

positive examples of related categories. For each category, negative examples were selected 

from remaining portion of the initial corpus randomly. Number of positives and number of 

negatives were equal because of the automatic text classification input requirements. For 

example when constructing training set for commercial category, we used 40 positive 

examples that manually classified under commercial category and randomly selected 40 

negative examples that classified under the other categories. Test set is not contributed in 

any way in the construction of training set and classifier. Otherwise test results would be 

mistaken.  



 

Table 5-7: Initial corpus set, consists of training set and test set 

Category Training Set Test Set Total 
Business & Economy 20 5 25 

Commercial 40 27 67 

Computers 30 20 50 

Education 20 10 30 

Entertainment 10 6 16 

Government 20 8 28 

Health 16 8 24 

News & Media 15 10 25 

References 10 5 15 

Shopping 12 7 19 

Society & Culture 6 6 12 

Sports 11 6 17 

Total 210 118 328 
 
 

5.5 SUMMARY OF THE DATA SET 

 This section summarizes the statistics about data set used in this study. A 

distribution of documents according to distinct feature counts that they include is given 

below in Figure 5-3. Most of the documents contain less than 20 features. Actually it is an 

advantage to decrease the feature number in preprocessing phase of the study because long 

vectors of features would lead to a significant decrease in performance.  

A summary of the data set used is also given in Table 5-8.  As it is seen, after preprocessing 

steps, the feature space considerably reduced from 46,091 to 22,253 features. We 

eliminated the documents that included English words and had insufficient content for text 

categorization. As a result nearly 20,000 web documents left.  
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Figure 5-3: Distribution of documents depending on distinct word counts contained 

 

 

Table 5-8: Data Set 

Corpus Name “.tr” web sites 
Number of Documents reduced from 53,172 to 20,225 
Number of Categories 12 
  
Number of Words Before Preprocessing 1,149,665 
Number of Words After Preprocessing 1,117,752 
Distinct Words Before Preprocessing 46,091 
Distinct Words After Preprocessing 22,253  
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5.6 CATEGORIZING WEB SITES BY USING SVMlight PACKAGE 

 This section explains how to use the SVMlight software. Information is taken from 

SVMlight ‘s corporate web site. SVMlight package source code when compiled, creates the 

two executables: 
svm_learn (learning module)  
svm_classify (classification module) 

SVMlight consists of a learning module (svm_learn) and a classification module 

(svm_classify). The classification module can be used to apply the learned model to new 

examples.  
svm_learn [options] example_file model_file 

 

The input file example_file contains the training examples. The first lines may 

contain comments and are ignored if they start with #. Each of the following lines 

represents one training example and is of the following format:  

<line> .=. <target> <feature>:<value> <feature>:<value> ... <feature>:<value> 

<target> .=. +1 | -1 | 0 | <float>   

<feature> .=. <integer> | "qid"   
<value> .=. <float>  
The target value and each of the feature/value pairs are separated by a space 

character. Feature/value pairs MUST be ordered by increasing feature number. Features 

with value zero can be skipped.  

The target value denotes the class of the example. +1 as the target value marks a 

positive example, -1 a negative example respectively. So, for example, the line  
-1 1:0.43 3:0.12 9284:0.2  

specifies a negative example for which feature number 1 has the value 0.43, feature number 

3 has the value 0.12, feature number 9284 has the value 0.2, and all the other features have 

value 0. A class (category) label of 0 indicates that this example should be classified using 

transduction. The predictions for the examples classified by transduction are written to the 

file specified through the -l option. The order of the predictions is the same as in the 

training data.  
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The result of svm_learn is the model which is learned from the training data in 

example_file. The model is written to model_file. To make predictions on test 

examples, svm_classify reads this file. svm_classify is called with the following 

parameters:  

 
svm_classify [options] example_file model_file output_file 

 

SVMlight supports both inductive and transductive learning from examples. Transductive 

learning is much better than inductive especially in cases where training data is small. Our 

training set is not large enough to use inductive approach. Therefore in this study we 

preferred to use transductive approach. 

5.6.1 Creating Input Files 

Now, we have document ids classified under given categories in the database. From 

now on, we should prepare the data set step by step to meet requirements of Support Vector 

Machine classifier learner. This process was quite complicated process that involves several 

steps. To clarify the final preparation steps before SVM usage, we described each step in a 

different sub-section.  

5.6.1.1 Creating Training and Test Files 

Training files were created sequentially by employing a Java procedure, 

TRAINING_SET table and STEMMED_FINAL table inside of the master.mdb. We created 12 

train.dat file under certain directories. Initially all these files included just the positive 

samples read from database. Once training files created conforming to the input file 

formatting rules of SVMlight , we then, manually created every test.dat by cutting some of 

lines from each train.dat pasting to the corresponding test.dat. This manual process splits 

the initial corpus set into two subsets namely “train.dat”s and “test.dat”s. Now, test data is 

completely distinguished from train data.  



 

At this point, we have positive examples for both train and test set. SVMlight  

requires in the train and test files, same number of negative examples following the positive 

ones. We had to include the negative samples to every test and train files. We assumed that 

each category is a mutually exclusive category. Therefore we randomly select positive 

examples of the other categories among train.dat files as negative examples to complete 

each category’s train.dat file. The same thing was also applied to the test.dat files in test. 

A partial fraction of train.dat from health category is shown in Figure 5-4. 

5.6.1.2 Creating Unlabeled Entries for Remaining Documents 

 As we preferred to use transductive approach rather than inductive, we included 

unlabeled documents inside of each train.dat file. The final appearance of a train.dat file 

would consist of from top to bottom as: 

• positive examples (lines starting with 1) 

• negative examples (lines starting with -1) 

• unlabeled examples (lines starting with 0) 

At this step, we have no any unlabeled documents inside of train.dat files. In order to 

complete formation above, we employed a Java module that reads documents and feature 

weights from STEMMED_FINAL table with a criterion that documents read should not be in 

the TRAINING_SET table. A file named alltest.dat was created when this step is completed. 

This file includes only the unlabeled documents. In fact, our main purpose is to categorize 

these unlabeled documents under given categories.  

 

 
Figure 5-4: A partial fraction from train.dat file of HEALTH category 
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5.6.1.3 Combining Labeled Entries with Unlabeled Entries 

Labeled training files needed to be combined with unlabeled entries for transductive 

learning of classifiers. Because of the big size of the unlabeled entry file, alltest.dat, we 

utilized a Java module to merge each train.dat with alltest.dat. When all files are ready, we 

tried svm_learn module of SVMlight . After a waiting time of a whole day, we observed that 

the program is still running not producing any result. Thereafter, we splitted the unlabeled 

set of 19,897 documents into fixed sized pieces each of which contains 100 unlabeled 

documents. This operation breaks the problem into 199 smaller problems since 19897 ≅ 

199x100. Then, by the help of a Java module, we appended labeled train.dat file of 

“business & economy” to the first lines of these 199 files. This action was repeated for 

every category in the study.  

At this point we have small 199 training files for every category in the set. Every 

file contains some positive examples, some negative examples and 100 unlabeled 

documents. Figure 5-5 symbolizes the final situation in which each category has 199 files. 

The difference between three train1.dat is that, each file contains different documents in (1) 

and (-1) sections. On the other hand, the common feature of these files is that, they contain 

the same first group of 100 unlabeled documents in (0) section. Within a single category, 

all trainX.dat (0<X<200) files contain same documents in (1) and (-1). Files consecutively 
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Figure 5-5: Symbolized display of splitted data set under categories. 

store groups of 100 documents from first document to 19,897th document in the set. 

5.6.2 Creating Batch Files 

 As described before, SVMlight software has two executables. One for learning 

classifier (svm_learn), other (svm_classify) for classifying documents utilizing the model 

file created by svm_learn. We had used svm_learn in the following way for a single 

category, say computers, before splitting the data set. Here, train.dat contains 30 positive, 

30 negative and 19,897 unlabeled document entries. result.dat is output file in transductive 

mode which contains classifier results about unlabeled data. model file is the learned 

classifier that can be used in future without retraining the data.  

 
svm_learn -l results/result.dat train.dat model/model 
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After splitting the data set we created 20 batch files each of which contains 10 commands 

in a form given above. The first batch file categorizes first 10 splitted trainX.dat (1<X<10), 

second batch file categorizes 2nd 10 trainX.dat (11<X<20) files ……… twentieth batch file 

categorizes 20th 10 trainX.dat (191<X<199) files. Batch files were given names of 

svm_learnX.dat (0<X<21). A sample portion from svm_learn1.bat is given below: 

 
svm_learn -l results/result1.dat train1.dat model/model1 

svm_learn -l results/result2.dat train2.dat model/model2 

svm_learn -l results/result3.dat train3.dat model/model3 

 …. 
svm_learn -l results/result10.dat train10.dat model/model10 

 
 After all batch files were executed successfully 199 result files and 199 model files 

were created.  For readability concerns, classification results are converted to a simple 

binary form from original result formats after combining result files into a single final 

result file. For this conversion we again used Java to implement a program module. 

Figure 5-6 shows the original result file format (left side) and converted binary result 

format (right side). (+1) indicates a positive result, whereas (-1) refers to a negative result. 

 
0.97438931:+1 -0.97438931:-1 
0.96752834:-1 -0.96752834:+1 
0.96373809:-1 -0.96373809:+1 
0.7297526:-1 -0.7297526:+1 
0.52661304:-1 -0.52661304:+1 
0.77725443:+1 -0.77725443:-1 

+1 
-1 
-1 
-1 
-1 
+1 

Figure 5-6:Original output of transductive svm_learn(left) and converted final output(right)

 Till now, test data has not been participated in any step. We used test.dat file of a 

category to measure categorization performance of the classifier. We created 

svm_classify_batch.bat batch file for svm_classify command. A sample portion of 

svm_classify_batch.bat is given below: 

 
 svm_classify test/test.dat model/model1 output.dat 

 svm_classify test/test.dat model/model2 output.dat 

 svm_classify test/test.dat model/model3 output.dat 

 ……… 

 svm_classify test/test.dat model/model199 output.dat 
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 Since we employed transductive SVM we actually did not need to run svm_classify 

for classification task. The transductive svm_learn did the learning and classification in a 

single step. However svm_classify is still useful when we are looking for performance 

measures such as accuracy, precision and recall percentages. Besides of output.dat file, 

svm_classify command produces log entries about performance measures. Therefore we run 

svm_classify_batch.bat > log/logtest.txt program in command line and then parse the log 

file with a Java module for calculating average values for 199 accuracy, 199 precision and 

199 recall values.  

5.6.3 Running the Program 

When we first ran the svm_learn on some categories we observed very low accuracy and 

precision. For example society & culture category had a 3% precision in first run. We 

revised training set used for this category and re-constructed it. This led to an impressive 

improvement on the classifier decisions. The precision increased to 50%. We saw that 

quality of the training data is undeniably important in automatic text categorization. 

Besides we tried some different kernel options like radial basis function and polynomial 

kernels but the improvement on the results was not clear. Therefore we finalized with linear 

kernel which is recommended in text categorization tasks.  

5.6.4 Converting Results to a Readable Form 

We sequentially read all result files of a category to a single file and then parse each 

line of the created merged file to capture (+1)’s and (-1)’s. Next, captured values were 

written to a new text file. The order of results is same as the order of unlabeled documents 

located in train.dat files. Both orders were tied to the document ids sorted by ascending 

order. Therefore, we collected document ids, and domain names from master.mdb in 

ascending order and results from the new text file into a MS Microsoft Excel sheet to 

analyze the final picture. Finally after collecting results of all categories, we export the 

excel sheet to master.mdb database for applying queries on results.  



 

5.7 RESULTS 

 Contingency table shown in Table 5-9 defines the relationship between expert 

judgments and classifier judgments. Performance measures, namely precision and recall, of 

the classifier are derived from this table. 

Table 5-9: Contingency Table 
Expert Judgments Category ci YES NO 

YES TP FP Classifier Judgments 
NO FN TN  

 

TP (true positives): Number of cases in which classifier assigned the category ci to a 

document and the correct category is ci 

FP (false positives): Number of cases in which classifier assigned the category ci to a 

document but the correct category is not ci 

FN (false negatives): Number of cases in which classifier did not assign the category ci to 

a document but the correct category is ci 

TN (true negatives): Number of cases in which classifier did not assign the category ci to a 

document and the correct category is not ci 

Two important measures in information retrieval literature, called recall and 

precision are used for measuring the categorization performance. Precision(ci) is the 

conditional probability, that is, as the probability that if a random document dj is classified 

under ci , this decision is correct. Recall(ci) is defined as the probability that, if a random 

document dj ought to be classified under ci, this decision is taken. 

The formula for recall and precision is given below that uses information in the 

contingency table above: 
Recall = TP / (TP + FN) 

Precision = TP / (TP + FP) 

5.7.1 Performance Values of Classifiers for Each Category 
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We run svm_classify_batch.bat > log/logtest.txt program in command line. This 

program utilizes our test.dat file for measuring the performance of the classifier. We parsed 



 

the logtest.txt file with a Java module for calculating average values for 199 accuracy, 199 

precision and 199 recall values. 

Table 5-10: Performance values 
Category Accuracy Precision Recall 

Business & Economy 68.64% 82.30% 51.15% 

Commercial 52.30% 52.87% 41.61% 

Computers 67.48% 73.01% 57.36% 

Education 38.64% 36.92% 32.81% 

Entertainment 64.07% 63.95% 66.83% 

Government 69.81% 68.41% 74.12% 

Health 64.07% 63.95% 66.83% 

News & Media 73.46% 72.78% 76.03% 

References 45.00% 46.57% 50.00% 

Shopping 66.00% 69.57% 58.74% 

Society & Culture 54.23% 50.25% 92.96% 

Sports 65.70% 62.38% 84.00% 

Average 60.78% 61.91% 62.70% 
 
 

5.7.2 Categorization Results 

Categorization of web sites ended with formating the results. We get following 

outputs after analyzing the results. Table 5-11 lists number of web sites according to 

number categories they assigned. 

 We included the number of web sites that categorized under 13 categories (1 for the 

other category) in Table 5-12.  
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Table 5-11: Number of web sites that assigned under different number of categories 
number of documents number of categories 

7022 0 (no category) 
3372 Only 1 
2762 Two 
1688 Three 
1015 Four 
493 Five 
656 Six 
971 Seven 

1444 Eight 
435 Nine 

39 Ten 

0 Eleven 

0 Twelve 

Total  = 19897   
 

  

 

 

 

Table 5-12: General categorization results in respect of number of sites  
Category Number of Sites 
Bussiness & Economy   3231 
Commercial   2849 
Computers   2731 
Education   4153 
Entertainment  4193 
Government  3446 
Health  3980 
News & Media  3680 
References  5710 
Shopping  3682 
Society & Culture  4312 
Sports  5108 
Other  7022  
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5.8 OTHER FINDINGS 

 In addition to the categorization task, we collected some useful statistics about web 

page design of .tr sub-domain web sites. The following table is a compact representation of 

meta-tag and title usage ratio statistics. There are 30878 web sites that utilizes a <TITLE> 

tag in their HTML source. Almost all web sites’ titles contain word counts in interval of 

[1,10]. Moreover 7298 web sites include a <meta-description> tag, which briefly describes 

the web site, in their source code.  In addition, 9367 sites have used <meta-keywords> tag 

which is meaningful for search engines that index the keywords for identifying a web page.  

Another statistical analysis is about HTML FRAMEs. Findings of mining the 

information in the master.mdb base tables will be discussed in the following paragraphs.  

4155 sites are designed with frames. Number of frames in a page is ranged from 1 

to 23 with a mean value of 2. 4155 sites have used a total number of 10603 html frames 

9772 of which are inside the same web server. Usage of 2 frames is the most popular way 

since it is preferred in 1745 web sites. 92% of frames are on the same web server with the 

home pages that refer to these frames. A small  portion  of  the frames, nearly 8%, are outer  

Table 5-13: Tag usage statistics 

Tag Type 0 words 1-10 words 11-50 words 51+ words Web Sites 

Title 
666 

(2.2 %) 
28886 

(93.5%) 
1270 

(4.1%) 
56 

(0.2%) 
30878 

(100%) 

Meta-Description 
19 

(0.2%) 
4375 
(60%) 

2864 
(39.3%) 

40 
(0.5%) 

7298 
(100%) 

Meta-Keywords 
18 

(0.02%) 
2380 

(25.4%) 
6837 

(72.9%) 
132 

(1.6%) 
9367 

(100%)  
 

frames that reside on a different web server. These frames are generally used for redirecting 

web address to a new location. Home pages generally use a single frame for this purpose. 

Figure 5-7 and Table 5-14 show details about html frames.  
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Figure 5-7: Number of frames in 4155 web sites’ home pages that use frames 

 

 

 

 

 

Table 5-14: HTML Frame Usage Information 

Number of Frames Web sites  Median of the Frame Distribution 
1 554       
2 1745  2 
3 1336     
4 285     
5 154     
6 30     
7 17     
8 9  Frame Type Count 
9 15  inner (in the web server) 9772 

10 1  outher (different web s.)   831 
11 2  Total Frame Count   10603 
13 5     
15 1     
23 1     

Total Web Sites 4155      
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Chapter 6 
 

RESULTS AND CONCLUSION 

The principal purpose of this study is to categorize web sites under .tr sub-domain 

name into predetermined categories taken from Yahoo by using a supervised machine 

learning approach with SVM. Thorsten Joachims’ popular SVMlight program is chosen for 

this study. For the data set, we used home pages of web sites that registered to domain 

name servers of the Middle East Technical University (METU). From 53,172 web sites we 

could download home pages of 32,325. Then we analyzed all downloaded pages through 

several preprocessing steps before the actual categorization process. Eventually the set has 

reduced to a size of 20,225 pages. After tasks like tokenizing document terms, stop-word 

removal, stemming, feature selection and feature weighting, preprocessing of data set was 

completed. Critical issues such as construction of training and test data sets were 

performed. We constructed those sets from an initial corpus set of 328 documents. 

Unlabeled data was prepared according to requirements of SVM. When all needed 

processes finished we employed svm_learn and svm_classify modules of SVMlight   for 

learning and testing issues respectively. We used inductive approach because of the 

generalization problem of inductive approach especially with a small number of traing set 

as in our study.  

6.1 ANALYSIS OF RESULTS 
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In this study an automatic text categorization approach was selected for 

classification of web sites. Body texts of the home pages were considered as main source 

for automatic text classification process. We computed precision and recall performance 

measures for each 12 classifiers. We observed that “business & economy” has the highest 

precision (82%) and the “society & economy” has the highest recall (92%) value in the 

category set. The average precision over categories is 61.91%. In some categories like 
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“business & economy” and computers the precision value is somewhat satisfactory and so 

is the results. As we stated earlier, HTML documents may lack in homogenity and 

consistency issues. This nature of HTML documents would lead to a low precision in some 

categories like education (36.92%). Although average precision is decreased because of 

these categories, classification results still give an idea about distribution of the web sites 

under 12 categories issued. 

6.2 OTHER STATISTICAL INFERENCES 

In addition to the classification task, we had aimed to collect useful information 

about web page designers’ attitudes during page design. We stored frame, title, link and 

meta tag structures of web sites’ home pages in the master.mdb and study on these data for 

converting to an important statistical information about web page design. Findings include:  

• HTML <Title> tag usage, grouping the sites according to word counts in <title> tag 

• Most useful meta tags, meta-description and meta-keyword tags, are collected and a 

similar grouping like in th <title> tag is performed. 

• Utilized HTML FRAME statistics 

6.3 CONCLUSION 

To conclude, this study points out an automated classification of web pages and 

more generally refers to text classification by using a common machine learning algorithm , 

Support Vector Machine. Web site distribution is figured out under 12 categories and 

additional knowledge is discovered from web documents by the completion of this study.  

In addition to any categorization results and important statistical inferences, hands 

on experience are accomplished in all steps of applying a machine learning approach to text 

classification.  It would be beneficial for future studies on the classification problem of 

large document sets with machine learning approach.   
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6.4 FUTURE WORK 

We dealt with too many information that lead to a complex work in some points of 

the study. All needed actions were performed depending on the needs at that time. Because 

of the existence of several complex preprocessing tasks, it was a long-termed job to prepare 

everything until employing the SVMlight software. This study does not use any easy to use 

framework for preprocessing tasks on the data set. In future studies a framework can be 

implemented that offer many features from term representation techniques, such as single 

word as a term or word phrases as a single term, to a number of feature selection and 

feature weighting methods. A generic framework can be designed to fully automate a wide 

range of text categorization tasks just in a single program.  

Specifically for web page classification tasks a framework that decides what portion 

of web page to use in categorization process could be implemented as a future work. We 

used body text in this study, alternatively “meta tag” keywords or title or even anchor text 

that surrounds the hyperlink could be used as the data set. By existence of a framework, 

when data set is changed, all preprocessing tasks should be performed by the framework 

until issuing machine learning algorithm such as SVM. 

In addition, information stored on web pages received from the internet for this 

study, would be used in different workings in future. 
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APPENDIX 

DETAIL ANALYSIS OF HITS AND PAGERANK ALGORITHMS 

 

 

 
                hubs                  authorities                                   unrelated page of large in-degree

Figure A-1: A densely linked set of hubs and authorities 

The algorithm consists of two main steps. The first step involves constructing a focused 

subgraph of the Web.  

Any collection of hyperlinked pages can be viewed as a directed graph G = 
(V,E). From a graph G, we can isolate small regions, or subgraphs, in the 
following way. If W V is a subset of the pages, we use G[W] to denote the 
graph induced on W: its nodes are the pages in W, and its edges correspond 
to all the links between pages in W. Given a broad-topic query, specified by 
a query string σ. Properties of subgraph Sσ are: 

⊆

(i) Sσ is relatively small. 
(ii) Sσ is rich in relevant pages. 
(iii) Sσ contains most of the strongest authorities. 

                   [Kleinberg 1998] 
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To construct the subgraph, Kleinberg first created the root set Rσ by collecting the t (set to 

about 200) highest-ranked pages for the query σ from a text-based search engine such as 

Altavista or Hotbot. Properties (i) and (ii) of subgraph Sσ were covered by this root set. 

However (iii) was not covered because links between pages contained by this root set were 

so few. Strongest authorities are pages that are pointed to by many good hubs. Therefore, 

Rσ to satisfy (iii), had to be expanded to Sσ. Kleinberg, then obtained Sσ by growing Rσ to 



 

include any page pointed to by a page in Rσ and any page that points to a page in Rσ. 

Figure A-2 [Kleinberg 1998] shows the procedure of the expansion. 

 

 

 
Figure A-2: Procedure of expanding Rσ to Sσ 

Sσ is the base set for σ. He used search engine Altavista, t = 200 and d = 50 for 

construction of the subgraph. Kleinberg also observed that by expanding the root set the 

size is generally rised up to the range 1000-5000 from initial set of t = 200. 

The second step of HITS algorithm involves computing hubs and authorities. Hubs 

and authorities exhibit what could be called a mutually reinforcing relationship: a good hub 

is a page that points to many good authorities; a good authority is a page that is pointed to 

by many good hubs [Kleinberg 1998]. Kleinberg implemented an iterative algorithm that 

maintains and updates numerical weights for each page.  
px〈 〉 : non-negative authority weight for each page p 
py〈 〉 : non-negative hub weight for each page p 

The goal of the algorithm is to view the pages with larger x and y-values as good authorities 

and hubs respectively. Weights of each type are normalized so their squares sum to 1: 
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Figure A-3 shows two basic operations that calculates weights:     operation which is 

displayed on left side of the figure, updates the x-weights and      operation that is 

symbolized on right side of figure, updates y-weights. 

 

 
Figure A-3: The basic operations of     (left side) and     (right side) 

These operations yield to a mutually reinforcing relationship between hubs and 

authorities. To find the desired values for px〈 〉  and py〈 〉  Kleinberg suggests the 

Filter(G,k,c) and Iterate(G,k) procedures in Figure A-4. Filter procedure uses Iterate 

procedure to filter out the top c authorities and top c hubs in the Gσ with c ≈ 5-10. Iterate 

procedure returns good results with arbitrarily large values of k. Pages with the highest x-

values are viewed as the best authorities, while pages with the highest y-values are viewed 

as the best hubs. 



 

 

 
Figure A-4: Procedures that compute hubs and autorities in the subgraph G 

For example in Figure A-5  each of A and B has one forward link, C has two 

backlinks and one forward link and D has a backlink that comes from C. 

 

 

 
Figure A-5: Backlinks and forward links  
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 Web pages vary on a wide range in respect to their quality and importance. In order 

to measure the relative importance of web pages Sergey Brin and Lawrence Page proposed 

PageRank, a method for computing rank of every web page based on the graph of the web. 

PageRank is defined like this in the original Google paper:  

We assume page A has pages T1...Tn which point to it (i.e., are citations). 
The parameter d is a damping factor which can be set between 0 and 1. We 
usually set d to 0.85. There are more details about d in the next section. Also 
C(A) is defined as the number of links going out of page A. The PageRank 
of a page A is given as follows: 
 

  PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) 
 

Note that the PageRanks form a probability distribution over web pages, so 
the sum of all web pages’ PageRanks will be one. PR(A) can be calculated 
using a simple iterative algorithm, and corresponds to the principal 
eigenvector of the normalized link matrix of the web. 
           [Brin and Page 1998] 

PR of each page depends on the PR of the pages pointing to it. But we won’t know 

what PR those pages have until the pages pointing to them have their PR calculated and so 

on says Ian Rogers [Rogers 2002]. Thus, theoretically the final PR values of pages 

impossible but Brin and Page say that the results converge to 1 by using a simple iterative 

algorithm. We will explain this approach by a simple example from [Rogers 2002] that 

contains a network of 4 pages. Figure A-6 shows the network with backlinks and forward 

links of pages. 
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Figure A-6: Network of 4 nodes [Rogers 2002] 

 

The damping factor, d is always constant and equals to 0.85. To calculate the PR of 

Page A PR of C must be known. However, PR(C) can not be known until learning PR(B) 

and PR(D). General PageRank formulas of each page: 

  PR(A) = (1-d) + d [PR(C)/C(C)] 

  PR(B) = (1-d) + d [PR(A)/C(A)] 

  PR(C) = (1-d) + d [PR(A)/C(A) + PR(B)/C(B) + PR(D)/C(D)] 

  PR(D) = (1-d) + d [0] 

 In the iterative approach, an initial value is given such as 0 (zero) to PR of all the 

pages to start the iteration process. Forward links of pages, namely C(A), C(B), C(C) and 

C(D) are also constant. C(A) = 2, C(B) = 1, C(C) = 1, C(D) = 1. Now we will iterate over 

PR and see what is happening.  

Iteration I : PR(A) = 0.15 + 0.85*0  0.15 

 PR(B) = 0.15 + 0.85*(0.15/2)  0.2137 

 PR(C) = 0.15 + 0.85*(0.15/2 + 0.2137 + 0)  0.3954 

 PR(D) = 0.15 

 Average(PR) = 0.2272 

Iteration II : PR(A) = 0.15 + 0.85*0.3954  0.3477 

 PR(B) = 0.15 + 0.85*(0.3477/2)  0.2977 

 PR(C) = 0.15 + 0.85*(0.3477/2 + 0.2977 + 0.15)  0.6783 
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 PR(D) = 0.15 

 Average(PR) = 0.3684 

Iteration III : PR(A) = 0.15 + 0.85*0.6783  0.7265 

 PR(B) = 0.15 + 0.85*(0.7265/2)  0.4587 

 PR(C) = 0.15 + 0.85*(0.7265/2 + 0.4587 + 0.15)  1.1219 

 PR(D) = 0.15 

 Average(PR) = 0.6142 

It is clear that the average of PageRanks converges to 1. After 20 iterations the 

PR(A) becomes 1.49, PR(B) reaches to  0.78, PR(C) results with 1.58 and PR(D) remains 

same at  0.15. The iteration number is also reasonable for large networks.  

PageRank on a large 322 million link database converges to a reasonable 
tolerance in roughly 52 iterations. The convergence on half the data takes 
roughly 45 iterations. This graph suggests that PageRank will scale very 
well even for extremely large collections as the scaling factor is roughly 
linear in log n. 
           [Brin and Page 1998a] 
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