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Head of Department
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Head of the Graduate School



ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the supervision of my advisor, Prof. Dr.
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ABSTRACT

A CLUSTER BASED COMMUNICATION ARCHITECTURE FOR

DISTRIBUTED APPLICATIONS IN MOBILE AD HOC NETWORKS

In this thesis, we aim to design and implement three protocols on a hierarchical

architecture to solve the balanced clustering, backbone formation and distributed mutual

exclusion problems for mobile ad hoc networks(MANET)s. Our first goal is to cluster the

MANET into balanced partitions. Clustering is a widely used approach to ease implemen-

tation of various problems such as routing and resource management in MANETs. We

propose the Merging Clustering Algorithm(MCA) for clustering in MANETs that merges

clusters to form higher level of clusters by increasing their levels. Secondly, we aim to con-

struct a directed ring topology across clusterheads which were selected by MCA. Lastly,

we implement the distributed mutual exclusion algorithm based on Ricart-Agrawala algo-

rithm for MANETs(Mobile RA). Each cluster is represented by a coordinator node on the

ring which implements distributed mutual exclusion algorithm on behalf of any member

in the cluster it represents. We show the operations of the algorithms, analyze their time

and message complexities and provide results in the simulation environment of ns2.
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ÖZET

GEZGİN AĞLARDA DAĞITIK UYGULAMALAR İÇİN KÜME

TABANLI BİR İLETİŞİM YAPISI

Bu tezde, gezgin denetimsiz ağlar(GDA) için dengeli kümeleme, omurga oluşturma,

dağıtık birbirini dışlama sorunlarını hiyerarşik bir mimaride, üç iletişim kuralı tasarla-

mayı ve gerçeklemeyi amaç edindik. İlk amacımız, GDA’yı dengeli bölümler oluşturacak

şekilde kümelemektir. Kümeleme, GDA’da yöneltme ve kaynak yönetimi gibi sorunların

gerçeklenmesini kolaylaştıran sıkça kullanılan bir yaklaşımdır. GDA’da kümelemek için,

kümeleri birleştirip yüksek seviyede kümeler oluşturan Birleştiren Kümeleme Algorit-

masını(BKA)’yı öneriyoruz. İkinci olarak BKA tarafından seçilen küme başları etrafında

oluşan bir yönlendirilmiş halka topolojisi inşa etmeyi amaç edindik. Son olarak, GDA için

yapılmış olan Ricart-Agrawala algoritmasını baz almış dağıtık birbirini dışlama algorit-

masını gerçeklemeyi amaç edindik. Her küme, temsil ettiği herhangi bir küme üyesi adına

dağıtık birbirini dışlama algoritmasını bir halka çevresinde gerçekleyen eşgüdümcü ile

temsil etmiştir. Algoritmaların işleyişlerini gösteriyor, zaman ve mesaj karmaşıklıklarını

analiz ediyor ve ns2 benzetim ortamında sonuçlarını sağlıyoruz.
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CHAPTER 1

INTRODUCTION

Wireless communication is growing fast in the last few years. Future information

technology will be mainly based on wireless technology. Traditional cellular and mobile

networks are still, in some sense, limited by their need for infrastructure. For mobile ad

hoc networks(MANETs), this final limitation is eliminated. Ad hoc networks are key to

the evolution of wireless networks. MANETs are non-fixed infrastructure networks which

consist of dynamic collection of nodes with rapidly changing topologies of wireless links.

Although military tactical communication is still considered the primary application for

ad hoc networks, commercial interest in this type of networks continues to grow. Appli-

cations such as rescue missions in times of natural disasters, law enforcement operations,

commercial and educational use of sensor networks, personal area networking are just a

few possible commercial examples ”(Stojmenovic 2002)”. MANETs have the problems

of bandwith optimization, transmission quality, discovery, ad hoc addressing, self routing

and power control. Power control is a very important issue in MANETs because nodes

are powered by batteries only. Therefore, amount of communication should be minimized

to avoid a premature drop out of a node from the network.

Clustering has become an important approach to manage MANETs. The clus-

tering problem can be described as classifying nodes in a MANET hierarchically into

equivalence classes with respect to certain attributes such as geographical regions or small

neighborhood of 1 or 2 hops from special nodes called the clusterheads ”(Krishna et al.

1997)”. Under a cluster structure, mobile nodes may be assigned a different status or

function, such as clusterhead, clustergateway or a cluster member. A clusterhead serves

as a local coordinator for its cluster, performing intra-cluster transmission arrangement,

data forwarding, and so on. A clustergateway is a non-clusterhead node with inter-cluster

links, so it can access neighboring clusters and forward interaction between clusters. A

cluster member is usually called an ordinary node, which is a non-clusterhead node with-

out any inter-cluster links ”(Yu and Chong 2005)”. There are three main benefits of

clustering. Firstly, clustering MANETs provides spatial reuse of resources to increase the

system capacity ”(Hou and Tsai 2001, Lin and Gerla 1995)”. Two clusters may deploy the
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same frequency or code set if they are not overlapping. Secondly, the set of clusterheads

and clustergateways can normally form a virtual backbone for inter-cluster routing, and

thus the generation and spreading of routing information can be restricted in this set of

nodes. Thirdly, a cluster structure makes an ad hoc network appear smaller and more

stable in the view of each mobile terminal ”(McDonald and Znati 1999)”.When a mobile

node changes its attaching cluster, only mobile nodes residing in the corresponding clus-

ters need to update the information. Thus, local changes need not be seen and updated

by the entire network, and information processed and stored by each mobile node and

the messaging complexity of upper layer protocols can be greatly reduced ”(Iwata et al.

1999, Chen et al. 1999, Erciyes 2004, 2005)”.

The mutual exclusion problem involves a group of processes, each of which inter-

mittently requires access to a resource or a piece of code called the critical section(CS).

At most one process may be in the CS at any given time. Providing shared access to

resources through mutual exclusion is a fundamental problem in computer science, and

is worth considering for the ad hoc environment, where stripped down mobile nodes may

need to share resources ”(Walter et al. 2001a)”. In general, distributed mutual exclusion

algorithms may be classified as permission based or token based. Suzuki-Kasami’s algo-

rithm ”(Suzuki and Kasami 1985)” (N messages) and Raymond’s tree based algorithm

”(Raymond 1989)” (log(N) messages) are examples of token based mutual exclusion al-

gorithms. Examples of nontoken-based distributed mutual exclusion algorithms are Lam-

port’s algorithm ”(Lamport 1978)” (3(N-1) messages), Ricart-Agrawala (RA) algorithm

(2(N-1) messages) ”(Ricart and Agrawala 1981)” and Maekawa’s algorithm ”(Maekawa

1985)”. In permission based algorithms, a node would enter a critical section after re-

ceiving permission from all of the nodes in its set for the critical section. For token-based

algorithms however, processes are on a logical ring and possession of a system-wide unique

token would provide the right to enter a critical section. Safety, liveness and fairness are

the main requirements for any mutual exclusion algorithm. Lamport’s algorithm and

RA algorithm are considered as the only fair distributed mutual exclusion algorithms in

literature. Distributed mutual exclusion in mobile networks is a relatively new research

area. A fault tolerant distributed mutual exclusion algorithm using tokens is discussed in

”(Walter et al. 2001a)” and a k-way mutual exclusion algorithm for ad hoc wireless net-

works where there may be k processes executing a critical section at any time is presented

2



in ”(Walter et al. 2001b)”.

Aim of this thesis is to design and implement a cluster based mutual exclusion

algorithm for MANETs where the node counts in the clusters are balanced and a ring is

formed by cluster heads to process Mobile Ricart-Agrawala Algorithm(Mobile RA) algo-

rithm ”(Erciyes 2004, 2005)”. Firstly, MANET must be clustered to the balanced number

of nodes in defined range to distribute the workload of the network more evenly. The clus-

ters must be non-overlapped to provide unique clusterhead for each cluster. To solve these

problems, we propose a graph theoretic clustering algorithm, Merging Clustering Algo-

rithm(MCA) ”(Dagdeviren et al. 2005, 2006)”, for clustering in MANETs using merging

as in constructing Spanning Trees where part of a tree or a tree of a forest designates a

cluster. Reference point of study of the MCA is the Gallagher et. al’s distributed mini-

mum spanning tree algorithm which merges fragments by defined rules ”(Gallagher et al.

1983)”. Gallagher et. al’s algorithm and other related work is reviewed in Chapter 2 in

Sections 2.1.1. and 2.1.2.. General idea of the MCA, illustration by an example, analysis

and extensive simulation results are explained respectively in Sections 3.1. through 3.4.

in Chapter 3.

After partitioning MANET into balanced clusters, we aim to construct a directed

ring architecture from clusterheads to maintain the backbone. The background of back-

bone formation algorithms is given in section 2.2.. The first step of this backbone

formation algorithm is the construction of minimum spanning tree between clusterheads

with respect to minimum number of hops or minimum distance to classify clusterheads

as BACKBONE or LEAF clusterheads. The second step and the main idea is the forma-

tion of the ring architecture by two directed paths from BACKBONE clusterheads and

LEAF clusterheads as described in Section 4.1. and illustrated in Section 4.2. 4 by an

example operation. Runtime performance and round-trip delay against mobility, surface

area, clusterhead number and total number of nodes are shown in Section 4.4..

Lastly, after clustering MANET by MCA and constructing backbone architecture

periodically, we aim to show the implementation considerations and the results of the

Mobile RA algorithm that was designed previously”(Erciyes 2005)”. MCA provides the

clusterhead for each cluster which is same as the coordinator of Mobile RA. Backbone

formation algorithm finds the next clusterhead of each clusterhead to maintain the ring

architecture across coordinators to perform the required critical section entry and exit

3



procedures for the nodes. Using this architecture, we improve and extend the RA algo-

rithm described in ”(Erciyes 2004)” to MANETs and show that these algorithms may

achieve an order of magnitude reduction in the number of messages required to execute

a critical section at the expense of increased response times and synchronization delays

which may also be useful in MANETs where energy efficiency, therefore message com-

plexity is of paramount importance. Section 2.3. also provides a background of mutual

exclusion algorithms for distributed systems and MANETs. The description of the Mo-

bile RA, illustration, analysis and extensive simulation results are provided respectively

in Sections 5.1. through 5.4. in Chapter 5. Information about implementations and

simulation environment is given in Appendix.

4



CHAPTER 2

BACKGROUND

2.1. Clustering Algorithms

Clustering algorithms can be categorized as spanning tree based algorithms and

dominating set based algorithms. An undirected graph is defined as G = (V,E), where

V is a finite nonempty set and E ⊆ V × V . The V is a set of nodes v and the E is a set

of edges e. A graph GS = (VS, ES) is a spanning subgraph of G = (V,E) if VS = V . A

spanning tree of a graph is an undirected connected acyclic spanning subgraph. Intuitively,

a minimum spanning tree(MST) for a graph is a subgraph that has the minimum number

of edges for maintaining connectivity ”(Grimaldi 1997)”.

A dominating set is a subset S of a graph G such that every vertex in G is either

in S or adjacent to a vertex in S”(West 2001)”. Dominating sets are widely used in clus-

tering networks”(Chen and Liestman 2002)”. Dominating sets can be classified into three

main categories, Independent Dominating Sets (IDS), Weakly Connected Dominating Sets

(WCDS) and Connected Dominating Sets (CDS)”(Haynes et al. 1978)”.

• Independent Dominating Sets: IDS is a dominating set S of a graph G in which

there are no adjacent vertices. Fig. 2.1.a shows a sample independent dominating

set where black nodes show cluster heads.

• Weakly Connected Dominating Sets (WCDS): A weakly induced subgraph (S)w is

a subset S of a graph G that contains the vertices of S, their neighbors and all

edges of the original graph G with at least one endpoint in S. A subset S is a

weakly-connected dominating set, if S is dominating and (S)w is connected ”(Chen

et al. 2004)” Black nodes in Fig. 2.1.b show a WCDS example.

• Connected Dominating Sets: A connected dominating set (CDS) is a subset S of a

graph G such that S forms a dominating set and S is connected. Fig. 2.1.c shows a

sample CDS. CDSs have many advantages in network applications such as ease of

broadcasting and constructing virtual backbones ”(Stojmenovic et al. 2002)”.
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(a) (b)

(c)

Figure 2.1. (a)IDS (b)WCDS (b)CDS

2.1.1. Spanning Tree Based Algorithms

Gallagher, Humblet and Spira ”(Gallagher et al. 1983)” proposed a distributed

algorithm which determines a minimum-weight spanning tree for an undirected graph

that has distinct finite weights for every edge. Aim of the algorithm is to combine small

fragments into larger fragments with outgoing edges. A fragment of an MST is a subtree

of the MST. An outgoing edge is an edge of a fragment if there is a node connected to the

edge in the fragment and one node connected that is not in the fragment. Combination

rules of fragments are related with levels. A fragment with a single node has the level L

= 0. Suppose two fragments F at level L and F′ at level L′;

• If L < L′, then fragment F is immediately absorbed as part of fragment F. The

expanded fragment is at level L′.

• Else if L = L′ and fragments F and F′ have the same minimum-weight outgoing

edge, then the fragments combine immediately into a new fragment at level L+1

• Else fragment F waits until fragment F′ reaches a high enough level for combination.

Under the above rules, the combining edge is called the core of the new fragment.

The two nodes adjacent to the core exchange messages on the core branch itself, allowing

each of these nodes to determine both the weight of the minimum outgoing edge and the

side of the core on which this edge lies. The upper bound for the number of messages

exchanged during the execution of the algorithm is 5Nlog2N +2E, where N is the number

of nodes and E is the number of edges in the graph. A message contains at most one edge

weight and log28N bits. Worst case time for this algorithm is O(E+Nlog2N).
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Awerbuch ”(Awerbuch 1987)” proposed an algorithm in which each tree will hook

itself on edge leading to the neighboring tree of maximum level instead of hooking itself on

its minimum weight edge. The algorithm has two stages : Counting Stage and MST Stage.

In this algorithm, if the tree waits for a long time, it will be rewarded properly. This is the

main idea behind the Counting stage of the algorithm. The MST stage assumes knowledge

of V , the total number of nodes, which is provided by the previous Counting stage. This

has a lot of similarity with Gallagher, Humblet and Spira’s algorithm ”(Gallagher et al.

1983)”. The only difference is that level increases are originated by many nodes, not only

by the root node. The MST stage is performed in two phases. The first phase runs an

algorithm identical to Gallagher, Humblet and Spira’s algorithm”(Gallagher et al. 1983)”,

and terminates when all trees reach the size of Ω(V/logV ). The new algorithmic ideas

are introduced in the second phase. Algorithm updates the levels in a very accurate

fashion, which prevents small trees waiting for big trees and speeds up the algorithm.

The algorithm requires O(E + Vlog V) messages and O(V) time.

The algorithms proposed by Gallagher, Humblet and Spira Gallagher et al. (1983)

and Awerbuch ”(Awerbuch 1987)” uses Tree−join−tree approach. Yao-Nan Lien ”(Lien

1988)” proposed a distributed minimum spanning tree algorithm that uses Node− join−
tree approach. The algorithm is initialized from a single node such that there is no need to

wake up all nodes at the beginning as stated in Gallagher, Humblet and Spira ’s algorithm

”(Gallagher et al. 1983)”. Starting from any node, an MST fragment(M) grows from a

single node to complete MST iteratively by drafting nodes into M . In each iteration,

each terminal node of M tries to draft more nodes into M by sending a Follow − me

message to each of its neighboring nodes except its preceding node. Each neighboring

node decides whether or not to hook itself to M as a new terminal node based on its own

local information. The new terminal nodes continue the drafting process iteratively until

the end of the iteration when there is no node that wants to hook to M . A complete MST

is formed if all nodes are included in M . The algorithm needs at most (2e+n(n-1)/4)

messages in O(n2) time. In the best case, it needs only 2e messages in O(nlogn).

Ahuja and Zhu ”(Ahuja and Zhu 1989)” proposed a distributed minimum spanning

tree algorithm which uses the Tree − join − tree approach as used in the Gallagher,

Humblet and Spira’s Algorithm ”(Gallagher et al. 1983)”. The algorithm works in phases.

In phase 1 of the algorithm, each node needs to do the following:
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• Sets the minimum adjacent edge as Branch and notifies its decision to the node on

the other side of the edge.

• Learns the nodeIDs at the other side of its adjacent edges.

• Participates in the construction of underlying spanning tree.

By cutting the number of fragments at least one half in each phase, it needs at most

O(logn) phases. In the worst case, the algorithm needs at most (2m + 2(n− 1)log(n/2))

messages and (2dlogn) time, where d is the diameter of the network. In the best case,

it needs only 2m messages in 2d time. On the average, the algorithm needs only O(m)

messages and O(d) time.

Garay et al. ”(Garay et al. 1993)” provide a modified, controlled version the

Gallagher, Humblet and the Spira’s algorithm ”(Gallagher et al. 1983)”. The algorithm

is able to achieve the following:

• Upon termination, the number of the fragments is bounded above by n /

2numberofphases.

• Throughout the execution, the diameter of every fragment F satisfies Diame-

ter(Fragment) < 3numberofphases.

The time complexity of the algorithm is O(Diam(G)+n0,614).

Banerjee and Khuller ”(Banerjee and Khuller 2000)” proposed a protocol based

on a spanning tree for hierarchical routing in wireless networks ”(Kleinrock and Faroukh

1997, Xu and Dai 1998)”. In their scheme, a cluster is a subset of vertices whose induced

graph is connected. These subsets are chosen with consideration to cluster size and the

maximum number of clusters to which a node can belong. Banerjee and Khuller ”(Baner-

jee and Khuller 2000)” defined their clustering problem in a graph theoretic framework,

and present an efficient distributed solution that meets all the desirable properties. The

algorithm proceeds by finding a rooted spanning tree of the graph. The algorithm creates

a BFS tree and then visits each vertex in the the tree in post order. The time complexity

of the algorithm is O(|E|).
A topology graph for a mobile ad hoc network ”(Royer and Toh 1999)” can have

any arbitrary structure. Srivastava and Ghosh ”(Srivastava and Ghosh 2003)” proposed

a distributed algorithm for constructing a rooted spanning tree of a dynamic graph with

8



the root being located towards the center of the graph. They described the α cone as

the origin concerned node and bounded by two rays with an angle α between them. The

attribute color is given for each node to define their states. The algorithm proposed works

in two stages. In the first stage, it finds a spanning forest. In the second stage the trees

of the spanning forest are connected together to produce tree with a single root. The

authors proposed a priority-based algorithm for the second stage.

2.1.2. Dominating Set Based Algorithms

Various algorithms exist for clustering in dominating sets(DS).This section men-

tions most recent, well known dominating set algorithms, categorizing them by the re-

sulting dominating set type.

2.1.2.1. Clustering Using IDS

By using independent dominating sets, one can guarantee that there are no adja-

cent cluster heads in the entire graph. This minimizes the number of dummy clusters in

the network.

Baker and Ephremides ”(Baker and Ephremides 1981)” proposed an independent

dominating set algorithm called highest vertex id. In this algorithm, each vertex scans

its closed neighbor set and chooses the highest id neighbor as a cluster head. A very

similar algorithm to the highest vertex id algorithm is the lowest id algorithm by Gerla

and Tsai ”(Gerla and Tsai 1995)” where each vertex with the lowest id within its closed

neighborhood is selected as the cluster head. Gerla and Tsai developed another algorithm

to find the independent dominating sets called the highest degree algorithm. In this

algorithm, each vertex with the highest degree in its closed neighborhood is selected

as the cluster head ”(Gerla and Tsai 1995)”.

Although these algorithms are considered as important algorithms, Chen et al.

”(Chen et al. 2002)” proposed that these algorithms are not working correctly for some

graphs. In some situations, some independent sets cannot form a dominating set. To

solve this incorrect operation, Chen et al. ”(Chen et al. 2002)” developed the k-distance

independent dominating set algorithm. By this algorithm, Chen ”(Chen et al. 2002)” adds

one more rule to the above algorithms such that in a k-distance dominating set, every
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cluster head must be at least k + 1 distant from each other ”(Ohta et al. 2003)”.

2.1.2.2. Clustering Using WCDS

Although independent dominating sets are suitable for constructing optimum sized

dominating sets, they have some deficiencies such as lack of direct communication between

cluster heads. In order to obtain the connectivity between cluster heads, WCDSs can be

used to construct clusters. The WCDS for clustering in ad hoc networks was first proposed

by Chen and Liestman ”(Chen and Liestman 2003)”. In this algorithm, the graph is first

partitioned into non-overlapping regions -this is done by growing a spanning forest of

the graph- and at the end of this phase, the subgraph induced by each tree defines a

region. Then a greedy approximation algorithm is executed to find a small WCDS of

each region. The greedy algorithm is based on Guha and Khuller’s second algorithm

”(Guha and Khuller 1998)”. Once small WCDSs are constructed, the union of these

WCDSs constructs the dominating set of the entire graph. Some additional vertices from

region borders can be added to the dominating set to ensure that the final dominating

set of G is weakly-connected. This type of clustering is called zonal clustering.

2.1.2.3. Clustering Using CDS

CDSs have many advantages in network applications such as ease of broadcast-

ing and constructing virtual backbones ”(Stojmenovic et al. 2002)”, however undesirable

number of clusterheads can be obtained. So, in constructing connected dominating sets,

primary problem is the minimum connected dominating set decision problem.

Guha and Khuller ”(Guha and Khuller 1998)” proposed two centralized greedy

algorithms for finding suboptimal connected dominating sets. In the first algorithm,

initially all vertices are white colored. In the first step, the algorithm selects the node

with the maximum number of white neighbors as a dominating node. The dominating

node becomes black, and its neighbors become gray. Then the algorithm iteratively scans

the gray nodes and their white neighbors. In each iteration, the gray node or the pair

of nodes with the maximum number of white neighbors is selected as a cluster node.

This iteration process continues until no white vertex left in the graph. In the second

algorithm, white vertex with the maximum number of white neighbors is selected as a
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dominating node. This iteration lasts until no white colored vertex left in the graph.

When the iteration ends, the algorithm re-colors some gray nodes to black so that the

dominating set becomes connected.

Wu and Li ”(Wu and Li 2002, 1999)”, improved Das and Bhraghavan’s ”(Das

and Bharghavan 1997, Das et al. 1997)” distributed algorithm as a localized distributed

algorithm for finding connected distributed sets in which each node only needs to know

its distance-two neighbor ”(Chen et al. 2004)”. In Wu and Li’s algorithm ”(Wu and Li

2002)”, initially each vertex marks itself as F indicating that it is not dominated yet. In

the first phase, a vertex marks itself as T if any two of its neighbors are not connected to

each other directly. In the second phase, a T marked vertex v changes its mark to F if

either of the following conditions is met:

1. ∃u ∈ N(v) which is marked T such that N [v] ⊆ N [u] and id(v) < id(u);

2. ∃u,w ∈ N(v)which is marked T such that N(v) ⊆ N(u)
⋃

N(w) and id(v) =

min{id(v), id(u), id(w)};

Dai and Wu ”(Dai and Wu 2004, Wu 2002)” proposed an extended localized algorithm for

finding CDS. The algorithm is based on Wu and Li ”(Wu and Li 2002)” algorithm with

improved pruning rules. Dominant pruning rules with more than two connector hosts

were not considered in early studies due to the following two assumptions: 1) testing

the coverage of multiple hosts could be costly and 2) only a few hosts neighbor sets

need to be covered by three or more other hosts. However, Dai and Wu ”(Dai and Wu

2004)” showed that these assumptions are not always true. They proposed a generalized

dominant pruning rule, cluster heads, where k can be any number. According to this

algorithm, first phase works same as Wu and Li’s algorithm ”(Wu and Li 2002)”, but

in phase two, instead of rule 1 and rule 2, Rule k pruning rule is applied to eliminate

dummy cluster heads. According to Rule k, if neighbors of a cluster head is dominated

by more than two directly connected cluster heads, it can be eliminated. With this work,

Dai and Wu ”(Dai and Wu 2004)” showed that Rule k can be implemented with local

neighborhood information that has the same complexity as Rule 1 and, less complexity

than Rule 2. Cokuslu et al. modify this algorithm to get smaller set of clusterheads. They

provide significant modifications by considering the degrees of the nodes during marking

process and also provide further heuristics to determine the color of a node in the initial

11



phase ”(Cokuslu et al. 2006)”.

Xinfang Yan et al. ”(Yan et al. 2003)” proposed a heuristic algorithm for minimum

connected dominating set. The algorithm first calculates a weight for each node indicating

node’s uptime and its amount of power left. It then uses weight parameter and some rules

from Wu and Li’s algorithm ”(Wu and Li 2002)” in selecting the cluster heads. By using

this heuristic, Yan et al. ”(Yan et al. 2003)” make a better estimation on the stability of

the backbone topology.

Peng-Jun Wan et al. ”(Wan et al. 2004)” proposed a distributed algorithm for

finding a CDS. This algorithm consists of two phases. The first phase constructs a maximal

independent set (MIS) using a rooted spanning tree which is constructed at the beginning

of the phase. The second phase constructs a dominating tree from the MIS, whose internal

nodes would become a CDS. The algorithm uses O(n) messages and takes O(n) time.

Hui Liu et al. ”(Liu et al. 2004)”, improved Wu and Li’s ”(Wu and Li 2002)” algo-

rithm by adding a third phase elimination. In the additional third phase, the algorithm

searches redundant cluster heads. A cluster head is eliminated if it is dominated by two

of its cluster head neighbors. The distributed algorithm has time complexity O(n2) and

message complexity O(n).

2.2. Backbone Formation Algorithms

Dominating set based algorithms which were introduced in section 2.1.2. construct

a backbone architecture. The advantages and disadvantages of ICDS, WCDS and CDS

schemes were also discussed in section 2.1.2.. In this section we will introduce other algo-

rithms related to backbone formation. Power-saving, minimal routing and the topology

control is the goal of these algorithms which are mainly focused on one issue according to

the different needs.

Rubin et. al ”(Rubin et al. 2002)” classifies the nodes as high capacity and low

capacity nodes and unmanned vehicles according to their power status. High capacity

nodes include Backbone Nodes(BNs) and Backbone Capable Nodes(BCNs). They present

a topological synthesis algorithm that selects a subset of high capacity nodes to form a

backbone network. Each backbone node manages the allocation of resources for transport

of messages from/to itself and among regular nodes(RN ) that reside in its managed cluster
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of nodes. Backbone nodes also interact to coordinate the allocation of MAC layer com-

munications assets such as time slots in their access nets to prevent interferences. They

introduce the TBONE protocol to implement the key networking schemes for such a Mo-

bile Backbone Network(MBN ). TBONE protocol consists of three algorithms: the Anet

association algorithm, the BN election algorithm, and the time slot allocation algorithm.

The Anet association algorithm provides a mechanism that associates an unassociated

low power node with exactly one BN. Every unassociated low power node instigates the

Anet association algorithm by sending join request message to a BN or associated BCN.

The purpose of the BN election algorithm is to elect eligible BCNs and convert them

into BNs in order to satisfy the covering requirement. The dynamic weighted labels of

BCNs determine their eligibility. The unassociated BCN that initiates the BN election

algorithm broadcasts its ID and dynamic weighted label request to all power link associ-

ated BCN neighbors. All BCNs collect data of others. The one with maximum dynamic

label will convert itself to a BN. The purpose of the BN-BCN conversion algorithm is

to provide a mechanism to determine redundant BNs and convert them into BCNs in

order to support minimality. If a BN determines that each of the nodes in its Anet has

at least one low power link BN neighbor and all its high power link BN neighbors would

remain in the same component, it converts to BCN. The time slot algorithm provides a

mechanism for allocation of time slots by BNs among their associated low power nodes.

The time and message complexity is not given in the article.

Ya-Feng et. al ”(Ya-feng et al. 2004)” focused on the construction of the optimal

Virtual Multicast Backbone(VMB) with the fewest forwarding nodes to decrease overhead

and cost, due to the scarce resource in ad hoc networks. Instead of conventional Steiner

tree model, the optimal shared VMB in ad hoc networks is modeled as Minimum Steiner

Dominating Set (MSCDS) in Unit-Disk Graphs(UDG), which is NP-hard. One-hop algo-

rithm and d-hop algorithm is proposed for approximating MSDCS. One-hop algorithm is

divided into steps below:

1. Find a maximal independent set I in G(V)

2. In G, apply the Steiner tree algorithm in ”(Singh and Vellanki 1998)” to find a

Steiner tree T for the subset I, with all edges having unit weight. The final solution

is the set of the nodes of T.
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The One-hop Algorithm constructs a hierarchical VMB. However, when deployed

in sparse UDG, where most multicast nodes are two or more hops apart from each other,

it mostly results in trivial single-node multicast clusters and consequently flat VMB. This

implies that One-hop Algorithm is not fit for VMB construction in sparse ad hoc networks.

To address this issue, an extended d-hop Algorithm is proposed with detailed description

of distributed implementation, whose approximation ratio proves also constant. The d-

hop Algorithm finds a d-MIS among multicast nodes, which is also a d-hop dominating

set of the multicast group, and then each node in the d-MIS becomes a cluster-head and

forms a d-hop cluster with all its d-neighbors. Intra-cluster, some multicast nodes are

further chosen to dominate multicast nodes of the cluster. These nodes are connected to

the cluster-head with the shortest paths. Inter-cluster, a Steiner tree is used to connect

all cluster-heads. The distributed implementation of d-hop Algorithm for constructing an

SCDS of multicast nodes has a time complexity O(Dn) where D is the graph diameter

and a message complexity of O(nlog(n)) if d equals to 1, otherwise O(nd).

Haitao and Gupta ”(Haitao and Gupta 2004)” proposed the Selective Backbone

Construction Algorithm(SBC) for energy efficiency in MANETs. SBC constructs back-

bone in two steps. In the first step, one or more backbone seed nodes are elected. Next

they choose their neighbor nodes into backbone to connect the whole network. When

SBC starts, every node computes its priority and broadcasts it in its neighborhood. It

also broadcasts the identities of its direct neighbors that it has discovered. Thus each node

gets to know the topology information in its two-hop neighborhood. Backbone seeds are

also elected based on two-hop neighborhood information. When electing backbone seeds,

they consider two factors. An ideal backbone seed should have high priority. In addition,

to speed up the process of backbone construction, it is desirable to have backbone seed

nodes chosen from an area of high node density so that more nodes can be covered quickly.

They use node degrees as the indicator of node density. Considering these requirements,

every node first compares its degree with the degrees of its neighbors based on the two-

hop topology information. If its degree is the highest, it picks the neighbor with highest

priority as backbone seed. Otherwise, it depends on nodes in other neighborhoods to pick

backbone seeds. Time and message complexities is not given in the article.

In Min et. al’s scheme(RVBSM) ”(Min et al. 2005)”, they assume that every

node records its own location at every second during the period. And whenever a node
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selects a node from its neighbors, it chooses the one with the highest rank. Every message

contains color, rank and locations of both the sender and the 1 hop backbone neighbors of

the sender. Initially every node has white color and changes its color during the procedure.

They define the ranking to be an ordering of (stability, coverage, id) of nodes and they

claim that a node v with rank (sv,cv,idv) has a higher order than a node u with rank

(sv,cv,idv) if:

1. sv > su

2. sv = su and cv > cu or

3. sv = su and cv > cu and idv > idu

The stability and the coverage of each node can be estimated. Every message contains

color, rank and locations of both the sender and the 1 hop backbone neighbors of the

sender. The algorithm has message complexity of O(Dn) and time complexity of O(n),

where D is the maximum degree.

Ju and Rubin ”(Huejiun and Rubin 2005)” proposed the Enhanced Backbone

Synthesis(EBS) in which every node has two timers: Short Timer and Long Timer. There

is no time synchronization between nodes; every node maintains its own time. Whenever

the Short Timer expires at a node, the node broadcasts a Hello message to its direct

neighbors. The Hello message contains the nodes ID, status, weight, associated BN ID,

BN-to-BCN indicator, and its BN neighbor list. The weight of a node can be based

on its ID, degree, capability, congestion level, or on some stability measure. Through

periodic Hello message exchange, each node learns its 1-hop neighborhood and 2-hop BN

neighborhood. A node does not learn its complete 2-hop neighborhood, as assumed by

typical CDS construction algorithms. Whenever the Long Timer expires at a node, the

node updates its neighbor list based on the number of Hello messages received within

the previous period. In accordance with its type, this node then executes the following

operations: A BCN runs the association and the BCN-to-BN conversion algorithms; a

BN runs the BN-to-BCN conversion algorithm. The message complexity of the MBN

topology synthesis algorithm is order of the O(1) message per node. The enhanced MBN

topology synthesis algorithm converges in O(1) time per node.
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2.3. Distributed Mutual Exclusion Algorithms

2.3.1. Performance Metrics

Performance of a distributed mutual exclusion algorithm depends on whether the

system is lightly or heavily loaded. If no other process is in the critical section when a

process makes a request to enter it, the system is lightly loaded. Otherwise, when there

is a high demand for the critical section which results in queueing up of the requests, the

system is said to be heavily loaded. The important metrics to evaluate the performance

of a mutual exclusion algorithm are the number of messages per request, response time

and the synchronization delay as described below:

• Number of Messages per Request(M): The total number of messages required to enter

a critical section is an important and useful parameter to determine the required

network bandwidth for that particular algorithm. M can be specified for high load

or light load in the system as Mheavy and Mlight.

• Response Time(R): The Response Time R is measured as the interval between the

request of a node to enter critical section and the time it finishes executing the

critical section. When the system is lightly loaded, two message transfer times and

the execution time of the critical section success resulting in Rlight = 2T + E units.

Under heavy load conditions, assuming at least one message is needed to transfer

the access right from one node to another, Rheavy = w(T + E) where w is the

number of waiting requests.

• Synchronization Delay (S) : The synchronization delay S is the time required for

a node to enter a critical section after another node finishes executing it. The

minimum value of S is one message transfer time T since one message success to

transfer the access rights to another node. The lower bounds for M , R and S are

shown in Table 2.1.

2.3.2. Ricart-Agrawala Algorithm

The Ricart-Agrawala Algorithm(RA) represents a class of decentralized, permis-

sion based mutual exclusion algorithms. In RA Algorithm, when a node wants to enter
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Table 2.1. Lower Bounds for Performance Metrics

Mlight Mheavy Rlight Rheavy S

3 3 2T + E w(T + E) T

Table 2.2. Performance Metrics of Ricart-Agrawala Algorithm

Mlight Mheavy Rlight Rheavy S

2(N − 1) 2(N − 1) 2T + E w(T + E) T

a critical section, it sends a timestamped broadcast Request message to all of its peers

in that critical section request set. When a node receives a Request message, it returns a

Reply message if it is not in the critical section or requesting it. If the receiving node is in

the critical section, it does not reply and queues the request. However, if the receiver has

already made a request, it compares the timestamp of its request with the incoming one

and replies the sender if the incoming request has a lower timestamp. Otherwise, it queues

the request and enters the critical section. When a node leaves its critical section, it sends

a reply to all the deferred requests on its queue which means the process with the next

earliest request will now receive its last reply message and enter the critical section. The

total number of messages per critical section is 2(N − 1) as (N − 1) requests and (N − 1)

replies are needed. One of the problems with this algorithm is that if a process crashes, it

fails to reply which is interpreted as a denial of permission to enter the critical section, so

all other processes that want to enter are blocked. Also, the system should provide some

method of clock synchronization between processes. The performance metrics for the RA

Algorithm are shown in Table 2.2. When a node finishes execution of a critical section,

one message is adequate for a waiting node to enter, resulting in S = T .

2.3.3. Token-Based Algorithms

The general Token Passing(TP) Algorithm for mutual exclusion is characterized

by the existence of a single token where the possession of it denotes permission to enter
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Table 2.3. Performance Metrics of General Token-Based Algorithms

Mlight Mheavy Rlight Rheavy S

N N 2T + E w(T + E) T

a critical section. The token circulation can be performed in a logical ring structure

or by broadcasting ”(Suzuki and Kasami 1985)”. In a ring based TP Algorithm, any

process that requires its critical section will block the token and issue it when it finishes

executing. Fairness is ensured in this algorithm as each process waits at most N−1 entries

to enter the critical section. There is no starvation since passing is in strict order. The

main difficulties with TP Algorithm are as follows. There would be the idle case of no

processes entering CS which would incur overhead of constantly passing the token. There

could be lost tokens which would require diagnosis and creating a new token by a central

node or distributed control is needed and to prevent duplicate tokens, central coordinator

should ensure generation of only one token. Crashes should also be dealt with as these

would require detection of the dead destinations in the form of acknowledgements. One

important design issue with TP Algorithm is the determination of the holding time for

unneeded token. If this time is too short, there will be high overhead. However, keeping

this time too long would result in high CS latency. The performance metrics for a general

Token-Based Algorithm is shown in Table 2.3. ”(Erciyes 2004, 2005)”.

2.3.4. Mutual Exclusion Algorithms on MANET

Distributed mutual exclusion in mobile networks is a relatively new research area.

Singhal et al. ”(Singhal and Manivannan 1997)” proposed a concept of look-ahead tech-

nique for distributed mutual exclusion which instead of enforcing mutual exclusion among

all the sites of a mobile system, enforces mutual exclusion only among the sites which

are concurrently competing for critical section (CS), resulting in less message overhead.

Mutual exclusion algorithm involves two issues: First is identifying sites which are con-

currently competing for CS, and second enforcing mutual exclusion among these sites.

Once a site knows all the sites which are concurrently requesting CS, it can use Ricart-

Agrawala method on those sites to enforce mutual exclusion. Walter et al. ”(Walter
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et al. 2001b)” proposed a mobility aware token based distributed mutual exclusion al-

gorithm which combines ideas from several papers. The partial reversal technique from

”(Gafni and Bertsekas 1981)” used to maintain a destination oriented directed acyclic

graph(DAG) in a packet radio network when the destination is static, is used in the algo-

rithm to maintain a token oriented DAG with a dynamic destination. Like the algorithms

of ”(Chang et al. 1990, Dhamdhere and Kulkarni 1994, Raymond 1989)” each node in

the algorithm maintains a request queue containing the identifiers of neighboring nodes

from which it has received requests for the token. Like Dhamdhere and Kulkarni’s algo-

rithm ”(Dhamdhere and Kulkarni 1994)”, the algorithm totally orders nodes. The lowest

node is always the current token holder, making it a sink toward which all requests are

sent. Each node dynamically chooses its lowest neighbor as its preferred link to the token

holder. Nodes sense link changes to immediate neighbors and reroute requests based on

the status of the previous preferred link to the token holder and the current contents of

the local request queue. All requests reaching the token holder are treated symmetrically,

so that requests are continually serviced while the DAG is being re-oriented and blocked

requests are being rerouted.

Baldoni ”(Baldoni et al. 2002)” et al. proposed a token based distributed mutual

exclusion algorithm suited for mobile ad-hoc networks. The algorithm is based on a

dynamic logical ring and combines the two families of token based algorithms (i.e., token

asking and circulating token) in order to get a optimal number of messages exchanged

per CS access under heavy request load. The algorithm aims at maintaining device power

consumption as low as possible by reducing the number of hops traversed per CS execution

and by not sending any control message when no processes request the CS. Mobility is

addressed by exploiting the information of the routing table in order to send each message

to the closest node in terms of number of hops.

The h-out of-k mutual exclusion problem is also known as the h-out of-k resource

allocation problem. It concerns with how to control nodes in a distributed system so

that each node can access h resources out of totally k shared resources, l ≤ h ≤ k,

with the constraint that no more than k resources can be accessed concurrently. Jiang

”(Jiang 2003)” proposed a prioritized distributed h-out of-k mutual exclusion algorithm

for MANETs with real-time or prioritized applications. The proposed algorithm is sensi-

tive to link forming and link breaking and thus is suitable for MANETs. The proposed
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algorithm claims the highest priority first serve property for real-time applications. For

non-real-time applications, one may associate the priority with the number of requested

resources to achieve the maximum degree of concurrency. Yang ”(Yang 2005)” proposed a

distributed algorithm to solve the mutual exclusion problem in MANETs. The proposed

algorithm improves the CS execution time by allowing at most R tokens to be concur-

rently dispatched, it employs logical ring construction to adapt the token navigation to

the system requirements and it is designed with the consideration of the dynamical link

formation characteristics in MANETs and is thus suitable for mobile environments. Wu

et al. ”(Wu et al. 2005)” proposed a permission-based MUTEX algorithm for MANETs.

In order to reduce the message cost, the algorithm uses the ”look-ahead” technique as

in ”(Singhal and Manivannan 1997)”,which enforces MUTEX only among the hosts cur-

rently competing for the critical section (CS). The constraint of FIFO channel is also

relaxed. The proposed mechanism handles the ”doze” mode and ”disconnection” of mo-

bile hosts. Using timeout, a fault tolerance mechanism is introduced to tolerate transient

link and host failures.
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CHAPTER 3

MERGING CLUSTERING ALGORITHM

3.1. General Idea and Description of the Algorithm

Merging Clustering Algorithm(MCA) ”(Dagdeviren et al. 2005, 2006)” finds clus-

ters in a MANET by merging the clusters to form higher level clusters as mentioned in

Gallagher, Humblet, Spira’s algorithm ”(Gallagher et al. 1983)”. However, we focus on

the clustering operation by discarding minimum spanning tree. This reduces the message

complexity as explained in Section 3.3.. The second contribution is to use upper and lower

bound parameters for clustering operation which results in balanced number of nodes in

the clusters formed. The lower bound is limited by a parameter which is defined by K

and the upper bound is limited with 2K. The last contribution is the clusterhead(leader)

selection method as an alternative to the core of the fragment in ”(Gallagher et al. 1983)”.

We assume that each node has distinct node id. Moreover, each node knows its

cluster leader id, cluster id and cluster level. Cluster level is identified by the number of

the nodes in a cluster. Leader node is the node with maximum node id. Cluster leader id

is equal to the cluster id. The local algorithm consists of sending messages over adjoining

links, waiting for incoming messages and processing messages. Successful packet transfers

are detected by receiving the ACK message from MAC layer of IEEE 802.11 . The finite

state machine of the algorithm is shown in Fig. 3.1.

The algorithm requires the sequence of messages as in Fig. 3.2. Firstly a node

sends a Poll Node message to a destination node. Destination node sends a Node Info

message back to originator node. Originator node then sends a Connect Ldr or Con-

nect Mbr message to destination node to state it is the current leader or not. Desti-

nation node sends a Ldr ACK or Mbr ACK message to originator node. We assume

that the underlying network provides broadcast communication. After the above mes-

sage exchange, the new leader node multicasts a Change Cluster message to new cluster

nodes. New cluster members are replied with Change Cluster ACK messages. Mes-

sages can be transmitted independently in both directions on an edge and arrive after

an unpredictable but finite delay, without error and in sequence. Message types are
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Figure 3.1. Finite State Machine of the Merging Clustering Algorithm

Poll Node, Ldr Poll Node, Node Info, Ldr ACK, Mbr ACK, Connect Mbr, Connect Ldr,

Change Cluster and Change Cluster ACK as described below.

• Poll Node: A cluster leader node will send Poll Node (node id, cluster level) mes-

sage to a destination node to begin the clustering operation. A node in IDLE state

changes its state to IDLE WT CONN, a node in LEADER state changes its state

to LDR WT CONN after receiving Poll Node message.

• Ldr Poll Node : A cluster member node will send Ldr Poll Node (node id, clus-

ter level) message to cluster leader node if cluster member node receives a Poll Node

(node id, cluster level) message from a node which is not in the same cluster. A

node in LEADER state changes its state to LDR WT CONN state after receiving

Ldr Poll Node message.

• Node Info: A cluster leader node will send Node Info (node id, cluster level) mes-

sage if it receives a Poll Node (node id, cluster level) or Ldr Poll Node (node id,

cluster level) message. A node in WT INFO state changes its state to WT ACK
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Figure 3.2. Message Flow Diagram of Merging Clustering Algorithm

state after receiving Node Info message.

• Connect Mbr: A cluster node will send Connect Mbr (node id) message after it re-

ceives a Node Info (node id, cluster level) which has a smaller node id than sender.

A node either in IDLE WT CONN or LDR WT CONN state changes its state to

MEMBER state after receiving Connect Mbr message.

• Connect Ldr: A cluster node will send Connect Ldr (node id) message after it

receives a Node Info (node id, cluster level) message which has a greater node id

than sender’s node id. A node either in IDLE WT CONN or LDR WT CONN state

changes its state to LDR WT ACK state after receiving Connect Mbr message.

• Ldr ACK: A node will send Ldr ACK (node id, cluster level) message when

it receives a Connect Mbr message. A node in WT ACK changes its state to

LDR WT ACK state after receiving Ldr ACK message.

• Mbr ACK: A node will send Mbr ACK message when it receives a Connect Ldr

message. The receiver node of the Mbr ACK message is a member of the cluster

and changes its state to MEMBER state after receiving Mbr ACK message.

• Change Cluster: A node will multicast a Change Cluster (node id, cluster level)

message after it receives a Ldr ACK message. The leader of a cluster calculates new
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level and multicasts Change Cluster (node id, cluster level) to all cluster member

nodes to update their cluster id and cluster level information.

• Change Cluster ACK: A node will send a Change Cluster ACK message after it

receives Change Cluster message. A node in LDR WT ACK state changes its state

to LEADER after receiving Change Cluster ACK messages from all new cluster

member nodes.

• Period TOUT : This message can be regarded as an internal message. Pe-

riod TOUT occurs for every node in the network to start clustering operation peri-

odically.

Every node in the network performs the same local algorithm. Each node can be either in

IDLE, WT ACK, MEMBER, LDR WT ACK, LEADER, LDR WT CONN or WT INFO

states described below.

• IDLE: Initially all nodes are in IDLE state. If Period TOUT occurs, node sends a

Poll Node message to destination node and will make a state transition to WT INFO

state.

• WT INFO: A node in WT INFO state waits for Node Info message.

• WT ACK: A node in WT ACK state waits for a Mbr ACK or Ldr ACK. If

Mbr ACK is received, node will make a state transition to MEMBER state. If

Ldr ACK is received, the node will multicast CHANGE LEADER message and

make a state transition to LEADER state.

• MEMBER: A node which is a member of a cluster, is in the MEMBER state. If

a Poll Node message is received, the node will send Ldr Poll Node message to the

leader node of the cluster. If a Change Cluster message is received, the node will

update its cluster information.

• LDR WT ACK: A node in LDR WT ACK state waits for Change Cluster ACK

messages of all new member nodes in the new cluster.

• LEADER: When A cluster leader node is in the LEADER state, if a Poll Node or

a Ldr Poll Node is received, the node will firstly check the 2K parameter to decide
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on the clustering operation. If cluster level is smaller, the node will send a Node Info

message and make a state transition to LDR WT CONN state.

• LDR WT CONN : A node in LDR WT CONN state waits for Connect Mbr or

Connect Ldr message. If Connect Mbr is received, the node will make a state tran-

sition to MEMBER state. If Connect Ldr is received, node will make a state tran-

sition to LDR WT ACK state.

• IDLE WT CONN : A node in IDLE WT CONN state waits for Connect Mbr

or Connect Ldr message. If Connect Mbr is received, the node will make a state

transition to MEMBER state.

Timeouts can occur when two nodes are communicating. If a timeout occurs at

a node which is not a cluster leader either in IDLE, IDLE WT CONN, WT INFO or

WT ACK states ,it returns back to the IDLE state, a node which is a cluster leader

either in LDR WT CONN, WT ACK or WT INFO states returns back to the LEADER

state, a node either in LEADER,MEMBER, LDR WT ACK states doesn’t change its

state.

3.2. An Example Operation

Assume the mobile network in Fig. 3.3. K parameter is given as 4. Initially all

the nodes are in IDLE state. Period TOUT occurs in Node 1, Node 2, Node 6, Node

9, Node 19, Node 8, Node 12, Node 13, Node 16. Node 1 sends a Poll Node message to

Node 5 and sets its state to WT INFO. Node 5 receives the Poll Node message and sends

Node Info message to Node 1. Node 5 sets its state to IDLE WT CONN. Node 1 receives

the Node Info message and sends a Connect Ldr message to Node 10 since the node id

of Node 5 is greater than Node 1. Node 1 sets its state to WT ACK. Node 5 receives

the Connect Ldr message and sends a Mbr ACK message to Node 1. Node 1 receives the

message and sets its state to MEMBER. Node 5 sends Change Cluster message to Node

1 indicating that new cluster is formed between Node 1 and Node 5. Node 1 replies with

a Change Cluster ACK message to Node 5. Node 2 and Node 14, Node 3 and Node 0,

Node 4 and Node 16, Node 6 and Node 8, Node 7 and Node 19, Node 9 and Node 11,

Node 10 and Node 12, Node 13 and Node 15 are connected same as Node 1 and Node 5
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to form clusters with level 2.
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Figure 3.3. Clusters obtained using Merging Clustering Algorithm

After clusters with level 2 are formed, Node 18 in IDLE state sends a Poll Node

message to Node 15. Node 18 sets its state to WT INFO. Node 15 in LEADER state

receives Poll Node message and checks the 2K parameter. Since cluster level of Node 15

is smaller than 2K, Node 15 sends a Node Info message to Node 18. Node 15 sets its

state to LDR WT CONN. Node 18 in WT INFO STATE receives NODE INFO message

from Node 15 and sends a Connect Mbr message to Node 15. Node 18 sets its state

to WT ACK. Node 15 receives Connect Mbr and sends Ldr ACK message to Node 18.

Node 15 sets its state to MEMBER. Node 18 in WT ACK state receives Ldr ACK message

and multicasts Change Cluster message to Node 13 and Node 15 to update new cluster

information. Node 18 sets its state to LDR WT ACK. After that, Node 15 receives

Change Cluster ACK messages and sets its state to LEADER. The clustering operation

between Node 18 and Node 15 ends by these messages. Node 17 which is in IDLE state

sends a Poll Node message to Node 0 which is in MEMBER state. Node 0 receives the

Poll Node message and sends a Ldr Poll Node message to its cluster leader, Node 3. The

clustering operation between Node 17 and Node 3 occurs same as clustering operation

between Node 18 and Node 15. At the same time Node 16 which is in LEADER state

compares its cluster level with K parameter. Since its cluster level is lower than K, it
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Table 3.1. Cluster Formation for 20 nodes

Iteration Cluster1 Cluster2 Cluster3 Cluster4

1 7-19 17 0-3 10-12 18 15-13 2-14 16-4 6-8 1-5 9-11

2 7-19 17-0-3 10-12 18-15-13 2-14-16-4 6-8 1-5-9-11

3 7-19-17-0-3 10-12-18-15-13 2-14-16-4-6-8 1-5-9-11

sends a Poll Node message to Node 14. Node 14 and Node 16 connect to form a new

cluster level with 4, same as explained previously. When the cluster levels of each cluster

reach K, the cluster formation is ended. Lastly the clusters in Fig. 3.3 are summarized in

Tab. 3.1.
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Figure 3.4. MANET with 40 nodes located on a surface area of 600m × 600m
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Figure 3.5. Clusters of MANET with 40 nodes

A real world example is illustrated in Fig. 3.4. A MANET with 40 nodes is located

on a surface area of 600m × 600m. X, Y coordinates are written near to each node and

a coverage area of a mobile node is shown in dotted in circle. Node 37’s coverage area is

demonstrated with dashed circle in Fig. 3.5. Merging Clustering Algorithm with K=7

is implemented on this architecture. Obtained Clusters are shown in Fig. 3.5. Iterations

shown in Fig. 3.5 are summarized in tables 3.2 and 3.3.

28



Table 3.2. Cluster Formation for 40 nodes

Iteration Cluster1 Cluster2 Cluster3

1 17 14 26 19 21 31 30 6 29 13 18 12 23 16 27 28 1 24 7 8 37 22 25 15 20

2 17-14 26-19 21-31 30 6-29 13-18 12-23 16 27-28 1-24 7-8 37-22 25-15-20

3 17-14-26-19 21-31-30 6-29-13-18 12-23-16 27-28 1-24-7-8 37-22-25-15-20

4 17-14-26-19-21-31-30 6-29-13-18 12-23-16-27-28 1-24-7-8-37-22-25-15-20

5 17-14-26-19-21-31-30 6-29-13-18-12-23-16-27-28 1-24-7-8-37-22-25-15-20

Table 3.3. Cluster Formation for 40 nodes, continued..

Iteration Cluster4 Cluster5

1 32 3 10 2 36 9 11 39 14 35 38 33 0 34 5

2 32-3 10 2-36 9-11 39-14 35 38-33 0-34 5

3 32-3-10 2-36-9-11 39-14-35 38-33 0-34-5

4 32-3-10-2-36-9-11 39-14-35-38-33 0-34-5

5 32-3-10-2-36-9-11 39-14-35-38-33-0-34-5

3.3. Analysis

Time and message complexity is given in this section. Also a comparison of Gal-

lagher et. al’s Algorithm(DAMWST) and MCA can be seen in table 3.4.

Theorem 3.3..1. Time complexity of the clustering algorithm has a lower bound of

Ω(logn) and an upperbound of O(n).

Proof. Assume that we have n nodes in the mobile network. Best case occurs when

each node can merge with each other exactly, to double member count at each iteration

such that Level 1 clusters are connected to form Level 2 clusters. Level 2 Clusters are

connected to form Level 4 Clusters and so on. The clustering operation continues until

the to Cluster Level becomes n.The lower bound is Ω(logN). Worst case occurs when a

cluster is connected to a Level 1 cluster at each iteration. Level 1 cluster is connected to

29



Table 3.4. Comparison of DAMWST and MCA

DAMSWT MCA

Time Complexity O(nlogn) O(n)

Messaging Complexity O(nlogn) O(n)

Advantages MST Construction Balanced Clustering

a Level 1 cluster to form a Level 2 cluster, Level 2 cluster is connected to a Level 1 cluster

to form a Level 3 cluster and so on. The clustering operation continues until the Cluster

Level becomes n. The upper bound is therefore O(n).

Theorem 3.3..2. Message complexity of the clustering algorithm is O(n).

Proof. Assume that we have n nodes in our network. For every merge operations

of two clusters, 4 messages (Poll Node, Node Info, Connect Ldr/Connect Mbr,

Leader ACK/Member ACK ) and maximum 2K-1 Change Cluster and 2K-1

Change Cluster ACK are required. For each clustering operation, 4K + 2 mes-

sages are required. The maximum cluster size is 3K − 1, hence number of the clusters is

n/(3K − 1). Total number of messages in this case is (4K+2)*(n/(3K-1)) which means

that the message complexity has an upper bound of O(n).

3.4. Results

The merging clustering algorithm is implemented with ns2 simulator. Total num-

ber of nodes vary from 10 to 100 nodes. Different size of flat surfaces are chosen for each

simulation to create very small, small and medium distances between nodes, as well as,

high dense, dense and medium connected topologies. Surface areas vary from 310m ×
310m to 400m × 400m, 410m × 410m to 500m × 500m, 515m × 515m to 650m × 650m

respectively. Random movements are generated for each simulation. Low, medium and

high mobility scenarios are generated and respective node speeds are limited from 1.0m/s

to 5.0m/s, 5.0m/s to 10.0m/s, 10.0m/s to 20.0m/s. K is changed to obtain different size

of clusters.
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Fig. 3.6 displays the run-time results of the merging clustering algorithm ranging

from 10 to 100 nodes. Run-time values are increased linearly when the total number of

MANETs from is increased 10 to 100 nodes. Linear increase of the total message number

can be seen in Fig. 3.7.

Figure 3.6. Run-time of Merging Clustering Algorithm

Figure 3.7. Total Message Numbers of Merging Clustering Algorithm

Cluster Quality can be measured by the coefficient of variation. In probability

theory and statistics, the coefficient of variation is a measure of dispersion of a probability

distribution. It is defined as the ratio of the standard deviation to the mean. For a

MANET with 40 nodes, K is chosen from 3 to 7 to measure the cluster quality as shown

in Fig. 3.8. Coefficient of variation values from K=3 to K=7 are respectively, 0.53, 0.24,

0.13, 0.64 and 0.63. When K is equal to 5, maximum balanced clusters are obtained

with a coefficient variation of 0.13. Also we can state that total number of clusters are

decreased when K is increased as shown in from Fig. 3.8.
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Cluster Quality against K which is chosen from 5 to 9 for a MANET with 60 nodes

is shown in Fig. 3.9. Coefficient of variation values from K=5 to K=9 are respectively,

0.36, 0.34, 0.32, 0.62, 0.46. Maximum balanced clustering is gained at K=7.

Figure 3.8. Cluster Quality of MCA Against K for 40 nodes

Figure 3.9. Cluster Quality of MCA Against K for 60 nodes

In Fig. 3.10, K is fixed to 5 for a MANET with 40 nodes and cluster quality

with respect to mobility parameter is measured by selecting from low to high mobility.

Coefficient of variations from low to high mobility parameter is respectively, 0.25, 0.37

and 0.18. The MANET with low mobility results in more balanced clusters than MANET

with high mobility due to rapid change of network topology.

Total Surface area of the MANET is an important parameter which effects the

distance between nodes and connectivity. In Fig. 3.11, cluster quality with respect to total

surface area is shown. Size of surface areas are 340m × 340m, 440m × 440m and 560m ×
560m. Coefficient of variations are respectively, 0.15, 0.25 and 0.28. As we increase the
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surface area from 340m × 340m to 560m × 560m, clusters become more balanced. Also,

cluster node counts are decreased and total number of clusters in MANET are increased.

Different size of networks are constructed to measure general cluster quality. Merg-

ing clustering algorithm is simulated on MANETs, beginning from 10 nodes and increas-

ing the network size by 10, up to 100 nodes. From 10 nodes to 100 nodes, K is selected

respectively, 2, 3, 4, 5, 7, 7, 7, 10, 11, 12. In Fig. 3.12, general cluster quality is shown.

Total and Average edge-cut values are recorded as shown in Fig. 3.13 and Fig. 3.14.

The connectivity between the nodes are squared when we double the total number of nodes

in MANET. Total edge-cut values have a polynomial increase when we consider this fact.

Average edge-cut values are stable against the size of the network which can be seen in

Fig. 3.14.

K parameter of the MCA changes the cluster node count and total number of

clusters in MANET. Total and Average edge-cut values for 40 and 60 nodes are measured

against K as shown in Fig. 3.15 and Fig. 3.16. Total edge-cut values are decreasing

linearly with K because the total number of clusters in MANET is increasing. Average

edge-cut values are fluctuating between 150 and 155m with K, resulting in approximate

values since the distance between nodes does not change.

A MANET consisting of highly mobile nodes is open for link failures. Total and

average edge-cut values are measured against mobility as shown in Fig. 3.17 and Fig. 3.18.

Total edge-cut values are increasing linearly with mobility parameter but average edge-cut

values are again fluctuating in narrow band of values.

Lastly, total and average edge-cut values against surface area is measured for 40 and

60 nodes in small, medium and large surface areas as shown in Fig. 3.19 and Fig. 3.20.

As expected both values are increasing when the total surface area of the MANET is

increased.

Consequently, our results conform with the analysis that run-time values and mes-

sage counts grow linearly. Balanced clustering is best achieved in low mobile scenarios

with medium surface area. Also algorithm is stable under different mobility and surface

area conditions. K heuristic changes the cluster sizes and its selection is very important.

Total edge cut values show a polynomial increase when number of nodes are increased

linearly, on the other hand average edge cut values are stable.
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Figure 3.10. Cluster Quality of MCA Against Mobility for 40 nodes

Figure 3.11. Cluster Quality of MCA Against Surface Area for 40 nodes

Figure 3.12. Cluster Quality of MCA Against Total Number of Nodes
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Figure 3.13. Total Edge-cut for Merging Clustering Algorithm

Figure 3.14. Average Edge-cut for Merging Clustering Algorithm

Figure 3.15. Total Edge-cut Against K for Merging Clustering Algorithm
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Figure 3.16. Average Edge-cut Against K for Merging Clustering Algorithm

Figure 3.17. Total Edge-cut for MCA Against Mobility

Figure 3.18. Average Edge-cut for MCA Against Mobility
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Figure 3.19. Total Edge-cut for MCA Against Surface Area

Figure 3.20. Average Edge-cut for MCA against Surface Area
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CHAPTER 4

BACKBONE FORMATION ALGORITHM

4.1. General Idea and Description of the Algorithm

MCA partitions the network into balanced clusters but it lacks a backbone since

the clusterheads are not connected in one hop distance or a connection path between

clusterheads is not defined. On the other hand, DS-based algorithms which are described

in Section 2.1.2. constructs a backbone of clusterheads, however, balanced clustering is

not mentioned. The backbone formation algorithm constructs a backbone architecture on

a clustered MANET. The backbone is constructed as a directed ring architecture to gain

the advantage of this topology and to give better services for other middleware protocols

such as distributed mutual exclusion ”(Erciyes 2004, 2005)” and total order multicast. The

second contribution is to connect the clusterheads of a balanced clustering scheme which

completes two essential needs of clustering by having balanced clusters and minimized

routing delay. Beside these, the backbone formation algorithm is fault tolerant as the

third contribution.

The main idea is maintaining a directed ring architecture by constructing a mini-

mum spanning tree between clusterheads and classifying clusterheads into BACKBONE

or LEAF nodes, periodically. To maintain these structures, each clusterhead broadcasts

a Leader Info message by flooding. In this phase, cluster member nodes are acting as

router to transmit Leader Info messages. Algorithm has two modes of operation; hop-

based backbone formation scheme and position-based backbone formation scheme. In

hop-based backbone formation scheme, minimum number of hops between clusterheads

are taken into consideration in the minimum spanning tree construction. Minimum hop

counts can be obtained during flooding scheme. For highly mobile scenarios, an agreement

between clusterheads must be maintained to guarantee the consistent hop information.

In position-based backbone formation scheme, positions of clusterheads are used to con-

struct the minimum spanning tree. If each node knows its velocity and the direction of

velocity, these information can be appended with a timestamp to the Leader Info message

to construct better minimum spanning tree. But in this mode, nodes must be equipped
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with a position tracker like a GPS receiver.

Every node in the network performs the same local algorithm. The finite state ma-

chine of the algorithm is shown in Fig. 4.1. Each node can be either in IDLE, BACKBONE

or LEAF states described below.

LEAFIDLE

Leader_Info / Ring reconstructed

Leader_Info
/ Ring reconstructed

message to all cluster members

Detect Next Leader Crash
/ Multicast Leader_Crashed

, update the next leader
on the ring

Leader_Info
/ Ring reconstructed

Detect Next Leader Crash
/ Multicast Leader_Crashed

message to all cluster members
, update the next leader

on the ring

Period_TOUT

/ Broadcast Leader_Info

BACKBONE

WT_INFO

Leader_Info / Ring constructed

Period_TOUT /
Broadcast 
Leader_Info

Leader_Info

TOUT

Period_TOUT/ Broadcast Leader_Info

Figure 4.1. Finite State Machine of the Backbone Formation Algorithm

• IDLE: Initially all the clusterheads are in IDLE state. If Period TOUT occurs,

each clusterhead broadcasts a Leader Info message to destination node and will

make a state transition to WT INFO state. If Leader Info message is received, the

clusterhead makes a state transition to LEAF state and reconstructs the ring by

reorganizing the minimum spanning tree.

• WT INFO: A clusterhead in WT INFO state waits for Leader Info message. If a

Leader Info message is received, the clusterhead makes a state transition to LEAF

state and reconstructs the ring. If TOUT occurs, clusterhead makes a transition to

LEAF state which indicates that network has only two active partitions.

• LEAF : A clusterhead in LEAF state has a degree of 1 in its local minimum span-

ning tree. If a Leader Info message is received, the clusterhead reconstructs the
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ring and makes a state transition to BACKBONE state if the degree exceeds 1.

If Period TOUT occurs, clusterhead makes a transition to IDLE state to restart

backbone formation.

• BACKBONE: A clusterhead in BACKBONE state has degree greater than 1.

For each Leader Info message received, the ring is reconstructed. If Period TOUT

occurs, backbone formation is restarted.

Cluster 1

Cluster 8

Cluster 3

Cluster 4

Cluster 2

Cluster 5

Cluster 6

Cluster 9

Cluster 7

Cluster 10

Cluster 11

Cluster 12

Cluster 13

Cluster 14

Figure 4.2. A MANET with its minimum spanning tree

A balanced clustered MANET with its clusterheads and minimum spanning tree

is shown in Fig. 4.2. BACKBONE clusterheads are filled with black and LEAF cluster-

heads are filled with white. The main part of the algorithm is the construction of a ring

architecture by orienting clusterheads in the minimum spanning tree. General idea is to

divide the ring into two parts, a directed path of BACKBONE clusterheads and a directed

path of LEAF nodes. Finally, these two directed paths are connected each other to main-

tain the ring architecture. Each clusterhead aims to find the next clusterhead(leader) to

construct the ring architecture by the procedure in Fig. 4.1.
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ring construct proc

begin

construct minimum spanning tree by total received leader information.

if my degree is equal to 1 then
execute ordinary leaf proc.

else
set my state to BACKBONE.

end

if I am a BACKBONE leader or a LEAF leader which can’t find next

leader then
execute backbone proc.

end

end

Algorithm 4.1. Procedure executed by all leaders to construct a Ring Archi-

tecture

First aim is to make the vital part of backbone formation. The BACKBONE

clusterheads are directing each other from starting BACKBONE clusterhead to the end.

Starting BACKBONE clusterhead is the one with smallest connectivity to other BACK-

BONE nodes. This selection policy of BACKBONE clusterhead results in smaller hops

and reduced routing delay. Ending BACKBONE clusterhead is directing to its LEAF ’s

with smallest node id.
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backbone proc

begin

find the starting BACKBONE leader such that its connectivity to other

BACKBONE nodes is smallest between all other BACKBONE leaders.

find the next leader of starting BACKBONE.

if next leader found then
set the temporary BACKBONE leader to next leader of starting

BACKBONE.

else
find LEAF leader with smallest node id of starting BACKBONE leader.

mark the starting BACKBONE leader.

end

if I am starting BACKBONE leader then
set my next leader to found value.

else
execute backbone connect proc.

end

end

Algorithm 4.2. Procedure executed by BACKBONE leaders and LEAF leaders

which can’t find next leader

LEAF leaders firstly execute the procedure in Fig. 4.4 to find the next leader on

the ring. The aim of directing LEAF leaders with the same BACKBONE leaders to

each other is to make routing process over the same BACKBONE leader to reduce delay.

LEAF leaders which can’t find the next leader, executes the procedure in Fig. 4.2 and

searches a LEAF leader from the previous BACKBONE leaders of their parent to find a

LEAF leader. Last aim is to connect LEAF leaders of different BACKBONE parents to

maintain routing operation by using BACKBONE leaders.
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backbone connect proc

begin

while all BACKBONE nodes are not marked do
find the next BACKBONE leader of temporary BACKBONE leader

with smallest distance which is not marked.

if next leader found then
set the next leader of temporary BACKBONE leader to found value.

mark the temporary BACKBONE leader.

set the temporary BACKBONE leader to next leader.

else
set the next leader of temporary BACKBONE leader to LEAF with

smallest node id.

mark this LEAF leader.

end

end

if I am a LEAF leader which can’t find next leader then
find a child with smallest node id from a previous BACKBONE leaders

of my parent BACKBONE leader.

if next leader found then
set the next leader.

else
set the next leader to starting BACKBONE leader.

end

end

end

Algorithm 4.3. Procedure executed to connect BACKBONE leaders

Third contribution of the algorithm is the fault tolerance of clusterheads. Each

clusterhead can maintain the list of cluster member nodes. In our backbone formation

algorithm, this list can be appended to Leader Info message by each clusterhead. After

the formation of the ring is completed, if a clusterhead detects the crash of the next

clusterhead, it can multicast a Leader dead message to all cluster members which initiates
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clustering operation. To support this functionality, clustering layer must be updated. If

this crash occurs during a real time operation, clusterhead updates its next leader to

next-next leader and continues its operation since it knows the global information of all

clusterheads.

ordinary leaf proc

begin

set my state to LEAF.

Find a LEAF leader with same parent and nearest greater node id.

if found then
set my next leader to this LEAF leader’s node id and mark this LEAF.

end

end

Algorithm 4.4. Procedure executed by LEAF leaders

4.2. An Example Operation
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Figure 4.3. An Example Operation for Backbone Formation Algorithm
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Assume the MANET with clusterheads(leaders) in Fig. 4.3.a. Clusters are obtained

using MCA. Nodes 65, 15, 98, 30, 40, 13, 28, 80, 74, 19, 51 and 99 are leaders of clusters

1 to 12, respectively. Each clusterhead floods the Leader Info message to the network.

After each clusterhead receives the Leader Info message of the others, minimum spaning

tree in Fig. 4.3.a is constructed by all clusterheads. Nodes 65, 98, 40, 13, 80, 19 and 99

identify themselves as LEAF leaders since their degree are all 1. Node 15, 30, 28, 74

and 51 identify themselves as BACKBONE leaders since their degrees are greater than

1. BACKBONE leaders are filled with black and LEAF leaders left unfilled as shown in

Fig. 4.3.a.

To connect BACKBONE nodes, a starting BACKBONE leader must be chosen.

The criteria is to select the BACKBONE node which has the smallest connection to other

BACKBONE leaders. Node 15 is connected to 30, 30 is connected to 15 and 28, 28 is

connected to node 30 and node 74, node 74 is connected to node 28 and 51, 51 is connected

to 74. Either of the node 15 and 51 can be the choice for starting BACKBONE leader.

Node 15 is selected because its node id is smaller. 15 selects the next leader as 30, 30

selects the next leader 28, operation continues in this way. Ending BACKBONE leader

points to its LEAF with the smallest node id. These directions can be seen in Fig. 4.3.b

with bold directed lines.

LEAF leaders of a BACKBONE leader are directed to each other from smallest

to greatest. Node 19 is directed to 99, 13 is directed to 80, 65 is directed 98 as seen in

Fig. 4.3.c with dotted directed lines.

Lastly, LEAF leaders of different BACKBONE leaders are connected as in

Fig. 4.3.d. Each LEAF leader which can’t find next leader, searches a LEAF leader

from children of previous BACKBONE leader of its parent BACKBONE leader. 99 is

connected to 13, 80 is connected to 40, 40 is connected 65, 98 is connected to 15 as shown

with dashed lines in Fig. 4.3.d.

4.3. Analysis

Time and message complexity is given in this section. Also a comparison TBONE

”(Rubin et al. 2002)”, d-hop algorithm ”(Ya-feng et al. 2004)”, SBC ”(Haitao and Gupta

2004)”, RVBSM ”(Min et al. 2005)”, EBS ”(Huejiun and Rubin 2005)” and Backbone
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Table 4.1. Comparison of Backbone Constructing Algorithms

Time Complexity Messaging Complexity

TBONE not given not given

d-hop algorithm O(Dn), D : graph diameter O(nd)

SBC not given not given

RVBSM O(n) O(Dn), D : maximum degree

EBS O(1) per node O(1) per node

BFA O(Kn), K : # of clusters O(Kn)

Table 4.2. Comparison of Backbone Constructing Algorithms cont...

Main Advantage

TBONE energy efficient since high capacity nodes are selected.

d-hop algorithm decreased routing delay since less forwarding nodes are selected.

SBC energy efficient since seed nodes are selected.

RVBSM reliable since many parameters are considered.

EBS energy efficient since enhanced idea of TBONE.

BFA better services for upper layers since construction of ring architecture.

Formation Algorithm(BFA) can be seen in table 4.1 and 4.2.

Theorem 4.3..1. Message complexity of the backbone formation algorithm is O(Kn).

Proof. Assume that we have n nodes in our network. K leaders flood the message to

the network. Total number of messages in this case is Kn which means that message

complexity has an upper bound of O(Kn).

Theorem 4.3..2. Time complexity of the backbone formation algorithm is O(Kn).

Proof. Assume that we have n nodes in our network. Flooding of K messages to the

network takes Kn time.
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4.4. Results

The position-based backbone formation algorithm is implemented with the ns2

simulator. Clustering is obtained using the MCA algorithm. Number of nodes in the

clusters can be adjusted by the K parameter of MCA. Different size of flat surfaces are

chosen for each simulation to create medium, small and very small distances between

nodes. Medium, small and very small surfaces vary between respectively 310m × 310m to

400m × 400m, 410m × 410m to 500m × 500m, 515m × 515m to 650m × 650m. Random

movements are generated for each simulation. Low, medium and high mobility scenarios

are generated and node speeds are limited between 1.0m/s to 5.0m/s, 5.0m/s to 10.0m/s,

10.0m/s to 20.0m/s respectively. K parameter of merging clustering algorithm is changed

to obtain different number of clusterheads.

Round-trip delay as measured against number of clusterheads, total number of

nodes, mobility and surface area are recorded. As depicted in Fig. 4.4, the time complexity

increases linearly and at worst, backbone formation scheme is completed in 1.5s for a

MANET with 100 nodes. For a MANET with 50 nodes, number of clusterheads are

selected from 3 to 8 to measure the round-trip delay in Fig. 4.7. A linear increase can

be seen in Fig. 4.7 which starts from 35ms and ends in 65ms approximately. Round-

trip delay against total number of nodes is measured with constant 4 clusters. Total

number of nodes are varied between 10 to 100 in Fig. 4.8. Round-trip delay times are

increasing linearly from 20ms to 60ms approximately as shown in Fig. 4.8. In small surface

scenarios connectivity between nodes are higher because of small distance between nodes.

Connectivity between nodes decreases the routing delay. Fig. 4.6 shows the effects of

distance between nodes to round-trip delay of the ring. Lastly, mobility parameter is

changed to obtain the behavior of the algorithm with respect to mobility. Our algorithm

results in approximate round-trip delay values for high mobile scenarios as shown in Fig.

4.5.

Consequently, our results conform with the analysis that run-time values are grow-

ing linearly. Round-trip delay increases linearly against the total number of nodes and

cluster number in MANET. Round-trip delay values are stable under different mobility

conditions and different size of surface areas.

47



Figure 4.4. Run-time Performance for Backbone Formation Algorithm

Figure 4.5. Round-trip Delay Against Mobility for BFA

Figure 4.6. Round-trip Delay Against Surface Area for BFA

48



Figure 4.7. Round-trip Delay Against number of Clusterheads for BFA

Figure 4.8. Round-trip Delay Against number of Nodes for BFA

49



CHAPTER 5

MOBILE RICART-AGRAWALA ALGORITHM

5.1. General Idea and Description of the Algorithm

For distributed mutual exclusion in MANETs, a hierarchical architecture is con-

structed where nodes form clusters and each cluster is represented by a coordinator in

the ring ”(Erciyes 2004, 2005)”. After constructing this architecture, we can execute the

Mobile RA algorithm. The main idea is to form coordinators as interface of other nodes to

the ring. The relation between the cluster coordinator and an ordinary node is similar to a

central coordinator based mutual exclusion algorithm. The types of messages exchanged

are Node Req, Coord Req, Coord Rep and Node Rel where a node first requests a critical

section and upon the reply from the coordinator, it enters its critical section and then

releases the critical section. The message types are described below:

• Node Req : Any node which wants to execute CS, sends a Node Req message to its

coordinator. After sendind this message, node waits for Coord Rep message from

its coordinator to execute CS.

• Coord Req : After receiving Node Req message, Coordinator sends this message to

the next coordinator on the ring if all pending requests in its cluster have greater

timestamps than this incoming request. Otherwise, it enqueues this message to the

wait queue. If a coordinator receives this message, it forwards it according to the

timestamp of this message. If the coordinator which is the originator of this message

receives its own message, it sends a Coord Rep message if there no other waiting

requests with timestamp lower than itself or a CS executing node at the same time.

• Coord Rep: A node which wants to execute CS, will execute CS after receving this

message from its coordinator

• Node Rel : After executing CS, node sends this message to its coordinator indicating

that their execution is completed.
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The coordinators can be either in IDLE, WAITRP or WAITND state as described

below:

• IDLE : Coordinators in IDLE state only forwards the Coord Req messages to the

next coordinator on the ring. If a Node Req message is received, coordinator sends

a Coord Req message to the next coordinator and makes a transition to WAITRP

state.

• WAITRP : Coordinator in WAITRP state waits for its original Coord Req message.

Coord Req messages of other coordinators are enqueued if the timestamp is greater.

After receiving its original Coord Req message, coordinator makes a transition to

WAITND state. Received Node Req messages are forwarded as Coord Req messages

to next coordinators.

• WAITND : Coordinator in WAITND state waits for Node Rel message from its

cluster member which executes CS. After receiving Node Rel, it makes a transition to

IDLE state, if there is no pending request from its cluster members in its wait queue.

Otherwise it makes a transition to WAITRP state. Received Node Req messages

are forwarded as Coord Req messages to the next coordinators.

The finite state machine representation of the Mobile RA coordinator is shown in

Fig. 5.1 ”(Erciyes 2004, 2005)”.

Node_Req

WAITND

IDLE

Coord_Req

Coord_Req

Coord_Req/

/ 

Coord_Rep
/ Node_Rep

Node_Rel

Coord_Rep

WAITRP
Node_Req

Coord_Rep/ 

Node_Rel Coord_Rep/ 

Node_Rel
Coord_Rep/ Coord_Rep/ 

Node_Rel
Coord_Rep/ 

/ Coord_Req

Node_Req
Coord_Req/

Figure 5.1. Finite State Machine of the Mobile RA Coordinator
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5.2. An Example Operation

Fig. 5.2 shows an example scenario for the Mobile RA Algorithm. Node 6, node

4, node 16 makes request for critical section respectively at 3.75s, 3.85s, 3,90s. Execution

Time of critical section is taken as 350ms. The following describes the events that occur :

1. Node 6, in cluster 19 makes a critical section request at 3.75s by sending Node Req

(6,19,3.75) message to node 19 which is the cluster coordinator. Node 19 receives the

message at 3.76s and changes its state to WAIT RP . Node 19 sends a Coord Req

(6,19,3.75) message to the next coordinator(node 14) on the ring. Node 14, which

is in IDLE state and has no pending requests in its cluster, receives the Coord Req

(6,19,3.75) message at 3.78s and forwards the message to the next coordinator(node

17) on the ring. The message traverses the ring and is received by node 19 which is in

WAIT RP state at 3,82s meaning all of the coordinators have confirmed that either

they have no pending requests or their pending requests all have higher timestamps.

Node 19 sends a Coord Rep message to node 6 and changes its state to WAIT ND.

Node 6 receives the Coord Rep message at 3.83s and enters the critical section. Step

1 is depicted in Fig. 5.2.(a).

2. Node 4, in cluster 18 makes a critical section request by sending a Node Req

(4,18,3.85) at 3.85s. Node 18 receives the Node Req (4,18,3.85) message at 3.86s

and sends a Coord Req (4,18,3.85) message to its next coordinator(node 19) on the

ring. Node 19, which is in WAIT ND state, receives the message and enqueues the

Coord Req (4,18,3.85) at 3.87s. Node 16 makes a critical section request at 3.90s.

Node 18 which is in WAIT RP state receives the Coord Req (16,17,3.90) message

and enqueues the message at 3.93s. Step 2 is depicted in Fig. 5.2.(b).

3. Node 6 exits from critical section at 4.18s and sends a Node Rel message to node

19. Node 19 which is in WAIT ND state receives the message at 4.19s and makes

a transition to IDLE state. Node 19 dequeues and forwards Coord Req (4,18,3.85)

message to the next coordinator(node 14). The Coord Req (4,18,3.85) message is

forwarded by node 17 since its request has higher timestamp. Node 18 receives its

original request at 4.25s and sends a Coord Rep message to node 4. Node 4 enters

the critical section at 4.26s. Step 3 is depicted in Fig. 5.2.(c).
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Figure 5.2. Operation of the Mobile RA Algorithm

4. Node 4 finishes to execute critical section at 4.61s. Node 18 receives the Node Rel

message at 4.62s. Node 18 dequeues and forwards the Coord Req (16,17,3.90)

message to its next coordinator(node 19) on the ring. Operation is continued as

explained before. Node 17 receives Node Rel message from node 16 at 5.03s. The

Step 4 is depicted in Fig. 5.2.(d).

If there are multiple requests within the same cluster, time stamps are checked

similarly for local request. The order of execution in this example is nodes 4 → 6 → 16

in the order of the timestamps of the requests.

5.3. Analysis

Since the sending and receiving ends of the Mobile RA algorithm are the same

as of RA algorithm, the safety, liveness and fairness attributes are the same. The upper
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and lower bounds for total message number, response time and synchronization delay

are shown and proven in theorems and corollaries below. ”(Erciyes 2004, 2005)”. The

comparison of Mobile RA and RA is shown in table 5.1.

Theorem 5.3..1. The total number of messages per critical section using the Mobile RA

Algorithm is k+3d where k is an upper bound on the number of neighbor nodes in the ring

including the cluster coordinators and d is an upper bound on the diameter of a cluster.

Proof. An ordinary node in a cluster requires three messages ( Node Req, Coord Rep

and Node Rel) per critical section to communicate with the coordinator. Each of these

messages would require maximum d transfers between a node and the coordinator. The

full circulation of the coordinator request (Coord Req) requires k messages resulting in

k+3d messages in total.

Corollary 5.3..2. The Synchronization Delay(S) in the Mobile RA Algorithm varies from

2dT to (k + 2d - 1)T.

Proof. When the waiting and the executing nodes are in the same cluster, the required

messages between the node leaving its critical section and the node entering are the

Node Rel from the leaving node and Coord Rep from the coordinator resulting in 2dT

message times for Smin. However, if the nodes are in different clusters, the Node Rel

message has to reach the local coordinator in d steps, circulate the ring through k − 1

node to reach the originating cluster coordinator in the worst case and a Coord Rep

message from the coordinator is sent to the waiting nodes in d steps resulting in Smax=(k-

1)T+2dt=(k+2d-1)T.

Corollary 5.3..3. In the Mobile RA Algorithm, the response times are Rlight=(k +

3d)T+E and Rheavy varies from w(2dT +E) to w((k +2d-1)T+E) where k is the number

of clusters and w is the number of pending requests.

Proof. According to Theorem 5.3..1, the total number of messages required to enter a

critical section is k+3d. If there are no other requests, the response time for a node will be

Rlight=(k+3d)T +E including the execution time(E) of the critical section. If there are

w pending requests at the time of the request, the minimum value Rheavy min is w(2dT +

E). In the case of Smax described in Corollary 5.3..2, Rheavy max becomes w((k + 2d-1)T

+ E) since in general Rheavy=w(S + E).
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Table 5.1. Comparison of Mobile RA and RA

Mobile RA RA

Total Message Count k+3d 2(N-1)

Response timelight (k+3d)T+E 2T+E

Response timeheavy w((k-1+2d)T+E) w(T+E)

Synchronization delay (k+2d-1)T NT

5.4. Results

We implemented the distributed mutual exclusion algorithm with the ns2 simula-

tor. A random load generator is implemented to generate high, medium and low loads for

different number of nodes. Different size of flat surfaces are chosen for each simulation to

create small, medium and large distances between nodes.

Very Small, Small and Medium surfaces vary between 310m × 310m to 400m ×
400m, 410m × 410m to 500m × 500m, 515m × 515m to 650m × 650m respectively.

Random movements are generated for each simulation. Low, medium and high mobility

scenarios are generated and respective node speeds are limited between 1.0m/s to 5.0m/s,

5.0m/s to 10.0m/s, 10.0m/s to 20.0m/s. K parameter of merging clustering algorithm is

changed to obtain different size of clusters. Response times and synchronization delays

as measured with respect to load, mobility, distance and K are recorded. Execution of

critical section is selected as 100ms.

Response time behaves as expected in low load scenarios as shown in Fig. 5.3.

Synchronization delay values are smaller in medium load as shown in Fig. 5.4. The

synchronization delay is 0 in low load scenarios since there will be no waiting requests

in the queues. When the load is increased response time increases due to waiting time

of requests in the queue. Also response time and synchronization delay increases due

to collisions and routing delays caused by high network traffic as shown in Fig. 5.3 and

Fig. 5.4. Response time and synchronization delay results in approximate values by

mobility parameter due to rapid change of network topology as shown in Fig. 5.5 and

Fig. 5.6.
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Figure 5.3. Response Time against Load for Mobile RA

Figure 5.4. Synchronization Delay against Load for Mobile RA

Fig. 5.7 and Fig. 5.8 shows the effects of distance between nodes to response time

and synchronization delay. K parameter is selected between 3 to 8 in a MANET with

60 node. In fixed number of nodes, as the cluster size increases, total number of clusters

in network decreases. This also reduces the number of cluster leaders forming the ring

and routing delay which causes decreasing the response time and synchronization delay

as shown in Fig. 5.9 and Fig. 5.10.
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Figure 5.5. Response Time against Mobility for Mobile RA

Figure 5.6. Synchronization Delay against Mobility for Mobile RA
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Figure 5.7. Response Time against Surface Area for Mobile RA

Figure 5.8. Synchronization Delay against Surface Area for Mobile RA

Consequently, our results conform with the analysis that response time values

against low and medium loads increase linearly with a small gradient. Synchronization

delay values against medium and high load also increase linearly. Response time against

high load makes a sharp increase due to high network traffic. Response time and syn-

chronization delay values are stable under different mobility and surface area conditions.

Response time and synchronization delay values decrease linearly against the number of

clusters in MANET.
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Figure 5.9. Response Time against K for Mobile RA

Figure 5.10. Synchronization Delay against K for Mobile RA
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CHAPTER 6

CONCLUSION

We proposed and implemented three protocols on a hierarchical architecture to

solve the balanced clustering, backbone formation and distributed mutual exclusion prob-

lems for mobile ad hoc networks(MANET)s. First layer is the clustering layer which is

solved by the design and implementation of Merging Clustering Algorithm. The origi-

nal idea of the Merging Clustering Algorithm is to focus on the clustering operation by

discarding the details of minimum spanning tree algorithms to reduce time and message

complexity. The second contribution is the usage of lower and upper bound heuristics

which results balanced number of nodes in the clusters formed. We describe the algo-

rithm, present it by a finite state machine and explain the states and message types in

this finite state machine. We analyzed its time and message complexity. We first measure

the runtime performance, total message number. Cluster quality against K for 40 and 60

nodes, against mobility for 40 nodes, against surface area for 40 nodes and against total

number of nodes are measured. We also measure the total edge cut, average edge cut

against K, mobility and surface area. The implementation results obtained conform with

the theoretical analysis and show that the algorithm is scalable in terms of its running

time and produces evenly distributed clusters.

Backbone Formation Algorithm solves the problem of second layer, backbone con-

struction layer. The original idea of the Backbone Formation Algorithm is the construc-

tion of backbone architecture as a directed ring. The second contribution is to connect

the clusterheads of a balanced clustering scheme which completes two essential needs of

clustering by having balanced clusters and minimized routing delay. Beside these, the

backbone formation algorithm is fault tolerant as the third contribution. We describe the

algorithm by its finite state machine representation and explain necessary details. Also,

the procedures used to construct the ring is included. We measure the runtime perfor-

mance, round-trip delay against clusterhead number, total number of nodes, mobility and

surface area is measured. The implementation results shows that the algorithm is scalable

in terms of its running time and round-trip delay against mobility, surface area, number

of nodes and number of clusterheads.
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Lastly, we implement the Mobile Ricart-Agrawala Algorithm on top of these pro-

tocols. The original idea of the Mobile Ricart-Agrawala Algorithm(Mobile RA) is the

construction of the hierarchical architecture where nodes form clusters and each cluster

is represented by a coordinator in the ring. The MANET is partitioned into clusters at

regular intervals by the Merging Clustering Algorithm which also provides clusterheads

same as coordinators. The Backbone Formation Algorithm provides directed ring archi-

tecture. The Mobile RA Algorithm, together with the architecture that it is executed

on, provides improvement over message complexities of Ricart and Agrawala and other

distributed mutual exclusion algorithms. The algorithm is explained by finite state ma-

chine representation. The analysis of the algorithm supports to sketch upper and lower

bounds for response time and synchronization delay. Response time and syncronization

delay against load type, surface area, mobility, K heuristic and total number of clusters

is measured. From the test results, we observe that response time R and synchronization

delay S is scalable with respect to the number of mobile nodes for all load states in the

MANET as high, medium or low loads. R and S is also scalable with respect to node

mobility and the distance between the mobile nodes.

Mobile Ricart Agrawala Algorithm

Backbone Formation Algorithm

Merging Clustering Algorithm1

2

3

Figure 6.1. Our architecture

In summary, we proposed a three layer architecture for MANETs as shown in

Fig. 6.1. Implementations of other higher level functions on top of the last two layers are

possible and future studies can benefit from this architecture. We are also planning to

make enhancements for Merging Clustering Algorithm, Backbone Formation Algorithm

and Mobile Ricart Agrawala Algorithm. We first plan to reduce the delay of clustering
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process which is effected by exposed terminal problem. Secondly, we are planning to im-

plement a proactive cluster based routing protocol for MANETs by using the clusters of

MCA. After implementing routing protocol, K parameter can be dynamically calculated

by all nodes since the number of active nodes in the network can be estimated. Clus-

ter gateway nodes will be defined by MCA to reduce the message overhead of BFA. A

clock synchronization algorithm will be maintained for Mobile RA. After these enhance-

ments total order multicast protocol will be implemented. Lastly, we plan to adopt these

protocols to the Sensor Network environment.
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APPENDIX A

SIMULATION SETUP

GloMoSim ”(Zeng et al. 1998)”, QualNet ”(Scalable Network Technologies Corpo-

ration 2005)” , ns2 ”(Fall and Varadhan 2006)”, and OPNET ”(OPNET Technologies

Corporation 2006)” are programs used to simulate MANETs. We choose ns2 simulator

for several reasons. Firstly, ns2 is probably the most commonly used software of the four.

The source code can be downloaded, free of charge, and compiled on different platforms,

e.g. Unix and Windows. Many wireless extensions have been contributed from the UCB

Daedelus, the CMU Monarch projects and Sun Microsystems. In ns2, it’s possible to alter

and write your own code to make it more suitable for your own scenarios ”(Halvardsson

and Lindberg 2004)”.

The wireless model essentially consists of the MobileNode class at the core, with

additional supporting features that allows simulations of multi-hop ad-hoc networks, wire-

less LANs etc. The MobileNode object is a split object. The C++ class MobileNode is

derived from parent class Node. MobileNode is the basic ns2 Node object with added

functionalities like movement, ability to transmit and receive on a channel that allows

it to be used to create mobile, wireless simulation environments. The mobility features

including node movement, periodic position updates, maintaining topology boundary etc.

are implemented in C++ while plumbing of network components within MobileNode it-

self (like classifiers, dmux, LL, Mac, Channel etc) have been implemented in Otcl. The

network stack for a mobile node consists of a link layer(LL), an ARP module connected to

LL, an interface priority queue(IFq), a mac layer(MAC ), a network interface(netIF ), all

connected to the channel. These network components are created and plumbed together

in OTcl ”(Fall and Varadhan 2006)”. To create and configure nn number of mobile nodes

with network stack, Otcl codes are in Fig. A.1.

The protocol stack is implemented in C++. We must firstly modify the exist-

ing UDP and MAC layer implementations to communicate with our new layers. UDP-

Mergclus class header with its comments can be seen in Fig. A.2. Modifications to rec-

vACK method of MAC802 11 class must be made to communicate with upper layers

which can be seen in Fig. A.3. Also a new Queue must be implemented to ensure the
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packet delivery. MCFQue class which wraps a queue implementation can be seen in Fig.

A.5. A singleton UDPMCContainer class is implemented to provide communication of

layers which can be seen in Fig. A.4. MCA, BFA and Mobile RA is implemented respec-

tively by MergClusApp class header in Figs . A.6, A.7 and A.8, RingApp class header

in Figs. A.9 and A.10, MCDMApp class header in Figs. A.11 and A.12 with their

comments.

The mobile node is designed to move in a three dimensional topology. However the

third dimension (Z) is not used. That is, the mobile node is assumed to move always on a

flat terrain with Z always equal to 0. Thus the mobile node has X, Y, Z(=0) coordinates

that is continually adjusted as the node moves. The node movement is defined in a

separate file for convenience. Movement file can be generated using CMU’s movement

generator. By this generator, one can set number of nodes, pause time, maximum speed,

minimum speed, simulation time, maximum X and Y coordinates ”(Fall and Varadhan

2006)”. The executable command of movement generator is given below:

• setdest -v <version> -n <number of nodes> -m <minimum speed(m/s)> -M

<maximum speed(m/s)> -t <simulation time(s)> -p <pause time> -x <width of

surface area> -y <height of surface area> > scenario file

In our simulations, we use the last version(2) of setdest command. We generate

very small, small and medium surfaces which vary between 310m × 310m to 400m ×
400m, 410m × 410m to 500m × 500m, 515m × 515m to 650m × 650m respectively. Low,

medium and high mobility scenarios are generated and respective node speeds are limited

between 1.0m/s to 5.0m/s, 5.0m/s to 10.0m/s, 10.0m/s to 20.0m/s. Pause time is set to

the simulation time divided by 5.

After protocols are implemented in C++, the scenario files are written in Otcl. A

complete scenario file is given with its comments in Figs. A.13, A.14 and . A.15.
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$ns_ node-config

-adhocRouting $opt(adhocRouting)

-llType $opt(ll)

-macType $opt(mac)

-ifqType $opt(ifq)

-ifqLen $opt(ifqlen)

-antType $opt(ant)

-propInstance [new $opt(prop)]

-phyType $opt(netif)

-channel [new $opt(chan)]

-topoInstance $topo

-wiredRouting OFF

-agentTrace ON

-routerTrace OFF

-macTrace OFF

for { set j 0 } { $j < $opt(nn)} {incr j} {

set node_($j) [ $ns_ node ]

}

Figure A.1. Otcl code to create and configure mobile node
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// Author: Orhan Dagdeviren

// File: udp-mc.h // Modified UDP Implementation

// Date: 1/6/2006 (for ns2.28)

#ifndef ns_udp_mergclus_h

#define ns_udp_mergclus_h

#include "udp.h"

#include "ip.h"

#include "mc_protocol.h"

// Merging Clustering Header Structure

struct hdr_mergclus {

int nbytes; // bytes for mergclus pkt

double time; // current time

int source; // source address

int destination; // destination address

int real_destination; // real destination

int real_source; //use for ldr_poll_node message

int cluster_level; // Cluster Level

int cluster_leader; // Cluster Leader

int old_cluster_leader; // Old Cluster Leader

int message_type; //Message Type

int leader_states[N_NODES]; //

int message_propagation_type;//Message Propagation Type

ra_req_t request;

// Packet header access functions

static int offset_;

inline static int& offset() { return offset_; }

inline static hdr_mergclus* access(const Packet* p) {

return (hdr_mergclus*) p->access(offset_);

}

};

// UdpMergClusAgent Class definition

class UdpMergClusAgent : public UdpAgent {

public:

UdpMergClusAgent(); // Constructor

UdpMergClusAgent(packet_t); // Constructor

Application* getApplication(); // Sends application reference

virtual int supportMergClus() { return 1; }

virtual void enableMergClus() { support_mergclus_ = 1; }

// Send and receive functions

virtual void sendmsgdst(int nbytes, const char *flags = 0, int32_t dist=0);

virtual void sendmsg(int nbytes, const char *flags = 0);

void recv(Packet*, Handler*);

// Notification for ACKs

void notification(int src);

#endif

Figure A.2. UDPMergClusAgent class header
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void Mac802_11::recvACK(Packet *p) {

.

.

int source=-1;

if(p!=NULL){

struct ack_frame *af = (struct ack_frame*)p->access(hdr_mac::offset_);

source=af->src;

}

.

.

int my_addr=addr();

UdpMergClusAgent* udp=

(UdpMergClusAgent*)UDPMCContainer::instance().getElementById(my_addr);

udp->notification(source);

}

Figure A.3. Modifications in Mac802 11 recvACK method

// Author: Orhan Dagdeviren

// File: udpmccontainer.h // Singleton class for

// communicating layers

// Date: 1/6/2006 (for ns2.28)

#ifndef ns_udpmc_h

#define ns_udpmc_h

#include "udp-mc.h"

class UDPMCContainer{

public:

UDPMCContainer(); // Constructor

static UDPMCContainer& instance() {

return (*instance_);// general access to UDPMCContainter

}

UdpMergClusAgent* udpcont[N_NODES]; //Reference array

void addObject(UdpMergClusAgent *element); // Adds an object to

// reference array

void initInstance(); // Initializes the instance

UdpMergClusAgent* getElementById(int paramid); // returns

// reference with id

protected:

static UDPMCContainer* instance_; // container instance

int index;

};

#endif

Figure A.4. UDPMCContainer class header
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// Author: Orhan Dagdeviren

// File: mcfque.h // Queue implementation

// Date: 1/6/2006 (for ns2.28)

#include "timer-handler.h"

#include "packet.h"

#include "app.h"

#include "udp-mc.h"

class MCDMApp;

class MCFQue : public Application

{

public:

MCFQue(); // Constructor

void init(); // initializes the queue

void init_fqueue();

void check_fqueue(); // Checks the queue

void enqueue_fqueue(hdr_mergclus *element); // Enqueues

// into queue

void dequeue_fqueue(); // Dequeues from queue

void print_fqueue(); // Prints elements in queue

hdr_mergclus send_queue[MAX_SEND]; //Queue

int number_to_send; //Number of elements for sending

int head; // Index of head element

int debug; // Debug status

int ready_to_send; // Ready-to-send status

protected:

int command(int argc, const char*const* argv); // Otcl command

// linkage

};

Figure A.5. MCFQue class header
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// Author: Orhan Dagdeviren

// File: wmc-app.h // MCA Implementation

// Date: 1/6/2006 (for ns2.28)

#include "timer-handler.h"

#include "packet.h"

#include "app.h"

#include "mcfque.h"

#include "mobilenode.h"

class MergClusApp;

// Merging Clustering Protocol uses this timer to

// schedule events

class MCTimer : public TimerHandler {

public:

MCTimer(MergClusApp* t) : TimerHandler(), t_(t) {}

inline virtual void expire(Event*);

inline virtual void init();

inline virtual void tout_on(double added_time);

inline virtual void tout_off();

inline virtual void set_tout_seconds(double seconds);

inline virtual void tout_schedule(double time);

void state_tout();

protected:

MergClusApp* t_;

double tout_seconds;

int tout_state;

};

// Merging Clustering

class MergClusApp : public Application {

public:

MergClusApp(); //Constructor

// Send an receive packets

void send_mergclus_pkt(int32_t dist,int32_t real_source_p,int message_type,

int cluster_level_p,int cluster_leader_p,int old_cluster_leader_p);

void send_msg(int nbytes,const char* msg);

virtual void recv_msg(int nbytes, const char *msg = 0); // (Sender/Receiver)

//Action Not Applicable

void actNA(void *message);

//IDLE State transition functions

void idle_poll_node(void *message);

void idle_period_tout(void *message);

void idle_tout(void *message);

//WT_INFO State transition functions

void wt_info_node_info(void *message);

void wt_info_period_tout(void *message);

void wt_info_tout(void *message);

//WT_ACK State transition functions

void wt_ack_mbr_ack(void *message);

void wt_ack_ldr_ack(void *message);

void wt_ack_period_tout(void *message);

void wt_ack_tout(void *message);

Figure A.6. MergClusApp class header 76



//MEMBER State transition functions

void member_poll_node(void *message);

void member_change_cluster(void *message);

void member_period_tout(void *message);

void member_tout(void *message);

//LEADER State transition functions

void leader_poll_node(void *message);

void leader_ldr_poll_node(void *message);

void leader_period_tout(void *message);

void leader_tout(void *message);

void leader_k_check(void *message);

//LDR_WT_CONN State transition functions

void ldr_wt_conn_connect_mbr(void *message);

void ldr_wt_conn_connect_ldr(void *message);

void ldr_wt_conn_period_tout(void *message);

void ldr_wt_conn_tout(void *message);

//IDLE_WT_CONN State transition functions

void idle_wt_conn_connect_mbr(void *message);

void idle_wt_conn_connect_ldr(void *message);

void idle_wt_conn_period_tout(void *message);

void idle_wt_conn_tout(void *message);

//LDR_WT_ACK State transition functions

void ldr_wt_ack_change_cluster_ack(void *message);

void ldr_wt_ack_period_tout(void *message);

void ldr_wt_ack_tout(void *message);

void ldr_wt_ack_poll_node(void *message);

void ldr_wt_ack_ldr_poll_node(void *message);

void ldr_wt_ack_connect_ldr(void *message);

// To manage leader status

void reset_chg_clu_acks();

void reset_leader_states();

int check_acks();

// Poll neighbor functions

void poll_neighbor_next();

void poll_neighbor();

// Broadcasts CHANGE_CLUSTER

void broadcast_change_cluster(int old_cluster_leader_p);

// Finite state function for jumping to next state

void fsm_jump_next_state(void *message);

void init();

void init_fsm();

// Utility functions

char * message_to_string(int message_type_p);

char * state_to_string();

// Debug message function

void debug_msg(void *message);

// Notification functions for lower and upper layers

void notification(int source);

virtual void upper_notification();

void print_end_info(); // Prints end info

Figure A.7. MergClusApp class header, cont... 77



// Protocol variables

int current_state;

int previous_state;

int cluster_level;

int cluster_leader;

int peer_old_cluster_leader;

int my_id;

int leader_states[N_NODES];

int leader_timeout_count;

int debug;

int message_count;

int last_rec_con_type; // last received connection type

// LDR_CONN or MBR_CONN

int next_coordinator;

int last_send_message_type;

hdr_mergclus last_recv_message;

hdr_mergclus last_send_message;

Application* upper_app_;

Application* ring_app_;

MCFQue* fque; // Reference to Queue

int pktsize_; // Packet size

int running_; // If 1 clustering app. is running

MCTimer mc_timer_; // Timer reference

protected:

int command(int argc, const char*const* argv); // Otcl command

// linkage

};

Figure A.8. MergClusApp class header, cont...
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// Author: Orhan Dagdeviren

// File: mc-ring.h // BFA Implementation

// Date: 1/6/2006 (for ns2.28)

#include "packet.h"

#include "app.h"

#include "mc-ring.h"

#include"mobilenode.h"

class MCRingApp : public Application {

public:

MCRingApp(); // Constructor

void init(); // initiliazes the variables

// Calculates distance between X1,Y1 and X2,Y2

double calculateDistance(double X1,double X2,double Y1,double Y2);

// Forms the ring by calling other procedures

void formRing();

void constructRingFromGraph();

void createGraphFromLeaders();

// Floods the Leader_Info message

void broadcastLeader(int real_source,double X,double Y,int cluster_leader);

// Receives message

void recv_msg(int nbytes, const char *msg);

// Finds the MST by Prim’s Algorithm

void primmst(int start);

void printMst(); // Prints MST

// Finds the start leader for mst construction

int findStartLeaderForMst();

// Finds the initial backbone leader for backbone connection

int findInitialBackboneLeaderForMst();

// Finds starting backbone node

int findStartingBackboneNode();

//Finds the Next Backbone Node

int findNextBackboneNode(int start);

// Finds the next LEAF in same Parent Backbone Node

int getNextLeafInSameParent(int leaf);

// Finds the Previous Backbone Node

int getBackBackbone(int coordinator);

// Finds the Previous Backbone Node’s Leaf node

int getBackBackboneLeaf(int leaf);

Figure A.9. MCRingApp class header
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// Finds an available LEAF node in BACKBONE node

int getAvaliableLeafInBackbone(int backbone);

// Finds the next LEAF

int findNextLeaf(int leaf);

// Finds the Smallest Leaf of Backbone Node

int findSmallestLeafofBackbone(int start);

// Finds the degree of nodes

void findDegreeofNodes();

// Identify nodes as BACKBONE and LEAF nodes

void identifyNodes();

// Connects BACKBONE nodes

void connectBackboneNodes(int startingBackboneNode);

// Connects leaf nodes

void connectLeafNodes(int startingBackboneNode);

void connectLeafNodes(int startingLeaf,int parent,int startingBackbone);

// Finds the parent of LEAF node

int getParentofLeaf(int leaf);

// Protocol variables

hdr_mergclus header;

Application *mcapp_; Application reference

graph_t graph_st; // Graph instance

hdr_mergclus leaderInfo[N_NODES];

protected:

int command(int argc, const char*const* argv); // Otcl command

// linkage

void start(); // To start and stop

void stop();

private:

int running_; // If 1 application is running

};

Figure A.10. MCRingApp class header, cont...
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// Author: Orhan Dagdeviren

// File: mcdm-app.h // Mobile_RA Implementation

// Date: 1/6/2006 (for ns2.28)

//

#include "timer-handler.h"

#include "packet.h"

#include "app.h"

#include "wmc-app.h"

class MCDMApp;

class MCDMApp : public Application {

public:

MCDMApp(); // Constructor

// Receive and send messages

virtual void recv_msg(int nbytes, const char *msg = 0);

void send_message(int source, int destination, int message_type,

int source_of_req, int resource_id, double timestamp,

double ring_timestamp, int coordinator_id);

void prepare_msg(hdr_mergclus *mc,int source, int destination,

int message_type, int source_of_req, int resource_id,

double timestamp,int coordinator_id, double ring_timestamp);

// Functions to communicate with upper and lower layers

void notification();

virtual void upper_notification();

void actNA(void *message);

// Finite State Machine Functions

void fsm_jump_next_state(void *message);

void dm_any_state_tout();

void dm_any_state_mut_req(void *buffer);

void dm_any_state_coord_rep(void *buffer);

void dm_idle_coord_req(void *buffer);

void dm_idle_node_req(void *buffer);

void dm_waitrp_coord_req(void *buffer);

void dm_waitrp_node_req(void *buffer);

void dm_waitrp_node_rel(void *buffer);

void dm_waitnd_coord_req(void *buffer);

void dm_waitnd_node_req(void *buffer);

void dm_waitnd_node_rel(void *buffer);

void mutex_request();

// Mutex execution and release functions

void execute_mutex(int my_id);

void release_mutex(int my_id);

// Utility functions

char * message_to_string(int message_type);

char * state_to_string(int state);

void debug_msg(void *message);

Figure A.11. MCDMApp class header
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// Queue Functions

int compare_timestamps(ra_req_ptr req1,ra_req_ptr req2);

int find_empty_index(coord_info_ptr cd);

int find_empty_ack_index(coord_info_ptr cd);

void copy_request(ra_req_ptr req1,ra_req_ptr req2);

int check_queue(tsp_que_ptr qp,ra_req_ptr req);

void tsp_insert_request(coord_info_ptr cd,ra_req_ptr req);

void tsp_insert(tsp_que_ptr qp,ra_req_ptr req);

int compare_tsp_insert(coord_info_ptr cd,ra_req_ptr req1);

void safe_tsp_insert(coord_info_ptr cd,ra_req_ptr req1);

void safe_ack_insert(coord_info_ptr cd,ra_req_ptr req1);

void print_request(ra_req_ptr req);

void print_queue(tsp_que_ptr qp);

void safe_print_queue(tsp_que_ptr qp,int id);

int is_empty_queue(tsp_que_ptr qp);

ra_req_ptr tsp_dequeue_request(coord_info_ptr cd);

ra_req_ptr dequeue_req(tsp_que_ptr qp);

int remove_req_queue(tsp_que_ptr qp,int source,int timestamp);

void lock_queue(tsp_que_ptr qp);

void unlock_queue(tsp_que_ptr qp);

void insert_or_forward_request(void *buffer);

void tsp_insert_ack(coord_info_ptr cd,ra_req_ptr req);

ra_req_ptr tsp_dequeue_ack(coord_info_ptr cd);

int get_request_mutex_number(tsp_que_ptr qp);

// Protocol Variables

MergClusApp *mcapp_; // MergClusApp reference

int global_error;

coord_info_t my_info; // coordinator info

// Mutex variables

int mutex_flag;

double mutex_tout_seconds;

double last_mutex_req_seconds;

protected:

int command(int argc, const char*const* argv); // Otcl command

// linkage

void start(); // Start sending packets

void stop(); // Stop sending packets

private:

void init();

void init_fsm();

int running_; // If 1 application is running

MCDMTimer mcdm_timer_; // SendTimer

};

Figure A.12. MCDMApp class header, cont...
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# sim.tcl # Simulation of MCA, BFA, Mobile_RA #

======================================================================

# Define options #

======================================================================

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 500 ;# max packet in ifq

set val(nn) 10 ;# number of mobilenodes

set val(rp) DumbAgent ;# routing protocol

# movement file name format: {"mcmp"+number of nodes+area type

#(Very Small:dt,Small:mt,Medium:lt)+scenario number}

set val(mp) "../../ns-2.28/indep-utils/cmu-scen-gen/setdest/mcmp10mt1"

# load file name format: {"mrequest"+number of nodes+load type

#(High:H,Medium:M,Low:L)+scenario number}

set val(mrequest) "../mrequests/mrequest10M1"

set val(start_time) #start time of simulation

set val(mmapp_end_time) 3.00 #Clustering algorithm end time

set val(mcring_start_time) 3.01 #Backbone formation start time

set val(mcring_end_time) 3.99 #Backbone formation end time

set val(mcdm_start_time) 4.00 #Mobile_RA start time

set val(mcdm_end_time) 6.99 #Mobile_RA end time

# Period Timeout is equal to the Mobile_RA end time

set val(end_time) 7.00 #Simulation end time(Status is informed)

set val(halt_time) 7.01 #Simulation halt time

set val(tr_file) out10mt1.tr #Trace file

#

======================================================================

# Main Program #

======================================================================

# # Initialize Global Variables #

set ns_ [new Simulator]

set tracefd [open $val(tr_file) w]

$ns_ trace-all $tracefd

# set up topography object

set topo [new Topography]

$topo load_flatgrid 410 410 # surface area boundaries

# # Create God: General Objectives Director #

set god_ [create-god $val(nn)]

Figure A.13. Complete Scenario File
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# # Create the specified number of mobilenodes [$val(nn)] and

# "attach" them # to the channel.

# Here all the nodes

# configure channel

set chan_1_ [new $val(chan)]

$ns_ node-config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channel $chan_1_ \

-topoInstance $topo \

-agentTrace OFF \

-routerTrace OFF \

-macTrace OFF \

-movementTrace ON

# Create nodes and attach them to new implementation of UDP

#which supports Merging Clustering

for {set i 0} {$i < $val(nn) } {incr i} {

set node_($i) [$ns_ node]

$node_($i) set X_ [expr ($i+1)]

$node_($i) set Y_ [expr ($i+1)]

$node_($i) set Z_ 0

$node_($i) random-motion 1 ;# enable random motion

set udp_($i) [new Agent/UDP/UDPmergclus]

$ns_ attach-agent $node_($i) $udp_($i)

$udp_($i) set packetSize_ 1000

$udp_($i) set fid_ 1

}

#set mcring [new Application/MCRingApp]

for {set i 0} {$i < $val(nn) } {incr i} {

set mmapp_($i) [new Application/MergClusApp]

set mcdmapp_($i) [new Application/MCDMApp]

set mcring_($i) [new Application/MCRingApp]

$mmapp_($i) attach-agent $udp_($i)

}

for {set i 0} {$i < $val(nn) } {incr i} {

$mcdmapp_($i) attach-app $mmapp_($i)

$mcring_($i) attach-app $mmapp_($i)

$mcring_($i) record $node_($i)

}

for {set i 0} {$i < $val(nn) } {incr i} {

for {set j 0} {$j < $val(nn) } {incr j} {

$mmapp_($i) record $node_($j)

}

}

Figure A.14. Complete Scenario File, cont...
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# # Define node movement model #

puts "Loading movement pattern..."

source $val(mp)

# # Define Mutex Request Pattern#

source $val(mrequest)

## Tell nodes starting and ending time of protocols #

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at $val(start_time) "$mmapp_($i) start"

$ns_ at $val(mmapp_end_time) "$mmapp_($i) stop"

$ns_ at $val(mcring_start_time) "$mcring_($i) start"

$ns_ at $val(mcring_end_time) "$mcring_($i) stop"

$ns_ at $val(mcdm_start_time) "$mcdmapp_($i) start"

$ns_ at $val(mcdm_end_time) "$mcdmapp_($i) stop"

}

# # Tell nodes when the simulation ends #

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at $val(mmapp_end_time) "$node_($i) log-movement";

}

# # Tell nodes when the simulation ends #

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at $val(end_time) "$node_($i) reset";

}

$ns_ at $val(end_time) "stop"

$ns_ at $val(halt_time) "puts \"NS EXITING...\" ;

$ns_ halt" proc stop {} {

global ns_ tracefd

$ns_ flush-trace

close $tracefd

}

## Run the simulation #

$ns_ run

Figure A.15. Complete Scenario File, cont...
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