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ABSTRACT

LOWER-TOP AND UPPER-BOTTOM POINTS FOR ANY FORMULA
IN TEMPORAL LOGIC

In temporal logic, which is a branch of modal logic, models are constructed on
some kind of frames. Common properties of all these frames include totally ordered rela-
tions and these frames are bi-directional. These common properties provide the temporal
logic time interpretation. By means of this interpretation temporal language has lots of
application areas. The main aim of this study is to propose new technic which gets easier
proof of some kind of valid formulas in the most popular temporal frame ¥ and to produce
new valid formulas with the medium of this new technic. To be able to realize this main
aim, first of all the frame ¥ = (N, <, >, R, Ro, Ry, Rs) for temporal language has been
composed step by step in accordance with principles of modal logic. Then the new terms
“ lower-top and upper-bottom points for any temporal formula ” has been defined in the
model M = (T, V') which is built over the frame ¥ and some propositions of this term
have been obtained. At the end of the study it has been presented that proofs of some
theorems have been done easier and it has been given possibility to produce the new the-
orems. Moreover a general investigation about the frame ¥ has been done and presented,
furthermore it has been shown that the mirror image of the valid formulas do not have to

be valid and it is also possible that the mirror image of non valid formulas can be valid.
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OZET

ZAMAN MANTIGINDA HERHANGI BiR FORMUL iCIN ALT-TEPE
VE UST-TABAN NOKTALAR

Modal lojigin alt dali olan zaman lojiginde modeller cesitli catilar lizerinde insa
edilirler. Bu catilarin hepsinin ortak 6zellikleri elemanlarinin tam bir siralama bagintisi
ile insa edilmesi ve cift yonlii olmasidir. Bu ortak 6zellik zaman loji§ine zaman yorumu
kazandirir. Bu yorum sayesinde zaman lojigi genis bir uygulama alanina sahiptir. Bu
calismada, zaman lojiginde oldukc¢a sik kullanilan ‘T catis1 icin gecerli formiillerin is-
patlarim1 kolaylastiracak yeni bir teknik gelistirmek ve bu teknik sayesinde yeni gecerli
formiiller tiiretebilmek amaclanmistir. Bu amaci gergeklestirebilmek i¢in Once zamansal
dil icin T = (N, <, >, R,, Ro, Ry, Rs) catist modal lojikteki tanimlara bagh kalinarak
adim adim olusturuldumus; daha sonra bu ¥ ¢atisi iizerine kurulan 9t = (§, V') model-
lerinde “ herhangi bir formiil i¢in alt-tepe ve iist-taban noktalar ” kavramlar1 tanimlanip
bu kavramlarin bazi 6zelliklerine ulasilmistir. Gortilmiistiirki bu 6zellikler sayesinde
T catisina ait bazi1 teoremlerin ispatlar1 daha kolay yapilabilmis ve yeni teoremlerin
tiiretilmesine olanak saglanmistir. Ayrica bu calismada aynm1 ¥ ¢atisinin yapisi hakkinda
genel bir inceleme yapilmig ve gecerli formiillerin yansimalarinin da daima gecerli ola-

mayacagi, gecerli olmayanlarin da yansimalarinin gecerli olabilecegi gosterilmistir.
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CHAPTER 1

INTRODUCTION TO TEMPORAL LOGIC

In this study, it is given some background about modal logic, since temporal logic
is a brunch of modal logic. Before I start, I want to emphasize that only in this chapter
most of definitions and information about modal languages were taken from the book
“Modal Logic” written by Patrick Blackburn, Maarten de Rijke and Yde Venema , (2001).

Although we can’t give an exact definition of modal logic, in literature there are
three different slogans.

Firstly inspite of their simplicity, the modal languages with its operators are per-
fect way for talking about relational structures.

A relational structure consists of a set and relation collections on it. In fact it can
be thought that every mathematical structure is a kind of relational structure.

Secondly in contrast to a classical logic the modal languages work internal and
local on relational structures. Therefore it can be said that modal formulas are evaluated
inside the structures at a special points. For this reason, the universal quantifiers are never
use in modal logic.

The Third slogan of modal logic is that modal languages are not isolated formal
systems.

Every modal language has corresponding classical language that describe the same
class of structures. Both modal and classical languages talk about relational structures but
they do so very differently. Whereas modal languages take an internal perspective, classi-
cal languages are the prime example of how to take an external perspective on relational
structures. In spite of this we have a standard translation of any modal language into its
corresponding classical language. This translation provides a bridge between the worlds
of modal and classical logic. The resultant study is called correspondence theory between
the worlds of modal and classical logic. The resultant study is called correspondence
theory which is the cornerstone of the modal logic.

The modal logic is linked up with universal algebra via the apparatus of duality
theory. In this framework, modal formulas are viewed as algebraic terms (Blackburn,

Rijke and Venema 2001).



It is now time to meet the modal languages that we will be working with. First,
we introduce the basic modal languages. We then define modal languages of arbitrary

similarity type.

1.1. Modal Languages

Definition 1.1 The Basic modal language is defined using a set of propositional letters
® whose elements are usually denoted by p,pa, 3, ... the constant truth T , boolean
connectives VN, —, and the modal operator <. Modal formulas are denoted by Greek

letters and are built in the following way:

¢ = pi T[=¢lv vV ¢[O0.

This definition means that a formula is either a propositional latter, the propo-
sitional constant truth (top), a negated formula, a disjunction of formulas, or a formula
prefixed by a diamond, respectively. (Blackburn, Rijke and Venema 2001) .

Just as the familiar first-order existential and universal quantifiers are dual to each
other such that Vaxp := —Jx—p , we have a dual operator O (box) of our diamond which
is defined by O¢ := =)—¢

We also make the use of classical abbreviations for conjunctions, implication, bi-

implication and the constant falsum (bottom) L

PAY = (29 V ) ¢ ==V Y
¢ p=(0 =) A(d—) Li=-T

The formal definitions of < and O ,which are unary operators, will be given in the
modeling section. And this definition will be valid at temporal logic, but it will have a

time meaning, as well.
e ¢ can be read “it is possibly the case that ¢ .
e ¢ means “it is not possible that not ¢” that is “necessarily ¢”

Up to now we have defined the basic modal language. From now on we will generalize it.
The purpose of generalizing the basic modal language is that it lacks of defining
the binary operators.

Firstly we will define modal similarity type:



Definition 1.2 A modal similarity type is a pair 7 = (O, e) where O is a nonempty set,
and e is a function such that e : O — N. The elements of O are called modal operators;
we use A to denote the elements of O. The function e assigns to each operator A€ O a
finite arity, indicating the number of arguments A can be applied to. (Blackburn, Rijke
and Venema 2001)

Definition 1.3 A modal language M L(1,®) is built up using a modal similarity type
7 = (O, e) and a set of proposition letters ®. The set of modal formulas over T and ® is

given by the rule .

¢ = p‘ﬂﬂdiﬂ \ (b‘ A (¢17 "'7¢6(A)>

where p ranges over the elements of ®. (Blackburn, Rijke and Venema 2001)

Notation of Ty is used for only basic modal language .

For binary modal operators, we often use the notation ¢ A 1 instead of A (¢, 1).
For example in general we use the notation ¢ U v instead of U(¢, 1) for very important
binary temporal operator I/ (until).

In the modal languages for every modal operator, there is one dual operator. For
instance, it is known that O is dual of <& and vice versa. Now we can define the dual

operator of A notation of V.

Definition 1.4 We now define dual operators for non-nullary triangles. For each A€ O,

the dual V of A is defined as;

v(¢17 7¢n) = A (_'¢1, --'7_'¢n)

(Blackburn, Rijke and Venema 2001)

Now we can define the basic temporal language which is our main structure.

1.2. Basic Temporal Language

The basic temporal language is built by using a set of unary operators
O={<F><P>}

The intended interpretation of a formula < ¢ is “¢ will be true at some future time”
and the intended interpretation of a formula ©¢ is “¢ was true at some past time”. This

language is called the basic temporal language.



On the other hand in the basic temporal language because of time meaning some
more operators can be defined. For instance next (o) and its mirror image previous (©) are
very important operators in basic temporal language so our operator set for basic temporal
language O can be enriched such on; O = {<&,© 0,0}

A formula containing at least one of such operators is called a basic temporal
formula. (Seow & Devanathan 1994)

Now let us define the all of basic temporal operators informally.

o O¢ =g will be true at some future time .” (Eventually)

O¢ := ~O=g =g will be true at every future time.” (Henceforth)

o ¢ :="“¢ will be true at next time.” (Next)

O =" was true at some past time.” (Once)

Hp:=—o—¢ :="“¢ was true at every past time.” (Has-always-been)

O¢ :=“¢ was true at previous time.” (Previous) (Manna & Pnueli 1983)

Since we said that every operator had a dual operator in modal language o and
©operators have dual operators. We can show that a dual of o is same as again o. Firstly
we know that o¢ means “¢ is true next state” so dual of o¢ (— o —=¢) is “Next state is not
state at which ¢ is not true”, which amounts to “¢ is true at next state”. We can show
similarly that the dual of © is again ©.

We can express many interesting assertions about time with this language. For
example, ©p — O<g, says “whatever has happened will always have happened”. If we
insist that G¢p — <$O¢ must always be true, it shows that we are thinking of time as
dense: between any two instants there is always a third. (Blackburn, Rijke and Venema
2001)

Although the discussion in this study has contained many semantically suggestive
phrases such as “true” and “intended interpretation”, as yet it is not given them no math-
ematical content. The modal languages are interpreted in relational structure. In fact by
the end of the chapter it will be have done this in two distinct way: at the level of models

and at the level of frames. Both levels are important, though in different ways. The level



of models is important, because this is the place where the fundamental notion of satis-
faction (or truth) is defined. The level of frames is also important, since it supports the
key logical notion of validity. (Blackburn, Rijke and Venema 2001)

Firstly we define frames, models and satisfaction relation for the basic modal lan-

guage and then we will carry it to the basic temporal language.

1.3. Frames, Models and Satisfaction for The Basic Modal Language

Definition 1.5 If we are given a nonempty set A and a positive integer n, we say that R
isann — ary relation on Aif A O R. Risunaryifn = 1, binary if n = 2, and ternary
ifn=3.

Definition 1.6 A frame for the basic modal language is a pair § = (W, R) such that W

is a non-empty set and R is a binary relation on W .(Blackburn, Rijke and Venema 2001)

We refer to elements of W by many different names. In general we use state,
point, position, time, world etc.

Now the definition of a model on the basic modal language can be obtained.

Definition 1.7 A model for the basic modal language is a pair M = (F,V'), where § is
a frame for the basic modal language, and V' is a function assigning to each proposition

letter p in @ a subset V (p) of W.

Formally, V' is a map: & — P (W), where P (W) denotes the power set of V. Informally
we think of V(p) as the set of points in our model where p is true. The function V' is
called a valuation. For given any model 9t = (§, V'), we can say that 9t is based on the
frame §, or that § is the frame underlying 9J1. (Blackburn, Rijke and Venema 2001)

We may use the notation M = (§, V(p), V(q), V(r), ...) instead of M = (F,V)
for any model.

The next definition explains how to interpret the basic modal languages in models

by means of the following satisfaction definition.

Definition 1.8 Suppose w is a state in a model M = (§F, V). Then we inductively define

the notion of a formula ¢ being satisfied (or true) in 9N at state w as follows:



e Mwlp (ff) weV(p), ped.

It means a propositional latter p is true at the state w in the model 1.
o M wl-T always (MM, w - _L never).

e Mwlk—¢ ((ff) notIM wl- ¢.
It means the formula ¢ can be falsifiable or refutable at the state w in the model 91.

In addition we can use 901, w ¥ ¢ instead of I, w |- —¢.
e Mwl-opVy ((ff) Mwl-¢ or M wlk Y.
e N wl- ¢ (iff) for some v € W with Ry, we have I, v I+ ¢.

o M wl-O¢ (iff) forall v € W such that R,,,, we have 9, v IF ¢.

Now it is convenient to extend the valuation V' from proposition letters to arbitrary

formulas so that V' (¢) always denote the set of states at which ¢ is true:
V(g) ={w: Mwl- ¢}

(Blackburn, Rijke and Venema 2001)

Definition 1.9 e A formula ¢ is globally or universally true in a model M
(Notation: I | ¢ ) if it is satisfied at all points in IN (that is, if M, w I+ ¢, for
all w € W ). A formula ¢ is satisfiable in a model 9N if there is some state in IN
at which ¢ is true; a formula is falsifiable or refutable in a model if its negation is

satisfiable.

A set I' of formulas is globally true (satisfiable, respectively) in a model N if

M, w IF T for all states w in 9N (some state w in I, respectively).

e A formula ¢ is valid at a state w in a frame § (notation:§,w |- @) if ¢ is true at w
in every model (§,V ) based on § ; ¢ is valid in a frame § (notation:§ I+ ¢) if it is
valid at every state in §.

A formula ¢ is valid on a class of frames F (notation:¥ |- ¢) if it is valid on the

class of all frames.

The set of all formulas that are valid in a class of frames F is called the logic of F
(notation: Ag). (Blackburn, Rijke and Venema 2001 )



Some examples;
Although the formula ¢C¢ — O¢ is valid in a frame Ty = (N, <, >) where < () is
the natural ordering, it is not valid in non transitive frames. Let us consider the following

example.

&y

Figure 1.1: Example frame § for a model

In this example 991 is constructed on the frame § such a way that
V(¢) = {w:, ws}
V() = {ws, ws}

(W,

R) with W = {wy, wy, w3, w4} and

A

§
R = {(w17w2)>(wlvw4)7(w2’w3)a(wz»w2)>(w3>w3)}-

In this model it is clear that OCC¢ — ¢ is satisfiable at the state ws but at w;
does not, so it can be said that this formula is not universally true in this model.

Another example is related to the formula O(¢ A ) — (Od A O9) is valid on
all frames. In order to observe that situation let us take any frame § and state w € §
and let V be any valuation on §. We have to show that if (F,V),w IF (¢ A 1)), then
(&, V), w - (Cop A ) so, assume that (F, V), w IF O(p A ). Then by the definition of
< there is a state v such that R, and (F,V), v IF ¢ A¢. Butif v I- ¢ At then v I- ¢ and
v I 1. Hence w I O¢ and w IF O, Other words, we have w IF $o A O,

In this section it was given generally how to interpret the basic modal language in



models. We should do same thing for the basic temporal language. However we know the
basic temporal language has two unary operators F' and P so this subject has to based on

a concrete form. It will be done again firstly for the basic modal language.

1.3.1. Bidirectional Frames and Models

Let us denote the converse of a relation R by R. It means Vay(R,, < R,,;). We
will call a frame of the form § = (W, R, R), a bidirectional frame, and a model built over
such a frame a bidirectional model. From now on we will only interpret the basic temporal
language in bidirectional models such as we will use the relation of R for future operators
and the relation of R which is converse of R, for past operators. Because of this reason in
general Rr and Rp use instead of R and R respectively. That is, if 9t = (W, Rp, Rp, V')

is a bidirectional model then:

e Mt F¢ (iff) forsome s € W (Rpys A M, s IF ¢)

e M tI- Py (iff) forsome s € W (Rpys A M, s I ¢) it means
M, tIF P (iff) for some k € W (Rpg A, s - &)

In temporal logic the models are built over any one of these frames (N, <, >),
(N, <,>). (Z,<.>).(Z,<.2). (@<>).(Q<2). R<>), ([R<>).

In this study, it is chosen (N, <, >) as a frame. Furthermore it is enriched with
two more relations R, and Rg for the operators Next (o) and Previous (O)respectively
then we call this frame basic temporal frame notation ‘T such that
%o = (N, <, >, R, Ro) where;

N is the set of natural numbers,

<={(a,b) e Nx N:a < b},

>={(a,0) e NxN:a > b},

R, ={(a,b) e NxN:b=a+1},

Rs={(a,b) e NxN:b=a—1}.

This frame is very fundamental for this study.
Now the definition of unary operators in the temporal models can be obtained.
Suppose the model is 9ty = (T, V') where Ty = (N, <, >, R,, Rg) ,p is proposi-

tional letter, ¢ is any formula of this model and j, k are elements of N.

o My, j Ik p (iff) je V(p)



e My, jIF_L never

e My, jlFo VY @Gff) My, jlIFd or My, 5 IFY

o Ny, jIF o (iff) for some k € N, with j < k we have My, k IF ¢

o Ny, j - (iff) for some k € N, with 7 > k£ we have My, k |- ¢

o My, jIFO¢ (iff) forall k € N suchthat j < k wehave 9y, kI ¢
e Ny,7IFHep (iff) forall k € N suchthat ) > k£ we have 9y, k |- ¢
e My, jlFogp (ff) My, j+11F¢

o NMy,jlFog (ff) My, —11F¢

Now we need to define the binary operators in models. In order to define the binary
operators first we should define the frames, models and satisfaction for modal language

of arbitrary similarity types and generalize these into bidirectional frames and models.

1.4. Models And Frames For Modal Languages Of Arbitrary Modal

Similarity Type

Definition 1.10 Let 7 be a modal similarity type. A T-frame is tuple § consisting of the

following ingredients:

1. A non-empty set W,

2. For each n > 0, and each n-ary modal operator A in the similarity type T, an
(n + 1)-ary relation R,.
(As remember that there is a binary relation for every unary operator in basic modal

language)
(Blackburn, Rijke and Venema 2001)

Here again frames are simply relational structures. These frames can be shown

one of the following notations:



[ ] 3’ p— (W, RA17 "'7RAn)7
b 3: (W7 RA)AETa

o §= (W, {R,:AE T}).

We turn such a frame into a model in exactly the same way that we did for the
basic modal language (by adding a valuation). That is, a 7-model is a pair 9 = (§, V)
where § is a 7-frame, and V' is a valuation with domain ¢ and range P (W), where W is
universe of §.

The notation of a formula ¢ being satisfied (or true) at any state w in a model
M = (W, {R, :0€ 7}, V) (notation:9, w |+ ¢ ) is defined inductively. The clauses for
the atomic and boolean cases are the same as for the basic modal language. As for the

modal case, when e(,) > 0 we define

M wlFA (1, ..., 0,) (iff) for some vy, ..., v, € W with R wv;...v,

we have, for each 7, I, v; |- ¢;.

(Blackburn, Rijke and Venema 2001)
Now we should formulate the satisfaction clause for V(¢1, ..., ¢,,). For doing this

we need duality properties such that V(¢1, ..., ¢,) := = A (21, ..., 7d,). So we have,

M w kv (P, ..., p,) Gff) for all vq, ..., v, € W such that R wuv;...v,

we have, for some ¢, 91, v; IF ¢;

1.5. Binary Operators in Temporal Logic

This section is very important because the basic temporal operators are not strong
enough for dynamic systems. For example O¢ says “¢ will always be true” but we can not
express that “¢ will always be true until any future time” by only using the basic temporal
operators. For that reason, we need the binary temporal operators ¢/ (until) and its mirror
image S (since).

But firstly we should give 3-ary relations Ry and Rg (mirror image of Ry) for

binary operators ¢/ and S such that;

e Ry ={(a,b,c) e NXxNxN:a<b<c}

10



e Rs=Ry ={(a,b,c) ENxNxN:a>b>c}

After that, we can extend our temporal frame from ¥, to ¥ in order to use the binary

operators such that ;
T=(N,<, >, R,, Ro, Ry, Rs)

By so far our formulas are constructed over the temporal model 9t = (T, V). We will use
the notation 91 for this model. Let us interpret these new operators U , S and their duals
in the model 2t = (¥, V).

Until is the most important binary operator in temporal logic. In addition it has
very strong future meaning. Its intended interpretation is that; ¢ U 1 says “¢ will always
be true until ¢ is true”. As a formally;

let 91 be any temporal model with j and £ be any two time position;

M, 7 I o U Y (Gff) there is a k, j < k such that 91, £ IF v and
for all s with 7 <7 < k: 91,7 IF ¢. (Pnueli 1986)

Until can be shown on the time line such that (Reynolds 1996):

0 i 1 2 ... k2 k1 k

Figure 1.2: Until operator

Dual of Until (ﬂ) by using duality properties is defined as below;
U(9, ) := ~U(=¢, ~1p))such that ;

M,jlFoU iff not(there is ak, j < ksuch that Mk IF -
and for alliwithj<i<k: Milk ¢
iff for everyk, j<kwith9 kIFvy implies

there exist i, j <i<ksuch thatIM,il- ¢

11



Since which is another kind of binary temporal operator has very strong interpre-
tation like Until. It is mirror image of U/ so it has past meaning. Its intended interpretation
is that ¢ S v says “¢ was always true since 1) had been true”. As a formally;

let 9 be any temporal model and j and k be any two time position;

M, 5 IF @ S Y (Gff) there exits k, k < j with 9, &k [F ¢

and forall 7, k <1 < jwehave M, 7 I- ¢ .

Since can be indicated on the time line such that (Reynolds 1996):

0 kK k+ql k2 ... 2 1 ]

Figure 1.3: Since operator

Dual of Since can be described (3) like until by using the duality properties
(S(¢, 1) == =S(=¢, ~)))such that ;

M,jlFpSy iff not(there is ak, j >k such that M klF
and for alliwithj>zi>k: IMilk o
iff for everyk, j>2kwith9 kIFvy implies

there exist i, j > 1>k such thatIM,il- ¢

Except for Until and Since, there are some binary operators for example Waiting-
for (VW) and its mirror image Back-to (1) (Dixon 2005). These binary operators are not

of great importance for our study so their definitions are not mentioned.

12



CHAPTER 2

LOWER-TOP AND UPPER-BOTTOM POINTS FOR
ANY FORMULA IN TEMPORAL LOGIC

In this section we will mention our new subject lower-top and upper-bottom point
for any formula in the model 9t build over the frame T = (N, <, >, R,, Ro, Ry, Rs).
There is no doubt that it will be done level of models because this structure is about

satisfiable or not for any temporal formula.

Definition 2.1 Let ¢ be any temporal formula in a model M on X; if any state 7 € N
satisfies 1o we say j is an “upper point” for the formula ¢ in this model and use the
notation u for the upper point of ¢.

Furthermore the state udf is “uper-bottom of ¢” in the model 9N where

u(zf = min{j : j is an upper point of ¢}

Formally;

{ust = {7 : 9,5 IF Do}

uy = minfug}.

As a similarly we can define lower point of ¢ and lower-top of ¢

Definition 2.2 Let ¢ be any temporal formula in a model 9N on X; if any state j € N
satisfies Ho we say j is an “lower point” for the formula ¢ in this model and use the
notation ly for the lower point of ¢.

Furthermore the state l; is “lower-top of ¢” in the model where

ll = maz{j : j is an lower point of ¢}

Formally;

{lo} ={j M, j - B¢}
1, = max{ly}.

13



Let us show these definition on the time line .

=50 5 ... Ep 2 OpO¢ .. .00
o ¢ ... ¢(,?'I¢ 'Iq-b-qbq-b...qb

L - - —
0 1 55 IS S = R & N T 1 | k

IT L

¢ Y

Figure 2.1: Lower-top l;f and upper-bottom uqﬁ point for a formula

Now we can give some propositions under these definitions. But we ought to
emphasize that these propositions valid for only the temporal models which build on the

frame .

Proposition 2.1 Any temporal formula ¢ in a model 2N hasn’t got lower-top point if any

one of these two conditions is satisfied.

o M, 0 W ¢ (First state of this model M doesn’t satisfy ¢.)
o M I- ¢ (¢ is universally true in this model M.)

Proof: For first position, no state satisfies H¢ because 91,0 W ¢. Then there is
no lower point for the formula ¢ in this model. It means the set {l;} is empty so this set
doesn’t have a maximum element. So there is no lower-top point for the formula ¢.

For the other position,
forevery j e N, j IF ¢
and so
9N, 7 I He for each 7 € N.

Therefore uy, = N. We know that the set of natural numbers doesn’t have a maximum

element. Thus ¢ doesn’t have a lower-top point in this model.

Proposition 2.2 If in a model M, the formula $>—¢ (—O¢@) is universally true then the

formula ¢ doesn’t have an upper-bottom point in this model.

14



Proof: From the hypothesis
for every 5 € N9, 5 IF =O¢.
It means
for every j € N; 9, j W O¢

Since {uy} = {j : M; j I- O}, in the model M there is no upper state for the formula
¢. It means {us} = 0. Finally since the empty set doesn’t have the minimum element, ¢

doesn’t have the upper-bottom point in this model.

Proposition 2.3 Any temporal formula ¢ is universally true in a model 9 iff uqﬁ =0in

this model.

Proof: Let us suppose ¢ is universally true in a model 9. It means;
forevery j € N, 9,5 IF ¢.
Due to the fact that

forevery j € N, (9, kI ¢ foreach k, j < k);
forevery 5 € N, 9,5 IF O¢

Then it is clear that

{ug}) = {j: M, j I 0p} =N
Finally

uy = minfug} = minN = 0

Conversely let us suppose beginning state of this model is upper-bottom of a for-
mula ¢. Other words the state 0 is first point satisfies C¢ such that

M, 0 IF O¢. Due to the definition of box (O)operator;
foreveryk, k > 0, M. k|- ¢

Thus the formula ¢ is universally true in this model.

After that we consider the relations about temporal language operators o and ©
with lower-top and upper-bottom points respectively. But it is useful to look at the time
line interpretation in figure 2.1 before giving the corresponding properties.

It means any temporal formula in a model 91 can not be satisfied next state of

lower-top of ¢ and previous state of upper-bottom of ¢.
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Proposition 2.4 Let ¢ be any temporal formula in a model N

If ¢ has lower-top and upper-bottom point (different from zero)in this model then
o M, uj) ¥ op
o M, 1) oo
o There exists j, l; <j< uqf such that M, j ¥ ¢
Proof: For the proof of first case let us assume
M, uy IF O¢. Itis equal to M, uy — 11+ ¢.
And by the definition of upper-bottom of ¢;
uj =min{j: M, jIF O¢} so M, ué IF O¢.
Now we have
M, j Ik ¢ foreach j > uy, and M, uy — 11 ¢
Then it is clear that
M, j Ik ¢ foreach j > uy —1, so M, uy —11FO¢.
Therefore uy — 1 € {uy}. But this is contradiction with the minimality of . Thus
m, ujs ¥ ©p.
The proof of second case will be followed similarly. Let us assume
M, 1, IF 0. Itis equal to M, I; + 11~ ¢.
And by the definition of lower-top of ¢
l:g =maz{j : M, j |- B} so M, l;f IFHo.
Now we have
M, j Ik ¢foreach 0 <j<lj, and 9, I; +11F¢
Then it is clear that

m, 5 IF (bforeachogjél;f—l—l, sofm,lg—l—lll—E(b.

16



Therefore l; + 1 € {l,}. But this is a contradiction with the maximality of l;. Thus
om, l(—g W og.
For the third case let us assume
forevery j, 1) <j <ug; M, jIF o
But this is a contradiction with previous of two properties
om, uj) ¥ ©¢ and 9N, ldT) W og.
Thus
M, j ¥ ¢ forsome j, ] <j<ug

Proposition 2.5 Let ¢ and 1 be two temporal formula in any model .

If there exists u; and i then ug,,, = maz{ug, u,}
Proof: Suppose uj and ui be upper-bottom of ¢ and 1) respectively such that;
ug =min{j: M, jIF O¢} and ui =min{j: M, j Ik Oy}
It means
for every j, j = uy, M, j I ¢ and for every 4, i > uy;, M, il 2.
Let us consider two results;
for every ¢, t > maz{ug,uy}, Mt ¢ A
By the definition of the box operator
m, mam{uj,, ui} IFO(p A1)

Now we should verify the state maz{ug,u;;} is a minimum point that satisfies
the formula O(¢ A ) in order to prove maz{uy, u;} = ug,,

Assume that
M, maz{ug, uy} —11FO(o A).
Since

M, maz{ug,uy} — 1l (o Ap),

17



we have
M, maz{ug, uy} — 11 ¢ and M, maz{ug, uy} — 11 .

Now we should consider two conditions;

firstly
if uy > uy then maz{uy,uy} = uy.
Since
M, maz{ug,uy;} — 11 ¢
it can be written
M, uj) —11IF ¢.

By the previous theorem ((T, V), ué ¥ ©¢@) it is contradiction.

The secondly
if uy < uy then maz{ug,uy} = uy.
Similarly since
M, maz{ug, uy} — 111
it can be written
m, ui — 11k .
Again we have a contradiction because of the same reason. Thus
Ugpy = maz{ug, uy}

Proposition 2.6 Let ¢ and i) be two temporal formula in a model .

If there exists 1 and 1, in this model then 1, = min{l; L} }.
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Proof: This proof similar to previous proof. Let us show it on the time line:

dAy pAy ... dAY AW I(GAY)
AV 2 /A e AR "
¢ ¢ ... ¢ ¢ ¢
0 1 1 i i ... 1§ e
Iy I,
9 v
T
Iqﬂw

Figure 2.2: 1, = min{l}, 1]}

Proposition 2.7 If any temporal formula ¢ has an upper-bottom point ( ué ) in a model
M (it means {uy} # 0) then the formula ¢ is universally true in this model.

This theorem can be represented formally such that

if M, 5 |- O¢ for any state 7 € N then M |- o

Proof: From the hypothesis
M, j IF O¢ for any point 7 € N. It means I, k |- ¢ for every j, j < k.
Furthermore it is clear
M,k IF o forevery k, 7 <k,

due to the valid formula ¢ — <¢ (theorem 3.1) on ¥

On the other hand, since 91, j IF ¢, we have
M, t - O forevery t, ¢t < j.
Consider these two results we can say
M, 7 I O¢ for each state 57 € N.

Thus if 9N, j IF O¢ for any state j in the model 9 then the formula $¢ is universally true

in this model.
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Proposition 2.8 Any temporal formula ¢ has an upper-bottom point ( uqlS ) in a model N
iff the formula <O is universally true (9N |- OGO ) in this model.

Formally ;

N, 7 - O¢ for an any state in this model iff M |- CGO¢

Proof: Suppose any temporal formula ¢ has an upper-bottom point in a model . It
means {ugs} # 0 and then 91, j IF O¢ for an any state in this model.

Since the valid formula O¢ < OO¢ (idempotent properties (theorem 3.3) on T, we have
M, j IF OO¢ for some state j € N.
Now let us rename the formula O¢ := 1) then we have,
M, j IF O for some state j € N.

Since the proposition 2.7, it can be written

<) 1s universally true in the model 901
Thus if we write O¢ instead of v then

<&0O¢ is universally true in the model 91

Conversely let us suppose

<&Og is universally true in the model 9
Then

for an any point j € N, 91, 5 I OGO,
Because of definition of the diamond operator

M, k IF O¢ for some k, j < k.

It is clear that the state & € N is an upper point of ¢ so {u,} # . Finally the set {u,} C N
has a minimum element which is upper-bottom of ¢.
Our this definitions (upper-bottom and lower-top point for an any formula) helps

us to prove some theorems in next section.
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CHAPTER 3

THEOREMS

In this chapter it will be shown each given formulas are valid in the frame ¥ .
Theorem 3.1 T I+ ¢ — Co

Proof: Let 971 be a model over the frame ‘¥ and let j be an any state of 1.

Assume that
M,jlFo but M, jIF .
Since I, 5 IF =<0,
M, 5 IF O=-e.

Using O definition we can write

M, tI-—¢pforallt, t > j.
If we choose t = j we have

M, 7 IF—=pand M, 5 IF @

wich have a contradiction.

Thus;

M, 5 IF o
Theorem 3.2 T I 0pp — $op

Proof: Let 91 be a model over the frame ¥ and let j be any state of 1.

Assume that

M, j IF oo.
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Since M, j I o,
M, j+11F¢.
It can be said N, k I ¢ for some k > j. it is clear that this is the definition of
M, 5 1= o
Theorem 3.3 T |- O¢ < O0O¢

Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

M jI-0p iff M EIF¢ for evervk, k> .
iff M tl-0¢ for everyt, k>t > 7.

iff 9,7 |- O0e.
Theorem 3.4 T |IF Cp — OO@

Proof: Let 91 be a model over the frame € and let j be any state of 1.

M-S iff Mk ¢ for somek, k> 7.
iff M kl-¢ for somek, k>t >j.
iff Mitl-O¢p for somet, t 2> 5.

iff Mg OO,
Theorem 3.5 ¥ IF O—¢ «— —0¢

Proof: Let 91 be a model over the frame T and let j be any state of 1.

M, jIF-0¢p iff not M, ;I Oo.
iff not M EkIF¢ for everyk, k> j].
iff Mkl —-¢p for some k, k> .

ifE M, I O—o.

Theorem 3.6 ¥ IF C¢p — HOo



Proof: Let 91 be a model over the frame ‘¥ and let j be any state of 1.

Suppose that

M, 5 IF <& @ for some 5 > 0,
but

M, kW OS¢ for some k, k< j.

Since M, 5 IF & ¢,

M, tI-o¢forsomet, t > 7,
and since 9, k k¥ & ¢, which is equivalent to 91, k IF 0o,

M, sl —¢forall s, k< s.

In the case of £ < j < t, we can say 9, ¢ |- —¢ but we have 9, ¢ IF ¢ which is

contradiction. Thus,

MM jIFO @pthen M, kIFO ¢ forall k, k< j.
Theorem 3.7 S Ik O(¢p — ) — (Op — )

Proof: Let 91 be a model over the frame ‘¥ and let j be any state of 1.

Assume that
M, jIFO(p — ).
It means
forevery k, k> 7,if O, k IF ¢ then I, k - ).
We can write that
for some ¢, t > j5,if 9, t |- ¢ then N, ¢ I 1.
Then
if M, 5 IF O then M, 5 I O
Finally M, j IF G — Oy

Theorem 3.8 T |- O(¢p A ) < (Op A Ov)
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Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

M, j Ik O(pA) iff
iff
iff

iff

Theorem 3.9 T |- O(p V)

for all k, k>j, MEkIFoANY.

for all k, k>j, MEkIF¢ and M kI .
M, 7 I 0O¢p and M, j IF Op.

M, j I-Op A O

= (OpV OY)

Proof: Let )1 be a model over the frame € and let j be any state of 1.

M,j Ik O(pVe) iff
iff
iff

iff

for some k, k>j, M kI (¢V ).

for some k, k>j, MEklI-¢ or M klk .
M, j Ik Od or M, jIF O,

M, j Ik OpV b,

Theorem 3.10 ¥ |- (O¢ VvV Ovy) — O(¢ V 1)

Proof: Let 9 be a model over the frame T and let j be any state of 1.

Assume that

but

Since M, j IF =0(¢ V ),

Since M, 5 IF O¢ Vv O,

Since M, j I O(—p A ),

M, 5 I-0O¢ Vv DOy

M, jI-=0(o V).

M, j I O=(p V).
Then M, j IF O(—p A —0).

M, jIF O¢ or M, 5 I O,
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M, k IF =¢p A =1 for some k, k > j.
Then N, k IF —¢ and N, k I+ —p) for some k, k > j .

Because of 901, j |- O¢,
M k¢ forallk, k> j
but
M, k IF ¢ for some k, k > 7.

It is contradiction.

Since M, j IF O,
M, k- forall k, k> j
but
M, k1= -1 forsome k, k > j

We have again a contradiction.

Thus M, j IF O(¢ V 1)
Theorem 3.11 T IF O(p A YY) — (O A OY)

Proof: Let 91 be a model over the frame € and let j be any state of 1.
Since M, j IF O(d A ),

M, kI (o A)forsomek, k> j
It means
(M, k|- ¢ and M, k IF )for some k, k > j
It is clear that,
M, k I+ ¢ for some k, k> j and 9N, k IF 2 for some k, k > j.
Therefore we can write
M, kIF o and M, k IF Oy

Finally 91, k IF O A O
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Theorem 3.12 S |- (O¢ A Op) — O(p A )

Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

Assume that
M, jIFOp A .
Since M, 7 IF O A O,
M, 7 IF O¢p and M, 5 IF .

It means 91, k IF ¢ for all k&, kK > j and 91, t I ¢ for some ¢, t > j.
If we choose k =t , we have I, t IF ¢ for some ¢, ¢ > j.
Since M, t I ¢ for some ¢, t > j and I, ¢ I- ¢ for some ¢, ¢ > 7,

M, t - oA forsomet, t> 7.
Finally this is definition of 91, j IF O(o A 9).

Theorem 3.13 T I o (p A1) < (0o p Ao t))

Proof: Let 91 be a model over the frame € and let j be any state of 1.

M, jlko(dAY) iff M j+1IF oA
iff M, j+1IF¢ and M k+11F .
iff M, jIFod and M, ]I o .
PFE MM, jIFo Ao

Theorem 3.14 T IFo (¢ V1)) <> (0 ¢ V ot))

Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

M, jIkolpVep) iff M j+ 1l (¢V ).
ifE M, j+1IF¢ or DM, + 11k,
iff M, jlFod or M, o
ifE M, jIFod Vo
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Theorem 3.15 ¥ I o(gb — ¢) — (O¢ — oq/z)

Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

M, j kol —1p) iff M,j+ 11 ¢ — b,
iff 1f9M,j+11F¢ then M j+ 11k,
iff ifM, jlFod then M, ;- o,
iff M jIFod— o
Theorem 3.16 T I o(¢ <> 1)) <> (0¢ <> o))

Proof: Let 911 be a model over the frame ‘¥ and let j be any state of 1.

M, jlEo(p—1p) 1iff M j+ 11k ¢ < .
iff M+ 1 ifE M, j+ 11F ).
iff (MM, jlFopiff M, 5k 0.
1ff M, jlFo ¢ o
Theorem 3.17 < |- o0¢p < O o ¢

Proof: Let 91 be a model over the frame € and let j be any state of 1.

M jlFoDeg 1iff M 5+ 1IFOop.
iff Mkl-¢ for allk, k>j5+1.
iff MEk—-1lF¢ for allk—-1,k—-12>7.
iff M jl-DOoo.
Theorem 3.18 TlFo O ¢p = O 0 ¢

Proof: Let 91 be a model over the frame € and let j be any state of 1.

M, jlFolp 1ff Mj+11F O o,
iff MEkIF¢ for somek, k>7+ 1.
iff Mk—1IF¢ for somek—1, k—12>j.

ifE M jIFO o o
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Theorem 3.19 T O ¢ — OO .

Proof: Let 21 be a model over the frame T and let j be any state of 9.

Assume that
M, j IF GO for an any state j € N.

It is clear the formula ¢ has an upper-bottom point. Then because of the proposition 2.7

the formula < ¢ is universally true in this model. Now especially it can be said
M, kIF O foreach k, k> 5.
Finally by using the definition of box operator
M, 5 I- OO,

Note : Of course we showed ¥ IF GO¢ — OS¢, We can think this question that
the McKinsey formula O0G¢ — <O is valid or not in this frame T. Let us show this
formula is not valid in the frame €. We should obtain a counter model 9t on the frame
T such that V' (¢) is a collection of odd numbers. It seems easily for any state j € N,
M, 7 I- OO@ but we know that for the states 7 or 7 + 1 the formula ¢ is not true so for
this model there is no state 7 such that 901, 7 |- O¢ (other words 90t * O¢). Finally due
to the fact that there is a model 9t over the frame ¥ such that 901, 7 ¥ <O for any state

j € N, McKinsey formula (O$¢ — <0¢) is not valid in this frame.
Theorem 3.20 < |- OOCO¢ «— CO¢

Proof: Let 91 be a model over the frame € and let j be any state of 1.
Assume that 90, j IF OGO¢ . Then

M, j IF SO forall k > 5.
If we choose k£ = j we have
M, 5 1= SO
In order to prove other side of the theorem assume that

M, j IF OO
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It means the formula ¢ has got a upper-bottom point in this model.

By the proposition 2.8 the formula $O¢ is universally true in this model so we can say
M, j IF OGO for every state j, 7 € N

Finally it is obvious that
M, j IF SO for every state k, k > j

Clearly this is the definition of Box operator such that;

M, j - OO0

Theorem 3.21 T |- COC¢) «— OO

Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

Assume that 901, 5 IF GO, Let us use the substitution ¢ ¢ := 1 then we have
M, 7 IFSOY .
By the theorem 3.19;
M, jIF Oy .
Then use the the formula ¢ ¢ instead of v, it can be written;
M, j I OO
If we use the definition of Box operator,
M, kIF OO forevery k, k >
By the Theorem 3.4 (O¢ «— $O¢ is valid in the frame T);
M k- forevery k, k> g
Thus this is the definition of
M, 5 IFOCe
On the other hand assume that

M, j - OO

29



If we use the substitution O<¢ := 1 we have
M, 5 I .
Since the theorem 3.1 (¢ — < is valid in the frame ¥);
M, 7 IF Y
Finally use the substitutions ¢ := O0O¢;

M, 71000
Theorem 3.22 T IF O¢ — (¢ A oO¢)

Proof: Let 911 be a model over the frame ‘¥ and let j be any state of 1.

MjlFO¢p iff M jlF¢ and M, 5+ 11F Oe.
iff M jl-¢ and M, jIFo O .
iff M jlEoAoO .

Theorem 3.23 T IF O« (¢ V 0O9)

Proof: Let 9 be a model over the frame T and let j be any state of 1.

MjIECp 1iff Mgl or Mj+11IFO ¢,
iff MjlE¢ or MjlEo g,
iff MjlkEopVode.

Theorem 3.24 T IF (¢ A O=¢) — O(p A 0=¢))

Proof: Let 91 be a model over the frame ¥ and let j be any state of 1.
Assume that 9, j IF ¢ A $G—¢. Then,

M, 7 I-pand M, 5 IF O—e.
Since M, 5 IF O,

N, k I+ —¢ for some k, k> j
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It is clear that k& # j because we have 9, j I+ ¢.
Let k be the first state satisfies the state formula —¢ after ;.

It means
M, tI-¢ foreveryt, 7 <t <Kk,

so we can say M, k — 1 IF ¢ for some k — 1, k£ — 1 > j. In addition to this; since
M,k IF =g,

M, kE—11Foe.
All in all consider we have
MkEk—1IFpand M, k —11IFo—¢pforsomek —1, k—1> j.

It means 9,k — 1 IF ¢ A o—¢ for some k — 1 > j.
Finally 9, j IF (¢ A 0—¢)

Theorem 3.25 T IF [(=p)U¢] < <o

Proof: Let 9 be a model over the frame T and let j be any state of 1.
Assume that 9, j IF (=¢) U ¢ but M, j ¥ o
Since M, j IF (—¢) U ¢

M, k- ¢forsome k, k> jand M, i - ~¢ foralli, k> <)
On the other hand since I, 5 ¥ <o,
M, 7 IF O-¢.

It means 9, ¢ |- ¢ forall £, ¢t > j.
If we choose t = k then we have 91, k |- —¢. But we have 91, k |- ¢ so we have
contradiction.
Thus M, 5 IF Co.
Now let us assume 901, j IF O to prove the other side of this theorem.

Since M, 7 IF Co,
M, k I ¢ for some k, k > j.

Let £ be the first state satisfies the state formulla ¢ such that k£ > j.

It means
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M, i Ik ¢ foreveryi, 7 <1<k
All in all consider we have
M, 7 I ¢ for some k, k > 5 and M, i I —¢ forevery s, j <i <k
It is clear that this formula is the definition of 91, j IF (—¢) U ¢

Theorem 3.26 < |- (Op A ) — (o U o)

Proof: Let 9 be a model over the frame T and let j be any state of 1.

Assume that 901, 7 IF Op A .

Then we have
M, jIF O¢p and M, j IF .
Since I, 5 IF O,
M, k I- 1 for some k, k > 7.
Since M, 5 IF O,
M, tI-o¢forallt, t > j.

From this formulla we can produce M, ¢ I+ ¢ for every ¢, k > 7 > j.
All in all consider we have
N, k Ik 1 for some k, k > j and I, i |- ¢ forevery ¢, k > 1 > j.
Thus M, j IF @ U 9.

Theorem 3.27 T IF ¢ — (pU)

Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.
Suppose that 91, j I ) but not M, 5 IF ¢ U 1.
Since M, 7 ¥ o U 1,

not (I, k I+ for some 5, 7 < kandforalli,j <<k, M, |- ¢).

M, kI forall j, j < kimplies for some ¢ ,j <7 < k and I, i ¥ ¢.

Since we have 91, j |- 1, there must be at least an ¢ ,7 < i < 7, I, k ¥ ¢.

But there is not so we have a contradiction.

Thus 9, 5 IF ¢ U 1.
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Theorem 3.28 < I (¢pUv) < [¢pU(opU)]

Proof: Let 911 be a model over the frame ‘¥ and let j be any state of 1.

Suppose
M, 5 IF oU.

Let us use the substations ¢ := ¢U1)
By the theorem 27 (T IF ¢ — ¢U4v), we have M, j IF pUp from M, j I ¢.
Finally by means of pUv := ¢,

M, j - oU(Uy) .
Now suppose
M, j = oU(oU).
It means
M, k IF pU for some k, k < jsuchthat M, 2 IF @ foralli, j <2 < k.
Since M, k IF pU for some k, j < k,
M, t - forsome k, £ < tsuchthat M, n - ¢pforalln, k <n<t.
Since we have
M,il-gforalle, j <i<kandM,nl-oforalln, k<n<t.
It is clear
M, m - ¢ forallm, j <m <t
All in all consider we have
M. tIFforsomet, j <tand M, ml-pforallm, < m<t
Thus this is the definition of
M, IFoU.

Theorem 3.29 T |- [Op A (YU )] — [(¢ AY)U (6 A p)]
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Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

Assume that
M, 7 I 0O¢ and M, 5 IF YU .
It means that

M, kIFgforall k, 7 < kand (I, ¢t ¢ forsomet, j <tand I, q - 1) for all ¢,

71 <1<t).
It can be written,

N kI-ogforall k, j <kand M, tI- ¢ for somet, 7 <t)and (N, k I ¢ for all k,
7 <kand M, ¢ - foralli, j <1 <1).

Since M, k IF ¢ forall k, j < kand 9, ¢t I p for some ¢, j < ¢,
M, tIF oA pforsomet, j<t.
And since (N, k IF ¢ forall k, j < kand 9,7 IF ¢ forall i, 5 <7 <),
M, il AN foralli, j <1 <t.
Now we have
M, tl-pNpforsomet,  <tandIM,ilkp Ay foralls, j <i<t.
Thus this is the definition of
M, j I (GAD) U (6 A ).
Theorem 3.30 ¥ IF o(¢pU1)) < (0ppU o 1))

Proof: Let 9 be a model over the frame T and let j be any state of 1.

M jlEo(pU) 1ff Mj+ 11k U .
iff Mk+1IFy for somek+1, j+1<k+1
and M, i+ 1IF¢ for alli+1,
j+1<i+1<k+1.
iff 9 kI oy for some j <k
and M, i lFop for all, j<1i<Ek.

iff M, jlopU o
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Theorem 3.31 T I [(¢ A ¢)Uy] <

[(@Up) A (YUp)]

Proof: Let 911 be a model over the frame ‘¥ and let j be any state of 1.

MjlE(pNAY)Up iff

iff

iff

iff

iff

M, klIF¢ for somek, 7 <k

and [M,il- ¢ and M, i 1- 9 for all i,
J<i<Kkl.

M, kIFe for some k, 7 <k,

and [M,il- ¢ for alli, j<i<k
and M, i -1 for alli, j<i<Kkl.
[, k- for somek, j <k

and M,il- ¢ for alli, j<i<Kk]
and [, k- ¢ for somek, j <k
and M, i -1 for alli, j<i<Kkl.
MilEoUpand M, jIEyY U p.

M, jIE(@Up) AU @).

Theorem 3.32 S I- (o U (v V )] < [(0 U ) V(6 U ¢)]]
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Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

M,jlkoU (V) iff

iff

iff

iff

iff

iff

M EIFYV e for somek, 7 <k
and M,i - ¢ for everyi, j <1 <k.
(9, k- or Mk IF @] for somek, j <k
M ilF ¢ for everyi, j <i<k.

(M, k Ik for somek, j <k

or M, k- y for somek, j <Kk

and M, i lF ¢ for everyi, j<i<k.
[, k- for somek, j <k

and M, ik ¢ for everyi, j <i<Kk]
or M, k- ¢ for somek, j <k
and M, i - ¢ for everyi, j <i <Kk
M jlFoUyp or M jli-oU .

MjIE(@UY) V(U @)

Theorem 3.33 S |- (Co Vv Ov) — {[(=d) U] V [(-)Ug]}

Proof: Let 9 be a model over the frame T and let j be any state of 1.

Suppose

M, j Ik OpV O,

Then by the theorem 3.9 [T |F O(¢ V1)) «» (O V O1p)] we have

M, 7 I-O(o V).

So there are some states bigger equal than j which satisfies ¢ V 1.

Let j < k be the first of them such that;

M, kI ¢V for some k, j < k.

It means 91,7 K ¢ V o) forevery i, 7 <1 < k.

Then
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(90, i W o A, i W o] forevery i, j <i < k.
We have

N,k I- ¢ forsome k, 7 < kand N, il ¢ foralli, j <i< k) or
(M, k- forsome k 7 < kand 9N, ¢ ¥ ¢ foralli, j <i<k).

Then M, j IF (=) U or M, j IF (=) Un
Thus 9, j I (=) U] V [(~6)U ]

Theorem 3.34 T IF [oU (¢ A @) — [(0UY) A (U )]

Proof: Let 91 be a model over the frame € and let j be any state of 1.

Assume that

M, jIF U A ).

It means
M kI ANpforsomek, j < kand 9N, i l- @ foralle, j <1 <k.
Then
(N, k IF 4 for some k, 7 < kand 9N, k IF ¢ for some k, j < k)
and M, i IF ¢ forall i, j <1 < k.
Then

[ON, k I forsome k, j < kand 9,7 I ¢ forall e, j <1 < k]
and [9, k IF p forsome k, j < kand 9N, i I- ¢ forall ¢, j < i < k].

Now we can write
O, j Ik oU) A (M, j I oU ).
Thus
M, j = (@U) A (@Uep).

Theorem 3.35 T IF [(¢ A Y)Up] < [(¢0Up) A (VU)]
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Proof: Let 971 be a model over the frame ‘¥ and let j be any state of 1.

MjlE(pAY)U @ 1iff

iff

iff

iff

iff

M, kI-¢ for some k, j <k and
MilFp ANy for alli,j <i<k.
M, k- ¢ for some k, j <k and
[M,ilF ¢ for alli, j<i<kand
M,il- for alli, j<i<Kkl
M k- ¢ for some k, j <k and
M, ik ¢ for alli, j<i<k]and
[,k IF o for some k, j <k and
M,il- for alli,j<i<Kkl
MjlFoU pandM,jlIFY U .
Mgl U ANy U p.

Theorem 3.36 T IF [(¢Uy) V (vUp)] — [(¢ V) Uy]

Proof: Let 971 be a model over the frame ‘T and let j be any state of 1.

TEM, jIF (U @)V (U ) then M jlkdU por M, il U p.

Then [, k- ¢ for somek, j <k and

M il for alli, j<i<k]or
9, k- for somek, j <k and

M,il- for alli, j <i<Kk.

Then I, k- for some k, j <k and

(M, il ¢ for alli, j<i<kor

M, il for alli, j<i<Kkl

Then M, k- for some k, j <k and

M,ilF oV for alli, j <i<k.

Then M, j Ik (o V)Uep.
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Theorem 3.37 S I [(¢ — V)Up] — [(¢Up) — (VUp)]

Proof: Firstly by the rule of first order logic EXP [¢ — (¢ — ¢) := (¢ A ) — ¢]
(Mendelson 1997). It is enough to show {[(¢ — ¥)Up] A (¢Up)} — (YUy) is valid
formula in the frame T

Let 91 be an any model over the frame ‘T and let j be any state of 1.

Let us suppose

M, j - [(¢ — L) U] A (pUgp).

By the theorem 35 (T IF [pU (¢ A )] < [(0UD) A (60U ))),

we have

M, j [0 —¥) A olUep.

Finally by means of rule of first order logic MP [(¢ — ), ¢ I ¢] (Mendelson 1997),

we have
M, j Iy U .
Theorem 3.38 T I {(oUW) A [(—)Up]} — (6U)

Proof: Let 971 be a model over the frame ‘T and let j be any state of 1.

Assume that
M, jIF (@UY) A [(—)Ue.
Since M, 7 IF U,
M, k- forsome k, 7 < kand M, Ik ¢ forall i, j < i < k.
Since M, j IF (—Y)Uep,
M, t - @ forsomet, j <tand M, s |- - foralls, j <s<t.

But £ must be bigger or equal than than .

It can be written
M, s IF ¢ for every state s, 7 < s < t,

and we have
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M, t - @ for somet, 7 <t.
Thus 9, 5 IF U .
Theorem 3.39 < IF [oU (¢ A ¢)] — [(0U)Up]

Proof: Let 91 be a model over the frame € and let j be any state of 1.

Assume that
M, j - U (Y A o).
Since M, j IF dU (¢ A ),
M, k- Apforsomek, j < kand I, i l-¢@foralle, 7 <1< k.
Then we can say

[D, k IF 2 for some k, 7 < kand 9N, i |- ¢ forall 7, 7 <i < k]
and 9, k I ¢ for some k, j < k.

Then we have

D0, 2 IF ¢Uq forall 2, 3 <¢ < k] and 9, k I ¢ for some k, j < k.
Thus M, j IF (pUL)U .
Theorem 3.40 T |- (¢U) — (¢ V ¥)

Proof: Let 9 be a model over the frame T and let j be any state of 1.

Assume that
M, 7 IF oUy but M, 5 I ¢ V 1.
Since M, 7 ¥ ¢ V 1,
M, 5 I ¢ and M, 7 IF ).
Since M, j IF U,
I, kIF 1 forsome k, ) < kand M, IF ¢ forall i, 3 <i < k.

In this situation, we have to consider two different cases;
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Case 1: k = j. We have 9, j I ¢ but we have 91, j IF =1 so it is contradiction.

Case 2: k > j. We have I, j I ¢ but we have 91, j I- —¢ so again contradiction.

Thus M, j IF (pUW) — (¢ V ).
Theorem 3.41 X IF [(¢U)Uyp| — [(¢ V ¥)U]

Proof: Let 91 be a model over the frame € and let j be any state of 1.

Suppose
M, j I (pUy)Ue.

Since hypothesis,

M, k|- @ forsome k, j < kand 9, ¢ IF pUy foralli, j <i <k
By the theorem 3.40 (¥ IF (pUv)) — (¢ V 1)) we can say,

M, k=@ forsome k, j < kand I, il o Vforalle, 7 <1<k
Thus M, j I (¢ V )Uep.
Theorem 3.42 < IF [oU (U p)] — [(¢ V )Up]

Proof: Let 91 be a model over the frame ‘¥ and let j be any state of 1.

Suppose
M, j Ik U (WUp).

Since the hypothesis,

M, kIFypUep for some k, j < kand M, ¢ - pforalli, j <1<k
Since M, k IF YU for some k, j < k,

M, t - forsomet, k <tand M, s |- foralls, k <s<t
Since we have 91,7 I ¢ forall ¢, 7 <7 < kand M, s |-+ forall s,k < s < t,
M IIFpVvyforalll, j <[ <t.

Then we have MM, [ I- ¢ Vi foralll, 7 <[ <tand M, tI- ¢ forsomet, j < t.
Thus
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M, jI-(oVe)Uep.
Theorem 3.43 T IF [(pUy)Uv] < (pU)

Proof: Let 971 be a model over the frame ¥ and let j be any state of 1.

Suppose
M, j IF (GU)U.
Since the hypothesis;
M, k|- forsome k, 7 < kand M, i I- ¢U forallz, 5 <i < k.
In this situation, we have to consider two different cases;

Case 1: k = j. we have 901, j |- 1. By the theorem 3.27 it can be said 9, j |- ¢U1)

Case 2: j < k. We can choose ¢ = j so itis clear that 901, j IF U1

Thus M, j I (QU)Uth — $U.

Now let us suppose
M, 5 I- oU.
Since the hypothesis;
N, k I for some k, j < kand M, 7 IF ¢ forall 7, j < i < k.
Since we have
DN, slF@¢forall s, : < s < kand 9, k I 1) for some k, 7 < k] forallz, j <i < k.

Then we can say N, i - ¢U forall ¢, j < i < k.

All in all consider ,since we have
M, kIF 1 forsome 7 < kand M, il- ¢ U ¢ foralli,j <i < k.

Thus 9, j IF (oUY)U.

If you look at carefully nearly all of given valid formulas in T include only future
operators (o, <, O, U). But mirror images of all these formulas can be derived.

Let us consider theorem 3.26. It was showed the formula (O¢p A Ov)) — (¢ U 1))
is valid in the frame ¥. Mirror image of this formula is (Hp A €¢) — (¢ S 1)). Let us

show this formula is valid in ¥ by means of the time line.
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Figure 3.1: T I (HBp A ) — (¢ S )

But it can not be said that the mirror image of every valid formula in the frame
T is again valid. We can give an example to show it. Of course, it is showed that the
McKinsey formula (O0C¢ — <Og) is not valid in T but the formula (CO¢p — OO@) is
valid so the formula (CO¢ < O<O@) is not valid in the frame T . But the mirror image of

this formula (© B ¢ <« HS¢) is valid in this frame.
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CHAPTER 4

CONCLUSION

The goal of this study is to analyze the most important frame ¥ in temporal logic.
For this purpose the temporal languages has been studied with considering the modal
languages in the first chapter then the modeling in temporal logic has been constructed on
the frame ¥ step by step.

Although the temporal logic has many applications in computer programming and
dynamic systems, we have not mentioned about this. Furthermore, the most of authors
use some different operators belonging to temporal language, because they need new
interpretations in their systems. In contrary, we have studied different approach. We have
only used the operators which are allowed by modal languages except next (o) and its
mirror image (©) .

In this study we have improved our new structure upper-bottom and down-top
points concept for any temporal formula. By means of these definitions we have reached
some propositions. Then we have used these propositions in the section of theorem for
simplification proofs of some theorems. Especially they help us to show the formulas
,which are including the operators Box (O) and Diamond (<), are valid. Furthermore the
valuation set of an any formula can be generally described by using these definitions. We
also give the proofs of some valid temporal formulas with using only simple derivation
and the time line interpretation. Furthermore we have shown how we can find mirror
image of any temporal formula.

In conclusion I want to emphasize that all of this study is true only in the frame
T = (N, <, >, R,, Ro, Ry, Rg). It means if somebody want to change this frame then

the most of valid formulas or propositions might be falsified.
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