
i

Finding and Evaluating Patterns in Web Repository

Using Database Technology and Data Mining Algorithms

By

Belgin ÖZAKAR

A Dissertation Submitted to the
Graduate School in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

Department : Computer Engineering

Major : Computer Software

İzmir Institute of Technology

İzmir, Turkey

June 2002

ii

We approve the thesis of Belgin ÖZAKAR

Date of Signature

��������������������.. 25.06.2002

Prof. Dr. Halis PÜSKÜLCÜ

Supervisor

Department of Computer Engineering

��������������������.. 25.06.2002

Prof. Dr. Sõtkõ AYTAÇ

Department of Computer Engineering

��������������������.. 25.06.2002

Prof. Dr. Şaban EREN

Department of Computer Engineering

Egean University

��������������������.. 25.06.2002

Prof. Dr. Sõtkõ AYTAÇ

Head Of Department

iii

ACKNOWLEDGEMENTS

I would like to express my thanks to my advisor, Prof. Dr. Halis PÜSKÜLCÜ for the

suggestions and support he provided during this study.

 I would also like to thank the people of the Department of Computer Engineering of

İzmir Institute of Technology whose friendship and support made my return to academic

world after all those years, possible.

Finally, I thank my family for their love and patience.

iv

ABSTRACT

Web mining is a very hot research topic, which combines two of the active research

areas: Data Mining and World Wide Web. The Web mining research relates to several

research communities such as Database, Statistics, Artificial Intelligence and Visualization.

Although there exists some confusion about the Web mining, the most recognized approach

is to categorize Web mining into three areas: Web content mining, Web structure mining,

and Web usage mining. Web content mining focuses on the discovery/retrieval of the

useful information from the Web contents/data/documents, while the Web structure mining

emphasizes to the discovery of how to model the underlying link structures of the Web.

Sometimes the distinction between these two categories is not very clear. Web usage

mining is relatively independent, but not isolated category, in which the following studies

continue; General Web Usage Mining, Site Modification, Systems Improvement and

Personalization. General Web Usage Mining systems aim to discover general trends and

patterns from the log files by adapting data mining techniques. The objective of the Site

Modification systems is to improve the design of a web site by suggesting modifications in

its content and structure. The research on System Improvement focuses on using the web

usage mining for improving the web traffic. Finally, personalization systems aim to

understand individual trends used for personalizing the web sites.

The study subject to this thesis, IYTE Web Usage Mining (WUM) System was an

example of system development in the field of General Web Usage Mining with a database

approach where the flexible query capability of SQL (Structured Query Language) was

explored. The data mining and database techniques were applied on the access/error/user

logs of the web server of Izmir Institute of Technology.

The main objective was to create a site improvement tool for the web administrator

by reporting the distribution of the hits received by the web server according to the time

stamp, users, service and URL types and at the same time revealing the nature of the errors

generated by the web server. All data cleaning and transaction identification processes were

handled by the software routines coded in Java. Clean transactions were imported into

v

IYTE Web Usage Mining (IYTE WUM) relational database. Flexible features of SQL were

utilized for application of algorithm Apriori to discover most frequent pair of URL�s

visited, in addition to extraction of general knowledge from data.

vi

ÖZ

Web madenciliği son zamanlarda çok yaygõn olarak kullanõlan Veri Madenciliği ve

World Wide Web�i birleştiren bir araştõrma alanõdõr. Web madenciliği konusundaki

araştõrmalar Veritabanõ, İstatistik, Yapay Zeka ve Görsellik gibi araştõrma ekiplerinin

ilgisini çekmektedir. Web madenciliği konusu henüz çok yeni olduğundan bazõ kavramlar

netlik kazanamamõştõr. Ancak kabul gören bir yaklaşõm bu konudaki çalõşmalarõ üç ana

başlõk altõnda toplar: Web içerik madenciliği, Web yapõ madenciliği ve Web kullanõm

madenciliği.Web içerik madenciliği web içinde bulunan veri ve dökümanlardan faydalõ

bilgi bulmaya/çekmeye odaklanõrken, Web yapõ madenciliği bağlantõ yapõlarõnõ bulmaya ve

bunlarõ modellemeye çalõşõr. Bu iki kategori arasõndaki ayrõm bazen çok net değildir. Web

kullanõm madenciliği göreceli olarak daha bağõmsõz bir alan olup bu konuda şu çalõşmalar

sürdürülmektedir: Genel Web Kullanõm Madenciliği, Site Modifikasyonu, Sistem

İyileştirme ve Kişiselleştirme. Genel Web Kullanõm Madenciliği log dosyalarõna veri

madenciliği tekniklerini uygulayarak genel akõmlarõ ve paternleri bulmayõ hedefler. Site

Modifikasyonu sistemleri sitelerin içerik ve yapõsõnda iyileştirmeler önererek site tasarõmõnõ

iyileştirmeye çalõşõr. Sistem İyileştirme, web trafiğini iyileştirmek için web madenciliği

yapar. Son olarak, kişiselleştirme sistemleri kullanõcõlarõnõn tercihlerini anlamayõ ve web

sitelerini kişisel hale getirmeyi amaçlar.

Bu teze konu çalõşma, İYTE Web Kullanõm Madenciliği Sistemi; Genel Web

Kullanõm Madenciliği alanõnda esnek SQL (Yapõsal Sorgulama Dili) sorgulama

yeteneklerini kullanan veritabanõ yaklaşõmõna bir örnek teşkil etmektedir. İzmir Yüksek

Teknoloji Enstitüsü web sitesinin erişim/hata/kullanõcõ log dosyalarõ üzerinde veri

madenciliği ve veritabanõ teknikleri uygulanmõştõr.

Web yöneticisi için, web sunucusuna gelen taleplerin zamana, kullanõcõlara, servis ve

URL tiplerine gore dağõlõmlarõnõ, web server tarafõndan oluşturulan hatalarõn dağõlõmlarõ ile

birlikte bildiren, web sitesi iyileştirmesinde kullanabileceği bir araç oluşturmak

hedeflenmiştir. Tüm veri temizleme ve kayõt tanõma işlemleri Java�da kodlanmõş yazõlõmlar

ile yapõlmõştõr. Temiz kayõtlar İYTE Web Kullanõm Madenciliği ilişkisel veri tabanõna

vii

aktarõlmõştõr. Veriden bilgi elde etmeye dönük sorgulamalara ek olarak SQL�in esnek

özelliklerini kullanarak Apriori algoritmasõ uygulanmõş ve en sõk ziyaret edilen URL çiftleri

bulunmuştur.

viii

TABLE OF CONTENTS

Chapter 1. INTRODUCTION ��������������������...1

1.1. Motivation �������������������������.1

1.2. Objective ���������������..����������.2

1.3. Scope and Structure of the Study ����������������..3

Chapter 2. BACKGROUND OF WEB MINING ..���...�������..�..4

2.1. Overview �������������������..���..��...4

2.2. Web Content Mining �..��������������..����� 5

2.3. Web Structure Mining ��������������������...6

2.4. Web Usage Mining ������������������..���. 7

2.4.1. General Web Usage Mining Systems ���������..��. 8

2.4.1.1. Mining Traversal Paths �����������..��8

2.4.1.2. Mining Navigation Patterns with Hypertext Probabilistic

Grammars �����������������..��10

2.4.1.3. Analysis of Web Logs through OLAP Mining �����11

2.4.1.4. Web Utilization Miner ��������������.12

2.4.1.5. WebSift �������������������� 14

2.4.1.6. WAP Mine �.�����������������.. 15

2.4.1.7. Clustering User Sessions �������������..

16

2.4.1.8. Clustering of the Paths Followed by the Visitors ���� 17

2.4.2. System Improvement .����������������.� 18

2.4.3. Personalization ��������������������. 19

2.4.3.1. Content Based Filtering �������������... 19

2.4.3.2. Usage Based Web Personalization ���������.. 21

2.4.3.3. Analog ��������������������. 21

2.4.3.4. Web Personalizer ����������������. 22

2.4.4. Site Modification �������������������. 24

Chapter 3. PATTERN DISCOVERY TECHNIQUES ���������. 26

ix

3.1. Statistical Analysis �������������������26

3.2. Association Rules �������������������..26

3.3. Clustering����������������������.. 27

3.4. Classification���������������������. 27

3.5. Sequential Patterns .������������������.. 27

3.6. Dependency Modeling �����������������..28

Chapter 4. IYTE WEB USAGE MINING SYSTEM �.��������.. 29

4.1. Basic Concepts��������������������.. 30

4.2. Data Preparation�������������������� 31

4.2.1. Access Log �������������������32

4.2.2. Error Log �������������������...34

4.2.3. Users Data �������������������35

4.3. Query Mechanism �������������������.36

4.3.1. Filling up the Main Tables �������������36

4.3.2. Descriptive Queries ���������������...38

4.3.3. Association Rule Mining Algorithms��������.. 43

4.3.3.1. Apriori Algorithm ������������.. 45

4.3.3.2. Application of Apriori with SQL.������... 47

4.3.4. Apriori Queries �����������������. 53

Chapter 5. CONCLUSION ��������..�����������.. 56

5.1. Remarks on the Study �����..������������ 56

5.2. Evaluation of the IYTE WUM System �����������56

5.2. Future Work ���������������������..57

REFERENCES ��������������������������. 59

APPENDIX

A1. Java code of AccessLogRead() Class�..�������..�����.. 62

A2. Java code of ErrorLogRead() Class���������������. 64

A3. İYTE WUM Database Schema ����������������� 66

1

Chapter 1

INTRODUCTION

1.1. Motivation

It is not an exaggeration to say the World Wide Web has the most profound impact

on the human society in the last 10 years. It has changed the way of doing business,

providing and receiving education, managing the organization etc. The most direct effect

was the completed change of information collection, conveying, and exchange. Today,

Web has turned to be the largest information source available in this planet.

 The Web is a huge, explosive, diverse, dynamic and mostly unstructured data

repository, which supplies incredible amount of information, and also raises the complexity

of how to deal with the information from the different perspectives of view -- users, Web

service providers, business analysts. The users want to have the effective search tools to

find relevant information easily and precisely. In Figure 1.1. there are some statistics taken

from http://www.searchengineshowdown.com/stats/ about popular search engines, which

can give idea about the size of the links reachable through search engines. The second and

third columns of the table show the freshness range of the data in the search engines. The

fourth column indicates the number of URLs (in millions) in the database of the search

engines.

The Web service providers want to find the way to predict the users' behaviors and

personalize information to reduce the traffic load and design the Web site suited for the

different group of users. The business analysts want to have tools to learn the

users/consumers' needs. All of them are expecting tools or techniques to help them satisfy

their demands and/or solve the problems encountered on the Web. Therefore, Web mining

becomes an active and popular research field.

http://www.searchengineshowdown.com/stats/

2

Newest

Page

Found

Oldest

Page

Found

Showdown

Estimate

(millions)

Claim
(millions)

Google 1 day 68 days 968 1,500

MSN (Inktomi) 1 day 80 days 292 500

HotBot (Ink.) 1 day 136 days 332 500

AltaVista 12 days 51 days 397 500

AllTheWeb 16 days 191 days 580 507

WiseNut 247 days 286 days 579 1,500

Figure 1.1. Statistics About Popular Search Engines (as of May, 2002)

1.2. Objective

By the application developed in this study we aim to have an example of general web

usage mining exploring the capabilities of Standard Query Language (SQL). The main

objective of the IYTE Web Usage Mining System is being a non-trivial application, which

can be used by the web administrator to clarify the distribution of the hits according to the

time stamp, users, service and URL types. The system can also reveal the nature of the

errors generated by the web server. By the application of an association rule algorithm on

the database the value of the knowledge is planned to be carried one step further since the

relation between the hits can be analyzed. Web administrator can use the system developed

in this study to understand general trends about his/her site and to modify the site to meet

the changing requirements of the users. Some examples of query results are also presented

in the study but the meaning of information extracted has not been discussed since the

primary goal of the study was to show the possibility of importing database (mainly SQL)

flexibility into the web usage mining systems.

Two data logs; access log and error log of IYTE web server together with user data

are the inputs of this system. All data cleaning and transaction identification processes were

3

handled by the software routines coded in Java. Clean transactions were imported into

IYTE Web Usage Mining (IYTE WUM) relational database generated on Mysql. Both Java

and Mysql are chosen for their freeware and portable nature. It was then possible to design

and submit queries to describe the data and further create an environment favorable for

application of predictive data mining algorithms. One of such algorithms for finding

associative rules will be applied on a small portion of the database in order to demonstrate

the outcomes.

1.3. Scope and Structure of the Study

According to Etzioni [1] web mining is the term of applying data mining techniques

to automatically discover and extract useful information from the World Wide Web

documents and services. In Chapter 2 all the attributes of web mining together with the

taxonomy is discussed. Although Web mining puts down the roots deeply in data mining, it

is not equivalent to data mining. In Chapter 3 a brief description of data mining techniques

are given. The unstructured feature of Web data triggers more complexity of Web mining.

According to Kosala and Blockeel [2] web mining research is actually a converging area

from several research communities, such as Database, Information Retrieval, Artificial

Intelligence, and also Psychology and Statistics as well.

The application developed and explained in detail in Chapter 4 of this thesis is an

example of web usage mining exploring the capabilities of standard query language (SQL).

In this chapter system architecture, process and data flow, SQL DDL commands, SQL

DML commands, query results, fragments of log files and tables can be found in order to

make all the system easy to understand.

In Chapter 5 the experience gained from the development of IYTE Web Usage

Mining (WUM) System is discussed. The main findings and benefits of the system together

with suggestions for future work to enhance the system will take place in this last chapter.

4

Chapter 2

BACKGROUND OF WEB MINING

2.1. Overview
As many believe, it is Etzioni first proposed the term of Web mining in his paper [1]

in 1996. In this paper, he claimed the Web mining is the use of data mining techniques to

automatically discover and extract information from World Wide Web documents and

services. Many of the following researchers cited this explanation in their works. In the

same paper, Etzioni came up with the question: Whether effective Web mining is feasible

in practice? Today, with the tremendous growth of the data sources available on the Web

and the dramatic popularity of e-commerce in the business community, Web mining has

become the focus of quite a few research projects, papers and some commercial products.

In Etzioni [1] and Kosala and Blockeel [2], they suggested a similar way to

decompose Web mining into the following subtasks:

a. Resource Discovery: the task of retrieving the intended information from Web.

b. Information Extraction: automatically selecting and preprocessing specific

information from the retrieved Web resources.

c. Generalization: automatically discovers general patters at the both individual Web

sites and across multiple sites.

d. Analysis: analyzing the mined pattern.

In brief, Web mining is a technique to discover and analyze the useful information

from the Web data. Madria et al. [3] claim the Web involves three types of data: data on the

Web (content), Web log data (usage) and Web structure data. Cooley [4] classified the data

type as content data, structure data, usage data, and user profile data. Spiliopoulou [5]

categorized the Web mining into Web usage mining, Web text mining and user modeling

mining; while today the most recognized categories of the Web data mining are Web

content mining, Web structure mining, and Web usage mining according to Borges and

5

Levene [6] and Kosala and Blockeel [2]. It is clear that the classification as seen in Figure

2.1. is based on what type of Web data to mine.

2.2. Web Content Mining
Web content mining describes the automatic search of information resource available

online, and involves mining web data contents. In the Web mining domain, Web content

mining essentially is an analog of data mining techniques for relational databases, since it is

possible to find similar types of knowledge from the unstructured data residing in Web

documents. The Web document usually contains several types of data, such as text, image,

audio, video, metadata and hyperlinks. Some of them are semi structured such as HTML

documents, or a more structured data like the data in the tables or database generated

HTML pages, but most of the data is unstructured text data. The unstructured characteristic

of Web data force the Web content mining towards a more complicated approach.

Figure 2.1. Web Mining Taxonomy

The Web content mining is differentiated from two different points of view, Cooley

et al. [7]: Information Retrieval View and Database View. Kosala and Blockeel [2]

summarized the research works done for unstructured data and semi structured data from

information retrieval view. It shows that most of the researches use bag of words, which is

Web Mining Taxonomy

Web Page
Content Mining

Search Result
Mining

Web Content
Mining

Web Structure
Mining

General Web
Usage Mining

Site Modification
Systems

System Improvement Personalization

Web Usage
Mining

Web
Mining

6

based on the statistics about single words in isolation, to represent unstructured text and

take single word found in the training corpus as features. For the semi-structured data, all

the works use the HTML structures inside the documents and some use the hyperlink

structure between the documents for document representation. As for the database view, in

order to have the better information management and querying on the Web, the mining

always tries to infer the structure of the Web site of to transform a Web site to become a

database.

Chakrabarti [8] provides an in-depth survey of the research on the application of the

techniques from machine learning, statistical pattern recognition, and data mining to

analyzing hypertext. It is a good resource to be aware of the recent advances in content

mining research.

Multimedia data mining is part of the content mining, which is engaged to mine the

high-level information and knowledge from large online multimedia sources. Multimedia

data mining on the Web has gained many researchers' attention recently. Working towards

a unifying framework for representation, problem solving, and learning from multimedia is

really a challenge, this research area is still in its infancy indeed, and many works are

waiting to be done. The details about multimedia mining are given in Zaiane et al. [9].

2.3. Web Structure Mining
Most of the Web information retrieval tools only use the textual information, while

ignoring the link information that could be very valuable. The goal of Web structure mining

is to generate structural summary about the Web site and Web page. Technically, Web

content mining mainly focuses on the structure of inner document, while Web structure

mining tries to discover the link structure of the hyperlinks at the interdocument level.

Based on the topology of the hyperlinks, Web structure mining will categorize the Web

pages and generate the information, such as the similarity and relationship between

different Web sites.

Web structure mining can also have another direction -- discovering the structure of

Web document itself. This type of structure mining can be used to reveal the structure

7

(schema) of Web pages; this would be good for navigation purpose and make it possible to

compare/integrate Web page schemes. This type of structure mining will facilitate

introducing database techniques for accessing information in Web pages by providing a

reference schema.

What is the structural information, and how to discover it? Madria et al. [3] gave a

detailed description about how to discover interesting and informative facts describing the

connectivity in the Web subset, based on the given collection of interconnected web

documents. The structural information generated from the Web structure mining includes

the follows: the information measuring the frequency of the local links in the Web tuples in

a Web table; the information measuring the frequency of Web tuples in a Web table

containing links that are interior and the links that are within the same document; the

information measuring the frequency of Web tuples in a Web table that contains links that

are global and the links that span different Web sites; the information measuring the

frequency of identical Web tuples that appear in a Web table or among the Web tables.

In general, if a Web page is linked to another Web page directly, or the Web pages

are neighbors, we would like to discover the relationships among those Web pages. The

relations maybe fall in one of the types, such as they related by synonyms or ontology, they

may have similar contents; both of them may sit in the same Web server therefore created

by the same person. Another task of Web structure mining is to discover the nature of the

hierarchy or network of hyperlinks in the Web sites of a particular domain. This may help

to generalize the flow of information in Web sites that may represent some particular

domain; therefore, the query processing will be easier and more efficient.

Web structure mining has a nature relation with the Web content mining, since it is

very likely that the Web documents contain links, and they both use the real or primary data

on the Web. It is quite often to combine these two mining tasks in an application.

2.4. Web Usage Mining
Web usage mining tries to discover the useful information from the secondary data

derived from the interactions of the users while surfing on the Web. Web Usage mining

8

studies can be classified under the headlines of. General Web Usage Mining, Site

Modification, System Improvement and Personalization. General Web Usage Mining

systems aim to discover general trends and patterns from the log files either by adapting

well known data mining techniques or by proposing new data mining techniques. The

objective of the Site Modification systems is to improve the design of a web site by

suggesting modifications in its content and structure. The research on System Improvement

focuses on using the web usage mining for improving the web traffic. Lastly,

personalization systems aim to understand individual trends used for personalizing the web

sites. Throughout the following sections, detailed description of the projects belonging to

each category will is given.

2.4.1. General Web Usage Mining Systems
General Web Usage Mining systems focus on the analysis of log files using data

mining techniques for discovering general access patterns and trends of users. Majority of

the studies under this category aim to discover user navigation paths from the log files. In

general, navigation path of a visitor is mainly the path followed by him/her through out

his/her visit to the web site. It should be noted that each different study enlarges this

definition by determining some specifications on what can be accepted as a path. Systems

also differentiate on how they use the paths found. Some of the general usage mining

systems present the user navigation paths without any further processing. Some others

provide a query language for analyzing the paths better. In addition, there are studies on

clustering paths or just user sessions with the aim of finding similar interest groups among

visitors. The other types of studies under this category proposes to adapt well known data

mining techniques such as association rule mining to the problem of web usage mining. In

this section, we will explain each of these studies in detail.

2.4.1.1. Mining Traversal Paths

One of the existing approaches for mining navigation patterns from log files is to

make use of well-known techniques from data mining. An example of such a study aims to

9

find frequently occurring paths, which are named as maximal reference sequences from the

log file by using a methodology similar to the association rule mining, M.-S. Chen et al.

[10]. The first step of the proposed solution procedure is to traverse the whole log file for

finding maximal forward references for each user. To be able to do that, the log file is

divided into user paths where each path contains the accesses belonging to a specific user.

Then, each user path is processed to find maximal forward references contained it. A

maximal forward reference is defined as a sequence of pages that are visited consecutively

by the visitor in which each page is seen only once. Whenever a backward reference to a

page previously visited is seen, the current maximum forward reference path is terminated,

added into the database and a new one starts. While traveling through the pages, visitors

generally turn back to the previously visited pages and choose other links from them. The

pages seen on the way back to the previous pages are visited only because of their location,

but not their content. In the light of this observation, the study concentrates only on forward

references. As an example, assume that the traversal sequence of the Visitor A is as

follows: (P1, P2, P3, P4, P3, P2, P7). In this example, Visitor A turns back to the page P3

and P2 consecutively after retrieving page P4. Here, the page P3 is retrieved only for being

able to retrieve page P7 from page P2. The algorithm forming maximal forward references

solves that problem by removing the backward references from the paths. The algorithm

produces the following maximum forward references for Visitor A: (P1 P2 P3 P4, P1 P2

P7) Once the maximal forward references for each user are formed, the next step of the

solution for mining path traversal patterns is ready for the execution. In this step, the

database containing maximal forward references for all users is processed to be able to

form large reference sequences, which are frequently occurring consecutive subsequences

among all maximal forward references. Full Scan (FS) and selective scan (SC) are two

different algorithms for finding the large reference sequences. FS algorithm is indicated to

be similar to the well-known algorithm called Direct Hashing with Pruning (DHP) for

mining association rules with adaptations to the current problem. Because, the problem of

finding large reference sequences from the database of maximal forward references has

common points with finding large item sets from the database of transactions in association

rule mining. The main difference between these two problems is that the order of the items

in an item set is not important in association rule mining while it is crucial in mining

10

traversal patterns. So, Full Scan algorithm changes the joining strategy used in the

candidate generation phase of the DHP algorithm. Selective Scan algorithm is similar to

Full Scan algorithm with optimizations to reduce I/O cost. Maximal reference sequences

are the subset of large reference sequences so that no maximal reference sequence is

contained in the other one. For example, if the large reference sequences are AB, AE,

AGH, and ABD then maximal reference sequences become AE, AGH, and ABD. The

sequences obtained through this way can then be used by web masters in redesigning the

links between the pages that are accessed together in making marketing decisions.

2.4.1.2. Mining Navigation Patterns with Hypertext Probabilistic Grammars

Another study towards the problem of mining access patterns of visitors proposes to

model user navigation sessions as a hypertext probabilistic grammar (HPG), Borges and

Levene [6]. A user session is defined as a sequence of page requests coming from the same

machine where the time passing between each request is less then a certain time limit. After

the HPG is formed, the paths followed frequently by the visitors are discovered by applying

a special case of depth first search algorithm on it. Each terminal and no terminal symbol of

HPG built from user sessions correspond to a web page and there is a one-to-one

correspondence between terminal and no terminal symbols. The links between web pages

are represented by the production rules of the grammar. Two additional states, S and F are

added into the grammar to represent the start and finish of the paths. In the corresponding

automata, states represent no terminal symbols where transitions between states are formed

by productions. Each production originating from a state is attached with a value, which is

the probability that the link corresponding to a production was chosen from the links on a

page represented by that state. In case of a start state, the probabilities of the productions

are derived from the rate of the number of times that the page is visited to the overall

number of hits. When navigating through a web site, visitors may concentrate on unrelated

topics in a single session. Accordingly, the concept of N-Grammar is suitable to be

employed in building HPG. N-Grammar dictates that the link that will be chosen by a

visitor on any page is effected only by the last N pages retrieved by him/her. In HPG that

makes use of the concept of N-Grammar, the number of states may increase too much if N

11

is chosen to be very large. This is because each distinct consecutive sequence of N pages

visited by any user should have a corresponding state in HPG. After the construction

process, user preferred paths are discovered from HPG by applying depth first search like

algorithm. Before mining, the mining expert should specify support and confidence

thresholds, which will affect the quality of the paths discovered. Support threshold ensures

that the path is frequently visited while confidence threshold ensures that the derivation

probability of the corresponding string is high enough. The support value for a particular

path is obtained by looking at the probability of the derivation of the first state of this path

from the start state. In addition, the confidence value is obtained from the derivation

probabilities of other the pages on the path. By the help of support and confidence

thresholds, it becomes possible to discover the paths that describe the common visitor

behavior best.

2.4.1.3. Analysis of Web Logs through OLAP Mining

A totally different approach to web usage mining is to make use of OLAP (Online

Analytical Processing) technology on mining process. WebLogMiner, O. Zaiane et al. [11],

is one of the tools, which aim to incorporate the OLAP technology and the data mining

techniques. OLAP techniques are being used to obtain a portion of the data that is

interesting to the analyst who can also determine the abstraction level on which the data

will be presented. Then, this data can be used as an input to the data mining algorithms.

Results obtained through mining the data can also be presented in different ways by using

OLAP techniques. So, the mining process becomes more interactive and flexible. OLAP

technology firstly places the data into a data cube, which is stored in multidimensional

array structures or relational databases. Each dimension of the data cube represents a

distinct field of the data, such as URL or domain name. If the data cube has n dimensions,

each cell is characterized by having distinct values for the fields represented by these

dimensions. Each cell in the data cube stores the number of visitors, which have the same

values with the values characterizing the cell. The advantage of the data cube representation

is to make it possible to view from different perspectives and abstraction levels, which are

12

performed by the OLAP operations such as, drill down, roll up and slice. The following

statements are examples for the simple queries that OLAP can answer quickly:

- Hits coming from Turkey, between March 2001 and May 2001

- Hits coming from edu domain on 23/03/2001 with agent Mozilla

In addition to the analysis performed by OLAP technology, WebLogMiner makes use

of data mining techniques to analyze the data to answer questions that OLAP cannot. For

this, it applies well-known data mining techniques such as association rule mining,

clustering or time series analysis on the data stored in the data cube. For example, by

performing time series analysis, it answers the following questions: - what are the typical

page request sequences performed by the visitors? Namely, are there request sequences that

are common to most of the visitors?

- What are the event trees belonging to specific time intervals? Here, event trees

contain the traversal patterns of the visitors in an aggregated form.

- How the traffic on a web site changes depending on time? Are there particular

trends on particular times of a day, month etc.?

2.4.1.4. Web Utilization Miner

Web Utilization Miner (WUM) is another data mining tool designed for mining user

navigation patterns from web logs. The distinguishing facility of this tool is to provide a

mining language by which users can dynamically specify constraints on the mining result.

WUM is composed of two major modules: Aggregation service and the query processor,

Spiliopoulou [5]. Aggregation service firstly processes the log file and divides it into the

visits that are used in constructing the aggregate tree on which the mining will be

performed. Adding each path seen on the log file extends the tree. While forming the tree,

paths that have a common prefix are merged. So, all paths are represented in the tree at the

end. Each node taken together tree contains a URL, occurrence count and the number of

visitors reaching that node by following the path starting from the root node. Because there

exists visits that contain the same URL more than once, each node is associated with an

occurrence count to show which occurrence of the URL this is. The way of storing paths in

an aggregate tree was chosen for reducing the space requirements and speed up the mining

13

process. The aggregate tree is built for once and used as input for the other module. Query

processor is the module that performs the interactive mining on the aggregate tree

constructed by the Aggregation service. The user can specify structural, textual and

statistical constraints on the mining result. For example, the following query, which is

expressed in MINT syntax, will result in a graph showing navigation patterns between

B.HTML and any page whose support is larger than 1. The wildcard between the nodes

means that there may be any number of nodes between X and Y. But the order of the

template variables should stay the same as given in the query.

 select T nodes as X Y, template X*Y as T and X.name= B.HTML and Y.support!1

The algorithm that is used for mining according to the given template and other

constraints firstly finds all possible bindings for all template variables. At first, all possible

bindings for the first template variable are found by checking all nodes taken together tree.

This is the first and the last time that the query processor processes the whole tree. After

that, only the trees rooted at the nodes that contain the URLs bound to the first template

variable are processed for finding the possible bindings for the second template variable.

Each different binding obtained for the template variables is named as pattern descriptor.

That is, pattern descriptors contain identifiers that match to the template variables in given

queries and wildcards. Namely, in this step of the algorithm, the structural and textual

constraints specified by the user are taken into consideration. Next, the algorithm obtains

navigation pattern corresponding to each pattern descriptor found in the first step. The

designers of the system define a navigation pattern as a graph formed according to the

pattern descriptor. For each pattern descriptor, the algorithm firstly finds all branches of the

Aggregate Tree that contains the pattern represented in that descriptor. Then, these

branches are merged at their common prefixes and on the identifiers existing in the pattern

descriptor. While merging the branches, the counts of the nodes that are merged together

are added. After merging, the statistical constraints on the mining result are checked and a

descriptor is ignored if these constraints are not satisfied. At the end, remaining navigation

patterns are shown to the user.

14

2.4.1.5. WebSift

WebSift is a web usage mining system, which aims to apply well-known data mining

techniques on the usage data obtained through web logs, Cooley et al. [7]. It divides the

mining process into three main phases: Preprocessing, Pattern Discovery and Pattern

Analysis. The aim of the Preprocessing step is to turn the raw data in the log file into a

form that is suitable for mining. Then, in the second phase of the usage mining process,

well-known data mining techniques such as association rule mining, sequential pattern

mining or clustering is applied on the transactions obtained in the previous phase. In the

third phase, creators of the WebSift system propose to provide a query language and

visualization facilities. In addition, in this phase of the mining process, using the

Information Filter filters uninteresting results. Preprocessing step includes cleaning the

data, identifying users and sessions belonging to them, completing the missing references

in paths and formatting the data to obtain the appropriate transaction type for the type of the

mining operation that will be performed. Data cleaning is the removal of irrelevant and

redundant data in the log file such as requests for graphics. Besides, user identification tries

to identify the requests belonging to each user. Authors indicate that an IP address may not

be suitable to differentiate between the users, because two visitors may be using the same

IP at the same time. For the solution of this problem, they propose to make use of some

heuristics. For example, if two requests come from different types of browsers from the

same machine, these requests are accepted to be performed different users. After the users

are determined, the accesses belonging to them are divided into sessions. Then, the pages

that are not recorded but accessed by the visitor are determined and added to the sessions.

In the Information Filter, the interestingness level of the rules is determined by looking at

the site structure. Currently, the system is capable of determining the interestingness level

of frequent item sets and association rules with two different techniques: BME (Belief

Mined Evidence) and BCE (Beliefs with conflicting Evidence). BME finds the frequent

item sets, which contain pages that are not directly linked. Frequent item sets that contain

linked pages are not that interesting because it is already guessed by the site designer who

put a link between them. On the other hand, if many visitors retrieve pages that have no

link in between together, this may be an interesting result for the site designer who may

notice a deficiency in the site design. The pages that are linked, but not in the same frequent

15

item set may also be interesting. BCE finds that kind of pages. The result shows that the

link between these pages is rarely used by the visitors, which may give a clue to the site

designer for the removal of this redundant link.

2.4.1.6. WAP Mine

Wap (Web Access Pattern) Mine is an efficient data-mining algorithm for

discovering web access patterns from the Wap Tree (Web Access Pattern Tree), which is a

compact data structure, designed for storing the data obtained from the logs, Perkowitz and

Etzioni [12]. The result of the algorithm is the set of frequent access patterns, which contain

pages requested sequentially by enough number of visitors. Wap Tree is formed by the

addition of the frequent access subsequences that take part in the log in hand. Before the

construction of the Wap tree, the log is traversed once for finding frequent 1-sequences,

URLs that are seen in efficient number of user sessions. Then, the URLs that are not

frequent are filtered from the sessions resulting in frequent access subsequences. Wap Tree

is constructed by merging the frequent access subsequences on their common prefixes.

Another feature of the Wap Tree is that all nodes that contain the same URL are linked into

a queue and another data structure, header table, contains a pointer to the head of all

queues. The foundation of the Wap Mine algorithm is based on a heuristic called Suffix

Heuristic. Suffix Heuristic says that if an event (page reference) e is frequent in the prefixes

of sequences that have a suffix, which contains pattern P as a subsequence, and then eP is a

pattern. The algorithm for finding frequent sequences based on that heuristic is named as

conditional search, which is employed in Wap Mine for mining sequences. Wap Mine

algorithm processes each event one by one. For each event (page reference) e i, it firstly

forms the conditional tree for that event. Conditional Wap tree for e i contain the set of

prefixes of the subsequences that contain e i as a suffix. After this, the algorithm continues

to mine Conditional Wap Tree recursively. Finally, the results obtained from mining

conditional Wap Tree are concatenated with e i. Page sequences obtained through this

algorithm correspond to the frequent access patterns.

16

2.4.1.7. Clustering User Sessions

Another study towards Web Usage Mining proposes to cluster visitors of a website

based on the page requests taking place on the sessions belonging to them. The aim of this

study presented in Fu et al. [13] is to discover the groups of pages that are visited together

by many visitors. This information can then be used by the Web master in redesigning the

Web Site or updating it with extra links between these pages. In this study, a log file of the

web site is initially divided into user sessions. For clustering, each user session should be

represented with a vector of pages in which each entry corresponds to the time spent on that

page. However, in a web site that has many pages, the size of the vectors will increase

dramatically. Because, the vectors should have an entry for each page in the web site. To

overcome this, session vectors are generalized by using Attribute Oriented Induction

method. Entries in the session vector are generalized by looking at the page hierarchy of the

web site. A page hierarchy can be derived from the directory structure of the server and

represented in the form of tree. The leaves of the tree correspond to the URLs. The parents

of the leaf nodes keep the names of the web pages corresponding to innermost directories

containing the URLs represented by their children. The parents of the no leaf nodes are the

web pages representing outer directories containing them. The directories are derived

directly from the names of the URLs. For example, the parent of the URL

http://www.umr.edu/¸regwww/ugcrc97/ee.html is http://www.umr.edu/¸regwww/ugcrc97.

By using the page hierarchy obtained by this way, the pages in the sessions are generalized

as much as specified by the mining expert by using the tree climbing method from attribute

oriented induction. During generalization, each page is replaced with one of the parents

depending on the level to which pages are generalized. After generalization of the pages in

the session vector, the duplicate general pages are merged into one by adding the times

spent on them. By this way, the size of the session vectors is decreased dramatically,

because the number of general pages is smaller than the number of URLs. Sessions

obtained by this way are then clustered by using BIRCH hierarchical clustering algorithm.

In BIRCH, using a tree structure, which it calls as CF tree, performs clustering. In CF tree,

leaf nodes contain the current clusters, which are the collection of session vectors while the

no leaf node store CF vectors, which characterize the clusters below them. When a new

session vector should be placed into the tree, it goes until a leaf node by choosing the

http://www.umr.edu/�regwww/ugcrc97/ee.html

17

branches that are the closest to him/her. The CF vectors of the parent nodes are updated

accordingly. In case there is no matching entry in leaf with given thresholds, the session

vector is put into a new entry in the leaf node. If there is no empty entry, the leaf is split

into two, which may cause additional splits in the parent nodes.

2.4.1.8. Clustering of the Paths Followed by the Visitors

Different from the most of the other usage mining systems, the system provides a

profiler for obtaining more accurate, reliable and detailed information about the behavior of

the visitors of the web site, Shahabi et al. [14]. The data obtained by this profiler is then

used for obtaining the paths followed by the visitor and times spent on each page of the

paths. Then, these paths are clustered by using Path-Mining method. The profiler provided

by the system works on the client side. It is a Java applet loaded into the client side with the

first page request and staying in the client cache afterwards. A call to this applet is added to

each page in the site. The aim of the Java applet is to determine exact viewing time of the

pages and catching the page views missing due to the retrieval of them from the client

cache instead of a server. In addition to the profiler, each link on each page is updated to

make it transfer more information to the server side when clicked. This information will be

used for determining which links the visitor selects. Then, the link names will be added into

the paths so that each pair of page requests are separated by the link, which is selected for

retrieving the second page. The authors indicate that link information may provide

additional clues on user behavior especially if two links from the same page are pointing to

the same page. After the page requests and times spent on them are determined for each

visitor, paths found are clustered for obtaining the groups of visitors with similar interests

by using the Path-Mining methodology. Via the usage of this methodology, the order of the

requests in the path is also taken into consideration on the contrary to the work explained in

the previous section. To be able to this, the system needs a way of measuring the similarity

between two paths. The similarity between two paths is measured by finding the angle

between them. Briefly, the angle between two paths are calculated by using the inner

product over the feature space where feature space contains all sub paths of these two paths.

After the angles between each pair of paths are calculated, the results are fed into k-means

18

algorithm for finding clusters of paths. The resulting clusters are considered to be

containing groups of visitors with similar interests.

2.4.2. System Improvement

Research on System Improvement aims to use web usage mining for improving the

web traffic and increasing the speed at which the visitors are responded. One way to do this

is to provide the web server with the capability of guessing the pages that may be retrieved

by the visitors next and generate the dynamic content of these pages before user retrieves

them. For guessing the pages, the system proposed by Schecter et al. makes use of the

concept of path profile, which is constructed from the data contained in the web logs,

Schecter and Smith [15]. Path profile is the set of paths followed by the visitors of a site

and the number of people following them. This system provides an efficient technique for

generating and storing the path profiles. The paths are stored in the form of a tree in which

the paths are merged on their common prefixes. While constructing the tree, only the paths

whose maximal prefix is seen in at least T of the paths are added into the tree for reducing

the memory cost. By following this rule, the algorithm for forming the tree is run on the

tree more than once to be able to obtain all paths suiting to the threshold value. A path

profile is then used by online working part of the system for guessing the next access of the

user. The system starts with the shortest suffix of the current user path and tries to find a

path whose maximal prefix matches with it. As long as a matching path whose maximal

prefix equals to the suffix in hand is found, suffix size is increased. Assume that the pages

retrieved by the visitor An are as follows: [P1, P2, P3]. In that case, the system initially

checks the tree for finding the paths that have a maximal prefix [P3], the smallest suffix of

the user path. Then, the suffix size is increased by one and the paths that have [P2 P3] as

maximal prefix are found if there exists any. Assume that [P2 P3 PY] is such a path.

Increase in the suffix size continues as long as the corresponding paths are found. If there is

a path [P1 P2 P3 PX] in the tree, the system creates the dynamic content for the page PX

automatically. If there exists no path having [P1 P2 P3] as maximal prefix, then the system

will create the dynamic content for the page PY.

19

Another prediction technique is named as point based prediction in which the next

page is guessed only by considering the last page retrieved not the whole path. Experiments

with the system show that agreement prediction technique gives the most accurate results.

In this technique, dynamic content creation of a particular is done only if both point and

path based prediction techniques agree on that page.

2.4.3. Personalization

Because of the increasing demand to the e-commerce, many companies are eager to

make their sites that exhibit their products more serviceable and effective for their visitors

to be able to turn them into customers. The number of people visiting the web site of a

company may be too high whereas only small percentage of the visitors may be turning into

a customer. The number of customers gained through web site heavily depends on the

success of the site and personalization is critical aspect of this success. Web Personalization

simply means to understand the needs and interests of the visitors of the site and respond

accordingly. Such a web site recognizes each visitor and customizes itself by various ways

such as determining the information that should be shown to the visitor or automatically

changing the site structure in a way that will be useful and attractive for the current user.

Personalization is attractive research topic, because it is critically important for the success

of e-commerce companies. Some of the different techniques for personalization will be

explained in the subsequent sections.

2.4.3.1. Content Based Filtering

The main idea of Content Based Filtering is to make use of content similarity

between stated user interests and web pages for personalization, Satõroğlu [16].

WebWatcher is an agent that trusts on content based filtering for personalization of the web

sites. It guides visitors during their navigation through the web site according to their

interests. At the beginning of a visit, WebWatcher asks user to enter his interest or the thing

that he is looking for in the form of keywords. By using this information, WebWatcher

highlights the links that are best suited to the needs of the visitor on each page retrieved by

20

him/her through out his visit. WebWatcher accomplishes the task of choosing the best links

for that user by using the information learned from the past users. In addition, the actions

performed by each visitor are continuously used as training samples for improving the

performance of the tool in future recommendations. Three different learning techniques are

tried in WebWatcher: Learning from previous tours, Learning from Hypertext Structure and

the combination of first two. First method proposes to store a description for each link in

each page in the form of a high dimensional feature vector whose elements are English

words. Interests of the users are also represented by a feature vector. Whenever a visitor

follows a link in a page, the interests of the user, which consists of some number of

keywords, is added to the description of that link. What are used in choosing the links to

highlight in each page is the descriptions of the links determined as a result of this learning

mechanism. While choosing the links that will be recommended to the visitor, WebWatcher

calculates the similarity of each link in the page to the interest of the user. The links that

will be highlighted are the ones with the highest similarity values with the user interest. To

learn from the hypertext structure, WebWatcher makes use of Reinforcement Learning. If

we take an agent moving across states as an example case, the aim of the Reinforcement

Learning is to train the agent so that it will reach the final state from the initial state by

choosing the best action to take in each state it encounters. Here, the action means choosing

a next state to go. Goodness of choosing an action a in state s is represented as Q(s; a). The

optimal strategy is to choose an action that will maximize the Q value for the current state.

Turning back to hypertext environment, pages are the states and links are the actions. The

system learns Q(s; a) function for each page and word pair, which means that the best

action to take is different for different words in the same page. So, in each page the system

recommends the hyperlinks, which maximize the total of Q values, belong the current page

and words given as an interest of the user. The third method, which is detected to be giving

the best results, combines the results obtained from first two methods plus two additional

methods. The first additional method chooses the links that are mostly preferred while the

second method chooses the links whose textual content is most similar to the interest words

of the current user.

21

2.4.3.2. Usage Based Web Personalization

Most of the recent research on personalization aims to incorporate pattern discovery

with personalization, resulting in a usage based Web personalization or customized usage

tracking, Cooley [7]. In that case, profiles of the visitors are dynamically created according

their access patterns. Dynamic creation of profiles is advantageous when compared to the

profiles specified by the visitors themselves. Older personalization tools and techniques

rely on that kind of profiles, which are static and most probably biased. As the time passes,

user preferences may change although static profiles remain unchanged which decreases

the performance of the personalization system. On the other hand, dynamically created

profiles capture the current interests of users. Dynamically created profiles cannot be

hundred percent faultless, but they achieve considerable amount of success in helping users

without waiting for the user asking for it. Usage based Web Personalization systems

generally comprise two major components: Offline component and online recommendation

engine. Offline component of the system analyzes the log files, which contain the footprints

of all visitors visiting the site. First it puts the data in the logs into a form that is amenable

for applying data mining techniques. Analysis of log files by various data mining

techniques result in aggregate usage profiles, which are common profiles of visitors of the

web site. Then, the online component of the system matches the current user to these

profiles based on his navigation pattern up to that point and customizes the current page

accordingly. Customization can be done through recommending some links or putting

advertisements or product news that may interest the customer. Through out the following

sections, we will explain current Web Personalization systems and tools in more detail.

2.4.3.3. Analog

Analog, Yan et al. [17] is one of the first usage based Web Personalization systems.

Its offline module clusters the users of a web site according to their access patterns. Offline

module first processes the log file of the target site to find out user sessions, which are

represented as n dimensional vectors where n is the number of distinct pages in the site.

The weights of the entries corresponding to the pages visited by the visitor are larger than

0, while the weights for no visited pages are zero in the session vector. Therefore, the

22

system does not take into account the order in which pages are retrieved. After all session

vectors are obtained in this way, LEADER algorithm is applied to find clusters. LEADER

is a simple clustering algorithm, which has some drawbacks. After clustering is completed,

median vector of each cluster is computed as a representative of the cluster. The online

module of the system recommends some links to the active visitors by looking at the pages

that they retrieve before. Active user sessions are represented as n dimensional vectors as in

the offline module. Whenever user retrieves a new page, the session vector belonging to

that user is updated accordingly. Online module of the system tries to match the active user

session to existing clusters. User session is accepted to be matching to a particular cluster if

the number of common pages between user session vector and cluster median is larger than

some threshold value. The pages in the median vectors of matching clusters are then

recommended to the user if they are not already retrieved by him/her.

2.4.3.4. Web Personalizer

Web Personalizer, Cooley [7], is one of the other systems that make use of the

explained framework for usage based Web Personalization. The main aim of the offline

module of the system is to obtain aggregate usage profiles, which are represented as

weighted collection of URLs. The reason for preferring this representation style is to be

able to make use of classical vector operations that are used in clustering. Two different

methods for forming the aggregate usage profiles are presented in. The first method is to

cluster the user sessions by using standard clustering algorithms for grouping the visitors

that have similar interests together as in Analog. This method proposes to represent each

user session, as an n-dimensional vector where n is the number of distinct URLs that exist

in the user sessions. The values kept in each entry of the user session vector can be chosen

to be binary to indicate the existence or nonexistence of that URL in that session. After

putting them into the vector form, user sessions are clustered by using classical clustering

techniques from data mining to obtain session clusters. The next step to form Aggregate

Usage Profiles is to find the mean vector of each cluster. Entries in the mean vector of a

cluster are calculated by finding the ratio of the number of user sessions that contain the

URL that is represented by that entry to the total number of sessions in that cluster. Because

23

of this calculation, some of the URLs are filtered out because of having very low support,

which means that only minority of the user sessions in the cluster contain them. The

resulting mean vectors are representative aggregate usage profiles for the log data

processed. The other method proposed in clusters URLs instead of sessions. It is indicated

that users that have very different sessions may have common interest to a group of URLs.

This information will remain undiscovered with the previous method. At the end of this

method, each cluster will contain a set of URLs which tend be together in majority of the

sessions. Standard clustering algorithms are difficult to be applied in that case because of

the nature and the size of the feature space, which consists of the sessions. Therefore,

another clustering technique, which is named as Association Rule Hypergraph Partitioning

(ARHP), is employed by this method. The hyper graph to be clustered by this technique

composed of URLs as vertices and the frequent item sets as the hyper edges, which connect

the vertices representing the URLs in that item set. As known, frequent item sets are

formed by a well-known technique from association rule mining. Application of the ARHP

technique on the hyper graph obtained by this way results in a set of clusters which contain

a set of URLs that are frequently accessed together. Usage profile for each session is

obtained by associating a connectivity value of the vertex as a weight for the corresponding

URL. As it is in the other usage based personalization systems, online component of the

system keeps track of the active user sessions to recommend some links attached with

significance scores to the users. The way to do this is to find aggregate usage profiles that

match to the current user session best. The matching scores are calculated by standard

distance and similarity measures between vectors. Besides, site structure becomes effective

in calculating the matching scores by increasing the score of the pages that are farther away

from the current page. History depth is an important concept employed by the online

component of the system for obtaining more successful recommendations. It determines the

number of previous pages that will be effective on the recommendation. It is indicated that

user sessions are mostly composed of some number of episodes, which are paths, followed

for reaching different kinds of information. The length of episodes is indicated to be 2 or 3

in general. Therefore, by the help of the concept of history depth, it is aimed to make

recommendations based on the pages retrieved only in the current episode.

24

2.4.4. Site Modification
Another way of benefiting from the usage data discovered from the logs is to use it to

improve the design of the web site. In personalization, web sites are dynamically

customizing themselves differently for each visitor. On the other hand, site modification

systems offer static changes in the structure and content of the web sites to meet the needs

of all visitors, Perkowitz and Etzioni [12]. IndexFinder is one example for that kind of

tools. It aims to discover index pages whose addition is very likely to improve the site

design. These pages, which are created offline, consist of links to the conceptually related,

but currently unlinked pages, which coexist in most of the user sessions. The addition of

automatically created index pages to the site is performed with the authorization of the Web

Master. Index page creation in IndexFinder is performed in three phases: processing logs,

cluster mining and conceptual clustering. In the first stage of the algorithm, a log is

processed to be divided into visits. What comes next is the calculation of the co-occurrence

frequencies between each pair of pages to determine to what extend these pages are related.

Cooccurrence frequency between two pages is simply calculated by taking the minimum of

the two probabilities, probability of the existence of first page in the visit given the fact that

second page is in the visit and visa versa. The concurrence frequency between linked pages

is taken as zero to avoid uninteresting clusters. After the concurrence frequencies are

calculated, a similarity matrix is constructed which is then converted into a graph form by

taking the pages as nodes and concurrence values as edges between these nodes. Naturally,

the nodes will be unlinked if the concurrence frequency between the pages denoted by them

found to be 0 from the similarity matrix. The connected components in the graph built in

this way are accepted as clusters. The pages corresponding to the nodes of a connected

component found by this way are put into one cluster. The Cluster Mining algorithm is

PageGather, which differs from the other clustering algorithms because of not insisting on

putting every instance in one and only one cluster. Instead, the algorithm discovers small

number of high quality clusters. The clusters obtained by this way may contain pages that

are conceptually unrelated. Yet, the aim of the IndexFinder system is to produce index

pages that contain links which are conceptually related in addition to be visited together by

the majority of the visitors. This constraint is satisfied by applying a concept-learning

25

algorithm on the clusters found in the previous step. To be able to apply that algorithm, first

each page should be tagged manually with the correct values for predefined enumerated

concepts. Concept learning algorithm finds the most common and basic concept that

summarizes the pages in the cluster. Then, the noisy pages that conflict with the concept

found are removed from the cluster while the nonexistent pages that conform to the given

concept are joined to it. Each cluster obtained by this way is used to form one index page,

which is composed of the links to the pages that are in that cluster. The candidate pages are

presented to the web master who will give the final decision on the addition of these pages

to the site and the location and the title of them.

26

Chapter 3

PATTERN DISCOVERY TECHNIQUES

Each Web mining process requires a pattern discovery phase in which the algorithms

and techniques from several research areas, such as data mining, machine learning,

statistics, and pattern recognition techniques can be adopted. Throughout this section,

some of the techniques used for pattern discovery are explained.

3.1. Statistical Analysis
Statistical techniques are the most powerful tools in extracting knowledge about

visitors to a Web site. The analysts may perform different kinds of descriptive statistical

analyses based on different variables when analyzing the session file. By analyzing the

statistical information contained in the periodic Web system report, the extracted report can

be potentially useful for improving the system performance, enhancing the security of the

system, facilitation the site modification task, and providing support for marketing

decisions, Cooley [4].

3.2. Association Rules
In the Web domain, the pages, which are most often referenced together, can be put

in one single server session by applying the association rule generation. Association rule

mining techniques can be used to discover unordered correlation between items found in a

database of transactions. Cooley [4] pointed that in the term of the Web usage mining, the

association rules refer to sets of pages that are accessed together with a support value

exceeding some specified threshold. The support is the percentage of the transactions that

contain a given pattern. The Web designers can restructure their Web sites efficiently with

the help of the presence or absence of the association rules. When loading a page from a

27

remote site, association rules can be used as a trigger for prefetching documents to reduce

user perceived latency.

3.3. Clustering
Clustering analysis is a technique to group together users or data items (pages) with

the similar characteristics. Clustering of user information or pages can facilitate the

development and execution of future marketing strategies, Cooley [4]. Clustering of users

will help to discover the group of users, who have similar navigation pattern. It is very

useful for inferring user demographics to perform market segmentation in E-commerce

applications or provide personalized Web content to the individual users. The clustering of

pages is useful for Internet search engines and Web service providers, since it can be used

to discover the groups of pages having related content.

3.4. Classification
Classification is the technique to map a data item into one of several predefined

classes. In the Web domain, Web master or marketer will have to use this technique if

he/she wants to establish a profile of users belonging to a particular class or category. This

requires extraction and selection of features that best describe the properties of a given class

or category. Cooley [4] indicates that the classification can be done by using supervised

inductive learning algorithms such as decision tree classifiers, naïve Bayesian classifiers,

k-nearest neighbor classifier, Support Vector Machines etc.

3.5. Sequential Pattern
This technique intends to find the inter-session pattern, such that a set of the items

follows the presence of another in a time ordered set of sessions or episodes. It is very

meaningful for the Web marketer to predict the future trend, which help to place

advertisements aimed at certain user groups. Sequential patterns also include some other

28

types of temporal analysis such as trend analysis, change point detection, or similarity

analysis, Cooley [4].

3.6. Dependency Modeling
The goal of this technique is to establish a model that is able to represent significant

dependencies among the various variables in the Web domain. The modeling technique

provides a theoretical framework for analyzing the behavior of users, and is potentially

useful for predicting future Web resource consumption.

29

Chapter 4

IYTE WEB USAGE MINING SYSTEM

The aim of the IYTE Web Usage Mining(IYTE WUM) System developed in this

study is to discover the usage patterns of the IYTE web site by analyzing the access log,

error log and user data of the web server. The architecture of the system is given in Figure

4.1. The IYTE WUM System has two independent parts: DataPreparation and

QueryMechanism.

Figure 4.1. IYTE WUM System Architecture

Clean
Access
Log

Server
Access
Log

Server
Error
Log

Server
User
Data

Clean
Error
Log

Clean
User
Data

IYTE WUM
DATABASE
 (Mysql)

Data Cleaning
(Java Classes)

Data Selection &
Integration

(Java Classes, JDBC &
MySQL DDL)

Descriptive
Query
Mechanism

(Mysql DML)

Association Rules

(Java Classes, JDBC &
MySQL DDL & DML)

Apriori
Query
Mechanism
 (Mysql DML)

30

The DataPreparation part was composed of different classes, which make the raw

logs ready to be imported into the IYTE WUM relational database. The Query Mechanisms

function on the IYTE WUM relational database to upload data from clean logs, to submit

different queries and to run a Data Mining algorithm. As overall system it is an example of

Web Usage Mining System with data base approach helping the web administrator to

enhance the web site according to the changing requirements of the users. Basic concepts of

the system and the detailed description of the system components are as follows.

4.1. Basic Concepts
In this section, we define the basic concepts such as visitor, file request, page request

or daily use, which we will use many times throughout the rest of the thesis.

. Visitor: A person accessing the files on a web site from a particular machine. We tried to

identify and distinguish visitors by using their IP addresses or host names. We assumed that

two requests coming from the same IP address or host name were performed by the same

visitor. Actually, IP addresses and host names may not be enough for identifying the

visitors in some cases where the visitors are behind a proxy server or corporate firewalls

because, the requests coming from the machines behind a proxy server contains the IP

address of the proxy server instead of the real IP addresses. Therefore it is not possible to

differentiate between these kinds of machines. According to our experience the most

accurate solution for this problem seemed to be relying on the user cooperation although

some heuristics may be used for differentiating between visitors. For example, the requests

coming from same IP Address with different agents may be the indication of two different

visitors.

 . Valid File Request: Any type of data including graphics, scripts or html pages requested

by the visitor and submitted to him by the corresponding web server.

. Valid Page Request: Any successfully answered request for one of the actual web pages

taking place in the web site in process. We needed to differentiate between requests for

actual web pages and the other types of files. Whenever a page containing images, sound

facilities, etc. was requested by a particular visitor, all of the files utilized by that page were

31

retrieved automatically by the web server, which added a new record to the log file for each

of these file transfers. So, we needed to filter the log file for obtaining actual page requests.

This could be performed easily by checking the filename suffixes of the requested files.

The entries which contains request for certain types of files with suffixes such as WAV,

CLASS, TXT, etc. were filtered before running the mining algorithms. In addition to these,

we needed to eliminate unsuccessful requests that take place in the log file. A request was

unsuccessful if it was not answered by the corresponding web server. These kinds of

situations could easily be detected by looking at the status field of the log entries. For

example, if the status code belonging to a particular log entry were 404 then we should

ignore that entry, because the requested page of that entry was not found by the web server.

. Daily Use: Ordered set of page requests performed by a particular visitor on a given date.

All paths start from a particular page in the site and expanded by the addition of the new

pages retrieved by following the links on the previously retrieved pages or typing their

addresses. In the light of these observations, path of a particular visitor is the ordered list of

pages, which are requested by him/her consecutively. Inferring user paths is not an easy

task, as it seems because of the nature of the web environment. The difficulty comes with

the usage of BACK and FORWARD buttons provided by most of the web browsers. As

known, recently requested pages are cached by the web browsers who display these cached

copies of pages if visitors backtrack to them by using BACK and FORWARD buttons.

Since no new page is being requested in such situations, web server does not become aware

of the user behavior, hence this kind of situations are not reflected into the access log files.

Although detecting user access paths was difficult, this was ignored in our case since our

system aimed to retrieve general usage characteristics of the site.

4.2. Data Preparation
Main data source for our usage mining system was the server log files of the web site

considered. Log files contained a huge amount of data, some of which was irrelevant to the

usage mining process. In data preparation phase, raw data contained in the log file was

32

filtered out to eliminate these irrelevant entries. The second important data preparation task

was to put the relevant data into a form that is amenable for mining.

4.2.1. Access Log
Server access log files store an entry for every single request the server gets. The

format of the log file produced by the web server depends on the configuration of the

server. Two of the possible log file formats are Common Log Format and Combined Log

Format, which differs in the amount of information that they store, related to each request.

The log files of the IYTE web server (www.iyte.edu.edu.tr) are created in the Common Log

Format. A fragment of IYTE web server access log is given in Figure 4.2.

pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET /courses.html HTTP/1.1 '' 304 -

pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET / will/courses/CS101/ HTTP/1.1'' 304 -

pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]�GET / gif/geney.jpg HTTP/1.0 � 304 -

pergamon.iyte.edu.tr - - [20/Jun/2000: 15:13:05 +0300]� GET / gif/acad.gif HTTP/1.0 � 304 -

pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05| +0300]� GET / gif/ciz7.gif HTTP/1.0 �304 -

Figure 4.2. Fragment of Access Log

Record structure of Common Log Format is as follows;

Remote Host � Ident and Authuser � [Date and Time] �Request� Status � Bytes

6
5
4
3
2
1

The following lines explain what each entry stands for;

1-Remote Host: This field contains the hostname of the connecting machine. If the

machine does not have DNS hostname, IP Address is used instead.

33

pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET /courses.html HTTP/1.1 '' 304 -

2-Ident and Authuser: Ident is the remote login name of the user. If the requested

document is password protected, Authuser field contains the user name. Since usually web

browsers do not send this information, this field is generally empty.
pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET /courses.html HTTP/1.1 '' 304 -

3-Date and Time: This field contains the date and time of the request.
pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET /courses.html HTTP/1.1 '' 304 -

4-Request [Method URL Protocol]: Request coming from the visitor is exactly kept in this

field. Method field is set to GET for page requests and POST for form submissions. URL

part is reserved for the related URL. Protocol specifies the HyperText Transfer Protocol

used.
pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET /courses.html HTTP/1.1 '' 304 -

5-Status: Status field contains the return status of the request, which shows whether the

transfer is successful or not.
pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET /courses.html HTTP/1.1 '' 304 -

6-Bytes: The number of bytes sent by the server is stored in bytes field following the Status

field. The number of bytes is set to null in the following record since bytes sent by the

server is zero.
pergamon.iyte.edu.tr - - [20/Jun/2000:15:13:05 +0300]''GET /courses.html HTTP/1.1 '' 304 -

Removing the requests for irrelevant types of files and unsuccessful requests was the

first operation performed in data preparation phase. AccessLogRead() class coded in Java

handled these functions together with date field conversion, extraction of the fields

mentioned above, and addition of field separators between the fields. The source code of

the AccessLogRead() is given in Appendix A1. Figure 4.3. shows a short fragment of

access log after the clean up operation.

34

+--------------------------+---------------+----------+---------+----------+-----------+---------------------------+------------- -+-------+

| user | ldate | ltime | rtime | demand | url_main | url | status_main | status |

+--------------------------+---------------+-----------+--------+---------+------------+---------------------------+---------------+-------+

| pergamon.iyte.edu.tr | 2000-06-20 | 15:13:05 | +0300 | GET | gif | gif/yazi.gif HTTP/1.0 | 304 | 304 -|

| pergamon.iyte.edu.tr | 2000-06-20 | 15:13:05 | +0300 | GET | gif | gif/zemin1.gif HTTP/1.0 | 304 | 304 -|

| pergamon.iyte.edu.tr | 2000-06-20 | 15:13:05 | +0300 | GET | gif | gif/geney.jpgHTTP/1.0 | 304 | 304 -|

| pergamon.iyte.edu.tr | 2000-06-20 | 15:13:05 | +0300 | GET | gif | gif/acad.gif HTTP/1.0 | 304 | 304 -|

| pergamon.iyte.edu.tr | 2000-06-20 | 15:13:05 | +0300 | GET | gif | gif/living1.gif HTTP/1.0 | 304 | 304 -|

+--------------------------+---------------+----------+---------+---------+----------+------------------------------+---------------+------+

 Figure 4.3. Fragment of Clean Access Log

4.2.2. Error Log
Server error log files stores one entry for every single request the server could not

respond. The format of the log file produced by the web server can be seen in Figure 4.4.

[Thu Aug 19 14:02:34 1999] Server configured -- resuming normal operations
[Thu Aug 19 14:12:27 1999] accept: (client socket): Connection timed out
[Thu Aug 19 14:12:27 1999] accept: (client socket): Connection timed out
[Thu Aug 19 14:13:01 1999] accept: (client socket): Connection reset by peer
[Thu Aug 19 14:17:05 1999] accept: (client socket): Connection timed out
[Thu Aug 19 14:17:59 1999] accept: (client socket): Connection timed out
[Thu Aug 19 14:18:52 1999] accept: (client socket): Connection timed out
[Thu Aug 19 14:44:40 1999] accept: (client socket): No route to host
[Thu Aug 19 14:44:43 1999] accept: (client socket): No route to host
[Thu Aug 19 14:44:47 1999] accept: (client socket): No route to host

Figure 4.4. Fragment of Error Log

A class coded in Java ErrorLogRead(), Appendix A2, reads the error log, extracts

date, time and the message text of each record in the log and adds field separator characters

and generates a text file. Clean log becomes ready to be imported into the IYTE WUM

relational database as seen in Figure 4.5. The details of loading are explained in the next

sections.

35

+------------+----------+---+
| date | time | message |
+------------+----------+---+
1999-08-19	14:02:34	created shared memory segment #0
1999-08-19	14:02:34	Server configured -- resuming normal operations
1999-08-19	14:12:27	accept: (client socket): Connection timed out
1999-08-19	14:12:27	accept: (client socket): Connection timed out
1999-08-19	14:13:01	accept: (client socket): Connection reset by peer
1999-08-19	14:17:05	accept: (client socket): Connection timed out
1999-08-19	14:17:59	accept: (client socket): Connection timed out
1999-08-19	14:18:52	accept: (client socket): Connection timed out
1999-08-19	14:44:40	accept: (client socket): No route to host
1999-08-19	14:44:43	accept: (client socket): No route to host
+------------+----------+---+

Figure 4.5. Fragment of Clean Error Log

4.2.3. Users Data
User definitions of IYTE Urla campus are kept in a text file on the server. Each record in

that file indicates the IP address of the user and the hub it is connected. Since the number of

records is not large in this file data, the table was arranged and cleaned manually. Figure

4.6 shows a fragment of clean users text file, which is ready to be uploaded into the WUM

relational database.

+------------------------------ +-------------------+--------------------------------+---------- +

| user_name | type | user_ip | depcode |

+-------------------------------+-------------------+------------------------------- +-----------+

| busra | MX 5 | busra.iyte.edu.tr. | 0 |

| pergamon | MX 5 | pergamon.iyte.edu.tr. | 0 |

| buamtest | MX 5 | buamtest.iyte.edu.tr. | 0 |

| radyo-bahattin | CNAME | troya | 0 |

| radyo-tolga | CNAME | troya | 0 |

| sevgi-canlier | A | 193.140.248.37 | 0 |

| edibe-ciftci | A | 193.140.248.38 | 0 |

| bulent-kusev | A | 193.140.248.39 | 0 |

| yasar-olmez | A | 193.140.248.40 | 0 |

| haluk-yaren | A | 193.140.248.44 | 0 |

+------------------------------+--------------------+-------------------------------+-----------+

Figure 4.6. Fragment of Users Data

36

4.3. Query Mechanism
Query mechanism was the heart of our study, which in fact contained four layers

(Figure 4.8). In the first layer main tables of IYTE WUM relational database were loaded

from clean log files. In the second layer first pass of algorithm Apriori (finding frequent

itemset) was done with SQL and two intermediary tables were formed. In the third layer

two more intermediary tables were formed and in the fourth layer final table of the

algorithm was extracted which held frequent pairs of URLs visited during each daily use of

users.

4.3.1. Filling up the Main Tables
Figure 4.8. explains the data and process flow in IYTE WUM System. Clean access

and error log files and user data, which were prepared by the Data Preparation part, were

stored under directory \data directory of SQL engine on the server with the consecutive

names accesslogfile.txt, errorlogfile.txt and users.txt. A SQL session whose SQL

commands are seen in Figure 4.7, loaded the main tables of the database logfile, errors and

users.

use wum;

load data infile �accesslogfile.txt� into table logfile

fields terminated by �|�

lines terminated by �&�;

load data infile �errorlogfile.txt� into table errors

fields terminated by �|�

lines terminated by �&�;

load data infile �users.txt� into table users

fields terminated by �|�

lines terminated by �&�;

Figure 4.7. Filling the Main Tables

37
Figure 4.8. Proces

users

user_name
type
user_ip
depcode

logfile

user
ldate
ltime
rtime
demand
url
status

frequent_

iyte_web

page_no
urlx
counter

errors

date
time
message

department

depcode
dep_name
faculty
start_ip
end ip

daily_use

use_no
user
date
url_count

frequent_
logfile

user
ldate
ltime
rtime
demand
url
status

frequent_
 singles

use_no
page_no

A
pp

lic
at

io
n

of
 A

pr
io

ri
Apriori
Queries

D
es

cr
ip

tiv
e

Q
ue

ri
es

frequent_
 pairs

use_no
page_no
page_no2

Data Preparation

M
ai

n
ta

bl
es

(f
ro

m
 lo

g
fil

es
)

Pa
ss

 1
 ta

bl
es

(f
ro

m
 m

ai
n

ta
bl

es
)

Pa
ss

 2
 ta

bl
es

(f
ro

m
 P

as
s 1

 t
ab

le
s)

Fi
na

l
ta

bl
es

(f
ro

m
 P

as
s 2

 t
ab

le
s)
s and Data Flow

38

4.3.2. Descriptive Queries
In this study special emphasis is placed on the architecture and development of web

usage mining system by exploring database flexibility. In this section a few of the possible

query examples are given.

In Figure 4.9. a query is submitted to retrieve the number of total hits and the result is

10.740.138. As it can be seeen in Figure 4.10. 85.353 hits are from internal users whose

IP�s are in users table. The query in Figure 4.11. returns the minimum, maximum and

average number of hits per day respectively 74, 46.552, 18.296.

mysql> select "Number of total hits :", count(*) from logfile;

+-------------------------+-------------+

| Number of total hits : | count(*) |

+-------------------------+-------------+

| Number of total hits : | 10740138 |

+-------------------------+-------------+

1 row in set (0.33 sec)

Figure 4.9. Total Hits

mysql> select "Number of hits received from known users :", count(*)

 -> from logfile, users use index(user_ip)

 -> where SUBSTRING(logfile.user,1,25) = users.user_ip;

+---+ ----------+

| Number of hits received from known users : | count(*) |

+---+ ----------+

| Number of hits received from known users : | 85353 |

+---+ ----------+

1 row in set (11 min 5.36 sec)

Figure 4.10. Hits of Internal Users

39

mysql> select "Min., Max., Avg. number of daily hits : ", min(daily_hit), max(daily_hit),

avg(daily_hit) from ldate_group;

+--+ ------------------+------------------+------------------+

| Min., Max., Avg.number of daily hits : | min(daily_hit) | max(daily_hit) | avg(daily_hit) |

+--+ ------------------+------------------+------------------+

| | 74 | 46552 | 18296.6576 |

+--+ -----------------+-------------------+------------------+

1 row in set (0.00 sec)

Figure 4.11. Aggregates of Daily Use Hits

The graphics seen in Figure 4.12. which is prepared using MS Excel and a text file

containing the data in the table ldate_group shows the distribution of daily hits received.

The plotted data seem to accumulate in two different zones. The lower zone indicates the

hits received by the web server during holidays whereas the upper one correspond to the

days the faculties are open. X-axis shows the days.

DAILY HITS

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 100 200 300 400 500 600 700

Days

N
um

be
r o

f H
its

Figure 4.12. Graphics of Daily Hits

40

First day of the access log is 2000-06-20. There might be records with date 0000-00-

00 indicating an error in time settings of the web server. So the first query in 4.13.shows

the first day of the access log filtering out any possible erroneous date and the second query

indicates the last date, which is 2002-01-31.

mysql> select "Start date of the log :", min(ldate) from ldate_group where ldate <> �0000-00-00�;

+-------------------------+---------------+

| Start date of the log : | min(ldate) |

+-------------------------+---------------+

| Start date of the log : | 2000-06-20 |

+-------------------------+---------------+

1 row in set (0.00 sec)

mysql> select "End date of the log :", max(ldate) from ldate_group;

+------------------------+---------------+

| End date of the log : | max(ldate) |

+------------------------+---------------+

| End date of the log : | 2002-01-31 |

+------------------------+---------------+

1 row in set (0.06 sec)

Figure 4.13. Time Interval of the Hits in Access Log

The queries seen in Figure 4.14. try to describe the characteristic of the daily use of

users. Minimum number of hits done by a user on any given day is 2 whereas the

maximum hits done by a user on any given day is 7.083. Average number of hits realized

by a user on any given day is 54.

41

mysql> select "Min number of hits of a user : ", min(url_count)
from daily_use;
+---------------------------------+----------------+
| Min number of hits of a user : | min(url_count) |
+---------------------------------+----------------+
| Min number of hits of a user : | 2 |
+---------------------------------+----------------+
1 row in set (1.49 sec)

mysql> select "Max number of hits of a user : ", max(url_count)
from daily_use;
+---------------------------------+----------------+
| Max number of hits of a user : | max(url_count) |
+---------------------------------+----------------+
| Max number of hits of a user : | 7083 |
+---------------------------------+----------------+
1 row in set (0.38 sec)

mysql> select "Average number of hits of a user : ",
avg(url_count) from daily_use;
+-------------------------------------+----------------+
| Average number of hits of a user : | avg(url_count) |
+-------------------------------------+----------------+
| Average number of hits of a user : | 54.2074 |
+-------------------------------------+----------------+
1 row in set (0.32 sec)

Figure 4.14. Aggregates of User Daily Hits

As the query in Figure 4.15. indicates the start date of the error log in the study is

1999-08-19. Again any possible erronous date of �0000-00-00� is filtered out by the SQL

command. The last date is 2002-01-31.

42

mysql> select "First day of the error log : " , min(date) from
errors where date <> ‘0000-00-00’;
+-------------------------------+------------+
| First day of the error log : | min(date) |
+-------------------------------+------------+
| First day of the error log : | 1999-08-19 |
+-------------------------------+------------+
1 row in set (1.76 sec)
mysql> select "Last day of the error log : ", max(date) from
errors;
+------------------------------+------------+
| Last day of the error log : | max(date) |
+------------------------------+------------+
| Last day of the error log : | 2002-01-31 |
+------------------------------+------------+
1 row in set (1.76 sec)

Figure 4.15. Time Interval of Error Log

Figure 4.16 shows the queries extracting the minimum number of daily errors as 1,

maximum number of daily errors as 223.210 and average number of daily errors as 1.109.

mysql> select "Minimum number of daily errors : ",
min(error_count) from daily_errors;
+-----------------------------------+------------------+
| Minimum number of daily errors : | min(error_count) |
+-----------------------------------+------------------+
| Minimum number of daily errors : | 1 |
+-----------------------------------+------------------+
1 row in set (0.00 sec)

mysql> select "Maximum number of daily errors : ",
max(error_count) from daily_errors;
+-----------------------------------+------------------+
| Maximum number of daily errors : | max(error_count) |
+-----------------------------------+------------------+
| Maximum number of daily errors : | 223210 |
+-----------------------------------+------------------+
1 row in set (0.00 sec)

mysql> select "Average number of daily errors :", avg(error_count)
from daily_errors;
+-----------------------------------+------------------+
| Average number of daily errpors : | avg(error_count) |
+-----------------------------------+------------------+
| Average number of daily errpors : | 1109.4031 |
+-----------------------------------+------------------+
1 row in set (0.00 sec)

Figure 4.16. Aggregates of Daily Hit Counts

43

The graphics seen in Figure 4.17. is prepared on MS Excel by transferring the data in

the table daily_errors by a temporary text file and shows the distribution of the number of

daily errors realized by the IYTE web server.

DAILY ERRORS

1

10

100

1000

10000

0 100 200 300 400 500 600 700

Days

N
um

be
r o

f E
rr

or
s

Figure 4.17. Graphics of Daily Errors

4.3.3. Association Rule Mining Algorithms
The most famous problem related with mining association rules is the one applied

over basket data. An example of such a rule might be that 98% of customers that purchase

tires and auto accessories also get automotive services done. Finding all such rules is

valuable for cross-marketing and attached mailing applications. Other applications include

catalog design, add-on sales, store layout, user logs and customer segmentation based on

buying patterns. The databases involved in these applications are very large. It is

imperative, therefore, to have fast algorithms for this task.

The following is a formal statement of the problem : Let I = {i 1 ; i 2 ; . . . ; i m }be a

set of literals, called items. Let D be a set of transactions, where each transaction T is a set

of items such that T ⊆ I. Associated with each transaction is a unique identifier, called its

TID. We say that a transaction T contains X, a set of some items in I, if X ⊆ T. An

44

association rule is an implication of the form X => Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = Ø.

The rule X => Y holds in the transaction set D with confidence c if c% of transactions in D

that contain X also contains Y. The rule X => Y has support s in the transaction set D if s%

of transactions in D contains X U Y.

Given a set of transactions D, the problem of mining association rules is to generate

all association rules that have support and confidence greater than the user specified

minimum support and minimum confidence respectively. Our discussion is independent of

the representation of D. For example, D could be a data file, a relational table, or the result

of a relational expression, Agrawal and Srikant [18].

In IYTE WUM System we used the algorithm Apriori since it always outperformed

the earlier algorithms. Experiments have shown that the Apriori has excellent scale up

properties, opening up the feasibility of mining association rules over very large databases,

Agrawal and Srikant [18].

The problem of finding association rules falls within the scope of database mining

which is also called knowledge discovery in databases. Related work in the database

literature is the work on inferring functional dependencies from data. Functional

dependencies are rules requiring strict satisfaction. Consequently, having determined a

dependency X → A (A is functionally dependent on X; meaning A cannot be defined

without X), the algorithms consider any other dependency of the form X + Y → A

redundant and do not generate it. The association rules we consider are probabilistic in

nature. The presence of a rule X → A does not necessarily mean that X + Y → A also holds

because the latter may not have minimum support. Similarly, the presence of rules X → Y

and Y → Z does not necessarily mean that X → Z holds because the latter may not have

minimum confidence.

There has been work on quantifying the �usefulness� or �interestingness� of a rule.

What is useful or interesting is often application dependent. The need for a human in the

loop and providing tools to allow human guidance of the rule discovery process has been

articulated. We do not discuss these issues in this thesis, except to point out that these are

necessary features of a rule discovery system that may use our algorithms as the engine of

the discovery process.

45

The problem of discovering all association rules can be decomposed into two sub

problems:

1. Find all sets of items (item sets) that have transaction support above minimum

support. The support for an item set is the number of transactions that contain the item set.

Item sets with minimum support are called large item sets, and all others small item sets.

2. Use the large item sets to generate the desired rules. A straightforward algorithm

for this task is as follows: For every large item set l, find all non-empty subsets of l. For

every such subset a, output a rule of the form a => (l � a) if the ratio of support(l) to

support(a) is at least minimum confidence. We need to consider all subsets of l to generate

rules with multiple consequents.

Algorithms for discovering large item sets make multiple passes over the data. In the

first pass, we count the support of individual items and determine which of them is large,

i.e. have minimum support. In each subsequent pass, we start with a seed set of item sets

found to be large in the previous pass. We use this seed set for generating new potentially

large item sets, called candidate item sets, and count the actual support for these candidate

item sets during the pass over the data. At the end of the pass, we determine which of the

candidate item sets are actually large, and they become the seed for the next pass. This

process continues until no new large item sets are found.

4.3.3.1. Algorithm Apriori

Agrawal and Srikant [18] express that the Apriori algorithm generate the candidate

item sets to be counted in a pass by using only the item sets found large in the previous pass

-- without considering the transactions in the database. The basic intuition is that any subset

of a large item set must be large. Therefore, the candidate item sets having k items can be

generated by joining large item sets having k � 1 items, and deleting those that contain any

subset that is not large. The procedure results in generation of a much smaller number of

candidate item sets.

Figure 4.18. gives the notation used Apriori algorithm and Figure 4.19. gives the

algorithm. The first pass of the algorithm simply counts item occurrences to determine the

large 1-itemsets. A subsequent pass, say pass k, consists of two phases. First, the large

46

itemsets L k apriori-gen function. Next, the database is scanned and the support of

candidates in C k is counted. For fast counting, we need to efficiently determine the

candidates in C k that are contained in a given transaction t.

k-itemset An itemset having k items
Lk Set of large k-itemsets (those with minimum support)

Each member of this set has two fields:
i) item set and ii) support count

Ck Set of candidate k-itemsets (potentially large item sets) Each member
of this set has two fields:
i) item set and ii) support count

_
Ck

Set of candidate k-item sets when TIDs of the generating transactions
are kept associated with the candidates.

Figure 4.18. Notation

Apriori algorithm is founded on the observation that if any given set of attributes S is not
adequately supported, any superset of S will also not be adequately supported.
Consequently any effort to calculate the support for such supersets is wasted. For example
if we know that {A,B} is not supported it follows that {A,B,C}, {A,B,D}, etc. will also not
be supported. The algorithm proceeds as follows:

1. Determine the support for all single attributes (sets of cardinality 1) in the data set.

2. Delete all the single attributes that are not adequately supported.

3. For all supported single attributes construct pairs of attributes (sets of cardinality 2).
If no pairs end, otherwise determine the support for the constructed pairs.

4. For all supported pairs of attributes construct "candidate" sets of cardinality 3
(triples).

5. If no triples end, otherwise determine the support for the constructed triples.

Continue until no more candidate sets can be produced

Figure 4.19. Algorithm Apriori
Han et al. [19] express critical remarks on the Algorithm Apriori. According to them

apriori technique works well in terms of reducing the candidate set. However, where there

are many patterns, long patterns or low support thresholds:

1. Many candidate items sets must still be generated.

2. Requires repeated scans of the databases (particularly when considering large

candidate sets.

47

After application of algorithm Apriori to IYTE WUM database we experienced

similar findings such as the need for generating many candidate item sets for which the

time and space requirements of the SQL commands were extremely high.

4.3.3.2. Application of Algorithm Apriori with SQL

In the following sections the application steps of the algorithm Apriori into IYTE

WUM relational database with the aid of the features of SQL will be explained.

1. A table containing summary data was created from logfile in which each row

corresponded to all the hits of a specific user on a specific date. The attribute url_count

contained the number of hits. The attribute use_no was added to this table in order to

give unique number to each row, Figure 4.20.

create table daily_use

select user, date, count(*) AS url_count

from logfile

group by user, ldate

order by user, ldate;

alter table daily_use ADD (use_no INTEGER);

Figure 4.20. Creation of table daily_use

Figure 4.21. shows a fragment of table daily_use where 17 records of users

containing more than 10 hits are shown.

48

mysql> select * from daily_use where url_count > 10 order by date desc
limit 17;
+--------+------------------+------------+-----------+
| use_no | user | date | url_count |
+--------+------------------+------------+-----------+
2480	144.122.148.197	2002-01-31	26
3671	155.223.136.244	2002-01-31	55
3794	155.223.2.100	2002-01-31	80
4272	155.223.37.23	2002-01-31	36
4758	155.223.85.170	2002-01-31	23
6308	170.12.117.67	2002-01-31	18
7482	193.140.134.25	2002-01-31	14
8391	193.140.168.3	2002-01-31	21
8758	193.140.181.20	2002-01-31	34
8775	193.140.182.171	2002-01-31	28
11809	193.140.249.14	2002-01-31	30
14485	193.140.249.63	2002-01-31	18
14529	193.140.249.72	2002-01-31	65
14883	193.140.249.89	2002-01-31	68
18907	193.140.250.78	2002-01-31	18
19141	193.140.251.106	2002-01-31	136
19257	193.140.251.121	2002-01-31	16
+--------+------------------+------------+-----------+
17 rows in set (0.55 sec)

Figure 4.21. Fragment of Daily_use Table

2. Another table named frequent_iyte_web was created from logfile. This table contained

records of URL�s, which received more than 1000 hits. The attribute page_no was

added to this table in order to give unique number to each row. Figure 4.22. This step

corresponds to the preparation of Lk (large k-itemsets) mentioned in Figure 4.18.

create table frequent_iyte _web

select url AS urlx, count(*) AS counter

from logfile

where counter > 1000

group by url

order by url;

alter table frequent_iyte_web ADD (page_no INTEGER);

Figure 4.22. Creation of Frequent_iyte_web Table

49

Logging to file 'frequent_iyte_web;'
mysql> select * from frequent_iyte_web order by counter desc limit 15;
+---------+--+---------+
| page_no | urlx | counter |
+---------+--+---------+
175	HTTP/1.0	149628
176	HTTP/1.1	130631
22456	gif/gif/lib2.gif HTTP/1.0	117222
22458	gif/gn1.gif HTTP/1.0	104840
22230	gif/ac1.gif HTTP/1.0	103993
22535	gif/li1.gif HTTP/1.0	103780
22656	gif/rs1.gif HTTP/1.0	103650
22457	gif/gif/lib2.gif HTTP/1.1	103572
22624	gif/pr1.gif HTTP/1.0	103439
22620	gif/ph1.gif HTTP/1.0	103242
22707	gif/sr1.gif HTTP/1.0	103134
22569	gif/ln1.gif HTTP/1.0	103056
22263	gif/ano1.gif HTTP/1.0	102831
22488	gif/ilogo.gif HTTP/1.0	102453
22284	gif/baslik1.gif HTTP/1.0	101809
22232	gif/ac2.gif HTTP/1.0	97367
22537	gif/li2.gif HTTP/1.0	97105
+---------+--+---------+
15 rows in set (0.14 sec)

Figure 4.23. Fragment of Frequent_iyte_web Table

Figure 4.23. shows a fragment of table frequent_iyte_web where 15 records of URL

records in descending order of hits received.

3. Table frequent_logfile was created from logfile where only the records of hits found on

iyte_frequent_web table found were recorded, Figure 4.24. In Figure 4.25 fragment of

records from that table is seen. This step corresponds to the generation of Ck (candidate

k-itemset) mentioned in Figure 4.18.

create table frequent_logfile

select *

from frequent_logfile L, frequent_iyte_web F

where L.url = F.urlx;

Figure 4.24. Creation of Frequent_logfile Table

50

Logging to file 'frequent_logfile;'
mysql> select *from frequent_logfile order by ldate desc limit 50;
+-----------------+------------+----------+-------+-----+------------------------+---------+
| user | ldate | ltime | rtime | dem | url | status |
+-----------------+------------+----------+-------+-----+------------------------+---------+
195.175.212.118	2002-01-31	00:01:24	+0200	GET	gif/new_a.gif HTTP/1.1	200 416	
195.175.212.118	2002-01-31	00:01:27	+0200	GET	gif/as20.gif HTTP/1.1	200 1653	
195.175.212.118	2002-01-31	00:02:14	+0200	GET	academic.htm HTTP/1.1		200 20599
195.175.212.118	2002-01-31	00:02:26	+0200	GET	gif/zemin.gif HTTP/1.1	200 35011	
ppp-ankara-nas1-	2002-01-31	00:04:42	+0200	GET	HTTP/1.1	304 -	
ppp-ankara-nas1-	2002-01-31	00:04:43	+0200	GET	gif/gn1.gif HTTP/1.1	304 -	
ppp-ankara-nas1-	2002-01-31	00:04:45	+0200	GET	gif/gn2.gif HTTP/1.1	304 -	
ppp-ankara-nas1-	2002-01-31	00:04:46	+0200	GET	gif/office1.gif HTTP/1.	304 -	
ppp-ankara-nas1-	2002-01-31	00:04:46	+0200	GET	gif/office2.gif HTTP/1.	304 -	
+-----------------+------------+----------+-------+-----+------------------------+---------+
50 rows in set (2 min 53.29 sec)

Figure 4.25. Fragment of Frequent_logfile

A table containing only use_no and page_no was created where the hits were frequent

ones, Figure 4.26. Figure 4.27 show first 25 rows of this table. The work done in this step

corresponds to the generation of Ck (candidate k-itemset with TID�s) mentioned in Figure

4.18. where the TID�s are use_no in our case.

create table frequent_singles

select D.use_no, F.page_no

from daily_use D, frequent_iyte_web F, frequent_logfile L

where D.user = L.user AND

D.date = L.ldate AND

L.url = F.url;

Figure 4.26. Creation of Frequent_singles Table

51

Logging to file 'frequent_singles;'
mysql> select * from frequent_singles limit 25;
+--------+---------+
| use_no | page_no |
+--------+---------+
81	105
81	108
81	35
81	19
81	59
81	100
81	72
81	46
81	58
81	14
81	32
81	34
81	33
81	59
81	72
81	46
81	87
81	21
81	14
81	58
81	87
81	49
81	1
81	108
81	105
+--------+---------+
25 rows in set (0.00 sec)

Figure 4.27. Fragment of Frequent_singles

4. Pairs of page_no�s of the same use_no were formed in table frequent_pairs. This

indicated each pair of URL visits done by the same user on the same day, Figure 4.28.

As seen in Figure 4.29. daily use of number 110001, 110002 and 110003 contained

pairs of pages 2, 2 and 46 consecutively.

52

create table frequent_pairs

select E.use_no, E.page_no AS page_no1, F.page_no AS page_no2

from frequent_singles E, frequent_singles F

where E.use_no = F.use_no AND

E.page_no <> F.page_no;

Figure 4.28. Creation of Frequent_pairs Table

Logging to file 'frequent_pairs;'
mysql> select * from frequent_pairs limit 50;
+--------+---------+----------+
| use_no | page_no | page_no2 |
+--------+---------+----------+
110001	2	67
110001	67	2
110002	16	55
110002	55	16
110003	15	50
110003	15	54
110003	15	81
110003	15	5
110003	15	38
110003	15	24
110003	15	40
110003	15	90
110003	15	70
110003	15	5
110003	15	22
110003	15	50
110003	15	54
110003	15	81
110003	15	40
110003	15	73
110003	15	60
110003	15	101
110003	15	73
110003	15	22
110003	15	101
110003	15	73
110003	15	36
110003	15	50
110003	15	54
+--------+---------+----------+
50 rows in set (0.00 sec)

Figure 4.29. Fragment of Frequent_pairs Table

53

4.3.4. Apriori Queries
This is the last step in our study. We�ve found out the pair of pages frequently visited

at the same daily use.

Logging to file 'sonki'
mysql> select A.page_no, B.url, A.page_no2, C.url, A.counter
 -> from frequent_pair_counts A, frequent_urls B, frequent_urls C
 -> where A.page_no = B.page_no AND
 -> A.page_no2 = C.page_no AND
 -> A.page_no <> 1 AND
 -> A.page_no2 <> 1 AND
 -> B.url NOT LIKE '%.gif%' AND
 -> C.url NOT LIKE '%.gif%' AND
 -> B.url NOT LIKE '%.jpg%'
AND
 -> C.url NOT LIKE '%.jpg%' AND
 -> B.url NOT LIKE '%.cgi%' AND
 -> C.url NOT LIKE '%.cgi%'
 -> order by counter desc
 -> limit 30;
+----------+---+------------+--+---------+
| page_no | url | page_no2 | url | counter |
+----------+---+------------+--+---------+
114	mechweb/facultyAndStaff/personnelTinyPic	115	mechweb/mainPagePictures/randomizedPictu	51246
115	mechweb/mainPagePictures/randomizedPictu	114	mechweb/facultyAndStaff/personnelTinyPic	51246
2	HTTP/1.1	114	mechweb/facultyAndStaff/personnelTinyPic	30678
114	mechweb/facultyAndStaff/personnelTinyPic	2	HTTP/1.1	30678
2	HTTP/1.1	6	academic.htm HTTP/1.1	12751
6	academic.htm HTTP/1.1	2	HTTP/1.1	12751
2	HTTP/1.1	113	iyte-services.htm HTTP/1.1	12131
113	iyte-services.htm HTTP/1.1	2	HTTP/1.1	12131
6	academic.htm HTTP/1.1	114	mechweb/facultyAndStaff/personnelTinyPic	10707
114	mechweb/facultyAndStaff/personnelTinyPic	6	academic.htm HTTP/1.1	10707
2	HTTP/1.1	115	mechweb/mainPagePictures/randomizedPictu	9264
115	mechweb/mainPagePictures/randomizedPictu	2	HTTP/1.1	9264
5	academic.htm HTTP/1.0	114	mechweb/facultyAndStaff/personnelTinyPic	3890
114	mechweb/facultyAndStaff/personnelTinyPic	5	academic.htm HTTP/1.0	3890
113	iyte-services.htm HTTP/1.1	114	mechweb/facultyAndStaff/personnelTinyPic	3589
114	mechweb/facultyAndStaff/personnelTinyPic	113	iyte-services.htm HTTP/1.1	3589
6	academic.htm HTTP/1.1	115	mechweb/mainPagePictures/randomizedPictu	2562
115	mechweb/mainPagePictures/randomizedPictu	6	academic.htm HTTP/1.1	2562
2	HTTP/1.1	112	iyte-services.htm HTTP/1.0	2360
112	iyte-services.htm HTTP/1.0	2	HTTP/1.1	2360
2	HTTP/1.1	5	academic.htm HTTP/1.0	1514
5	academic.htm HTTP/1.0	2	HTTP/1.1	1514
5	academic.htm HTTP/1.0	115	mechweb/mainPagePictures/randomizedPictu	1476
115	mechweb/mainPagePictures/randomizedPictu	5	academic.htm HTTP/1.0	1476
6	academic.htm HTTP/1.1	113	iyte-services.htm HTTP/1.1	1176
113	iyte-services.htm HTTP/1.1	6	academic.htm HTTP/1.1	1176
112	iyte-services.htm HTTP/1.0	114	mechweb/facultyAndStaff/personnelTinyPic	1154
114	mechweb/facultyAndStaff/personnelTinyPic	112	iyte-services.htm HTTP/1.0	1154
113	iyte-services.htm HTTP/1.1	115	mechweb/mainPagePictures/randomizedPictu	929
115	mechweb/mainPagePictures/randomizedPictu	113	iyte-services.htm HTTP/1.1	929
+---------+--+-----------+--+----------+
30 rows in set (0.44 sec)

Figure 4.30. Fragment of frequent pairs query

54

The query shown with its SQL command and the result in Figure 4.30. retrieved the

most frequent pairs ignoring the ones with cgi, jpg and gif extensions since they apparently

were only the components of the page view and also the first page because the first page

was the entry point to the site and it was misleading to assume it to be most frequent. The

pair of pages (114,115) (2,114) (2,6) seems to be frequently visited.

55

mysql> select A.page_no, B.url, A.page_no2, C.url, A.support, A.confidence
 -> from final A, frequent_urls B, frequent_urls C
 -> where A.page_no = B.page_no AND
 -> A.page_no2 = C.page_no AND order by confidence desc limit 150;
+------+---+--------+--+----------------+-----------+
|hit_no| url | hit_no| url | support | confiden. |
+------+---+--------+--+----------------+-----------+
116	robots.txt HTTP/1.0	2	HTTP/1.1	1.61845e-005	1.6129
116	robots.txt HTTP/1.0	5	academic.htm HTTP/1.0	0.000166469	1.6129
116	robots.txt HTTP/1.0	112	iyte-services.htm HTTP/1.0	0.00018381	1.6129
116	robots.txt HTTP/1.0	113	iyte-services.htm HTTP/1.1	6.93621e-006	1.6129
6	academic.htm HTTP/1.1	2	HTTP/1.1	0.0147406	1.04167
6	academic.htm HTTP/1.1	5	academic.htm HTTP/1.0	0.000224271	1.04167
6	academic.htm HTTP/1.1	112	iyte-services.htm HTTP/1.0	0.000109823	1.04167
6	academic.htm HTTP/1.1	113	iyte-services.htm HTTP/1.1	0.0013595	1.04167
6	academic.htm HTTP/1.1	114	mechweb/facultyAndStaff/personnelTinyPic	0.0123777	1.04167
6	academic.htm HTTP/1.1	115	mechweb/mainPagePictures/randomizedPictu	0.00296176	1.04167
114	mechweb/facultyAndStaff/personnelTinyPic	2	HTTP/1.1	0.0354648	1.04167
114	mechweb/facultyAndStaff/personnelTinyPic	5	academic.htm HTTP/1.0	0.00449698	1.04167
114	mechweb/facultyAndStaff/personnelTinyPic	6	academic.htm HTTP/1.1	0.0123777	1.04167
114	mechweb/facultyAndStaff/personnelTinyPic	112	iyte-services.htm HTTP/1.0	0.00133406	1.04167
114	mechweb/facultyAndStaff/personnelTinyPic	113	iyte-services.htm HTTP/1.1	0.00414901	1.04167
114	mechweb/facultyAndStaff/personnelTinyPic	115	mechweb/mainPagePictures/randomizedPictu	0.0592422	1.04167
115	mechweb/mainPagePictures/randomizedPictu	2	HTTP/1.1	0.0107095	1.04167
115	mechweb/mainPagePictures/randomizedPictu	5	academic.htm HTTP/1.0	0.00170631	1.04167
115	mechweb/mainPagePictures/randomizedPictu	6	academic.htm HTTP/1.1	0.00296176	1.04167
115	mechweb/mainPagePictures/randomizedPictu	112	iyte-services.htm HTTP/1.0	0.000786104	1.04167
115	mechweb/mainPagePictures/randomizedPictu	113	iyte-services.htm HTTP/1.1	0.00107396	1.04167
115	mechweb/mainPagePictures/randomizedPictu	114	mechweb/facultyAndStaff/personnelTinyPic	0.0592422	1.04167
+------+---+--------+---+----------------+----------+

Figure 4.31. Fragment of the Query Pairs with Support & Confidence

The query of Figure 4.31. worked on a temporary table final and showed the support

and confidence values of some frequent_pairs. The pair of page 19 and 2 has be seen 1.6

% of the total logfile records. In all the pairs having page 19 only 2.43 % of records had

also page 2.

56

Chapter 5

CONCLUSION

5.1. Remarks on the Study
This study is first investigation conducted in IYTE Computer Engineering

Department over the topic of web mining. As a start a long site survey has been done in

order to get familiar with the terminology and the research issues related with the fields of

data mining, data warehousing, text mining and web mining. Benchmarking of the freeware

or available software of data mining and log analyzers was the following step. Access log

of the IYTE web server seemed suitable for mining since it was reachable, raw and huge.

Preliminary analysis, requirement analysis, data analysis and process analysis of the project

IYTE WUM System were some steps of the study before starting coding. Java was chosen

to be the environment for data cleaning and preparation. Mysql was chosen to be data base

management system. Both of the tools were shareware and portable in nature. During

coding and testing the speed and storage capacity of the development environment was a

constraint. This study outlined the borders of the future work in terms of context and the

infrastructure.

5.2. Evaluation of the IYTE WUM System
The system developed is a prototype to demonstrate an application example for the

topic of general web usage mining together with an application of a data mining algorithm

with a database approach. Through the development of this system it is clearly seen the

steps of a web mining system architecture; data preparation, data description, application of

data mining techniques, knowledge extraction, evaluation of the results. This experience

also revealed all the difficulties mentioned in the previous research studies such as the data

57

being abundant, complex and unstructured. Requirements of the development process as

manpower, infrastructure, time and development tools can be made much more clear for

future work.

5.3. Future Work
Although some of the features subject to this section were mentioned in the

initial system analysis studies of the IYTE WUM System, they had to be skipped and

left for future work since the infrastructure requirements were more than initially

anticipated. The following are our suggestions for future work, which we believe,

will make the system easier to use and bring more benefits to the web administrator.

• Graphical user interface: User interface can be added. This interface can be

composed of two main functions;

1. Adjustment of log cleaning parameters: User can indicate the time interval,

user(s), service or URL types to be analyzed. That shortens the time for

loading the database and the size of the query results. In short special focus

research can be done on the logs.

2. Design of queries: User can chose the attributes, conditions to be met, order,

grouping and aggregates in order to use the full power of SQL.

• Site crawler: A mechanism, which parses the site periodically and maintains a site-

URL table in the IYTE WUM database can also be an addition to the existing

system. This will allow the system to report the links never visited or the dead-ends

which cannot be reached from any existing links. The web administrator also

becomes aware of all the changes done in the site.

• Data mining algorithms: Data mining rules other than association rules can be

applied to the data present in IYTE WUM relational database to increase the

amount of knowledge extracted. A time series analysis might reveal the changes in

user behaviors, a personalization approach can be studied in order to offer users the

pages or services, which they would be interested in.

58

• Integration to IYTE web server: This system can be made integrated part of the

web server in the campus network. All additions to the log files each day can be

processed as they occur or periodically. Dynamic and up-to-date information can be

supplied to the web administrator being an example of automatic warning

mechanism.

• Other DBMS’s: The tool used in the subject application was Mysql, which did not

have features for the execution of nested SQL statements. This limitation brought

the necessity of creating temporary tables and the need for housekeeping in the

database. So for new versions of the system, other DBMS�s can be chosen.

• Performance evaluation and multi threading approach: A benchmark study can

be done for each query, indexes and tuning performance parameters of the DBMS.

Multi threading approach may increase the efficiency.

59

REFERENCES
[1] Oren Etzioni, The World Wide Web: Quagmire or gold mine. Communications of

the ACM, 39(11):65-68, (1996)

[2] R. Kosala and H. Blockeel, Web mining Research: A Survey. SIGKDD

Explorations, 2(1):1-15, (2000)

[3] S.K.Madria, S.S.Bhowmick, W.K.Ng, and E.P.Lim, Research issues in Web data

mining. In Proceedings of Data Warehousing and Knowledge Discovery, First

International Conference, DaWaK '99, pages 303-312 , (1999)

[4] R. Cooley, Web Usage Mining: Discovery and Application of Interesting Patterns

from Web data. Ph.D. thesis, Dept. of Computer Science, University of Minnesota,

(2000)

[5] M. Spiliopoulou, Data mining for the Web. In Proceedings of Principles of Data

Mining and Knowledge Discovery, Third European conference, PKDD'99,

P588-589, (1999)

[6] J. Borges and M. Levene, Data mining of user navigation patterns. In Proceedings

of the WEBKDD'99 Workshop on Web Usage Analysis and User Profiling, San

Diego, CA, USA, pages 31-39, (August 15, 1999)

[7] R. Cooley, B. Mobasher, and J. Srivastava, Web mining: Information and pattern

discovery on the World Wide Web. In Proceedings of the 9 the IEEE International

Conference on Tools with Artificial Intelligence (ICTAI'97), (1997)

[8] S. Chakrabarti, Data Mining for hypertext: A tutorial survey. SIGKDD

Explorations, (January, 2000)

60

[9] O. Zaiane, J. Han, Z. Li, S.H. Chee, J.Y. Chiang, MultiMediaMiner: A System

Prototype for MultiMedia Data Mining. Intelligent Database Systems Research

Laboratory and Vision and Media Laboratory, School of Computing Science,

Simon Fraser University, (1998)

[10] M.-S. Chen, J.S. Park, and P.S. Yu, Efficient data mining for path traversal

patterns. Knowledge and Data Engineering, 10(2):209-221, (1998)

[11] O. Zaiane, M. Xin, and J. Han, Discovering web access patterns and trends by

applying olap and data mining technology on web logs. In Advances in Digital

Libraries, pages 19-29, (April, 1998)

[12] M. Perkowitz and O. Etzioni, Adaptive Sites: Automatically synthesizing web

pages. In Proc. Of the Fifteenth National Conference on Artificial Intelligence,

pages 727-732, (July, 1998)

[13] Y. Fu, K. Sandhu, and M. Shih, Clustering of web users based on access patterns.

In Proceedings of the 1999 KDD Workshop on Web Mining, (1999)

[14] C. Shahabi, A.Zarkesh, J. Adibi, and V. Shah, Knowledge discovery from users

web-page navigation. In Proceedings of IEEE RIDE �97 Workshop, (April, 1997)

[15] M. K. S. Schecter and M. Smith, Using path profiles to predict HTTP request. In

Proceedings of 7th International WWW Conference, (1998)

[16] E. Satiroglu, Mining User Access Patterns and Identity Information from Web

Logs for Effective Personalization, Msc. Thesis, Bilkent University, (September,

2001)

[17] T.Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal, From user access patterns

to dynamic hypertext linking. Computer Networks, 28(7):1007-10014, (May, 1996)

61

[18] R. Agrawal and A. Srikant, Fast algorithms for mining association rules. Proc.

VLDB'94, pp487-499, (1994)

[19] Han, J., Pei, J. and Yin, Y., Mining Frequent Patterns without Candidate
Generation. Proc. of the ACM SIGMOD, int. conf. on Management of Data, pp1-
12, (2000)

62

APPENDIX

A1. AccessLogRead() Class
import java.io.*;

public class AccessLogRead {
 public static void main(String[] args) {

 String newLine;
 String user;
 String date;
 String time;
 String timeRemaining;
 String demand;
 String url;
 String urlMain;
 String status;
 String statusMain;
 String oldMonth = " ";
 String newMonth = " ";

 int logRecordNo = 0;
 int lengthOfLine = 0;

 System.setProperty("lineSeparator", "&");

 try {
 DataInputStream in =
 new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("accesslog")));

 DataOutputStream out =
 new DataOutputStream(

 new BufferedOutputStream(
 new FileOutputStream("accesslogfile")));

 while (in.available() != 0)
 try {

newLine = in.readLine();
 lengthOfLine = newLine.length();
 logRecordNo = logRecordNo + 1;
 int normalLogLine = 0;
 try {
 int ptr1 = newLine.indexOf("[");
 int ptr2 = newLine.indexOf(":");
 int ptr3 = newLine.indexOf("+");
 int ptr4 = newLine.indexOf("]");
 int ptr5 = newLine.indexOf('"');
 int ptr6 = newLine.lastIndexOf('"');

user =
newLine.substring(0,newLine.indexOf("[")
- 5);

date = newLine.substring(ptr1 + 1, ptr1 + 12);

63

// Date format conversion from dd/mmm/yyyy to yyyy-mm-dd
oldMonth = date.substring(3,6);
newMonth = "??";
if(oldMonth.compareTo("Jan") == 0) newMonth = "01";
if(oldMonth.compareTo("Feb") == 0) newMonth = "02";
if(oldMonth.compareTo("Mar") == 0) newMonth = "03";
if(oldMonth.compareTo("Apr") == 0) newMonth = "04";
if(oldMonth.compareTo("May") == 0) newMonth = "05";
if(oldMonth.compareTo("Jun") == 0) newMonth = "06";
if(oldMonth.compareTo("Jul") == 0) newMonth = "07";
if(oldMonth.compareTo("Aug") == 0) newMonth = "08";
if(oldMonth.compareTo("Sep") == 0) newMonth = "09";
if(oldMonth.compareTo("Oct") == 0) newMonth = "10";
if(oldMonth.compareTo("Nov") == 0) newMonth = "11";
if(oldMonth.compareTo("Dec") == 0) newMonth = "12";

date = date.substring(7, 11) + "-" + newMonth
+ "-" +

date.substring(0,2);
time = newLine.substring(ptr2 + 1, ptr2 + 9);

 timeRemaining = newLine.substring(ptr3, ptr4)
demand = newLine.substring(ptr5 + 1, ptr5 + 4);

 url = newLine.substring(ptr5 + 6, ptr6) ;
urlMain = url.substring(0, url.indexOf("/"));
if (urlMain.indexOf(" ") != -1) urlMain =
urlMain.substring(0,

urlMain.indexOf(" "));
if (urlMain.indexOf(".") != -1) urlMain =
urlMain.substring(0, urlMain.indexOf("."));
status = newLine.substring(ptr6 + 1,

lengthOfLine) ;
statusMain = status.substring(1, 4);

 String x = System.getProperty("lineSeparator");

out.writeBytes(user + '|' + date + '|' + time + '|' +
timeRemaining +'|' + demand + '|' + urlMain + '|' + url
+ '|' + statusMain + '|'+ status + '|');

 } catch (IndexOutOfBoundsException s)
 {

System.err.println("String Exception");
 }

 } catch (IOException e)
 {
 System.err.println("New IO Exception");
 }

} catch (IOException e) {
 System.err.println("IOException");
 }
 }
}

64

A2. ErrorLogRead() Class

import java.io.*;

public class ErrorLogRead {
 public static void main(String[] args) {

 String newLine;
 String date;
 String time;
 String messageDesc;

 String dateAndTime;
 String oldMonth = " ";
 String newMonth = " ";

 int logRecordNo = 0;
 int lengthOfLine = 0;

 System.setProperty("lineSeparator", "&");

 try {
 DataInputStream in =
 new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("errorlog.TR-ERROR_LOG")));

 DataOutputStream out =
 new DataOutputStream(

 new BufferedOutputStream(
 new FileOutputStream("errorlogfile")));

 while (in.available() != 0)
 try {

newLine = in.readLine();
 lengthOfLine = newLine.length();
 logRecordNo = logRecordNo + 1;
 int normalLogLine = 0;
 try {
 int ptr1 = newLine.indexOf("[");

int ptr4 = newLine.indexOf("]");

// format in the log mmm dd tt:mm:ss yyyy

dateAndTime = newLine.substring(ptr1 + 4, ptr4);
oldMonth = dateAndTime.substring(0,4);
oldMonth = oldMonth.trim();

newMonth = "??";
if(oldMonth.compareTo("Jan") == 0) newMonth = "01";
if(oldMonth.compareTo("Feb") == 0) newMonth = "02";
if(oldMonth.compareTo("Mar") == 0) newMonth = "03";
if(oldMonth.compareTo("Apr") == 0) newMonth = "04";
if(oldMonth.compareTo("May") == 0) newMonth = "05";
if(oldMonth.compareTo("Jun") == 0) newMonth = "06";
if(oldMonth.compareTo("Jul") == 0) newMonth = "07";
if(oldMonth.compareTo("Aug") == 0) newMonth = "08";
if(oldMonth.compareTo("Sep") == 0) newMonth = "09";
if(oldMonth.compareTo("Oct") == 0) newMonth = "10";
if(oldMonth.compareTo("Nov") == 0) newMonth = "11";
if(oldMonth.compareTo("Dec") == 0) newMonth = "12";

65

// new date format yyyy-mm-dd
date = dateAndTime.substring(dateAndTime.length() -
5, dateAndTime.length()) + "-" + newMonth + "-" +

dateAndTime.substring(5,7);
time = dateAndTime.substring(7, 16);
messageDesc = (newLine.substring(ptr4 + 1,
lengthOfLine)).trim();

String x = System.getProperty("lineSeparator");
out.writeBytes(date + '|' + time + '|' +

messageDesc +
'|' + System.getProperty("lineSeparator"));

 } catch (IndexOutOfBoundsException s)
 {

System.err.println("String Exception");
 }

 } catch (IOException e)
 {
 System.err.println("New IO Exception");
 }

} catch (IOException e) {
 System.err.println("IOException");
 }
 }
}

66

A3. IYTE WUM Relational Database Schema

mysql> show tables;
+----------------------+
| Tables_in_wum |
+----------------------+
| daily_use |
| department |
| errors |
| final |
| frequent_iyte_web |
| frequent_logfile |
| frequent_pair_counts |
| frequent_pairs |
| frequent_singles |
| frequent_urls |
| iyte_web |
| logfile |
| top_daily_use |
| top_frequent |
| ttx |
| tty |
| users |
+----------------------+
17 rows in set (0.00 sec)

mysql> describe department;
+----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-----+---------+-------+
depcode	int(11)	YES		NULL	
depname	varchar(40)	YES		NULL	
fakulte	varchar(30)	YES		NULL	
start_ip	varchar(25)	YES		NULL	
end_ip	varchar(25)	YES		NULL	
+----------+-------------+------+-----+---------+-------+
5 rows in set (0.00 sec)

mysql> describe logfile;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
user	varchar(40)	YES		NULL	
ldate	date	YES		NULL	
ltime	time	YES		NULL	
rtime	varchar(15)	YES		NULL	
demand	varchar(5)	YES		NULL	
url_main	varchar(15)	YES		NULL	
url	varchar(40)	YES		NULL	
status_main	char(3)	YES		NULL	
status	varchar(15)	YES		NULL	
+-------------+-------------+------+-----+---------+-------+
9 rows in set (0.00 sec)

67

mysql> describe errors;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
date	date	YES		NULL	
time	time	YES		NULL	
message	varchar(80)	YES		NULL	
+---------+-------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

mysql> describe users;
+-----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+-------+
user_name	varchar(30)	YES		NULL	
type	varchar(10)	YES		NULL	
user_ip	varchar(25)	YES	MUL	NULL	
depcode	int(11)	YES		NULL	
+-----------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> describe daily_use;
+-----------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+----------------+
use_no	int(11)		PRI	NULL	auto_increment
user	varchar(40)	YES	MUL	NULL	
date	date	YES		NULL	
url_count	int(11)	YES		NULL	
+-----------+-------------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

mysql> describe iyte_web;
+---------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+----------------+
page_no	int(11)		PRI	NULL	auto_increment
url	varchar(40)	YES		NULL	
counter	int(11)	YES		NULL	
+---------+-------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

68

mysql> describe frequent_logfile;
+-------------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------+------+-----+---------+-------+
user	char(40)	YES		NULL	
ldate	date	YES		NULL	
ltime	time	YES		NULL	
rtime	char(15)	YES		NULL	
demand	char(5)	YES		NULL	
url_main	char(15)	YES		NULL	
url	char(40)	YES		NULL	
status_main	char(3)	YES		NULL	
status	char(15)	YES		NULL	
urlx	char(40)	YES		NULL	
counter	bigint(21)			0	
+-------------+------------+------+-----+---------+-------+
11 rows in set (0.00 sec)

mysql> describe frequent_iyte_web;
+----------+------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+------------+------+-----+---------+----------------+
urlx	char(40)	YES	MUL	NULL	
counter	bigint(21)			0	
page_no	int(11)		PRI	NULL	auto_increment
+----------+------------+------+-----+---------+----------------+
3 rows in set (0.05 sec)

mysql> describe frequent_singles;
+---------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------+------+-----+---------+-------+
| use_no | int(11) | | MUL | 0 | |
| page_no | int(11) | | | 0 | |
+---------+---------+------+-----+---------+-------+
2 rows in set (0.00 sec)

mysql> describe frequent_pairs;
+----------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+---------+------+-----+---------+-------+
use_no	int(11)			0	
page_no	int(11)			0	
page_no2	int(11)			0	
+----------+---------+------+-----+---------+-------+
3 rows in set (0.00 sec)

69

mysql> describe final;
+------------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+------------+------+-----+---------+-------+
page_no	int(11)			0	
page_no2	int(11)			0	
counter	bigint(21)			0	
support	float	YES		NULL	
confidence	float	YES		NULL	
total	int(11)	YES		NULL	
sayac	bigint(21)			0	
pair_count	bigint(21)			0	
+------------+------------+------+-----+---------+-------+
8 rows in set (0.00 sec)

// Table descriptions which are not shown in this document are temporary
tables.

	MASTER OF SCIENCE
	A1.	AccessLogRead() Class

