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ABSTRACT 

 
ASYMMETRIC SYNTHESIS AND ANTI-TUMOR PROPERTIES OF 

CONFORMATIONALLY CONSTRAINED ANALOGUES OF (S)- AND 
(R)-GONIOTHALAMIN 

 
 Naturally isolated 5-substituted-α,β-unsaturated-δ-lactones gained great attention 

of researchers due to their cytotoxic and anti-tumor properties. Styryl lactones are the 

most interesting members of this group of naturally available compounds. One of the 

well-known and important example for styryl lactone is goniothalamin, which shows 

cytotoxicity against variety of cancer cell lines. This cytotoxic property was shown to be 

selective for cancer cell lines with no significant cytotoxicity toward non-malignant cells. 

Recent structure activity relationship (SAR) studies on goniothalamin shows that R 

configuration on its stereogenic center, trans double bonded linker and Michael acceptor 

parts of the molecules are essential for its cytotoxic activity. 

In this study conformationally constrained analogues of (S)- and (R)-

goniothalamin were synthesized. Syntheses were started with the catalytic asymmetric 

allylation of benzaldehyde, naphthaldehyde and quinaldehyde derivatives in the first step, 

then formed alcohols were acrylated with acryloyl chloride to yield the corresponding 

esters, in the last step, ring closing metathesis with Grubbs’ catalyst yielded the target 

molecules. Meanwhile, in this study the synthesized 5-aryl-substituted-α,β-unsaturated-

δ-lactones were tested to determine their cytotoxicity against MCF-7, PC-3, DU-145 and 

LNCAP cancer cell lines. 
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ÖZET 

 
KONFORMASYONEL OLARAK SABİTLENMİŞ (S)- VE (R)-

GONİOTHALAMİN TÜREVLERİNİN ASİMETRİK SENTEZLERİ VE 
ANTİ-TÜMÖR ÖZELLİKLERİNİN İNCELENMESİ  

 
 Doğal yollardan izole edilen 5-sübstitüentli-α,β-doymamış-δ-laktonlar sahip 

oldukları sitotoksik ve anti-tümör etkisi sayesinde günümüzde araştırmacıların büyük 

ilgisini kazanmıştır, bunlar arasından en ilginci stiril laktonlardır. Stiril lakton ailesinin 

önemli üyelerinden biri olan goniothalaminin değişik kanser hücrelerine karşı yüksek 

sitotoksiteye sahip olduğu gözlemlenmiştir. Bunun yanında goniothalamin sağlıklı 

hücreler üzerinde de test edilmiş ve minimal etki gözlemlenmiştir. Bu nedenle 

goniothalaminin kanser hucrelerine karşı seçici sitotoksisite gösterdiği düşünülmektedir. 

Yakın zamanda goniothalamin üzerinde gerçekleştirilmiş olan yapı-aktivite ilişkileri 

çalışmalarından yapısındaki R konformasyonuna sahip asimetrik merkezin, Michael 

akseptoru ve sübstitüent kısmındaki trans-çifte bağın sitotoksik etkinin korunması için 

gerekli olduğu gözlemlenmiştir. 

Bu çalışmada (S)- ve (R)-goniothalamin’in stiril kısmı, konformasyonel 

değişimleri engelleyecek şekilde yeni aromatik sübstratlarla yer değiştirilmiştir. Sentezler 

ilk basamakta benzaldehit, naftaldehit ve kinolaldehit türevlerinin katalitik asimetrik 

alillenmesi ile başlamaktadır, daha sonra oluşan alkol türevleri akrilklorür yardımı ile 

esterleştirilmiştir ve son basamakta Grubbs’ katalizörü eşliğinde halka kapanması 

tepkimesiyle hedef moleküllerin sentezleri gerçekleştirilmiştir. Aynı zamanda bu 

çalışmada sentezlenen 5-aril sübstütientli-α,β-doymamış-δ-laktonların MCF-7, PC-3, 

DU-145 and LNCAP gibi farklı kanser hücreleri üzerindeki sitotoksik etkileri test 

edilmiştir.  
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CHAPTER 1 

 

INTRODUCTION 

 

 Cancer is the general name for a group of more than 100 diseases in which cells 

in a part of the body begin to grow out of control. Normal body cells grow, divide, and 

die in an orderly fashion and during the early years of a person's life, normal cells divide 

more quickly until the person becomes an adult. After that, cells in most parts of the 

body divide only to replace worn-out or dying cells and to repair injuries. 

Most of the time when DNA becomes damaged, either the cell dies or is able to 

repair the DNA. In cancer cells, the damaged DNA is not repaired and these cells 

continue multiplying although the body doesn’t need them, the result is called as tumor. 

These tumors are considered either benign or malignant, benign is considered non-

cancerous and malignant is cancerous (Gringauz 1996) 

Cancers can begin in many different parts of the body and have the ability to 

spread other organs where it is starting from. This process is called as metathesis. Each 

cancer type can act very differently depending on the place where it grows, spread or 

grow at different rates and respond to different treatments. The treatment choices are 

also depend on the type of cancer, the stage of the cancer, and other individual factors. 

Mainly, a person’s DNA gets damaged by things in the environment, like, 

chemicals, viruses, tobacco smoke or too much sunlight. These risk factors are 

increasing the probability of facing with theat of cancer in human life. 

 In the year 2000, World Health Organization announced that, malignant tumours 

were responsible for 12 per cent of the nearly 56 million deaths worldwide from all 

causes and in many countries, more than a quarter of deaths are attributable to cancer. 

When it is expressed with numbers in 2000, 5.3 million men and 4.7 million women 

developed a malignant tumour and died from the disease (World Health Organization 

Report 2003). 

It is envisioned that, countries which have middle or low  income will face with 

the deaths resulting from cancer over the next 25 years, and it will increase from 7.4 to 

11.8 million by World Health Organisation Comminity according to their World Health 

Statistics 2008 report. 
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As cancer is being one of the most severe health problems worldwide, the 

studies on development of new anticancer drugs and different treatment strategies gain 

importance in the field of science. For the development of new anticancer drugs, natural 

products play a dominant role with more than 60% of anticancer compounds being 

either natural products or derived from natural products (Newman, et al. 2003). Today 

there are many effective anticancer agents in current use which have provided by nature. 

The World Health Organization estimates that 80% of the people in developing 

countries of the world rely on traditional medicine for their primary health care, and 

about 85% of traditional medicine involves the use of plant extracts. This means that 

about 3.5 to 4 billion people in the world rely on plants as sources of drugs. 

(Farnsworth, et al. 1985) 

Today, drugs of natural origin have been classified as original natural products, 

products derived semisynthetically from natural products, or synthetic products based 

on natural product models. (Cragg, et al. 1997) 

Many clinically useful drugs have been discovered from various plants and they 

were an excellent source for many diseases. Researches on this area shows that plant are 

also good source for anticancer agents. Natural products or their semi-synthetic 

analogues constitute approximately 74% of all new chemical entities marketed as anti-

cancer drugs between 1981 and 2006 (Newman and Cragg 2007) 

The genus Goniothalamus (Annonaceae) is one of the this inexhaustable source 

of natural compounds, consists of 115 species and these plants has been used for timber, 

as fiber sources  and a mosquito repellant  and most interestingly in folk medecine. 

(Surived and Vatéle 1999)   

This species are classifed in three groups, including styryl lactones, annonaceous 

acetogenin and alkaloids. Alkaloids and annonaceous acetogenin anti-tumor activity 

was detected previously and some of these species were widely used as traditional 

medicines. (Tian, et al. 2006)  

The another class of compound extracted and isolated from the Goniothalamus is 

styryl lactones which gained the attention of researchers in last decade due to the strong 

cytotoxicity to different cancer cell lines. 

When we think about the kinds of plant species on earth, the number of the 

plants have been exhaustively studied for their potential value as a source of drug is too 

limited. These show us that nature is still extremely important source for natural drugs. 

However the challenges of drug discovery, formidable effort, time, and expense are 
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required for the complex development processes that move a new agent from discovery 

to its approval for use in the treatment. Nevertheless, this endeavour is necessary for the 

mankind. 

 In this study we aimed to synthesize novel (R) and (S)-substituted α,β-

unsaturated δ-lactone derivatives enantioselectively and investigate their anti-tumor 

activities.  
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CHAPTER 2 

 

BIOLOGICAL PROPERTIES OF STYRYL LACTONES  

 

 Nature is an inexhaustible source of natural compounds with interesting 

biological activities, because of these crucial properties the researches on drug 

discovery mainly focused on the isolation and analysis of compounds from nature, 

mostly from plant origins. Actually, the extracts or the isolated compounds from nature 

serve as the primary source for the medicine for centuries.  

Due to the progress in science, synthesis of the natural plant products could be 

performed in the last century. However, still many of the biologically active plant 

compounds fully gained from on plant resources due to their complexity. This complex 

structures of compounds directed the chemists to search for  an important source of new 

compounds with a variety of structural arrangements and singular properties. 

Many natural products with different biological activities, have α,β-unsaturated 

δ-lactone moieties as an important structural feature. The α,β-unsaturated δ-lactone 

functionality is presumed to be responsible for the biological activities, due to its ability 

to act as a Michael acceptor, enabling these molecules to bind to a target enzyme. 

(Enders and Steinbusch 2003) 

Styryl lactones, which have an α,β-unsaturated-δ-lactone moieties in their 

structure, are an interesting group of cytotoxic and antitumor agents. Because of their 

unique and intriguing structures and the broad spectrum of activity, they have attracted 

the attention of several researchers. 

In decades, many biologically active styryl lactones that have been isolated or 

synthesized from Goniothalamus, exhibit promising anti-tumor activity. (Bermejo, et al. 

1999.) A few bioactivity studies were done with the compounds goniothalamin (1), 

goniodiol (2), and altholactone (3) isolated from Goniothalamus griffithii and all three 

styryl lactones have been found to possess cytotoxic activities. Among the styryl 

lactones altholactone (3), and goniopypyrone (4) are the most cytotoxic styryl lactones, 

which have IC50 values 86.2 µM for HL-60 cells and non selective cytotoxicity of 
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goniopypyrone (4) with ED50 values 0.67 µg/ml for several human tumor cell line 

(Figure 2.1) (Inayat-Hussain, et al. 2002, Surivet and Vatele 1997, Tian, et al. 2006). 
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Figure 2.1. Structures of goniothalamin (1), goniodiol (2), altholactone (3), and 

goniopyrpyrone (4). 

 

Obolactone (5) and obochalcolactone (6) have recently been isolated from the 

fruits and the trunk bark of Cryptocarya obovata, they also display significant cytotoxic 

activity against the KB cell line with an IC50 values of 3 and 5 µM respectively (Figure 

2.2) (Dumontet, et al. 2004). 
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Figure 2.2. Structures of obolactone (5) and obochalcolactone (6). 

 

The styryl lactones can be classified in six groups based on the structural 

characteristics of the skeletons. These groups are; styryl-pyrones, furano-pyrones, 

furano-furones, pyrano-pyrones, butenolides, and heptolides (Bermejo, et al. 1999). 
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2.1. Furano-pyrones 

 

 The first identified compound of this group was altholactone (3). It was also 

isolated from the bark of Goniothalamus giganteus and reported under the different 

trivial name of goniothalenol (El-Zayat, et al. 1985). Altholactone (3) and all 

furanopyrones are biogenetically related to styryl-pyrones. The furano-pyrone skeleton 

represents the second most abundant class of styryl-lactones in Goniothalamus. 

Isoaltholactone (7), 2-epi-altholactone (8), goniofupyrone (9), goniotharvensin (10), and 

etharvensin (11) are the other members of this group (Figure 2.3) (Bermejo, et al. 1999). 
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Figure 2.3. Structures of isoaltholactone (7), 2-epi-altholactone (8), goniofupyrone (9),     

goniotharvensin (10), and etharvensin (11). 

 

2.2. Furano-furones 

 

Goniofufurone (12), and 7-epi-goniofufurone (13) are members of this group of 

styryl lactone (Figure 2.4). They were isolated from the stem bark of Goniothalamus 

giganteus (Bermejo, et al. 1999). Fang and coworkers reported the cytotoxic activity of 

compound (12) against A-549 (human lung carcinoma), MCF-7 (human breast 

adenocarcinoma), and HT-29 (human colon adenocarcinoma) cell lines with ED50 < 4 

µg/ml (Fang, et al. 1991). 
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Figure 2.4. Structures of goniofufurone (12), and 7-epi-goniofufurone (13). 

 

2.3. Pyrano-pyrones 

 

 The examples of pyrano-pyrone styryl-lactones are goniopypyrone (4), 5-deoxy-

goniopypyrone (14), and leiocarpin-A (15). They are also exhibiting non-selective 

activity against human tumour cell lines (Figure 2.5) (Bermejo, et al. 1999). 
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Figure 2.5. Structures of 5-deoxy-goniopypyrone (14), and leiocarpin-A (15). 

 

2.4. Butenolides 

 

 Two well known butenolide compounds are goniobutenolide-A (16), and 

goniobutenolide-B (17). They were originally isolated from G. Giganteus (Bermejo, et 

al. 1999). Biological activity of the compound 16 was tested against four different 

tumour cell lines (HL-60, HCT-8, MDA/MB-435 and SF295) by Teixeira research 

group and it has no effect on cell lines HL-60, MDA/MB-435 and SF295, but for the 

cell line HCT-8 a modest cytotoxicity was observed (IC50 = 101.5 µM) (Figure 2.6) 

(Teixeira, et al. 2007). 
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Figure 2.6. Structures of goniobutenolide-A (16), and goniobutenolide-B (17). 

 

2.5. Heptolides 

 

Gonioheptolides-A (18) and -B (19) isolated from the stem bark of G. giganteus, 

were the first compounds of this class. Recently two novel heptolides, almuheptolides-A 

(20) and -B (21), have been isolated from the stem bark of G. arvensis. Compounds of 

this group contain an unusual, saturated eight-membered lactone moiety (Figure 2.7) 

(Bermejo, et al. 1999). 
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Figure 2.7. Structures of gonioheptolides-A (18), gonioheptolides-B (19), 

almuheptolides-A (20) and -B (21). 

 

2.6. Styryl-pyrones 

 

The styryl-lactones make up an interesting group from the pharmacological 

point of view and styryl-pyrones are one of the interesting members of this group. They 

can be classified in four class depending the degree of oxidation of their aliphatic chain 

and in the saturation of the pyrone moiety. Goniothalamin (1), Goniodiol (2), 

Etharvendiol (22) are some members of this group (Figure 2.1 and 2.8) (Bermejo, et al. 

1999). 
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Figure 2.8. Structure of etharvendiol (22). 

 

Among styryl lactones family, goniothalamin (1) is especially interesting 

because of its selective cytotoxicity against breast cancer cell lines (Fatima, et al. 2006). 

Goniothalamin (1), a naturally occurring styryl lactone was isolated in 1967 from the 

dried bark of Cryptocarya caloneura (Pospisil and Marco 2006). 

Later it was isolated from Cryptocarya moschata, and various species of 

Goniothalamus (Fatima and Pilli 2003). Addition to its cytotoxicity, goniothalamin (1) 

shows a potent mosquito larvicide, weak antibacterial, and significant antifungal 

activity against a wide range of gram-positive and gram-negative bacteria and fungi 

(Mosaddik and Haque 2003).  

Recent studies have demonstrated that (R)-goniothalamin (23) has cytotoxic 

effects in vitro especially by inducing apoptosis on different cancer cell lines [cervical 

carcinoma (Hela), gastric carcinoma (HGC-27), breast carcinoma (MCF-7, T47D, and 

MDA-MB-231), leukemia carcinoma (HL-60), and ovarian carcinoma (Caov-3)]. The 

most interesting property of the R-goniothalamin (23) is, its minimal cytotoxicity 

against non-malignant cells (Figure 2.9) (Fatima, et al. 2005). 
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Figure 2.9. Structure of R-goniothalamin (23). 
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2.6.1. Structure Activity Relationship (SAR) of Goniothalamin 

Derivatives 

 

 Synthesis of R-goniothalamin (23) and preparation of the derivatives have 

gained importance in the last decade. During the synthesis of 23 Fatima, et al. has 

reported the cytotoxic properties of an intermediate 24 and a side product 25. 

Compounds 24 and 25 were tested against different human cancer cell lines such as 

MCF-7 (breast), NCI-ADR (breast expressing the multidrug resistance phenotype), NCI 

460 (lung, non-small cells), UACC62 (melanoma), 786-0 (kidney), OVCAR03 

(ovarian), PC- 3 (prostate), and HT-29 (colon) (Figure 2.10).  
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Figure 2.10. Structures of linker modified analogues of goniothalamin (24-25). 

 

All compounds displayed antiproliferative activity against tested cancer cell 

lines. R-goniothalamin (23) was found to be more potent than 24 and 25 toward [NCI-

ADR (breast expressing the multidrug resistance phenotype), NCI 460 (lung, non-small 

cells), UACC62 (melanoma), 786–0 (kidney), and HT-29 (colon)].  Compound 24 and 

25 were more cytotoxic than 23 towards prostate (PC-3), breast (MCF-7), and ovarian 

(OVCAR03) cancer cell lines (Fatima, et al. 2005). These results indicates that the trans 

oriented double bond in the linker sub-unit is important for the cytotoxicity in most of 

the tested cancer cell lines.  

Fatima, et al. also published a study on synthesis and biological activities of 

goniothalamin (23) and its enantiomer 26. The results of the study showed that both 

enantiomers 23 and 26 displayed antiproliferative activitiy against cancer cell lines. 

Both goniothalamin (23) and (26) displayed higher potency against 786-0 cell line 

(kidney tumor) and NCI.ADR (breast expressing the resistance phenotype for 

adryamycin) than DOX which one is used for positive control, more impressive results 

were obtained with the breast resistant cancer cell line (NCI.ADR), 23 showed to be 10 

and 20 times more powerful than 26 and DOX. Respectively, for kidney cells (786-0), 
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26 was found to be 1,600-fold more potent than 23. (IC50 for 26 is 4 nM, IC50 for 23 is 

6.4 µM).  

 Cytotoxicity test results of 26 directed them to synthesize new (S)-

goniothalamin analogues 27-32. By these synthetic derivatives, they investigated the 

possible pharmocophoric groups responsible for the activity of goniothalamin (Figure 

2.11). Also, they investigated the activity of the compounds which of the double bond 

of the pyranone ring was saturated 33-34 (Figure 2.12). 

Test results were indicating that the endo and exo double bonds in the pyranone 

ring are essential for the activity of 26 against kidney cancer cell line (786-0). The 

analogues 27, 33, and 34 which are lack of either one or both double bonds, shows 

antiproliferative activity lower than that of 26. Also, the importance of the E-

configuration of the styryl part in 23 for antiproliferative activity was explained, it is 

tought to be role of Michael acceptor in the pyranone ring for nucleophilic amino acid 

residues present in the natural receptors, which are possibly interacting with these 

compounds (Fatima, et al. 2006). 
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Figure 2.11. Structures of (S)-goniothalamin (26) and its analogues 27-32. 

 

Moreover, for analogues 29 to 32 the results obtained from the cytotoxicity test 

against kidney cancer cells demonstrated that electron-donating or electron-withdrawing 

groups in the aromatic ring decreased their potency compared to 26 and steric 

hinderance may play role in this diminished cytotoxicity. 
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Antiproliferative activities of analogues differentiating, such as 23 was found to 

be more potent than 26 against the melanoma cell line (UACC.62), but the analogues 

28, 31 and 33 were 7-, 3- and 3-fold more potent than 23 relatively. Similarly, 

analogues 28 and 31 were found to be more potent than 26 and 23 against prostate 

cancer  cell (PC-3) proliferation (Fatima, et al. 2006). 
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Figure 2.12. Structures of (S)-goniothalamin analogues having saturated lactone rings 

33-34. 

 

 In addition, Zhou, et al. studied the semisynthesis and antitumor activities of 

new goniothalamin derivatives 35-46, and cytotoxic activity tests were performed 

against human promyelocytic leukemia (HL-60), human hepatoma (BEL-7402), human 

lung carcinoma (A549) and human stomach cancer (SGC-7901) cell lines. 

 Semi-synthetic styryl lactone derivatives 35, 36 and 37 showing stronger 

inhibitory effect against the human stomach tumor SGC-7901. Additional derivatives 

(34-36), having free amino and acylamino substituent at position 10, have also been 

prepared and tested for cytotoxicity. The results are showing that IC50 values of the 

acylamino compounds increased for A549 and SGC-7901. It was proposed that free 

amino group at C-10 is important for antitumor activity, and activity get lost when the 

lone pairs of electrons on nitrogen were used for resonance with carbonyl group. They 

also investigated the antitumor activities of amino acid functionalized derivatives. 

Biological activity tests resulted that amino acid group derivatives of goniothalamin 

could not enhance the activity as compound 37 does (Figure 2.13) ( Zhou, et al. 2005). 
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40, R=NHBoc-L-Gly                   44, R'=L-Ala

41, R=NHBoc-L-Ala                   45, R'=L-Leu

42, R=NHBoc-L-Val                   46, R'=L-Ile

43, R=NHBoc-L-Phe  

 

 Figure 2.13. Structures of o-nitro 35, p-nitro 36, o-amino 37, o-amide 38-39 and o-  

amino acid substituted goniothalamin derivatives 40-46. 

  

 As it is summarized above, cytotoxic activity studies of goniothalamin (1) 

derivatives have been studied mostly in last decades, and four essential part of this 

molecule has been modified in these works. The sub-units of goniothalamin has been 

represented in Figure 2.14. As indicated above, the results of these SAR studies of 

goniothalamin derivatives imply that, Michael acceptor sub-unit in the lactone ring, 

trans oriented double bond in the linker part, and configuration of the stereogenic 

carbon play an important role in the cytotoxic activity. 
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Figure 2.14. Sources of the activity in goniothalamin (1) structure. 

 

 In summary, the most essential sub-unit of the goniothalamin is α,β-unsaturated 

lactone ring actually. The role of the rest of the molecule seems still questionable 

because of the observation of different responses of the cancer cell lines to the 

derivatives of 23 and 26. Any change in the linker part, stereogenic center or 

hyrophobic tail mostly returned with moderest cytotoxic difference, and for few cases a 

high activity toward one type of cancer cell line. 
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CHAPTER 3 

 

SYNTESIS OF GONIOTHALAMIN DERIVATIVES  

 

3.1. Synthesis in Literature 

 

Due to the interesting biological activities of goniothalamin (1) derivatives, 

several successful synthesis has been described in literature (Fatima, et al. 2006). 

Racemic Goniothalamin (1) synthesis was performed by Fournier, et al., by 

starting from trans-cinnamaldehyde (49). A short retrosynthetic analysis was shown in 

Figure 3.1. The synthesis of goniothalamin (1) was performed through the formation of 

a β-lactone intermediate (47) (Fournier, et al. 2004). 
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1 47
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Figure 3.1. Retrosynthetic analysis of goniothalamin (1). 

 

 Because of the existence of a stereogenic center in goniothalamin structure, it is 

essential to synthesize both enantiomers by enantioselective fashion to observe the 

dependence of activity with the configuration at stereogenic center.  

 As shown in Figure 3.2, different starting points have been chosen from the 

literature for these asymmetric syntheses of R-goniothalamin (23) or S-goniothalamin 

(26). In these strategies, either an enantiomerically pure starting material was chosen 

(Pospisil and Marko 2006) or an enzymatic kinetic transesterification of racemic 

homoallylic alcohol 51 was performed (Sundby, et al. 2004, Gruttadauria, et al. 2004) 

from propargylic alcohol 48 or the stereogenic center was installed by a catalytic 

asymmetric synthesis starting from aldehydes 49, and 52 (Sabitha, et al. 2006, 

Ramachandran, et al. 2006, Fatima, et al. 2005, Fatima, et al. 2006). 
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Figure 3.2. Retrosynthetic analysis of asymmetric synthesis of goniothalamin     

derivatives. 

 

There are also some semisynthesis procedures represented in literature. Zhou,, et 

al. represented a study on the preparation of derivatives 35-44 starting from naturally 

occuring goniothalamin (1). Key point of these modifications was the nitration of 

aromatic phenyl ring. Then it would be further reduced to amino derivative 36 and then 

easily be converted to amides 38-44 (Figure 3.3) (Zhou, et al. 2005). 
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Figure 3.3. Retrosynthetic analysis of semisynthesis of goniothalamin derivatives. 
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Because of the asymmetric synthesis of goniothalamin derivatives is a subject of 

this study, detailed explanation of these reactions should be dicussed. 

 

3.2. Lipase Catalyzed Resolution and Alkene Metathesis 

 

Sundby, et al. was reported the combination of enzymatic trans esterification and 

alkene metathesis in two steps. In this synthesis method, firstly racemic alcohol 51 was 

prepared by Grignard reaction between allylmagnesium bromide and trans-

cinnamaldehyde (49). Then it was kinetically resolved by a transesterification reaction 

in hexane using vinyl acrylate as acryl donor and Candida antarctica lipase B (CALB) 

as catalyst and compounds 53-54 were obtained. After separation of the products, 

alcohol 54 was then treated with acryloyl chloride and finally obtained acrylates 53 and 

55 were treated with Grubbs’ catalyst to give (S)- and (R)-goniothalamin (Figure 3.4) 

(Sundby, et al. 2004). 
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Figure 3.4. Lipaze catalyzed synthesis of (S)- and (R)-goniothalamin (26 and 23). 
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3.3. Chemoenzymatic Synthesis 

 

Lipases are the most widely employed enzymes because they are cheap and 

readily available from many different sources, and in addition, they possess high 

enantioselectivity for a broad range of substrates and high stability in organic solvents 

(Gruttadauria, et al. 2004). 

Gruttadauria, et al. reported the three step synthesis of goniothalamin by an 

enzymatic kinetic resolution in the presence of vinyl acrylate followed by ring closing 

metathesis.  

 In this study, starting material was the racemic allylic alcohol 51 was used and 

the resolution was carried out with PS-C Amano II to form the ester of one enantiomer. 

After the purification of this ester 53, olefin metathesis was performed with the Grubbs’ 

catalyst. In this study to improve the yield, they racemized alcohol 54 back 51. The 

starting racemate was achieved in one pot synthesis by treatment with 2,3-dichloro-5,6-

dicyano-1,4-benzoquinone (DDQ) in diethyl ether and then adding methanol and 

NaBH4 (Figure 3.5). 

 

Ph

OH

Ph

OH

+ Ph

O

O

O

Ph

O

51 54 53 23
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Reagents and conditions: (a) PS-C Amano II, solvent, vinyl acrylate, 25 oC, 24 h; (b) 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), diethyl ether, then CH3OH, NaBH4, rt; (c) 
PPh3, DEAD, acrylic acid, toluene, 0 

oC–rt 21%, 20% ee; (d) (Pcy3)2Cl2Ru=CHPh, Ti(OiPr)4, 
CH2Cl2, 18 h, reflux. 
 

Figure 3.5. Asymmetric synthesis of (R)-goniothalamin (23) with chemoenzymatic  

synthesis.  

 

3.4. Asymmetric Allylboration 

 

In an enantioselective synthesis, one of the fundamental C-C bond forming 

reaction is, catalytic enantioselective allylation of aldehydes with chiral catalyst. 
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Gruttadauria, et al. reported a study on asymmetric synthesis of R-goniothalamin (23). 

In this route synthesis was started with the allylboration of trans-cinnamaldehyde (49) 

with (+)-B-allyldiisopinocampheylborane (56) in an diethylether-pentane mixture at -

100 °C to gave homoallylic alcohol 57 with 72% yield. Esterification of 57 with 

acryloyl chloride 58 in the presence of a base provided corresponding acryloyl ester 53, 

which then treated with Grubbs’ catalyst in refluxing CH2Cl2 for 6 h to yield 23. Final 

product was obtained with 76% yield and 92% ee. (Figure 3.6) (Gruttadauria, et al. 

2004). 
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Figure 3.6. Asymmetric synthesis of (R)-goniothalamin (23) starting with allylboration 

with (+)-B-allyldiisopinocampheylborane (56). 

 

3.5. Asymmetric Allylation of Aldehydes 

 

Another three step total synthesis of (R)-goniothalamin (23) was also described 

by Fatima, et al. The first step was the catalytic asymmetric allylation of an aldehyde 

with allyltributyltin under the influence of chiral catalyst 60 which can be prepared from 

(R)-BINOL (59) in situ (Figure 3.7). The µ-oxobis(binaphthoxy)(isopropoxy)-titanium 

complex  displays excellent enantioselectivity for the addition of allyltributyltin to 

aldehydes. The efficiency of this catalyst is resulting from the simultaneous 

coordination and double activation ability of the bidentate Ti (IV) catalyst (Fatima, et al. 

2003). This catalyst was developed by Maruoka and coworkers provided higher level of 

enantioselection (Mauroka, et al. 2003). 
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Figure 3.7. Preparation of chiral auxiliary 60 from (R)-BINOL (59) in situ. 

 

After the preparation of 60 it was used in the catalytic asymmetric allylation of 

trans-cinnamaldehyde (49) with allyltributyltin (61) to produce allyl alcohol 57 with a 

moderate yield (78%) and good enantioselectivity (96% ee). In the next step resulting 

homoallylic alcohol 57 was treated with acryloyl chloride (58) to produce acryloyl ester 

54 in the presence of triethylamine with 80% yield. Finally, ring closing metathesis was 

performed with Grubbs’ catalyst to produce 23 (Figure 3.8). Transformation of trans-

cinnamaldehyde (49) into 23 with 61% overall yield. This is the most efficient approach 

so far reported in the literature for these natural product and illustrates the utility of the 

asymmetric catalytic allylation protocol developed by Maruoka and co-workers.  
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Reagents and conditions: (a) (R)-BINOL (10 mol%), Ti(OiPr)4 (15 mol%), TiCl4 (5 mol%), 

Ag2O (10 mol%), allyltributyltin (1.1. equiv.), CH2Cl2, −20°C, 24 h (78%; 96% ee); (b) acryloyl 

chloride (1.8 equiv.), Et3N (3.6 equiv.), CH2Cl2, 0°C (80%); (c) Grubbs’ catalyst 

[(Pcy3)2Cl2Ru=CHPh] (10 mol%), CH2Cl2 (98%). 

 

Figure 3.8. Asymmetric synthesis of (R)-goniothalamin (23) starting with asymmetric 

allylation of trans-cinnamaldehyde.  
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3.6. Sulfoxide-Modified Julia Olefination 

 

In literature, different sulfoxide modified olefination methods represented for the 

application of enantioselective R-goniothalamin (23) synthesis. Fatima, et al. and 

Pospisil-Marco’s research groups represented two different pathways for this synthesis. 

First synthesis was accomplished by Fatima, et al. and they performed the asymmetric 

catalytic allylation protocol to benzyloxyacetaldehyde (52) with allytributyltin (61) to 

form allylic alcohol 62. This obtained allylic alcohol 62 was then acrylated to yield ester 

63 which was treated with Grubbs’ catalyst to give lactone product 24. Deprotection of 

benzyl group in compound 24 was performed in the presence of FeCl3 and gave the 

alcohol 64. Swern oxidation of 64 yielded the unstable aldehyde 65, which was 

immediately reacted with sulfoxide 66 under suitable reaction conditions to accomplish 

the desired olefination with 13% yield (Figure 3.9) (Fatima, et al. 2003). 

A similar synthesis was performed by Pospisil and Marco, they started synthesis 

with glycidol ether 50 by a ring opening reaction with an allyl group, acrylation, and  

metathesis sequences were followed. Deprotection of the alcohol was performed in the 

same way by Fatima, et al., then obtained unstable aldehyde 65 was immediately 

reacted with benzylic sulfoxide 67 under standard sulfoxide-modified Julia olefination 

sequence, developed by them, to produce (R)-goniothalamin (23) with 78% yield. 

Also in this study, they noted that sulfoxide-modified Julia olefination afforded 

the natural product 23 with both an excellent yield and nearly perfect control of the C6–

C7 double bond geometry, contrast to the results obtained using alternative olefination 

methods, such as Wittig, classical Julia and Kociensky–Julia protocols (Pospisil and 

Marco 2006). 
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Reagents and Conditions for Fatima, et al. Synthesis Method: (a) (R)-BINOL (10 mol %), 

Ti(Oi-Pr)4 (10 mol %), molecular sieves (4 Å), allyltributyltin, -20 oC, 60 h (78%; 94% ee); (b) 

acryloyl chloride, Et3N, CH2Cl2, 0 
oC (86%); (c) Grubbs’ catalyst [(PCy3)2Cl2 Ru=CHPh], 

CH2Cl2 (91%); (d) FeCl3, CH2Cl2 (88%); (e) (COCl)2, CH2Cl2, DMSO, Et3N, -65 
oC, 30 min; 

then Ph3P=CHPh, THF (53%, two steps); (f) (COCl)2, CH2Cl2, DMSO, Et3N, -65 
oC, 30 min; 

then solution of the 66, KHMDS, THF, -78 oC (<20%). 

 

Sulfoxide Modified Julia-olefination Reagents and conditions: (1) LDA (1.1 eq), benzylic 

sulfoxide 67 (1 eq.), THF, -78oC, 30min; (2) Aldehyde (62) (1.05 eq.), -78 oC, 2h; (3) BzCl (1.5 

eq.), -78 oC to r.t; (4) Me2N(CH2)3NH2  (1.55 eq.); (5) Sml2 (4eq.), HMPA (4 eq.) THF, -78oC, 

30 min. 

Figure 3.9. Asymmetric synthesis of (R)-goniothalamin (23) with sulfoxide-modified 

Julia olefination. 

 

3.7. Crosford Cross-Coupling Protocol 
 
 
 Another stereoselective synthesis of R-goniothalamin (23) was reported by 

Sabitha, et al., who developed a method which involves the Crosford cross-coupling 

protocol, starting from the reaction of iodobenzene (67) and an acetylenic alcohol 68.  
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Reagents and conditions: (a) 10% Pd/C (cat.), CuI (4 cat.), Ph3P (0.1 equiv), K2CO3, H2O/DME, 

80oC, 2 h, 90%. (b) LiAlH4, THF, 0
oC to rt, 2 h, 90%; (c) TBDMSCl, imidazole, DCM, DMAP, 

2 h, 95%; (d) PPTS, MeOH, 12 h, 90 %; (e) IBX, DMSO, DCM, 0oC to rt, 2 h, 75%; (f) i. 

NaH/THF, -78oC, 30 min; ii. (CF3CH2O)2P(O)CH2COOCH3, THF, -70
oC, 30 min, 80%; (g) 

TBAF, THF, 2 h, 80%; (h) benzene, reflux, PTSA, 1 h, 75%. 

 

Figure 3.10. Asymmetric synthesis of (R)-goniothalamin (23) with Crosford cross-

coupling protocol. 

 

The product of this reaction, compound 48, plays a key role in the 

stereoselective synthesis of various natural products. Resulting propargylic alcohol 48 

was reduced with LiAH in THF to form compound 69. The secondary hydroxyl group 

was silylated with TBDMSCl to provide 70 and subsequently the primary THP group 

was cleaved using PPTS in MeOH to afford compound 71. The alcohol was subjected to 

oxidation in the presence of IBX in DCM to furnish the aldehyde 72. Resulting 

aldehyde was converted to an α,β-unsaturated ester 73. Deprotection of TBDMS 

followed by lactonization gave 23 (Figure 3.10) (Sabitha, et al. 2006). 
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CHAPTER 4 

 

EXPERIMENTAL 

 

4.1. Organic Chemistry Part 

 

4.1.1. General Methods 

 

Reagents were commercial grade and were used as supplied. Dichloromethane 

was distilled over calcium hydride. Reactions were monitored by TLC chromatography 

using Merck TLC plates (Silicagel 60 F254). Chromatographic separations were 

performed using 70–230 mesh silicagel. Solvents, required for SiO2 column 

chromatography, were commercial grade and were used as supplied. Solvents, required 

for HPLC, were spectrometric grade and were used as supplied. 1H NMR and 13C NMR 

data were recorded on a Varian 400-MR (400 MHz) spectrometer. Chemical shifts for 

1H-NMR and 13C-NMR are reported in δ (ppm). CDCl3 peaks were used as reference in 
1H-NMR (7.26 ppm), and 13C-NMR (77.36 ppm) respectively. Optical rotations were 

measured with Optical Digital Polarimeter (SOLF) model WZZ-1S instrument. HPLC 

studies were performed by employing Chiracel AD-H column (0,46x150 mm) on 

Agilent 1100 Series HPLC. GC-Mass spectra (EI) were measured on Agilent 6890N 

Network GC System equipped with a Quadrupole Mass Spectrometer (EI).  

 

4.1.2. Preparation of (R)-goniothalamin (23) 

 

Racemic goniothalamin (1) was prepared according to the literature, defined by 

Fatima, et al. in the absence of R-BINOL (59) with 36% overall yield. Product was 

purified from SiO2 column and enantiomers were monitored in HPLC Chiracel AD-H 

Column, (i-propanol:hexane (1:9), 1 mL/min t1=7.65 min. and  t2=7.98 min.). Then R-

Goniothalamin (23) was synthesized by same procedure in the presence of R-BINOL 

starting from trans-cinnamaldehyde with 38% overall yield and 65% ee. Enantiomers 

were monitored in HPLC Chiracel AD-H Column, with the same conditions and it was 
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seen that the ratio of the peaks was different than that of racemic one and enantiomeric 

excess was calculated by using the area under these signals. 

 

4.1.3. Preparation of R-(+)-1-(naphthalen-2-yl)-but-3-en-1-ol (78) 

 

In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 25 mg (14 µL, 0.13 mmol) of TiCl4 was dissolved in 2.6 mL of 

dichloromethane. To this solution, 118 mg (120 µL, 0.41 mmol) of Ti(Oi-Pr)4 was 

added under nitrogen atmosphere. The resulting solution was allowed to warm up to 

room temperature for 1 h and then 61 mg (0.26 mmol) of silver (I) oxide was added. 

The mixture was stirred for 5 h without any exposure to direct day light. After dilution 

with 4.5 mL of dichloromethane, 150 mg (0.52 mmol) of (R)-BINOL (59) was added 

and stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 

sequentially with 409 mg (2.62 mmol) of 2-naphthaldehyde (77) and 953 mg (893 µL, 

2.88 mmol) of allyltributyltin (61). The mixture was stirred for 16 h and allowed to 

warm up to room temperature. After the reaction was completed, the reaction mixture 

was filtered through a short pad of celite, then quenched with saturated NaHCO3 

solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts were 

combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 309 mg of R-(+)-1-(naphthalen-2-yl)-but-3-en-1-ol (78) 

as a colorless foam with 59% yield. Rf = 0.65 (ethyl acetate:hexanes, 1:2);              

[α]D
30 = + 52.7o (c = 3, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) δ 7.88-7.78 (m, 4H), 

7.53-7.44 (m, 3H), 5.91-5.77 (m, 1H), 5.23-5.12 (m, 2H), 4.90 (t, 1H, J = 6.3 Hz), 2.68-

2,54 (m, 2H), 2.25 (s, 1H); 13C-NMR (400 MHz, CDCl3) δ 141,58, 134.68, 133.59, 

133.28, 128.52, 128.28, 128.00, 126.44, 126.13, 124.83, 124.33, 118.81, 73.72, 44.04; 

MS (EI) m/z calculated for M+ (C14H14O) = 198,1; found: 198 (2%), 179 (100%), 166, 

157, 129; Enantiomeric excess was found as 83% with HPLC - Chiracel AD-H column 

(i-propanol:hexane 10:90, 1mL/min t1 = 5.51 min “major enantiomer”, t2 = 5.97 min 

“minor enantiomer”). 
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4.1.4. Preparation of R-(+)-1-(naphthalen-2-yl)-but-3-enyl acrylate (79) 

 

A solution of 302 mg (1.52 mmol) of 78 in 3.0 mL of dichloromethane was 

cooled down to 0 oC; then 248 mg (223 µL, 2.74 mmol) of acryloyl chloride (58) and 

555 mg (770 µL, 5.48 mmol) of triethyl amine were sequentially added. The mixture 

was warmed to room temperature and stirred for 22 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:8) gave 205 mg of R-(+)-1-

(naphthalen-2-yl)-but-3-enyl acrylate (79) with 53% yield. Rf = 0.63 (ethyl 

acetate:hexanes, 1:4); [α]D
25 = + 67.46o (c = 2.05, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) 

δ 7.88-7.70 (m, 4H), 7.53-7.41 (s, 3H), 6.44 (d, 1H, J = 17.3 Hz), 6.24-6.12 (m, 1H), 

6.09-6.00 (m, 1H), 5.84 (d, 1H, J = 10.4 Hz), 5.80-5.67 (m, 1H), 5.16-5.00 (m, 2H), 

2.85-2.63 (m, 2H); 13C-NMR (400 MHz, CDCl3) δ 165.74, 137.64, 133.49, 133.45, 

133.44, 131.28, 128.92, 128.65, 128.41, 128.01, 126.56, 126.45, 126.10, 124.62, 

118.56, 75.86, 41.00;MS (EI) m/z calculated for M+ (C17H16O2) = 252,1; found: 252 

(2%), 224, 178, 156(100%), 128, 68; Enantiomeric excess was found as 79% with 

HPLC - Chiracel AD-H column (i-propanol:hexane 10:90, 1mL/min t1 = 2,80 min 

“major enantiomer”, t2 = 3,50 min “minor enantiomer”). 

 

4.1.5. Preparation of R-(+)-6-(naphthalen-2-yl)-5,6-dihydro-2H-pyran-

2-one (75) 

 

To a stirred solution of 80 mg (0.1 mmol) of Grubbs’ catalyst (10 mol%) in 8 

mL dichloromethane at 60 oC was added a solution of 205 mg (0.81 mmol)  of 79 in 90 

mL of dichloromethane. The resulting mixture was heated for 14 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 159 mg R-(+)-6-(naphthalen-2-yl)-5,6-dihydro-2H-

pyran-2-one (75) with 88% yield. Rf=0.13 (ethyl acetate:hexanes, 1:4). [α]D
20=+ 190.19o 

(c = 1.59, CH2Cl2). 
1H-NMR (400 MHz, CDCl3) δ 7.91-7.82 (m, 4H), 7.54-7.47 (m, 

3H), 7.03-6.96 (m, 1H), 6.18 (d, 1H, J = 10.9 Hz), 5.63 (dd, 1H, J = 10.7, and 5.2 Hz), 
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2.80-2.64 (m, 2H); 13C-NMR (400 MHz, CDCl3) δ 164.41, 145.19, 136.13, 133.59, 

133.42, 128.46, 128.08, 126.87, 126.83, 125.53, 123.86, 122.13, 105.11, 79.65, 32.08; 

MS (EI) m/z calculated for M+ (C15H12O2) = 224,1; found: 224 (50%), 178, 156 (100%), 

128, 68; Enantiomeric excess was found as 76% with HPLC - Chiracel AD-H column 

(i-propanol:hexane 5:95, 1mL/min t1 = 17,66 min, “major enantiomer”, t2 = 18.27 min 

“minor enantiomer”) 

 

4.1.6. Preparation of S-(-)-1-(naphthalen-2-yl)-but-3-en-1-ol (80) 

 

In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 25 mg (14 µL, 0.13 mmol)  of  TiCl4 was dissolved in 2.6 mL of 

dichloromethane. To this solution, 118 mg (120 µL, 0.41 mmol) of Ti(Oi-Pr)4 was 

added under nitrogen atmosphere. The resulting solution was allowed to warm up to 

room temperature for 1 h and then 61 mg (0.26 mmol) of silver (I) oxide was added. 

The mixture was stirred for 5 h without any exposure to direct day light. After dilution 

with 4.5 mL of dichloromethane, 150 mg (0.52 mmol) of (S)-BINOL was added and 

stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 

sequentially with 409 mg (2.62 mmol) of 2-naphthaldehyde (77) and 953 mg (893 µL, 

2.88 mmol) of allyltributyltin (61). The mixture was stirred for 18 h and allowed to 

warm up to room temperature. After the reaction was completed, the reaction mixture 

was filtered through a short pad of celite, then quenched with saturated NaHCO3 

solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts were 

combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 133 mg of S-(-)-1-(naphthalen-2-yl)-but-3-en-1-ol (80) 

as a light yellow solid with 26% yield. Rf = 0.42 (ethyl acetate:hexanes, 1:4);       

[α]D
26= -47.87o (c = 1.32, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) δ 7.88-7.78 (m, 4H), 

7.53-7.44 (m, 3H), 5.91-5.77 (m, 1H), 5.23-5.12 (m, 2H), 4.90 (t, 1H, J = 6.3 Hz), 2.68-

2,54 (m, 2H), 2.25 (s, 1H); 13C-NMR (400 MHz, CDCl3) δ 141,58, 134.68, 133.59, 

133.28, 128.52, 128.28, 128.00, 126.44, 126.13, 124.83, 124.33, 118.81, 73.72, 44.04; 

MS (EI) m/z calculated for M+ (C14H14O) = 198,1; found: 198 (2%), 179 (100%), 166, 

157, 129; Enantiomeric excess was found as 81% with HPLC - Chiracel AD-H column 
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(i-propanol:hexane 10:90, 1mL/min t1 = 5.51 min “R enantiomer”, t2 = 5.95 min “S 

enantiomer”). 

 

4.1.7. Preparation of S-(-)-1-(naphthalen-2-yl)-but-3-enyl acrylate (81) 

 

A solution of 133 mg (0.49 mmol) of 80 in 3.0 mL of dichloromethane was 

cooled down to 0 oC; then 100 mg (90 µL, 1.12 mmol) of acryloyl chloride (58) and 225 

mg (312 µL, 2.22 mmol) of triethyl amine were sequentially added. The mixture was 

warmed to room temperature and stirred for 3 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:8) gave 124 mg of S-(-)-1-

(naphthalen-2-yl)-but-3-enyl acrylate (81) with 73% yield. Rf = 0.63 (ethyl 

acetate:hexanes, 1:4); [α]D
27 = -54.79o (c = 1.23, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) 

δ 7.88-7.70 (m, 4H), 7.53-7.41 (s, 3H), 6.44 (d, 1H, J = 17.3 Hz), 6.24-6.12 (m, 1H), 

6.09-6.00 (m, 1H), 5.84 (d, 1H, J = 10.4 Hz), 5.80-5.67 (m, 1H), 5.16-5.00 (m, 2H), 

2.85-2.63 (m, 2H); 13C-NMR (400 MHz, CDCl3) δ 165.74, 137.64, 133.49, 133.45, 

133.44, 131.28, 128.92, 128.65, 128.41, 128.01, 126.56, 126.45, 126.10, 124.62, 

118.56, 75.86, 41.00;MS (EI) m/z calculated for M+ (C17H16O2) = 252,1; found: 252 

(2%), 224, 178, 156(100%), 128, 68; Enantiomeric excess was found as 81% with 

HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 3.21 min “S 

enantiomer”, t2 = 4.22 min “R enantiomer”). 

 

4.1.8. Preparation of S-(-)-6-(naphthalen-2-yl)-5,6-dihydro-2H-pyran-

2-one (76) 

 

 To a stirred solution of 47 mg (0.06 mmol) of Grubbs’ catalyst (10 mol%) in 4.5 

mL dichloromethane at 60 oC was added a solution of 120 mg (0.48 mmol) of 81 in 53 

mL of dichloromethane. The resulting mixture was heated for 16 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 78 mg of S-(-)-6-(naphthalen-1-yl)-5,6-dihydro-2H-
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pyran-2-one (76) as a colorless solid with 73% yield. Rf=0.13 (ethyl acetate:hexanes, 

1:4). [α]D
20= -175.38o (c = 0.78, CH2Cl2). 

1H-NMR (400 MHz, CDCl3) δ 7.91-7.82 (m, 

4H), 7.54-7.47 (m, 3H), 7.03-6.96 (m, 1H), 6.18 (d, 1H, J = 10.9 Hz), 5.63 (dd, 1H,       

J= 10.7, and 5.2 Hz), 2.80-2.64 (m, 2H); 13C-NMR (400 MHz, CDCl3) δ 164.41, 

145.19, 136.13, 133.59, 133.42, 128.46, 128.08, 126.87, 126.83, 125.53, 123.86, 

122.13, 105.11, 79.65, 32.08; MS (EI) m/z calculated for M+ (C15H12O2) = 224,1; found: 

224 (50%), 178, 156 (100%), 128, 68; Enantiomeric excess was found as 43% with 

HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 17.52 min, “R 

enantiomer”, t2 = 18.25 min “S enantiomer”) 

 

4.1.9. Preparation of R-(+)-1-(naphthalen-1-yl)-but-3-en-1-ol (94) 

 

In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 25 mg (14 µL, 0.13 mmol) of TiCl4 was dissolved in 2.6 mL of 

dichloromethane. To this solution, 118 mg (120 µL, 0.41 mmol) of Ti(Oi-Pr)4 was 

added under nitrogen atmosphere. The resulting solution was allowed to warm up to 

room temperature for 1 h and then 61 mg (0.26 mmol) of silver (I) oxide was added. 

The mixture was stirred for 5 h without any exposure to direct day light. After dilution 

with 4.5 mL of dichloromethane, 150 mg (0.52 mmol) of (R)-BINOL (59) was added 

and stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 

sequentially with 409 mg (2.62 mmol) of 1-naphthaldehyde (88) and 953 mg (893 µL, 

2.88 mmol) of allyltributyltin (61). The mixture was stirred for 16 h and allowed to 

warm up to room temperature. After the reaction was completed, the reaction mixture 

was filtered through a short pad of celite, then quenched with saturated NaHCO3 

solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts were 

combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 214 mg of R-(+)-1-(naphthalen-1-yl)-but-3-en-1-ol (94) 

as a light yellow solid with 41% yield. Rf = 0.42 (ethyl acetate:hexanes, 1:4);          

[α]D
26 = + 84.35o (c = 2.14, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) δ 8.07 (d,1H, J=7.18 

Hz), 7.92-7.87 (m,1H), 7.79 (d,1H, J=8.08 Hz), 7.67 (d,1H, 7.18 Hz), 7.57-7.46 (m,3H), 

5.99-5.88 (m,1H), 5.55-5.48 (m,1H), 5.26-5.16 (m,2H), 2.81-2.73 (m,1H), 2.66-2.56 

(m,1H), 2.37 (bs,1H); 13C-NMR (400MHz, CDCl3) δ 139.34, 134.71, 133.68, 130.15, 
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128.87, 127.87, 125.94, 125.41, 125.36, 122.90, 122.76, 118.22, 69.88, 42.76. MS (EI) 

m/z calculated for M+ (C14H14O) = 198,1; found: 198 (2%), 179 (100%), 166, 157, 129; 

HPLC - Chiracel AD-H column was used and ee was found as 77%, (i-propanol:hexane 

5:95, 1mL/min t1 = 7.57 min “:S enantiomer”, t2 = 8.62 min “R enantiomer”). 

 

4.1.10. Preparation of R-(+)-1-(naphthalen-1-yl)-but-3-enyl acrylate 

(100) 

 

A solution of 213 mg (1.07 mmol) of (94) in 3.0 mL of dichloromethane was 

cooled down to 0oC; then 175 mg (150 µL, 1.93 mmol) of acryloyl chloride (58) and 

390 mg (540 µL, 3.85 mmol) of triethyl amine were sequentially added. The mixture 

was warmed to room temperature and stirred for 3 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:8) gave 186 mg of R-(+)-1-

(naphthalen-1-yl)-but-3-enyl acrylate (100) with 69% yield. Rf = 0.63 (ethyl 

acetate:hexanes, 1:4); [α]D
26= +7.92o (c = 2.12, EtOAc); 1H-NMR (400 MHz, CDCl3) δ 

8.16 (d,1H, J=8.27 Hz), 7.88 (d,1H, J=8.27 Hz), 7.81 (d,1H, J=8.27 Hz), 7.61-7.44 

(m,4H), 6.71-6.66 (m,1H), 6.47 (dd,1H, J=17.46 and 1.84 Hz), 6.21 (dd,1H, J=17.46 

and 10.11 Hz), 5.89-5.74 (m,2H), 5.15-5.04 (m,2H), 2.87-2.81 (m,2H); 13C-NMR 

(400MHz, CDCl3) δ 165.59, 136.08, 134.04, 133.69, 131.21, 130.55, 129.15, 128.77, 

128.73, 126.54, 125.89, 125.45, 124.11, 123.39, 118.23, 72.73, 40.60; Enantiomeric 

excess was found as 44% with HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 

1mL/min t1 = 3.21 min “R enantiomer”, t2 = 4.22 min “S enantiomer”). 

 

4.1.11. Preparation of R-(+)-6-(naphthalen-1-yl)-5,6-dihydro-2H-

pyran-2-one (82) 

 

 To a stirred solution of 73 mg (0.09 mmol) of Grubbs’ catalyst (10 mol%) in 7.5 

mL dichloromethane at 60 oC was added a solution of 180 mg (0.71 mmol) of 100 in 70 

mL of dichloromethane. The resulting mixture was heated for 15 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 
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pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 125 mg of R-(+)-6-(naphthalen-1-yl)-5,6-dihydro-2H-

pyran-2-one (82) as a light yellow solid with 75% yield. Rf=0.14 (ethyl acetate:hexanes, 

1:4). [α]D
23 = +172.88o (c = 1.25, CH2Cl2). 

1H-NMR (400 MHz, CDCl3) δ 8.00-7.82 

(m,3H), 7.71 (d,1H, J=7.14 Hz), 7.58-7.45 (m,3H), 7.09-6.99 (m,1H), 6.25-6.17 (m,2H), 

2.84-2.78 (m, 2H); 13C-NMR (400MHz, CDCl3) δ 164.54, 145.49, 134.07, 133.99, 

130.16, 129.41, 128.38, 126.85, 126.07, 125.61, 124.39, 122.72, 121.89, 76.71, 31.38; 

Enantiomeric excess was found as 11% with HPLC - Chiracel AD-H column (i-

propanol:hexane 5:95, 1mL/min t1 = 15.50 min, “R enantiomer”, t2 = 19.50 min “S 

enantiomer”). 

 

4.1.12. Preparation of R-1-(2-methylnaphthalen-1-yl)-but-3-en-1-ol 

(95) 

 

In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 25 mg (14 µL, 0.13 mmol) of  TiCl4 was dissolved in 2.6 mL of 

dichloromethane. To this solution, 118 mg (120 µL, 0.41 mmol) of Ti(Oi-Pr)4 was 

added under nitrogen atmosphere. The resulting solution was allowed to warm up to 

room temperature for 1 h and then 61 mg (0.26 mmol) of silver (I) oxide was added. 

The mixture was stirred for 5 h without any exposure to direct day light. After dilution 

with 4.5 mL of dichloromethane, 150 mg (0.52 mmol) of (R)-BINOL (59) was added 

and stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 

sequentially with 446 mg (2.62 mmol) of 2-methyl-1-naphthaldehyde (89) and 953 mg 

(893 µL, 2.88 mmol) of allyltributyltin (61). The mixture was stirred for 18 h and 

allowed to warm up to room temperature. After the reaction was completed, the reaction 

mixture was filtered through a short pad of celite, then quenched with saturated 

NaHCO3 solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts 

were combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 104 mg of R-(+)-1-(2-methylnaphthalen-1-yl)-but-3-en-

1-ol (95) as a colorless oil with 19% yield. Rf = 0.34 (ethyl acetate:hexanes, 1:6); 

[α]D
21= (Could not be measured) (c = 1.04, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) δ 

8.67 (d,1H, J=8.61 Hz), 7.81 (d,1H, J=7.82 Hz), 7.51-7.39 (m,2H), 7.29-7.24(m,1H), 
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5.96-5.84 (m,1H), 5.64-5.57(m,1H), 5.21 (ddd, 1H, J=17.21, 3.13 and 1.56 Hz), 5.17-

5.12 (m,1H), 3.60-2.96 (m,1H), 2.76-2.67 (m,1H), 2.56 (s,3H), 2.20 (bs, 1H); 13C-NMR 

(400MHz, CDCl3) δ 135.30, 135.08, 133.38, 132.99, 131.26, 129.49, 128.70, 128.03, 

125.63, 125.50, 124.64, 117.90, 71.54, 41.21, 21.00; Enantiomeric excess was found as 

96% with HPLC - Chiracel AD-H column was used and ee was found as 93%, (i-

propanol:hexane 5:95, 1mL/min t1 = 3.70 min “:S enantiomer”, t2 = 4.50 min “R 

enantiomer”). 

 

4.1.13. Preparation of R-(+)-1-(2-methylnaphthalen-1-yl)-but-3-enyl 

acrylate (101) 

 

A solution of 103 mg (0.49 mmol) of 95 in 3.0 mL of dichloromethane was 

cooled down to 0 oC; then 79 mg (71 µL, 0.88 mmol) of acryloyl chloride (58) and 118 

mg (247 µL, 1.76 mmol) of triethyl amine were sequentially added. The mixture was 

warmed to room temperature and stirred for 3.5 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:10) gave 81 mg of R-(+)-1-(2-

methylnaphthalen-1-yl)-but-3-enyl acrylate (101) as a light yellow oil with 62% yield. 

Rf = 0.47 (ethyl acetate:hexanes, 1:4); [α]D
18 = +15.15o (c = 0.80, CH2Cl2); 

1H-NMR 

(400 MHz, CDCl3) δ 8.51 (d,1H, J=8.61 Hz), 7.82 (d,1H, J=7.82 Hz), 7.71 (d,1H, 

J=8.61 Hz), 7.54-7.48 (m,1H), 7.46-7.41 (m,1H), 7.29 (d,1H, J=8.22 Hz), 6.42 (dd,1H, 

J=17.22 and 1.56 Hz), 6.18 (dd,1H, J=17.22 and 10.56 Hz), 5.84-5.72 (m,2H), 5.14 

(ddd,1H, J=17.22, 3.13, and 1.56 Hz), 5.10-5.05 (m,1H), 3.19-3.09 (m,1H), 2.92-2.83 

(m,1H), 2.68 (s,3H); 13C-NMR (400MHz, CDCl3) δ 165.42, 134.28, 133.54, 133.27, 

132.01, 131.08, 130.72, 129.34, 128.84, 128.53, 128.46, 125.73, 124.54, 117.92, 

117.90, 72.83, 39.11, 20.92; Enantiomeric excess was found as 100% with HPLC - 

Chiracel AD-H column (i-propanol:hexane 1:99, 0.7mL/min t1 = 4.00 min. single peak). 
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4.1.14. Preparation of R-(+)-6-(2-methylnaphthalen-1-yl)-5,6-dihydro-

2H-pyran-2-one (83) 

 

 To a stirred solution of 26 mg (0.03 mmol) of Grubbs’ catalyst (10 mol%) in 3 

mL dichloromethane at 60 oC was added a solution of 70 mg (0.27 mmol) of 101 in 26 

mL of dichloromethane. The resulting mixture was heated for 14 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 38 mg of R-(+)-6-(2-methylnaphthalen-1-yl)-5,6-

dihydro-2H-pyran-2-one (83) as a light yellow oil with 60% yield. Rf=0.24 (ethyl 

acetate:hexanes, 1:2). [α]D
27 = + 136.79 (c = 0.31, CH2Cl2). 

1H-NMR (400 MHz, CDCl3) 

δ 8.22 (d,1H, J=8.61 Hz), 7.82 (dd,1H, J=7.82, and 1.57 Hz), 7.75 (d,1H, J=8.22 Hz), 

7.50-7.40 (m,2H), 7.29 (d,1H, J = 8.22 Hz), 7.06 (ddd,1H, J=9.78, 6.26, and 1.96 Hz), 

6.30 (dd,1H, J=13.30 and 4.30 Hz), 6.23 (ddd,1H, J=9.78, 2.74, and 1.17 Hz), 3.27-3.15 

(m,1H), 2.56 (s,3H), 2.55-2.44 (m,1H); 13C-NMR (400 MHz, CDCl3) δ 164.28, 145.70, 

133.91, 133.59, 133.11, 131.03, 129.74, 129.35, 129.35, 129.32, 128.94, 126.20, 

124.89, 124.46, 121.48, 76.58, 29.48, 20.84; Enantiomeric excess was found as 100% 

with HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 21.14 min, 

“single peak”) 

 

4.1.15. Preparation of R-(+)-1-(4-methylnaphthalen-1-yl)-but-3-en-1-ol 

(96) 

 

In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 25 mg (14 µL, 0.13 mmol) of  TiCl4 was dissolved in 2.6 mL of 

dichloromethane. To this solution, 118 mg (120 µL, 0.41 mmol) of Ti(Oi-Pr)4 was 

added under nitrogen atmosphere. The resulting solution was allowed to warm up to 

room temperature for 1 h. and then 61 mg (0.26 mmol) of silver (I) oxide was added. 

The mixture was stirred for 5 h without any exposure to direct day light. After dilution 

with 4.5 mL of dichloromethane, 150 mg (0.52 mmol) of (R)-BINOL (59) was added 

and stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 

sequentially with 421 mg (2.47 mmol) of 4-methyl-1-naphthaldehyde (90) and 953 mg 

(893 µL, 2.88 mmol) of allyltributyltin (61). The mixture was stirred for 15.5 h and 
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allowed to warm up to room temperature. After the reaction was completed, the reaction 

mixture was filtered through a short pad of celite, then quenched with saturated 

NaHCO3 solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts 

were combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:10) furnished 71 mg of R-(+)-1-(4-methylnaphthalen-1-yl)-but-3-en-

1-ol (96) as a yellow oil with 14% yield. Rf = 0.24 (ethyl acetate:hexanes, 1:6);    

[α]D
20= +57.72o (c = 0.71, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) δ 8.14-8.03 (m,2H), 

7.58-7.51 (m,3H), 7.34 (d,1H, J=7.43 Hz), 6.00-5.89 (m,1H), 5.55-5.49(m,1H), 5.26-

5.15 (m,2H), 2.81-2.73 (m,1H), 2.70 (s,3H), 2.66-2.57 (m,1H), 2.11 (bs,1H); 13C-NMR 

(400MHz, CDCl3) δ 137.51, 134.89, 134.04, 132.85, 130.37, 126.21, 125.67, 125.36, 

124.98, 123.48, 122.55, 118.22, 69.96, 42.85, 19.58; Enantiomeric excess was found as 

72% with HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 6.80 

min “:R enantiomer”, t2 = 7.10 min “S enantiomer”). 

 

4.1.16. Preparation of R-(+)-1-(4-methylnaphthalen-1-yl)-but-3-enyl 

acrylate (102) 

 

A solution of 70 mg (0.33 mmol) of 96 in 3.0 mL of dichloromethane was 

cooled down to 0 oC, then 55 mg (47 µL, 0.60 mmol) of acryloyl chloride (58) and 122 

mg (167 µL, 1.21 mmol) of triethyl amine were sequentially added. The mixture was 

warmed to room temperature and stirred for 4 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:12) gave 50 mg of R-(+)-1-(4-

methylnaphthalen-1-yl)-but-3-enyl acrylate (102) as a light yellow oil with 56% yield. 

Rf = 0.45 (ethyl acetate:hexanes, 1:8); [α]D
31 = +13.33o (c = 2.73, CH2Cl2); 

1H-NMR 

(400 MHz, CDCl3) δ 8.21-8.16 (m,1H), 8.07-8.03 (m,1H),  7.60-7.52 (m,2H), 7.48 

(d,1H, J=7.04 Hz), 7.32 (dd,1H, J=7.43 and 0.78 Hz), 6.70-6.65 (m,1H), 6.46 (dd,1H, 

J=17.22 and 1.56 Hz), 6.20 (dd,1H, J=17.22 and 10.56 Hz), 5.88-5.76 (m,2H), 5.13 

(dd,1H, J=3.13 and 1.56 Hz), 5.09-5.04 (m,1H), 2.87-2.81 (m,2H), 2.69 (d,3H, J=0.78 

Hz); 13C-NMR (400MHz, CDCl3) δ 165.36, 134.64, 133.96, 133.56, 132.84, 130.85, 
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130.39, 128.56, 126.02, 125.92, 125.49, 124.92, 123.63, 117.87, 72.51, 40.32, 19.58; 

Enantiomeric excess was found as 66% with HPLC - Chiracel AD-H column (i-

propanol:hexane 1:99, 1 mL/min t1 = 2.80 min. “R enantiomer”, t2 = 3.16 min “S 

enantiomer”). 

 

4.1.17. Preparation of R-(+)-6-(4-methylnaphthalen-1-yl)-5,6-dihydro-

2H-pyran-2-one (84) 

 

To a stirred solution of 13 mg (0.02 mmol) of Grubbs’ catalyst (10 mol%) in 1.5 

mL dichloromethane at 60 oC was added a solution of 35 mg (0.13 mmol) of 102 in 14 

mL of dichloromethane. The resulting mixture was heated for 14 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 27 mg of R-(+)-6-(4-methylnaphthalen-1-yl)-5,6-

dihydro-2H-pyran-2-one (84) as a light yellow solid with 87% yield. Rf=0.15 (ethyl 

acetate:hexanes, 1:4). [α]D
28 = + 114.64 (c = 0.21, CH2Cl2). 

1H-NMR (400 MHz, CDCl3) 

δ 8.10-8.03 (m,1H), 8.01-7.95 (m,1H), 7.61-7.52 (m,3H), 7.35 (d,1H, J=7.04 Hz), 7.06-

6.99 (m,1H), 6.24-6.15 (m,2H), 2.83-2.76 (m,2H), 2.71 (s,1H); 13C-NMR (400 MHz, 

CDCl3) δ 164.38, 145.27, 135.44, 132.83, 131.96, 130.03, 126.18, 126.10, 125.64, 

125.14, 123.88, 123.01, 121.59, 76.79, 31.08, 19.61; Enantiomeric excess was found as 

93% with HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 14.96 

min, “R enantiomer”, t2 = 17.64 min “S enantiomer”).  

 

4.1.18. Preparation of R-(+)-1-(quinolin-4-yl)-but-3-en-1-ol (97) 

 

In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 17 mg (10 µL, 0.1 mmol) of TiCl4 was dissolved in 2.0 mL of 

dichloromethane. To this solution, 80 mg (80 µL, 0.28 mmol) of Ti(Oi-Pr)4 was added 

under nitrogen atmosphere. The resulting solution was allowed to warm up to room 

temperature for 1 h and then 40 mg (0.18 mmol) of silver (I) oxide was added. The 

mixture was stirred for 5 h without any exposure to direct day light. After dilution with 

4.0 mL of dichloromethane, 100 mg (0.35 mmol) of (R)-BINOL (59) was added and 

stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 
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sequentially with 278 mg (1.77 mmol) of 4-quinolinecarboxyaldehyde (91) and 640 mg 

(598 µL, 1.93 mmol) of allyltributyltin (61). The mixture was stirred for 16 h and 

allowed to warm up to room temperature. After the reaction was completed, the reaction 

mixture was filtered through a short pad of celite, then quenched with saturated 

NaHCO3 solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts 

were combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:6) furnished 73 mg of R-(+)-1-(quinolin-4-yl)-but-3-en-1-ol (97) as a 

colorless oil with 21% yield. Rf = 0.22 (ethyl acetate:hexanes, 1:1); [α]D
21 = +67.08o      

(c = 0.73, EtOH); 1H-NMR (400 MHz, CDCl3) δ 8.71-8.65 (m,1H), 8.06-8.00 (m,1H), 

7.97-7.91 (m,1H), 7.65-7.58 (m,1H), 7.55-7.45 (m,2H), 5.94-5.83 (m,1H), 5.52-5.46 

(m,1H), 5.18-5.10 (m,2H), 4.30 (bs,1H), 2.74-2.65 (m,1H), 2.57-2.47 (m,1H); 13C-NMR 

(400MHz, CDCl3) δ 150.04, 149.94, 147.68, 133.94, 129.80, 128.98, 126.43, 125.31, 

122.82, 118.50, 117.52, 68.78, 42.71; Enantiomeric excess was found as 65% with 

HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 14.70 min “:R 

enantiomer”, t2 = 17.09 min “S enantiomer”). 

 

4.1.19. Preparation of R-(-)-1-(quinolin-4-yl)-but-3-enyl acrylate (103) 

 

A solution of 66 mg (0.30 mmol) of 97 in 3.0 mL of dichloromethane was 

cooled down to 0 oC, then 50 mg (43 µL, 0.55 mmol) of acryloyl chloride (58) and 110 

mg (153 µL, 1.1 mmol) of triethyl amine were sequentially added. The mixture was 

warmed to room temperature and stirred for 3 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:8) gave 43 mg of R-(+)-1-

(quinolin-4-yl)-but-3-enyl acrylate (103) as a yellow oil with 56% yield. Rf = 0.15 

(ethyl acetate:hexanes, 1:4); [α]D
28= -5.50o (c = 2.30, CH2Cl2); 

1H-NMR (400 MHz, 

CDCl3) δ 8.90 (d,1H, J=4.30 Hz) 8.18-8.07 (m,2H), 7.73 (ddd,1H, J=8.22, 6.65 and 

1.17 Hz), 7.60 (ddd,1H, J=8.22, 7.04 and 1.17 Hz), 7.43 (d,1H, J=3.91 Hz), 6.62 

(dd,1H, J=7.43 and 5.48 Hz), 6.49 (dd,1H, J=17.22 and 1.56 Hz), 6.22 (dd,1H, J=17.22 

and 10.56 Hz), 5.90 (dd,1H, J=10.56 and 1.17 Hz), 5.83-5.71 (m,1H), 5.13-5.05 (m,2H), 
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2.85-2.71 (m,2H); 13C-NMR (400MHz, CDCl3) δ 165.08, 150.07, 148.39, 145.45, 

132.41, 131.67, 130.46, 129.28, 128.01, 126.88, 125.19, 122.91, 118.74, 117.83, 71.21, 

40.01; Enantiomeric excess was found as 100% with HPLC - Chiracel AD-H column (i-

propanol:hexane 1:99, 1 mL/min t1 = 11.50 min. “single peak”). 

 

4.1.20. Preparation of R-(+)-6-(quinolin-4-yl)-5,6-dihydro-2H-pyran-2-

one (85) 

 

To a stirred solution of 12 mg (0.01 mmol) of Grubbs’ catalyst (10 mol%) in 1.5 

mL dichloromethane at 60 oC was added a solution of 30 mg (0.12 mmol) of 103 in 14 

mL of dichloromethane. The resulting mixture was heated for 14 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 9 mg of R-(+)-6-(quinolin-4-yl)-5,6-dihydro-2H-pyran-

2-one (85) as a light yellow solid with 34% yield. Rf=0.14 (ethyl acetate:hexanes, 1:1). 

[α]D
26 = +313.91o (c = 0.63, CH2Cl2). 

1H-NMR (400 MHz, CDCl3) δ 8.91 (d,1H, J=4.70 

Hz), 8.15 (dd,1H, J=8.61 and 0.78 Hz), 8.01 (dd,1H, J=8.61 and 0.78 Hz),  7.72 

(ddd,1H, J=8.22, 6.65 and 1.17 Hz), 7.61-7.55 (m,2H), 5.96-5.85 (m,1H), 5.57-5.52 

(m,1H), 5.27-5.21 (m,2H), 2.82-2.74 (m,1H), 2.58-2.49 (m,1H); 13C-NMR (400 MHz, 

CDCl3) δ 150.33, 149.20, 148.26, 133.73, 130.37, 129.06, 126.57, 125.35, 122.76, 

119.21, 117.44, 68.85, 42.80, 29.67; Enantiomeric excess was found as 95% with  

HPLC -Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 6.42 min, “R 

enantiomer”, t2 = 7,15 min “S enantiomer”).  

 

4.1.21. Preparation of R-(+)-1-(quinolin-3-yl)-but-3-en-1-ol (98) 

 

In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 25 mg (14 µL, 0.13 mmol) of TiCl4 was dissolved in 2.6 mL of 

dichloromethane. To this solution, 118 mg (120 µL, 0.41 mmol) of Ti(Oi-Pr)4 was 

added under nitrogen atmosphere. The resulting solution was allowed to warm up to 

room temperature for 1 h and then 61 mg (0.26 mmol) of silver (I) oxide was added. 

The mixture was stirred for 5 h without any exposure to direct day light. After dilution 

with 4.5 mL of dichloromethane, 150 mg (0.52 mmol) of (R)-BINOL (59) was added 
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and stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 

sequentially with 412 mg (2.62 mmol) of 3-quinolinecarboxyaldehyde (92) and 953 mg 

(893 µL, 2.88 mmol) of allyltributyltin (61). The mixture was stirred for 16 h and 

allowed to warm up to room temperature. After the reaction was completed, the reaction 

mixture was filtered through a short pad of celite, then quenched with saturated 

NaHCO3 solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts 

were combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:6) furnished 253 mg of R-(+)-1-(quinolin-3-yl)-but-3-en-1-ol (98) as 

a yellow solid with 48% yield. Rf = 0.22 (ethyl acetate:hexanes, 1:1); [α]D
20 = +28.21o  

(c = 2.53, EtOH); 1H-NMR (400 MHz, CDCl3) δ 8.72 (s,1H), 8.06 (s,1H), 8.00 (d,1H, 

J=8.22 Hz), 7.71 (d,1H, J=8.22 Hz),  7.65-7.58 (m,1H), 7.51-7.44 (m,1H), 5.85-5.72 

(m,1H), 5.14-5.06 (m,2H), 4.93-4.87 (m,1H), 4.15 (bs,1H), 2.59-2.52 (m,2H); 13C-NMR 

(400MHz, CDCl3) δ 149.19, 147.15, 136.83, 133.66, 132.78, 129.20, 128.66, 127.71, 

127.69, 126.70, 118.71, 71.06, 43.56; Enantiomeric excess was found as 93% with 

HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min t1 = 23.90 min “S 

enantiomer”, t2 = 26.40 min “R enantiomer”). 

 

4.1.22. Preparation of R-(+)-1-(quinolin-3-yl)-but-3-enyl acrylate (104) 

 

A solution of 248 mg (1.25 mmol) of 98 in 3.0 mL of dichloromethane was 

cooled down to 0 oC, then 205 mg (183 µL, 2.26 mmol) of acryloyl chloride (58) and 

456 mg (634 µL, 4.51 mmol) of triethyl amine were sequentially added. The mixture 

was warmed to room temperature and stirred for 4 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:8) gave 171 mg of (R)-(+)-1-

(quinolin-3-yl)-but-3-enyl acrylate (104) as a yellow solid with 54% yield. Rf = 0.26 

(ethyl acetate:hexanes, 1:4); [α]D
18 = +74.37o (c = 1.71, EtOH); 1H-NMR (400 MHz, 

CDCl3) δ 8.92 (d,1H, J=2.35 Hz) 8.11-8.06 (m,2H), 7.79 (d,1H, J=8.22 Hz) 7.67 

(ddd,1H, J=8.22, 6.65 and 1.56 Hz), 7.55-7.48 (m,1H), 6.43 (dd,1H, J=17.61 and 1.56 

Hz), 6.20-6.11 (m,1H), 6.09-6.04 (m,1H), 5.53 (dd,1H, J=10.56 and 1.56 Hz),  5.78-
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5.66 (m,1H), 5.12-5.04 (m,2H), 2.86-2.77 (m,1H), 2.75-2.66 (m,1H); 13C-NMR 

(400MHz, CDCl3) δ 165.08, 149.21, 147.74, 133.69, 132.48, 132.18, 131.35, 129.53, 

129.13, 128.04, 127.77, 127.42, 126.82, 118.89, 73.34, 40.26; Enantiomeric excess was 

found as 92% with HPLC - Chiracel AD-H column (i-propanol:hexane 1:99, 1 mL/min 

t1 = 19.50 min. “R enantiomer”, t2 = 21.50 min “S enantiomer”). 

 

4.1.23. Preparation of R-(+)-6-(quinolin-3-yl)-5,6-dihydro-2H-pyran-2-

one (86) 

 

To a stirred solution of 57 mg (0.07 mmol) of Grubbs’ catalyst (10 mol%) in 5 

mL dichloromethane at 60 oC was added a solution of 146 mg (0.58 mmol) of 104 in 58 

mL of dichloromethane. The resulting mixture was heated for 13.5 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:6) furnished 80 mg of R-(+)-6-(quinolin-3-yl)-5,6-dihydro-2H-pyran-

2-one (86) as a yellow solid with 62% yield. Rf=0.11 (ethyl acetate:hexanes, 1:2). 

[α]D
22= +205.76 (c = 0.78, EtOH). 1H-NMR (400 MHz, CDCl3) δ 8.92 (d,1H, J=1.96 

Hz), 8.26 (s,1H), 8.12 (d,1H, J=8.22 Hz), 7.85 (d,1H, J=8.22 Hz),  7.78-7.72 (m,1H), 

7.62-7.55 (m,1H), 7.06-6.99 (m,1H), 6.20 (dd,1H, J=9.78 and 1.56 Hz), 5.73-5.66 

(m,1H), 2.79-2.73 (m,2H); 13C-NMR (400 MHz, CDCl3) δ 163.48, 148.26, 148.06, 

144.56, 133.30, 131.18, 130.04, 129.28, 127.98, 127.45, 127.26 121.83, 77.11, 31.52; 

Enantiomeric excess was found as 97 % with HPLC - Chiracel AD-H column (i-

propanol:hexane 5:95, 1mL/min t1 = 27.46 min, “S enantiomer”, t2 = 33.19 min “R 

enantiomer”).  

 

4.1.24. Preparation of R-(+)-1-(3-phenoxyphenyl)-but-3-en-1-ol (99) 

 

 In a 10 mL round-bottom flask equipped with a magnetic stirring bar and a 

condenser, 25 mg (14 µL, 0.13 mmol) of TiCl4 was dissolved in 2.6 mL of 

dichloromethane. To this solution, 118 mg (120 µL, 0.41 mmol) of Ti(Oi-Pr)4 was 

added under nitrogen atmosphere. The resulting solution was allowed to warm up to 

room temperature for 1 h and then 61 mg (0.26 mmol) of silver (I) oxide was added. 

The mixture was stirred for 5 h without any exposure to direct day light. After dilution 
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with 4.5 mL of dichloromethane, 150 mg (0.52 mmol) of (R)-BINOL (59) was added 

and stirred for 2 h. The resulting mixture was cooled down to -75 oC, and then treated 

sequentially with 519 mg (2.62 mmol) of 3-phenoxybenzaldehyde (93) and 953 mg 

(893 µL, 2.88 mmol) of allyltributyltin (61). The mixture was stirred for 40 h and 

allowed to warm up to room temperature. After the reaction was completed, the reaction 

mixture was filtered through a short pad of celite, then quenched with saturated 

NaHCO3 solution, and extracted with 3x30 mL of ethyl acetate. The organic extracts 

were combined and dried over MgSO4. After the removal of solvent under vacuum, 

purification of the crude by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:14) furnished 72 mg of R-(+)-1-(3-phenoxyphenyl)-but-3-en-1-ol 

(99) as a colorless oil with 11% yield. Rf = 0.12 (ethyl acetate:hexanes, 1:10);        

[α]D
22 = +31.66o (c = 0.72, CH2Cl2); 

1H-NMR (400 MHz, CDCl3) δ 7.38-7.28 (m,3H), 

7.17-7.08 (m,2H), 7.06-7.00(m,3H), 6.92 (ddd,1H, J=8.22, 2.74 and 1.17 Hz), 5.86-5.74 

(m,1H), 5.19-5.15 (m,1H), 4.74-4.68 (m,1H), 2.43-2.57 (m,2H), 2.23 (bd,1H, J=2.74 

Hz); 13C-NMR (400MHz, CDCl3) δ 157.33, 157.12, 146.00, 134.15, 129.72, 129.70, 

123.23, 120.58, 118.84, 117.83, 116.30, 72.87, 43.79; Enantiomeric excess was found 

as 76% with HPLC - Chiracel AD-H column (i-propanol:hexane 5:95, 1mL/min           

t1 = 6.90 min “R enantiomer”, t2 = 7.80 min “S enantiomer”). 

 

4.1.25. Preparation of R-(+)-1-(3-phenoxyphenyl)-but-3-enyl acrylate 

(105) 

 

A solution of 66 mg (0.28 mmol) of 99 in 3.0 mL of dichloromethane was 

cooled down to 0 oC, then 45 mg (39 µL, 0.49 mmol) of acryloyl chloride (58) and 100 

mg (139 µL, 0.99 mmol) of triethyl amine were sequentially added. The mixture was 

warmed to room temperature and stirred for 3.5 h under nitrogen atmosphere. The 

resulting mixture was filtered through a short pad of celite, poured into water, and the 

product was extracted with 3x25 mL of dichloromethane. The combined organic layer 

was concentrated under reduced pressure and purification of this residue by column 

chromatography on silica gel (ethyl acetate:hexane, 1:12) gave 61 mg of R-(+)-1-(3-

phenoxyphenyl)-but-3-enyl acrylate (105) as a light yellow oil with 76% yield.            

Rf = 0.50 (ethyl acetate:hexanes, 1:8); [α]D
21= +28.67o (c = 0.43, CH2Cl2); 

1H-NMR 

(400 MHz, CDCl3) δ 7.38-7.28 (m,3H), 7.15-7.08 (m,2H), 7.06-7.00 (m,3H), 6.92 
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(ddd,1H, J=8.22, 2.35 and 0.78 Hz), 6.43 (dd,1H, J=17.22 and 1.56 Hz), 6.16 (dd,1H, 

J=17.22 and 10.17 Hz),5.90-5.82 (m,2H), 5.79-5.67 (m,1H), 5.13-5.05 (m,2H), 2.73-

2.55 (m,2H); 13C-NMR (400MHz, CDCl3) δ 165.21, 157.27, 156.94, 142.04, 132.92, 

130.94, 129.71, 129.70, 128.41, 123.29, 121.22, 118.86, 118.23, 118.06, 116.80, 74.83, 

40.72; Enantiomeric excess was found as 75% with HPLC - Chiracel AD-H column    

(i-propanol:hexane 1:99, 1 mL/min t1 = 4.50 min. “S enantiomer”, t2 = 4.80 min “R 

enantiomer”). 

 

4.1.26. Preparation of R-(+)-6-(3-phenoxyphenyl)-5,6-dihydro-2H-

pyran-2-one (87) 

 

To a stirred solution of 15 mg (0.02 mmol) of Grubbs’ catalyst (10 mol%) in 2 

mL dichloromethane at 60 oC was added a solution of 43 mg (0.15 mmol) of 105 in 17 

mL of dichloromethane. The resulting mixture was heated for 14.5 h. At the end of this 

period, the mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude was purified by column chromatography on silica gel (ethyl 

acetate:hexanes, 1:8) furnished 35 mg of R-(+)-6-(3-phenoxyphenyl)-5,6-dihydro-2H-

pyran-2-one (87) as a yellow solid with 91% yield. Rf=0.30 (ethyl acetate:hexanes, 1:2). 

[α]D
29 = + 115.0 (c = 0.34, CH2Cl2). 

1H-NMR (400 MHz, CDCl3) δ 7.39-7.30 (m,3H), 

7.17-6.92 (m,7H), 6.12 (ddd,1H, J=9.78, 2.35 and 1.56 Hz), 5.45-5.37 (m,1H), 2.70-

2.55 (m,2H); 13C-NMR (400 MHz, CDCl3) δ 163.80, 157.57, 156.75, 144.74, 140.39, 

130.03, 129.80, 123.53, 121.61, 120.69, 118.99, 118.74, 116.40, 78.77, 31.52; 

Enantiomeric excess was found as 77% with HPLC - Chiracel AD-H column (i-

propanol:hexane 5:95, 1 mL/min t1 =14.99  min, “S enantiomer”, t2 = 16.82 min “R 

enantiomer”).  

 

4.2. Biological Part (Measuring Cell Viability (MTT Tests)) 

 

4.2.1. General Methods 

 

 Human Prostat Cancer (PC-3) cell line was kindly provided by Associate 

Professor Kemal Sami Korkmaz (Ege University, Engineering Faculty, Department of 
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Bioengineering), human brest cancer (MCF-7) cell line was obtained from Şap 

Institude. PC3 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

containing 5% fetal bovine serum (FBS), 100µg/ml streptomycin/100IU/ml penicillin, 

MCF7 cell line was maintained in Roswell Park Memorial Institude-1640 (RPMI-1640) 

containing 15% FBS (BIO-IND), 100µg/ml streptomycin/100IU/ml penicillin incubated 

at 37 ºC in the dark with 5% CO2 humidified incubator and passaged when they reached 

80-85% confluency. Cells used in experiments were maintained from 10-20th passages. 

 

4.2.2. MTT Test for Compounds 100-105 and 82-87 

 

 To investigate the cytotoxic activity of the compounds, 95µl of cell suspension 

was inoculated into 96-well microculture plates at 1x104 cells dencity per well in culture 

media containing FBS, penicillin/streptomycin. Compounds were dissolved in dimethyl 

sulfoxide (DMSO) (Sigma Chemical Co.), filter sterilized, diluted at the appropriate 

concentrations with the cultura medium. In all well, 1% DMSO concentration was 

fixed. Dilutions of compounds were freshly prepared before each experiments. After 

24h cultivation for cell attachment, extracts were added at final concentration 50, 25, 1, 

0.5, 0.1, 0.05, and 0.01 µM for triplicate assay. Cells were treated with the extracts for 

48 hours and cytotoxic effects were determined by tetrazolium (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl tetrazolium bromide) (Sigma Chemical Co.) based colorimetric 

assay. This method depends on the cleavage of tetrazolium salt to purple formazan 

crystals by mitochondrial enzymes of metabolically active cells (Ciapetti, et al. 1993). 

Briefly; 4 hours before the end of incubation period, medium of the cells was removed 

and wells were washed by pre-warmed phosphate-buffered saline (PBS) to remove any 

trace of compounds and to prevent colour interferance while optical density 

determination. MTT stock solution (5mg/ml) was diluted at 1:10 ratio into complete 

culture media, 100µl of MTT dilution was added into each well and incubated. After 3.5 

hours plates were centrifuged at 1800 rpm for 10 minute at room temperatures to avoid 

accidental removal of formazan crystals. Crystals were dissolved with 100µl DMSO. 

The absorbance was determined at 540nm. Results were represented as a percentage 

viability and calculated by the following formula (Equation 4.1): 

 

                              % viability=[(ODs-ODB/ODc-ODB)x100]                                     (4.1) 
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ODB indicated the optical density of  blank, ODs indicated the optical density of  sample 

and ODc indicated the optical density of control. 

 

4.2.3. MTT Tests for Compounds 75-76. 

 

Four cell lines including PC-3, DU145, LNCaP, and MCF-7 were obtained from 

the ATCC (USA) culture collection. Cells were cultured in RPMI-1640 (Invitrogen, 

USA) or DMEM (Invitrogen, USA) supplemented with 5-10% fetal bovine serum 

(Sigma, USA), by additions of 100 IU/mL penicillin and l µg/mL streptomycin. Cells 

were grown in humidified atmosphere with 5% CO2 at 37 
oC. Cytotoxic effects of 

compounds were analyzed by MTT assay which is based on the cellular reduction of the 

tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT, 

Sigma Chemicals) to a blue formazan product by mitochondrial dehydrogenases of 

viable cells. Cell proliferation was determined by adding 0.5 µg/mL per well, prepared 

as a sterile stock-solution of 5 mg/mL in Dulbeccos-phosphate buffered saline (Gibco), 

diluted 1:10 in medium prior to use. Medium was removed 4 h later and blue formazan 

crystals solubilized in 200 µL 100% dimethylsulfoxate (DMSO) per well. Amounts of 

blue formazan product were quantified at 570-690 nm using a microplate reader 

(Versamax, Tunable Microplate Reader, USA). For all cell lines, strong correlations 

between numbers of cells present and amounts of MTT formazan product were 

observed. Each cell type was incubated with various doses and for 72 h at 37 oC and 

subjected to MTT assays to measure IC50 values. The data were obtained from three 

independent assays using two wells for each assay. Cell viability was calculated as % 

cell viability. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

The mechanism of action of the goniothalamin derivatives is not fully 

understood yet. Several studies have been done to explain the mechanism of 

cytotoxicity of goniothalamin. In these studies it was demonstrated that 23 is a potential 

genotoxic substance (Tsafe, et al. 2004). Beside the caspase-9 activation and loss of 

mithochondrial membrane potential of the HL-60 luekemia cells (Inayat-Hussain, et al. 

2003), it is proposed that 23 is responsible for an increase in Bax (pro-apoptotic protein) 

levels (Teoh and Azimahtol 1999) (Chien and Pihie 2003) and for the activation of p53 

tumor supressor protein (Menakshii, et al. 2000). In molecular level, it was proposed 

that the Michael acceptor in the pyran-2-one, possibly accepts the nucleophilic attack 

from the amino acid residues of proteins, is essential for anti-tumor activity (Fatima, et 

al. 2006). 

In literature, there are more than 20 mechanistic explanation for the drug-

enzyme interactions. In these proposals, conformational changes in drug and enzyme 

play important roles for activity. In drug design, often rotation around sigma bonds in 

the drug candidate can be restricted by preparing the conformationally constrained 

analogues to find the best conformational structure for the maximal inhibition of 

enzymes. Goniothalamin has only two sigma bonds which can rotate freely in the linker 

part. It is possible to minimize the conformational changes in (R)- and (S)-

goniothalamin by replacing the styrene part with a naphthalene substituent to form 

conformationally constrained analogues 75 and 76 (Figure 5.1). 

 

O

O

75 76

O

O

 

 

Figure 5.1. Proposed conformationally constrained goniothalamin analogues 75, 76. 
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Minimized energy conformation of (R)-goniothalamin (23), and 

conformationally constrained analogue 75 are shown in Figure 5.2 and 5.3 respectively. 

Main difference in these two structure is non-planar styrene structure in 23 was replaced 

with a fully planar naphthyl unit in 75. As discussed before, it is proposed that the 

Michael acceptor in the lactone ring accepts the nucleophilic attack from possible target 

enzyme. If it is so, at the begining goniothalamin should fit the active site. 

Conformational changes in the styrene part may effect the kinetics of enzyme-drug 

complex formation. On the other hand, compounds 75 and 76 have less possible 

conformational changes which may increase the rate of the possible formation of 

enzyme-drug complex formation, which may improve the cytotoxicity of the lead 

compound 23. 

 

Figure 5.2. Minimized energy conformation of (R)-goniothalamin (23). Calculation was 
performed by using CHEM 3D Ultra software, equipped with modified 
version of Allinger's MM2 force field. 

 

 

Figure 5.3. Minimized energy conformation of 75. Calculation was performed by using 
CHEM 3D Ultra software, equipped with modified version of Allinger's 
MM2 force field. 
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5.1. Asymmetric Synthesis of Conformationally Constrained (R)- and 

(S)-Goniothalamin Analogues (75, and 76) 

 

Asymmetric synthesis of the conformationally constrained analogues 75 and 76 

were done via the route described by Fatima, et al. 2005. As shown in Figure 5.4,         

2-naphthaldehyde (77) was used as starting material, which was selectively converted to 

(R)-homoallylic alcohol (78) through the asymmetric induction of allyl group in the 

presence of catalyst 60 with 59% yield and 83% ee. Enantiomeric excess of  compound 

78 was determined by performing HPLC study with Chiracel AD-H Column,                

(i-propanol:hexane 10:90, 1mL/min t1 = 5.51 min “major enantiomer”, t2 = 5.97 min 

“minor enantiomer”). Calculated enantiomeric excess by optical rotation was also in 

agreement with literature value (Teo, et al. 2005). Obtained alcohol 78 was then treated 

with acryloyl chloride in the presence of triethyl amine to form ester 79 with 53% yield 

and 79% ee. Final step was the ring closing metathesis with Grubbs’ catalyst of 79 to 

form 75 with 88% yield and 76% ee, HPLC study was performed also for 75 (i-

propanol:hexane 5:95, 1mL/min t1 = 17.66 min “major enantiomer”, t2 = 18.27 min 

“minor enantiomer”). 

 

H

O OH

i

77 78

O

O

79

75
ii iii

 

 

Conditions: i (R)-BINOL (10 mol%), Ti(Oi-Pr)4 (15 mol%), TiCl4 (5 mol%), allyltributyltin, -

20 oC, 24 h (59%; 83% ee). ii acryloyl chloride, Et3N, CH2Cl2, 0 
oC (53%; 79%ee); iii Grubbs’ 

catalyst, 60 oC, CH2Cl2 (88%; 76%ee). 

 
Figure 5.4. Asymmetric synthesis of conformationally constrained analogues of (R)-  

Goniothalamin (75). 
 
 

Same procedure was followed for the synthesis of compound 76, only difference 

was the usage of (S)-BINOL to prepare catalyst to form allylic alcohol (80) and alcohol 

was obtained with 25% yield and 81% ee. Enantiomeric excess of the compound was 

determined by performing HPLC study with Chiracel AD-H Column, for alcohol 80    
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(i-propanol:hexane 10:90, 1mL/min t1 = 5.51 min “major enantiomer”, t2 = 5.97 min 

“minor enantiomer”). Then alcohol 80 was treated with acryloyl chloride in the 

presence of triethyl amine to form ester 81 with 73% yield and 81% ee. Chiracel AD-H 

Column HPLC study was performed for 81 (i-propanol:hexane 5:95, 1mL/min t1 = 3.21 

min “minor enantiomer”, t2 = 4.23 min “major enantiomer”). Final step was again the 

ring closing metathesis with Grubbs’ catalyst, ester was lactonized with 73% yield and 

43% ee, HPLC study was performed for the compound 76 in Chiracel AD-H Column (i-

propanol:hexane 5:95, 1mL/min t1 = 17.51 min “minor enantiomer”, t2 = 18.25 min 

“major enantiomer”). 

 

H

O OH

i

77 80

O

O

81

76
ii iii

 

 

Conditions: i (S)-BINOL (10 mol%), Ti(Oi-Pr)4 (15 mol%), TiCl4 (5 mol%), allyltributyltin, -20 
oC, 24 h (26%; 81% ee). ii acryloyl chloride, Et3N, CH2Cl2, 0 

oC (73%; 81%ee); iii Grubbs’ 

catalyst, 60 oC, CH2Cl2 (73%; 43%ee). 

 

Figure 5.5. Asymmetric synthesis of conformationally constrained analogues of (S)-

goniothalamin (76). 

 

 

5.2. Anti-Tumor Properties of Conformationally Constrained 

Analogues of (R)- and (S)-Goniothalamin (75, and 76) 

 

Anti-tumor properties of compounds 75 and 76 were evaluated against DU-145, 

LNCAP, MCF-7, and PC-3 cancer cell line in vitro by using routine MTT tests. To 

compare the cytotoxicities of 75 and 76, R-goniothalamin 23 was also tested against 

same cancer cell lines at 50, 25, 13, and 6.2 µM concentrations. As positive control in 

MTT test, camptothecin and etoposide were applied at 29, and 20 µM concentrations 

respectively. Results of the MTT tests were summerized in Figure 5.6.  
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Figure 5.6. Relative cytotoxicities of the analogues compounds 23, 75 and 76 against 

DU-145, LNCAP, MCF-7, PC-3 cancer cell lines. Camptothecin and 

etoposide were used as positive control. (Data provided by Assoc. Prof. Dr. 

Kemal Korkmaz.) 

 

All of the tested compounds inhibits the proliferation of all cancer cell lines 

more than 95% at 50 µM concentrations. Cytotoxicities of the compounds against DU-

145 cell lines from most potent to lowest can be as etoposide > 23≈75≈ camptothecin > 

76. When the tested cancer cell line was LNCAP, R-goniothalamin analogue 75 is the 

most potent which is slightly better than 23. On the other hand S-goniothalamin 

analogue 76 is slightly less cytotoxic compare to 23. Same results were observed when 

the compounds tested against MCF-7 and PC-3 cell lines. Concentration dependent      

% cell viability results were used to calculate the IC50 values for 23, 75 and 76      

(Table 5.1.). 

 

Table 5.1. IC50 (µM) values for 23, 75, and 76.a 

Compound DU-145 LNCAP MCF-7 PC-3 

23 28 12 19 4 

75 19 11 12 3 

76 37 15 28 12 

 

a Concentration (average of three experiments) that is needed to inhibit 50% of the cell growth. 

Values are determined by using GraphPad Prism software (nonlinear regression analysis, r2 > 

0,9). (Data provided by Assoc. Prof. Dr. Kemal Korkmaz.) 
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As it can be seen from table, conformationally constrained R-goniothalamin 

analogue 75 has slightly more antiproliferative property than R-goniothalamin (23). 

Meanwhile, conformationally constrained S-goniothalamin analogue 76 has less 

proliferative property than 75 (almost half of it) and 23. 

These preliminary results concluded that restriction of rotation around sigma bond 

in the styrene sub-unit enhances the cytotoxic activity slightly, and (S)- 

conformationally constrained analogue 76 is less active than  its R enantiomer 75 which 

is in agreement with literature. (Fatima, et al. 2006)  

 

5.3. Asymmetric Synthesis of Further Conformationally Restricted 

Naphthyl and Quinoylypyranones 

 

Preparation of conformationally constrained analogues of a drug canditate is a 

useful approach, unless too much steric factors added to the lead compounds. 

Compounds 75 and 76 has an additional -HC=CH- steric factor as compared to the lead 

compound 23. The source of the slight increase in cytotoxic activity can either be due to 

the restriction of rotation around sigma bond or the presence of the additional atoms 

which may play steric role. At this point, it is necessary to design new derivatives to 

clarify the questions. 

In this regard, synthesis of six new 6-aryl substituted 5,6-dihydro-2H-pyran-2-

ones 82-87 were planned. Structure of those were shown in Figure 5.7. 
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Figure 5.7. Structure of proposed 6-aryl substituted 5,6-dihydro-2H-pyran-2-ones 

 82-87. 
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If the reason of slightly enhanced cytotoxic activity of 75 is steric it may be 

helpful to synthesize these new compounds to further enhance the activity. As discussed 

before, main pharmocophore of the lead compound was the Michael acceptor part of 

ring C in compound 75. Ring A is relatively away from ring C, and rotation around the 

sigma bond may not create strong steric interactions as much as compound 88 does. 

(Figure 5.8) 
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Figure 5.8. Comparison of the conformationally restricted analogues 75-88. 

 

Compound 86 has the similar steric size with 75 and 76 which may help to 

understand the steric effect on activity of the compound. Only unexpected interference 

may be possible hydrogen bonding of nitrogen atom in the quinoline structure. Another 

alternative may be compound 87 which has crowded aryl ring attached to 2-pyranone 

ring. 

 The synthesis of compounds 82-87 were performed according to the same route 

used for the synthesis of compounds 23 and 75. Yields and ee% of the reactions were 

given in Table 5.2. Catalytic asymmetric allylation of chosen aldehydes 88-93 gave the 

corresponding alcohols 94-99 in low yields with moderate enantioselection (65-93% 

ee). Although this method is reported in high yields and enantioselection, we could not 
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achieved smilar success from this methodology, which might be due to the possible 

moisture left in the solvent or reaction vessel. Enantiomeric excess of the resulting 

alcohols were calculated by applying HPLC studies with Chiracel AD-H Column. 

 

Table 5.2. Synthesis of the 5-substituted α,β-unsaturated δ-lactones derivatives 82-87. 

 

Ar H

O
+ SnBu3

Ar

OH60 (10 mol %),

     -78 oC

88-93 61 94-99

Cl

O
+

58

  Et3N, 

CH2Cl2,
  0 oC

Ar

O

O

100-105

Grubb's Cat,

CH2Cl2, 60 
oC

Ar

O

O

82-87  

  

 Ar 
Product  

(% yield, %ee) 

Product  

(% yield, %ee) 

Product  

(% yield, %ee) 

88 
 

94 (41, 77) 100 (69, 44) 82 (75, 11) 

89 
CH3

 
95 (19, 97) 101 (62, 100) 83 (60, 100) 

90 

CH3  

96 (14, 72) 102 (56, 66) 84 (87, 93) 

91 
N  

97 (21, 65) 103 (56, 100) 85 (34, 95) 

92 
N  

98 (48, 93) 104 (54, 92) 86 (62, 97) 

93 
O

 
99 (11, 76) 105 (76, 75) 87 (91, 77) 

 

 

Alcohols 94-99 were successfully converted to their acryloyl ester by treating 

them with acryloyl chloride in the presence of triethyl amine with 54-76% yield. In the 

last steps, formed acryloyl esters 100-105 were transformed to pyranone derivatives 88-

93 with 34-91% yields. 
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Although the followed synthetic route for the synthesis of 5-aryl substituted-5,6-

dihydro-2H-2-pyranone system was found useful, the first step was a little bit 

problematic in our hands. 

 

5.4. Surprising Cytotoxic Properties of the Isolated Acrylate 

Intermediates  

 

 Structure activity relationship (SAR) studies of goniothalamin implies that the 

Michael acceptor may be critical for the cytotoxicity. But it never be questioned 

whether the cyclic structure is required or not. When we looked at compounds 100-105, 

all of these compounds have a Michael acceptor in their structure. Although the ring 

structure has been replaced by an acyclic allylalcohol acrylate, those may also found to 

be cytotoxic. In this cause, cytotoxicity of these compounds were tested against MCF-7 

and PC-3 cell lines. Standard MTT test were employed and the results have ben shown 

in Figure 5.9, 5.10, 5.11, and 5.12. Compounds have been tested in seven different 

concentration. PC-3 test results have been shown in Figure 5.9 for above 1µM 

concentrations and in Figure 5.10 for concentrations below 1 µM respectively.  

 As shown in Figure 5.9 and 5.10 for PC-3 cell line most, active acrylate esters 

are 102 and 103. Below 1µM concentrations, all of the compounds has very limited 

anti-proliferative activity. Although acrylate esters 101-103 shows comparable amount 

of cytotoxicity as goniothalamin does, there is no enhancement any of tested acrylate 

compounds. 
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Compounds 100-105 Against PC-3 48h
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Figure 5.9. Concentration dependent cytotoxicities of compounds 100-105 against PC-3 

cell lines for concentrations above 1µM. 
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Figure 5.10. Concentration dependent cytotoxicities of compounds 100-105 against PC- 

3 cell lines for concentrations below 1µM. 
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Compounds 100-104 against MCF-7 48h
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Figure 5.11. Concentration dependent cytotoxicities of compounds 100-105 against 

MCF-7 cell lines for concentrations above 1µM.  
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Figure 5.12. Concentration dependent cytotoxicities of compounds 100-105 against 

MCF-7 cell lines for concentrations below 1µM. 
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For MCF-7 cell line, the case is similar, and compounds 101, 103 and 104 are 

the most active. IC50 values for the tested compounds 100-105 were calculated and 

shown in Table 3. Similar cytotoxicity trend has been observed from the table.  

 

Table 5.3. IC50 concentrations for compounds 100-105 against PC-3 and MCF-7 cell 

lines.a 

 MCF-7 PC-3 
100 >50 22.9 
101 10.4 8.8 
102 33.1 45 
103 13.2 15 
104 28.8 16.3 
105 >50 >50 

 

 

a Concentration that inhibit cell proliferation 50% (average of the three replicate). Numbers 

are calculated in GraphPad Prism program in µM. (nonlinear regression analysis, r2 > 0,9) 

(Measurements carried out by Specialist Özgür Yılmazer.) 

 

 

5.5. Anti-Tumor Properties of Further Conformationally Restricted 

Naphthyl and Quinoylypyranones 

 

Similar to acryloyl esters 100-105, the conformationally constrained analogues 

82-87 were also tested against the same cancer cell lines (PC-3 and MCF-7) in seven 

different concentration by using standard MTT test. Results were shown in Figure 5.13, 

5.14, 5.15, and 5.16. test results for PC-3 cell lines have been shown in Figure 5.13 for 

concentrations above 1µM and in Figure 5.14 for concentrations below 1 µM.  

 



 

 56 

Compounds 82-87 against PC-3
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Figure 5.13. Concentration dependent cytotoxicities of compounds 82-87 against PC-3 

cell lines for concentrations above 1µM. 
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Figure 5.14. Concentration dependent cytotoxicities of compounds 82-87 against PC-3   

cell lines for concentrations below 1µM. 

 

Similarly, test results for MCF-7 cell lines have been shown in Figure 5.15 and 

5.16  for concentrations above 1µM and for concentrations below 1 µM, respectively. 
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Compounds 82-86 against MCF-7
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Figure 5.15. Concentration dependent cytotoxicities of compounds 82-86 against MCF-

7 cell lines for concentrations above 1µM. 
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Figure 5.16. Concentration dependent cytotoxicities of compounds 82-86 against MCF-

7 cell lines for concentrations below 1µM. 

 

Form Figures 5.13, 5.14, 5.15, 5.16, it was observed that, tested compounds 

show similar trends in both cancer cell lines. However, compounds 82, 85 and 89 have 
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relatively higher cytotoxicity than the others in both cell lines. IC50 values of these three 

compounds is below 1 µM for PC-3 and MCF-7 cell lines. (Figure 5.14 and 5.16) 

 On the other hand, cytotoxicity trend for these three compounds is different for 

both cell lines. But still compound 84 is a promising compound which has IC50 values 

47 nM for PC-3 cell lines and ~400nM for MCF-7 cell lines. The next promising 

candidate is compound 83 which has IC50 values 100 nM for PC-3 and 900 nM for 

MCF-7 cell lines. 

 Beside these, in some of the figures the reason for the % cell viability higher 

than 100% can be resulting from two reasons ( Figure 5.9, 5.10, 5.14, 5.15, 5.16). Either 

the compound itself has no significant activity below 1µM concentration and the 

number of cell in the wells at the beginning were not exactly the same, so the cells in 

the wells containing inactive molecules, may proliferate much more than the refence 

cell. Another possibility is the compound itself may cause the proliferation for 

concentrations below 1µM. 

 Considering activity of acrylate esters, which does not imply any reasonable 

structure activity relationship, but 2-pyranone derivatives 82-87 may have structure 

activity relationship. It is possible to say that 1-naphthyl substituted pyranones have 

higher cytotoxicities, and any steric hindrance at ring B makes them more active. It 

might be postulated that steric effect plays important role for the activity other than the 

restriction of rotations around the sigma bond of styrene. There may be no structure 

activity relationship in terms of activity between acrylate derivatives and pyranones. 
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CHAPTER 6 

 

CONCLUSION 

 

 In this study, eight new possible anti-cancer drug candidate were proposed, 

synthesized and evaluated for their cytotoxicity against various cancer cell lines. 

 Design of the structure has been done on the basis of the knowledge about the 

structure activity relationship (SAR) studies of (R)- and (S)-goniothalamin derivatives. 

Compounds 75, 76 and 86 were originally planned to show the effect of the rotation 

around the sigma bond in styrene sub-unit over the cytotoxic property. For the case 

compound 75, it was observed that restriction of the rotation gave slightly more 

cytotoxic compound. (R)-configuration in the lactone ring seems to be crucial for strong 

activity. 

 To clarify the obtained conclusion, new bicyclic aryl and heteroaryl substituted 

analogues were synthesized. Among those, 1-naphthyl-substituted pyran-2-ones were 

the most cytotoxic which gave the clue about the structure activity relationship of the 

tested compounds. Compound 92, structurally similar to acyl and amino acid substituted 

goniothalamin derivatives, also showed weak anti-tumor activity against PC-3 and 

MCF-7 cell lines. Another conclusion is steric factors around the pyran-2-one ring may 

help to increase the cytotoxic property of 1-naphthyl-substituted pyran-2-ones. 

 Acryloyl esters of allylic alcohol, intermediates in the synthetic route show also 

antiproliferative property but we could not observe any structure activity relationship. 

On the other hand, some of the acryloyl esters were effective as much as their lactone 

forms. 3-Quinoyl and 4-quinoyl acrylate derivatives (85 and 86) have comperatively 

similar anti-proliferative effect against both cancer cell lines as much as their lactone 

products (103 and 104). 

 Asymmetric synthesis of the compounds have been accomplished according to 

the previously described (R)-goniothalamin synthesis protocol (Fatima, et al. 2005). 

Although the synthesis route is straightforward, catalytic asymmetric allylation of 

aldehydes in the first step plays an important route for the synthesis. 
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APPENDIX A 

 
 

PURITY OF COMPOUNDS 96, 102 AND 84 BY 
HPLC (Chiral Column) 

 
 

 
 
Figure A.1. Chiral HPLC chromatogram of compound 96 (DAD, Sig=210 nm) 
 
 
 
 

 
 

 
Figure A.2. Chiral HPLC chromatogram of compound 102 (DAD, Sig=210 nm) 
 
 
 
 

 
 
 
Figure A.3. Chiral HPLC chromatogram of compound 84 (DAD, Sig=210 nm) 
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APPENDIX B. 
 

  
1H, and 13C-NMR SPECTRUM OF COMPOUNDS 96, 102 

and 84 
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