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ABSTRACT 
 

 In recent years, much effort has been driven to replace glass fibers, which were 

used to reinforce thermoplastic composites, with natural fibers. In this study, three 

natural fibers, namely cellulose (CE), sawdust (SD) and wheat straw (WS) were 

employed as reinforcement to polypropylene (PP) polymer matrix. The most important 

problem encountered with natural fiber/PP composites is the inherent incompatibility 

between hydrophilic natural fibers and hydrophobic PP matrix, thus coupling agents 

were employed to alter incompatibility between fiber and matrix.  Coupling agents 

enhance interfacial interactions by chemical and physical bonding between fiber and 

matrix. Surface treatment of natural fibers were carried out with two kinds of silanes;  

(3-aminopropyl)-triethoxysilane (AS) and methacriloxy propyl trimethoxy silane (MS), 

and maleic anhydride grafted polypropylene (MAPP). Silane coupling agents were 

agitated in aqueous ethanol solution in the presence of fibers at weight percents of 0.5, 1 

and 2.5 with respect to fiber weight.  MAPP was compounded during melt mixing of 

fiber and PP at weight percents of 2.5, 5 and 10 with respect to PP weight.  

 PP/fiber composites were prepared in a rheomixer equipped with two rotor 

blades and adjustable temperature, mixing rate and mixing time. Composites were 

prepared at 185 oC, 50 rpm mixing rate and 10 minutes mixing time. Torque values of 

each composite formulation were recorded with respect to time to determine changes in 

rheological properties of composites. It was found that increase in fiber loading 

increases stabilization torque of composites.  

 Mechanical properties of PP/fiber composites were significantly enhanced by 

employment of coupling agents and MAPP was found to be the most effective coupling 

agent. Mechanical properties of SD composites were found to exhibit the best 

performance compared to C and WS. Extent of interfacial interactions were evaluated 

with Pukanszky and Nielsen model and superior performance of MAPP in enhancing 

interfacial interactions was confirmed by these two models. Optimum conditions for 

coupling agents were found to be 1 wt % for silane coupling agents and 5 wt % for 

MAPP.  

 It was found that water sorption and void fraction of the composites decreased 

with employment of coupling agents. Among the coupling agents,  MAPP exhibited the 

best performance in decreasing water sorption and void fraction of composites 

confirming results of mechanical tests. Scanning electron micrographs (SEM) used to 
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illustrate the effect of coupling agents on adhesion between fiber and matrix and 

fracture modes of the composites. In addition, FTIR analysis revealed the decrease in 

hydrophilicity of fibers with silane treatment and new bond formations with 

employment of MAPP.    
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ÖZ 

 

Geçtiğimiz yıllarda termoplastik kompozitleri güçlendirmek amacıyla cam elyafı 

yerine doğal fiberlerin kullanımı konusu önem kazanmıştır. Bu çalışma da selüloz, talaş 

ve buğday sapı olmak üzere üç çeşit doğal fiberin polipropilen  matrisi güçlendirmek 

amacıyla kullanımını içermektedir. Doğal fiberler içeren polipropilen (PP) 

kompozitlerinin hazırlanmasında  en büyük problem olan ve hidrofilik yapıdaki doğal 

fiberlerin hidrofobik  PP matrisle uyumsuzluğundan kaynaklanan bağlanma güçlüğünü 

gidermek için üç çeşit bağlayıcı kullanıldı. Bağlayıcılar fiber ile matris arayüzeyinde 

fiziksel ve kimyasal bağlar oluşturarak iki yüzey arasındaki yapışmayı 

güçlendirmektedir. Bunu sağlamak amacıyla doğal fiberler iki tür silan ve maleik 

anhidrid kaplanmış polipropilen (MAPP) ile yüzey işlemlerine tabi tutuldu. Silan 

bağlayıcı olarak kullanılan (3-aminopropil)-trietoksisilan (AS) ve metoksipropil 

trimetoksi silan (MS), fiber ağırlığına göre 0.5, 1 ve 2.5 % oranlarında fiberlerle 

karıştırılarak sulu alkol çözeltisi içinde reaksiyona sokuldu. MAPP ise doğal fiberlerin 

PP eriyiğine karıştırılması işlemi sırasında PP ağırlığına göre 2.5, 5 ve 10% oranlarında 

eklenerek kullanıldı. 

PP/fiber kompozitler iki rotorlu bir karıştırıcı ünitesi bulunan, karıştırma hızı, 

karıştırma zamanı ve sıcaklığı ayarlanabilir bir reomikserde hazırlandı. Kompozitlerin 

hazırlanmasında sıcaklık 185 ºC, karıştırma hızı ve zamanı ise 50 rpm ve 10 dakika 

olmak üzere sabit tutuldu. Karıştırma işlemi sırasında uygulanan formülasyonların tork 

değerleri zamana karşı kaydedildi ve böylece örneklerin reolojik özelliklerindeki 

değişimler belirlendi. 

Bağlayıcı kullanıldığında PP/ fiber kompozitlerin mekanik özelliklerinin 

iyileştiği ve en etkili bağlayıcının MAPP olduğu görüldü. Selüloz ve buğday sapıyla 

karşılaştırıldığında talaşla hazırlanan örneklerin daha iyi mekanik özelliklere sahip 

olduğu gözlendi. Arayüzey etkileşimleri Pukanski ve Nielsen modellerine göre 

değerlendirildi ve MAPP’nin gösterdiği üstün performans bu modellerle de  doğrulandı. 

Bağlayıcılar için ideal ağırlık oranları silan için 1 % ve MAPP için 5 % olarak 

belirlendi.  

Örnek kompozitlerin su çekişinin ve boşluk oranlarının bağlayıcı kullanıldığında 

azaldığı ve mekanik testlerde olduğu gibi su çekişi ve boşluk oranı bakımından da en iyi 

sonuçların MAPP ile alındığı gözlendi. Fiber ve matris arasındaki yapışma özellikleri 

üzerinde bağlayıcıların etkisi ve kompozitlerin kırılma modu SEM görüntüleriyle 
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desteklendi. FTIR analizi sonuçları doğrultusunda silan uygulamasıyla fiberlerin 

hidrofobik özelliklerinin azaldığı ve MAPP katkısıyla gerçekleşen yeni bağ oluşumları 

bulgulandı. 
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Chapter 1 

 

INTRODUCTION 

 

 A recent approach have focused on the idea of employing natural fibers, 

particularly lignocellulosic fibers, as an alternative to inorganic counterparts, mostly 

glass fibers, as reinforcing agents in composite materials based on thermoplastic 

matrices (Zafeiropoulos et al, 2002). Although not popular yet as mineral and inorganic 

fillers and fibers, lignocellulosic fibers have several advantages over traditional fillers 

and fibers such as low density, flexibility during processing with no harm to equipment, 

acceptable specific strength properties, and low cost per volume basis ( Ichazo et al, 

2001). Several companies now manufacture lignocellulosic fiber/thermoplastic 

composites for use as synthetic lumber in applications such as decking and window 

frames (Selke and Wickman, 2003) . 

 Frequently employed polymer in lignocellulosic fiber/thermoplastic composites 

is polypropylene (PP) because of superior mechanical properties and compatible 

processing temperatures with lignocellulosic fibers avoiding degradation of cellulose. 

There have been numerous attempts to use lignocellulosic fibers as an alternative 

in PP matrices including wood flour (Ichazo et al, 2001), wood pulp (Bataille et al, 

1989), sisal fiber (Joseph at al, 1999) and sawdust (Suarez et al, 2003). Incorporation of 

lignocellulosic fibers were found to improve stiffness, dimensional stability and 

sometimes strength of PP matrix. 

 A major issue in achieving true reinforcement with the incorporation of 

lignocellulosic fibers into thermoplastic matrices is the inherent incompatibility between 

the hydrophilic fibers and the hydrophobic polymers. This results in poor adhesion 

between fiber and matrix, and therefore in poor ability to transfer stress from the matrix 

to the fiber. To increase the quality of the fiber-matrix interface in composite materials, 

surface modification of fibers is required to achieve maximum compatibility and 

thereby good adhesion. Thus, in the case of matrices bearing nonpolar properties, such 

as PP, chemical modifications were employed in order to transform polar hydroxyl 

groups on lignocellulosic fibers capable of creating hydrogen or chemical bonds with 

the matrix (Gauthier et al, 1998). Surface modification of the fibers also imparts in 
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hydrophobization of lignocellulosic fibers, a cause of hydroxyl groups on the fibers, 

decreasing moisture sensitivity of the fibers.  

 The most effective coupling agents to achieve good adhesion between 

lignocellulosic fibers and thermoplastic matrices were found to be silanes and maleic 

anhydride grafted polyolefins (Bledzki and Gassan, 1999) 

 Ichazo et al (2001) studied the effect of modification of wood flour as the 

lignocellulosic fiber on mechanical and water sorption properties of wood flour/PP 

composites. They employed vinil-tris-(2-metoxietoxi)-silane and maleic anhydride 

grafted polypropylene as coupling agent. They achieved significant improvements in 

tensile strength and stiffness with incorporation of wood flour. Surface treatments, 

especially (MAPP) further increased tensile strength of composites. Water sorption of 

composites decreased with surface treatment as well.  

 Bataille et al (1989) studied the effect of two silane coupling agents, namely 

metacryloxy-propyl trimethoxy silane and amino-propyl trimethoxy silane on 

mechanical performance of PP/cellulose fiber composites. They used methanol/water 

mixture as the aqueous medium for silanation of the fibers at 3:10 coupling agent: 

cellulose fiber ratio. They achieved about 20% improvements in yield stress with 

employment of silane coupling agents.  

 Castellano et al (2004) studied the extent of reaction between cellulose and two 

silane coupling agents by means of contact angle measurements, FTIR and inverse gas 

chromotography (IGC). Two silanes employed were cyanoethyltrimethoxy silane and 

methacryloxypropyltrimethoxy silane. They have observed a decrease in contact angle 

of cellulose which is a measure of decreased hydrophilicity of cellulose. They have also 

observed new bands in FTIR spectra caused by bonding between silanes and cellulose. 

IGC results revealed that polar contribution of surface energy is decreased from 25.8 to 

6.3 mJ/m2 with cyanoethyltrimethoxy silane coupling agent treatment which was an 

evidence for decreased hydrophilicity of cellulose. 

 Keener et al (2003) studied the effect of maleic anhydride content and molecular 

weight of MAPP on mechanical properties of PP composites containing jute and flax as 

lignocellulosic fiber. They obtained that maleic anhydride content and molecular weight 

of MAPP must be optimized in order to achieve balanced mechanical properties. 

 The objective of this study is to prepare PP/lignocellulosic fiber composites from 

cellulose, sawdust and wheat straw and to improve mechanical properties of PP/fiber 

composites by employment of coupling agents. Two silane coupling agents; (3-
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aminopropyl)-triethoxysilane (AS) and methacriloxy propyl trimethoxy silane (MS), 

and maleic anhydride grafted polypropylene (MAPP) were employed in order to 

increase compatibility between fiber and matrix. Water sorption and microstructural 

characterization of the composites were also investigated. 

  The thesis is organized in the following fashion: In Chapter 2, background 

information about lignocellulosic fibers and PP is given. In Chapter 3 theoretical aspects 

of adhesion is introduced, strategies to improve compatibility was revised and 

characterization of interface was explained. Chapter 4 and Chapter 5 cover experimental 

procedure and analysis, and results of the thesis, respectively. Conclusions and 

recommendations are given in the final chapter of the thesis.  
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Chapter 2 

 

POLYPROPYLENE/CELLULOSE COMPOSITES 

 

In this chapter, polymer composites and their applications will be covered. 

Properties of our matrix material; polypropylene and fiber; cellulose will be introduced. 

Application areas of cellulose based natural fiber; thermoplastic composites will also be 

overviewed.    

 

2.1. Polymer Composites 

 

Composite materials may be defined as materials made up of two or more 

components and consisting of two or more phases. Such materials must be 

heterogeneous at least on a microscopic scale. A composite consists of fibers or fillers 

embedded in or bonded to a matrix with distinct interfaces between the two constituent 

phases. The matrix must keep fibers or fillers in a desired location or orientation, 

separating fillers and fibers from each other to avoid mutual abrasion during periodic 

straining of the composites. The matrix acts as a load transfer medium between fibers or 

fillers. Since the matrix is generally more ductile than fibers and fillers, it is the source 

of composite toughness. The matrix also serves to protect the fibers and fillers from 

environmental damage before, during and after composite processing (Jang , 1994). 

 In a composite, both fibers and fillers and the matrix largely retain their 

identities and yet result in many properties that cannot be achieved with either of the 

constituents acting alone.   There are 3 general classes of composite materials; 

 

i) Particulate filled materials consisting of a continuous matrix phase 

and a discontinuous filler phase. e.g. talc filled PP 

ii) Fiber-filled composites e.g. glass fiber filled PP 

iii) Interpenetrating composites made up of two continuous phases PP-

PE polymer blend 

 

 Mineral fillers, such as calcium carbonate, clays, silicas, mica, talc, alumina 

trihydrate and titanium dioxide account for about 90% of the demand for the fillers and 
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extenders, with calcium carbonate being by far the most commonly used filler(Rothon,  

1999).  Non-mineral fillers include carbon black, glass beads and various organic 

materials such as cellulose. Fibers also find various application areas in composite 

technology. The most commonly used fibers in polymer matrices are various types of 

carbon, glass and aramid (e.g., Kevlar®) fibers. Boron fibers are expensive and are used 

currently in military and aerospace applications only. Also still in limited use are silicon 

nitride, silicon carbide, mullite and other ceramic fibers and metal wires (Jang , 1994). 

There are several reasons to use polymer composites rather than single polymers. These 

include 

i) Increased stiffness and strength 

ii) Increased dimensional stability 

iii) Increased heat deflection temperature 

iv) Increased electrical conductivity 

v) Improved impact strength 

vi) Reduced flammability 

vii) Reduced permeability to gasses 

viii) Reduced cost 

 

There are also disadvantages encountered with addition of fillers to polymer 

matrices such as complex rheological properties, difficult fabrication techniques and 

reduction in some physical and mechanical properties. An optimization must be made 

between advantages and disadvantages of composites for balanced end use properties. 

In the present study, PP as the polymer matrix material and cellulosic fibers, namely 

cellulose, sawdust and wheat straw as the filler or fiber were used in the preparation of 

the composites.      

 

2.2. Matrix: Polypropylene 

 

Polypropylene is a polyolefin which are an important class of polymers. 

Polyolefins, which are defined as polymers based on alkene-1 monomers or -olefins, 

are the most widely used group of thermoplastic polymers today. Based on their 

monomeric units and their chain structures, they can be divided into the following 

subgroups (Gahleitner , 2001): 
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i)  Ethylene based materials –polyethylenes(PE s)-produced under low pressure 

conditions with transition metal catalysts of various types and showing a 

linear chain structure. This subgroup includes high density PE (HDPE), 

medium density PE (MDPE), linear low- density PE (LLDPE). 

ii)  Ethylene based polymers (PE s) produced in a radical polymerization under 

high pressure with oxygen or peroxides as chain initiators and showing a 

branched chain structure. According to their reduced crystallinities and 

densities, these materials are termed low density polyethylenes (LDPE s). 

iii) Propylene- based polymers produced with transition-metal catalysts-

polypropylene (PP) and its copolymers-showing a linear chain structure with 

stereo specific arrangement of the propylene units. Mostly the isotactic 

species (iPP) is used today, but also syndiotactic (sPP) species are also 

available. 

iv) Polymers based on higher -olefins,(e.g. poly-butene-1) produced with 

transition metal catalysts and having a linear and stereospecific chain 

structure. 

v) Olefinic elastomers based on transition metal or single-site catalysts. These 

polymers are based on ethylene and propylene, amorphous with high 

molecular masses. 

 

More than 60% of produced polyolefins ( PP, PE) have been introduced to the 

market as compounds, while only about 23% of the volume of the other thermoplastics 

have been used for compounding. Polypropylene is considered one of the primary 

candidates to become the matrix of the choice for engineering new thermoplastic 

compounds, replacing many small volume engineering plastics.  

Polypropylene (PP) is a semi crystalline commodity thermoplastic produced by 

coordination addition polymerization of propylene monomer as seen in Figure 2.1. Most 

frequently, Ziegler-Natta catalysts are employed in industrial processes to produce 

crystalline isotactic (iPP) and syndiotactic (sPP) polymer with a small portion of 

amorphous atactic PP as a side product. Polymerization reaction can be summarized as 

follows; 
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Figure 2.1. Synthesis of polypropylene. 

 

  Polypropylene has recently become an attractive candidate for many engineering 

applications. Relatively low price, excellent chemical resistance, good processability 

and the possibility of modifying its mechanical properties in a wide range by adding 

fillers and dispersions of secondary polymeric inclusions has contributed to its massive 

expansion into automotive, land transport, home appliances and other industries. Poor 

low temperature impact behavior relatively low stiffness are among the most important 

deficiencies prohibiting neat polypropylene replacing more expensive engineering 

thermoplastics in more demanding applications. Binary combinations of polypropylene 

with fillers or elastomers address generally only one concern and exhibit either 

increased stiffness or enhanced low temperature fracture resistance. It is, however, 

necessary, in order to increase PP marketability into more demanding markets, to 

increase both stiffness and toughness at the same time. Hence, attempts have been made 

to incorporate fiber, filler and elastomer inclusions into the PP matrix in the course of 

melt mixing. (Janjar, 1999) 

 

2.3. Fiber: Natural fibers 

 

Components of natural fibers are cellulose ,hemi-cellulose , lignin, pectin, 

waxes, and water soluble substances with cellulose , hemi-cellulose , and lignin as the 

basic components with regard to the physical properties of the fibers. 

 

2.3.1.Cellulose 

 

Cellulose is the essential component of all plant fibers. Cellulose is a linear 

condensation polymer consisting of glucose units jointed together by -1,4- glycosidic 

bonds. The formula of cellulose is shown in Figure 2.2. 
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Figure 2.2. Chemical structure of cellulose (Bledzki and Gassan,1999). 

 

 The molecular structure of cellulose is responsible for its supramolecular which 

determines many of its chemical and physical properties. 

The mechanical properties of natural fibers depend on its cellulose type and 

spiral angle, because each type of cellulose has its own cell geometry and geometrical 

conditions determine the mechanical properties. 

 Solid cellulose forms a microcrystalline structure with regions of high order i.e. 

crystalline regions. Naturally occurring cellulose crystallizes in monoclinic structure. 

The molecular chains are oriented in the fiber direction as seen in Figure 2.3. 

 

 

Figure 2.3. Crystal structure of cellulose (Bledzki and Gassan,1999). 

 

2.3.2.Further Components 

 
Hemi cellulose is a group of polysaccharides that remains associated with the 

cellulose after lignin has been removed. Hemi cellulose exhibits a considerable degree 
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of chain branching whereas cellulose is a strictly linear polymer. Unlike cellulose , the 

constituents of hemi cellulose differ from plant to plant: 

 

 

           

Figure 2.4. Chemical structure of hemicelluloses (Bledzki and Gassan,1999). 

  

Lignins are complex hydrocarbon polymers with both aliphatic and aromatic 

constituents (Figure 2.5). Lignin acts as amorphous, ductile matrix in a natural fiber 

composite structure so the mechanical properties are lower than those of cellulose. 

Lignin also decreases water sorption capacity of cellulose by forming a layer on polar 

cellulose molecules.   

 

 

                                   

Figure 2.5. Chemical structure of lignin (Bledzki,1999). 

 

2.3.3. Physical Structure of Cellulose Fibers 

 

A single fiber of all plant based natural fibers consists of several cells. These 

cells are formed out of crystalline micro fibrils based on cellulose, which are connected 

to a complete layer, by amorphous lignin and hemi cellulose. This structure is a good 
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example of a composite with lignin hemi cellulose matrix and cellulose fiber 

reinforcement. Strength is supplied by highly crystalline cellulose whereas ductility is 

supplied by amorphous lignin and other components. Structure is depicted in Fig 2.6.  

Multiple of such cellulose –lignin/hemi cellulose layers in one primary and three 

secondary cell walls stick together in a multiple layer composite. These cell walls differ 

in composition and in the orientation (spiral angle) of the cellulose micro fibrils. The 

spiral angle of the fibrils and the content of cellulose determine mechanical properties 

of cellulose based natural fibers. 

 

 

 

Figure 2.6. Structure of plant cell (Bledzki,1999). 

 

Natural fibers are subdivided based on their origins, coming from plants, 

animals or minerals. Generally, plant or vegetable fibers are used to reinforce 

plastics. Plant fibers can be classified as follows as seen in Figure 2.7 (Michel, 

1989): 
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Figure 2.7. Classification of plant fibers (Michel, 1989). 

 

The availability of large quantities of such fibers with well defined 

mechanical properties is a general prerequisite for successful use of these materials. 

Additionally for more technical oriented applications, the fibers have to be specially 

prepared or modified regarding (Bledzki and Gassan,1999): 

i) homogenization of the fiber’s properties; 

ii)  degrees of elementarization and degumming; 

iii)  degrees of polymerization and crystallization; 

iv)  good adhesion between fiber and matrix; 

v)  moisture repellence;  

vi)  flame retardant properties. 

 

2.3.4. Mechanical Properties of Natural Fibers 

 

Natural fibers are in general suitable to reinforce plastics (thermosets as well as 

thermoplastics) due to their high strength and stiffness and low density. Thermoplastic 

polymers are primarily reinforced by glass fibers due to superior mechanical and 

thermal properties of glass fibers. In recent years, much effort has been driven to 

replace glass fibers with natural fibers. Advantages of natural fibers over glass fibers 

can be seen in Table 2.1. As seen from the table, key manufacturing  properties of 

natural fibers such as density, cost, renewebility and machine compatibility is superior 

than glass fibers, but one has to keep in mind that natural fibers have some 

disadvantages such as poor wetting, incompatibility between fiber and some polymeric 
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matrices and high moisture absorption. Strategies to overcome these disadvantages will 

be discussed in Chapter 3. 

 

Table 2.1. Comparison of natural and glass fibers (Wambua et al, 2003). 

 

  

Table 2.2. shows mechanical properties of natural fibers and competing 

synthetic fibers ( Gurram et al, 2002). The characteristic values for flax and softwood 

fibers reach levels close to the values for glass fibers. Nevertheless, the range of the 

characteristic values, as one of the drawbacks for all natural products, is higher than 

those of glass fibers, which can be explained by differences in fiber structure due to 

overall environmental conditions during growth. 

 

Table 2.2. Mechanical properties of natural fibers (Gurram et al, 2002). 

 

Fiber 

Density 

(g/cm3) 

Elongation 

(%) 

Tensile strength(MPa) Modulus 

(Gpa) 

Cotton 1,3-1,6 7.0–8.0 287–597 5.5–12.6 

Jute 1,3 1.5–1.8 393–773 26.5 

Flax 1,5 2.7–3.2 345–1035 27.6 

Hemp - 1.6 690 — 

Ramie - 3.6–3.8 400–938 61.4–128 

Sisal 1,5 2.0–2.5 511–635 9.4–22.0 

Coir 1,2 30.0 175 4.0–6.0 

Viscose - 11.4 593 11.0 

Soft wood 1,5 — 1000 40.0 

Glass 2,5 2.5 2000–3500 70.0 

Aramide 1,4 3.3–3.7 3000–3150 63.0–67.0 

Carbon 1,4 1.4–1.8 4000 230–240 
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2.4. Application Areas and Market Growth of Natural Fiber Based Plastic 

Composites 

 

 The use of natural fiber-plastic composites is growing rapidly as consumers 

experience their advantages over wood including no routine maintenance and no 

cracking, warping or splintering.  Mostly employed natural fibers in natural fiber-plastic 

composites is wood wastes such as hardwood, softwood, plywood, peanut hulls, 

bamboo, straw, etc. mixed with various plastics (PP, PE, PVC). Natural fibers employed 

are kenaf, hemp, jute, sisal, flax and rice husk. The powder is extruded into pellets and 

then extruded to desired shape (SpecialChem, 2002). 

 Wood-plastic composites are used primarily in building products such as 

decking, fencing, siding and decorative trim. Other applications include infrastructures 

such as boardwalks, marinas and guardrails; transportation such as interior automotive 

panels and truck floors; and industrial and consumer applications such as pallets, 

playground equipment and benches. Market share of wood and natural fiber-plastic 

fillers and various applications can be seen in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Markets for natural fiber and wood-plastic composites in 2001 in USA 

(SpecialChem, 2002). 
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In US, natural fiber and wood plastic composites have a total of 340 million 

kg/year capacity and it is predicted that it will reach a capacity of 635 million/year 

capacity at an annual growing rate of 12%. To meet the specified qualifications, 

additives such as coupling agents, colorants, lubricants consumption will grow 

accordingly.  
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Chapter 3 

 

INTERFACE IN POLYMER COMPOSITES 

 

Adhesion between fiber and matrix is achieved via different routes through the 

interface region. Interface refers to the boundary between two phases, namely fiber and 

matrix (Jang, 1994).  Bonding between fiber and matrix is accomplished through the 

interface with different bonding mechanisms. The fiber or filler interfacial adhesion 

plays an important role in determining the mechanical properties of a polymer 

composite. A better interfacial bond will impart a composite improved properties such 

as interlaminar shear strength, fatigue and corrosion resistance.    

Polymers used as matrices in thermoplastic composites as well as fillers and 

fibers have the most diverse physical and chemical structures, thus a wide variety of 

interactions may form between the two components. Two boundary cases of 

interactions can be distinguished: covalent bonds, which rarely form spontaneously, but 

can be created by special surface treatments and zero interaction, which does not exist 

in reality, since at least secondary, van der Waals forces always act between the 

components ( Pukanszky and Fekete, 1999) 

In practice the strength of the interaction is somewhere between the two 

boundary cases. Interaction between two surfaces in contact with each other can be 

created by primary or secondary bonds. The most important primary forces are the 

ionic, covalent and metallic bonds. The bonds formed by these forces are very strong, 

their strength is between 60-80 kj/mol for covalent and 600-1200 kj/mol for ionic 

bonds. The secondary bonds are created by van der Waals forces. The strength of these 

interactions is much lower; it is between 20 and 40 kj/mol. Hydrogen bonds form a 

transition between the two groups of interactions, both in character and strength. 

Besides the attractive forces created by the above mentioned secondary forces, repulsive 

forces also act between the interacting surfaces due to the interaction of their electron 

fields. The final distance of the atoms is determined by the equilibrium between 

attractive and repulsive forces ( Pukanszky and Fekete, 1999).  

 

 

 



 16

 

3.1. Bonding Mechanisms 

 

 There are several bonding mechanisms between fiber or filler and matrix in 

polymer composites that impart in interfacial adhesion of the two phases.  

 

3.1.1. Adsorption and Wetting 

 

If the surface of two bodies come into contact when they are brought close to 

each other, then wetting is said to have taken place. Adhesion is primarily caused by 

van der Waals forces, although other type of bondings can co-exist. The occurrence of 

wetting can be explained by simple thermodynamics. In polymer composites, wetting is 

accomplished by wetting of liquid phase (polymer) onto a solid phase (filler or 

reinforcement). Contact between filler or reinforcement can be realized if the liquid is 

not too viscous and a thermodynamic driving force exits. This is expressed in terms of 

surface energies. The strength of the adhesive bond is assumed to be proportional to the 

reversible work of adhesion (WAB), which is necessary to separate two phases with the 

creation of two new surfaces. The Dupre equation relates WAB to the surface (φA and 

φB) and interfacial (φAB) tension of the components, i.e.: 

 

     Wa= φSV + φLV– φSL                                                                      (3.1)                                    

 

The subscripts S,L and V refer to solid, liquid and vapor respectively. The vapor 

phase is commonly air. According to this equation, wetting is strongly favored if the 

surface energies of the two constituents are large and their interfacial surface energy is 

small. In practice, a large value of liquid surface energy restricts wetting of a liquid 

droplet. Wetting or contact angle  is depicted by the Young equation obtained by a 

balance of horizontal forces as shown in Figure 3.1. 

 

     φSV= φSL + φLV  cos                                                 (3.2) 

 

Complete wetting (=0o) occurs if the surface energy of the solid is equal to or 

greater than the sum of the liquid surface energy and interface surface energy. Much 
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effort has been driven to change surface energies of polymers or fillers and 

reinforcement so as to increase wetting between fiber and matrix (Hull and Clyne, 

1996). 

. 

 

Figure 3.1. Contact angle and surface energy for a liquid drop on a solid surface (Hull 

and Clyne, 1996) 

 

3.1.2. Interdiffusion and Chemical Reaction 

 

 There are different types of diffusional processes providing adhesion between 

filler and matrix along the interface. As seen in Figure 3.2.a. free chain ends of two 

polymers can diffuse at the interface providing chain entanglement and rising interfacial 

strength. This effect is employed in some coupling agents used on fibers in 

thermoplastic matrices. Interdiffusion can also take for non-polymeric systems 

accompanied by a chemical reaction. Various types of chemical reactions can occur at 

the interface. A representative scheme is depicted in Figure 3.2.d. New chemical bonds, 

namely A-B, are formed as a consequence of interfacial chemical reactions. These 

bonds can be ionic, covalent, metallic etc. A good example of this kind is chemical 

reactions provided by silane coupling agents, which will be discussed in detail in the 

following chapter. Also physical treatment of matrices can form active sides on the 

matrix capable of reacting with the filler or reinforcement.  

 

3.1.3. Electrostatic Attraction 

 

If the surfaces carry net charges of opposite signs, as shown in Figure 2.b., then 

adhesive forces are formed between filler or fiber and matrix. This effect is employed 

for certain fiber treatments such as glass fibers. The surface may exhibit anionic or 
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cationic properties, depending on the pH of the aqueous solution used in coupling 

agents. Thus, if ionic functional silanes are used, it is expected that cationic functional 

groups will be attracted to an anionic surface or vice versa as depicted in Figure 3.2.c. 

 

3.1.4. Mechanical Keying 

 

Surface roughness of the fibers can impart to the strength of the interface if good 

wetting has occurred as illustrated in Figure 3.2.e. The effects are much more 

pronounced under shear loading that, increases friction between fiber and matrix.  

 

3.1.5. Residual Stresses 

 

 The nature of interfacial contact is strongly influenced by the presence of 

residual stresses. Residual stresses are mainly caused by plastic deformation of the 

matrix and phase transformations involving volume changes. One of the most important 

sources of residual stresses is thermal contraction occurring during cooling. Because of 

lower thermal expansivity of the fibers than the matrix, there exist compressive residual 

stresses on the fibers and tensile residual stresses on the matrix (Hull and Clyne, 1996). 
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Figure 3.2. Interfacial bonds formed by a) Molecular entanglement followed by 

interdiffusion b)electrostatic attraction c) cationic- anionic interaction d)chemical 

reaction e) mechanical keying (Hull and Clyne, 1996). 
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3.2. Methods for Surface Modification 

 

Surface properties have a critical importance in thermoplastic – cellulose 

composites because most of the problems encountered are because of incompatibility 

between fiber and matrix. Surface energy differences cause poor interfacial adhesion 

which deteriorates mechanical properties of the composite. Most effort is dedicated to 

modification of surface properties of cellulose in order to achieve good adhesion 

between fiber and matrix. The natural fiber or wood surface is a complex heterogeneous 

polymer composed of cellulose, hemi cellulose and lignin. The surface is influenced by 

polymer morphology, extractive chemicals and processing conditions. 

 

 The use of different kinds of reactive and non-reactive surface treatment 

methods leads to change in surface structure of the fibers as well as matrices. There are 

various methods for surface modification specific to the fiber, matrix employed, and 

processing conditions. It must be emphasized that filled polymer composites 

experiences two kinds of interactions: particle/particle and matrix/filler interaction. 

Surface treatment of both of the interactions and properties of composites are 

determined by inter-connected effect of the two (Pukanszky and Fekete, 1999). Type 

and amount of surface modifier, processing conditions must be optimized both from 

technical and economical aspects. Surface modification methods can be divided into 

three categories; non-reactive nad reactive surface treatments and elastomer 

employment. 

 

3.2.1. Non-Reactive Treatment (Physical Methods) 

 

Physical methods such as stretching, calendering, thermo treatment and 

production of hybrid yarns do not change the chemical composition of the fibers, but 

change structural and surface properties (Bledzki and Gassan,1999). These methods 

increase interfacial interactions between fiber and matrix by changing surface properties 

of the fibers. 

Electrical discharge (corona and cold plasma) are employed for surface 

oxidation activation which changes surface energy of cellulose fibers. Surface cross 

linking and free radical formations are other means to achieve surface energy changes. 

These methods are also employed to non-active polymer substrates such as 
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polypropylene and polyethylene to activate surface of polymer. The tendency of 

interaction between substrate and matrix is increased so decreasing surface energy of 

the substrate or increasing surface energy of the matrix is achieved via these kinds of 

methods. Accordingly, mechanical properties of the composites were enhanced 

(Czvikovszky and Hargita, 1999; Albano, 2002).  

Another method of surface modification of cellulose is alkali treatment to 

enhance absorption capacity of cellulose fibers by removing lignin and other soluble 

substances from surface of cellulose. (Valadez,1999; Mwaikambo, 2000; Joseph, 1999).   

Other non-reactive treatment method for the modification of fillers is the 

coverage of their surface with a small molecular weight organic compound. Usually 

amphoteric surfactants are used which have one or more polar groups and a long 

alphatic chain. A typical example is the surface treatment of calcium carbonate with 

stearic acid (Pukanszky, 1999). The principle of treatment is the preferential adsorption 

of the polar groups of the surfactant onto the surface of the filler. The high energy 

surfaces of the inorganic fillers can often enter into interaction with the polar group of 

the surfactant. Preferential adsorption is promoted in a large extent by the formation of 

ionic bonds between stearic acid and the surface of calcium carbonate. 

    

3.2.2. Reactive Treatment (Chemical Coupling) 

 

Most of the fillers and fibers including cellulose fibers which are hydrophilic in 

nature are inherently incompatible with hydrophobic polymers. When two materials are 

incompatible, compatibility is achieved by introducing a third material that has 

properties intermediate between those of fiber and matrix. There are several chemical 

methods of coupling in materials (Bledzki and Gassan,1999) 

 

i)  Weak boundary layers – coupling agents eliminate weak boundary layers, 

ii)  Deformable layers – coupling agents produce a tough, flexible layer, 

iii) Restrained layers – coupling agents develop a highly cross-linked interface 

region, with a modulus intermediate between that of substrate and of the polymer. 

iv) Wettability – coupling agents improve the wetting between polymer and 

substrate (critical surface tension factor), 

 v) Chemical bonding  coupling agents form covalent bonds with both materials.  

 vi) Acid–base effect – coupling agents alter acidity of substrate surface. 
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Reactive surface treatment assumes chemical reaction of the coupling agent with 

both of the components. In the next subsections, some of these reactive treatment 

methods, namely graft copolymerization, isocyanate and silane treatment will be 

explained in detail. 

 

3.2.2.1. Graft Copolymerization 

 

The most effective chemical method employed for polyethylene and 

polypropylene based composites is graft copolymerization. The coverage of fiber 

surface with a polymer layer which is capable of interdiffusion with the matrix proved 

to be very effective both in stress transfer and in forming a thick diffuse interphase with 

acceptable deformability. Increased polarity of matrix leads to better adhesion with 

polar fiber. In this treatment, the fiber is usually covered by a functionalized polymer, 

preferably by the same polymer as the matrix (Pukanszky and Fekete, 1999). This 

reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated 

with an aqueous solution. Then the cellulose molecule cracks and radicals are formed. 

As seen in Figure 3.3, the resulting bonds with the esterification of cellulose would be 

either covalent or secondary (hydrogen ) bonds. Mechanical interblocking would also 

occur. All of these bonds co-exist at varying degrees.  It is the presence of relatively 

polar anhydride group on the olefin which imparts the unique set of properties to the 

graft polymer that make these polymers good couplers for natural fibers in polyolefins 

(Keener, 2003). Unlike acrylic or methacriylic acid, maleic anhydride does not readily 

react with itself. The decreased tendency to participate in side reactions and the 

versatility of the anhydride group over an acid group makes maleic anhydride the graft 

moiety of choice when grafting a reactive polar group onto PP. The resulting 

copolymers possesses properties characteristic of both, fibrous cellulose and grafted 

polymer. Solution technique is a difficult and time consuming technique compared to 

melt mixing since MAPP must be dissolved in toluene at about 100 oC with the fibers 

(Karnani et al, 1997). Generally functionalized polymer is hot blended with polymer 

and wood fiber in an extruder (reactive extrusion) or mixer. Reactions experienced are 

the same with solution technique (Ichazo, 2001; Sanadi, 1997; Mwaikambo, 2000; 

Bledzki and Gassan, 1999; Suarez, 2003). The polymer interdiffusion can be achieved 

grafted cellulose and matrix polymer by this simple mixing technique. 
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Figure 3.3. Grafting of cellulose with MAPP (Bledzki and Gassan,1999) 

 

There are two important parameters affecting the grafting efficiency of fibers. 

Acid number that is the number of polar anhydride groups bonded to polymer backbone 

and molecular weight of grafted polymer. Low molecular weight will not allow the 

coupler to interact and entangle sufficiently with the polyolefin phase. Too high 

molecular weight may not allow the coupler to reside at the interface. A low acid 

number may not give the coupler enough sides for attachment to the polar filler. Too 

high of an acid number may hold the coupler too close to the polar surface and not 

allow sufficient interaction with the continuous non-polar phase (Keener, 2003). The 

effect of molecular weight of MAPP on tensile yield stress for PP/cellulose composites 

was clearly demonstrated in Figure 3.4 (Pukanszky, 1999).  It is obvious that molecular 

weight of MAPP has a great impact on mechanical properties. Increase in molecular 

weight is accompanied by an increase in tensile strength of cellulose/PP composites.  

The success of MAPP couplers pertains to their excellent balance of properties 

to bridge the interface between polar and nonpolar species. A coupler holds dissimilar 

materials together. In the case of MAPP, the coupler may co-crystallize with the 

continious polymer while the maleic anhydride portion of the molecule can interact with 

the more polar cellulose surface.   
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Figure 3.4. Effect of MAPP molecular weight on tensile yield stress of cellulose-PP 

composites. () non-treated, treatment with MAPP with a molcular weight of (Δ)350, 

()4500, (□)3.9x 104. (Pukanszky, 1999) 

 

3.2.2.2. Treatment with Isocyanates 

 

The mechanical properties of composites reinforced with wood-fibers and PVC 

or PS as resin can be improved by an isocyanate treatment of those cellulose fibers or 

the polymer matrix. Polymethylene–polyphenyl–isocyanate (PMPPIC) in pure state or 

solution in plasticizer can be used. PMPPIC is chemically linked to the cellulose matrix 

through strong covalent bonds as seen in Figure 3.5  (Bledzki and Gassan,1999). 

 

                   

 

Figure 3.5. Bonding between polymethylene–polyphenyl–isocyanate and cellulose 
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Both PMPPIC and PS contain benzene rings, and their delocalized p electrons 

provide strong interactions, so that there is an adhesion between PMPPIC and PS. 

Isocyanites are also employed for wood flour/thermoplastic composites to alter   

OH bonds on cellulose which gives a hydrophilic character to cellulose but it did not 

work well in terms of increasing mechanical properties (Raj et al, 1989). 

 

3.2.2.3.Silanes as Coupling Agents 

 

Organosilanes are the main groups of coupling agents for cellulose fiber 

reinforced polymers. In fact, they are employed successfully to mineral fillers and fibers 

such as glass (Wambua, 2003) silica (Sae-Oui, 2003), alumina, mica and talc (Denac, 

1999). Most of the silane coupling agents can be represented by the following formula: 

 

                            R-(CH2)n-Si(OR’)3 

 

where n=0-3   OR’ is the hydrolysable alkoxy group such as amine, mercapto, vinyl 

group, and R the functional organic group such as methyl, ethyl or isopropyl group 

attached to silicon by an alkyd bridge. The general mechanism of how alkoxysilanes 

form bonds with the fiber surface which contains hydroxyl groups is shown in Figure 

3.6. 

 

 

 

Figure 3.6. Chemical reaction sequence of silane treatment (Karnani, 1997) 
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The first step in silane coupling is hydrolysis reaction. Silanes react with water 

and form silanols. Second step is the condensation of silanols to form polysiloxanes. In 

the last step, polysiloxanes either form covalent bonds or hydrogen bonds. This means 

that silanes adhere to the surface of fiber with chemical and physical bonds. It has to be 

noted that functional organic group (R) must be capable of interacting with the matrix 

material or must be capable of interdiffusing through the polymer matrix. Hydrolysis 

reactions can be catalyzed by peroxides. The exact mechanism of bonding will depend 

on several factors including: the relative acidity or basicity at the interface, the 

thermodynamic compatibility of the polymer with the organosilane and its condensation 

products, the temperature dependence of hydrolysis and condensation, the temperature 

dependence of polymer creep compliance and chain disentanglement (to facilitate 

interpenetration ), and the activation energy for achieving a covalent bond between the 

polymer matrix and the organic functionality of the silane molecule (Plueddemann, 

1982). Since hydrolysis reactions can occur in the presence of water, water content is 

another important parameter that determines extent of hydrolysis reaction. Mixing 

times, temperature and drying conditions are all important parameters determining 

overall physical and chemical properties of composites. Silanes are the most common 

coupling agents to any filler or fiber composites in thermoplastics and thermosets. 

Accordingly, there exists a numerous literature knowledge on employment of silane 

coupling agents to PP- natural fiber composites(Ichazo, 2001; Fernanda, 1999). 

Most commonly, silanes are employed in aqueous solutions at 1-2wt% of silane 

with respect to fiber irrespective of silane type.  Karnani et al (1997) employed amino-

ethyl amino-propyl trimethoxy silane in aqueous solution at 2wt% with respect to kenaf 

fibers and they achieved  about 57% increase in tensile strength, but Ichazo et al (2001) 

employed the same procedure to wood flour at 1wt% with respect to filler with vinil-

tris-(2-metoxietoxi)-silane and did not achieve a significant increase in mechanical 

properties.  

Castellano et al (2004) had employed two silanes, namely cyanoethyl 

trimethoxisilane and metacryloxy propyltrimetoxisilane stressed on the conditios to 

facilitate reaction between cellulose and silane coupling agents. They have employed 

various solvent systems with the aim of testing different mediums with different 

polarities. Solvents employed were heptane, dioxane, toluene/methanol mixture with 

and without small amounts of added water. They have employed FTIR and IGC to 

determine reactions between silanes and cellulose and they have concluded that the 
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most important parameter effecting coupling agent efficiency was the amount of water. 

Increased water content is accompanied by increase in extent of reaction between 

condensed polysilaxanes and cellulose surface.  

Ethanol/water mixtures were most frequently employed reaction medium for 

silane reactions (Felix, 1993, Pickering, 2003) Acidity adjustments could also be 

beneficial to extend of reactions between cellulose and silanes, especially for 

aminofunctional silanes (Felix, 1993). Fernanda et al (1999) employed methanol 

without water as the reaction medium for 3 different silanes but they could not obtain 

significant improvements in mechanical properties for polypropylene-wood fiber 

composites. 

 

3.2.3. Soft interlayer: Elastomers 

 

Incorporation of hard particles or fibers into the polymer matrix creates stress 

concentration, which induced local micromechanical deformation processes. Usually 

this causes deterioration in properties of composites. Encapsulation of fillers or fibers 

by an elastomer layer changes the stress distribution along the fibers or fillers and 

modifies local deformation process (Pukanszky and Fekete, 1999). 

The coverage of filler or fiber with an elastomer layer is mostly employed for PP 

composites. PP has a poor low temperature impact strength, which is frequently 

improved by the introduction of elastomers. Improvement of impact strength is 

accompanied by a simultaneous decrease of modulus, which is compensated by 

incorporation of fibers or fillers. Rana et al. (2002) studied effect of coupling agent 

(MAPP) and elastomer on mechanical properties of PP-jute composites and found that 

compatibilizer increased tensile and flexural properties whereas elastomer increased 

impact strength of composites. 

 

3.3. Effect of Surface Treatment on Mechanical Properties 

 

Mechanical properties such as tensile strength and modulus, flexural strength 

and modulus, impact strength are primary parameters that were considerably enhanced 

by employment of surface treatment of fiber or matrix.  Other mechanical properties 

developed by modification of interfacial interactions between cellulosic fibers and PP 

are dynamic mechanical properties (Manchado and Arroya, 2000; Joseph, 2003; Amash, 
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2000; Cho, 1999; Wielage, 2003), creep behavior (Park and Belatincz, 1998; Rowel, 

1998), and fatigue properties (Gassan and Bledzki, 2000;  Bledzki and Gassan,1999).  

It has to be emphasized that in general tensile and flexural strength of natural 

fiber filled PP composites decreases with increasing fiber content and Young’s modulus 

generally increases. There are expectations where tensile strength increases with 

increasing fiber content (Ichazo, 2001). Coupling agents would decrease the decline in 

tensile properties with increasing fiber content. In some cases, an increasing trend could 

be achieved with employment of coupling agents. Impact strength generally decreases 

with addition of fibers therefore, generally elastomers are incorporated in order to 

compensate the decrease in impact strength.  

Rowel et al (1998) studied effect of MAPP treatment on flexural, tensile and 

impact properties in aspen-PP composites. Results of this study can be seen in Table 

3.1. 

Table 3.1. Effect of MAPP on mechanical properties of 30 wt% aspen filled-PP 

composites (Rowel et al, 1998) 

  

 

It was clearly observed that tensile and flexural strength was considerably 

increased by employing MAPP coupling agent. It was interesting to note that only 2% 

of coupling agent with respect to total mass increased the  tensile and flexural strength 

over 50%. 

Karnani and co-workers (1997) studied effect of MAPP and silane treatment on 

mechanical properties of kenaf/PP composites and achieved the results in Table 3.2. It 

can be extracted from the table that MAPP treatment provided 123% and 42% increase 
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in tensile and flexural strength, respectively at 60 wt% fiber loading. Tensile and 

flexural modulus had increased 70% and 44%, respectively at the same loading. Silane 

treatment also have a positive impact on tensile and flexural strength. Silanation 

increased tensile strength from 26.9 to 42.5 MPa which corresponds to a 58% increase 

compared to untreated composites at the same loading. 

 

Table 3.2. Results of Mechanical Tests on Various PP-Kenaf Composite Blends. 

(Karnani et al 1997) 

 

 

Material 

Kenaf Fiber 

wt% 

Modulus 

(GPa) 

Tensile strength(MPa) 

PP only 0 1.2 28.4 

PP no MAPP 20 2.1 26.9 

 40 2.6 27.1 

 60 3.0 27.4 

PP+2%MAPP 20 2.9 32.1 

 40 3.4 41.3 

 60 4.1 53.8 

PP+5%MAPP 20 3.2 36.1 

 40 4.3 49.4 

 60 5.1 61.2 

Silylated kenaf 20 3.3 42.5 

 

Bataille and co-workers (1989) examined effect of two types of silanes and 

MAPP on tensile mechanical properties of wood fiber-PP composites. They found that 

aminopropyl triethoxy silane and MAPP increased yield strength about 20%. Silane 

coupling was achieved in a methanol-water solution. Silane concentration was 30% 

with respect to fiber weight which was rather high for a coupling agent concentration 

studied previously in literature. MAPP is incorporated during compounding at a 5% wt 

with respect to PP weight.  

Ichazo et al (2001) employed two coupling agents, vinil-tris-2-metoxy-etoxy 

silane and two types of MAPP. They found that incorporation of untreated wood fibers 

into PP  increased tensile strength more than 50% at 40 wt% loading. Silane treatment 

of the fibers did not work well since no difference in tensile strength was observed. This 

can be attributed to improper selection of mixing conditions of silane coupling agent 

and wood fibers such as mixing time and pH. MAPP with a higher molecular weight 
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yielded better results as expected. 20% increase in tensile strength was achieved via 

MAPP treatment. Impact strength decreased at about 100% and coupling agents 

accelerated the decline in impact strength .  

  Takase and  Shiraishi (1989) modified PP with maleic anhydride via reactive 

kneading and evaluated effect of MAPP amount on mechanical properties. They have 

determined that MAPP impart in development of tensile strength and over 100% 

increase was achieved. They have also stressed on optimum amount of MAPP to be 

employed and 2.5% MAPP with respect to  PP is the amount to attain maximum tensile 

strength. After that ratio, no change in mechanical properties was obtained. They have 

also found that covalent bonds were formed between cellulose and MAPP by extraction 

techniques. 

 Tjong and co-workers (1999) studied MAPP-methyl cellulose composites. 

Surface of methyl cellulose was modified with a titanate coupling agent. They have 

increased tensile strength over 40% at 25% fiber loading and 80% increase was 

achieved in Young’s modulus at the same fiber loading when compared to pure MAPP 

was obtained. They have also observed an increase in storage modulus with fiber 

addition.  

Gonzales et al (2003) studied effect of fiber surface treatment with NaOH and 

vinyltris(2-methoxy-ethoxy) silane on tensile strength of henequen fibers-PE 

composites and they have found that alkali treatment alone did not cause any 

improvement in tensile strength, silane treatment alone have caused a 15% increase in 

tensile strength and co-existence of two surface treatments yielded 25% increase in 

tensile strength at 20 v% fiber loading. Better adhesion between fiber and matrix was 

also confirmed by SEM photos. 

Fernando et al (1997) investigated effect of processing conditions and treatment 

with silanes and MAPP on tensile and flexural properties of PP-wood fiber composites. 

They concluded that 180oC is the optimum operating temperature in terms of 

mechanical properties. MAPP treatment with employment of  vinyltris(2-methoxy-

ethoxy) silane at 4 wt% based on fiber weight yielded the highest tensile and flexural 

strength. 

 Rana and co-workers (2002) investigated effect of surface and impact modifier 

on tensile, flexural and impact properties of jute fiber reinforced PP. They have 

employed MAPP as surface modifier and a polyolefinic elastomer based impact 

modifier containing carboxylic functions. They found that MAPP compatibilizer causes 
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improvements in tensile and flexural properties. Impact modifier considerably enhanced 

notched and un-notched impact strength at the expense of loosing tensile and flexural 

properties but co-employment of impact modifier and compatibilizer enhanced both 

tensile, flexural and impact properties. 

 

3.4. Effect of Surface Treatment on Water Sorption Properties of PP-Natural 

Fiber Composites 

 

The most important problem encountered while employing natural fibers as filler 

in thermoplastics is the high water sorption of composites caused by hydrophilic nature 

of natural fibers. High content of water in the composites would form a layer in the 

interface region, decreasing interfacial adhesion between fiber and matrix. Mechanical 

properties would decrease accordingly. To achieve minimum sorption of water through 

composites is to employ dry natural fibers while compounding fiber and polymer. 

Another precaution would be coating of composite with a thin polymer the same type 

with the matrix. But the most frequently inserted method is employment of coupling 

agents. It was mentioned that coupling agents increase interfacial adhesion between 

fiber and matrix by chemical or physical interaction. Water absorption in cellulose 

fibers is caused by hydrogen bonding between free hydroxyl groups on cellulose 

molecules and water molecules. Silane coupling agents and maleic anhdride group on 

MAPP form hydrogen or covalent bonds with some of free hydroxyl groups of cellulose 

decreasing water absorption capacity of cellulose. Another reason for decreased water 

absorption capacity of composites would be enhanced adhesion between fiber and 

matrix. Enhanced adhesion would decrease thickness of the interface which would 

restrict water penetration through cellulose molecules. Decrease in water absorption is a 

clear indicator of interaction between fiber and coupling agents. Silane and MAPP 

treated composites with lesser water absorption values have greater tensile strength 

confirming better interfacial adhesion via bonding between fiber and coupling agent 

(Gassan and Bledzki, 2000).  

 Ichazo and co-workers (2002) investigated effect of wood floor surface 

treatment with NaOH, vinyltris (2-methoxy-ethoxy) silane and two types of MAPP with 

different molecular weights on the water sorption properties of the woodflour/PP 

composites. The water sorption experiments were conducted for 40 days in distilled 

water. They achieved the following results in Table 3.3. 
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Table 3.3. Thickness swelling of PP/wood flour (WF) composites (Ichazo, 2002). 

Material Thickness swelling (%) 

PP/untreated WF 2.2 

PP/treated WF with NaOH 2.7 

PP/treated WF with silane 1.4 

PP/treated WF with MAPP 1.3 

 

 

The results clearly showed that employment of MAPP and silane decreased 

water sorption about 80% because of the reasons mentioned above. Alkali treatment 

increased water sorption of composites because NaOH increases surface area of 

cellulose fibers by eliminating impurities and lignin on cellulose fibers.  

 

3.5. Characterization of the Interface 

 

The most important concept in composites is the understanding of the interface. 

Much of the effort in polymer matrix composites is devoted to understanding of the 

interface. Physical and chemical characterization of the interface is accomplished via 

direct or indirect methods. It is very difficult to detect any changes in the interface as an 

effect of interaction since the interlayer is very thin (Pukanszky, 1999). For the 

characterization of the interface, spectroscopic techniques, thermodynamic 

characterization and mechanical properties connected with interfacial adhesion are 

generally used. 

 

3.5.2. Spectroscopic Techniques 

  

Spectroscopic techniques are extremely useful for the characterization of filler or 

fiber surfaces treated with coupling agents in order to modify interactions in 

composites.  Such an analysis makes possible the study of the chemical composition of 

the interlayer, the determination of surface coverage and possible coupling of the filler 

and polymer. This is especially important in the case of reactive coupling, since, for 

example, the application of organofunctionalsilanes may lead to a complicated 

polysiloxane interlayer of chemically and physically bonded molecules.  
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X-Ray photoelectron spectroscopy (XPS) gives a spectrum where the peaks are 

highly element specific, allowing direct elemental analysis. This property can provide 

information about surface composition, chemical environment and bonding of surface 

chemical species. An example of XPS usage is organafunctional silane modified and 

alkali treated henequen fibers. Figure 3.7 shows XPS spectra of unmodified (FIB), 

silane modified (FIBSIL) and NaOH treated (FIBNA) fibers. 

 

 

Figure 3.7. XPS spectra of henequen fibers (Gonzales, 2003) 

 

Silicon on the surface of fibers caused by siloxane layer on the fiber has 

characteristic emission peaks in the region between 150-155 eV and 99-104 eV. 

Amplified 90-160 eV range clearly demonstrates presence of Si for silane treated fibers 

which can be treated as an evidence for effective surface coverage of the fibers.  

Fourier transform infrared analysis (FTIR) is another important too for 

characterization of fiber surfaces. Changes in characteristic vibrations indicate chemical 

reactions, while a shift in an absorption band shows physico-chemical interaction 

(Pukanszky, 1999, Hull 1996) FTIR can be employed for determination of change in the 

chemical composition of fibers with treatment as well as composites. A typical example 

of FTIR employment is tracing chemical modification of cellulose fibers with silane, 

namely, cyanoethyl trimethoxy silane.                                     
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Figure 3.8. FTIR spectra of cellulose containing different degrees of moisture with 

respect to cellulose, treated with cyanoethyl trimethoxy silane a)5% b)50% c)100 % 

(Castellano, 2004)   

 

Effect of water content in the silane solution with respect to fiber on CN 

formation was investigated by examining characteristic peak of –CN group at 2250 cm-1 

(Figure 3.8). As observed, peak at 2250 cm-1 increases with increasing moisture content. 

It was found that water presence is a very important parameter on the surface coverage 

of fiber by a silane layer (Castellano, 2004) .  

 

3.5.3. Thermodynamic Characterization 

 

Surface characteristics of fillers can also be characterized by thermodynamic 

parameters. The significance of Dupre equation is discussed in Section 3.1.   Reversible 

work of adhesion (  WAB ), can be divided into two parts: a dispersion term (  WAB
d) and 

one characterizing the electron donor – acceptor interaction (WAB
ab) (Pukanszky, 1999). 

 

WAB= WAB
d+   WAB

ab                                    (3.3) 
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Using Fowkes’s approach, the reversible work of adhesion can be defined as: 

 

 WAB=2(  φA
d φB

d)1/2+nf ΔHab                                       (3.4) 

 

Where,  ΔHab is the change in free enthalpy due to acid/base interactions, n is the 

number of moles taking part in the interaction on a unit surface  f is a correction factor 

close to unity.  

According to Gutman’s theory,   ΔHab can be characterized by donor (DN) and 

acceptor (AN) numbers, which indicate acidity or bacicity of the material.  

 

     -ΔHab  =AN.DN/100                                                (3.5) 

 

Using these approaches, flow microcalorimetry is used where a small sample is 

put into the cell of the calorimeter and the probe molecule passes through it in an 

appropriate solvent. Adsorption of the probe results in an increase in temperature and 

integration of the area under the signal gives the heat of adsorption. This quantity can be 

used for the calculation of reversible work of adhesion according to Eq. (3.3).   

The most frequently used technique for the determination of thermodynamic and 

acid base characteristics is inverse gas chromatography (IGC) (Asten et al, 2000; 

Tshabalala, 1997; Santos, 2001). In IGC technique, the unknown filler or fiber surface 

is characterized by solvents of known properties. Dispersion component of surface 

tension is characterized by non-polar solvents, namely n-alkanes. Polar component is 

characterized by polar solvents. Net retention volume (VN) can be calculated from: 

 

  VN=(tr-to)Fjo                                                    (3.6) 

 

where tr is the retention and to is the reference time, F the flow rate of the carrier gas, 

and jo is a correction factor taking into account the pressure difference. The dispersion 

component of the surface tension of the filler can be calculated from the retention 

volume of n-alkanes (Pukanszky, 1999): 

 

     -RTInVn=Na(φLVφs
d)1/2                                             (3.7) 
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where Vn is the retention volume of the alkanes, a is the surface area of the adsorbed 

molecule,  φLV is the surface tension of the solvent and N is the Avogadro Number. The 

product of RT and logarithm of the retention volume is a linear function of φLV
1/2. If the 

measurements are carried out with polar solvents, the deviation from this straight line is 

proportional to the acid/base interaction potential of the solid surface (Pukanszky, 

1999). 

 Abdelmouleh et al, (2004) investigated the effect of 4 different silanes, namely 

metacriloxypropyltrimethoxysilane (MPS), aminopropyltriethoxysilane (APS), 

hexadecyltrimethoxy silane (HDS), mercaptopropyltrimethoxysilane (MRPS) on 

dispersive component of surface energy and acid/base properties of cellulose surface. 

They achieved results on Table 3.4. They stressed on the change in acid base character 

with modification since dispersive components do not change much. Their conclusion 

was relatively high value of the AN/DN ratio for untreated cellulose reflected the acid 

character resulting from the strong density of the surface hydroxyl groups. After 

modification with MPS, MRPS and HDS, the decrease in AN/DN ratio reflected the 

progressive reduction in surface accessibility of hydroxyl groups to the probes. The 

APS treatment reversed the interaction balance and led to a surface ehich displayed a 

modest basic character, generated by the presence of amino groups.  

 

Table 3.4. Dispersive surface energy and acid/base properties of cellulose before and 

after modification (Abdelmouleh et al, 2004) 

Samples γs
D AN/DN 

Cellulose 30.9 3.1 

Cell+MPS 29.6 1.4 

Cell+APS 31.2 0.8 

Cell+MRPS 29.1 1.6 

Cell+HDS 22.6 1.1 

 

 

3.5.4. Mechanical properties 

 

 Interfacial adhesion of the components in filled polymers can be deduced from 

mechanical properties of composites with the help of models describing composition 

dependence. Such models must also take into account interfacial interactions. One of 
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these models considers interface thickness and yield stress of composite as the key 

parameters and defines a parameter related to stress transfer between components. 

Semi-empirical correlation developed for the quantitative description of the composition 

dependence of tensile yield stress in heterogeneous polymer systems (Pukanszky, 

1999). 

 

 σy = σyo(1- σf)/(1+2.5 σf) exp (Bσf)                                    (3.8) 

 

where σy and σyo are the yield stress of the composite and the matrix, respectively, σf is 

the volume fraction of the filler, and B is a parameter related to stress transfer between 

the components. The term (1- σf)/(1+2.5 σf) expresses the decrease of effective load 

bearing crossection on filling, while exp (Bσf) describes interaction. The parameter By 

contains the thickness of the interface (l) and its yield stress (σyi): 

 

  B=(l+lρfAf)In (σyi/ σyo)                                               (3.9) 

 

where Af and ρf are the specific surface area and the density of the filler, respectively. 

Parameter By can be determined from the composition dependence of tensile yield stress 

and if the experiments are carried out with at least two fillers of different particle sizes, l 

can be calculated from the results. Figure 3.9 illustrates use of parameter B as a measure 

of interfacial interactions.  
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Figure 3.9. Effect of treatment on the tensile yield stress of PP/CaCO3 composites. 

Treatment: () non-treated, (∆) stearic acid, (+) aminosilane (Pukanszky, 1999). 

 

 Treatment of PP/ CaCO3 composites with aminosilane and stearic acid revealed 

that interfacial adhesion was enhanced with aminosilane treatment. B parameter 

increased from 1.16 to 2.08 when compared to untreated composites. Stearic acid 

treatment exhibited an adverse effect on interfacial adhesion.  

 Nielsen Model also describes an interaction parameter taking into account 

interfacial adhesion in particulate filled polymers. The equation formulated in Equation 

3.10  (Metin, 2002).  

 

                        σc/σp= (1- Φf
2/3)S                                            (3.10) 

 

where σc and σp are tensile strengths of the composite and matrix respectively. The 

parameter S in the Nielsen’s model describes weakness in the structure created through 

stress concentration at the filler-matrix interface. Unity in the value of S means no stress 
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concentration effect, whereas smaller values means greater stress concentration effect or 

poorer adhesion.  
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Chapter 4 

 

EXPERIMENTAL 

 

4.1.Materials 

 

Isotactic PP, (MH-418, PETKIM) in pellet form, with a density of 895 kg/m3 

was used as the polymeric matrix material. Cellulose (CE), sawdust (SD) and wheat 

straw (WS) were used as fiber in this study. Coupling agents employed were (3-

aminopropyl)-triethoxysilane (AS) (Fluka Co.) , methacriloxy propyl trimethoxy silane 

(MS), (Merck Co.) and maleic anhydride grafted polypropylene (MAPP) with an acid 

value of 59 (Clairant Co.) Ethanol was used as a solvent in the surface modification of 

the filler.  

 

4.2.Methods 

 

Experimental methods can be classified in three categories; 

 Size reduction and surface treatment of fibers 

 Preparation of PP/fiber composites 

 Characterization of fibers and PP/fiber composites 

 

4.2.1. Size Reduction and Surface Treatment of Fibers 

 

 Cellulose (CE)  powder  was used as received. Sawdust  was sieved through 

250µm sieve before use. Wheat straw  was first ground since fibers were too long and 

then they were obtained in the size range of below  250µm in diameter. Figure 4.1 

shows microstructure of cellulose, sawdust and wheat straw which were takem by 

scanning electron microscopy (SEM).  CE was in particulate form with a particle size 

range of 20-100μm. SD and WS were in fiber form with varying aspect ratios. Aspect 

ratios of WS are lower than SD. Length of the fibers would be up to 200 μm for SD and 

300-400 μm for WS.  
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Figure 4.1: SEM pictures of (a) cellulose, (b) sawdust and (c) wheat straw.  

 

            Coupling agents were employed in order to increase compatibility between fiber 

and matrix and to decrease hyrophilicity of fibers, as explained in Chapter 3. From this 

point of view, silane coupling agents and MAPP were used as suitable candidates to  

alter incompatibility between fiber and matrix. Chemical formula of silane coupling 

agents employed can be seen in Figure 4.2. Surface modification of CE, SD and WS  

with silane coupling agent was carried out in solution. Aqueous ethyl alcohol solution 

(95/5 w/w) was prepared and silane coupling agent (0.5, 1, 2.5% w/w of fiber) was 

added to the solution. The solution was mixed with a mechanical mixer for 15 minutes 

for hydrolysis reaction of silane coupling agent to take place. Then the fibers were 

added to the solution of silane coupling agent and left for 45 minutes under agitation for 

condensation and chemical bonding of silanes and cellulose fibers as explained in 

Chapter 3. Weight ratio of solution to fiber was kept at about 5.  Treated fibers were 

washed with ethanol to remove excess coupling agents. Afterwards, the solution was 

introduced into a rotary evaporator at 60oC under vacuum for 1 h until fibers were dried. 

Employment of rotary evaporator had prevented agglomeration of particles via rotation 

action. The fibers were further dried in an oven at 70oC for 24 h before composite 

preparation. Schematic representation of silane treatment can be seen in Figure 4.3. 

Figure 4.2. Chemical structure of (3-aminopropyl)-triethoxysilane (AS) and 

methacriloxy propyl trimethoxy silane (MS), respectively. 

 

(a) (b) (c) 
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Figure 4.3. Schematic representation of silane treatment 

 

 

MAPP was mixed in the proportion of 2.5, 5, 10w% of PP and mixed with melt 

PP in rheomixer during  compounding. 

   

4.2.2. Preparation of Composites 

 

Composites were compounded in “Haake Rheomix 600”. A general and detailed 

view of rheomixer is shown in Figure 4.4. This instrument enabled melt mixing of 

thermoplastic polymers and fillers or fibers.  The rheomixer was equipped with two 

rotor blades rotating in opposite directions. This design enables good dispersion of 

fillers in the polymer matrix. The rotor speed could be adjusted for optimum mixing. 

There were three walls surrounding the chamber where filler and matrix melt. 

Temperature of the three walls could be adjusted separately for optimum temperature 

control. Time of mixing could also be adjusted to reach optimum mixing conditions. 

 

15min. 45 min. 

1) 0.5, 1.0, 2.5 % 
    silane is mixed 

    with ethanol  
    for hydrolysis and 
    condensation rxs. 

2) Fibers are treated 
    with silane  
     for 45 min. 
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    evaporator at 70ºC 
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   dried in oven. 
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Torque of the two rotors, which is a measure of resistance of the melt to flow, could be 

damped through “Convert Data” software with respect to time. Although viscosity of 

the melt could not be measured directly, torque of the melt at stabilization conditions is 

an indicator of viscosity of melt. Especially, relative rheological behavior of filled 

polymers with respect to loading or surface treatment could be determined by 

comparing stabilization torque data. The composites were prepared at mixing 

temperature of 185 oC, rotor speed of 50 rpm and mixing time of 10 minutes. First, PP 

was incorporated into the rheomixer, and then previously dried, treated or untreated 

fibers were introduced as soon as torque indicated melting of the polymer (about 2 min).  

10 minutes of mixing was enough to reach to the stabilization torque, which indicates 

homogeneous mixing of filler and matrix. The composites were prepared with CE, SD 

and WS at 10, 20 30 and 40 wt% of fiber loadings. Combination of PP and fibers were 

arranged so that composite volume was 48.3 cm3, which was 70% of the total volume of 

the mixing chamber. MAPP was mixed with PP before melting. The specimens taken 

from the rheomixer were compression molded in a Carver polymer press (Figure 4.5)  to 

form rectangular sheet with dimensions 150x150x1 mm3. Composites were heated 

without pressure for 4 minutes to 185oC in order to avoid void  formation and then 

pressed at 2000 psi pressure at the same temperature for 6 minutes. The specimens were 

cooled to 40 oC in 6 minutes under the same pressure in Carver polymer press. 

 

Figure 4.4. General and detailed view of rheomixer. 
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Figure 4.5. Picture of Carver polymer press 

  

Flow sheet of preparation of polymer composites can be depicted as follows in Figure 

4.6; 

 

 

Figure 4.6. Flow sheet of preparation of composites.  
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4.2.3. Characterization of Composites 

 

Characterization of the composites includes rheological behaviour of the 

composites during melt mixing in the rheomixer, mechanical testing, morphological 

properties through SEM examination of the fracture surfaces, water sorption properties, 

FTIR analysis and density measurements. 

 

4.2.3.1. Rheological Properties of the Composites During Melt Mixing 

 

Compounding of fiber and matrix was explained previously in section 4.2.2. 

During compounding, torque vs time data of the mix can be damped through “Convert 

Data” software program to determine rheological response of the composites. Torque is 

the rotational energy consumed by the rheometer to provide constant rotational speed 

(50 rpm in our experiments) at a specified temperature (185oC) and time (10 minutes). 

Stabilization torque is the torque attained at the end of homogeneous mixing of fiber 

and the polymer which is somewhat proportional to the viscosity of the melt. Effect of 

fiber type and loading and treatment type on stabilization torque was investigated in 

order to determine relative rheological behaviour of the composites. 

 

4.2.3.2. Mechanical Properties 

 

Pressed sheets were cut with Ceast hollow die punch according to ASTM 638. 

Picture of Hollow Die Punch can be seen in Figure 4.7. Tensile properties such as 

tensile strength, Young’s Modulus, strain and stress at break, energy to rupture were 

determined by Testometric mechanical test instrument. The full-scale load of 

mechanical test machine was 100kN and the cross head speed was 50mm/min for the 

mechanical tests. The test results were taken from WINTEST software program 

supplied from Testometric Co. Tests were performed at room temperature (23oC) and at 

least five specimens for each composite formulation were tested.  
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Figure 4.7. Picture of Hollow Die Punch and sample cutter 

 

 

4.2.3.3. Morphological properties  

 

Fracture surface of fractured tensile specimens were investigated by Philips XL 

30 SFEG Scanning Electron Microscobe (SEM). Bonding between fiber and matrix, 

dispersion of fiber in the matrix and fiber architecture were determined. Specimens 

investigated were 30wt% CE, SD and WS loaded composites treated with 1wt% silane 

and 5wt% MAPP treatment. Untreated composites were also investigated.  

 

4.2.3.4. Water Sorption Properties 

 

Samples were cut into 3x1.75x0.1 cm3 sheets. First, the samples were dried at 

70oC for 24 hours to reach   constant weight. The samples were then immersed into 

static distilled water bath at 25 oC for 24 hours for observing sorption of water. Mass of 

the samples was measured after removing them from the water bath after 24 hours. The 

samples were wiped with tissue paper to remove surface water before weighing. Water 

uptake of PP composites at time t was calculated from; 

 

Uptake %= (Mt-M0)/M0x100                              (4.1) 
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where  

Mt : Mass of sample at time t  

M0: Mass of sample at t = 0 

 

4.2.3.5. Density Measurements of Fibers and  Composites 

 

 Densitiy measurements were carried out with a Sartorius YDK 01 picnometer 

proceeding on Archimedes principle. Alcohol was used as the liquid. Both of sample 

weights (Ws) and weights in alcohol (Wa) of PP/CE, PP/SD, PP/WS composites were 

recorded and densities of composites were calculated according to the equation below. 

 

                       ρc= Ws*ρf/ (Ws-Wa )                                                 (4.2) 

 

where ρc  and ρf are densities of composite and alcohol, respectively. Densities of 

composites were compared with theoretical densities of composites calculated by gas 

picnometer to examine void fraction in the composites. Density measurements of the 

CE, SD and WS fibers were performed with a Ultrapycnometer 1000 Quantachroma gas 

pycnometer that uses Helium at 19 psia pressure. The pycnometer was equipped with a 

chamber with a known volume. Fiber of interest was filled to the chamber and Helium 

gas was purged onto the fiber with  known mass. By this method, theoretical densities 

of fibers or powders can be determined. 5 runs were performed for each sample and 

average theoretical density with standard deviation was calculated by Software program 

“ Pycwin Version 1.10” that is connected to the device. 

 

 Theoretical densities of fibers were as follows; 

 

dCE= 1.577 ± 0.018 g/cm3 

dSD= 1.485 ± 0.017 g/cm3 

dWS= 1.505 ± 0.020 g/cm3 

 

where numbers after ± represents standard deviations calculated for 5 runs. 
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4.2.3.6. FTIR Analysis of Fibers and Composites 

  

FTIR analysis enables determination of chemical changes experienced during 

silane treatment of the fibers. Silane treated and untreated CE particles were studied by 

FTIR in order to examine chemical and physical changes of the fibers. FTIR studies 

were carried out with a Shimadzu 8601 Infrared Spectrophotometer with a resolution of 

4.0 and a mirror speed of 2.8. Fibers were analyzed by preparing KBr pellets of the 

fiber. Wavelength of the device was varied between 400-4400 cm-1 and 20 scans 

between the specified wavelengths were made. 

Composites were characterized by FTIR spectroscopy with the same method 

except that composite films were prepared without using KBr technique.   
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Chapter 5 

 

RESULTS AND DISCUSSION 

 

5.1. Rheological Properties of the Composites 

 

 It is well known that incorporation of rigid fillers increase melt viscosity of 

polymers. Particle size and shape, interactions between particles and interactive effect 

of filler with the surrounding matrix are important parameters determining rheological 

behavior of filled polymers (Hornsby, 1999). Rheological properties of PP/cellulose 

composites were studied by means of Haake Rheomixer, which give plots of Torque vs. 

mix time data. Torque is an indicator of viscosity which reveals relative rheological 

behaviour of composites with changing loading or surface treatment at stabilization 

conditions. Torque vs time data were recorded at mixing temperature of 185 oC, rotor 

speed of 50 rpm and mixing time of 10 minutes. It has to be noted that shear rate 

dependency of composites cannot be determined since turning rate of the rotor blades 

was kept constant. A typical Torque vs. time data for cellulose/PP composites can be 

seen in Figure 5.1.  

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5.1. Torque vs time data for 0, 10, 20, 30, 40 wt% cellulose loaded PP 

composites 
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 The initial torque increased rapidly by incorporation of polymer which is 

depicted as a peak at around 40 seconds. Peak heights decreased with increasing filler 

loading because polymer loading decreased with increasing filler loading. Torque 

decreased rapidly as soon as temperature of polypropylene increased and melting 

occured. After complete melting at around 90 seconds, cellulose was fed to rheomixer  

which was accompanied by an increase in viscosity. This second peak was proportional 

to the fiber loading. Wetting of the fibers by the polymer and dispersion decreased 

torque up to a stable value that is called stabilization torque. Composite reached 

stabilization torque at around 400 seconds. A stable torque is also an indicator of 

homogenization of filler in the melt (Joseph at al, 1999). When stabilization values were 

compared, it was clearly seen that an increase in fiber loading was accompanied by an 

increase in stabilization torque. Stabilization torque was 4.3 N.m for neat PP whereas 

9.06 N.m for 40wt% cellulose filled PP which corresponds to a 111% increase. This 

result can be treated as an increase in viscosity with increasing fiber loading.   

 Figure 5.2 illustrates variation of stabilization torque with respect to fiber 

loading for PP/CE composites. 

 

 

Figure 5.2. Variation of stabilization torque with respect to cellulose loading and 

treatment.  
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Surface treatment was employed to promote fiber dispersion and to enhance 

interfacial bonding between fiber and matrix. Frequently, surface modification of the 

fiber results in a reduction in shear viscosity relative to untreated material, which may 

be explained by reduced interaction between the filler and dispersion medium, although 

a decreased tendency towards filler network formation may also be a contributory 

factor. If present in polymer phase, these chemicals may also exert a lubricating effect 

causing a reduction in viscosity. There are instances where surface treatment of filler 

can result in increased melt viscosity due to enhanced interaction between filler and 

polymer. This can be considered in terms of a stable adsorption layer formed around the 

filler increasing its effective (Hornsby, 1999). In our stabilization torque data, all 

surface treatments have decreased stabilization torque, especially at low fiber loadings. 

As mentioned above, there are two interactions in a filled polymer system; Fiber-fiber 

interactions and fiber-matrix interactions. Silane coupling agents increase polarity and 

hydrophobicity of CE fibers, which yields to decreased particle-particle interactions. 

That is, agglomeration or network formation is decreased that would have a decreasing 

effect on viscosity.  On the other hand, particle-matrix interaction is increased due to 

enhanced matrix-polymer adhesion. This would have a positive effect on viscosity. As 

seen in Figure 5.2, stabilization torque significantly decreased with AS and   MS 

treatment of CE at 10 and 20wt% CE loadings, but stabilization torque was almost the 

same at 30 and 40% loadings. These results reveal that at lower fiber loadings, the 

dominating interaction is particle-particle interaction, but at higher loadings, particle-

matrix interactions begin to dominate. MAPP treatment always had a negative effect on 

stabilization torque, which is more pronounced for low fiber loadings. To understand 

the nature of decrease in stabilization torque to due MAPP treatment, stabilization 

torque of neat PP and 10wt%MAPP treated  PP were compared. The comparison was 

shown in Figure 5.3. It was observed that 10wt% MAPP incorporation into PP 

decreases torque from 4.30 to 3.36 which corresponds to a 22% decrease. This result 

proves that decrease in viscosity of composites is due to interaction of MAPP with PP. 

MAPP behaves as a lubricating agent in PP. This can be attributed to maleic anhydride 

groups on MAPP. These groups would lower shearing between polymer chains. 

Another possible reason for the decrease in viscosity with MAPP addition would be 

decreased interaction with the walls of Rheomixer . MAPP would have behaved as a 

slipping agent.  
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Figure 5.3. Comparison of stabilization torque of pure and MAPP treated PP. 

 

 

 Figure 5.4, 5.5 and 5.6 illustrate effect of treatment type, concentration and fiber 

type on stabilization torque at 30wt% loading for AS, MS and MAPP treated PP/CE 

composites, respectively.  
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Figure 5.4. Effect of concentration of AS treatment on stabilization torque of 30wt% 

CE, SD and WS loaded PP composites.  
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 Figure 5.5. Effect of concentration of MS treatment on stabilization torque of 30wt% 

CE, SD and WS loaded PP composites. 
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Figure 5.6 Effect of concentration of MAPP treatment on stabilization torque of 30wt% 

CE/SD/WS loaded PP composites. 

 

 Figures 5.4 and 5.5 show the influence of silane treatment concentration on the 

stabilization torque of the composites containing 30 wt% fiber. Stabilization torque 

were measured for 3 different silane concentrations (0.5, 1, 2.5 wt% of fiber). As 

observed from the figures, silane treatment leads to increase in stabilization torque 

values. The increase is maximum at 1 wt% silane treated composites. In all silane 

treated composites, stabilization torque values decreases at 2.5wt% silane concentration 
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regardless of fiber type. When AS and MS treated composites were compared, AS 

treatment provided higher stabilization torque values compared to MS treatment 

because particle-particle interactions are more pronounced in AS treatment.   These 

results suggest that matrix-fiber interaction or adhesion between fiber and matrix is 

maximum at 1% silane treatment. It can also be concluded that 2.5% silane treatment 

would have formed a layer on the fibers which can be attributed to unreacted silanes or 

long chain siloxanes on fiber surface. This layer would restrict interaction between fiber 

and matrix decreasing stabilization torque. Viscosity of suspension of rigid spherical 

particles can be characterized by Eisenstein’s equation which holds for rigid particles in 

dilute concentrations as seen in Equation 5.1 (Hornsby, 1999). 

 

                      η /η1= (1+kEФ2)                                                (5.1) 

 

where η is the viscosity of suspension (CE/PP composite in our case) , η1 is the 

viscosity of suspending liquid (PP in our case), kE is the Eisenstein coefficient (2.5 for 

dispersed spheres) and Ф2 is the volume fraction of particles.  

 

 Taking relative torque values as the viscosity of   CE/PP composite since shear 

rate and temperature was constant, experimental viscosities with changing filler volume 

fraction was compared with theoretical calculations according to Eisenstein’s equation 

for PP/CE composites, as seen in Figure 5.7. 
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Figure 5.7. Variation of torque with respect to CE volume fraction for untreated and AS 

and MS treated CE. 

 

 AS seen in Figure 5.7, deviation of torque from theoretical value is high, 

especially at high volume fractions. Treatment of CE decreased deviation from 

theoretical value at low filler loading. It has to be kept in mind that Eisenstein’s 

equation is valid for dilute suspensions. At high volume fractions, the model does not 

predict experimental values well as a result of particle-particle interactions. Increase in 

volume fractions increased particle-particle interactions, thus deviation from 

Eisenstein’s equation was increased. It was also noted that silane treatment decreased 

deviation from the model because of decreased interactions between particles. The 

decrease in interactions would be treated as an evidence of enhanced dispersion of 

fillers in the matrix via silane treatment, especially at low volume fractions.   

 

5.2. Mechanical Properties of Composites 

 

Tensile tests were conducted in order to determine effect of fiber loading and 

type, surface treatment type and amount on mechanical properties of composites. The 

most important tensile test responses are tensile strength, Young’s Modulus, elongation 

at break and energy to break. At least 5 specimens were tested for each sample. 

Experimental tensile test results were given in Appendix A.1.  Figure 5.8 is a typical 

example of stress-strain curve where mentioned mechanical responses were extracted. 
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Stress-strain curves belong to PP/SD composites at 30wt% of fiber loading and 

optimum treatment conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. A typical stress-strain diagram of PP/SD composite at 30wt% fiber loading 

(a) pure PP (b) untreated (c) AS treated (d) MS treated (e) MAPP treated composites. 

 

 Generally speaking, incorporation of CE into PP had decreased tensile strength 

as well as toughness and strain at break of the materials. Young’s Modulus of 

composites increased with employment of CE. AS and MS treatment had increased 

tensile strength to some extend, but MAPP treatment had a distinct positive effect on 

tensile strength. Composites treated with MAPP had almost recovered the tensile 

strength loss due to incorporation of fibers. Increase in Young’s Modulus is also much 

more pronounced for MAPP treated composites. AS and MS did not have a distinct 

effect on Young’s Modulus and strain at break. Strain at break of MAPP treated 

composites had decreased compared to untreated, silane treated composites. Another 

interesting point is MAPP treatment  prevented stress relaxation in the composites, that 

is there was no yielding in MAPP treated composites whereas untreated, AS and MS 

treated exhibited yielding phenomenon. Next sections will present a detailed analysis of 
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tensile testing responses. Effect of different parameters on mechanical response will be 

evaluated. 

 

5.2.1. Tensile Strength of Composites 

 

 The effect of fiber type and loading and surface treatment on tensile strength of 

composites were studied. Figure 5.9 demonstrates that tensile strength of CE, SD and 

WS loaded composites as a function of fiber loading. It was obtained that tensile 

strength decreased with increasing fiber loading irrespective of fiber type. At 40wt% 

fiber loading, the decline was 41.9, 42.4 and 44.4% for CE, SD and WS/PP composites, 

respectively. The decline in tensile strength with increasing fiber content is the usual 

case for natural fiber reinforced thermoplastics (Battaille, 1989, Johan, 1991). However, 

there are some expectations where true reinforcement of the matrix, thus an increasing 

trend in tensile strength with increasing fiber content can be achieved with specific fiber 

types. For example, Ichazo et al (2001) studied wood flour/PP composites and they have 

achieved around 50% enhancement in tensile strength at 40wt% fiber loading compared 

to neat PP. In our case, neither of fibers provided an increase with incorporation of 

fibers to PP matrix. 

Effect of coupling agent concentration on the tensile strength of the composites 

was investigated. % increase in tensile strength of 30 wt% loaded composites with 

surface treatment was tabulated in Table 5.1. As a general trend, it can be observed that 

AS and MS treatments provided maximum tensile strength increase at 1wt% silane 

treatment with respect to fiber weight. Tensile strength increase between 6 and 11.6% 

could be achieved at 1wt% level of silane treatment. Silane treatment above 1% 

decreased tensile strength of composites to the levels of untreated composites. In silane 

treatment, the formation of silanol as a result of hydrolysis and the respective siloxane 

as an effect of condensation were to be expected. This should favor the formation of 

hydrogen bonds with the hydroxyl groups that are on the surface of cellulose. Probably, 

siloxane chains were formed and they become so excessively long that suffered 

crosslinking reactions and therefore, the formation of a weak interface (Ichazo, 2001) 

Similarly, optimum condition for MAPP was 5wt % with respect to polypropylene 

content. It was also observed that MAPP provided a much more efficient reinforcement 

compared to two types of silane treatments. At optimum conditions, MAPP had 

increased tensile strength 32.6, 50.4 and 49.4% for CE, SD and WS composites, 
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respectively. The increase in tensile strength with silane treatment at optimum 

conditions did not exceed 14.2%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Effect of fiber loading on tensile strength of PP/C, SD and WS composites. 

 

Table 5.1. % increase in tensile strength with varying treatment type and amount for 

30wt% fiber loaded composites compared to untreated composites. 

% 

increase AS treatment MS treatment MAPP treatment 

0.5% 1% 2.5% 0.5% 1% 2.5% 2.5% 5% 10% 

CE 2.2 8.8 0 0.6 8.3 2.2 28.0 32.7 25.1 

SD 2.2 9.4 0 1.0 6.0 1.0 46.1 50.4 35.8 

WS 14.2 10.2 8.2 6.8 11.6 -6.2 51.0 49.4 49.6 

 

 

Figure 5.10 illustrates the effect of coupling agents on tensile strength of CE, SD 

and WS/PP composites at 30wt% loading. This graph shows that MAPP has a great 

coupling efficiency compared to AS and MS. Another conclusion is MAPP is more 

effective coupling agent for SD/PP composites since increase in tensile strength is much 

more pronounced for SD/PP composites compare to two other composite systems.  

Although  30wt% fiber was employed, there was almost no tensile strength decrease for 

SD/PP composites compared to neat PP.  
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Figure 5.10.  Effect of coupling agent on tensile strength of PP/CE, SD and WS 

composites. 

  

Tensile strength or tensile yield stress is an excellent parameter for interfacial 

interactions in heterogeneous polymer systems. It is possible to determine a parameter 

related to stress transfer of composites by using tensile strength.  

Factor with σf takes into account the smaller effective load-bearing cross section 

by replacing matrix polymer by dispersed phase. Parameter B considers stress transfer 

between dispersed phase and matrix. Strong interfacial interactions lead to high values 

of B and consequently to high tensile strength of corresponding system. Pukanzky 

model was given in Equation 3.8 . Equation can be rearranged; 

 

( σy /σyo(1+2.5 σf /1- σf)/)) = In σy(rel)= (Bσf)                  (5.2) 

 

If  In σy(rel) is plotted against volume fraction of dispersed phase, as seen in 

Figure 5.11, parameter B can be calculated as a line slope, with intercept in cross 

section of coordinate axis. The equation was also solved non-linearly by using Solver 

program in Excel. Calculated B values with linearization and Excel solver are tabulated 

in Table 5.2. 
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Figure 5.11. Dependence of linearized yield stress as a function of CE volume fraction. 

 

Table 5.2. Values of parameter B calculated by linearization and Solver. 

 

Treatment B with linearization

 

B with solver 

untreated 0.8198 0.8202 

AS 1.0199 0.9914 

MS 0.9128 0.9240 

MAPP 2.0839 2.0552 

 

 

It is evident that two approaches lead similar results as seen in Table 5.2. It can 

be  concluded that MAPP treatment had the highest value of B, thus greatly enhanced 

stress transfer between fiber and matrix. AS and MS treatment also enhanced stress 

transfer but efficiency was very low compared to MAPP treatment since B value 

increase was rather low compared to MAPP treatment. 
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Denac and Musil (1999) had employed  Pukanszky model to investigate the 

effect of aminosilane treatment on talc/PP composites. B value had increased from 2.72 

to 3.20 with employment of silane treatment. They have also confirmed enhanced 

adhesion by SEM micrographs.  

Metin et al (2003) employed three types of silane coupling agents for the surface 

modification of zeolites and observed increased B values with employment of silane 

coupling agents.   

Figure 5.12 shows experimental and calculated yield stress values of C/PP 

composites with varying volume fraction of CE.  
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Figure 5.12. Effect of coupling agent on the experimental and calculated yield stress 

values of PP/CE composites with respect to volume fraction. 

 

As seen in Figure 5.12, untreated, AS and MS treated composites were in good 

agreement with the calculated values, but MAPP had established high deviations 

especially at low fiber loadings. MAPP was incorporated into PP matrix at 5wt% 

loading with respect to PP. The aim was to add fibers into matrix with the same 

composition, that is matrix always contains 5wt% MAPP with respect to PP. But MAPP 

in the matrix is highly polar due to maleic anhydride groups. Highly polar MAPP may 

have clustered around polar cellulose particles because of polar attraction forces. Too 

high amount of maleic anhydride may hold the coupler too close to the polar surface 
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and not allow sufficient interaction with the continuous non-polar phase (Keener, 2003). 

In other words, MAPP may have covered CE particles and MAPP couldn’t have 

diffused into matrix due to high amount of MAPP at low fiber loadings. It would be a 

better choice to add MAPP with respect to amount of filler in the matrix. 

Nielsen model explained in Chapter 3 was also applied to CE/PP composites at 

30 wt% loading. S parameters were 0.965, 1.050, 1.046 and 1.281 for untreated, AS, 

MS and MAPP treated composites, respectively. Increasing trend with coupling agent 

treatment could be observed. Values greater than unity indicate lesser stress 

concentration effect, thus better adhesion between fiber and matrix, hence MAPP 

exhibited the best performance in terms of enhanced interfacial adhesion. 

 

5.2.2. Young’s Modulus of Composites 

 

 The effect of filler content and type and coupling agents on Young’s Modulus of 

the composites were studied. It was well known that incorporation of fillers or fibers 

into a ductile thermoplastic matrix increases Young’s Modulus since fillers or fibers 

decrease deformation capacity of thermoplastic matrix in the elastic zone (Colom, 

2003). Adhesion between fiber and matrix can have additional effects on Young’s 

Modulus since interface has a great impact on deformation capacity of composites. 
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Figure 5.13. Effect of fiber loading and treatment type on Young’s Modulus of PP/C 

composites. 
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 As seen in Figure 5.13, Young’s Modulus tends to increase with increasing CE 

loading. 40 wt% of CE had increased Young’s Modulus from 1243 MPa to 3910 MPa 

which corresponds to a 214% increase. When effect of coupling agents on Young’s 

Modulus of PP/CE composites was investigated (Figure 5.14) , it can be deduced that 

none of the coupling agents had a significant influence on Young’s Modulus except for 

MAPP. There were fluctuations in Young’s modulus of composites treated with AS or 

MS compared to untreated composites but these fluctuations were generally in the range 

of error.  This is an evidence that AS and MS did not change interface or deformation 

capacity of the composites, thus Young’s Modulus was not significantly affected.  

MAPP had a great influence on Young’s Modulus of CE/PP composites, especially at 

high loadings. The same discussion of effect of MAPP on tensile strength is valid for 

the discussion of Young’s Modulus. At low loadings, too high amount of MAPP had 

covered CE particles and interfacial strength was decreased, thus Young’s Modulus of 

composites was not affected significantly by employment of MAPP. However, at 30 and 

40wt% CE loading, Young’s Modulus increased 57.1 and 34.2 % compared to untreated 

composites at the same loading, respectively. This is an indicator of better adhesion 

between fiber and matrix.  
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 Figure 5.14. Effect of fiber and treatment type on Young’s Modulus of PP/CE, SD, 

WS composites at 30wt% fiber loading. 
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5.2.3. Strain at Break and Energy to Break of Composites 

 

Strain at break of composites is a measure of ductility in polymer composites. 

High values of elongation at break indicate that composite is ductile where as low 

values indicate that composite is brittle. Energy to break is the area under the stress-

strain curve and is the amount of energy absorbed up to fracture and is a measure of 

toughness. 
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Figure 5.15. Effect of CE loading on strain at break and energy to break of PP/CE 

composites. 

 

 Figure 5.15 illustrates effect of fiber loading on elongation at break and energy 

to break of PP/CE composites. It was clearly observed that loading had an adverse 

effect on both elongation at break and energy to break. It has to be mentioned that 

elongation at break and energy to break of pure PP is 418% and 12 N.m, respectively. 

Only 10wt% loading of CE had a great impact on elongation and toughness of 

composites. Elongation at break decreased from 418% to about 8% and energy to break 

decreased from 12 N.m to 0.35 N.m. These observations clearly show that incorporation 

of particles causes a brittle behavior in the composites compared to ductile 

thermoplastic matrix, even at low fiber loadings. This is because particles or fibers 

restrict deformation capacity in elastic zone as well as plastic zone. Restricted 
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deformation capacity in the elastic zone causes increase in modulus whereas restricted 

deformation capacity in the plastic zone causes decreased elongation at break and 

toughness.  

Figures 5.16 and 5.17 illustrate the deviation of strain at break and energy to 

break of CE, SD and WS composites with AS, MS and MAPP treatment, respectively. 

Considering error bars, AS and MS treatment did not change strain at break and energy 

to break of composites significantly for three types of composites, but MAPP 

significantly reduced the two responses. The reduction in strain at break was 33.5, 33.9, 
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Figure 5.16. Effect of fiber and treatment type on strain at break of PP/CE, SD, WS 

composites at 30wt% fiber loading. 
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Figure 5.17. Effect of fiber and treatment type on energy to break of PP/CE, SD, WS 

composites at 30wt% fiber loading. 
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and 44.8% for CE, SD, and WS/PP composites, respectively. Similarly, reduction in 

energy to break was  10.0, 21.4 and 33.3% for  for CE, SD, and WS/PP composites, 

respectively. MAPP have reduced strain at break and, consequently energy to break 

values of composites due to enhanced adhesion between fiber and matrix. Better 

adhesion yields to more restriction of deformation capacity of composites, thus 

catastrophic failure occurs after small strain deformations. It would be expected that 

silane coupling agents would decrease strain at break and toughness of composites due 

to enhancement of adhesion between polymer and fiber but it seems that limited 

enhancement of the interface was not reflected in toughness of the composites.  

 

 5.3. Morphological Properties of Composites 

 

 Effect of surface treatment on dispersion of fiber in the matrix, interfacial 

adhesion between fiber and matrix and fracture modes of the composites were studied 

by examining fracture surface of PP/CE,SD and WS composites at 30wt% fiber loading. 

Silane treatment was applied at 1% wt ratio with respect to fiber weight. MAPP was 

applied at a 5wt% ratio with respect to PP weight. Figure 5.18-20 illustrate fracture 

surfaces of  CE, SD and WS without treatment or with 3 different surface treatments at 

100x magnification, respectively. At the first sight, it can be easily observed that all 

types of fibers were well dispersed in the matrix, regardless of surface treatment 

employed. This observation proves that efficient mixing of fibers in the matrix was 

achieved via melt mixing of fibers and PP in Rheomixer and compression molding in 

the polymer press.  In Figure 5.18, particulate structure of cellulose can be observed. 

Figures 5.19 and 5.20 reveal that SD and WS were predominantly in fiber form and WS 

has higher fiber length and aspect ratio than SD. SD and WS composites consist of 

fibers. It can be seen that fibers were oriented randomly along the matrix. When effect 

of surface treatments on fracture surface of composites were compared, it was observed 

that AS and MS did not cause a change on the fracture surface of composites for both 

CE, SD and WS composites whereas MAPP treatment changed fracture mode 

significantly. Comparison of surface treatments shows that surface roughness of 

composites treated with MAPP is significantly lower than that of untreated or AS and 

MS treated composites. Decreased surface roughness with employment of MAPP is a 

cause of enhanced stress transfer between fiber and matrix via enhanced fiber matrix 
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adhesion. Fiber or particle pull out from the matrix in the presence of a tensile load is an 

indicator of lack of adhesion between fiber and matrix and increases surface roughness 

of fracture surface. These observations were also confirmed by tensile test results. 

Tensile strength of composites significantly increased with employment of MAPP for 

all composite types. AS and MS did not yield a significant increase in tensile strength 

since adhesion could not be improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. SEM micrographs of (a) untreated (b) AS treated (c) MS treated (d) MAPP 

treated CE/PP composites at 30 wt% loading and x100 magnification. 

(a) (b) 

(c) (d) 
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Figure 5.19. SEM micrographs of (a) untreated (b) AS treated (c) MS treated (d) MAPP 

treated SD/PP composites at 30 wt% loading and x100 magnification. 
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Figure 5.20. SEM micrographs of (a) untreated (b) AS treated (c) MS treated (d) MAPP 

treated WS/PP composites at 30 wt% loading and x100 magnification. 
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Figures 5.21-23 depict a more detailed view of the same composites in the same 

sequence at 1000 times magnification. Detailed view of fracture surface of composites 

enables a deeper understanding of interface and nature of fracture. As seen in Figure 

5.21-(a-c), cellulose particles exhibited poor wetting by polymer matrix. Particles were 

not covered with a polymer layer and there were voids around the particles. This is a 

proof that PP was easily separated from C along the interface because of low interfacial 

adhesion. On the contrary, MAPP treated PP/CE composites were well embedded in the 

matrix with surface coverage by the matrix as seen in Figure 5.21-d. In Figure 5.22-a, 

fiber pull out accompanied by void formations could be observed for untreated PP/SD 

composites. AS and MS treatment improved interfacial adhesion to some extend. There 

is less fiber pull out and more interfacial adhesion as seen in Figure 5b,c. In addition to 

fiber pull out as the mode of fracture, fiber breakage can also occur for MAPP treated 

composites, as seen in Figure 5.23d. for PP/WS composites. This is an evidence of 

effective stress transfer between fiber and matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. SEM micrographs of (a) untreated (b) AS treated (c) MS treated (d) MAPP 

treated CE/PP composites at 30wt% loading and x1000 magnification. 

 

(a) (b) 

(c) (d) 



 71

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 SEM micrographs of (a) untreated (b) AS treated (c) MS treated (d) MAPP 

treated SD/PP composites at 30wt% loading and x1000 magnification. 

(a) (b) 

(c) (d) 
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Figure 5.23. SEM micrographs of (a) untreated (b) AS treated (c) MS treated (d) MAPP 

treated WS/PP composites at 30wt% loading and x1000 magnification.

(a) (b) 

(c) (d) 
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 Mechanical properties had shown that there is a significant decrease in 

elongation at break and toughness of composites when MAPP treatment was employed. 

In the light of SEM observations, it is evident that MAPP decreased fiber pull-out by 

increasing fiber-matrix adhesion and decreased void formations around the fibers. Voids 

around the fibers and fiber pull out of the composites would have increased energy 

dissipation while fracture of composites, which has a positive impact on toughness of 

composites. It is obvious that voids around fibers increased the path of crack penetration 

in the transverse direction.  Decreased surface roughness of fracture surface of 

composites with employment of MAPP is a direct evidence of decreased path distance 

during crack propagation, decreasing elongation at break and toughness of composites 

accordingly. Ichazo et al (2001) suggested another explanation to decreased elongation 

at break with employment of MAPP. They suggested that this behavior of elongation at 

break when composites contain MAPP can be due to acidic nature of functionalized 

compatibilizers since these compatibilizers can accelerate degradation of cellulose 

fibers at the processing temperature, and this, in turn  leads to fragilization of cellulose 

fibers.  

  

5.4. Water Sorption of Composites 

 

Cellulose is a hydrophilic polymer, which is capable of forming hydrogen bonds 

with water molecules because of hydroxyl group in its chemical structure. When 

incorporated into PP matrix, cellulose is still capable of absorbing water. Water 

penetrates into interface between PP and cellulose that decreases interfacial adhesion 

between fiber and matrix. This phenomenon has a great negative impact on mechanical 

properties of composites. In this study, effect of fiber loading and coupling agents on 

water sorption of PP/CE,SD and WS composites were investigated. Figure 5.24 shows 

effect of CE loading on water sorption of PP/CE composites. It is clearly seen that water 

sorption increases with increasing CE loading due to increasing hydrophilicity of the 

composite as expected. The increase is almost in a linear fashion.  
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Figure 5.24. Effect of CE loading on water sorption of PP/CE composites.  

 

Linearity in the graph proves that the composites did not exhibit agglomeration 

which would complicate water sorption tendency of composites with increasing fiber 

loading.  

 Figure 5.25 illustrates effect of coupling agent and fiber type on water sorption 

of composites at 30% fiber loaded composites. It was observed that three coupling 

agents decreased water sorption of composites at different levels for the three fiber 

types. The decline in water sorption of composites with respect to fiber and coupling 

type is shown in Table 5.3. 

R2 = 0.9877

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

C wt%

W
at

er
 s

or
pt

io
n(

%
)



 75

Figure 5.25. Effect of coupling agents and fiber type on water sorption of  

composites. 

 

Table 5.3. % decrease in water sorption with changing coupling agent for CE, SD 

and WS loaded composites. 

% decrease AS MS MAPP 

CE 8.5 7.8 20.5 

SD 10.9 21.9 37.9 

WS 25.1 22.1 49.8 

 

From Table 5.3, it was observed that MAPP treatment exhibited the best 

performance in terms of decreasing water absorption of the composites. As mentioned 

before, all three coupling agents are capable of bonding to hydroxyl group of cellulose 

either by hydrogen or covalent bonds. Hydroxyl group reduction is accompanied by 

reduction in hydrophilicity. More hydrophobic nature yielded a decrease in water 

sorption of composites. Decrease in water sorption can be treated as an indicator of 

enhanced interfacial adhesion between fiber and matrix since tensile strength is in 

correlation with water sorption results, thus MAPP treatment caused higher tensile 

strength compared to silane treatment. Ichazo et al (2001) employed vinil-tris-2-

metoxietoxi-silane and MAPP to PP/wood flour composites and they found that silane 
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and MAPP treatment have decreased water sorption 30 and 35% at 40% filler loading, 

respectively.   

 Comparison of water sorption results of three fiber types shows that WS is 3 and 

5 times more capable of absorbing water compared to SD and CE, respectively. WS was 

also much more sensitive to coupling agents since enhancements in water sorption is 

much more pronounced compared to CE and WS. A possible cause of this observation 

could be greater porosity of WS fibers compared to CE and SD fibers. Fiber length is 

also greater in WS compared to SD. Void fraction experiments also showed that WS 

composites exhibited the highest void fraction. SD also have a higher void fraction than 

CE. Higher void fraction enables water molecules penetrate into the composite more 

easily. Coupling agents decreased void fraction which is a cause of restricted water 

penetration through matrix. Restriction of water penetration decreases water sorption of 

composites. This phenomenon can be treated as a dominating cause of decrease in water 

sorption with coupling agent employment which is also interconnected with adhesion 

phenomenon.  

 

5.5. Density Measurements of Composites 

 

Density measurements of composites, PP and MAPP were conducted with 

according to Equation 5.3 which is based on Archimedes principle. Theoretical densities 

of composites were calculated using densities of fibers measured by gas picnometer. 

Theoretical densities of composites were calculated employing Equation 5.3. 

 

dtheo= Σmi /Σ (mi/di)                                           (5.3) 

 

where  

dtheo= Theoretical density of composite 

mi= Mass of component i in the composite 

di= Density of component i in the composite. 

 

Densities of fibers were listed in Experimental section previously. Densities of 

neat PP and MAPP were; 

 dPP= 0.9022 g/cm3 

 dMAPP= 0.9011 g/cm3 
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Void fractions (ε) of composites were determined by calculating the deviation in 

experimental density compared to theoretical density by using equation 5.4. 

 

dexp= (1- ε  ) dtheo                                                                                                 (5.4) 

 

where dtheo is the theoretical density. Comparison of theoretical and experimental 

densities of PP/CE composites with changing fiber weight fraction is shown in Figure 

5.26. 

 

Figure 5.26. Experimental and theoretical densities of PP/CE composites with respect 

to CE loading. 

 

 Deviation of experimental density from theoretical density accounts for void 

fraction of composites. Deviation increases with increasing CE loading as a 

consequence of increase in void fraction. Figure 5.27 illustrates change in void fraction 

with changing CE loading. It was observed that void fraction increased from 0.3% to 

1.4% with increasing CE loading from 10% to 40%. The increase is in a linear fashion. 

Linearity of void fraction suggests that mode of void formation is the same regardless of 

CE loading. Agglomeration of particles or dispersion incapability of the fiber in the 
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measurements. A greater void fraction with increasing fiber loading is accompanied 

with an increase in water sorption as mentioned in Chapter 3.  

 

Figure 5.27. Effect of CE loading on void fraction of PP/CE composites. 

 

 

Figure 5.28 shows effect of type of coupling agent and fiber type on void 

fraction of 30wt% loaded PP/fiber composites at optimum coupling agent concentration. 

It was observed that all three coupling agents decreased void fraction, MAPP 

established the highest void fraction decrease among three types of fibers. These results 

are consistent with mechanical tests and water sorption measurements. MAPP exhibited 

maximum tensile strength and minimum water sorption decline in all three types of 

PP/fiber composites due to better adhesion between fiber and matrix. WS exhibited the 

highest void fraction parallel to water sorption results. SEM observations also proved 

better adhesion and decreased void  fraction via MAPP treatment. 
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Figure 5.28. Effect of coupling agent and fiber type on void fraction of composites. 

 

 

5.6. FTIR Analysis of Fibers and Composites 

 

 FTIR analysis was used in order to characterize chemical composition of fibers, 

PP and coupling agents. New bonds formed in the composites with the employment of 

coupling agents were also studied.  Table 5.4 shows characteristic peaks associated in 

cellulose based compounds. Lignin and hemicellulose are other natural constituents of 

natural fibers. Figure 5.29 shows FTIR spectra of CE, SD and WS at two different 

wavenumber ranges.  

As seen in Figure 5.29 and 5.30, there are additional peaks of WS and SD 

compared to CE. It has to be emphasized that CE is a synthetic compound and only 

contains cellulose whereas SD and WS are natural compounds and may contain 

constituents other than cellulose. The peak around 1734 cm-1 is specific to SD and WS 

and assigned to C=O stretching in  hemicellulose. In addition, the peak specific to SD 

and WS at 1507 cm-1 is assigned to aromatic skeleton vibrations of lignin. The peaks 

observed for SD and WS at around 1460 cm-1 and 1420 cm-1 are assigned to CH 

deformation in lignin. These results prove that only constituent of CE is cellulose but 

WS and SD contains cellulose, lignin and hemicellulose in their chemical structure. 
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Table 5.4 Characteristic bands of natural fibers (Hinterstoisser and Salmen, 2000; 

Olssan and Salmen, 2004; Colom, 2003; Castellano, 2004; Pandey, 2003) 

Wavenumber(cm-1)  Assignment 

3100-3400 -OH hydrogen bonding stretching 

2990 C-H stretching(cellulose) 

1734 C=O stretching in xylans hemicellulose 

1650 Free water 

1505-1511 Aromatic skeleton in lignin 

1462 and 1425 C-H deformation in lignin 

1375 C-H deformation in cellulose 

1335 -OH in plane bending (cellulose) 

1158-1162 C-O-C vibrations (cellulose) 

1122 C-O stretching(cellulose) 

898 C-H deformation(cellulose) 
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Figure 5.29. FTIR spectra of CE, SD and WS  (400-4400 cm-1) 
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Figure 5.30. FTIR spectra of CE, SD and WS  (1100-2000 cm-1) 

 

In Figure 5.31, FTIR spectra of untreated, 1wt% AS and MS treated CE fibers 

were illustrated. The goal was to determine chemical changes occurred with 

employment of AS and MS. Chemical structures of AS and MS can be seen in Figure 

4.2. Chemical structure as well as condensation reactions of silane coupling agents and 

bond formations between cellulose and coupling agents via surface treatment. was to be 

determined. Condensation reactions yields Si-O-Si linkage which have band at around 

1135 cm-1. Si-O-Cellulose has peak at 1200 cm-1. In addition, Si-OCH3 bonds has peaks 

around 1080-1100 cm-1. Si-OH groups which are products of hydrolization reactions 

have peak at 1015 cm-1.  NH2 group in AS has band around 1575 cm-1(Castellano, 

2004). FTIR specta of surface treated CE revealed none of these bands because amount 

of coupling agent is so low compared to fibers. Metin  (2002) observed slight decreases 

in absorbtion band at 3400 cm-1 with silane treatment . The band at 3400  cm-1 is caused 

by OH vibrations and can be treated as a measure of hydrophilicity. The band at 2990 

cm-1 belongs to C-H stretching of cellulose and do not change with silane treatment. 

Ratio of these two bands would be used to determine relative degree of hydrophilcity to 

depict effect of coupling agents on hydrophilicity.  
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Table 5.5. Variation of I3400/I2990 with respect to silane coupling agents. 

Treatment I3400/I2990 

Untreated CE 2.74 

1wt% AS treated CE 2.17 

1wt% MS treated CE 2.45 
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Figure 5.31. FTIR spectra of CE, untreated and treated with 1wt% AS and MS 

 

As seen in Table 5.5 two, I3400/I2990 decreases with employment of silane 

coupling agents. The decrease is much more pronounced for AS treated CE. These 

results reveal that AS and MS is capable of decreasing hydrophilicity of CE.  
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Table 5.6. Characteristic bands of polypropylene (Metin, 2002) 

Wavenumber(cm-1)  Assignment 

790, 1158 i-polypropylene 

1131, 1199, 1230 s-polypropylene 

995-997 t-polypropylene 

2930 -CH2 asymmetric stretching 

2860 -CH2 symmetric stretching 

1470 -CH2 deformation 

2970 -CH3 asymmetric stretching 

2870 -CH3 symmetric stretching 

1460 -CH3 asymmetric deformation 

1375 -CH3 symmetric deformation 

 

FTIR spectra of composites with AS and MS treatments did not exhibit any 

changes because of the reasons mentioned above but MAPP treatment in PP/CE 

composites at 30wt% loadings, there were some new peaks associated with MAPP 

treatment due to stretching of carbonyl groups on MAPP, as seen in Fgures 5.32.and 33 

(Bettini, 2000; Qiao, 2004; Qiu, 2004; Prachayawarakorn, 2003). The new bands 

observed are 1710 cm-1 characteristic of carbonyls from carboxylic dimer acid, 1785 

and 1867 cm-1 characteristic of five-membered cyclic anhydride carbonyls (Bettini, 

2000). Activation of carbonyl groups leads ester linkages between cellulose and maleic 

anhdride group of MAPP, thus chemical coupling of cellulose to PP is achieved. 
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Figure 5.32. FTIR spectra of 30wt% PP/CE composites (a) untreated (b) treated with 

10wt% MAPP (400-4400 cm-1) 
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Figure 5.33. FTIR spectra of 30wt% PP/CE composites (a) untreated (b) treated with 

10wt% MAPP (1500-1950 cm-1) 
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Chapter 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this study, three natural fibers, namely cellulose (CE), sawdust (SD) and 

wheat straw (WS) were used as reinforcement for PP matrix. Three coupling agents, (3-

aminopropyl)-triethoxysilane (AS), methacriloxy propyl trimethoxy silane (MS), and 

maleic anhydride grafted polypropylene (MAPP) were employed in order to enhance 

interfacial interactions between hydrophilic fiber and hydrophobic matrix. As a 

consequence, it was aimed to improve mechanical and water sorption properties of 

PP/fiber composites by enhancing interfacial interactions. 

Torque data, which was a measure of rheological properties of composites, 

revealed that incorporation of fibers into PP increased stabilization torque of the 

composites. The extent of increase at 40wt% CE loading was about 11%. Silane 

treatments increased stabilization torque values up to 1 wt% silane treatment with 

respect to fiber weight, irrespective of the fiber employed due to increased interactions 

between fiber and matrix. MAPP treatment decreased stabilization torque due to 

plasticizing  effect of MAPP.  

Tensile tests were also conducted to investigate effect of fiber loading and type 

and coupling agents on tensile responses such as tensile strength, Young’s Modulus, 

Strain at break and toughness. Tensile strength of the PP/fiber composites tends to 

decrease and Young’s Modulus tends to increase with increasing fiber volume fraction. 

Comparison of three coupling agents proved that MAPP treatment exhibited the best 

performance in terms of tensile strength and Young’s Modulus, especially for PP/SD 

composites. The increase in tensile strength with employment of MAPP was up to 50% 

for the PP/SD composites whereas AS and MS treatment provided at most 14.2% 

increase in tensile strength at 30wt% fiber loading. Pukanzsky and Nielsen models were 

used to evaluate interfacial interactions and adhesion between fiber and matrix. The 

improvement in adhesion between them with coupling agents was confirmed by these 

models. Young’s Modulus increase in untreated composites was over 200% and MAPP 

treatment provided over 50% further increase in Young’s Modulus. Optimum coupling 

agent concentration was found to be 1 wt% with respect to fiber and 5wt% MAPP with 

respect to PP for maximum mechanical properties. Strain at break and toughness of 
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composites declined drastically even at low fiber loadings. MAPP treatment give rise to 

decline in toughness due to enhanced interactions between fiber and matrix whereas 

silane treatment did not have a significant effect on toughness of PP/fiber composites. 

In the light of these measurements, interfacial interactions, thus stress transfer between 

fiber and matrix, were considerably improved via MAPP treatment. Silane treatments 

also had the same effect but to a lesser extend.  

SEM studies confirmed mechanical test results, proving better adhesion with the 

employment of MAPP. Void and crack formations around the fibers were observed to 

decrease with MAPP treatment. Silane treatment did not provide an observable 

enhancement in adhesion between fiber and matrix. 

Water sorption of the composites pointed out that water sorption of the 

composites increase in a linear fashion with increasing fiber loading. WS composites 

were capable of sorbing water 3-5 times more than SD and CE composites. Parallel to 

mechanical test results, MAPP performed superior performance in decreasing water 

sorption of composites.  Up to 50% decrease in WS/PP composites was reported with 

employment of MAPP. AS and MS also exhibited decrease in water sorption due to 

decreased hydrophilicity of the fibers and enhanced interaction and void prevention via 

surface treatment of the fibers.  

Density measurement results also confirmed water sorption and mechanical test 

results of the composites. Decreased void fraction with employment of coupling agents 

was observed in all fiber loaded composites. Parallel to water sorption tests, MAPP had 

decreased void fraction to a higher extend than silane treatments.  

FTIR analysis put forward the decrease in hydrophilicity with silane treatment 

by comparing the band at 3400 cm-1, which belongs to OH groups on cellulose, and The 

band at 2990 which is a characteristic peak of cellulose. The ratio of these two bands 

decreased from 2.74 to 2.17 for AS treatment and to 2.45 for MS treatment. FTIR 

results also showed that WS and SD contain hemicellulose and lignin other than 

cellulose whereas cellulose particulates were pure. New bands associated with carbonyl 

group on MAPP were determined when MAPP treated and untreated composites were 

compared. Consequently, mechanical test and water sorption results and scanning 

electron micrographs (SEM) of the PP/fiber composites indicated that PP composites 

containing SD trated with MAPP experienced maximum improved compatibility and 

interfacial adhesion between fiber and matrix. 
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All these results bring about the fact that SD treated with MAPP, which is a 

waste product would serve as a promising composite material to be used in the field of 

building material or outdoor applications because of its superior mechanical properties 

and limited water sorption. AS and MS treatment should further be studied to expose 

the high potential coupling efficiency. Parameters related to treatment condition such as 

mixing time, mixing temperature and curing of the fibers should be investigated since 

silanes were proven to have a good coupling efficiency for some cases in natural fiber 

reinforced thermoplastic composites. 

Potential composite applications of other natural fibers abundant in Turkey 

should be investigated. Another need is a full characterization of the composites 

including flexural, impact, fatigue properties of composites. Weathering or fungal 

exposure can also be studied for the potential outdoor applications of natural fiber-

thermoplastic composites. 
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APPENDICES 



APPENDIX A       
        

Mechanical Properties of CE/PP Composites 
        

Treatment  wt % (fiber) 
Stress @ 

Peak 
(N/mm²)  

Strain @ 
Peak (%) 

Energy to 
Break (N.m) 

Stress @ 
Break 

(N/mm²)  
Strain @ 
Break (%)  

Youngs 
Modulus 
(N/mm²)  

U
nt

re
at

e
d

 

 28.486 6.24 0.437 27.04 10.24 1816.90
 27.683 5.72 0.361 26.50 8.56 1926.19

10 26.941 4.96 0.264 26.23 6.44 2161.80
 27.351 5.4 0.298 25.95 7.88 2015.87
 27.603 5.4 0.248 27.08 6.2 2034.44
ave. 27.61 5.54 0.32 26.56 7.86 1991.04
st.dev 0.57 0.47 0.08 0.50 1.65 128.64

20 

23.147 3.52 0.18 22.03 4.88 2617.19
23.717 3.44 0.195 19.50 5.88 2744.00
23.443 3.76 0.249 22.12 6.72 2481.47
23.527 3.52 0.143 23.22 4.12 2660.16
23.255 3.32 0.223 21.81 5.92 2787.80

ave. 23.42 3.51 0.20 21.74 5.50 2658.12
st.dev 0.22 0.16 0.04 1.36 1.01 119.46

30 

22.701 2.72 0.105 22.29 3.04 3321.69
21.464 2.56 0.083 21.28 2.91 3336.98

19.58 2.8 0.076 19.05 5.2 2783.16
20.84 2.77 0.109 19.41 4.01 2994.34

18.671 2.68 0.125 17.76 4.32 2772.78
ave. 20.65 2.71 0.10 19.96 3.90 3041.79
st.dev 1.58 0.09 0.02 1.81 0.95 277.03

40 

18.035 1.91 0.071 17.63 2.36 3758.08
19.809 2.2 0.093 19.04 3 3583.63
17.532 1.81 0.044 17.42 2 3855.10
19.186 1.8 0.043 19.19 1.8 4242.24
19.014 1.84 0.07 18.29 2.44 4112.81

ave. 18.72 1.91 0.06 18.31 2.32 3910.37
st.dev 0.92 0.17 0.02 0.80 0.46 266.52

          

A
S

 1
%

 

30 

20.646 2.32 0.082 20.39 2.96 3541.86
23.363 2.48 0.135 20.64 3.84 3749.38
23.889 2.96 0.113 23.64 3.4 3212.10
23.239 3 0.211 21.78 5.24 3083.04

21.16 3.24 0.181 19.92 5.28 2599.28
ave. 22.46 2.80 0.14 21.27 4.14 3237.13
st.dev 1.45 0.38 0.05 1.49 1.07 443.42

M
S

 1
%

 

30 

23.529 3.16 0.144 22.97 4.12 2963.46
21.826 2.92 0.164 20.64 4.68 2974.91
23.631 3.16 0.193 22.15 5.08 2976.31
20.576 2.6 0.115 20.07 3.68 3149.71
22.295 2.36 0.087 21.62 2.72 3759.92

ave. 22.37 2.84 0.14 21.49 4.06 3164.86
st.dev 1.27 0.35 0.04 1.16 0.92 341.51

M
A

P
P

 5
%

 

30 

26.818 2.32 0.108 26.32 2.72 4600.67
27.986 2.6 0.098 27.97 2.88 4284.01
29.558 2.28 0.065 29.56 2.67 5159.69
26.167 2.16 0.087 26.08 2.56 4821.51
26.544 2.1 0.071 26.54 2.1 5030.72

ave. 27.41 2.29 0.09 27.30 2.59 4779.32
st.dev 1.38 0.19 0.02 1.46 0.30 348.89

                 

        

        

        

        

        

               A1



Treatment  wt % (fiber) 
Stress @ 

Peak 
(N/mm²)  

Strain @ 
Peak (%) 

Energy to 
Break (N.m) 

Stress @ 
Break 

(N/mm²)  
Strain @ 
Break (%)  

Youngs 
Modulus 
(N/mm²)  

A
S

 0
.5

%
 

  21.122 2.56 0.111 20.05 3.66 3283.81
 20.65 2.89 0.154 19.84 4.14 2843.84

30 21.545 2.36 0.105 19.65 3.76 3633.44
 19.98 2.47 0.107 18.24 3.57 3219.45
 22.264 2.5 0.16 20.43 5.01 3544.43
ave. 21.11 2.56 0.13 19.64 4.03 3304.99
st.dev 0.87 0.20 0.03 0.84 0.59 310.50

A
S

 2
.5

%
 

  20.41 2.21 0.106 19.84 2.99 3675.65
 21 2.83 0.135 20.01 3.97 2953.36

30 21.75 2.65 0.148 20.91 4.36 3266.60
 19.51 2.56 0.135 18.56 4.51 3033.20
 20.64 2.29 0.114 19.83 3.81 3587.21
ave. 20.66 2.51 0.13 19.83 3.93 3303.20
st.dev 0.82 0.26 0.02 0.84 0.60 322.50

M
S

 0
.5

%
 

  20.11 2.36 0.112 19.75 3.01 3391.43
 21.12 2.54 0.098 20.65 2.89 3309.35

30 20.65 2.83 0.137 20.17 3.24 2904.13
 22.04 2.51 0.144 21.02 3.98 3494.79
 19.91 2.88 0.161 19.07 4.47 2751.45
ave. 20.77 2.62 0.13 20.13 3.52 3170.23
st.dev 0.86 0.22 0.03 0.76 0.68 323.96

M
S

 2
.5

%
 

  20.47 2.24 0.108 20.01 2.65 3637.08
 21.68 2.41 0.117 21.31 2.98 3580.35

30 19.562 2.91 0.147 18.97 3.43 2675.49
 20.11 2.21 0.088 19.76 2.94 3621.62
 21.127 2.66 0.12 21 3.42 3161.11
ave. 20.59 2.49 0.12 20.21 3.08 3335.13
st.dev 0.83 0.30 0.02 0.95 0.34 417.97

A
S

 1
%

  

  26.897 5.72 0.352 25.92 8.68 1871.50
 28.622 5.44 0.762 26.395 15.36 2094.04

10 26.951 5.88 0.466 25.78 10.48 1824.23
 28.45 6.12 0.477 26.688 11.52 1850.18
 28.8 5.88 0.422 27.643 9.76 1949.39
ave. 27.94 5.81 0.50 26.49 11.16 1917.87
st.dev 0.94 0.25 0.16 0.74 2.57 109.00
 25.614 4.08 0.204 25.1 5.4 2498.62
 24.502 4.64 0.364 22.954 9.08 2101.68

20 24.83 4.08 0.293 23.457 7.72 2422.14
 24.462 3.92 0.311 22.72 8.2 2483.64
 24.788 3.66 0.151 24.136 4.04 2695.53
ave. 24.84 4.08 0.26 23.67 6.89 2440.32
st.dev 0.46 0.36 0.09 0.96 2.09 215.30
 20.646 2.32 0.082 20.39 2.96 3541.86
 23.363 2.48 0.135 20.64 3.84 3749.38

30 23.889 2.96 0.113 23.64 3.4 3212.10
 23.239 3 0.211 21.78 5.24 3083.04
 21.16 3.24 0.181 19.92 5.28 2599.28
ave. 22.46 2.80 0.14 21.27 4.14 3237.13
st.dev 1.45 0.38 0.05 1.49 1.07 443.42

40 20.1 1.88 0.057 19.833 1.92 4255.21
 19.943 1.84 0.073 18.4 2.6 4313.76
 18.804 1.82 0.069 18.38 2.56 4112.08
 18.047 2.04 0.111 17.38 3.88 3520.93
 17.673 1.91 0.073 16.473 2.6 3682.65
ave. 18.91 1.90 0.08 18.09 2.71 3976.93
st.dev 1.09 0.09 0.02 1.26 0.71 354.86

        
        
       A2



Treatment  wt % (fiber) 
Stress @ 

Peak 
(N/mm²)  

Strain @ 
Peak (%) 

Energy to 
Break (N.m) 

Stress @ 
Break 

(N/mm²)  
Strain @ 
Break (%)  

Youngs 
Modulus 
(N/mm²)  

M
S

 1
%

 

  27.593 5.76 0.412 25.963 10.48 1906.60
 28.348 6 0.598 24.883 15.28 1880.42

10 27.655 6.64 0.656 25.007 16.04 1657.63
 26.314 6.28 0.546 24.919 14.32 1667.67
 28.491 6.6 0.504 27.153 12.24 1718.09
ave. 27.68 6.26 0.54 25.59 13.67 1766.08
st.dev 0.86 0.38 0.09 0.98 2.28 118.92
 24.034 4.12 0.189 22.917 5.88 2321.73
 22.932 3 0.119 22.223 3.76 3042.31

20 24.063 4.52 0.221 22.92 6.88 2118.82
 23.378 3.6 0.153 22.72 4.72 2584.57
 23.482 4.08 0.245 22.376 7.32 2290.65
ave. 23.58 3.86 0.19 22.63 5.71 2471.62
st.dev 0.48 0.58 0.05 0.32 1.48 359.91
 23.529 3.16 0.144 22.97 4.12 2963.46
 21.826 2.92 0.164 20.64 4.68 2974.91

30 23.631 3.16 0.193 22.15 5.08 2976.31
 20.576 2.6 0.115 20.07 3.68 3149.71
 22.295 2.36 0.087 21.62 2.72 3759.92
ave. 22.37 2.84 0.14 21.49 4.06 3164.86
st.dev 1.27 0.35 0.04 1.16 0.92 341.51
 18.017 2.26 0.078 17.942 2.96 3172.91
 17.906 2.12 0.091 17.441 3.25 3361.60

40 19.42 2.48 0.098 18.659 3.19 3116.60
 18.731 2.06 0.1 18.118 2.79 3618.90
 18.32 2.14 0.107 17.25 3.11 3407.18
ave. 18.48 2.21 0.09 17.88 3.06 3335.44
st.dev 0.62 0.17 0.01 0.56 0.19 200.31

M
A

P
P

 5
%

 

 26.642 6.48 0.513 25.268 12.92 1636.35
 26.065 6.04 0.478 24.64 11.68 1717.53

10 25.97 6.48 0.467 24.563 12.12 1595.07
 25.985 6.28 0.618 24.193 15.52 1646.82
 27.666 6.32 0.402 25.584 10.2 1742.26
ave. 26.47 6.32 0.50 24.85 12.49 1667.60
st.dev 0.73 0.18 0.08 0.56 1.96 60.70
 24.822 4.36 0.391 22.445 10.56 2265.86
 25.109 3.56 0.194 23.921 5.44 2807.13

20 26.167 3.6 0.275 24.509 6.8 2892.91
 24.407 4.52 0.233 23.316 6.56 2149.11
 24.98 4 0.247 23.87 6.4 2485.51
ave. 25.10 4.01 0.27 23.61 7.15 2520.10
st.dev 0.65 0.43 0.07 0.78 1.97 325.90
 26.818 2.32 0.108 26.32 2.72 4600.67
 27.986 2.6 0.098 27.97 2.88 4284.01

30 29.558 2.28 0.065 29.56 2.67 5159.69
 26.167 2.16 0.087 26.08 2.56 4821.51
 26.544 2.1 0.071 26.54 2.1 5030.72
ave. 27.41 2.29 0.09 27.30 2.59 4779.32
st.dev 1.38 0.19 0.02 1.46 0.30 348.89
 27.738 1.82 0.061 27.738 1.82 5334.23
 27.926 1.91 0.071 27.926 1.91 5117.33

40 26.985 1.71 0.057 26.985 1.71 5523.25
 27.327 1.89 0.066 27.327 1.89 5060.56
 26.785 1.8 0.064 26.785 1.8 5208.19
ave. 27.35 1.83 0.06 27.35 1.83 5248.71
st.dev 0.48 0.08 0.01 0.48 0.08 185.06

 
 

A3 



 

APPENDIX B        

        

Mechanical Properties of SD/PP Composites 
        

Treatment  wt % (fiber) 
Stress @ 

Peak 
(N/mm²)  

Strain @ 
Peak (%) 

Energy to 
Break (N.m) 

Stress @ 
Break 

(N/mm²)  
Strain @ 
Break (%)  

Youngs 
Modulus 
(N/mm²)  

U
nt

re
at

e
d

 

  27.857 5.4 0.303 27.3 7.2 2053.16
 27.845 5.8 0.391 26.945 8.84 1910.74

10 26.472 6.32 0.429 25.652 9.72 1667.07
 27.143 5.96 0.395 26.243 9.64 1812.57
 25.173 5.24 0.26 24.867 6.76 1912.00
ave. 26.90 5.74 0.36 26.20 8.43 1871.11
st.dev. 1.12 0.43 0.07 0.98 1.38 142.69
 25.048 5.04 0.24 24.481 6.56 1978.00
 24.676 4.68 0.269 24.014 7.08 2098.51

20 25.297 3.96 0.213 23.572 5.48 2542.48
 23.443 4.4 0.19 23.207 5.44 2120.53
 23.533 5.32 0.29 22.333 7.76 1760.55
 23.586 4.88 0.197 23.366 5.68 1923.61
ave. 24.26 4.71 0.23 23.50 6.33 2070.61
st.dev. 0.84 0.48 0.04 0.73 0.96 265.42
 21.305 3.8 0.149 20.842 4.8 2231.42
 20.618 3.64 0.146 20.253 4.68 2254.39

30 20.786 3.32 0.159 20.056 4.68 2491.82
 21.095 3.28 0.13 20.8 3.92 2559.70
 21.42 2.96 0.12 21.189 3.64 2880.12
ave. 21.04 3.40 0.14 20.63 4.34 2483.49
st.dev. 0.34 0.33 0.02 0.46 0.53 264.21
 19.048 3.16 0.106 18.984 3.56 2399.08
 18.086 2.64 0.105 17.754 3.2 2726.60

40 18.31 3 0.127 18.026 4.2 2429.13
 18.762 2.64 0.093 18.325 3.36 2828.51
ave. 18.55 2.86 0.11 18.27 3.58 2595.83
st.dev. 0.43 0.26 0.01 0.53 0.44 214.28
              

A
S

 1
%

 

  23.323 3.16 0.151 22.631 4.4 2937.52
 24.43 3.96 0.21 23.821 5 2455.34

30 22.473 3.6 0.167 22.241 4.48 2484.52
 21.867 3.36 0.131 21.659 3.84 2590.20
 22.984 3.76 0.191 22.4 4.92 2432.88
ave. 23.02 3.57 0.17 22.55 4.53 2580.09
st.dev. 0.96 0.32 0.03 0.80 0.47 208.70

M
S

 1
%

 

  23.851 3.44 0.136 23.764 3.68 2759.51
 21.445 3.52 0.139 21.19 4.36 2424.75

30 22.834 3.4 0.155 22.772 4.08 2672.92
 21.754 2.96 0.169 21.2 6 2925.03
 22.157 3.68 0.176 21.606 5 2396.33
 21.821 3.04 0.11 21.559 3.44 2856.83
ave. 22.31 3.34 0.15 22.02 4.43 2672.56
st.dev. 0.89 0.28 0.02 1.03 0.94 220.44

M
A

P
P

 5
%

 

 32.161 2.92 0.132 32.161 2.92 4383.59
 30.355 2.52 0.089 30.355 2.52 4794.16

30 31.36 2.84 0.106 31.28 3.04 4394.82
 32.07 2.68 0.116 32.07 2.68 4762.63
 32.496 2.92 0.112 32.496 2.92 4429.25
 31.419 3.12 0.124 31.419 3.12 4007.94
ave. 31.64 2.83 0.11 31.63 2.87 4462.06
st.dev. 0.77 0.21 0.01 0.78 0.23 289.35

        
       B1



Treatment  wt % (fiber) 
Stress @ 

Peak 
(N/mm²)  

Strain @ 
Peak (%) 

Energy to 
Break (N.m) 

Stress @ 
Break 

(N/mm²)  
Strain @ 
Break (%)  

Youngs 
Modulus 
(N/mm²)  

A
S

 0
.5

%
 

  22.175 3.21 0.16 21.911 4.7 2749.42
 21.617 3.44 0.147 20.055 4.81 2501.04

30 20.22 3.66 0.121 19.51 4.41 2198.79
 20.711 2.99 0.132 19.9 4.01 2756.85
 22.851 3.74 0.2 20.87 5.66 2431.74
ave. 21.51 3.41 0.15 20.45 4.72 2527.57
st.dev. 1.07 0.31 0.03 0.96 0.61 234.40

A
S

 2
.5

%
 

  20.17 3.05 0.155 19.51 4.17 2632.02
 21.105 3.56 0.165 20.56 5.02 2359.49

30 19.621 4.01 0.198 18.56 6.2 1947.42
 19.31 2.99 0.124 18.98 3.56 2570.36
 22.032 3.66 0.131 21.36 4.21 2395.83
ave. 20.45 3.45 0.15 19.79 4.63 2381.02
st.dev. 1.12 0.43 0.03 1.15 1.02 268.11

M
S

 0
.5

%
 

  22.01 3.56 0.161 21.56 4.01 2460.67
 21.12 3.21 0.14 20.71 3.88 2618.62

30 21.55 2.98 0.17 21.32 3.56 2878.15
 21.11 3.92 0.164 20.82 5.14 2143.31
 20.42 2.77 0.142 20.01 4.1 2933.99
ave. 21.24 3.29 0.16 20.88 4.14 2606.95
st.dev. 0.59 0.46 0.01 0.60 0.60 322.88

M
S

 2
.5

%
 

  20.65 2.91 0.15 20.25 3.55 2824.30
 21.04 3.54 0.169 20.81 4.7 2365.51

30 19.86 3.24 0.13 19.46 4.21 2439.59
 19.77 3.28 0.171 19.51 5.01 2398.92
 21.34 3.71 0.181 20.94 6.07 2289.30
ave. 20.53 3.34 0.16 20.19 4.71 2463.53
st.dev. 0.70 0.31 0.02 0.70 0.94 209.08

M
A

P
P

 2
.5

%
  30.253 2.92 0.105 30.253 2.92 4123.53

 33.908 3.24 0.128 33.908 3.24 4165.24
30 29.651 3.02 0.109 29.651 3.02 3907.65

 30.545 3.12 0.112 30.545 3.12 3896.45
 29.36 2.99 0.105 29.36 2.99 3908.12
ave. 30.74 3.06 0.11 30.74 3.06 4000.20
st.dev. 1.83 0.12 0.01 1.83 0.12 132.53

M
A

P
P

 1
0%

 

  28.813 1.96 0.081 28.813 1.96 4311.12
 28.253 2.08 0.084 28.253 2.08 4195.78

30 27.16 2.32 0.09 27.16 2.32 4659.34
 28.442 1.72 0.075 28.442 1.72 5099.06
 29.941 2.84 0.113 29.941 2.84 4195.96
ave. 28.52 2.18 0.09 28.52 2.18 4492.25
st.dev. 1.00 0.43 0.01 1.00 0.43 388.79

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B2 



 

APPENDIX C        

        

Mechanical Properties of WS/PP Composites 
        

Treatment  wt % (fiber) 
Stress @ 

Peak 
(N/mm²)  

Strain @ 
Peak (%) 

Energy to 
Break (N.m) 

Stress @ 
Break 

(N/mm²)  
Strain @ 
Break (%)  

Youngs 
Modulus 
(N/mm²)  

U
nt

re
at

e
d 

 

 28.431 6 0.297 28.138 7.68 1885.92
 26.633 5.44 0.319 25.455 8.24 1948.52

10 25.434 5.84 0.216 25.338 6.04 1733.34
 27.097 5.8 0.221 27.009 6.08 1859.41
 26.11 6.04 0.358 25.379 8.92 1720.49
ave. 26.74 5.82 0.28 26.26 7.39 1829.54
st.dev. 1.13 0.24 0.06 1.26 1.29 99.21
 22.104 3.52 0.118 21.889 3.76 2499.26
 20.8 3.36 0.143 20.452 4.36 2463.81

20 21.766 4.16 0.148 21.49 4.8 2082.42
 19.882 4.28 0.181 19.506 6.04 1848.84
 22.136 3.26 0.103 22.122 3.51 2702.49
ave. 21.34 3.72 0.14 21.09 4.49 2319.36
st.dev. 0.98 0.47 0.03 1.09 1.00 345.52
 18.04 3.04 0.081 17.92 3.28 2361.95
 18.065 3.04 0.11 17.723 4.04 2365.09

30 16.933 3.24 0.082 16.933 3.48 2080.04
 17.855 3.32 0.098 17.671 3.92 2140.45
 16.654 2.64 0.068 16.292 2.92 2510.72
ave. 17.51 3.06 0.09 17.31 3.53 2291.65
st.dev. 0.67 0.26 0.02 0.68 0.46 177.46
 18.57 2.80 0.114 17.78 3.84 2639.31
 17.507 2.12 0.052 17.507 2.12 3286.69

40 18.48 2.28 0.102 17.96 3.28 3225.89
 16.529 2.04 0.055 16.529 2.04 3224.78
 18.361 2.84 0.083 18.142 3.04 2573.13
ave. 17.89 2.42 0.08 17.58 2.86 2989.96
st.dev. 0.87 0.38 0.03 0.63 0.77 351.98
              

A
S

 1
%

 

  19.455 2.92 0.103 19.052 3.48 2651.74
 19.422 2.76 0.083 19.003 3.36 2800.71

30 18.898 2.84 0.094 18.82 3.16 2648.38
 19.457 3.56 0.122 19.143 4.44 2175.25
 19.286 2.88 0.093 19.171 3.36 2665.22
ave. 19.30 2.99 0.10 19.04 3.56 2588.26
st.dev. 0.24 0.32 0.01 0.14 0.51 239.42

M
S

 1
%

 

  19.61 2.44 0.086 19.306 2.76 3198.68
 21.114 2.72 0.076 21.114 2.72 3089.48

30 19.614 2.68 0.078 19.172 2.96 2912.83
 19.402 2.55 0.068 19.402 2.74 3028.23
 18.021 1.96 0.048 18.021 1.96 3659.37
ave. 19.55 2.47 0.07 19.40 2.63 3177.72
st.dev. 1.10 0.31 0.01 1.11 0.39 288.41

M
A

P
P

 5
%

   27.793 2.28 0.077 27.793 2.28 4851.59
 25.175 1.88 0.053 25.175 1.88 5329.60

30 25.862 1.8 0.058 25.862 1.8 5718.38
 25.793 1.82 0.048 25.793 1.82 5640.45
ave. 26.16 1.95 0.06 26.16 1.95 5385.00
st.dev. 1.13 0.23 0.01 1.13 0.23 393.27

         

       
  
 

        C1



Treatment  wt % (fiber) 
Stress @ 

Peak 
(N/mm²)  

Strain @ 
Peak (%) 

Energy to 
Break (N.m) 

Stress @ 
Break 

(N/mm²)  
Strain @ 
Break (%)  

Youngs 
Modulus 
(N/mm²)  

A
S

 0
.5

%
 

  19.536 3.08 0.11 19.348 3.52 2524.46
 18.634 2.64 0.099 18.234 3.4 2809.22

30 20.762 2.77 0.111 20.66 3.2 2983.13
 20.32 2.8 0.094 20.32 2.8 2888.34
 20.763 3.84 0.158 20.517 4.52 2152.00
ave. 20.00 3.03 0.11 19.82 3.49 2671.43
st.dev. 0.91 0.48 0.03 1.02 0.64 337.12

A
S

 2
.5

%
 

  18.568 2.96 0.108 18.219 3.64 2496.64
 19.972 2.84 0.096 19.916 3.16 2798.89

30 18.518 2.68 0.084 18.505 2.92 2750.06
 18.724 3 0.102 18.566 3.64 2484.05
ave. 18.95 2.87 0.10 18.80 3.34 2632.41
st.dev. 0.69 0.14 0.01 0.76 0.36 165.33

M
S

 0
.5

%
 

  20.217 3.12 0.101 20.067 3.56 2578.96
 17.857 3.4 0.109 17.686 4.08 2090.32

30 18.053 3.04 0.119 17.162 4.6 2363.52
 18.717 2.64 0.088 18.702 2.97 2821.73
ave. 18.71 3.05 0.10 18.40 3.80 2463.63
st.dev. 1.07 0.31 0.01 1.28 0.70 311.41

M
S

 2
.5

%
 

  18.167 3.04 0.093 17.876 3.52 2378.44
 16.157 3 0.115 15.607 4.28 2143.50

30 15.185 2.76 0.084 15.185 3.27 2189.72
 16.16 3 0.088 16.12 3.36 2143.89
ave. 16.42 2.95 0.10 16.20 3.61 2213.89
st.dev. 1.25 0.13 0.01 1.18 0.46 111.83

M
A

P
P

 2
.5

%
 

  26.407 1.2 0.042 26.407 1.2 8758.32
 23.366 1.12 0.033 23.366 1.12 8303.28

30 29.251 1.68 0.127 29.251 1.68 6929.70
 26.747 1.51 0.102 4.722 1.51 7049.87
 26.474 2.04 0.064 26.474 2.04 5165.03
ave. 26.45 1.51 0.07 22.04 1.51 7241.24
st.dev. 2.09 0.37 0.04 9.90 0.37 1403.01

M
A

P
P

 1
0%

 

  24.214 2.24 0.079 22.103 2.24 4302.31
 26.841 1.84 0.057 26.841 1.84 5805.83

30 26.259 1.92 0.06 26.259 1.92 5443.27
 27.174 2.04 0.069 27.174 2.04 5301.59
 26.456 2.45 0.066 26.456 2.45 4297.75
ave. 26.19 2.10 0.07 25.77 2.10 5030.15
st.dev. 1.16 0.25 0.01 2.08 0.25 691.41

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           C2 
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