

DEVELOPMENT OF A DISTRIBUTED FIREWALL
ADMINISTRATION TOOL

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

İzmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Yunus ERDOĞAN

November 2008
İZMİR

We approve the thesis of Yunus ERDOĞAN

Assist. Prof. Dr. Tuğkan TUĞLULAR
Supervisor

Assist. Prof. Dr. Gökhan DALKILIÇ
Committee Member

Assist. Prof. Dr. Tolga AYAV
Committee Member

16 December 2008

Prof. Dr. Sıtkı AYTAÇ
Head of the Computer Engineering

of Department

Prof. Dr. Hasan BÖKE
Dean of the Graduate School of

Engineering and Sciences

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Assist. Prof. Dr.

Tuğkan TUĞLULAR, for his guidance, patience and encouragement. He provided me

with many helpful suggestions and important advice during this thesis work.

I would also like to thank Özgür Kaya, helping me when writing this thesis

using MATLAB.

Finally, I would like to thank my parents, Ayşe and Erkan Baykal Erdoğan, my

sister, Deniz Erdoğan, and my wife Selcen Erdoğan, for their consideration and

understanding.

iv

ABSTRACT

DEVELOPMENT OF A DISTRIBUTED FIREWALL

ADMINISTRATION TOOL

Today firewalls not only guard internal computer networks but also individual

personal computers against malicious and unauthorized accesses from outside. The

purpose of this study is to create architecture and its corresponding application to

manage distributed firewalls running on Microsoft Windows platform. Distributed

Firewall Administration is about creating a management center for a network composed

of the firewalls running on Microsoft Windows platform. Main important part of this

work is to determine distributed firewall network topology with breadth-first search and

depth-first search algorithms.

The Microsoft Windows Firewall API makes it possible to programmatically

manage the features of firewalls running on windows platform by allowing applications

to create, enable and disable firewall exceptions. This study used the Windows Firewall

API to manage the features of it. This API is only reachable using C/C++ low level

programming languages.

Distributed Firewall Administration Tool (DFAT) can add, modify or delete

rules on the end-user firewall rule set, these rules stored on the database. This tool

works on a distributed environment, there is a parent child relationship between

firewalls. Parent firewalls have right to manage its child firewall’s rule set. Firewalls

introduce themselves to each other with broadcast method.

v

ÖZET

DAĞITIK GÜVENLİK DUVARLARI İÇİN BİR YÖNETİM ARACI

GELİŞTİRİLMESİ

Güvenlik duvarları günümüzde sadece yerel bilgisayar ağları için koruma değil

aynı zamanda kişisel bilgisayarlar için de dışarıdan bilgisayarlara izinsiz girişleri

engellemektedir. Bu çalışmanın amacı Microsoft Windows platformunda çalışan

dağıtık güvenlik duvarlarını yönetebilecek uygun bir mimari oluşturmak ve bu

mimariye uygun bir uygulama geliştirmektir. Dağıtık güvenlik duvarı yönetim aracı

yerel ağlar için Microsoft Windows platformunda çalışan güvenlik duvarlarını yöneten

bir yönetim merkezi olarak düşünülmüştür. Bu çalışmanın en önemli noktası dağıtık

güvenlik duvarları ağ yapısını derinlik öncelikli arama ve yayılma öncelikli arama

algoritmaları ile oluşturmaktır.

Windows güvenlik duvarı yazılım programlama ara yüzü kullanılarak Microsoft

Windows platformunda çalışan güvenlik duvarlarına ait özellikler yönetilebilir.

Hazırlanan yazılım ile güvenlik duvarı kural dışı listesi oluşturulabilir, liste aktif yada

pasif hale getirilebilir.Yazılım programlama ara yüzüne sadece C/C++ gibi alt düzey

diller kullanılarak ulaşılabilmektedir.

Dağıtık güvenlik duvarı yönetim aracı, güvenlik duvarı kurallarını yönetir

anılan kurallar veritabanında saklanmaktadır. Bu araç dağıtık ortamda çalışmaktadır,

güvenlik duvarları arasında anne çocuk ilişkisi bulunmaktadır. Anne güvenlik duvarları

çocuklarının kurallarına müdahale etme hakkına sahiptir. Güvenlik duvarları ağ

içerisinde birbirlerini yayın yapma metodu ile tanımaya çalışırlar.

vi

TABLE OF CONTENTS

LIST OF FIGURES .. ix

LIST OF TABLES.. xi

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. BACKGROUND.. 3

 2.1. Packet Filtering Firewall... 3

 2.2. Distributed Firewalls.. 6

 2.3. Windows Firewalls .. 10

 2.3.1.Windows Firewall Architecture..10

 2.3.2.Windows Firewall Interfaces ..11

 2.4. Windows Filter Hook Drivers... 13

 2.4.1. Creating a Filter Hook ...13

 2.4.2. Initializing and Unloading the Filter-Hook Driver14

 2.4.3. Registering and Clearing a Filter Hook14

 2.4.4. Implementing Filter-Hook IOCTL14

 2.4.5. Implementing Filter Hook Drivers15

CHAPTER 3. PROPOSED APPROACH ... 17

 3.1. Distributed Firewall Administration Architecture...17

 3.2. Database Design ..18

 3.2.1.Subnet Firewall Design ..19

 3.2.1.1. Active_InactiveRules Table20

 3.2.1.2. Update Rules Table ...21

vii

 3.2.1.3. Log Table ...21

 3.2.1.4. Child Active Rules Table22

 3.2.2.Domain Firewall Design ...23

 3.2.2.1. Firewall Table...23

 3.3. Scenarios Related to Database Tables24

 3.3.1.Create New Rule ..24

 3.3.2.Read Rule ...25

 3.3.3.Delete Rule ...26

 3.3.4.Update Rule ..27

 3.4. Software Design...28

 3.4.1.Existing Software ...28

 3.4.2.Modified Software..29

 3.4.3.New Rule Function...33

 3.4.4.Delete Rule Function..33

 3.4.5.Update Rule Function ..34

 3.4.6.Domain Selection ...35

 3.4.7.New Rule To Child Function35

 3.4.8.Delete Rule From Child Function36

 3.4.9.Get Active Rule From Child Function36

 3.4.10. Request Topology Function37

 3.4.11. Broadcasting Function..37

 3.5. Algorithms ..38

 3.5.1.Breadth-First Search Algorithm38

 3.5.2.Depth-First Search Algorithm40

CHAPTER 4. EXPERIMENTS AND EVALUATION.................................... 42

viii

 4.1. Experimental Setups for Balanced Topology.44

 4.1.1.Experimental Setup I ..44

 4.1.2.Experimental Setup II...44

 4.1.3.Experimental Setup III ...45

 4.1.4.Experimental Setup IV ...45

 4.1.5.Experimental Setup V ..47

 4.1.6.Experimental Setup VI ...47

 4.1.7.Experimental Setup VII..48

 4.1.8.Experimental Setup VIII ..48

 4.2. Experimental Setups for Unbalanced Topology.49

 4.2.1.Experimental Setup IX ..49

 4.2.2.Experimental Setup X ...50

 4.2.3.Experimental Setup XI ..51

 4.2.4.Experimental Setup XII...51

 4.2.5.Experimental Setup XIII ...53

 4.2.6.Experimental Setup XIV ...53

 4.2.7.Experimental Setup XV...54

 4.2.8.Experimental Setup XVI ...54

CHAPTER 5. CONCLUSION AND FUTURE WORK...................................57

REFERENCES .. 58

ix

LIST OF FIGURES

Figure Page

Figure 2.1. Firewalls filter both inbound and outbound Internet traffic 4

Figure 2.2. Distributed firewall architecture... 7

Figure 2.3. Windows firewall architecture.. 11

Figure 2.4. Windows Firewall architecture Interfaces.. 12

Figure 2.5. IPFilter Driver Working Diagram .. 16

Figure 3.1. Distributed Firewall Administration Architecture.................................... 18

Figure 3.2. E-R Diagram of Database Tables ... 19

Figure 3.3. Distributed Firewall creating a new rule .. 24

Figure 3.4. Subnet Firewall creating a new rule to it’s Child Firewall....................... 25

Figure 3.5. Domain Firewall get existing rule .. 26

Figure 3.6. Distributed firewall deleting a rule... 27

Figure 3.7. Subnet firewall deleting its Child firewall rule .. 27

Figure 3.8. Tables that are used when updating a rule.. 28

Figure 3.9. NetDefender Main Menu.. 29

Figure 3.10. Domain Selection Screen.. 30

Figure 3.11. Child Menu Screen ... 31

Figure 3.12. Add New Rule Form... 32

Figure 3.13. Breadth-First Search Algorithm ... 38

Figure 3.14. Example of Distributed Firewall Environment .. 39

x

Figure 3.15. Depth-First Search Algorithm .. 40

Figure 4.1. Windows XP TCP/IP Menu ... 43

Figure 4.2. Windows XP Advanced TCP/IP Menu ... 43

Figure 4.3. Experimental setup I... 44

Figure 4.4. Experimental setup II.. 45

Figure 4.5. Experimental setup III .. 45

Figure 4.6. Experimental setup IV.. 46

Figure 4.7. Processing Time for 2 Subnets .. 46

Figure 4.8. Experimental setup V .. 47

Figure 4.9. Experimental setup VI ... 47

Figure 4.10. Experimental setup VII .. 48

Figure 4.11. Experimental setup VIII .. 48

Figure 4.12. Processing Time for 3 Subnets .. 49

Figure 4.13. Experimental setup IX ... 50

Figure 4.14. Experimental setup X .. 50

Figure 4.15. Experimental setup XI.. ... 51

Figure 4.16. Experimental setup XII... 52

Figure 4.17. Processing Time for 2 Subnets .. 52

Figure 4.18. Experimental setup XIII ... 53

Figure 4.19. Experimental setup XIV ... 53

Figure 4.20. Experimental setup XV .. 54

Figure 4.21. Experimental setup XVI ... 55

Figure 4.22. Processing Time for 3 Subnets .. 55

xi

LIST OF TABLES

Table Page

Table 3.1. Subnet Firewall Design ... 20

Table 3.2. Active_Inactive_Rules Table .. 20

Table 3.3. Updated Rules Table ... 21

Table 3.4. Log Table... 22

Table 3.5. Child_Active_Rules Table .. 22

Table 3.6. Domain Firewall Design.. 23

Table 3.7. Firewall Table.. 23

Table 3.8. Comparison Of Software... 32

Table 3.9. “New Rule” Function .. 33

Table 3.10. “Delete Rule” Function ... 34

Table 3.11. “Update Rule” Function .. 34

Table 3.12. “Domain Selection” Function.. 35

Table 3.13. “New Rule To Child” Function... 35

Table 3.14. “Delete Rules From Child” Function .. 36

Table 3.15. “Get Rule List From List” Function.. 36

Table 3.16. “Request Topology” Function... 37

Table 3.17. “Broadcasting” Function ... 37

1

CHAPTER 1

INTRODUCTION

The Internet is a highly effective tool for communicating and gathering

information and for cooperation between distant locations. It can be considered as a

kind of global meeting place where people from all parts of the world can come

together. Uploading, downloading, and sharing document files are now everyday

activities. Unfortunately, when people perform these daily tasks, they expose their

computers to serious security risks.

Network security is very important to avoid security risks. There are several

techniques and tools that are used to provide network security. Network security aims

are confidentiality, integrity and availability of data. Firewalls are one of the well-

known tools that are very helpful in network security to provide above mentioned

security tools. Basically, a firewall separates the private network from the external and

non-secure environment. A firewall that is located between the private network and

Internet enforces a predefined network security policy by controlling network traffic

passing over it. A network security policy is composed of a set of rules that defines

what types of connections are allowed between internal and external networks.

Additionally, a security policy defines the action that should be performed when a

violation of policy is detected.

To be sure that security policy is managed correctly; the whole traffic between

internal and external networks must travel through the firewall. In other words, firewall

should be at the entry point of the private network. Although the traditional firewalls

have very critical roles in the network security, they have some drawbacks. There are

several researches on the firewall technologies to overcome these drawbacks. One of

the recent approaches in this field is the concept of distributed firewall. In this scheme,

security policy is still centrally defined, but enforcement is left up to the individual

endpoints.

2

The main concern of this study is to design a distributed firewall architecture

and to develop a Distributed Firewall Administration Tool for Windows platforms.

There are some previous works about this topic but in this thesis some new methods are

implemented. Firewalls are discovering distributed firewall topology by using Breadth-

First Search (BFS) and Depth First Search (DFS) algorithms. Moreover, personal

firewall provides switching between domains according to the selected domain suitable

rules loaded the firewall. Furthermore, parent firewalls can interfere to their child

firewall’s rule set.

This thesis introduces a Distributed Firewall Administration Tool for Windows

environment to keep track of some certain events performed on policy rules. The thesis

is composed of five chapters. Chapter 2 gives some background information about

Internet firewalls, distributed firewalls, and windows firewalls. In addition, Windows

Filter Hook Driver creation, initialization and implementation are described in this

chapter. Chapter 3 explains the details of suggested distributed firewall architecture on

which Distributed Firewall Administration Tool will run. Moreover, database design

and software design also explained in this section. Chapter 4 describes experiments

which are performed using Distributed Firewall Administration Toll and gives an

evaluation of experiment results. Finally, Chapter 5 gives the conclusion of this thesis

work.

3

CHAPTER 2

BACKGROUND

In this chapter, packet filtering firewalls and their disadvantages are explained.

In addition, the idea of distributed firewalls is examined along with.

2.1. Packet Filtering Firewalls

Firewalls are network elements that have an important role for network security.

Basically, a firewall is a secure and trusted machine that separates the private network

and public network. The purpose of a firewall is to keep “bad” things outside a

protected environment. Firewalls implement a security policy. Although the policy

might be prepared to prevent any access from outside (while still allowing traffic to

pass from the inside to the outside), it might be prepared to permit access only from

certain places, from certain users, or for certain activities.

A firewall filters both inbound and outbound traffic (see Figure 2.1). Firewalls

can filter packets based on their source and destination address and port numbers. This

kind of filtering name is address filtering in addition they can also filter specific types

of network traffic. This is known as protocol filtering; in this type of filtering the

decision to forward or reject traffic depends upon the protocol used. Firewall can also

filter traffic by packet attribute or state.

Packet filtering firewalls are the basic level of the firewalls. As the name

suggest, this firewalls check for each and every IP packet individually, either coming in

or going out of private network. According to the selected policies (called Rule set or

Access Control Lists) it determines whether to accept a packet or reject it. Packet filters

use one or more of the following pieces of information to make their decision on

whether or not to forward the packet: source address; destination address; options in the

network header; transport-level protocol (i.e., TCP, UDP, ICMP, etc.); flags in the

transport header; options in the transport header; source port or equivalent if the

protocol has such a construct; destination port or equivalent if the protocol has such a

4

construct; the interface on which the packet was received or will be sent; and whether

the packet is inbound or outbound (Wack, et al. 2002).

Figure 2.1. Firewalls filter both inbound and outbound Internet traffic
(Source: Chapman and Zwicky 1995)

A firewall does not protect whole network from every type of attack since it

does not block all traffic but it will limit risk of significantly. Moreover, firewalls

cannot provide protection against viruses or malicious code. Since most firewalls do

not inspect the payload or content of the packet, they are not aware of any threat that

may be contained inside (Kurose and Ross 2003).

The success of any firewall solution's implementation is directly related to the

existence of a well-thought-out and consistently-implemented security policy. A

network security policy defines the network’s expectations of proper network use and

the procedures to prevent and respond to security incidents. Without a network security

policy, a proper security framework cannot be established (Chapman and Zwicky

1995).

5

Drawbacks of Firewalls

Although they provide several benefits for network security, traditional

firewalls, or packet filtering firewalls have some drawbacks as stated in (Bellovin 1999,

Li 2000, Ioannidis et al. 2000, Gray 2003). These drawbacks can be summarized as

follows.

They can be bottleneck to throughput, since firewalls must analyse every packet

on network communication, they often decrease network performance. Moreover

conventional firewalls are central management of the network security also they are

central point for attack and if an intruder breaks through the firewall they may have

unlimited access to the corporate network (Li 2000).

Conventional firewalls restricted access to desirable services. They block

services that user wants to access for example telnet, ftp etc. Moreover they rely on

topology restrictions; sometimes network topology may not fit the firewall design this

kind of problem can be solved using insecure services across major gateways (Gray

2003).

The biggest disadvantage of firewalls is that they do not provide protection from

insider attacks. Conventional firewalls assume that all insiders are trusted since most

corporate computer crime is perpetrated by internal users, a firewall offers little

protection against this threat (Gray 2003).

Another disadvantage of conventional firewalls is that they do not protect

against back door attacks. For example, if unrestricted modem access is permitted into

a site attacker could jump around the firewall or attacker routing the network traffic

through backdoor intermediary computers such as proxy servers. Firewalls cannot stop

these problems, since they must allow the common or diverted traffic (Gray 2003).

Firewalls cannot protect the network against data-driven attacks these attacks

can be summarized as follows:

6

• Viruses: Firewalls does not offer virus protection

• Executable Content: Java applets, ActiveX Controls, JavaScript,
VBScript

• Tunneling

• End to End Encryption

2.2. Distributed Firewalls

As a result of dramatic increase in network complexity and development of new

technologies like wireless networks and VPNs, it is not easy to maintain a fixed

network topology anymore. Additionally, there are increasing user demands like

mobility, security, performance and reliability. As a result of these and the

disadvantages mentioned above, conventional firewalls have started to become

inadequate.

In order to remove such kind of problems, Bellovin and Ioannidis, et al.

introduced the concept of distributed firewall. The distributed firewall design is based

on the idea of enforcing the policy rules at the endpoints rather than a single entry point

to network. The security policies are still defined centrally. The aim with this approach

is to retain the advantages of firewalls while resolving the disadvantages mentioned

above (Bellovin 1999,Ioannidis, et al. 2000).

In the architecture described by Bellovin, a firewall is placed at each host in the

network and managed centrally, i.e. defined centrally and enforced in a distributed way.

This way the domain of the firewall is no longer defined by the topology of the network

and also the policies, being defined at a central location in terms of end nodes, don't

suffer an impact form the change in topology.

Distributed firewall system is not a single system that acts as a gateway between

two networks (see Figure 2.2). By removing this single choke point, the network

bottleneck is eliminated. In distributed firewall technology, an access control

mechanism is distributed to each host which requires protection. The unique access

control for each of the network systems allows different levels of security to be

implemented on computer system in the same network (Grant, et al. 2001).

7

Figure 2.2. Distributed Firewall architecture.
 (Source: Li 2000)

There are three components for distributed firewall environment. These

components are policy language, policy distribution scheme and certificates. Policy

language defines which inbound and outbound connections are allowed or rejected.

Basically it is equivalent to packet filtering rules. Policy language should also support

credentials, for delegation of rights and authentication purposes (Ioannidis, et al. 2000).

While traditional firewalls usually use the IP address as an identifier, distributed

firewalls use cryptographic certificates as identifier since distributed firewalls are

independent of topology. Certificates enable making decisions without knowledge of

the physical location of the host. Public-key cryptography mechanisms are most often

applied in contemporary implementations (Ioannidis, et al. 2000).

The policy language defines which inbound and outbound connections on any

component of the network policy domain are allowed. Policy distribution scheme is

used to enable policy control from central point. Distribution scheme defines type of

the security policy delegation to the members of the network (Stepanek 2001). Policies

are distributed according to one of the following distribution scheme:

• Policies as well as credentials can be pushed to every single end point in the

policy domain.

8

• Policies and credentials can be pulled from a trusted repository during

initialization.

• Policies are pulled during initialization of the policy verifier whereas

credentials for authentication mechanisms remain on a trusted repository

and are requested whenever communication traffic is reaching a node from a

yet unknown host (Stepanek 2001).

In distributed firewall architecture, preferred network level encryption

mechanism for TCP/IP is IPSEC. IPSEC supports network-level peer authentication,

data origin authentication, data integrity, and data confidentiality (encryption), and

replay protection.

Advantages and Disadvantages of Distributed Firewalls

Distributed firewalls have some advantages and disadvantages. The advantages

of distributed firewalls can be stated as follows: First of all, there is no longer a single

chokepoint this is major benefits of both a performance and availability. Generally

throughput is limited with the firewall speed in conventional firewall but in distributed

firewall throughput is no longer limited by the speed of the firewall (Ioannidis, et al.

2000).

Another advantage of the distributed firewall is requiring less CPU usage than

conventional firewalls for equal amount of traffic. Because all of the policies for all

nodes splitting the time to process traffic over the network’s node. Conventional

firewalls cannot prevent inside attacks. With the distributed firewall architectures, it is

possible to estimate the source of unfriendly traffic coming from Internet or local

network (Ioannidis, et al. 2000).

Filtering of certain protocols such as FTP listening a specific port this operation

that is generally not permitted through a traditional firewall but in distributed firewall,

each node knows when it is listening for a particular data. Despite of some advantages

of distributed firewalls which are described above also they have some disadvantages.

If firewall command center is compromised, due to attack or mistake by the

administrator, this situation is high risky for security of the entire network (Li 2000).

9

Topological independence is one of the main advantages of distributed

firewalls. Since network security no longer depends on network topology, it provides

more flexibility in defining the security perimeter. Security perimeter can easily be

extended to cover remote hosts and networks whenever required (Ioannidis et al. 2000).

Distributed firewalls provide separate level of security for different kinds of

data. For example financial, engineering and medical data need different level of

security so using distributed firewall each node would have firewall and they can define

different level of security. In addition they can provide separate level of security to the

Web, Mail servers, Application servers or individual nodes in the setup. These are

meant to provide higher security to the corporate networks (Li 2000).

In traditional firewalls there is an assumption on that insiders are trustable.

However, according to the researches most of the attacks are originated by the insiders.

With the distributed firewall architectures, the insiders are no longer treated as

“unconditionally trusted”. Dividing network into parts having different security level is

much easier with distributed firewalls (Ioannidis, et al. 2000).

End-to-end encryption is possible without affecting the network security in

distributed firewall systems.In conventional firewalls, the use of end-to-end encryption

was causing some problems in network security. On the other hand, end-to-end

encryption significantly improves the security of the distributed firewall.

On the other hand, there are some drawbacks of distributed firewalls that can be

summarized as follows (Li 2000).

Compliance of security policy for insiders is one of the major issues of

distributed firewalls. This problem especially occurs when each ending host have the

right of changing security policy. There can be some techniques to make modifying

policies harder but it is not totally impossible to prevent it.

Intrusion detection systems are less effective with distributed firewalls because

complete network traffic is not on the single point. There is more than one entry point

and each node has log file. It is possible to log suspicious connections on local server

but these logs need to be collected and analyzed by security experts in central services.

10

2.3. Windows Firewall

Windows Firewall is a personal firewall which comes bundled with Microsoft’s

Windows XP, Windows Server 2003, Windows Vista operating systems. Windows

Firewall is a stateful host firewall technology that inspects and filters all network

traffic. Windows Firewall searches the state of each network connection and determines

whether the unsolicited incoming traffic should be allowed or dropped. Not only does

Windows Firewall check incoming information; it takes care of outgoing information

as well. A firewall that works with a router program probes every network packet to

decide whether to forward it toward its address.

Windows Firewall protects the valuable data stored on computers in following

ways (Source: Microsoft TechNet 2008):

• Denying Remote Login.

• Preventing SMTP session hijacking.

• Scanning E-mail bombs that carry viruses and other malware.

• Not allowing suspicious Macros to run on PC.

• Keeping track of Virus, Spams and Trojans.

• Deleting / blocking risk ware.

2.3.1. Windows Firewall Architecture

Windows firewall architecture has several networking components shown in

Figure 2.3. These components can be list as follows (Source: Microsoft TechNet 2008):

• Connection Sharing Service

• Network Address Translation (NAT) driver

• IPv4-based TCP/IP driver

• IPv6-based TCP/IP driver

• Windows Sockets driver (Winsock.dll)

11

Figure 2.3. Windows Firewall Architecture
 (Source: Microsoft TechNet 2008)

The NAT driver provides data storage for Windows firewall. NAT driver stores

connection state information which has 5-tuple entries. These are the protocol, the

source and destination port numbers, and the source and destination IP addresses.

Windows firewall is stateful firewall because of storing data.

TCP/IP Driver controls the flow of information between a network adapter and

system service. While incoming traffic flows through the TCP/IP driver, the traffic is

inspected by the NAT driver. NAT driver compares the incoming traffic entries with

the Windows Firewall exception list. If the traffic matches an exception, the NAT

driver determines that the traffic is allowed otherwise dropped. Neither NAT and

TCP/IP Driver sends a notification to the sender when packets are dropped.

The Winsock driver is responsible for assigning and binding ports to a program

or system service. Programs and system services use this driver when they need to

listen for incoming traffic.

2.3.2. Windows Firewall Interfaces

There are two interfaces related to Windows Firewall first one is firewall-hook

interface another one is Windows Firewall application programming interfaces (APIs).

The intent of a filter-hook interface is to manage network packets that were sent and

12

received across a firewall in the context of the TCP/IP protocol (Source: Microsoft

TechNet 2008). Windows Firewall Interfaces shown in Figure 2.4.

Figure 2.4. Windows Firewall Architecture Interfaces.
(Source: Microsoft TechNet 2008)

The Windows Firewall APIs provide a public interface for programmatically

configuring Windows Firewall settings (Source: Microsoft TechNet 2008).

• Enable and disable Windows Firewall.

• Add and remove programs and system services from the exceptions list.

• Add and remove TCP and UDP ports from the exceptions list.

• Enable and disable preconfigured system service exceptions.

• Configure ICMP settings.

• Configure the log file.

There are some personal firewalls available on the commercial market place to

provide the security for the computers, such as Comodo Firewall, Zone Alarm etc.

These products use filter-hook drivers to custom solutions on Windows environment. In

this thesis, distributed firewall administration tool will deal with filter-hook drivers to

implement network security policy.

13

2.4. Windows Filter-Hook Drivers

A filter-hook driver is a kernel-mode driver that is used to filter network

packets. It implements a callback function then it registers callback function with the

system-supplied IP filter driver. Then IP filter driver uses the filter hook to determine

how to process incoming and outgoing packets (Microsoft Developer Network 2008).

To supplement the Packet Filtering application programming interface (API), a

filter-hook driver can be created to filter network packets. User-mode applications use

this API to create and manage, in the system-supplied IP filter driver, input and output

filters that filter packets with specific IP addresses or TCP/UDP port numbers. Since

the Packet Filtering API optimizes the system-supplied. IP filter driver to process

packets without the overhead that is associated with a filter-hook driver.

2.4.1. Creating a Filter Hook

A filter hook is created by implementing a function of type

PacketFilterExtensionPtr. The PacketFilterExtensionPtr data type points to a filter-

hook callback function (Microsoft Developer Network 2008). Aim of the function is to

analyze the incoming packets whether to forward, drop or allows the IP Filter driver to

further process the packets.

A filter hook performs the following actions on incoming and outgoing packets:

Compares specific information with information that the IP filter driver passed to the

filter hook to determine how packets should be further processed. After the filter hook

inspects packets, returns with one of the following response codes that direct the IP

filter driver:

• PF_FORWARD - Returns the forward response immediately to the IP stack.

For local packets, IP forwards them up the stack. If the destination for

packets is another computer and routing is enabled, IP routes them

accordingly.

14

• PF_DROP - Returns the drop response immediately to the IP stack. IP

should drop the packet.

• PF_PASS - Filters packets and return the resulting response to the IP stack.

Continue to filter packets as defined by the Packet Filtering API. The filter

hook returns this pass response if it determined that it should not process the

packet but should allow the IP filter driver to filter the packet.

2.4.2. Initializing and Unloading the Filter-Hook Driver

 The filter-hook driver's DriverEntry routine creates and initializes a device

object for the driver object. The filter-hook driver's DriverEntry routine can also

register the driver's filter hook with the IP filter driver.

The DriverEntry routine must export a routine that unloads the filter-hook

driver. This unload routine removes the device that was created in DriverEntry but must

not clear the previously registered filter hook.

2.4.3. Registering and Clearing a Filter Hook

A filter-hook driver registers its filter-hook callback function with the IP filter

driver to inform the IP filter driver to call the hook callback for every IP packet that is

received or transmitted. A filter-hook driver might also clear a previously registered

hook callback. To register or clear a hook callback function, the filter-hook driver must

first create an IRP using a pointer to the device object for the IP filter driver. The filter-

hook driver then submits this IRP to the IP filter driver (Microsoft Developer Network

2008).

The filter-hook driver must clear its filter hook from the same entity with which

it registered its filter hook; therefore, the filter-hook driver should store the pointers to

the IP filter driver's file and device objects in global variables.

2.4.4. Implementing Filter Hook IOCTL

A filter-hook driver implements a dispatch routine so applications or higher-

level drivers can send I/O control (IOCTL) requests down to the filter-hook driver to

15

set up the filter hook. This dispatch routine processes these IOCTLs. The DriverEntry

routine must export this dispatch routine (Microsoft Developer Network 2008).

When the IOCTL request retrieved a filter-hook driver’s dispatch routine call

the system function which is IoGetCurrentIrpStackLocation. In this call, the dispatch

routine passes a pointer to the IRP that it received. Then dispatch routine determines

which IOCTL request was received and processes the request accordingly.

After the current IOCTL request completes, dispatch routine calls the

IoCompleteRequest system function and passes the status of the operation. This status

is returned to the application or higher-level driver that made the request (Microsoft

Developer Network 2008).

The following are typical IOCTLs that a filter-hook driver's device-control
routine might process:

• Register-Hook IOCTL

• Registers a filter hook

• Clear-Hook IOCTL

• Clears the previously registered filter hook

2.4.5. Implementing Filter Hook Drivers

As with any kernel-mode driver, a filter-hook driver is considered as a trusted

component and can crash the system if it executes an illegal instruction or references an

invalid region of memory.

The integrity of data being sent over the network might be suspicious, or faulty

hardware or other drivers might submit data in unexpected or improper formats.

Therefore, a filter hook must validate the format of such data.

A filter hook must limit the amount of per-packet processing that it performs to

reduce the overhead associated with each incoming and outgoing packet. A filter hook

should be optimized to minimize the average time it spends processing packets.

16

A filter-hook driver is a kernel-mode driver that is used to filter network

packets. Filter-hook drivers extend the functionality of the system-supplied Internet

Protocol (IP) filter driver. A filter-hook driver can only be installed on the Microsoft

Windows 2000 operating system and later versions (Microsoft Developer Network

2008).

 Only a single filter-hook driver can be installed on the operating system and

used by the IP filter driver. A filter-hook driver can only register itself with the IP filter

driver if the pointer to the extension hook for the IP filter driver is set to NULL. After

the filter-hook driver is registered, the IP filter driver assigns the file object for the

filter-hook driver to the extension hook for the IP filter driver, thereby ensuring that it

can only accept and use a single filter-hook driver (Microsoft Developer Network

2008).

When Network Packet is received in computer IP Driver passes the packet to

the filter (callback) function and waits the return value if function returns “Allow

Packet” packet will be allowed in contrast function returns “Drop Packet” IP Driver

drops the packet. This situaton shown in Figure 2.5.

Figure 2.5. IPFilter Driver Working Diagram
(Source: CodeProject 2008)

17

CHAPTER 3

PROPOSED APPROACH

In this chapter, the distributed firewall administration architecture is explained

along with the database design that each node in the architecture needs to maintain.

Moreover, software design of client application and server application is described

using UML notation.

3.1. Distributed Firewall Administration Architecture

Distributed Firewall Administration Architecture based on hierarchically

organized distributed firewall system. As illustrated in Figure 3.1, it is a tree structure.

The domain statement has a domain firewall which is standing on the domain entrance

and protects the entire domain according to the organizational policy. Similarly,

according to the network model there are subnets available and connected to the

domain firewall. Each subnet has a subnet firewall which is located on the subnet

entrance. Purpose of the subnet firewall is same as the domain firewall.

Every subnet may have different number of personal firewall; this personal

firewall can control their network traffic. In addition subnet firewall may have child

firewall which type can be subnet firewall. According to the description, there are three

types of firewall available in the network domain model. Organization of the firewalls

are based on the tree structure, domain firewall is the root node of the tree structure.

Subnet firewalls are nodes between domain firewall which is root and personal

firewalls which are leaves. Subnet firewalls are middle or intermediate nodes of the

domain. Finally, personal firewalls, which are running inside the subnet, are leaf nodes

located at the bottom of the tree.

18

Figure 3.1. Distributed Firewall Administration Architecture.

At the beginning domain firewall does not know any information about

distributed firewall architecture. Distributed firewall architecture defined by using two

different algorithms such as Depth-First Search (DFS) and Breadth-First Search (BFS)

algorithms.

Communication scheme between these firewall nodes in the system as follows

personal firewall nodes has to maintain local rule base to store rules. They are

responsible to enforce the local policy. When personal firewall performs any operations

such as insert, delete policy rule they have to propagate to their Subnet firewall. Subnet

firewalls can communicate to all of the nodes inside that subnet but they cannot

communicate to another subnet firewall at the same level. Similarly, a domain firewall

can communicate to any other nodes in that domain. The communication between a

domain firewall and leaf firewall is possible with the help of the subnet firewalls.

Communication request of the domain firewall is received by the leaf level firewall via

the subnet firewall.

3.2. Database Design

Each firewall node has to maintain a local rule base to store rules that will be

used in the distributed firewall administration tool. Security policy rules are kept on the

19

Microsoft SQL(Structured Query Language) Server 2000. According to the architecture

which is described in Section 3.1 firewall type can be Subnet or Personal firewall.

Basic principles same for all types of firewall which is shown in Figure 3.2. In the

following part each type of firewall database design will be examine.

Figure 3.2. E-R Diagram of Database Tables.

3.2.1. Subnet Firewall Design

Subnet firewalls have their own local policy rules to provide the security. They

interested in to keep track of the following operations that are performed on firewall

policy rules: creating a new rule, reading, updating and deleting an existing rule inside

the rule set. Moreover, subnet firewalls may have child firewall node, so they have

some right over the their child firewall rule set such as getting, deleting and inserting

rule to the rule set. Also, there are three different domains available and each domain

has different rule set. In order to meet this requirement, the following tables will be

stored in each local database of subnet firewall.

20

Table 3.1. Subnet Firewall Design

Table Name Explanation

Active_Inactive_Rules This table contains the policy rules that are active or inactive.

Updated_Rules This table is to keep track of updated rules.

Log This table lists the actions that have occurred. Example of
actions are create, read, update, delete operations and relevant
information like who made the action, when, etc.

Child_Active_Rules Aim of the table is keeping the child firewall active rules.

The detailed explanation of these tables is given below.

3.2.1.1. Active_Inactive_Rules Table

Basically, this table contains the necessary information of the firewall policy

rule (Table 3.2). This rule can be actively applied by the firewall or can not be valid

any more. The database table contains the following fields, which are used to describe a

firewall policy rule.

Table 3.2. Active_Inactive_Rules Table

Field Name Explanation

Rule ID A unique rule ID to identify policy rule within the overall system.

Protocol The network protocol of the traffic to which this rule will be applied.

Source IP Address The IP Address of the source that has produced the network traffic.

Source Port Number Port number of the source that has created the network traffic.

Destination IP
Address

IP Address of the target machine to which source is trying to connect.

(cont. on the next page)

21

Table 3.2. (cont.). Active_Inactive_Rules Table

Destination Port
Number

Port number on the target machine

Action The action such as accept, deny that will be performed by the firewall
when a matching network packet is found for this rule.

Ethernet Card ID The identity (ID) of the physical interface through which the network
traffic passes.

Domain ID This field is keeps the Domain ID of the rule so user can define
different rules for each domain according to the security needs.

Active This field is describing the rule is active or inactive rule.

3.2.1.2. Updated_Rules Table

It may become necessary to update policy times in time as a result of changing

requirements, etc. This table helps to implement this feature by using the information

stored in the following fields (Table 3.3).

Table 3.3. Updated Rules Table

Field Name Explanation

Original Rule ID The ID of the rule before the update operation

Date The date when the rule is updated

Updated Rule ID Once the update operation is completed, the new rule is inserted into
the Active Rules table with this new rule id.

Domain ID The ID of the Domain which updated rules belongs to.

3.2.1.3. Log Table

Aim of the table is kind of logging in the system (Table 3.4). It basically stores

the data to represent the Create, Read, Update and Delete operations performed on the

rule set. The fields in the table are as follows:

22

Table 3.4. Log Table

Field Name Explanation

Domain ID The Domain ID inside which the specified operation is performed

Operation The type of the operation (Create,Read,Delete,Update) performed on
the ruleset

Date Time of the operation

Rule ID The ID of the rule on which the operation is performed.

3.2.1.4. Child_Active_Rules Table

Table is special for only subnet firewalls which have child nodes firewall in the

system. Using this table subnet firewall can easily reach the child firewalls active rules

(Table 3.5).

Table 3.5. Child_Active_Rules Table

Field Name Explanation

Firewall ID Unique ID of the firewall in the system.

Rule ID A unique rule ID to identify each policy rule within the

Protocol The network protocol of the traffic to which this rule will be

Source IP Address The IP Address of the source that has produced the network
traffic.

Source Port Number Port number of the source that has created the network
traffic.

Destination IP Address IP Address of the target machine to which source is trying to
connect

Destination Port Port number on the target machine.

Action The action, such as accept, deny; that will be performed by
the firewall when a matching network packet is found for this
rule.

23

3.2.2. Domain Firewall Design

Distributed firewalls same as the subnet firewalls have their own local policy

rules to provide the security. They are responsible of following operations that are

performed on firewall policy rules: creating a new rule, reading, updating and deleting

an existing rule inside the rule set. Also there are three different domains available and

each domain has different rule set. In addition to this In order to meet this requirement,

the following tables will be stored in each local database of distributed firewall (Table

3.6).

Table 3.6. Domain Firewall Design

Table Name Explanation

Active_Inactive_Rules This table contains the policy rules that are active or inactive.

Updated_Rules This table is to keep track of updated rules.

Firewall This table keeps the each firewall information.

Child_Active_Rules This table keeps active rules of child firewalls.

3.2.2.1. Firewall Table

This is the important table for the distributed firewall administration tool (Table

3.7). This table keeps the each firewall information such as firewall ID, IP number,

firewall type. The fields in the table are as follows:

Table 3.7. Firewall Table

Field Name Explanation

Firewall ID Unique ID of the firewall in the system

Firewall IP IP Address of the firewall which is defining in the System

Firewall Port Port Number of the firewall which is listening.

(cont. on the next page)

24

Table 3.7. (cont.) Firewall Table

Parent ID Parent ID of the firewall in the system if firewall does not have
parent firewall in the system this field becomes default value which
is “NULL”.

Child ID Child ID of the firewall in the system if firewall do not have any
child this field becomes default value which is “NULL”

Firewall Type This field identifies the firewall types in the system. Firewall types
can be domain, subnet or personal firewall.

3.3. Scenarios Related to Database Tables

3.3.1. Create a New Rule

Subnet and distributed firewalls both of them can add new rule to the same

database if subnet firewall parent of distributed firewall.

Domain Firewall

After necessary fields entered correctly new rule is inserted into Active_Inactive

Rules table. After insertion is completed successfully, the Log table will be updated

with the corresponding data. This process shown in Figure 3.3

Figure 3.3. Distributed Firewall creating a new rule.

25

Subnet Firewall

Subnet firewall may request to add new rule to its child firewall node. First of

all the new rule inserted into the Active_Inactive Rules table, then Log table will be

updated, finally new rule is inserted into the Child Active Rules table also updated.

This situation shown in Figure 3.4.

Figure 3.4. Subnet Firewall creating a new rule to it’s Child Firewall.

3.3.2. Read a Rule

Reading rule operation can be performed in two different ways. First one is

distributed firewall can read local rules, secondly subnet firewall can read its child

firewall node rule.

Domain Firewall

 As indicated by Figure 3.5, once a request comes to read an active rule, the

required data will be extracted from Active_Inactive Rules table. After data has been

gathered successfully, Log table will be updated with the corresponding data.

26

Figure 3.5. Domain Firewall get existing rule.

3.3.3. Delete a Rule

Deleting rule operation also can be performed in two different ways. First one is

distributed firewall can delete its local rules. Secondly subnet firewall can delete its

child firewall node rule.

Domain Firewall

While deleting existing rule the system, first of all active rule is updated to the

deactivate rule on the Active_Inactive Rules table. Secondly, the Log table is updated

accordingly. Figure 3.6 summarizes the sequence of operations that are performed

when deleting a rule.

27

Figure 3.6. Distributed Firewall deleting a rule.

Subnet Firewall

Sometimes subnet firewall may request to its child firewall node to delete some

rules. In this issue firstly rule is deleted from Active_Inactive Rules Table then Log

Table Updated according to the operation. Lastly rules deleted from the Child Active

Rules Table.

Figure 3.7. Subnet firewall deleting its Child firewall rule.

3.3.4. Update a Rule

According to the security needs user can update existing rules in the system.

Update operation work principle is as follows, existing rule which is assume that A is

28

updated into the new rule B. First of all A is updated to inactive rule from

Active_InactiveRules table. Then, new rule B is added to Active_InactiveRules table.

Then UpdatedRules table is updated with the updated rules. Finally Log table is

updated with the operation. This sequence of operations illustrated in Figure 3.8.

Figure 3.8. Tables that are used when updating a rule.

3.4. Software Design

 3.4.1. Existing Software

Distributed Firewall Administration Tool is an improvement to the existing

software which is the NetDefender program. NetDefender is a Free Firewall and works

only on windows 2000 and above versions of windows. The graphical user interface of

NetDefender software shown in Figure 3.9.

29

Figure 3.9. NetDefender Main Menu.

NetDefender has a very easy to use interface. NetDefender Firewall is

completely written in VC++ 7.1 (Visual Studio 2003) using MFC, Windows API, Filter

Hook Driver (Provided with Windows 2000). To run the NetDefender computer must

have mfc71u.dll, msvcp71.dll and msvcr71.dll. NetDefender is packet filtering firewall

and provides to user to add custom rules to this firewall as per their security

requirements. When the user wants to add new rule clicks the Add New Rules button to

call New Rule form and define rule based on source and destination IP, source and

destination port number, protocol (TCP,UDP,ICMP) and action (ALLOW,DENY)

features. Existing rules are listed on the main list NetDefender provides to modify,

delete the existing rules on the rule set. If user wants to modify the existing rule, first of

all clicks the rule and then click the Edit Rule button Modification form appears and

rule features are filled after necessary modification done rule saved to IPFilter Driver.

Simultaneously saved rule is also storing on the file. Port scanner is another feature of

the software this feature provided to scan the system for open ports. NetDefender

provides the list of applications that are currently trying to connect to outside network.

3.4.2. Modified Software

The proposed application is the Distributed Firewall Administration Tool

(DFAT), which works on a distributed firewall environment. The details of the

30

distributed firewall architecture on which the application will run are explained in

proposed approach section. As stated in that section, the firewall system contains

several nodes that are distributed into different domains and subnets organized in a

hierarchical manner. Each node in the system is responsible for applying the subset of

overall policy rules that are defined for the corresponding domain / subnet. As a result

of changes in the security policy or detection of the problems in the existing rule set, it

may be required to make some changes on the existing rule set. The major changes that

can be performed on the rule set can be listed as follows:

- Creating a new firewall policy rule (see Figure 3.12) .

- Reading a policy rule from the existing rule set.

- Updating an existing rule.

- Deleting a rule from the existing rule set

 Basically, Distributed Firewall Administration Tool (DFAT) improved the some

features of NetDefender software. First of all, rule set is stored on the SQL Server 2000

Database and Domain Selection feature is added. Using Domain Selection feature,

users can create new policy rules in three different domains. These domains are

Department, Home and Internet Cafe. According to the security needs user can define

different policy rules for different domains. This situation illustrated in Figure 3.10

Figure 3.10. Domain Selection Screen.

31

DFAT uses broadcasting methods to find other computers on the distributed

architecture. All firewall types (child, domain, and subnet) use this method to find other

computers in the network. If firewall type is subnet firewall according to the proposed

architecture firewall has one or more child firewalls. Subnet firewall can perform new

rule, delete rule and get rule list function on child firewall rule set on Child Menu

(shown in Figure 3.11).

Figure 3.11. Child Menu Screen.

Child Menu provides parent firewalls with the ability to define new rule, delete

existing rule and get list of existing rules. After broadcasting operation completed,

parent firewalls have a list of their child lists. On the left part of the screen child

firewalls IP address are listed. When user double clicks one of the IP address parent

firewall send a request to get existing rule list to child if child firewall accept this

operation list are loaded on the screen. Child firewall screen shown in Figure 3.11.

According to the security needs, parent firewall may want to add new policy rule to

child firewall. In this issue, user clicks the Add new rule button on the Child Menu

screen, new rule form appears after rule created new rule sent to the child firewall

shown in Figure 3.12.

32

Figure 3.12. Add New Rule Form.

Domain firewall has features to request topology information from other

firewalls. When responses are retrieved, domain firewall fills the firewall table.

Table 3.8. Comparison Of Software

Feature NetDefender DF

Rules Stored on Database X √

Domain Selection X √

Dynamically find each other by broadcasting X √

Add Rule to Child Firewalls Ruleset X √

Delete Rule from Child Firewalls X √

Using Algorithms to Build Network Topology X √

Identify the Ethernet Car ID X √

Firewall Type X √

√ : does support X: does not support

33

Functional Requirements

 Distributed firewall administration tool is decided to have some functionalities,

which are mainly related with the firewall policy rules. Details of the functions will be

explained in the following subsection.

3.4.3. New Rule Function

 According to the proposed approach, which is described in Section 3.1, each

node is a firewall and all of them has local database to perform policy rule operations.

Purpose of the function is to add new policy rule to IPFilterdriver and Active_Inactive

Rules table. New Rule function is shown in Table 3.9.

Table 3.9. “New Rule” Function

Inputs Order ID, Protocol, Source IP, Source Port, Destination IP, Destination

Port, Action

Operations After all necessary inputs filled correctly New Rule Functions, first of all

add new rule to IPFilter Driver using Firewall Hook Driver. Next if

operation is succeeding rule will be added to the Active_Inactive Rules

Table. This added operation also added to the Log table to inform the

parent firewall of the node.

Outputs Two different types of Output return from this function. Firstly if new

rule added properly without any error this function returns “SUCCESS”

but if any error occurred during the operation types of error returns.

3.4.4. Delete Rule Function

Sometimes some of the existing policy rules can not be necessary for the

security. Aim of the function is deleting existing rule from security policy (Table 3.10).

34

Table 3.10. “Delete Rule” Function

Inputs Order ID of the policy rule

Operations When the user has selected policy rule first of all rule is deleting from

Active_Inactive Rules table. Actually deleting operation just updating

Active field of the rule then operation is inserting the Log table.

Outputs Outputs of the this function is if rule deleted successfully without any

error this function returns “SUCCESS” but if any error occurred during

the operation “ERROR” returns.

3.4.5. Update Rule Function

User sometimes wants to change the policy rules according to the security

needs. This function provides ability to update existing rule (Table 3.11).

Table 3.11. “Update Rule” Function

Inputs Order ID, Protocol, Source IP, Soucer Port, Destination IP, Destination

Port, Action

Operations First of all user selects the policy rule which will modify. According to

the Order number rules deleted from Active_Inactive Rules Table. Then

user updates some fields of the policy rule and new rule inserted in to the

Active_Inactive Rules Table and old Order number, new Order number

number and date of operation are inserted in to the Log Table.

Outputs When the system performs all operation correctly function returns

“Successful” but during the operation if any error occurs it returns the

specific error message.

35

3.4.6. Domain Selection Function

 Distributed firewall administration tool provides functionality to users for

selecting a domain. There are three different domains available which are Department,

Home and Internet cafe (Table 3.12).

Table 3.12. “Domain Selection” Function

Inputs

Domain ID: ID number of the Domain

Operations User selects the one of the domain from the list then selected domain

policy rules taken from Active_Inactive Rules table then loaded to the

IPFilterdriver.

Outputs Output of the function is selected domain rules loaded to the

IPFilterdriver and data list of the program.

3.4.7. New Rule to Child Function

 According to the proposed architecture each firewall can be parent firewall,

child firewall, or both. Each parent firewall in the architecture can interfere to its child

policy rules. Parent firewall can insert new rules to its child rule set but child firewall

have right to accept or deny this process. This function shown in Table 3.13.

Table 3.13. “New Rule To Child” Function

Inputs Firewall IP, New Rule features as described in section 3.4.1

Operations Child firewall listens the specific port when the new rule retrieved child

firewall has right to accept or deny this operation. If child firewall accepts

the rule, rule is loaded the IPFilterDriver and then sent to the Parent

Firewall. If child firewall denies send to deny packet to parent firewall.

Outputs If child firewall accepts new rule loaded to IPFilterDriver and stored to

child firewall database and new rule sent to the parent firewall.

36

3.4.8. Delete Rule from Child Function

Each parent firewall in the architecture can interfere to its child policy rules.

Parent firewall can delete rules from its child rule set but child firewall have right to

accept or deny this process (Table 3.14).

Table 3.14. “Delete Rules From Child” Function

Inputs Firewall IP, Order ID

Operations Child firewall listens the specific port when the Order ID retrieved rule

features appear on the screen child firewall has right to accept or deny

this operation. If child firewall accepts, rule is deleted the IPFilterDriver

and database. Then Operation complete packet sends to parent firewall. If

child firewall denies sent to deny packet to parent firewall.

Outputs If child firewall accepts, rule deleted from Ip IPFilterDriver and database.

If deny, deny packet send to parent firewall.

3.4.9. Get Active Rule from Child Function

To be able to protect the consistency among the overall security policy, parent

firewall may get all existing rules of its child firewall policy rules (Table 3.15).

Table 3.15. “Get Rule List From List” Function

Inputs Firewall IP

Operations Child firewall listens the specific port when the request retrieved child

firewall sends all existing rules to parent firewall.

Outputs Child firewall send existing rules to parent firewall.

37

3.4.10. Request Topology Function

Distributed firewall administration tool works on a distributed environment. At

the beginning domain firewall hasn’t got any information about distributed firewall

architecture. Domain firewall sends a request packet to its children which are subnet

firewall. This request is retrieved and sent to subnet firewall’s child firewalls. This

recursive function works until all child firewall, send firewall related information to the

domain firewall. Domain firewall implements Breadth-first search and Depth-first

search algorithms to determine the distributed firewall architecture.

Table 3.16. “Request Topology” Function

Inputs Input of the function is TCP packet, which contains Firewall ID, firewall

type and Firewall IP.

Operations Firewall is listening the specific port when the request retrieved firewall

looks its type if firewall type is subnet firewall it send request to its child

and listen to child’s response. When the response arrived firewall append

the ruleset its own information and send to the parent.

Outputs Domain firewall process two algorithms to define distributed architecture,

this algorithms input are node relations.

3.4.11. Broadcasting Function

Aim of this function is to inform all firewalls about environment. At the

beginning neither parent nor child do have information about each other. Because of

that they broadcast and introduce themselves. Broadcasting function shown in Table

3.17.

Table 3.17. “Broadcasting” Function

Inputs Input of function is TCP packet which contains IP Address and type of

firewall.

(cont. on the next page)

38

Table 3.17. (cont.) “Broadcasting” Function

Operations Every firewall listens specific port if any request retrieved firewall insert

packet data to the database.

Outputs Packet data insert into the firewall table and data list of the program.

3.5. Algorithms

Distributed Firewall administration tool discovers the distributed firewall

architecture using two algorithms which are Breadth-first search (BFS) and Depth-first

search (DFS).

3.5.1. Breadth-First Search Algorithm

 Breadth-first search (BFS) is a graph search algorithm that begins at the root node

and explores all the neighboring nodes. BFS is an uninformed search method that aims

to expand and examine all nodes of a graph or combinations of sequence by

systematically searching through every solution..

Figure 3.13. Breadth-First Search Algorithm
(Source: Sahni 1998)

Define randomBFS(Graph g, float prob, Node startNode, Node
destinationNode)

 Node n:=startNode
 Queue q:={}
 Stack s:={}
 Enqueue(q,startNode)
 Visited[startNode]:=true
 While(n not equals destinationNode)
 if(queue empty)
 tempNode:=pop(s)
 Enqueue(tempNode)
 For each node (g)
 Visited[node]:=false
 n:=Dequeue(q)
 if(n not equals destinationNode)
 push(s,n)
 for each neighbor of n
 if(visited[neigbor]=false)
 if(prob<rand())
 visited[neigbor]:=true
 Enqueue(q.neigbor)

39

In other words, it searches the entire graph or sequence without considering the

goal until it finds it. Algorithm is illustrated in Figure 3.13

Time complexity of Breath First Search algorithm can be described as follows.

There is a search tree with branching factor n and the maximum path length is d. The

root of the search tree generates n nodes at the first level, each of which generates n

more nodes, for a total of n2 at the second level. Each of these generates n more nodes,

yielding n3 nodes at the third level, and so on. Then the maximum number of nodes

expanded before finding a solution is 1 + n + n2 + n3 +...+ nd . Therefore, in the worst

case the complexity bound would be O(nd). Because it must examine every node in the

tree. Space complexity of the algorithm is also O(nd) because it must store the whole

frontier in memory (Gutin and Jensen 2001).

Breadth-first search algorithm is implemented in order to define the distributed

firewall architecture. Algorithm is only performed by domain firewall. All possible

paths between subdomains in the network must be determined before the execution of

the algorithm. Breadth-first search algorithm takes a starting node which is domain

firewall node as parameter. Our domain firewall is at level 0. In the first stage, it visit

all subnet firewalls at level 1. In the second stage, it visits all subnet firewalls or child

firewalls at second level. These new subnet firewalls or child firewalls, which are

adjacent to level 1 subnet firewalls, and so on. This situation illustrated in Figure 3.14.

Figure 3.14. Example of Distributed Firewall Environment.

http://www.cs.usask.ca/content/resources/csconcepts/1998_3/glossary.html

40

3.5.2. Dept-First Search Algorithm

Depth-first search (DFS) is an uninformed search algorithm that progresses by starting

the first child node of the search tree that appears and thus traversing until a node that

has no children. Algorithm is illustrated in Figure 3.15.

Figure 3.15. Depth-First Search Algorithm
(Source: Sahni 1998)

The time complexity for a depth first search is O(nd), where n is the branching

factor and d is the maximum depth. The time complexity is the same with respect to the

breath first search. The drawback to the depth first search is that it can get stuck going

down the wrong path and never recover, with respect to time, from an unlucky choice

at one of the nodes near the top of the tree. Space complexity of the algorithm is O(nd),

for a depth first search in memory, it only needs to store a single path from the root to a

leaf node, along with the remaining unexpanded sibling nodes for each node on the

path (Gutin and Jensen 2001).

dfs(graph G)
 {

list L=empty
tree T=empty

choose a strating vertex x
search(x)

while(L is not empty)
 {

remove edge (v,w) from beginning of L
if w not yet visited

 {
add (v,w) to T

search(w)
 }
 }
 }

search(vertex v)
 {

visit v
for each edge (v,w)

add edge (v,w) to the beginning of L

 }

41

 Depth-first search algorithm provides to define distributed firewall architecture

to distributed firewall administration tool. After all the possible paths defined in the

network algorithm starts from root node which is domain firewall node and thus going

deeper and deeper until it finds a node that has no children. Then the search

backtracks, returning to the most recent node it hadn’t finished exploring.

 Breath-first search algorithm always finds the shortest path to goal for example

root node wants to interfere any leaf firewall and if there are several solutions breadth-

first search provide shortest path to destination leaf firewall. The major weakness of

Depth-first search algorithm is that it will fail to terminate if there is an infinite path “to

the left of” the path to the first solution so DFS is not complete. Furthermore, DFS is

not suitable for large search tree or infinite maximum depth.

 Alternatively there are well-known graph search algorithms available and they

can be implemented in the project. First one is Dijkstra’s algorithm solves the problem

of finding the shortest path from a point in a graph (the source) to a destination.

Secondly Bellman-Ford algorithm, this algorithm used by Routers to maintain the

distance tables, which tell the distances and shortest path to sending packets to each

node in the network (Gutin and Jensen2001).

42

CHAPTER 4

EXPERIMENTS AND EVALUATION

On top of the proposed distributed architecture, two different algorithms,

namely Breadth-First Search (BFS) and Depth-First Search (DFS) are implemented for

topology discovery and rule collection. These two algorithms are applied to different

experimental topologies. Basically, the domain firewall (root node) requests distributed

architecture information using one of the algorithms from subnet firewalls which also

request this information from their child firewalls and this recursive iteration continues

according to the selected algorithm. Breadth-First Search algorithm discovers all

neighboring nodes. Starting from those nearest nodes, it finds their undiscovered

neighbor nodes and this iterative process proceeds until the last node. Depth-First

Search algorithm traverses a single path of the graph that is, until it visits a node with

no child, it then returns at the last node on the path that has an unvisited child then

traversing starts from that node. In this experiment, the traversing time of the proposed

architecture is calculated in terms of selected algorithm. These experimental topologies

constructed on the 19 computers which have Windows XP operating systems and

Pentium IV-M 1.73 GHz. processor with 1 GByte of RAM. Each computer network

card is Marvell Yukon 88E8056 PCI-E 10/100/1000Base-T Ethernet Controller.

According to the proposed architecture each computer should have more than

one network interface card (NIC) and should be assign a different IP address to each

card so different subnets can be created. However, it is possible to assign multiple IP

address to a single NIC in Windows XP. Assigning more than one IP address to a

network card on Windows requires the steps below:

• Right-click on My Network Places, choose Properties.

• Right-click on the Local Area Connection, choose Properties.

43

• Highlight Internet Protocol (TCP/IP), click Properties.

• Set IP address, Subnet Mask and Default Gateway, click Advanced button
shown in Figure 4.1.

Figure 4.1.Windows XP TCP/IP Menu.

After Advanced button is clicked, Advanced TCP/IP Settings Form appears.

Click the Add button and enter a new IP address and Subnet mask. According to the

network topology procedure can be repeated. This procedure shown in Figure 4.2.

Figure 4.2.Windows XP Advanced TCP/IP Menu.

After multiple IP addresses are assigned to related computers which are subnet

firewalls and domain firewalls, different experimental topologies are ready. Basically,

the experiment is about calculating the amount of time to construct the distributed

44

firewall architecture according to the selected algorithm. First group consists of

networks which have 2 subnet firewalls where each of them has 2, 3, 4, and 5 leaf

firewalls. Second group has 3 subnet firewall each of them has 2, 3, 4 and 5 leaf

firewalls.

4.1. Experimental Setups For Balanced Topology

In order to distinguish algorithm’s execution time two different kind of topology

implemented. First of all proposed architecture implemented like a balanced topology,

in this topology each subnet firewall have equal number of leaf firewalls.

4.1.1. Experimental Setup I

This experimental setup (Figure 4.3) is composed of 7 firewalls and 2 levels of

hierarchy. Each firewall in the each level of hierarchy has two children except the ones

in the leaf firewalls. Each firewall in the tree is responsible for executing Distributed

Firewall Administration Tool and maintains a local database to store the policy rules

that are mentioned in the previous chapter. Domain firewall, which is at the highest

level of the hierarchy, sends distributed architecture request has been performed.

Figure 4.3. Experimental Setup I

The experiment is performed 100 times for each algorithm. In DFS algorithm

the average time to complete the request is 240 milliseconds. However in BFS

algorithm the average time to complete the request is 216 milliseconds.

4.1.2. Experimental Setup II

The second experimental architecture (Figure 4.4) is composed of 9 firewalls

and 2 levels of hierarchy. Experimental steps mentioned for the previous cases are also

valid for this architecture. In Depth-First Search (DFS) algorithm the average time

45

values to complete the request is 258 milliseconds. However in Breadth-First Search

(BFS) algorithm the average time values to complete the request is 223 milliseconds.

Figure 4.4. Experimental Setup II

4.1.3. Experimental Setup III

The third experimental architecture (Figure 4.5) is composed of 11 firewalls and

2 levels of hierarchy. Experimental steps mentioned for the previous cases are also

valid for this architecture. In Depth-First Search (DFS) algorithm the average time

values to complete the request is 282 milliseconds. However, in Breadth-First Search

(BFS) algorithm the average time values to complete the request is 238 milliseconds.

Figure 4.5. Experimental Setup III

4.1.4. Experimental Setup IV

The fourth experimental architecture (Figure 4.6) is composed of 13 firewalls

and 2 levels of hierarchy. Experimental steps mentioned for the previous cases are also

valid for this architecture. In Depth-First Search (DFS) algorithm the average time

46

values to complete the request is 305 milliseconds. However, in Breadth-First Search

(BFS) algorithm the average time values to complete the request is 256 milliseconds.

Figure 4.6. Experimental Setup IV

In each case, experiments are performed 100 times and average processing time

is measured for both algorithms. The results are shown in Figure 4.7.

Figure 4.7. Processing Time for 2 Subnets

Equation of the BFS line is 25.21675.575.2 2 +−= xxy however DFS line

equation is 35.20815.1325.1 2 ++= xxy . This result which is shown in Figure 4.7

indicates that Depth-First Search algorithm processing time higher than Breadth-First

Search algorithm. Breadth-First Search algorithm work principle is visits all of the node

nearest to starting node then begin distributing outer but in Depth-First Search, it is

continue to deeper along a given path first, and returns only when no child. In the

47

experiments performed when number of leaf firewall increases DFS algorithm has

much execution time than BFS.

4.1.5. Experimental Setup V

The fifth experimental architecture (Figure 4.8) is composed of 10 firewalls and

2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps

mentioned for the previous cases are also valid for this architecture. In Depth-First

Search (DFS) algorithm the average time values to complete the request is 416

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time value

to complete the request is 330 milliseconds.

Figure 4.8. Experimental Setup V

4.1.6. Experimental Setup VI

The sixth experimental architecture (Figure 4.9) is composed of 13 firewalls and

2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps

mentioned for the previous cases are also valid for this architecture. In Depth-First

Search (DFS) algorithm the average time values to complete the request is 460

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time

values to complete the request is 358 milliseconds.

Figure 4.9. Experimental Setup VI

48

4.1.7. Experimental Setup VII

The seventh experimental architecture (Figure 4.10) is composed of 16 firewalls

and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps

mentioned for the previous cases are also valid for this architecture. In Depth-First

Search (DFS) algorithm the average time values to complete the request is 468

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time

values to complete the request is 380 milliseconds.

Figure 4.10. Experimental Setup VII

4.1.8. Experimental Setup VIII

The eight experimental architecture (Figure 4.11) is composed of 19 firewalls

and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps

mentioned for the previous cases are also valid for this architecture. In Depth-First

Search (DFS) algorithm the average time values to complete the request is 500

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time

values to complete the request is 396 milliseconds.

Figure 4.11. Experimental Setup VIII

49

In each case, experiments are performed 100 times and average processing time

is measured for both algorithms. The results are shown in Figure 4.12.

Figure 4.12. Processing Time for 3 Subnets

Equation of the BFS line is 256433 2 ++−= xxy however DFS line equation

is 65.36085.2825 2 ++−= xxy . This result which is Figure 4.12 indicates that Depth-

First Search algorithm processing time higher than Breadth-First Search algorithm.

Breadth-First Search algorithm work principle is visits all of the nodes nearest to

starting node then begin distributing outer but in Depth-First Search, it is continue to

deeper along a given path first, and returns only when no child. In the experiments

performed when the number of leaf firewall increases DFS algorithm has much

execution time than BFS.

4.2. Experimental Setups for Unbalanced Tree

In this experiment the proposed architecture is constructed like unbalanced tree,

each subnet firewall has different number of leaf firewalls.

4.2.1. Experimental Setup IX

This experimental setup (Figure 4.13) is composed of 6 firewalls and 2 levels of

hierarchy. Subnet firewall, which stands on the left branch of the tree, has two leaf

50

firewalls in contrast right branch of the subnet has just a single leaf firewall. Each

firewall in the tree is responsible for executing Distributed Firewall Administration

Tool and maintains a local database to store the policy rules that are mentioned in the

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends

distributed architecture information collection request.

Figure 4.13. Experimental Setup IX

The experiment is performed 100 times for each algorithm. In DFS algorithm

the average time to complete the request is 348 milliseconds. However, in BFS

algorithm the average time to complete the request is 317 milliseconds.

4.2.2. Experimental Setup X

This experimental setup (Figure 4.14) is composed of 7 firewalls and 2 levels of

hierarchy. Subnet firewall, which stands on left branch of the tree, has three leaf

firewalls in contrast right branch of the subnet has just a single leaf firewall. Each

firewall in the tree is responsible for executing Distributed Firewall Administration

Tool and maintains a local database to store the policy rules that are mentioned in the

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends

distributed architecture information collection request.

Figure 4.14. Experimental Setup X

51

The experiment is performed 100 times for each algorithm. In DFS algorithm

the average time to complete the request is 364 milliseconds. However, in BFS

algorithm the average time to complete the request is 331 milliseconds.

4.2.3. Experimental Setup XI

This experimental setup (Figure 4.15) is composed of 8 firewalls and 2 levels of

hierarchy. Subnet firewall, which stands on the left branch of the tree, has four leaf

firewalls in contrast right branch of the subnet has just a single leaf firewall. Each

firewall in the tree is responsible for executing Distributed Firewall Administration

Tool and maintains a local database to store the policy rules that are mentioned in the

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends

distributed architecture information collection request.

Figure 4.15. Experimental Setup XI

The experiment is performed 100 times for each algorithm. In DFS algorithm

the average time to complete the request is 388 milliseconds. However, in BFS

algorithm the average time to complete the request is 342 milliseconds.

4.2.4. Experimental Setup XII

This experimental setup (Figure 4.16) is composed of 9 firewalls and 2 levels of

hierarchy. Subnet firewall, which stands on the left branch of the tree, has five leaf

firewalls in contrast right branch of the subnet has just a single leaf firewall. Each

firewall in the tree is responsible for executing Distributed Firewall Administration

Tool and maintains a local database to store the policy rules that are mentioned in the

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends

distributed architecture information collection request.

52

Figure 4.16.Experimental Setup XII

The experiment is performed 100 times for each algorithm. In DFS algorithm

the average time to complete the request is 413 milliseconds. However, in BFS

algorithm the average time to complete the request is 355 milliseconds.

In each case, experiments are performed 100 times and average processing time

is measured for both algorithms. The results are shown in Figure 4.17.

Figure 4.17.Processing Time for 2 Subnets

Equation of the BFS line is 75.28925.1425.0 2 +−−= xxy however DFS line

equation is 35.32615.625.2 2 ++= xxy . In the experiments performed when the

number of leaf firewall increases in unbalanced topology DFS algorithm execution time

higher than BFS.

53

4.2.5. Experimental Setup XIII

The thirteenth experimental architecture (Figure 4.18) is composed of 8

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental

steps mentioned for the previous cases are also valid for this architecture. Subnet

firewall which stands on the left branch of the tree has two leaf firewall but other

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the

average time to complete the request is 409 milliseconds. However in Breadth-First

Search (BFS) algorithm the average time to complete the request is 364 milliseconds.

Figure 4.18. Experimental Setup XIII

4.2.6. Experimental Setup XIV

The fourteenth experimental architecture (Figure 4.19) is composed of 9

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental

steps mentioned for the previous cases are also valid for this architecture. Subnet

firewall which stands on the left branch of the tree has three leaf firewall but other

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the

average time values to complete the request is 423 milliseconds. However in Breadth-

First Search (BFS) algorithm the average time values to complete the request is 375

milliseconds.

 Figure 4.19. Experimental Setup XIV

54

4.2.7. Experimental Setup XV

The fifteenth experimental architecture (Figure 4.20) is composed of 10

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental

steps mentioned for the previous cases are also valid for this architecture. Subnet

firewall which stands on the left branch of the tree has four leaf firewall but other

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the

average time values to complete the request is 443 milliseconds. However in Breadth-

First Search (BFS) algorithm the average time values to complete the request is 380

milliseconds.

Figure 4.20.Experimental Setup XV

4.2.8. Experimental Setup XVI

The sixteenth experimental architecture (Figure 4.21) is composed of 11

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental

steps mentioned for the previous cases are also valid for this architecture. Subnet

firewall which stands on the left branch of the tree has five leaf firewalls but other

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the

average time values to complete the request is 473 milliseconds. However in Breadth-

First Search (BFS) algorithm the average time values to complete the request is 387

milliseconds.

55

Figure 4.21. Experimental Setup XVI

In each case, experiments are performed 100 times and average processing time

is measured for both algorithms. The results are shown in Figure 4.22.

Figure 4.22.Processing Time for 3 Subnets

Equation of the BFS line is 6.3394.142 ++−= xxy however DFS line equation

is 8.4068.64 2 +−= xxy .

All equations presented in this chapter are generated on the curve fitting tool of

Matlab version 7.3.0.267 (R2006b). Curve fitting is a useful tool for representing a data

set in a linear or quadratic fashion. Matlab has function, polyfit, which can quickly and

easily fit a polynomial to set of data points. Polyfit is computed a least squares

polynomial for a given set of data. Polyfit actually generates the coefficients of the

56

polynomial (which can be used to simulate a curve to fit the data) according to the

degree specified.

p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits

the data, p(x(i)) to y(i), in a least squares sense. The result p is a row vector of length

n+1 containing the polynomial coefficients in descending powers. For a polynomial

1
1

21 ...)(+
− ++++= nn

nn pxpxpxpxp , the polyfit function provides the solution that

minimizes the residuals (The MathWorks, 2008).

57

CHAPTER 5

CONCLUSION AND FUTURE WORK

The main objective of this thesis is to design a distributed firewall architecture

and implement a windows administration tool for this architecture in order to keep

track of some certain actions (Create, Read, Update, and Delete) that are performed on

the policy rule sets of the distributed firewalls. The most important feature of thesis is

that firewall network topology is not given as defined by human. Implementing two

different algorithms, which are Depth-First Search and Breadth-First Search,

distributed firewall architecture are created and implementing hearth-beat method

topology is updated periodically.

Using Distributed Firewall Administration Tool, based on Depth-First Search

and Breadth-First Search algorithms for discovering distributed architecture, both

balanced or unbalanced processing time for 2 subnets and 3 subnets Depth-First Search

algorithm processing time higher than Breadth-First Search algorithm for both subnet

type.

The concept of distributed firewall is rather new and as an on-the-shelf-product

is not available for windows platform on the market. Distributed firewalls can be

categorized as follows domain firewall, subnet firewall, leaf firewall. These firewalls

can communicate with each other according to the distributed architecture. The

outcome of this work can be transformed into a product for a large network so it can be

effective solution for network security.

Distributed firewall administration tool does not have any authentication

mechanism between firewalls. According to the proposed architecture parent firewalls

send policy rules to their leaf firewalls for providing the consistency overall security

policy so during this operation authentication mechanism can be implemented security

risks.

58

REFERENCES

Al-Shaer, E.S., Hamed, H.H., Boutaba, R. and H. Masum. 2005. Conflict Classification

 and Analysis of Distributed Firewall Policies. IEEE Journal on Selected Areas

 in Communications 23(10): 2069-2084.

Al-Shaer,E.S.,Abdel-Wahab,H.,and. 1999.Hifi:A newMonitoringArchitecture for

 Distributed Systems Management.InInternational Conference onDistributed

 Computing Systems, Austin, Texas.

Al-Shaer, E. and Hazem Hamed. 2004. Discovery of Policy Anomalies in Distributed

 Firewalls, Proceedings of IEEE INFOCOM'04.

Al-Shaer, E. and Hazem Hamed. 2003. Firewall Policy Advisor for anomaly Detection

 and Rule Editing. IEEE/IFIP Integrated Management IM’2003.

Awerbuch, B. and R.G., Gallager. 1987. A new distributed algorithm to find breadth

 first search trees. IEEE Transactions on Information Theory 33: 315–322.

Bellovin, S. M. 1999. Distributed Firewalls. Login; special issue on security.

Chapman, Brent and Elizabeth Zwicky, eds. 1995. Building Internet Firewalls.

 Cambridge: Orielly & Associates Inc.

CodeProject, Developer. 2008. FilterHookDriver.

 http://www.codeproject.com/filterhook (accessed September 12, 2008).

http://www.codeproject.com/filterhook

59

Dimitrakos, T. and I. Djordjevic. 2002. Policy-Driven Access Control over a

 Distributed Firewall Architecture. Proc IEEE Policy Workshop 2002.

Grant, J., Attfield, P. and K. Armstrong. 2001. Distributed Firewall Technology.

 EWA,CANADA.

Gutin, G. and Jensen J. 2001.Diagraphstheory,algorithms and

 applications.London:College Press.

Ingham, K. and S.Forrest.2002.A history and survey of network firewalls. Technical

 Report 2002-37, University of New Mexico Computer Science Department.

Ioannidis, S., Keromytis, A.D., Bellovin, S.M. and J.M. Smith. 2000. Implementing

 Distributed Firewall. In Proceedings of the ACM Conference on Computer and

 Communication Security, Athens, Greece.

Kurose, James F. and W.R. Keith . 2003. Computer Networking A Top-Down

 Approach Featuring the Internet. New York: Addison-Wesley.

Li, W. 2000. Distributed Firewall. GeoInformatica. 4(3):253.

Linux, Network Administrators Guide. 2008. What Is a Firewall?.

http://www.faqs.org/docs/linux_network/x-087-2-firewall.introduction.html

 (accessed October 19, 2008).

Markham, T. And C. Payne. 2001. Security at the Network Edge: A Distributed

 Firewall Architecture. Anaheim, CA, USA.

http://www.faqs.org/docs/linux_network/x-087-2-firewall.introduction.html

60

Microsoft TechNet. 2008. Windows Firewall. http://technet.microsoft.com/en-

 us/library/cc755604.aspx#BKMK_architecture (accessed February 4, 2008).

Microsoft Developer Network. 2008. Filter Hook Driver. http://msdn.microsoft.com/

 en-us/library/aa504969.aspx (accessed February18, 2008).

Payne, C. and T.Markham. 2001 . Architecture and applications for a distributed

 embedded firewall. In 17th Annual Computer Security Applications

 Conference, IEEE Computer Society.

Roedig, U., Ackermann, R.,Rensing, C. and R.Steinmetz. 2000 .A Distributed Firewall

 for Multimedia Applications. In Proceedings of the Workshop Sicherheit in

 Mediendaten,Darmstadt, Germany.

Smith, R. And Y. Chen. 2003 . Cascade of Distributed and Cooperating Firewalls in a

 Securew Data Network. IEEE Transactions on Knowledge and Data

 Engineeting, Vol.15, NO.5,pp. 1307-1315.

Sahni, S. 1998 . Data Structures, Algoritms, and Applications in C++. Singapore:

 McGraw-Hill.

Smith, R. and S. Bhattacharya. 1999 .A Protocol and Simulation for Distributed

 Communicating Firewalls.

Stepanek, R. 2001.Distributed Firewalls.Seminar on Network Security.Helsinki

 University of Technology,Finland.

http://technet.microsoft.com/en-

61

TheMathWorks,Matlab.2008.

 Polyfit.http://www.mathworks.com/access/helpdesk/help/techdoc/ref/polyfit.ht

 ml (accessed December 27,2008)

Wack, J., Cutler, K. and J. Pole. 2002. Guidelines on Firewalls and Firewall Policy.

 NIST Special Publication 800-41.

Wikipedia, The Free Encyclopedia. 2008. Breadth-first search.

 http://en.wikipedia.org/wiki/Breadth-first_search (accessed August 9, 2008).

Wikipedia, The Free Encyclopedia. 2008. Dreadth-first search.

 http://en.wikipedia.org/wiki/Dreadth-first_search (accessed August 3, 2008).

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Dreadth-first_search

