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ABSTRACT 

 
DEVELOPMENT OF A DISTRIBUTED FIREWALL 

ADMINISTRATION TOOL 

 

Today firewalls not only guard internal computer networks but also individual 

personal computers against malicious and unauthorized accesses from outside. The 

purpose of this study is to create architecture and its corresponding application to 

manage distributed firewalls running on Microsoft Windows platform. Distributed 

Firewall Administration is about creating a management center for a network composed 

of the firewalls running on Microsoft Windows platform. Main important part of this 

work is to determine distributed firewall network topology with breadth-first search and 

depth-first search algorithms.  

The Microsoft Windows Firewall API makes it possible to programmatically 

manage the features of firewalls running on windows platform by allowing applications 

to create, enable and disable firewall exceptions. This study used the Windows Firewall 

API to manage the features of it. This API is only reachable using C/C++ low level 

programming languages.  

Distributed Firewall Administration Tool (DFAT) can add, modify or delete 

rules on the end-user firewall rule set, these rules stored on the database. This tool 

works on a distributed environment, there is a parent child relationship between 

firewalls. Parent firewalls have right to manage its child firewall’s rule set. Firewalls 

introduce themselves to each other with broadcast method.  

 

 

 

 

 

 



   

                      

    
v

 

          
     

ÖZET 
 

DAĞITIK GÜVENLİK DUVARLARI İÇİN BİR YÖNETİM ARACI 

GELİŞTİRİLMESİ 

 

Güvenlik duvarları günümüzde sadece yerel bilgisayar ağları için koruma değil 

aynı zamanda kişisel bilgisayarlar için de dışarıdan bilgisayarlara izinsiz girişleri 

engellemektedir. Bu çalışmanın amacı Microsoft Windows platformunda çalışan 

dağıtık güvenlik duvarlarını yönetebilecek uygun bir mimari oluşturmak ve bu 

mimariye uygun bir uygulama geliştirmektir. Dağıtık güvenlik duvarı yönetim aracı 

yerel ağlar için Microsoft Windows platformunda çalışan güvenlik duvarlarını yöneten 

bir yönetim merkezi olarak düşünülmüştür. Bu çalışmanın en önemli noktası dağıtık 

güvenlik duvarları ağ yapısını derinlik öncelikli arama ve yayılma öncelikli arama 

algoritmaları ile oluşturmaktır. 

Windows güvenlik duvarı yazılım programlama ara yüzü kullanılarak Microsoft  

Windows platformunda çalışan güvenlik duvarlarına ait özellikler yönetilebilir. 

Hazırlanan yazılım ile güvenlik duvarı kural dışı listesi oluşturulabilir, liste aktif yada 

pasif hale getirilebilir.Yazılım programlama ara yüzüne  sadece C/C++ gibi alt düzey 

diller kullanılarak ulaşılabilmektedir.  

Dağıtık güvenlik duvarı yönetim aracı, güvenlik duvarı kurallarını yönetir 

anılan kurallar veritabanında saklanmaktadır. Bu araç dağıtık ortamda çalışmaktadır, 

güvenlik duvarları arasında anne çocuk ilişkisi bulunmaktadır. Anne güvenlik duvarları 

çocuklarının kurallarına müdahale etme hakkına sahiptir. Güvenlik duvarları ağ 

içerisinde birbirlerini yayın yapma metodu ile tanımaya çalışırlar. 
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CHAPTER 1 
 

INTRODUCTION 
 

The Internet is a highly effective tool for communicating and gathering 

information and for cooperation between distant locations. It can be considered as a 

kind of global meeting place where people from all parts of the world can come 

together. Uploading, downloading, and sharing document files are now everyday 

activities. Unfortunately, when people perform these daily tasks, they expose their 

computers to serious security risks.  

Network security is very important to avoid security risks. There are several 

techniques and tools that are used to provide network security. Network security aims 

are confidentiality, integrity and availability of data. Firewalls are one of the well-

known tools that are very helpful in network security to provide above mentioned 

security tools. Basically, a firewall separates the private network from the external and 

non-secure environment. A firewall that is located between the private network and 

Internet enforces a predefined network security policy by controlling network traffic 

passing over it. A network security policy is composed of a set of rules that defines 

what types of connections are allowed between internal and external networks. 

Additionally, a security policy defines the action that should be performed when a 

violation of policy is detected. 

To be sure that security policy is managed correctly; the whole traffic between 

internal and external networks must travel through the firewall. In other words, firewall 

should be at the entry point of the private network. Although the traditional firewalls 

have very critical roles in the network security, they have some drawbacks. There are 

several researches on the firewall technologies to overcome these drawbacks. One of 

the recent approaches in this field is the concept of distributed firewall. In this scheme, 

security policy is still centrally defined, but enforcement is left up to the individual 

endpoints.  
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The main concern of this study is to design a distributed firewall architecture 

and to develop a Distributed Firewall Administration Tool for Windows platforms. 

There are some previous works about this topic but in this thesis some new methods are 

implemented. Firewalls are discovering distributed firewall topology by using Breadth-

First Search (BFS) and Depth First Search (DFS) algorithms. Moreover, personal 

firewall provides switching between domains according to the selected domain suitable 

rules loaded the firewall. Furthermore, parent firewalls can interfere to their child 

firewall’s rule set.  

This thesis introduces a Distributed Firewall Administration Tool for Windows 

environment to keep track of some certain events performed on policy rules. The thesis 

is composed of five chapters. Chapter 2 gives some background information about 

Internet firewalls, distributed firewalls, and windows firewalls. In addition, Windows 

Filter Hook Driver creation, initialization and implementation are described in this 

chapter. Chapter 3 explains the details of suggested distributed firewall architecture on 

which Distributed Firewall Administration Tool will run. Moreover, database design 

and software design also explained in this section. Chapter 4 describes experiments 

which are performed using Distributed Firewall Administration Toll and gives an 

evaluation of experiment results. Finally, Chapter 5 gives the conclusion of this thesis 

work.   
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CHAPTER 2 
 

BACKGROUND 
 

In this chapter, packet filtering firewalls and their disadvantages are explained. 

In addition, the idea of distributed firewalls is examined along with. 

2.1. Packet Filtering Firewalls 

Firewalls are network elements that have an important role for network security. 

Basically, a firewall is a secure and trusted machine that separates the private network 

and public network. The purpose of a firewall is to keep “bad” things outside a 

protected environment. Firewalls implement a security policy. Although the policy 

might be prepared to prevent any access from outside (while still allowing traffic to 

pass from the inside to the outside), it might be prepared to permit access only from 

certain places, from certain users, or for certain activities. 

A firewall filters both inbound and outbound traffic (see Figure 2.1). Firewalls 

can filter packets based on their source and destination address and port numbers. This 

kind of filtering name is address filtering in addition they can also filter specific types 

of network traffic. This is known as protocol filtering; in this type of filtering the 

decision to forward or reject traffic  depends upon the protocol used. Firewall can also 

filter traffic by packet attribute or state. 

Packet filtering firewalls are the basic level of the firewalls. As the name 

suggest, this firewalls check for each and every IP packet individually, either coming in 

or going out of private network. According to the selected policies (called Rule set or 

Access Control Lists) it determines whether to accept a packet or reject it. Packet filters 

use one or more of the following pieces of information to make their decision on 

whether or not to forward the packet: source address; destination address; options in the 

network header; transport-level protocol (i.e., TCP, UDP, ICMP, etc.); flags in the 

transport header; options in the transport header; source port or equivalent if the 

protocol has such a construct; destination port or equivalent if the protocol has such a 
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construct; the interface on which the packet was received or will be sent; and whether 

the packet is inbound or outbound (Wack, et al. 2002).   

 

Figure 2.1. Firewalls filter both inbound and outbound Internet traffic                
(Source: Chapman and Zwicky 1995) 

A firewall does not protect whole network from every type of attack since it 

does not block all traffic but it will limit risk of significantly. Moreover, firewalls 

cannot provide protection against viruses or malicious code. Since most firewalls do 

not inspect the payload or content of the packet, they are not aware of any threat that 

may be contained inside (Kurose and Ross 2003).  

The success of any firewall solution's implementation is directly related to the 

existence of a well-thought-out and consistently-implemented security policy. A 

network security policy defines the network’s expectations of proper network use and 

the procedures to prevent and respond to security incidents. Without a network security 

policy, a proper security framework cannot be established (Chapman and Zwicky 

1995).   
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Drawbacks of Firewalls  

Although they provide several benefits for network security, traditional 

firewalls, or packet filtering firewalls have some drawbacks as stated in (Bellovin 1999, 

Li 2000, Ioannidis et al. 2000, Gray 2003). These drawbacks can be summarized as 

follows.  

They can be bottleneck to throughput, since firewalls must analyse every packet 

on network communication, they often decrease network performance. Moreover 

conventional firewalls are central management of the network security also they are 

central point for attack and if an intruder breaks through the firewall they may have 

unlimited access to the corporate network (Li 2000). 

Conventional firewalls restricted access to desirable services. They block 

services that user wants to access for example telnet, ftp etc. Moreover they rely on 

topology restrictions; sometimes network topology may not fit the firewall design this 

kind of problem can be solved using insecure services across major gateways (Gray 

2003). 

The biggest disadvantage of firewalls is that they do not provide protection from 

insider attacks. Conventional firewalls assume that all insiders are trusted since most 

corporate computer crime is perpetrated by internal users, a firewall offers little 

protection against this threat (Gray 2003). 

Another disadvantage of conventional firewalls is that they do not protect 

against back door attacks. For example, if unrestricted modem access is permitted into 

a site attacker could jump around the firewall or attacker routing the network traffic 

through backdoor intermediary computers such as proxy servers. Firewalls cannot stop 

these problems, since they must allow the common or diverted traffic (Gray 2003). 

Firewalls cannot protect the network against data-driven attacks these attacks 

can be summarized as follows: 
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• Viruses: Firewalls does not offer virus protection  

• Executable Content: Java applets, ActiveX Controls, JavaScript, 
VBScript 

• Tunneling 

• End to End Encryption 

2.2. Distributed Firewalls  

As a result of dramatic increase in network complexity and development of new 

technologies like wireless networks and VPNs, it is not easy to maintain a fixed 

network topology anymore. Additionally, there are increasing user demands like 

mobility, security, performance and reliability. As a result of these and the 

disadvantages mentioned above, conventional firewalls have started to become 

inadequate. 

In order to remove such kind of problems, Bellovin and Ioannidis, et al. 

introduced the concept of distributed firewall. The distributed firewall design is based 

on the idea of enforcing the policy rules at the endpoints rather than a single entry point 

to network. The security policies are still defined centrally. The aim with this approach 

is to retain the advantages of firewalls while resolving the disadvantages mentioned 

above (Bellovin 1999,Ioannidis, et al. 2000). 

In the architecture described by Bellovin, a firewall is placed at each host in the 

network and managed centrally, i.e. defined centrally and enforced in a distributed way. 

This way the domain of the firewall is no longer defined by the topology of the network 

and also the policies, being defined at a central location in terms of end nodes, don't 

suffer an impact form the change in topology. 

Distributed firewall system is not a single system that acts as a gateway between 

two networks (see Figure 2.2).  By removing this single choke point, the network 

bottleneck is eliminated. In distributed firewall technology, an access control 

mechanism is distributed to each host which requires protection. The unique access 

control for each of the network systems allows different levels of security to be 

implemented on computer system in the same network (Grant, et al. 2001). 
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Figure 2.2. Distributed Firewall architecture. 
 (Source: Li 2000) 

There are three components for distributed firewall environment. These 

components are policy language, policy distribution scheme and certificates. Policy 

language defines which inbound and outbound connections are allowed or rejected. 

Basically it is equivalent to packet filtering rules. Policy language should also support 

credentials, for delegation of rights and authentication purposes (Ioannidis, et al. 2000).  

While traditional firewalls usually use the IP address as an identifier, distributed 

firewalls use cryptographic certificates as identifier since distributed firewalls are 

independent of topology. Certificates enable making decisions without knowledge of 

the physical location of the host. Public-key cryptography mechanisms are most often 

applied in contemporary implementations (Ioannidis, et al. 2000). 

The policy language defines which inbound and outbound connections on any 

component of the network policy domain are allowed. Policy distribution scheme is 

used to enable policy control from central point. Distribution scheme defines type of 

the security policy delegation to the members of the network (Stepanek 2001). Policies 

are distributed according to one of the following distribution scheme:  

• Policies as well as credentials can be pushed to every single end point in the 

policy domain. 
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• Policies and credentials can be pulled from a trusted repository during 

initialization. 

• Policies are pulled during initialization of the policy verifier whereas 

credentials for authentication mechanisms remain on a trusted repository 

and are requested whenever communication traffic is reaching a node from a 

yet unknown host (Stepanek 2001). 

In distributed firewall architecture, preferred network level encryption 

mechanism for TCP/IP is IPSEC. IPSEC supports network-level peer authentication, 

data origin authentication, data integrity, and data confidentiality (encryption), and 

replay protection.  

Advantages and Disadvantages of Distributed Firewalls 

Distributed firewalls have some advantages and disadvantages. The advantages 

of distributed firewalls can be stated as follows: First of all, there is no longer a single 

chokepoint this is major benefits of both a performance and availability. Generally 

throughput is limited with the firewall speed in conventional firewall but in distributed 

firewall throughput is no longer limited by the speed of the firewall (Ioannidis, et al. 

2000). 

Another advantage of the distributed firewall is requiring less CPU usage than 

conventional firewalls for equal amount of traffic. Because all of the policies for all 

nodes splitting the time to process traffic over the network’s node. Conventional 

firewalls cannot prevent inside attacks. With the distributed firewall architectures, it is 

possible to estimate the source of unfriendly traffic coming from Internet or local 

network (Ioannidis, et al. 2000). 

Filtering of certain protocols such as FTP listening a specific port this operation 

that is generally not permitted through a traditional firewall but in distributed firewall, 

each node knows when it is listening for a particular data. Despite of some advantages 

of distributed firewalls which are described above also they have some disadvantages. 

If firewall command center is compromised, due to attack or mistake by the 

administrator, this situation is high risky for security of the entire network (Li 2000). 
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Topological independence is one of the main advantages of distributed 

firewalls. Since network security no longer depends on network topology, it provides 

more flexibility in defining the security perimeter. Security perimeter can easily be 

extended to cover remote hosts and networks whenever required (Ioannidis et al. 2000). 

Distributed firewalls provide separate level of security for different kinds of 

data. For example financial, engineering and medical data need different level of 

security so using distributed firewall each node would have firewall and they can define 

different level of security. In addition they can provide separate level of security to the 

Web, Mail servers, Application servers or individual nodes in the setup. These are 

meant to provide higher security to the corporate networks (Li 2000). 

In traditional firewalls there is an assumption on that insiders are trustable. 

However, according to the researches most of the attacks are originated by the insiders. 

With the distributed firewall architectures, the insiders are no longer treated as 

“unconditionally trusted”. Dividing network into parts having different security level is 

much easier with distributed firewalls (Ioannidis, et al. 2000). 

End-to-end encryption is possible without affecting the network security in 

distributed firewall systems.In conventional firewalls, the use of end-to-end encryption 

was causing some problems in network security. On the other hand, end-to-end 

encryption significantly improves the security of the distributed firewall. 

On the other hand, there are some drawbacks of distributed firewalls that can be 

summarized as follows (Li 2000). 

Compliance of security policy for insiders is one of the major issues of 

distributed firewalls. This problem especially occurs when each ending host have the 

right of changing security policy. There can be some techniques to make modifying 

policies harder but it is not totally impossible to prevent it. 

Intrusion detection systems are less effective with distributed firewalls because 

complete network traffic is not on the single point. There is more than one entry point     

and each node has log file. It is possible to log suspicious connections on local server 

but these logs need to be collected and analyzed by security experts in central services.  
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2.3. Windows Firewall 

Windows Firewall is a personal firewall which comes bundled with Microsoft’s 

Windows XP, Windows Server 2003, Windows Vista operating systems. Windows 

Firewall is a stateful host firewall technology that inspects and filters all network 

traffic. Windows Firewall searches the state of each network connection and determines 

whether the unsolicited incoming traffic should be allowed or dropped.  Not only does 

Windows Firewall check incoming information; it takes care of outgoing information 

as well. A firewall that works with a router program probes every network packet to 

decide whether to forward it toward its address.  

Windows Firewall protects the valuable data stored on computers in following 

ways (Source: Microsoft TechNet 2008): 

• Denying Remote Login. 

• Preventing SMTP session hijacking. 

• Scanning E-mail bombs that carry viruses and other malware.  

• Not allowing suspicious Macros to run on PC.  

• Keeping track of Virus, Spams and Trojans. 

• Deleting / blocking risk ware. 

2.3.1. Windows Firewall Architecture  

Windows firewall architecture has several networking components shown in 

Figure 2.3. These components can be list as follows (Source: Microsoft TechNet 2008): 

• Connection Sharing Service 

• Network Address Translation (NAT) driver  

• IPv4-based TCP/IP driver 

• IPv6-based TCP/IP driver 

• Windows Sockets driver (Winsock.dll) 
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Figure 2.3. Windows Firewall Architecture 
 (Source: Microsoft TechNet 2008) 

The NAT driver provides data storage for Windows firewall. NAT driver stores 

connection state information which has 5-tuple entries. These are the protocol, the 

source and destination port numbers, and the source and destination IP addresses. 

Windows firewall is stateful firewall because of storing data.  

TCP/IP Driver controls the flow of information between a network adapter and 

system service. While incoming traffic flows through the TCP/IP driver, the traffic is 

inspected by the NAT driver. NAT driver compares the incoming traffic entries with 

the Windows Firewall exception list. If the traffic matches an exception, the NAT 

driver determines that the traffic is allowed otherwise dropped. Neither NAT and 

TCP/IP Driver sends a notification to the sender when packets are dropped. 

The Winsock driver is responsible for assigning and binding ports to a program 

or system service. Programs and system services use this driver when they need to 

listen for incoming traffic.  

2.3.2. Windows Firewall Interfaces 

There are two interfaces related to Windows Firewall first one is firewall-hook 

interface another one is Windows Firewall application programming interfaces (APIs).  

The intent of a filter-hook interface is to manage network packets that were sent and 
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received across a firewall in the context of the TCP/IP protocol (Source: Microsoft 

TechNet 2008). Windows Firewall Interfaces shown in Figure 2.4. 

 

Figure 2.4.  Windows Firewall Architecture Interfaces.                                        
(Source: Microsoft TechNet 2008) 

The Windows Firewall APIs provide a public interface for programmatically 

configuring Windows Firewall settings (Source: Microsoft TechNet 2008).  

• Enable and disable Windows Firewall. 

• Add and remove programs and system services from the exceptions list. 

• Add and remove TCP and UDP ports from the exceptions list. 

• Enable and disable preconfigured system service exceptions. 

• Configure ICMP settings. 

• Configure the log file. 

 

There are some personal firewalls available on the commercial market place to 

provide the security for the computers, such as Comodo Firewall, Zone Alarm etc. 

These products use filter-hook drivers to custom solutions on Windows environment. In 

this thesis, distributed firewall administration tool will deal with filter-hook drivers to 

implement network security policy. 
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2.4. Windows Filter-Hook Drivers 

A filter-hook driver is a kernel-mode driver that is used to filter network 

packets. It implements a callback function then it registers callback function with the 

system-supplied IP filter driver. Then IP filter driver uses the filter hook to determine 

how to process incoming and outgoing packets (Microsoft Developer Network 2008). 

To supplement the Packet Filtering application programming interface (API), a 

filter-hook driver can be created to filter network packets. User-mode applications use 

this API to create and manage, in the system-supplied IP filter driver, input and output 

filters that filter packets with specific IP addresses or TCP/UDP port numbers. Since 

the Packet Filtering API optimizes the system-supplied. IP filter driver to process 

packets without the overhead that is associated with a filter-hook driver.  

2.4.1. Creating a Filter Hook 

A filter hook is created by implementing a function of type 

PacketFilterExtensionPtr. The PacketFilterExtensionPtr data type points to a filter-

hook callback function (Microsoft Developer Network 2008). Aim of the function is to 

analyze the incoming packets whether to forward, drop or allows the IP Filter driver to 

further process the packets.  

A filter hook performs the following actions on incoming and outgoing packets: 

Compares specific information with information that the IP filter driver passed to the 

filter hook to determine how packets should be further processed. After the filter hook 

inspects packets, returns with one of the following response codes that direct the IP 

filter driver:  

• PF_FORWARD - Returns the forward response immediately to the IP stack. 

For local packets, IP forwards them up the stack. If the destination for 

packets is another computer and routing is enabled, IP routes them 

accordingly.  
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• PF_DROP - Returns the drop response immediately to the IP stack. IP 

should drop the packet. 

•  PF_PASS - Filters packets and return the resulting response to the IP stack. 

Continue to filter packets as defined by the Packet Filtering API. The filter 

hook returns this pass response if it determined that it should not process the 

packet but should allow the IP filter driver to filter the packet. 

2.4.2. Initializing and Unloading the Filter-Hook Driver 

 The filter-hook driver's DriverEntry routine creates and initializes a device 

object for the driver object. The filter-hook driver's DriverEntry routine can also 

register the driver's filter hook with the IP filter driver.  

The DriverEntry routine must export a routine that unloads the filter-hook 

driver. This unload routine removes the device that was created in DriverEntry but must 

not clear the previously registered filter hook. 

2.4.3. Registering and Clearing a Filter Hook 

A filter-hook driver registers its filter-hook callback function with the IP filter 

driver to inform the IP filter driver to call the hook callback for every IP packet that is 

received or transmitted. A filter-hook driver might also clear a previously registered 

hook callback. To register or clear a hook callback function, the filter-hook driver must 

first create an IRP using a pointer to the device object for the IP filter driver. The filter-

hook driver then submits this IRP to the IP filter driver (Microsoft Developer Network 

2008).  

The filter-hook driver must clear its filter hook from the same entity with which 

it registered its filter hook; therefore, the filter-hook driver should store the pointers to 

the IP filter driver's file and device objects in global variables.  

2.4.4. Implementing Filter Hook IOCTL 

A filter-hook driver implements a dispatch routine so applications or higher-

level drivers can send I/O control (IOCTL) requests down to the filter-hook driver to 
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set up the filter hook. This dispatch routine processes these IOCTLs. The DriverEntry 

routine must export this dispatch routine (Microsoft Developer Network 2008).   

When the IOCTL request retrieved a filter-hook driver’s dispatch routine call 

the system function which is IoGetCurrentIrpStackLocation. In this call, the dispatch 

routine passes a pointer to the IRP that it received. Then dispatch routine  determines 

which IOCTL request was received and processes the request accordingly. 

After the current IOCTL request completes, dispatch routine calls the 

IoCompleteRequest system function and passes the status of the operation. This status 

is returned to the application or higher-level driver that made the request (Microsoft 

Developer Network 2008). 

The following are typical IOCTLs that a filter-hook driver's device-control 
routine might process:  

• Register-Hook IOCTL  

• Registers a filter hook  

• Clear-Hook IOCTL  

• Clears the previously registered filter hook  

2.4.5. Implementing Filter Hook Drivers 

As with any kernel-mode driver, a filter-hook driver is considered as a trusted 

component and can crash the system if it executes an illegal instruction or references an 

invalid region of memory.  

The integrity of data being sent over the network might be suspicious, or faulty 

hardware or other drivers might submit data in unexpected or improper formats. 

Therefore, a filter hook must validate the format of such data.  

A filter hook must limit the amount of per-packet processing that it performs to 

reduce the overhead associated with each incoming and outgoing packet. A filter hook 

should be optimized to minimize the average time it spends processing packets. 
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A filter-hook driver is a kernel-mode driver that is used to filter network 

packets. Filter-hook drivers extend the functionality of the system-supplied Internet 

Protocol (IP) filter driver. A filter-hook driver can only be installed on the Microsoft 

Windows 2000 operating system and later versions (Microsoft Developer Network 

2008).                                                                                      

  Only a single filter-hook driver can be installed on the operating system and 

used by the IP filter driver. A filter-hook driver can only register itself with the IP filter 

driver if the pointer to the extension hook for the IP filter driver is set to NULL. After 

the filter-hook driver is registered, the IP filter driver assigns the file object for the 

filter-hook driver to the extension hook for the IP filter driver, thereby ensuring that it 

can only accept and use a single filter-hook driver (Microsoft Developer Network 

2008). 

When Network Packet is received in computer IP Driver passes the packet to 

the filter (callback) function and waits the return value if function returns “Allow 

Packet” packet will be allowed in contrast function returns “Drop Packet” IP Driver 

drops the packet. This situaton shown in Figure 2.5. 

 

Figure 2.5.  IPFilter Driver Working Diagram                                                      
(Source: CodeProject 2008) 
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CHAPTER 3 
 

PROPOSED APPROACH 

In this chapter, the distributed firewall administration architecture is explained 

along with the database design that each node in the architecture needs to maintain. 

Moreover, software design of client application and server application is described 

using UML notation. 

3.1. Distributed Firewall Administration Architecture 

Distributed Firewall Administration Architecture based on hierarchically 

organized distributed firewall system. As illustrated in Figure 3.1, it is a tree structure. 

The domain statement has a domain firewall which is standing on the domain entrance 

and protects the entire domain according to the organizational policy. Similarly, 

according to the network model there are subnets available and connected to the 

domain firewall. Each subnet has a subnet firewall which is located on the subnet 

entrance. Purpose of the subnet firewall is same as the domain firewall.  

Every subnet may have different number of personal firewall; this personal 

firewall can control their network traffic. In addition subnet firewall may have child 

firewall which type can be subnet firewall. According to the description, there are three 

types of firewall available in the network domain model. Organization of the firewalls 

are based on the tree structure, domain firewall is the root node of the tree structure. 

Subnet firewalls are nodes between domain firewall which is root and personal 

firewalls which are leaves. Subnet firewalls are middle or intermediate nodes of the 

domain. Finally, personal firewalls, which are running inside the subnet, are leaf nodes 

located at the bottom of the tree.  
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Figure 3.1.  Distributed Firewall Administration Architecture. 

At the beginning domain firewall does not know any information about 

distributed firewall architecture. Distributed firewall architecture defined by using two 

different algorithms such as Depth-First Search (DFS) and Breadth-First Search (BFS) 

algorithms.  

Communication scheme between these firewall nodes in the system as follows 

personal firewall nodes has to maintain local rule base to store rules. They are 

responsible to enforce the local policy. When personal firewall performs any operations 

such as insert, delete policy rule they have to propagate to their Subnet firewall. Subnet 

firewalls can communicate to all of the nodes inside that subnet but they cannot 

communicate to another subnet firewall at the same level. Similarly, a domain firewall 

can communicate to any other nodes in that domain. The communication between a 

domain firewall and leaf firewall is possible with the help of the subnet firewalls. 

Communication request of the domain firewall is received by the leaf level firewall via 

the subnet firewall.  

3.2. Database Design 

Each firewall node has to maintain a local rule base to store rules that will be 

used in the distributed firewall administration tool. Security policy rules are kept on the 
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Microsoft SQL(Structured Query Language) Server 2000. According to the architecture 

which is described in Section 3.1 firewall type can be Subnet or Personal firewall. 

Basic principles same for all types of firewall which is shown in Figure 3.2. In the 

following part each type of firewall database design will be examine. 

 

Figure 3.2.  E-R Diagram of Database Tables. 

3.2.1. Subnet Firewall Design 

Subnet firewalls have their own local policy rules to provide the security. They 

interested in to keep track of the following operations that are performed on firewall 

policy rules: creating a new rule, reading, updating and deleting an existing rule inside 

the rule set. Moreover, subnet firewalls may have child firewall node, so they have 

some right over the their child firewall rule set such as getting, deleting and inserting 

rule to the rule set. Also, there are three different domains available and each domain 

has different rule set. In order to meet this requirement, the following tables will be 

stored in each local database of subnet firewall.   
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Table 3.1. Subnet Firewall Design 

Table Name Explanation 

Active_Inactive_Rules This table contains the policy rules that are active or inactive. 

Updated_Rules This table is to keep track of updated rules. 

Log This table lists the actions that have occurred. Example of 
actions are create, read, update, delete operations and relevant 
information like who made the action, when, etc. 

Child_Active_Rules Aim of the table is keeping the child firewall active rules. 

 

The detailed explanation of these tables is given below. 

3.2.1.1. Active_Inactive_Rules Table 

Basically, this table contains the necessary information of the firewall policy 

rule (Table 3.2). This rule can be actively applied by the firewall or can not be valid 

any more. The database table contains the following fields, which are used to describe a 

firewall policy rule.  

Table 3.2. Active_Inactive_Rules Table 

Field Name Explanation 

Rule ID A unique rule ID to identify policy rule within the overall system. 

Protocol The network protocol of the traffic to which this rule will be applied. 

Source IP Address The IP Address of the source that has produced the network traffic.  

Source Port Number Port number of the source that has created the network traffic. 

Destination IP 
Address 

IP Address of the target machine to which source is trying to connect. 

(cont. on the next page) 
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Table 3.2. (cont.). Active_Inactive_Rules Table 

Destination Port 
Number 

Port number on the target machine 

Action The action such as accept, deny that will be performed by the firewall 
when a matching network packet is found for this rule. 

Ethernet Card ID The identity (ID) of the physical interface through which the network 
traffic passes. 

Domain ID This field is keeps the Domain ID of the rule so user can define 
different rules for each domain according to the security needs. 

Active This field is describing the rule is active or inactive rule. 

3.2.1.2. Updated_Rules Table 

It may become necessary to update policy times in time as a result of changing 

requirements, etc. This table helps to implement this feature by using the information 

stored in the following fields (Table 3.3).    

Table 3.3. Updated Rules Table 

Field Name Explanation 

Original Rule ID The ID of the rule before the update operation 

Date The date when the rule is updated 

Updated Rule ID Once the update operation is completed, the new rule is inserted into 
the Active Rules table with this new rule id. 

Domain ID The ID of the Domain which updated rules belongs to. 

3.2.1.3. Log Table 

Aim of the table is kind of logging in the system (Table 3.4).  It basically stores 

the data to represent the Create, Read, Update and Delete operations performed on the 

rule set. The fields in the table are as follows:  
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Table 3.4. Log Table 

Field Name Explanation 

Domain ID The Domain ID inside which the specified operation is performed 

Operation The  type of the operation (Create,Read,Delete,Update) performed on 
the ruleset

Date Time of the operation 

Rule ID The ID of the rule on which the operation is performed. 

3.2.1.4. Child_Active_Rules Table 

Table is special for only subnet firewalls which have child nodes firewall in the 

system. Using this table subnet firewall can easily reach the child firewalls active rules 

(Table 3.5).   

Table 3.5. Child_Active_Rules Table 

Field Name Explanation 

Firewall ID Unique ID of the firewall in the system. 

Rule ID A unique rule ID to identify each policy rule within the 

Protocol The network protocol of the traffic to which this rule will be 

Source IP Address The IP Address of the source that has produced the network 
traffic.

Source Port Number Port number of the source that has created the network 
traffic.

Destination IP Address IP Address of the target machine to which source is trying to 
connect

Destination Port Port number on the target machine. 

Action The action, such as accept, deny; that will be performed by 
the firewall when a matching network packet is found for this 
rule. 
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3.2.2. Domain Firewall Design 

Distributed firewalls same as the subnet firewalls have their own local policy 

rules to provide the security. They are responsible of following operations that are 

performed on firewall policy rules: creating a new rule, reading, updating and deleting 

an existing rule inside the rule set. Also there are three different domains available and 

each domain has different rule set. In addition to this In order to meet this requirement, 

the following tables will be stored in each local database of distributed firewall (Table 

3.6).     

Table 3.6. Domain Firewall Design 

Table Name Explanation 

Active_Inactive_Rules This table contains the policy rules that are active or inactive. 

Updated_Rules This table is to keep track of updated rules. 

Firewall This table keeps the each firewall information. 

Child_Active_Rules This table keeps active rules of child firewalls. 

3.2.2.1. Firewall Table 

This is the important table for the distributed firewall administration tool (Table 

3.7). This table keeps the each firewall information such as firewall ID, IP number, 

firewall type. The fields in the table are as follows: 

Table 3.7.  Firewall Table 

Field Name Explanation 

Firewall ID Unique ID of the firewall in the system 

Firewall IP IP Address of the firewall which is defining in the System 

Firewall Port Port Number of the firewall which is listening. 

(cont. on the next page) 
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Table 3.7. (cont.) Firewall Table 

Parent ID Parent ID of the firewall in the system if firewall does not have 
parent firewall in the system this field becomes default value which 
is “NULL”.     

Child ID Child ID of the firewall in the system if firewall do not have any 
child this field becomes default value which is “NULL” 

Firewall Type This field identifies the firewall types in the system. Firewall types 
can be domain, subnet or personal firewall. 

3.3. Scenarios Related to Database Tables 

3.3.1. Create a New Rule 

Subnet and distributed firewalls both of them can add new rule to the same 

database if subnet firewall parent of distributed firewall. 

Domain Firewall 

After necessary fields entered correctly new rule is inserted into Active_Inactive 

Rules table. After insertion is completed successfully, the Log table will be updated 

with the corresponding data. This process shown in Figure 3.3 

 

Figure 3.3. Distributed Firewall creating a new rule. 
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Subnet Firewall 

Subnet firewall may request to add new rule to its child firewall node. First of 

all the new rule inserted into the Active_Inactive Rules table, then Log table will be 

updated, finally new rule is inserted into the Child Active Rules table also  updated. 

This situation shown in Figure 3.4. 

 

Figure 3.4. Subnet Firewall creating a new rule to it’s Child Firewall. 

3.3.2. Read a Rule 

Reading rule operation can be performed in two different ways. First one is 

distributed firewall can read local rules, secondly subnet firewall can read its child 

firewall node rule. 

Domain Firewall 

 As indicated by Figure 3.5, once a request comes to read an active rule, the 

required data will be extracted from Active_Inactive Rules table. After data has been 

gathered successfully, Log table will be updated with the corresponding data.   
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Figure 3.5. Domain Firewall get existing rule. 

 

3.3.3. Delete a Rule 

Deleting rule operation also can be performed in two different ways. First one is 

distributed firewall can delete its local rules. Secondly subnet firewall can delete its 

child firewall node rule. 

Domain Firewall 

While deleting existing rule the system, first of all active rule is updated to the 

deactivate rule on the  Active_Inactive Rules table. Secondly, the Log table is updated 

accordingly. Figure 3.6 summarizes the sequence of operations that are performed 

when deleting a rule. 
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Figure 3.6. Distributed Firewall deleting a rule. 

Subnet Firewall 

Sometimes subnet firewall may request to its child firewall node to delete some 

rules. In this issue firstly rule is deleted from Active_Inactive Rules Table then Log 

Table Updated according to the operation. Lastly rules deleted from the Child Active 

Rules Table.    

 

Figure 3.7. Subnet firewall deleting its Child firewall rule. 

3.3.4. Update a Rule 

According to the security needs user can update existing rules in the system. 

Update operation work principle is as follows, existing rule which is assume that A is 
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updated into the new rule B. First of all A is updated to inactive rule from 

Active_InactiveRules table. Then, new rule B is added to Active_InactiveRules table. 

Then UpdatedRules table is updated with the updated rules. Finally Log table is 

updated with the operation. This sequence of operations illustrated in Figure 3.8.  

 

Figure 3.8. Tables that are used when updating a rule. 

3.4. Software Design 

 3.4.1. Existing Software  

Distributed Firewall Administration Tool is an improvement to the existing 

software which is the NetDefender program. NetDefender is a Free Firewall and works 

only on windows 2000 and above versions of windows. The graphical user interface of 

NetDefender software shown in Figure 3.9. 
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Figure 3.9. NetDefender Main Menu. 

NetDefender has a very easy to use interface. NetDefender Firewall is 

completely written in VC++ 7.1 (Visual Studio 2003) using MFC, Windows API, Filter 

Hook Driver (Provided with Windows 2000). To run the NetDefender computer must 

have mfc71u.dll, msvcp71.dll and msvcr71.dll. NetDefender is packet filtering firewall 

and provides to user to add custom rules to this firewall as per their security 

requirements. When the user wants to add new rule clicks the Add New Rules button to 

call New Rule form and define rule based on source and destination IP, source and 

destination port number, protocol (TCP,UDP,ICMP) and action (ALLOW,DENY) 

features. Existing rules are listed on the main list NetDefender provides to modify, 

delete the existing rules on the rule set. If user wants to modify the existing rule, first of 

all clicks the rule and then click the Edit Rule button Modification form appears and 

rule features are filled after necessary modification done rule saved to IPFilter Driver. 

Simultaneously saved rule is also storing on the file. Port scanner is another feature of 

the software this feature provided to scan the system for open ports. NetDefender 

provides the list of applications that are currently trying to connect to outside network. 

3.4.2. Modified Software 

The proposed application is the Distributed Firewall Administration Tool 

(DFAT), which works on a distributed firewall environment. The details of the 
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distributed firewall architecture on which the application will run are explained in 

proposed approach section. As stated in that section, the firewall system contains 

several nodes that are distributed into different domains and subnets organized in a 

hierarchical manner. Each node in the system is responsible for applying the subset of 

overall policy rules that are defined for the corresponding domain / subnet. As a result 

of changes in the security policy or detection of the problems in the existing rule set, it 

may be required to make some changes on the existing rule set. The major changes that 

can be performed on the rule set can be listed as follows: 

- Creating a new firewall policy rule (see Figure 3.12) . 

- Reading a policy rule from the existing rule set. 

- Updating an existing rule. 

- Deleting a rule from the existing rule set 

 Basically, Distributed Firewall Administration Tool (DFAT) improved the some 

features of NetDefender software. First of all, rule set is stored on the SQL Server 2000 

Database and Domain Selection feature is added. Using Domain Selection feature, 

users can create new policy rules in three different domains. These domains are 

Department, Home and Internet Cafe. According to the security needs user can define 

different policy rules for different domains. This situation illustrated in Figure 3.10 

 

Figure 3.10. Domain Selection Screen. 
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DFAT uses broadcasting methods to find other computers on the distributed 

architecture. All firewall types (child, domain, and subnet) use this method to find other 

computers in the network. If firewall type is subnet firewall according to the proposed 

architecture firewall has one or more child firewalls. Subnet firewall can perform new 

rule, delete rule and get rule list function on child firewall rule set on Child Menu 

(shown in Figure 3.11). 

 

Figure 3.11. Child Menu Screen. 

Child Menu provides parent firewalls with the ability to define new rule, delete 

existing rule and get list of existing rules. After broadcasting operation completed, 

parent firewalls have a list of their child lists. On the left part of the screen child 

firewalls IP address are listed. When user double clicks one of the IP address parent 

firewall send a request to get existing rule list to child if child firewall accept this 

operation list are loaded on the screen. Child firewall screen shown in Figure 3.11. 

According to the security needs, parent firewall may want to add new policy rule to 

child firewall. In this issue, user clicks the Add new rule button on the Child Menu 

screen, new rule form appears after rule created new rule sent to the child firewall 

shown in Figure 3.12. 
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Figure 3.12. Add New Rule Form. 

Domain firewall has features to request topology information from other 

firewalls. When responses are retrieved, domain firewall fills the firewall table. 

Table 3.8.  Comparison Of Software 

Feature NetDefender DF 

Rules Stored on Database X √ 

Domain Selection X √ 

Dynamically find each other by broadcasting  X √ 

Add Rule to Child Firewalls Ruleset X √ 

Delete Rule from Child Firewalls X √ 

Using Algorithms to Build Network Topology X √ 

Identify the Ethernet Car ID X √ 

Firewall Type X √ 

√ : does support                           X: does not support 
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Functional Requirements 

 Distributed firewall administration tool is decided to have some functionalities, 

which are mainly related with the firewall policy rules. Details of the functions will be 

explained in the following subsection. 

3.4.3. New Rule Function 

 According to the proposed approach, which is described in Section 3.1, each 

node is a firewall and all of them has local database to perform policy rule operations. 

Purpose of the function is to add new policy rule to IPFilterdriver and Active_Inactive 

Rules table. New Rule function is shown in Table 3.9. 

Table 3.9.  “New Rule” Function 

Inputs Order ID, Protocol, Source IP, Source Port, Destination IP, Destination 

Port, Action 

Operations After all necessary inputs filled correctly New Rule Functions, first of all 

add new rule to IPFilter Driver using Firewall Hook Driver. Next if 

operation is succeeding rule will be added to the Active_Inactive Rules 

Table. This added operation also added to the Log table to inform the 

parent firewall of the node. 

Outputs Two different types of Output return from this function. Firstly if new 

rule added properly without any error this function returns “SUCCESS” 

but if any error occurred during the operation types of error returns. 

3.4.4. Delete Rule Function 

Sometimes some of the existing policy rules can not be necessary for the 

security. Aim of the function is deleting existing rule from security policy (Table 3.10). 
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Table 3.10.  “Delete Rule” Function 

Inputs Order ID of the policy rule 

Operations When the user has selected policy rule first of all rule is deleting from 

Active_Inactive Rules table. Actually deleting operation just updating 

Active field of the rule then operation is inserting the Log table. 

Outputs Outputs of the this function is if rule deleted successfully without any 

error this function returns “SUCCESS” but if any error occurred during 

the operation “ERROR” returns. 

 

3.4.5. Update Rule Function 

User sometimes wants to change the policy rules according to the security 

needs. This function provides ability to update existing rule (Table 3.11). 

Table 3.11.  “Update Rule” Function 

Inputs Order ID, Protocol, Source IP, Soucer Port, Destination IP, Destination 

Port, Action  

Operations First of all user selects the policy rule which will modify. According to 

the Order number rules deleted from Active_Inactive Rules Table. Then 

user updates some fields of the policy rule and new rule inserted in to the 

Active_Inactive Rules Table and old Order number, new Order number 

number and date of operation are inserted in to the Log Table.   

Outputs When the system performs all operation correctly function returns 

“Successful” but during the operation if any error occurs it returns the 

specific error message.   
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3.4.6. Domain Selection Function 

 Distributed firewall administration tool provides functionality to users for 

selecting a domain. There are three different domains available which are Department, 

Home and Internet cafe (Table 3.12). 

Table 3.12.  “Domain Selection” Function 

Inputs 
 
Domain ID: ID number of the Domain  

Operations User selects the one of the domain from the list then selected domain 

policy rules taken from Active_Inactive Rules table then loaded to the 

IPFilterdriver. 

Outputs Output of the function is selected domain rules loaded to the 

IPFilterdriver and data list of the program. 

3.4.7. New Rule to Child Function  

 According to the proposed architecture each firewall can be parent firewall, 

child firewall, or both. Each parent firewall in the architecture can interfere to its child 

policy rules. Parent firewall can insert new rules to its child rule set but child firewall 

have right to accept or deny this process. This function shown in Table 3.13. 

Table 3.13.  “New Rule To Child” Function 

Inputs Firewall IP, New Rule features as described in section 3.4.1 

Operations Child firewall listens the specific port when the new rule retrieved child 

firewall has right to accept or deny this operation. If child firewall accepts 

the rule, rule is loaded the IPFilterDriver and then sent to the Parent 

Firewall. If child firewall denies send to deny packet to parent firewall. 

Outputs If child firewall accepts new rule loaded to IPFilterDriver and stored to 

child firewall database and new rule sent to the parent firewall.  
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3.4.8. Delete Rule from Child Function  

Each parent firewall in the architecture can interfere to its child policy rules. 

Parent firewall can delete rules from its child rule set but child firewall have right to 

accept or deny this process (Table 3.14). 

Table 3.14.  “Delete Rules From Child” Function 

Inputs Firewall IP, Order ID 

Operations Child firewall listens the specific port when the Order ID retrieved rule 

features appear on the screen child firewall has right to accept or deny 

this operation. If child firewall accepts, rule is deleted the IPFilterDriver 

and database. Then Operation complete packet sends to parent firewall. If 

child firewall denies sent to deny packet to parent firewall. 

Outputs If child firewall accepts, rule deleted from Ip IPFilterDriver and database. 

If deny, deny packet send to parent firewall.

 

3.4.9. Get Active Rule from Child Function  

To be able to protect the consistency among the overall security policy, parent 

firewall may get all existing rules of its child firewall policy rules (Table 3.15). 

Table 3.15.  “Get Rule List From List” Function 

Inputs Firewall IP 

Operations Child firewall listens the specific port when the request retrieved child 

firewall sends all existing rules to parent firewall. 

Outputs Child firewall send existing rules to parent firewall. 
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3.4.10. Request Topology  Function 

Distributed firewall administration tool works on a distributed environment. At 

the beginning domain firewall hasn’t got any information about distributed firewall 

architecture. Domain firewall sends a request packet to its children which are subnet 

firewall. This request is retrieved and sent to subnet firewall’s child firewalls. This 

recursive function works until all child firewall, send firewall related information to the 

domain firewall. Domain firewall implements Breadth-first search and Depth-first 

search algorithms to determine the distributed firewall architecture. 

Table 3.16.  “Request Topology” Function 

Inputs Input of the function is TCP packet, which contains Firewall ID, firewall 

type and Firewall IP.  

Operations Firewall is listening the specific port when the request retrieved firewall 

looks its type if firewall type is subnet firewall it send request to its child 

and listen to child’s response. When the response arrived firewall append 

the ruleset its own information and send to the parent. 

Outputs Domain firewall process two algorithms to define distributed architecture, 

this algorithms input are node relations. 

3.4.11. Broadcasting Function  

Aim of this function is to inform all firewalls about environment. At the 

beginning neither parent nor child do have information about each other. Because of 

that they broadcast and introduce themselves. Broadcasting function shown in Table 

3.17. 

Table 3.17.  “Broadcasting” Function 

Inputs Input of function is TCP packet which contains IP Address and type of 

firewall. 

(cont. on the next page) 
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Table 3.17. (cont.) “Broadcasting” Function 

Operations Every firewall listens specific port if any request retrieved firewall insert 

packet data to the database.  

Outputs Packet data insert into the firewall table and data list of the program. 

3.5. Algorithms       

Distributed Firewall administration tool discovers the distributed firewall 

architecture using two algorithms which are Breadth-first search (BFS) and Depth-first 

search (DFS).  

3.5.1. Breadth-First Search Algorithm 

    Breadth-first search (BFS) is a graph search algorithm that begins at the root node 

and explores all the neighboring nodes. BFS is an uninformed search method that aims 

to expand and examine all nodes of a graph or combinations of sequence by 

systematically searching through every solution.. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.13. Breadth-First Search Algorithm 
(Source: Sahni 1998) 

Define randomBFS(Graph g, float prob, Node startNode, Node 
destinationNode) 

                     Node n:=startNode 
                     Queue q:={} 
                     Stack s:={} 
                     Enqueue(q,startNode)  
                     Visited[startNode]:=true 
                      While(n not equals destinationNode) 
                          if(queue empty) 
                              tempNode:=pop(s) 
                              Enqueue(tempNode) 
                               For each node (g) 
                                   Visited[node]:=false 
                               n:=Dequeue(q) 
                               if(n not equals destinationNode) 
                                  push(s,n) 
                                  for each neighbor of n 
                                     if(visited[neigbor]=false) 
                                          if(prob<rand()) 
                                              visited[neigbor]:=true 
                                               Enqueue(q.neigbor) 
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In other words, it searches the entire graph or sequence without considering the 

goal until it finds it. Algorithm is illustrated in Figure 3.13 

Time complexity of Breath First Search algorithm can be described as follows. 

There is a search tree with branching factor n and the maximum path length is d. The 

root of the search tree generates n nodes at the first level, each of which generates n 

more nodes, for a total of n2 at the second level. Each of these generates n more nodes, 

yielding n3 nodes at the third level, and so on. Then the maximum number of nodes 

expanded before finding a solution is 1 + n + n2 + n3 +...+ nd . Therefore, in the worst 

case the complexity bound would be O(nd). Because it must examine every node in the 

tree. Space complexity of the algorithm is also O(nd) because it must store the whole 

frontier in memory (Gutin and Jensen 2001). 

Breadth-first search algorithm is implemented in order to define the distributed 

firewall architecture. Algorithm is only performed by domain firewall. All possible 

paths between subdomains in the network must be determined before the execution of 

the algorithm. Breadth-first search algorithm takes a starting node which is domain 

firewall node as parameter. Our domain firewall is at level 0. In the first stage, it visit 

all subnet firewalls at level 1. In the second stage, it visits all subnet firewalls or child 

firewalls at second level. These new subnet firewalls or child firewalls, which are 

adjacent to level 1 subnet firewalls, and so on. This situation illustrated in Figure 3.14. 

                                                    
Figure 3.14. Example of Distributed Firewall Environment. 

http://www.cs.usask.ca/content/resources/csconcepts/1998_3/glossary.html
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3.5.2. Dept-First Search Algorithm 

Depth-first search (DFS) is an uninformed search algorithm that progresses by starting 

the first child node of the search tree that appears and thus traversing until a node that 

has no children. Algorithm is illustrated in Figure 3.15. 

 

 

Figure 3.15. Depth-First Search Algorithm                                                             
(Source: Sahni 1998) 

The time complexity for a depth first search is O(nd), where n is the branching 

factor and d is the maximum depth. The time complexity is the same with respect to the 

breath first search. The drawback to the depth first search is that it can get stuck going 

down the wrong path and never recover, with respect to time, from an unlucky choice 

at one of the nodes near the top of the tree. Space complexity of the algorithm is O(nd), 

for a depth first search in memory, it only needs to store a single path from the root to a 

leaf node, along with the remaining unexpanded sibling nodes for each node on the 

path (Gutin and Jensen 2001). 

dfs( graph G) 
                     { 

list L=empty 
tree T=empty 

choose a strating vertex x 
search(x) 

while(L is not empty) 
                    { 

remove edge (v,w) from beginning of L 
if w not yet visited 

                    { 
add (v,w) to T 

search(w) 
                    } 
                  } 
                 } 

search(vertex v) 
                        { 

visit v 
for each edge (v,w) 

add edge (v,w) to the beginning of L 

                       } 
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 Depth-first search algorithm provides to define distributed firewall architecture 

to distributed firewall administration tool. After all the possible paths defined in the 

network algorithm starts from root node which is domain firewall node and thus going 

deeper and deeper  until it finds a node that has no children. Then the search 

backtracks, returning to the most recent node it hadn’t finished exploring. 

 Breath-first search algorithm always finds the shortest path to goal for example 

root node wants to interfere any leaf firewall and if there are several solutions breadth-

first search provide shortest path to destination leaf firewall. The major weakness of 

Depth-first search algorithm is that it will fail to terminate if there is an infinite path “to 

the left of” the path to the first solution so DFS is not complete. Furthermore, DFS is 

not suitable for large search tree or infinite maximum depth. 

 Alternatively there are well-known graph search algorithms available and they 

can be implemented in the project. First one is Dijkstra’s algorithm solves the problem 

of finding the shortest path from a point in a graph (the source) to a destination. 

Secondly Bellman-Ford algorithm, this algorithm used by Routers to maintain the 

distance tables, which tell the distances and shortest path to sending packets to each 

node in the network (Gutin and Jensen2001). 
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CHAPTER 4 
 

EXPERIMENTS AND EVALUATION 
 

On top of the proposed distributed architecture, two different algorithms, 

namely Breadth-First Search (BFS) and Depth-First Search (DFS) are implemented for 

topology discovery and rule collection. These two algorithms are applied to different 

experimental topologies. Basically, the domain firewall (root node) requests distributed 

architecture information using one of the algorithms from subnet firewalls which also 

request this information from their child firewalls and this recursive iteration continues 

according to the selected algorithm. Breadth-First Search algorithm discovers all 

neighboring nodes. Starting from those nearest nodes, it finds their undiscovered 

neighbor nodes and this iterative process proceeds until the last node. Depth-First 

Search algorithm traverses a single path of the graph that is, until it visits a node with 

no child, it then returns at the last node on the path that has an unvisited child then 

traversing starts from that node. In this experiment, the traversing time of the proposed 

architecture is calculated in terms of selected algorithm. These experimental topologies 

constructed on the 19 computers which have Windows XP operating systems and 

Pentium IV-M 1.73 GHz. processor with 1 GByte of RAM. Each computer network 

card is Marvell Yukon 88E8056 PCI-E 10/100/1000Base-T Ethernet Controller. 

According to the proposed architecture each computer should have more than 

one network interface card (NIC) and should be assign a different IP address to each 

card so different subnets can be created. However, it is possible to assign multiple IP 

address to a single NIC in Windows XP. Assigning more than one IP address to a 

network card on Windows requires the steps below: 

• Right-click on My Network Places, choose Properties. 

• Right-click on the Local Area Connection, choose Properties. 
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• Highlight Internet Protocol (TCP/IP), click Properties. 

• Set IP address, Subnet Mask and Default Gateway, click Advanced button 
shown in Figure 4.1. 

 

Figure 4.1.Windows XP TCP/IP Menu. 

After Advanced button is clicked, Advanced TCP/IP Settings Form appears. 

Click the Add button and enter a new IP address and Subnet mask. According to the 

network topology procedure can be repeated. This procedure shown in Figure 4.2. 

 

Figure 4.2.Windows XP Advanced TCP/IP Menu. 

After multiple IP addresses are assigned to related computers which are subnet 

firewalls and domain firewalls, different experimental topologies are ready. Basically, 

the experiment is about calculating the amount of time to construct the distributed 
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firewall architecture according to the selected algorithm. First group consists of 

networks which have 2 subnet firewalls where each of them has 2, 3, 4, and 5 leaf 

firewalls. Second group has 3 subnet firewall each of them has 2, 3, 4 and 5 leaf 

firewalls. 

4.1. Experimental Setups For Balanced Topology  

In order to distinguish algorithm’s execution time two different kind of topology 

implemented. First of all proposed architecture implemented like a balanced topology, 

in this topology each subnet firewall have equal number of leaf firewalls.  

4.1.1. Experimental Setup I 

This experimental setup (Figure 4.3) is composed of 7 firewalls and 2 levels of 

hierarchy. Each firewall in the each level of hierarchy has two children except the ones 

in the leaf firewalls. Each firewall in the tree is responsible for executing Distributed 

Firewall Administration Tool and maintains a local database to store the policy rules 

that are mentioned in the previous chapter. Domain firewall, which is at the highest 

level of the hierarchy, sends distributed architecture request has been performed.  

 

Figure 4.3. Experimental Setup I 

The experiment is performed 100 times for each algorithm. In DFS algorithm 

the average time to complete the request is 240 milliseconds. However in BFS 

algorithm the average time to complete the request is 216 milliseconds.  

4.1.2. Experimental Setup II 

The second experimental architecture (Figure 4.4) is composed of 9 firewalls 

and 2 levels of hierarchy. Experimental steps mentioned for the previous cases are also 

valid for this architecture. In Depth-First Search (DFS) algorithm the average time 
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values to complete the request is 258 milliseconds. However in Breadth-First Search 

(BFS) algorithm the average time values to complete the request is 223 milliseconds.  

 

Figure 4.4. Experimental Setup II 

 

4.1.3. Experimental Setup III 

The third experimental architecture (Figure 4.5) is composed of 11 firewalls and 

2 levels of hierarchy. Experimental steps mentioned for the previous cases are also 

valid for this architecture. In Depth-First Search (DFS) algorithm the average time 

values to complete the request is 282 milliseconds. However, in Breadth-First Search 

(BFS) algorithm the average time values to complete the request is 238 milliseconds.  

 

Figure 4.5. Experimental Setup III 

4.1.4. Experimental Setup IV 

The fourth experimental architecture (Figure 4.6) is composed of 13 firewalls 

and 2 levels of hierarchy. Experimental steps mentioned for the previous cases are also 

valid for this architecture. In Depth-First Search (DFS) algorithm the average time 



   

 

 

46

values to complete the request is 305 milliseconds. However, in Breadth-First Search 

(BFS) algorithm the average time values to complete the request is 256 milliseconds.  

 

Figure 4.6. Experimental Setup IV 

In each case, experiments are performed 100 times and average processing time 

is measured for both algorithms. The results are shown in Figure 4.7. 

 

Figure 4.7. Processing Time for 2 Subnets 

Equation of the BFS line is 25.21675.575.2 2 +−= xxy  however DFS line 

equation is 35.20815.1325.1 2 ++= xxy . This result which is shown in Figure 4.7 

indicates that Depth-First Search algorithm processing time higher than Breadth-First 

Search algorithm. Breadth-First Search algorithm work principle is visits all of the node 

nearest to starting node then begin distributing outer but in Depth-First Search, it is 

continue to deeper along a given path first, and returns only when no child. In the 
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experiments performed when number of leaf firewall increases DFS algorithm has 

much execution time than BFS.  

4.1.5. Experimental Setup V 

The fifth experimental architecture (Figure 4.8) is composed of 10 firewalls and 

2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps 

mentioned for the previous cases are also valid for this architecture. In Depth-First 

Search (DFS) algorithm the average time values to complete the request is 416 

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time value 

to complete the request is 330 milliseconds.  

 

Figure 4.8. Experimental Setup V 

4.1.6. Experimental Setup VI 

The sixth experimental architecture (Figure 4.9) is composed of 13 firewalls and 

2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps 

mentioned for the previous cases are also valid for this architecture. In Depth-First 

Search (DFS) algorithm the average time values to complete the request is 460 

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time 

values to complete the request is 358 milliseconds.  

 

Figure 4.9. Experimental Setup VI 
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4.1.7. Experimental Setup VII 

The seventh experimental architecture (Figure 4.10) is composed of 16 firewalls 

and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps 

mentioned for the previous cases are also valid for this architecture. In Depth-First 

Search (DFS) algorithm the average time values to complete the request is 468 

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time 

values to complete the request is 380 milliseconds.  

 

Figure 4.10. Experimental Setup VII 

4.1.8. Experimental Setup VIII 

The eight experimental architecture (Figure 4.11) is composed of 19 firewalls 

and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental steps 

mentioned for the previous cases are also valid for this architecture. In Depth-First 

Search (DFS) algorithm the average time values to complete the request is 500 

milliseconds. However, in Breadth-First Search (BFS) algorithm the average time 

values to complete the request is 396 milliseconds. 

 

Figure 4.11. Experimental Setup VIII 



   

 

 

49

In each case, experiments are performed 100 times and average processing time 

is measured for both algorithms. The results are shown in Figure 4.12. 

 

Figure 4.12. Processing Time for 3 Subnets  

Equation of the BFS line is 256433 2 ++−= xxy  however DFS line equation 

is 65.36085.2825 2 ++−= xxy . This result which is Figure 4.12 indicates that Depth-

First Search algorithm processing time higher than Breadth-First Search algorithm. 

Breadth-First Search algorithm work principle is visits all of the nodes nearest to 

starting node then begin distributing outer but in Depth-First Search, it is continue to 

deeper along a given path first, and returns only when no child. In the experiments 

performed when the number of leaf firewall increases DFS algorithm has much 

execution time than BFS.    

4.2. Experimental Setups for Unbalanced Tree 

In this experiment the proposed architecture is constructed like unbalanced tree, 

each subnet firewall has different number of leaf firewalls. 

4.2.1. Experimental Setup IX 

This experimental setup (Figure 4.13) is composed of 6 firewalls and 2 levels of 

hierarchy. Subnet firewall, which stands on the left branch of the tree, has two leaf 
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firewalls in contrast right branch of the subnet has just a single leaf firewall. Each 

firewall in the tree is responsible for executing Distributed Firewall Administration 

Tool and maintains a local database to store the policy rules that are mentioned in the 

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends 

distributed architecture information collection request.  

 

Figure 4.13. Experimental Setup IX 

The experiment is performed 100 times for each algorithm. In DFS algorithm 

the average time to complete the request is 348 milliseconds. However, in BFS 

algorithm the average time to complete the request is 317 milliseconds.  

4.2.2. Experimental Setup X 

This experimental setup (Figure 4.14) is composed of 7 firewalls and 2 levels of 

hierarchy. Subnet firewall, which stands on left branch of the tree, has three leaf 

firewalls in contrast right branch of the subnet has just a single leaf firewall. Each 

firewall in the tree is responsible for executing Distributed Firewall Administration 

Tool and maintains a local database to store the policy rules that are mentioned in the 

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends 

distributed architecture information collection request.  

 

Figure 4.14. Experimental Setup X 
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The experiment is performed 100 times for each algorithm. In DFS algorithm 

the average time to complete the request is 364 milliseconds. However, in BFS 

algorithm the average time to complete the request is 331 milliseconds.  

4.2.3. Experimental Setup XI 

This experimental setup (Figure 4.15) is composed of 8 firewalls and 2 levels of 

hierarchy. Subnet firewall, which stands on the left branch of the tree, has four leaf 

firewalls in contrast right branch of the subnet has just a single leaf firewall. Each 

firewall in the tree is responsible for executing Distributed Firewall Administration 

Tool and maintains a local database to store the policy rules that are mentioned in the 

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends 

distributed architecture information collection request.  

 

Figure 4.15. Experimental Setup XI 

The experiment is performed 100 times for each algorithm. In DFS algorithm 

the average time to complete the request is 388 milliseconds. However, in BFS 

algorithm the average time to complete the request is 342 milliseconds.  

4.2.4. Experimental Setup XII 

This experimental setup (Figure 4.16) is composed of 9 firewalls and 2 levels of 

hierarchy. Subnet firewall, which stands on the left branch of the tree, has five leaf 

firewalls in contrast right branch of the subnet has just a single leaf firewall. Each 

firewall in the tree is responsible for executing Distributed Firewall Administration 

Tool and maintains a local database to store the policy rules that are mentioned in the 

previous chapter. Domain firewall, which is at the highest level of the hierarchy, sends 

distributed architecture information collection request.  
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Figure 4.16.Experimental Setup XII 

The experiment is performed 100 times for each algorithm. In DFS algorithm 

the average time to complete the request is 413 milliseconds. However, in BFS 

algorithm the average time to complete the request is 355 milliseconds.  

In each case, experiments are performed 100 times and average processing time 

is measured for both algorithms. The results are shown in Figure 4.17. 

 

Figure 4.17.Processing Time for 2 Subnets 

Equation of the BFS line is 75.28925.1425.0 2 +−−= xxy  however DFS line 

equation is 35.32615.625.2 2 ++= xxy . In the experiments performed when the 

number of leaf firewall increases in unbalanced topology DFS algorithm execution time 

higher than BFS.   
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4.2.5. Experimental Setup XIII 

The thirteenth experimental architecture (Figure 4.18) is composed of 8 

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental 

steps mentioned for the previous cases are also valid for this architecture. Subnet 

firewall which stands on the left branch of the tree has two leaf firewall but other 

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the 

average time to complete the request is 409 milliseconds. However in Breadth-First 

Search (BFS) algorithm the average time to complete the request is 364 milliseconds.  

 

Figure 4.18. Experimental Setup XIII 

4.2.6. Experimental Setup XIV 

The fourteenth experimental architecture (Figure 4.19) is composed of 9 

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental 

steps mentioned for the previous cases are also valid for this architecture. Subnet 

firewall which stands on the left branch of the tree has three leaf firewall but other 

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the 

average time values to complete the request is 423 milliseconds. However in Breadth-

First Search (BFS) algorithm the average time values to complete the request is 375 

milliseconds.  

 

          Figure 4.19. Experimental Setup XIV 
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4.2.7. Experimental Setup XV 

The fifteenth experimental architecture (Figure 4.20) is composed of 10 

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental 

steps mentioned for the previous cases are also valid for this architecture. Subnet 

firewall which stands on the left branch of the tree has four leaf firewall but other 

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the 

average time values to complete the request is 443 milliseconds. However in Breadth-

First Search (BFS) algorithm the average time values to complete the request is 380 

milliseconds.  

 

Figure 4.20.Experimental Setup XV 

4.2.8. Experimental Setup XVI 

The sixteenth experimental architecture (Figure 4.21) is composed of 11 

firewalls and 2 levels of hierarchy. Domain firewall has 3 Subnet firewall experimental 

steps mentioned for the previous cases are also valid for this architecture. Subnet 

firewall which stands on the left branch of the tree has five leaf firewalls but other 

subnet firewalls have just one leaf firewall. In Depth-First Search (DFS) algorithm the 

average time values to complete the request is 473 milliseconds. However in Breadth-

First Search (BFS) algorithm the average time values to complete the request is 387 

milliseconds.  
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Figure 4.21. Experimental Setup XVI 

In each case, experiments are performed 100 times and average processing time 

is measured for both algorithms. The results are shown in Figure 4.22. 

 

Figure 4.22.Processing Time for 3 Subnets 

Equation of the BFS line is 6.3394.142 ++−= xxy   however DFS line equation 

is 8.4068.64 2 +−= xxy . 

All equations presented in this chapter are generated on the curve fitting tool of 

Matlab version 7.3.0.267 (R2006b). Curve fitting is a useful tool for representing a data 

set in a linear or quadratic fashion. Matlab has function, polyfit, which can quickly and 

easily fit a polynomial to set of data points. Polyfit is computed a least squares 

polynomial for a given set of data. Polyfit actually generates the coefficients of the 
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polynomial (which can be used to simulate a curve to fit the data) according to the 

degree specified.    

p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits 

the data, p(x(i)) to y(i), in a least squares sense. The result p is a row vector of length 

n+1 containing the polynomial coefficients in descending powers. For a polynomial  

1
1

21 ...)( +
− ++++= nn

nn pxpxpxpxp , the polyfit function provides the solution that 

minimizes the residuals (The MathWorks, 2008).  
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CHAPTER 5  
 

CONCLUSION AND FUTURE WORK 
 

The main objective of this thesis is to design a distributed firewall architecture 

and implement a windows administration tool for this architecture in order to keep 

track of some certain actions (Create, Read, Update, and Delete) that are performed on 

the policy rule sets of the distributed firewalls. The most important feature of thesis is 

that firewall network topology is not given as defined by human. Implementing two 

different algorithms, which are Depth-First Search and Breadth-First Search, 

distributed firewall architecture are created and implementing hearth-beat method 

topology is updated periodically. 

Using Distributed Firewall Administration Tool, based on Depth-First Search 

and Breadth-First Search algorithms for discovering distributed architecture, both 

balanced or unbalanced processing time for 2 subnets and 3 subnets Depth-First Search 

algorithm processing time higher than Breadth-First Search algorithm for both subnet 

type. 

The concept of distributed firewall is rather new and as an on-the-shelf-product 

is not available for windows platform on the market. Distributed firewalls can be 

categorized as follows domain firewall, subnet firewall, leaf firewall. These firewalls 

can communicate with each other according to the distributed architecture. The 

outcome of this work can be transformed into a product for a large network so it can be 

effective solution for network security. 

Distributed firewall administration tool does not have any authentication 

mechanism between firewalls. According to the proposed architecture parent firewalls 

send policy rules to their leaf firewalls for providing the consistency overall security 

policy so during this operation authentication mechanism can be implemented security 

risks.   
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