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İzmir Institute of Technology



ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor Asst. Prof. Dr. Mustafa

Aziz Altınkaya for his guidance and help throughout my research.

I would also like to thank my thesis committee members Asst. Prof. Dr. Serdar
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ABSTRACT

In code division multiple access (CDMA) systems, blind multiuser detection

(MUD) techniques are of great importance, especially for downlinks, since in practice, it

may be unrealistic for a mobile user to know the spreading codes of other active users in

the channel. Furthermore, blind methods remove the need for training sequences which

leads to a gain in the channel bandwidth.

Subspace concept in blind MUD is an alternative process to classical and batch

blind MUD techniques based on principle component analysis, or independent component

analysis (ICA) and ICA-like algorithms, such as joint approximate diagonalization of

eigen-matrices (JADE), blind source separation algorithm with reference system, etc.

Briefly, the desired signal is searched in the signal subspace instead of the whole space,

in this type of detectors.

A variation of the subspace-based MUD is reduced-rank MUD in which a smaller

subspace of the signal subspace is tracked where the desired signal is contained in. This

latter method leads to a performance gain compared to a standard subspace method.

In this thesis, blind signal subspace and reduced-rank MUD techniques are investi-

gated, and applied to minimum mean square error (MMSE) detectors with two different

iterative subspace tracking algorithms. The performances of these detectors are com-

pared in different scenarios for additive white Gaussian noise and for multipath fading

channels as well. With simulation results the superiority of the reduced-rank detector

to the signal subspace detector is shown. Additionally, as a new remark for both detec-

tors, it is shown that, using minimum description length criterion in subspace tracking

algorithm results in an increase in rank-tracking ability and correspondingly in the final

performance. Finally, the performances of these two detectors are compared with MMSE,

adaptive MMSE and JADE detectors.
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ÖZET

Kod bölüşümlü çoklu erişim (code division multiple access, CDMA) gezgin iletişim

uygulamalarında, özellikle baz istasyonundan gezgin kullanıcı yönüne iletimde; kul-

lanıcının, kanaldaki diğer kullanıcıları ve bunlara ait imza kodları gibi bilgileri edinmesi

güç bir işlem olduğundan CDMA uygulamalarında, gözü kapalı çok kullanıcılı sezim

teknikleri zaman içerisinde önem kazanmıştır. Bunun yanında, gözü kapalı teknikler

öncül (pilot) dizi ihtiyacını ortadan kaldırdıklarından dolayı band genişliğinde bir miktar

kazanç da sağlar.

Gözü kapalı çok kullanıcılı sezimde altuzay yaklaşımı, diğer geleneksel ve verinin

tümünü birden işleyen, ana bileşen çözümlemesi veya bağımsız bileşen çözümlemesi (inde-

pendent component analysis, ICA) yöntemleri üzerine kurulu ya da özmatrislerin birleşik

yaklaşık köşegenleştirilmesi (joint approximate diagonalization of eigen-matrices, JADE)

ve başvuru sistemli gözü kapalı kaynak ayrıştırma işlemyolu gibi ICA benzeri yöntemleri

kullanan gözü kapalı tekniklere karşı bir seçenek oluşturmaktadır. Özetlemek gerekirse,

altuzay yaklaşımı kullanan alıcılarda, ilgili kullanıcıya ait işaret bütün sinyal uzayı yerine

sinyal uzayının bir altuzayında aranır.

Altuzay yaklaşımının bir türevi de ilgili kullanıcıya ait işaretin de içinde yer

alacağı, sinyal altuzayının daha küçük boyutlu bir altuzayının aranması anlamına gelen

indirgenmiş boyutlu çok kullanıcılı sezimdir. Bu indirgenmiş boyut yöntemi, standart bir

altuzay yöntemiyle karşılaştırıldığında ek bir başarım kazancı sağlar.

Bu tezde, gözü kapalı sinyal altuzayı ve indirgenmiş boyutlu çok kullanıcılı

sezim yöntemleri incelenerek, iki farklı altuzay yakalama işlemyolu kullanılarak en

küçük ortalama karesel hata (minimum mean-square error, MMSE) alıcılarına uygu-

lanmakta ve bu alıcıların başarım çözümlemeleri farklı sistem senaryolarıyla, toplanır

beyaz Gauss gürültü ve çok yollu sönümlemeli kanallar için karşılaştırılmaktadır. Ben-

zetim sonuçlarıyla, indirgenmiş boyutlu sezicinin sinyal altuzayı sezicisine göre başarım

üstünlüğü gösterilmiştir. Ayrıca, her iki alıcı için söylenebilecek yeni bir durum olarak;

altuzay yakalama işlemyolunda, ölçüt olarak en küçük betimleme uzunluğu yaklaşımı kul-

lanılmasının, hem altuzayın boyutunu yakalama yeteneğinde hem de sezim başarımında

ek bir artışa sebep olduğu gösterilmiştir. Bunlara ek olarak, bu iki alıcının hata başarımı,

MMSE, uyarlamalı MMSE ve JADE alıcılarıyla da karşılaştırılmıştır.
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CHAPTER 1

INTRODUCTION

The increasing demands in wireless personal and mobile communication systems

both to provide and accommodate high quality voice services and other multirate services

such as internet access from hand-held mobile terminals, also increased the interest in

code division multiple access (CDMA) because it provides high-frequency usage and it

is suitable for multimedia and multirate services. As a result, CDMA was chosen to be

the main multiple access scheme of 3rd generation (3G) wireless and cellular systems.

Consequently, there has been an accelerated interest in finding better multiuser detec-

tion (MUD) techniques which provide superior performance with respect to single user

detection (SUD) techniques but require higher computational complexity.

In this thesis, subspace-based blind MUD schemes of CDMA are investigated.

The emphasized methods may be preferable to other batch methods since they work in

a sample-by-sample fashion adaptively without requiring the whole data for performing

the detection.

After this introductory chapter, Chapter 2 discusses briefly the history of mobile

communication systems till 3G systems. Furthermore, CDMA concept from the perspec-

tive of both spread spectrum (SS) and multiple access systems is introduced. At the end

of Chapter 2, some basic definitions for CDMA are given, and also CDMA signal models

both in synchronous and asynchronous channels and matched filter are defined.

In Chapter 3, several detector schemes are discussed beginning from single-user

detector to adaptive multiuser detectors with different requirements for each detector.

Some performance criteria are also defined here. At the end of this chapter, performance

comparisons of all the considered methods are given with simulation results.

Chapter 4 is the section where blind MUD concept is studied. The batch type

algorithm, joint approximate diagonalization of eigen-matrices (JADE) is introduced as

an example for ICA-class BSS techniques, at the beginning. Then, subspace approach in

blind MUD is presented and two such detectors rank-K and reduced-rank detectors are

derived. Additionally, performances of these detectors and their comparison by simulation

results for several channel conditions are given in this chapter.

Finally, Chapter 5 includes some conclusion remarks and suggestions for future

studies.
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CHAPTER 2

THE EVOLUTION PATH OF MOBILE

COMMUNICATIONS TOWARDS SPREAD

SPECTRUM SYSTEMS

In this chapter, the evolution of mobile communication systems are mentioned

starting with the earliest systems employed in 1940’s and coming to spread spectrum

systems which are adopted as the main multiple access schemes of 3G mobile communi-

cation systems. Firstly, a brief historical account of mobile communication systems will

be given.

History of today’s mobile communications goes back till mid-1940s, to a domestic

public service operating at 150 MHz with only three channels. Development from a do-

mestic use to the use of entire world is summarized in Table 2.1 [3] through the important

steps, chronologically.

2.1 Evolution to 3rd Generation (3G) Systems

Time division multiple access (TDMA) system which is based on the standards

IS-54 [9] and its evolved version IS-136 [10] developed by Telecommunications Industry

Association (TIA) and Electronics Industry Association (EIA), Global System for Mobile

Communications (GSM) [11, 12] and also cdmaOne which is based on the standard IS-

95 [13] developed by TIA and EIA may be referred to as 2nd generation (2G) mobile

systems. Firstly, let’s have a look at those systems.

2.1.1 TDMA (IS-136)

TDMA as a mobile network, designed with IS-54 and later with IS-136, provide a

communication scheme where data from multiple users is time-division multiplexed using

a number of time slots and sent out over a physical channel. Since each time slot used

may be assigned to a different user, the capacity is increased in the same proportion.

Based on this concept, first IS-54, then a newer version IS-136 is designed as a TDMA

standard by TIA and EIA. According to these standards a TDMA frame is 40 ms long

and consists of 6 slots each 6.67 ms. Features for IS-136 system is given in Appendix A.

2



Table 2.1: Chronology of important developments in mobile communications [3]
1946 First domestic public land mobile service introduced in St.Louis.

The system operated at 150 MHz and had only three channels.
1956 First use of a 450 MHz system. Users had to use a push-to-talk

button and always needed operator assistance.
1964 First, automatic system, called MJ. It operated at 150 MHz and

could select channels automatically. However, roaming was
operator-assisted.

1969 First MK system. Like the MJ system, it was automatic, but worked
at 450 MHz bands.

1970 Federal Communication Commission (FCC) sets aside 75 MHz for high-
capacity mobile telecom systems.

1974 FCC grants common carriers 40 MHz for development of cellular systems.
1978 First cellular system called Advanced Mobile Phone Service (AMPS) was

introduced in Chicago on a trial basis.
1981 Cellular systems deployed in Europe.
1983 First commercial deployment of a cellular system in Chicago. It was an

analog system and did not have a user data transport capability.
Analog systems around 450 and 900 MHz band were also introduced in
many countries of Europe during 1981 - 1990.

1989 FCC grants another 10 MHz bandwidth for cellular systems, thus
giving a total of 50 MHz

1991 GSM was introduced in Europe and other countries of the world.
1993 TDMA system called IS-54 was introduced in US.

Short Messaging Services (SMS) available in GSM.
1995 CDMA cellular and Personal Communications Systems (PCS)

technology was introduced in US.
1997 General Packet Radio System (GPRS) standards were published.
1999 Standards for 3G wireless services were published.

2.1.2 GSM

Cellular mobile telephony was first introduced in Sweden, Norway, Finland, and

Denmark in Europe in 1981, as analog systems operating around 450 and 900 MHz

bands. In a few years, other European countries also installed such systems. But those

systems were not compatible with each other, and thus inter-system communications

were not possible. To overcome this problem, a standard was introduced in 1990, called

Global System for Mobile Communications (GSM) that uses 2 frequency bands around

900 MHz where the first band operates at 890 to 915 MHz as the reverse link (uplink)

and the second band, forward link (downlink) at 935 to 960 MHz. Here, the reverse

link corresponds to the communication from the mobile user to the base station and the

forward link to the communication in the opposite direction.

In GSM each physical channel has a bandwidth of 200 kHz and consists of 8 time

slots, each assigned to a different user. In GSM, the length of a TDMA frame is 4.625
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ms. Some more detailed features of GSM is given in Appendix B [3].

2.1.3 cdmaOne (IS-95)

cdmaOne was demonstrated in 1998 as an application of spread spectrum technol-

ogy to a mobile communication system. According to this scheme each user is assigned

a unique pseudo-noise (PN) code whose clock rate (chip rate) is generally much higher

than the user data rate. The specifications of cdmaOne is defined by IS-95. In Appendix

C [3], you may see the features of cdmaOne.

2.1.4 3G Systems

The growing mobile services and the additional needs built up the 3G systems.

We may classify the following four systems as 3G mobile systems, they are: cdma2000,

Universal Wireless Communications (UWC-136), wide-band code division multiple access

with frequency division duplex (WCDMA-FDD), and wide-band code division multiple

access with time division duplex (WCDMA-TDD). Since WCDMA is widely known as

Universal Mobile Telecommunications System (UMTS) in Europe, these last two systems

are also called as UMTS-FDD and UMTS-TDD, respectively. The evolution path to 3G

systems is illustrated in Figure 2.1 [3].

Figure 2.1: The Evolution Path to 3G Systems

cdma2000 is actually an evolution of cdmaOne. It is a direct sequence spread

spectrum system and may use one or more carriers, and operates in FDD mode.

UWC-136 may be called as the TDMA version of 3G systems for use in North

America. Evolution to UWC-136 corresponds to the path of IS-136 evolution in Figure

2.1
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WCDMA (UMTS as called in Europe, also called UMTS Terrestrial Radio Access

(UTRA)), uses a direct sequence spread spectrum signal with a 5 MHz bandwidth and

operates both in FDD and TDD modes. As seen in Figure 2.1 standards have designed

UMTS to use the core networks of GSM and similarly the packet mode data services

of UMTS have been harmonized with general packet radio system (GPRS), which is a

packet data service capability of GSM. Additionally, a standard called Enhanced Data

Rates for GSM Evolution (EDGE) has been defined in order to support internet protocol

(IP) based services in GSM at rates up to 384 kb/s. EDGE (also called as Enhanced

Data Rates for Global Evolution) is a cost-efficient upgrade to existing GSM/GPRS

and TDMA networks. It operates in existing spectra and increases the speed over the

air interface by introducing a more advanced coding scheme where every time slot can

transport more data [14].

2.2 Spread Spectrum Communication Systems

Spread Spectrum (SS) has its origin in the military area resulting from two basic neces-

sities in military communications.One of them is the need for a reliable communication

and the second one is the need for a system resistant against jamming. These two

Figure 2.2: Spectrum of SS signal where N is the spreading factor.

necessities also represent the two basic superiorities of SS communication systems; low
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probability of intercept (LPI) and antijam (AJ) capability.

SS is a communication technique where the transmitted signal is increased in

bandwidth (spreading) at the transmitter and then decreased in bandwidth (despreading)

again by the same amount at the receiver. This bandwidth spreading operation makes

the transmitted signal appear similar to random noise in the channel as in Figure 2.2 and

difficult to be detected and demodulated by receivers other than the intended ones, and

so, neither jammed nor exploited in any manner.

There are several SS techniques in practice. Direct sequence (DS-SS) and fre-

quency hopping (FH-SS) are the two most popular ones. As shown in Figure 2.3, a

rarely preferred technique when compared to the previous two is time hopping (TH-SS),

and there are other hybrid techniques which blend mentioned SS techniques together.

Figure 2.3: Types of SS communication system

2.2.1 Direct Sequence Spread Spectrum (DS-SS)

DS is the best known SS technique. A DS-SS signal c(t) is formed by linearly

modulating the output sequence {cn} of a pseudo-random number generator by a train

of pulses of duration Tc called the chip duration. The word chip stands for the time it

takes to transmit one bit of a pseudo-noise (PN) sequence. The PN sequence may be

formulated as

c(t) =
∞∑

n=−∞

cnp(t− nTc) (2.1)

where p(t) is the basic rectangular pulse shape. Figure 2.4 gives a block diagram of the

DS-SS system.

In a DS-SS system an already modulated signal is modulated second time to

produce a data sequence, occupying a bandwidth in excess of the minimum necessary

one to send it. The spectrum spreading is done just before transmission, through the use

of a pseudo-random number sequence, mentioned above, that is independent of the data
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sequence. Pseudo-randomness of this sequence is important in design of DS-SS signals.

Since the generation of PN codes is relatively easy, it is also easy to introduce a

large processing gain in DS-SS systems. It may be thought that the despreading

Figure 2.4: Block diagram of a DS-SS system [1]

operation is the same as the spreading operation because the signal is multiplied with

the corresponding PN code both at the transmitter and the receiver. Therefore, as it

is illustrated in Figure 2.5, the information signal is despread while possible jamming

signals in the channel are spread before data detection is performed. So jamming effects

are reduced.

Figure 2.5: Anti-jamming (AJ) property of DS-SS system

The main problem in applying DS is the so-called near-far effect which is illustrated
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in Figure 2.6. This effect is present when an interfering signal is much closer to the receiver

than the intended signal. Although the cross-correlation between codes A and B is low,

the correlation between the received signal from the interfering user and code A can be

higher than the correlation between the received signal from the intended transmitter

and code A. The result is that proper data detection is not possible [15]. Near-far effect

is an important criteria in multiuser detector design.

Figure 2.6: Near-Far Effect

2.2.2 Frequency Hopping Spread Spectrum (FH-SS)

In FH-SS the pseudo-random number sequence is used to select the frequency of

the transmitted signal pseudo-randomly among the possible frequencies in SS bandwidth.

An FH-SS signal c(t) is formed by nonlinearly modulating a train of pulses with a

sequence of pseudo-randomly generated frequency shifts {fn }.

Figure 2.7: Block diagram of an FH-SS system [1]

Mathematically, it is

c(t) =
∞∑

n=−∞

exp{j(2πfn + φn)}p(t− nTh) (2.2)

where p(t) is again the basic rectangular pulse shape of duration Th, the hop time, and
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{φn} is a sequence of random phases associated with the generation of the hops. In

Figure 2.7, block diagram of an FH-SS system is given. An example of an FH-SS pattern

is illustrated in Figure 2.8.

While applying FH technique, the carrier frequency hops according to a unique

sequence of length N . In this way the bandwidth is increased by a factor N , if the

channels are non-overlapping. A disadvantage of FH technique as opposed to DS is that

obtaining a high processing gain (spreading factor) is hard.

Figure 2.8: An example of an FH-SS pattern

On the other hand, FH is less effected by the near-far effect than DS. FH sequences

have only a limited number of hits with each other. This means that if a near-interferer

is present, only a number of frequency-hops will be blocked instead of the whole signal.

From the hops that are not blocked it should be possible to recover the original data

message [15].

2.2.3 Other Spread Spectrum Techniques

Analogous with FH-SS, in TH-SS, a time interval which is much larger than the

reciprocal of the information rate is subdivided into a large number time slots. The coded

information symbols are transmitted in a pseudorandomly selected time slot as a block

of one or more code words.

Hybrid type SS systems combine several SS techniques together. The mostly

known of such types is represented by DS/FH and combines DS and FH techniques which

means that a PN sequence is used in combination with frequency hopping. The signal

transmitted on a single hop consists of a DS-SS signal which is demodulated coherently.

However, the received signals from different hops are combined noncoherently.
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Another possible hybrid SS type is DS/TH that combines DS and TH techniques.

This is not as practical as DS/FH, because of an increase in system complexity and more

strict timing requirements [1].

2.3 Multiple Access Communication Systems

A multiple access communication system is a system in which several transmitters

share a common channel. In such a system the receiver receives a noisy superposition of

the signals sent by active transmitters in the system. Multiple access systems are also

referred to as multipoint-to-point communication systems as illustrated in Figure 2.9 [16].

Figure 2.9: Multiple access communication scheme

We may classify some types of multiple access communications as TDMA, FDMA,

CDMA, etc.. Figure 2.10 illustrates this classification.

Figure 2.10: Types of multiple access communications

From the perspective of commercial communications, the most popular and impor-

tant use of SS is a multiple accessing technique, and it is a serious alternative to either

frequency division multiple access (FDMA) or time division multiple access (TDMA),

referred to as code division multiple access (CDMA).

In TDMA, time is divided into time slots assigned to incoming streams from

different users, whereas in FDMA each user is assigned a different carrier frequency in

order to prevent their spectrums from overlapping. The ideas of TDMA and FDMA is

shown in frequency versus time axis in Figure 2.11.

As we mentioned, CDMA is an alternative to both of these multiple access

schemes, FDMA and TDMA. As it is seen in Figure 2.12, each user is assigned a differ-
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ent, unique code called signature waveform. All signals occupy the same bandwidth and

are transmitted simultaneously in time. As mentioned before, each transmitter sends its

information data stream by modulating its uniquely assigned signature waveform as in a

single user digital communication system.

Four different and unique codes are seen in Figure 2.12 which are assigned to four

different users all are communicating at the same time while sharing the same frequency

band.

Figure 2.11: FDMA and TDMA

However, as illustrated in Figure 2.11, users are not able to communicate sharing

same frequency band in FDMA or sharing time in TDMA.

Figure 2.12: Illustration for code assignment in CDMA

2.4 CDMA Basics

Some basic parameters of a CDMA signal may be defined using Figure 2.13. In

the figure we see how a two-bit sequence is spread using short codes. The informa-

tion bits {+1,−1} are used to modulate the spreading code (or PN sequence), that is

{+1,−1,+1,+1,−1,−1,+1}, with Tc, chip duration. T is the bit duration. For the

second information bit {−1}, how the PN sequence is inversed is to be noticed.
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2.4.1 Processing Gain

Processing gain is a measure that represents how much the bandwidth of the

information signal is increased after spreading or analogously how many bits are used to

represent a single information bit. Processing gain is also called as the number of chips

per symbol, spreading factor, or spreading gain and it is defined as

N = 10 log10 (Rc/Rb) = 10 log10 (Tb/Tc) (dB). (2.3)

2.4.2 PN-Sequences

PN-sequences are the main elements of a CDMA system. Pseudo-randomness of

spreading codes are very important since this property provides them the ability to be

regenerated. The receiver detects the signals by means of these spreading codes that

are uniquely assigned to each user. So they should be generated using some predefined

algorithms. Additionally, in order to provide an easier detection at the receiver, the

cross-correlations of these sequences should be small.

Figure 2.13: An example of spreading

There are several algorithms for generating PN-sequences to be used in CDMA

systems. The most preferred ones are maximal length sequences, Gold sequences and

Walsh sequences. Next, we will mention properties of those sequences.

2.4.2.1 Maximal Length Sequences

These sequences are generated using shift registers. Shift register sequences having

the maximum possible period for an n element shift register are called maximal length

sequences or m-sequences. Therefore for a shift register with n elements, the longest or
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maximum length sequence which can be generated is N = 2n − 1 [4].

It is defined that a (j, k) linear code C is a k-dimensional subspace of the vector

space of all the binary j-tuples where j is the length of the linear block code and j > k

[17, 18]. So, we may say that m-sequences are cyclic codes with (2n − 1, n). That is, an

m-sequence code C is a linear code of (2n − 1, n) and every cyclic shift of a code vector

in C is also a code vector in C.

Auto-correlation function of a periodic signal ω(t) with period T is

Ri(τ) =
1

T

∫ T

0

ωi(t)ωi(t+ τ)dt (2.4)

from where (2.5) is derived as

Ri(τ) =

 1− N+1
NTc

|τ | , |τ | ≤ Tc

− 1
N

, elsewhere

. (2.5)

Auto-correlation defines how much a function correlates with a time shifted version of

itself with respect to that time shift. Figure 2.14 shows the periodic auto-correlation

function for m-sequences. m-sequences exhibit good auto-correlation properties which is

important in CDMA while rejecting multipath interference.

Figure 2.14: Auto-correlation function [2]

Another property that is important in CDMA is the cross-correlation property

of these sequences which is expected to be as small as possible since exhibiting small

cross-correlations, these codes help receiver to separate the desired signal from other

users’ signals. However, cross-correlation property ofm-sequences is relatively poor which

makes m-sequences unsuitable for CDMA. The cross-correlation for periodic signals ωi

and ωj of period T is defined as
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Cij =
1

T

∫ T

0

ωi(t)ωj(t− τ)dt. (2.6)

The cross-correlation values of m-sequences with different number of shift register

elements and their comparisons with corresponding Gold code sets are given in Table

2.2. And in Figure 2.15 an example for generating m-sequences of three shift register

elements is illustrated.

Figure 2.15: An example for generating m-sequences of 3-elements [2]

2.4.2.2 Gold Sequences

Selected pairs of m-sequences exhibit a three valued periodic cross-correlation

function with reduced upper bound correlation levels when compared with the rest of

the m-sequence set. This subset of m-sequence family is also referred to as the preferred

pair and one such unique subset exists for each sequence length. Gold sequences are

derived from m-sequences in this manner with better periodic cross-correlation prop-

erties. This cross-correlation property of Gold sequences is given in three values with

{−1,−t(n), t(n)− 2} where

t(n) =

 2(n+1)/2 + 1 , n odd

2(n+2)/2 + 1 , n even

. (2.7)

Although Gold sequences are derived from m-sequences, Gold sequences are non-

linear, while m-sequences remain linear. A Gold sequence generator of 6-elements is given

in Figure 2.16.

Table 2.2 compares m-sequences and Gold codes with respect to their set sizes

and peak levels where it can be seen that the available set size for m-sequences is very

much smaller than the sequence length, N. However, Gold codes are more acceptable than

m-sequences due to their set size and peak level properties. Also, in Table 2.3 occurrence

frequency of cross-correlations for Gold codes are listed.
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2.4.2.3 Walsh Sequences

Walsh Sequences have the attractive property that all codes in a set are orthogonal.

A series of codes wk(t) for k = 0, 1, 2, ..., N are orthogonal with weight N over the interval

0 ≤ t ≤ T when

∫ T

0

wn(t) wm(t) dt =

 N, for n = m

0, for n 6= m

(2.8)

where n and m are integers and N is a non-negative constant which does not depend on

the indices m and n but only depends on the code length N .

Table 2.2: Comparison of m-sequences and Gold codes with their set sizes and peak levels [4].
m-sequences Gold codes

n N set size peak level set size peak level
3 7 2 5 9 5
4 15 2 9 17 9
5 31 6 11 33 9
6 63 6 23 65 17
7 127 18 41 129 17
8 255 16 95 257 33
9 511 48 113 513 33

10 1023 60 383 1025 65
11 2047 176 287 2049 65
12 4095 144 1407 4097 129

Walsh sequence systems are limited to code lengths of N = 2n. When used in

communication systems the code length N enables N orthogonal codes to be obtained.

Table 2.3: Frequency of occurrence of cross-correlation values for Gold codes of length N =
2n − 1, n odd [1].

cross-correlation value frequency of occurrence
−1 2N−1 − 1

−[2(n+1)/2 + 1] 2N−2 − 2(N−3)/2

2(n+1)/2 − 1 2N−2 + 2(N−3)/2

There are several ways to generate Walsh sequences, but the easiest way is the use

of Hadamard matrices. The orders of Hadamard matrices are restricted to the powers of

two, the lowest order Hadamard matrix is defined as

H2 =

 1 1

1 −1

 . (2.9)

Higher order matrices are generated with
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HK = HK/2 ⊗H2 (2.10)

where ⊗ denotes Kronecker product. In order to define Kronecker product we need two

matrices A and B. Let A be an n× n matrix with entries aij and B an m×m matrix.

The Kronecker product of A and B is the mn×mn block matrix

A⊗B =


a11B . . . a1nB

...
. . .

...

an1B . . . annB

 (2.11)

The Kronecker product is also known as the direct product or the tensor product. So, by

means of this method N codes of length N , for N = 2, 4, 8, 16, 32, ... may be generated.

Figure 2.16: A Gold sequence generator of 6-elements [2]

However, the auto-correlation function of Walsh codes does not have good charac-

teristics. It can have more than one peak and therefore, it is not possible for the receiver

to detect the beginning of the codeword without an external synchronization scheme.

Although the full-sequence cross-correlation is identically zero, this does not hold for

partial-sequence cross-correlation function. This is why Walsh codes can only be used in

synchronous CDMA. Additionally, Walsh codes do not have the best spreading behavior.

They do not spread data as well as m and Gold sequences do because their power spectral

density is concentrated in a small number of discrete frequencies.

These drawbacks make Walsh codes not suitable for non-cellular systems. Sys-

tems in which Walsh sequences are applied are for instance multi-carrier CDMA and

the cellular CDMA system (IS-95). Both systems are based on a cellular concept, all

users (and so all interferers) are synchronized with each other. Multi-carrier CDMA uses
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another way of spreading while IS-95 uses a combination of a Walsh-sequence and a shift

register sequence to enable synchronization.

2.4.3 Synchronous CDMA Model

For a basic synchronous CDMA system, we have the following channel model with

K users:

r(t) =
K∑

k=1

Ak bk sk(t) + σ n(t), t ∈ [0, T ] (2.12)

where T is the inverse of data rate, sk(t) is the signature waveform assigned to the kth

user, Ak is the received amplitude of the kth user’s signal, bk ∈ {−1,+1} is the bit

transmitted by the kth user, n(t) is the additive white Gaussian noise (AWGN) with

unity power spectral density, and finally σ is the standard deviation of the noise.

2.4.4 Asynchronous CDMA Model

Following from Figure 2.17, τ ∈ [0, T ) is called the offset value. In asynchronous

case users send a stream of bits:

bk[−M ], . . . , bk[0], . . . , bk[M ]. (2.13)

Figure 2.17: Asynchronous CDMA model

We assume here that the length of the frames or packets transmitted by each user is

equal to 2M + 1.

Using these assumption and definitions, the basic asynchronous CDMA channel

model becomes:

r(t) =
K∑

k=1

M∑
i=−M

Ak bk[i] sk(t− iT − τk) + σ n(t). (2.14)
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As already seen in (2.14), the synchronous channel corresponds to a special case

of asynchronous channel when all offsets are identical.

2.4.5 Matched Filter

A basic way of converting the received signal into a discrete-time process is to

pass it through a bank of matched filters each matched to the signature waveform of a

different user and sampling their outputs every T seconds, as shown in Figure 2.18.

Figure 2.18: Bank of matched filters

In the synchronous case the output of the bank of matched filters are

r1 =

∫ T

0

r(t) s1(t) dt

... (2.15)

rK =

∫ T

0

r(t) sK(t) dt

The output of the kth matched filter is

rk = Ak bk +
∑
j 6=k

Aj bj ρjk + nk (2.16)

where

ρjk = 〈sj, sk〉 =

∫ T

0

sj(t)sk(t)dt, (2.17)

and

nk = σ

∫ T

0

n(t) sk(t) dt. (2.18)

In vector form it is
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r = R A b + n (2.19)

where R is theK×K normalized cross-correlation matrix with (j, k)th element Rjk = ρjk,

r = [r1, . . . , rK ]T ,

b = [b1, . . . , bK ]T ,

A = diag[A1, . . . , AK ]T .

Here diag[·] is used to denote a diagonal matrix with entries given in square brackets.

In asynchronous case, for the sake of simplicity, we assume τ1 ≤ τ2 ≤ . . . ≤ τK ,

then the matched filter outputs are

rk[i] = Ak bk[i] +
∑
j<k

Aj bj[i+ 1] ρkj +
∑
j<k

Aj bj[i] ρjk

+
∑
j>k

Aj bj[i] ρkj +
∑
j>k

Aj bj[i− 1] ρjk + nk[i] (2.20)

where

nk[i] = σ

∫ τk+iT+T

τk+iT

n(t) sk(t− iT − τk) dt. (2.21)

2.4.6 Optimal Receiver for the Single User Channel

If we think of that there is only one user in the channel, the received signal is

r(t) = A b s(t) + σ n(t). (2.22)

Then the decision statistic may be expressed as

b̂ = sgn(< r, s >) = sgn

(∫ T

0

r(t) s(t) dt

)
. (2.23)

Here and later, the symbol ‘ ·̂ ’ is used in order to denote an estimate of the variable it

is used with and the definition of sgn(x) is given by
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sgn(x) =


−1 , x < 0

0 , x = 0

1 , x > 0.

(2.24)

The probability of error in this case is given as

P = Q

(
A

σ

)
(2.25)

where

Q(x) =

∫ ∞

x

1√
2π

e−t2/2 dt. (2.26)
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CHAPTER 3

DETECTOR TYPES FOR CDMA

After giving the basic definitions for a CDMA system, we may now mention some basic

detector types for CDMA, beginning with the single-user matched filter detector.

3.1 Single-User Matched Filter

In most DS-SS systems analysis, the interfering users are assumed to behave like

Gaussian noise. Thus, the problem of detecting which signal is transmitted reduces to

the detection of the transmitted signal for an AWGN channel in the single-user case. The

solution to this problem is known as the maximum likelihood (ML) detector for equally

likely transmitted symbols [19]. This corresponds to finding the symbol that was most

likely sent given the observed signal as

b̂ = arg max
b
f(r|b) (3.1)

where b̂ is the estimated symbol and y is the received signal. If we represent an observed

signal in additive white Gaussian noise as

r = Ab+ n (3.2)

where again A is the received amplitude, b is the transmitted bit and n is the AWGN

with zero mean and variance, σ2, then our problem reduces to the hypothesis testing

problem of

f(r|b = −1)

b̂ = −1

≷

b̂ = 1

f(r|b = 1). (3.3)

And substituting the pdfs in (3.3) we get

1√
2πσ

e
(r+A)2

2σ2

b̂ = −1

≷

b̂ = 1

1√
2πσ

e
(r−A)2

2σ2 (3.4)

which results in
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Ar

b̂ = −1

≷

b̂ = 1

0. (3.5)

In this manner, single-user matched filter detector is a type of detector that uses

the matched filter bank, we define in section 2.4.5, where each filter is matched to the

signature waveform of a different user. The sign of the output of any filter is the estimation

of the desired decision, corresponding to transmitted bit b ∈ {+1,−1}. This detector is

shown in Figure 3.1.

Figure 3.1: Bank of single-user matched filters

The output of the matched filter for the kth user is

rk =

∫ T

0

r(t) sk(t) dt = Ak bk +
∑
j 6=k

Aj bj ρjk + nk (3.6)

where again

nk = σ

∫ T

0

n(t) sk(t) dt, (3.7)

then in orthogonal case, the probability of error of user-k is given as

Pk(σ) = Q

(
Ak

σ

)
(3.8)

whereas in nonorthogonal case it is

Pk(σ) = Q

 Ak√
σ2 +

∑
j 6=k A

2
jρ

2
jk

 , (3.9)

and in two-user case for user-1 it is
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P1(σ) =
1

2
Q

(
A1 − A2 ρ

σ

)
+

1

2
Q

(
A1 + A2 ρ

σ

)
. (3.10)

Single-user matched filter detector is also referred to as the conventional receiver.

3.1.1 Asymptotic Multiuser Efficiency

Asymptotic multiuser efficiency is an alternative measure for the multiuser bit-

error-rate. It is defined as the ratio between the effective and the actual energies, as

ηk = lim
σ → 0

ek(σ)

A2
k

. (3.11)

Effective energy of user-k, ek(σ), is the energy that user-k would require to achieve

the same bit-error-rate of a single user Gaussian channel with the same noise level

Pk(σ) = Q

(√
ek(σ)

σ

)
≥ Q

(
Ak

σ

)
. (3.12)

3.1.2 Near-Far Resistance

Near-far problem is the situation that occurs when the desired user is physically

far away from the receiver while any interfering user is closer. Then the interferer is

received with greater power and hence, easier to demodulate. If detector is insensitive

to the different power levels received, then it is said to be near-far resistant. Near-far

resistance is defined related to the multiuser asymptotic efficiency as

η̄k = inf
Aj>0, j 6=k

(ηk). (3.13)

inf(·) here represents the infimum or the greatest lower bound. In order to define infimum,

we use a given set S, if we construct the set L of lower bounds of S, the infimum or the

greatest lower bound of set S is the largest member of L.

On condition that the near-far resistance η̄ = 0, the receiver is said to be near-far

limited, and if η̄ > 0, the receiver is said to be near-far resistant.

23



3.2 Optimum Multiuser Detector

Optimum multiuser detector yields the minimum achievable probability of error,

optimum multiuser efficiency and near-far resistance.

It is assumed that the receiver not only knows (as in conventional receiver) the

signature waveforms and the timing of every active user (for synchronous channels), but

it also knows (or can estimate) the received amplitudes of all users and the noise level.

For two-user case, the received signal is

r(t) = A1 b1 s1(t) + A2 b2 s2(t) + σ n(t). (3.14)

Since the bit streams are equiprobable and independent, maximum-likelihood decision

rule is used which selects the pair that maximizes

f [ {r(t), 0 ≤ t ≤ T }| (b1, b2) ] = exp

{
− 1

2σ2

∫ T

0

[r(t)− A1 b1 s1(t)− A2 b2 s2(t)]
2 dt

}
.

(3.15)

(b̂1, b̂2) is chosen such that A1 b̂1 s1(t)+A2 b̂2 s2(t) is closest to the received signal in the

mean-square sense. For the two-user synchronous channel the likelihood function may be

rewritten as

f [{r(t), 0 ≤ t ≤ T}|(b1, b2)] = exp

(
1

σ2
Ω(b1, b2)

)
exp

(
−A

2
1 + A2

2

2σ2

)
exp

(
− 1

2σ2

∫ T

0

r2(t) dt

)

where

Ω(b1, b2) = b1A1r1 + b2A2r2 − b1b2A1A2ρ (3.16)

and

rk =

∫ T

0

r(t)sk(t)dt. (3.17)

Maximum-likelihood decisions are then those estimates that maximizes Ω given by:

min {A1|r1|, A2|r2|} ≥ A1A2|ρ|. (3.18)

When the signatures are not correlated the estimates are found as:
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b̂1 = sgn(r1) and b̂2 = sgn(r2) (3.19)

otherwise

b̂1 = sgn (A1 r1 − sgn(ρ) A2 r2) (3.20)

b̂2 = sgn (A2 r2 − sgn(ρ) A1 r1) (3.21)

A K-user, M -frame asynchronous channel may be thought as a K(2M + 1)-user

synchronous channel. Defining a K(2M + 1)-vector b, with components

bk+iK = bk[i], k = 1, 2, . . . , K, i = −M, . . . , M (3.22)

the objective here, is to compute b that maximizes

f [ { r(t), t ∈ [−MT, MT + 2T ] } | b ] = exp

(
− 1

2σ2

∫ MT+2T

−MT

( r(t)− St(b) )2 dt

)
(3.23)

where

St(b) =
K∑

k=1

M∑
i=−M

Ak bk[i] sk(t− iT − τk) (3.24)

An illustration of a two-user asynchronous channel frames is given in Figure 3.2

and in Figure 3.3, a block diagram of an optimum detector for an asynchronous channel is

Figure 3.2: Two-user asynchronous case

shown. This detector estimates the transmitted bits maximizing (3.23) by using Viterbi

algorithm.
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3.3 Decorrelating Detector

The decorrelating detector is derived with the following idea: In the absence of

noise, equation (2.19) turns

r = R A b (3.25)

multiplying both sides of above equation by the inverse of R we get

R−1 r = R−1 R A b = A b (3.26)

where R is supposed to be invertible. Then the transmitted data is recovered by

b̂k = sgn
(
(R−1 r)k

)
= sgn ((A b)k) = bk. (3.27)

Figure 3.3: Optimum detector for asynchronous channel

If we bring in the noise then (3.26) turns into

R−1 r = A b + R−1 n. (3.28)

The kth component here is free from the interference from other users, that is why

this detector is called “decorrelating detector”. As it is seen through those derivations,

the decorrelating detector disregards the background noise while eliminating the multiple

access interference (MAI). The block diagram corresponding to the derived detector is

given in Figure 3.4.

Two desirable features of decorrelating detector are that it does not require the

knowledge of the received amplitudes and it can be decentralized so that the demodulation

of each user can be implemented independently as
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(R−1 r)k =
K∑

j=1

R+
kj rj =

K∑
j=1

R+
kj〈r, sj〉 =

〈
r,

K∑
j=1

R+
kj sj

〉
= 〈r, s̃k〉 (3.29)

Figure 3.4: Decorrelating detector

where R+
kj is a shorthand for (R−1)kj and 〈x, y〉 defines the inner product of x(t) and

r(t) as it is defined in (2.23). With this decentralizable representation the decorrelating

detector can be realized as in Figure 3.5.

Figure 3.5: Modified decorrelating detector

3.4 MMSE Detector

This detector is derived to minimize the mean-square-error by the following way:

The problem of estimating a random variable W on the basis of observations Z is

to chose the function Ŵ (Z) that minimizes the MSE,

E

[(
W − Ŵ (Z)

)2
]
. (3.30)
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E(·) is used here to denote the expectation or the statistical averaging operation. The

expected or the mean value of a single continuous random variable X is defined as

E(X) =

∫ ∞

−∞
xp(x)dx (3.31)

where x denotes the realizations that the random variable X may achieve and p(x) is

called the probability density function (PDF) of random variable X.

The solution is the conditional-mean estimator [19]:

Ŵ (Z) = E(W | Z). (3.32)

The MMSE linear detector for the kth user chooses the waveform ck of duration T that

achieves

min
ck

E
[
(bk − 〈ck, r〉)2

]
(3.33)

that is, the waveform ck to be chosen is the one that minimizes the E(·) operation in

3.33. Then the linear MMSE detector outputs the decision

b̂k = sgn (〈ck, r〉) . (3.34)

Final decision for MMSE linear detector is derived as [16]

b̂k = sgn
(([

R + σ2A−2
]−1

r
)

k

)
. (3.35)

The MMSE detector takes both MAI and background noise into account. It is

a compromise solution of the conventional receiver and the decorrelating detector, since

they are the limiting cases of the MMSE detector. Because following from (3.35), when

noise level is very low, the transformation approaches the decorrelating receiver, and

when noise is dominant, it becomes like the single-user matched filter. Again from 3.35

it is clear that linear MMSE detector would require received SNRs of users in the system
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and also the signature codes in order to build R.

The adaptive type MMSE detector requiring no prior knowledge of received SNRs

or interfering signature codes will be mentioned later.

Figure 3.6: MMSE linear detector

3.5 Successive Cancellation

Successive cancellation is built on the simple idea named successive decoding,

given in Figure 3.7. This idea is, if a decision is made about an interfering user’s bit,

then subtracting this interfering signal from the received waveform at the receiver, the

effect of this interfering signal is cancelled. Of course, this will be useful when the decision

about the interfering signal is correct, otherwise subtracting step will double the effect

of the interfering signal.

Figure 3.7: Successive Decoding

In simplest form, the successive receiver uses the output of the single-user matched

filters, which does not care about the other users’ interference. There are several ways

of choosing the order of users. One is to demodulate users in order of their decreasing

received powers, but this approach is not the best method, since it does not take the cross-

correlations among users into account. A sensitive method is to order users according to

the average received power at the output of each matched filter given by
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E

[(∫ T

0

r(t) sk(t) dt

)2
]

= σ2 + A2
k +

∑
j 6=k

A2
j ρ

2
jk. (3.36)

If we consider the synchronous two-user case, the output of the matched filter

detector for User-2 will be

b̂2 = sgn(r2) (3.37)

Recreating the signal of User-2 with this estimated b̂2, we get A2b̂2s2(t), then subtracting

this from the received signal yields

r̂(t) = r(t)− A2b̂2s2(t)

= A1b1s1(t) + A2(b2 − b̂2)s2(t) + n(t) (3.38)

Then passing ŷ through the matched filter for User-1, we reach the following decision

b̂1 = sgn(〈r̂ s1〉)

= sgn(r1 − A2b̂2ρ)

= sgn(r1 − A2 ρ sgn(r2))

= sgn(A1b1 + A2(b2 − b̂2)ρ+ σ〈n, s1〉) (3.39)

3.6 Adaptive MMSE Detector

In section 3.4 it is mentioned that MMSE detector minimizes the squared error

between the transmitted bit and the filter output. If user-1 is the desired user, the cost

function given by (3.33) becomes

E
[
(b1 − 〈c1, r〉)2

]
(3.40)

where b1 is the actual transmitted bit. In each frame of symbols one bit which is known

at the receiver is sent resulting in a training sequence of known chips at the receiver.

Using this already known data bit, it is shown in [16] that MMSE detector ck may

be computed adaptively. For this an iterative algorithm named as gradient descent is

preferred. According to this algorithm, the computed MMSE detector ck is given as
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ck[n] = ck[n− 1]− µ(cTk [n− 1]r[n]− bk[n])r[n] (3.41)

where µ represents the step size. It is shown in [16] that this equation is globally

convergent when µ decreases suitably. In order to provide that, µ is suggested to be

µ(n) = 1/(n+p) where p is a design parameter. At the beginning n will be small. Hence,

µ(n) will be large and thus the convergence rate will be high. As ck converges to actual

ck, accuracy will be more important and a small µ will be needed.

In order to compute the detector iteratively, adaptive MMSE detector just requires

the training sequence and the timing of the user. No signature code, including the desired

user, is required.

3.7 Minimum Output Energy Detector

The mean output energy (MOE) is defined as

E
[
(〈r, ck〉)2

]
(3.42)

This detector estimates the detector ck that minimizes this mean output energy. This

term in (3.42) is also equal to the variance of the filter output at time T . Therefore, this

detector is also called as minimum variance detector. The MOE given by (3.42) and the

MSE given by (3.33) have the following relation

MSE(x1) = E
[
(A1b1 − 〈r, s1 + x1〉)2

]
= E

[
(A2

1b
2
1 − 2A1b1〈r, s1 + x1〉) + (〈r, s1 + x1〉)2

]
= A2

1 − 2A1E [b1〈r, s1 + x1〉] + MOE(x1)

= A2
1 − 2A2

1〈s1, s1 + x1〉+ MOE(x1)

MSE(x1) = MOE(x1)− A2
1 (3.43)

This shows that minimizing MOE is equivalent to minimizing MSE. The filter coefficients

that are found by minimizing MOE will also minimize MSE. Furthermore, since the cost

function of MOE does not contain b1, blind adaptive algorithms are applicable in this

situation.
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3.8 Performance Comparison of CDMA Detectors

In this section the performances of the accounted detectors are compared based on

simulation studies. Figure 3.8 shows the asymptotic efficiency performance of different

CDMA schemes. Two users were assumed. User-1 is chosen as the user of interest and

it has fixed power of SNR1 = 25 dB whereas the second users received power is varied

to plot the asymptotic efficiency with respect to users’ received amplitude ratios. The

simulation results match well with the results obtained in [16].

Figure 3.8: Comparison of asymptotic multiuser efficiencies

The optimum detector performs the best and is closely approximated by the SIC

scheme. These detectors achieve nearly the ultimate performance of unity asymptotic

efficiency and their superiority to other detectors becomes obvious when the SIR decreases

below unity. The MMSE detector is the optimum linear detector, it takes both MAI and

the additive noise into account and thus it shows close to optimum performance for higher

SIR values, but as the SIR ratio decreases its asymptotic efficiency converges to the one

of the decorrelating receiver. because the effect of the additive noise becomes negligible

for high MAI. The asymptotic efficiency of user-1 is approximately 0.9 fo high values

32



of MAI when either MMSE or decorrelating detectors are used. On the other hand the

single-user detector (SUD) performs very badly and when SUD is used the asymptotic

efficiency of user-1 tends to zero as the MAI increases as expected.

Figure 3.9 plots the BER performance of the schemes with respect to increasing

number of users with equal received powers. The SNR for each user is 10 dB. The

optimum detector performs significantly better than the rest, but this result is obtained

with a price of increased complexity.

Figure 3.9: Comparison of BERs wrt number of users

We should note here that the SIC detector does not perform well in the presence

of many users with equal received powers. Its performance is even worse than the per-

formance of the SUD for number of users higher than four. Also, as the number of users

increases the interference becomes much more effective than the additive noise. Thus,

the MMSE and decorrelator detectors converge to the same level as the number of users

increases.
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CHAPTER 4

BLIND MULTIUSER DETECTION

The word blind stands for that the receiver does not have any prior knowledge about the

received signal except the signature waveform of the desired user. Thus, blind detectors

are useful especially for downlinks of CDMA systems in practice, because, it provides

for the ability of a mobile terminal to communicate with just using its own signature

waveform. So, neither obtaining any information about other users such as their sig-

nature waveforms nor any training sequence is necessary for blind multiuser detection.

Additionally, not using any training sequence in downlink will result in economical use

of channel bandwidth. On the other hand, for uplink detection, the receiver, say base

station, does not necessarily use blind techniques since it already has the knowledge of

all signature waveforms of users within a cell. And also, for a base station any physical

enlargement for a better performing detection scheme is not as much a problem as it is

for a mobile unit.

In this chapter, we will pay attention especially on the adaptive blind MMSE

detectors derived using subspace approach [6], and the reduced-rank approach [8]. Before

we derive our blind adaptive MMSE detector, we should make some definitions and

assumptions for our signal model.

4.1 Signal Model

A DS-CDMA system with K users that are simultaneously communicating through

an AWGN channel, is considered. The received baseband signal at the receiver can be

modelled as

r(t) =
K∑

k=1

Ak

∞∑
i=−∞

bk(i) sk(t− iT − τk) + σn(t). (4.1)

As described before, Ak, here is the received amplitude of user-k. bk(i) is the

information bit of user-k in the ith bit interval. sk(t) is the normalized signature waveform

of user-k as defined in (4.2). τk is propagation delay with respect to the receiver, and

n(t) is zero-mean AWGN with power spectral density σ2.
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sk(t) =
1√
N

N−1∑
j=0

sk[j] ψ(t− j Tc), t ∈ [0, T ] (4.2)

where {sk[0], sk[1], . . . , sk[N−1]} is the signature sequence of user-k, ψ(t) is a normalized

chip waveform of duration Tc. If all users are transmitting synchronously, then τ1 = τ2 =

. . . = τK = 0, and the received signal may be considered during one bit interval, resulting

in the representation

r(t) =
K∑

k=1

Ak bk sk(t) + σn(t), t ∈ [0, T ]. (4.3)

Passing the signal in (4.3) through a matched filter, matched to chip waveform

ψ(T − t) and sampling at chip rate, during one bit interval we obtain an N -vector like

r =
K∑

k=1

Ak bk sk + σn, (4.4)

where sk = (1/
√
N) [ sk[0], sk[1], . . . , sk[N − 1] ]T is the normalized signature waveform

of user-k, and n is a WGN vector with zero-mean and covariance matrix σ2 IN . The

equation (4.4) may be rewritten as

r = S A b + σn, (4.5)

where S = [s1, s2, . . . , sK ], A = diag(A1, A2, . . . , AK), and b = [b1, b2, . . . , bK ]T .

4.2 Classical Blind Source Separation

The classical blind source separation (BSS) schemes are based on the assumption

of independent components in the received signal streams. This is valid if the data

carried in the received signal is random. Independent component analysis (ICA) and its

variations like fastICA that solves the problem by extracting the independent components

step by step, and some batch type algorithms like joint approximate diagonalization of

eigen-matrices (JADE) [20] and blind source separation algorithm with reference system

(SSARS) [21] are in this class of BSS techniques.

Although this thesis mostly concentrates on subspace approach, for comparison
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one such algorithm, JADE will be mentioned next, as an example for batch type BSS.

4.2.1 JADE

JADE algorithm is a batch algorithm for solving the separation problem. The

first step of JADE is to decorrelate received streams in r. For this a K ×N matrix W,

named whitening matrix, is calculated that satisfies

I = WCWT (4.6)

where C = E
{
r rT

}
is the auto-correlation matrix of the received signals. In BSS

this step is called principle component analysis and can be solved using an eigenvalue

decomposition of C. The decorrelation is done by

z = W r. (4.7)

JADE uses fourth-order statistics. It maximizes some elements of the cumulant

matrix Qz = cum(bi, bj, bk, bl), i, j, k, l ≤ K obtained from the extracted signals b in (4.9).

The optimization problem is solved by an eigenvalue decomposition of Qz and a joint

diagonalization of the dominant eigenvectors rearranged as matrices. This diagonalization

leads to the unitary matrix B

max
B

=
K∑

i,j,k,l=1

|cum(bi, bj, bk, bl)|2 (4.8)

and the independent data streams are

b = BTz. (4.9)

The JADE algorithm can be summarized by the following steps [20]:

- Step-1: Form the sample covariance matrix Ĉ and compute a whitening matrix Ŵ.

- Step-2: Form the sample fourth-order cumulants Q̂z of the whitened process

ẑ = Ŵr̂; compute the K most significant eigen-pairs {λ̂k, ûk|1 ≤ k ≤ K}.

- Step-3: Jointly diagonalize the set {λ̂kûk|1 ≤ k ≤ K} by a unitary matrix B̂.

- Step-4: Estimate b as b̂ = B̂
T
ẑ.
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4.3 Subspace Concept

The autocorrelation matrix of the received signal r is given by

C = E{rrT} =
K∑

k=1

A2
k sk sT

k + σ2 IN = S A2 ST + σ2 IN . (4.10)

Performing an eigen-decomposition, the autocorrelation matrix C may also be expressed

as

C = UΛUT = [Us Un]

 Λs

Λn

 UT
s

UT
n

 (4.11)

where U = [Us Un], Λ = diag (Λs Λn), Λs = diag (λ1, . . . , λK) contains the K largest

eigenvalues of C in descending order, and Us = [u1 . . . uK ] contains the corresponding

orthonormal eigenvectors, Λn = σ2IN−K and Un = [uK+1 . . . uN ] contains the N −K

orthonormal eigenvectors corresponding to the eigenvalue σ2. The range space of Us is

called signal subspace since it has the range as S. The range of Un is called the noise

subspace. Defining an N ×N diagonal matrix as

Λ0
∆
= Λ− σ2IN = diag(λ1 − σ2, . . . , λK − σ2, 0, . . . , 0), (4.12)

and by using equations (4.10), and (4.11) we obtain

S A2ST = Us(Λs − σ2IK)UT
s = UΛ0U

T . (4.13)

Deciding the kth user data bit, we define a linear multiuser detector in the following form

b̂k = sgn(ωωωT
k r) (4.14)

where ωωωk ∈ RN . Next the linear MMSE detector will be derived in terms of signal

subspace parameters {Us, Λs, and σ}.

4.3.1 Formulation of the Linear MMSE Detector with the Sub-

space Concept

Assuming that the desired user is user-1, let’s denote the filter coefficients for

user-1 with the weight vector ωωω1 = m1 where m1 ∈ RN . The vector m1 is chosen as such

a vector that minimizes the MSE and it is defined as
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MSE(m1)
∆
= E{(A1b1 −mT

1 r2)} (4.15)

subject to mT
1 s1 = 1.

Using signal subspace parameters, the linear MMSE detector m1 is given by

m1 =
UsΛΛΛ

−1
s UT

s s1

sT
1 UsΛΛΛ−1

s UT
s s1

(4.16)

Proof [6]: Using (4.4) and (4.15), by the method of Lagrange multipliers, we

obtain

L(m)
∆
= MSE(m)− 2µ(mT s1 − 1)

= mT E{rrT}︸ ︷︷ ︸
C

m− 2A1m
T E{b1r}︸ ︷︷ ︸

s1

+A2
1 − 2µ(mT s1 − 1)

= mTC m− 2A1m
T s1 + A2

1 − 2µ(mT s1 − 1)

= mTC m− 2(A2
1 + µ)mT s1 + (A2

1 + 2µ). (4.17)

The linear MMSE detector is obtained by solving for m1 from ∇L(m1) = 0.

∇L(m1) = 2C m1 − 2A2
1s1 − 2µs1 = 0

C m1 = A2
1s1 + µs1

m1 = (A2
1 + µ)C−1s1

m1 = (A2
1 + µ)(UsΛΛΛ

−1
s UT

s )s1 + (A2
1 + µ)σ−2(UnU

T
n )s1

m1 = (A2
1 + µ)(UsΛΛΛ

−1
s UT

s )s1

(4.18)

where we used the eigen-decomposition of C given in (4.11), and the last equality follows

from the fact that s1 ∈ range(Us) is orthogonal to the noise subspace, i.e, UT
ns1 = 0.

And finally, using the constraint that mT
1 s1 = 1, we obtain

(A2
1 + µ) = 1/[sT

1 UsΛΛΛ
−1
s UT

s s1]. (4.19)

Substituting (4.19) in (4.18) we obtain (4.16).

Since the decision rule (4.14) is invariant to positive scaling on linear MMSE
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detector, we use the scaled version of the linear detector m1 for simplicity, given by

m1
∆
= UsΛΛΛ

−1
s UT

s s1. (4.20)

Then, MSE can be found as

MSE = 1− sT
1 UsΛΛΛ

−1
s UT

s s1. (4.21)

4.3.2 Subspace Tracking

In the previous sections, we have mentioned the subspace concept. For our blind

receivers, the eigen-components of the auto-correlation function C, have to be estimated.

Then, tracking the subspace we may build our blind rank-K detector. Two classical

approaches to subspace estimation are the batch eigenvalue decomposition (ED) of the

sample auto-correlation matrix, or the batch singular value decomposition (SVD) of the

data matrix. Disadvantage of those is that they are computationally too expensive for

adaptive applications. We need to use such algorithms that are naturally recursive and

updating subspace sample-by-sample, like modern subspace tracking algorithms are. As

in [6], for our blind adaptive rank-K detector, among several algorithms, we use the

adopt version of projection approximation subspace tracking (PASTd) algorithm recently

proposed in [22] with the extended version in [5]. Its good convergence to the signal

eigenvalues and eigenvectors, low computational complexity of O(NK), and the rank

tracking capability are the advantages of this algorithm. Now, let’s see how PASTd

works for tracking the signal subspace.

Let r ∈ RN be a random vector with auto-correlation matrix C = E{rrT}. Con-

sider the scalar function

J(W) = E{‖r−WWT r‖2} = tr(C− 2tr(WTC W) + tr(WTC W WTW)) (4.22)

with a matrix argument W ∈ RN×r (r < N). It is proved in [22] that

• W is a stationary point of J(W) if and only if W = UrQ, where Ur ∈ RN×r

contains any r distinct eigenvectors of C and Q ∈ Rr×r is any unitary matrix.

• All stationary points of J(W) are saddle points except when Ur contains the r

dominant eigenvectors of C. In that case, J(W) attains the global minimum.
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So, for r = 1, the solution of minimizing J(W) is given by the most dominant

eigenvector of C. Since in practice, only the sample vectors r(i) are available, we may

rewrite (4.22) with the exponentially weighted sums as

J [W(t)] =
t∑

i=1

βt−i‖r(i)−W(t)W(t)T r(i)‖2. (4.23)

The idea in PASTd is to approximate W(t)T r(i) in (4.23), the unknown projection

of r(i) onto the columns of W(t), by y(i) = W(i− 1)T r(i), which can be calculated for

1 ≤ i ≤ t at time t. This results in the following modified cost function

J̃ [W(t)] =
t∑

i=1

βt−i‖r(i)−W(t)y(i)‖2. (4.24)

The PASTd algorithm is based on the deflation technique which can be explained

as follows. Firstly, minimizing (4.24) for r = 1, the most dominant eigenvector is cal-

culated. Then the projection of the current data vector r(t) onto this most dominant

eigenvector is removed from r(t) itself. Thus, the second most dominant eigenvector be-

comes the most dominant, and is calculated similarly. These steps are repeated till all

the K most dominant eigenvectors are estimated.

The rank of the signal subspace, or equivalently the number of active users in the

channel is estimated adaptively using information theoretic criteria as suggested in [5]

such as Akaike information criterion (AIC) or minimum description length (MDL) both

of which use the estimated eigenvalues.

Since in many problems in signal processing, the vector of observations can be

modelled as a superposition of a finite number of signals with additive noise, estimating

the number of signals in the observation vector has become a key issue. One approach for

the solution to this problem is based on the observation that the number of signals can

be determined from the eigenvalues of the covariance matrix of the observation vector.

Methods developed by Bartlett [23] and Lawley [24] use a nested sequence of hypothesis

tests that are based on this approach.

However, in this thesis, we use two similar methods which use a new approach

to such problems and are based on the application of the information theoretic criteria

for model selection introduced by Akaike [25, 26] and by Schwartz [27] and Rissanen

[28]. These referred studies of Akaike introduce his pioneering work AIC whereas both

Schwartz’s and Rissanen’s approaches yield the same criterion, MDL. The number of the

signals is given with the value that minimizes the criteria AIC or MDL [29].
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AIC and MDL are defined as follows

AIC(k)
∆
= (N − k)L lnα(k) + k(2N − k) (4.25)

MDL(k)
∆
= (N − k)L lnα(k) +

k

2
(2N − k) lnL (4.26)

where L denotes the number of data samples used in the estimation. When an expo-

nentially weighted window with forgetting factor β is applied to the data, the equivalent

number of data samples is L = 1/(1− β) where forgetting factor is chosen as β = 0.995

for simulations in this study. And α(k) above is defined as

α(k) =

(∑N
i=k+1 λ̂i

)
/(N − k)(∏N

i=k+1 λ̂i

)1/(N−k)
(4.27)

The estimated rank of the signal subspace (that is the number of the signals in

the observation vector) is the value k that minimizes (4.25) or (4.26). The summary of

the PASTd algorithm is given in Table 4.1.

Table 4.1: PASTd Algorithm [5, 6]
Updating the eigenvalues and eigenvectors of signal subspace {λk, uk}K

k=1

x1(t) = r(t)
FOR k = 1 : Kt − 1

yk(t) = uH
k (t− 1)xk(t)

λk(t) = βλk(t− 1) + |yk(t)|2
uk(t) = uk(t− 1) + [xk(t)− uk(t− 1)yk(t)] yk(t)

∗/λk(t)
xk+1(t) = xk(t)− uk(t)yk(t)

END
σ2(t) = βσ2(t− 1) + ‖xKt−1+1(t)‖2/(N −Kt−1)

Updating the rank of signal subspace Kt

FOR k = 1 : Kt − 1

α(k) =
[∑N

i=k+1 λi(t)/(N − k)
]
/
(∏N

i=k+1 λi(t)
)1/(N−k)

AIC(k) = (N − k) ln[α(k)]/(1− β) + k(2N − k)
END

Kt = arg min0≤k≤N−1 AIC(k) + 1
IF Kt < Kt−1 THEN

remove {λk(t),uk(t)}Kt−1

k=Kt+1

ELSE IF Kt > Kt−1 THEN
uKt(t) = xKt−1+1(t)/‖xKt−1+1(t)‖
λKt(t) = σ2(t)

END

The PASTd algorithm consists of two main parts. One is the computation of

the eigen-components and the second is tracking the rank of the signal subspace. In
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simulations, initial values are obtained by performing SVD for the first 50 data vectors.

4.3.3 Simulation Experiments with Rank-K MMSE Detector

4.3.3.1 The Case of AWGN Channel

Scenario-1 : A synchronous CDMA system with K = 6 users using Walsh spread-

ing codes with processing gain N = 32 is considered. User-1 is the desired user of SNR

= 20 dB. There are four 10 dB multiple access interferers (MAIs) and one 20 dB MAI,

i.e., A2
k/A

2
1 = 10 for k = 2, 3, 4, 5, and A2

k/A
2
1 = 100 for k = 6. The performance mea-

sure is the time averaged output signal-to-interference ratio (SIR) which is defined as

SIR = E2{mT r}/V ar{mT r}, where the expectation is with respect to the data bits of

MAIs and the noise. In the simulations, the expectation operation is replaced by the

time averaging operation as in [6]. The data plotted in figures are averaged over 1000

independent runs.

Figure 4.1: Time averaged SIR of the desired user with AIC and MDL in AWGN channel versus
the iteration number. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB,
i = 2, 3, 4, 5 SNR6=40 dB. 1000 independent runs.)

Figure 4.1 shows the SIR performance of rank-K detector with AIC and MDL
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as the information criterions used. For this scenario, the detector using MDL shows

much better performance than the detector with AIC. Detector with MDL converges

approximately to 18 dB SIR after 1500 iterations whereas detector with AIC converges

to a SIR level of about 14 dB after 1000 iterations. Detector using MDL gives a better

performance result than detector using AIC in the overall view for rank-K detector.

Furthermore, Figure 4.2 shows the subspace tracking capabilities of the same de-

tector for the same scenario. The PASTd algorithm converges to the real signal subspace

of rank-6, but a little slow as it is seen through the graphs. The rank tracking capability

of MDL is seen to be better than that of the AIC about one subspace dimension.

Figure 4.2: Estimated rank with AIC and MDL in AWGN channel versus the iteration number.
(Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB, i = 2, 3, 4, 5 SNR6=40
dB. 1000 independent runs.)

Scenario-2 : In Figure 4.3 the simulation results of another scenario with the

same synchronous CDMA system are plotted. This time simulation begins with six

10 dB MAIs (that is SNRi = 30dB, i = 2, . . . , 7). At t = 2000 two 20 dB MAIs

(SNRi = 40dB, i = 8, 9) enter the system and at t = 4000 the two 20 dB MAIs and four

of the 10 dB MAIs exit. Desired user is again user-1 with SNR = 20 dB.

Since AIC and MDL gives similar results for this scenario with rank-K detector,
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Figure 4.3 shows the performance with AIC as in [6]. Again, the response of the rank-K

detector upon entering/exiting users is given by both SIR performance and rank-tracking

ability.

Figure 4.3: Time averaged SIR of the desired user and estimated rank versus the iteration
number in the case of entering/exiting users. (Walsh spreading codes with N=32, beginning:
six 10 dB MAIs, at t = 2000 two 20 dB MAIs enter, at t = 4000 two 20 dB MAIs and four of
the 10 dB MAIs exit. SNR1=20 dB. 1000 independent runs.)

From the beginning of the simulation till t = 2000, the detector acts as in

Figure 4.1, because till then the system in Scenario-2 is similar to Scenario-1. SIR

value reaches the level of 16 dB. At t = 2000, with entering users the SIR value decreases

till about -20 dB. After about 2000 iterations it reaches approximately 16 dB level again.

At t = 4000, exiting users result in a slight performance gain. As in the lower graph

in Figure 4.3, the rank tracking ability follows the response in SIR graph. Just after

t = 2000 instant, the detector loses the tracked rank and begins searching and then

converges again. With exiting users rank tracking becomes easier and faster.

4.3.3.2 The Case of Multipath Fading Channel with AWGN

Figures 4.4 and 4.5 show the averaged SIR and the rank of the tracked subspace
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of the rank-K MMSE detector in a multipath channel.

Figure 4.4: Time averaged SIR of the desired user with AIC and MDL in a multipath channel
versus the iteration number. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30
dB, i = 2, 3, 4, 5; SNR6=40 dB. 1000 independent runs. Pedestrian A delay profile for IMT-2000
channels [30]. 1000 independent runs.)

The multipath channel is modelled with three taps, L = 3. Delay times are chosen

as multiples of one chip interval, and power parameters are taken from [30] for Pedestrian

A which are derived from physical tests on International Mobile Telecommunication 2000

(IMT-2000) channels. Properties of the system are as in Scenario-1 again. The figures

show the performances with both AIC and MDL information criteria.

After acting similarly at the beginning, from t = 200 on rank-K detector using

MDL performs 3 or 4 dB better than the detector using AIC. About t = 1200, both SIR

values get closer to each other with a difference about 1 dB. Then detector with AIC

converges to 15 dB level whereas detector with MDL converges to about 16 dB level. As

in Figure 4.2 MDL is closer to the real subspace rank than AIC, but this time with about

0.5 difference.
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Figure 4.5: Estimated rank with AIC and MDL in a multipath channel versus the iteration
number. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB, i = 2, 3, 4, 5;
SNR6=40 dB. 1000 independent runs. Pedestrian A delay profile for IMT-2000 channels [30].
1000 independent runs.)

4.4 Reduced-Rank MMSE Detector

The idea in reduced-rank approach is to build a detector lying in a subspace of the

signal space [8]. For reduced-rank MMSE detector we represent our detector by rewriting

(4.20) in the following form

mr = UrΛΛΛ
−1
r UT

r s1 (4.28)

where we suppose that the matrix Ur contains r columns of Us where (r ≤ K) and ΛΛΛr

consists of corresponding eigenvalues. And thus, the MSE in this case may be written as

MSEr = 1− sT
1 UrΛΛΛ

−1
r UT

r s1 (4.29)

Proof [8] : Let ωωω = [ω1, ω2, . . . , ωr]
T and mr = Ur ωωω. Then the MSE is calculated

by
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MSEr = E{(b1 −mT
r r)2},

= mT
r C mr − 2mT

r s1 + 1, (4.30)

= ωωωTUT
r C Ur ωωω − 2 ωωωTUT

r s1.

Letting the derivative of MSEr with respect to ωωω be equal to 0 vector, we obtain ωωω as

∂(MSEr)

∂ ωωω
= 2UT

r C Ur ωωω − 2UT
r s1. (4.31)

ωωω = (UT
r C Ur)

−1Urs1 = ΛΛΛ−1
r Urs1 (4.32)

Here, the fact that the eigenvectors are orthonormal, is used. The rank-r MMSE detector

in (4.28) follows from (4.32). Substituting ωωω in (4.32) into (4.30), we obtain the MSE in

(4.29).

In order to choose the reduced-rank signal subspace, or equivalently Ur, we define

a quantity Qi as

Qi =
‖sT

1 ui‖2

λi

(4.33)

where Qi can be viewed as the normalized energy of user-1 projected onto the ith eigen-

vector. And MSE in (4.21) can be rewritten as

MSE = 1− A2
1

K∑
i=1

Qi. (4.34)

It is seen from (4.34) that the optimal rank-r MMSE detector lies in the subspace

spanned by the r eigenvectors corresponding to the r largest Qi.

Of course, in practice, a mobile user will only know his own spreading code, but

will not know the other users’ codes. So, the auto-correlation matrix will be estimated

from a limited number of data samples again, and the reduced-rank MMSE detector will

be built on this estimated auto-correlation matrix, blindly.

4.4.1 Adaptive Reduced-Rank MMSE Detector With Subspace

Tracking

Due to the similar reasons mentioned in the design of rank-K detector, for reduced-
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rank MMSE detector, we again need to use an algorithm working in sample-by-sample

fashion, instead of classical batch algorithms ED or SVD. We use for rank-r detector an

algorithm named low-rank adaptive filter (LORAF1) introduced in [7]. Because PASTd

algorithm has a slower convergence speed compared to the one of LORAF1 even though

PASTd has a lower computational complexity of order NK (O(NK)) where N is the

processing gain and K is the number of active users in the channel. Since, in CDMA

systems, several users enter/exit the system, we need a faster converging algorithm to

track the signal subspace faster.

Table 4.2: LORAF1 Algorithm [7, 8]
Initialization Uo = IN ;ΘΘΘ0 = IN ;A = 0N ;K0 = N − 1; β = 0.995;σ2 = 0;NMSE = 10

Update Kt−1 + 1 eigenvectors in Ut and N eigenvalues {λt
i}N

i=1

zt = UT
t−1rt

At = βAt−1ΘΘΘt−1 + rtz
T
t

At = UtRt : QR factorization
ΘΘΘt = UT

t−1Ut

x = rt −UtU
T
t rt

σ2
t = βσ2

t−1 + xTx/(N −Kt−1 − 1)

{λt
k = Rt(k, k)}Kt−1+1

k=1

{λt
k = σ2

t }N
k=Kt−1+2

Update the rank of signal space Kt

FOR k = 1 : N − 1

α(k) =
[∑N

i=k+1 λ
t
i/(N − k)

]
/
(∏N

i=k+1 λ
t
i

)1/(N−k)

AIC(k) = (N − k) ln[α(k)]/(1− β) + k(2N − k)
END

Kt = arg min0≤k≤N−1AIC(k) + 1
IF Kt < Kt−1 THEN

Kt = Kt−1 − 1
Ut = Ut(:, 1 : Kt−1)
At = At(:, 1 : Kt−1)
ΘΘΘt = ΘΘΘt(1 : Kt−1, 1 : Kt−1)

ELSE IF Kt > Kt−1 THEN
Ut = [Ut, x/σ2]
At = [At, x]
θt =

[
θt 0
0 1

]
END

Furthermore, the optimal reduced-rank MMSE detector has been built using or-

thogonal eigenvectors which makes PASTd unsuitable for that detector since the basis

vectors for the signal subspace tracked by PASTd are not orthogonal. Therefore, we

use LORAF1 for reduced-rank MMSE detector, since it tracks orthogonal eigenvectors,

faster. LORAF1 has computational complexity of O(NK2). Since the subspace track-

ing algorithm in LORAF1 cannot track the dimension of the signal subspace, the rank
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tracking method mentioned in [5], which we have also used in rank-K detector is added

to this algorithm. The final algorithm is given in Table 4.2.

LORAF1 can be divided into three main parts. In the first part, as in PASTd,

eigen-components are computed. For this QR factorization is used. The second part

tracks the signal subspace in a similar manner with PASTd. Here one of the information

criterions, AIC or MDL is used. Finally, the rank of the signal subspace is reduced in

a way that the desired user is included in. The quantity Qi helps here to compute the

reduced-rank. Initial values are chosen as given in Tables 4.2 and 4.3.

Table 4.3: LORAF1 Algorithm (rank reducing)[7, 8]
Choose the optimal reduced-rank MMSE detector c0

calculate {Q̂Kt
i=1} and generate a matrix V whose first column v1

corresponds to the largest {Q̂Kt
i=1} and second column v2

corresponds to the second largest {Q̂Kt
i=1} , and so on.

Let ηi be the eigenvalue corresponding to vi

ĉ0 = 0
FOR r = 1 : Kt

ĉr = ĉr−1 + vrv
T
r p/ηr

MSE(r) = 0
FOR i = 1 : NMSE

MSE(r) = MSE(r) + (b̂t−i − ĉT
r rt−i)

2

END
END

c0 = arg min{ĉr}Kt
r=1

MSE(r)

b̂t = sign(cT
0 rt)

4.4.2 Simulation Experiments with Rank-r MMSE Detector

4.4.2.1 The Case of AWGN Channel

For the first three figures, Figure 4.6, Figure 4.7 and Figure 4.8 the parameters of

the system are chosen according to Scenario-1 given in section 4.3.3.1.

Figure 4.6 and Figure 4.7 depict the simulation performance of the reduced-rank

MMSE detector with the same curves as they are used in plotting the simulation results

of rank-K MMSE detector in section 4.3.3, namely SIR and tracked rank of the sub-

space, respectively. Figure 4.8 added in this section shows the reduced-rank of the signal

subspace as a function of iteration number.

As seen through the graphs, rank-r detector first tracks the signal subspace, then

searches for a smaller subspace of the signal space where the desired user remains in. We

see that rank tracking capabilities of AIC and MDL differ for this detector, too. MDL
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overperforms AIC in tracking the signal space, this affects tracking the reduced-rank

space, and so does the overall performance as seen with SIR graphs. So, we note here

that MDL works better with rank-r detector than AIC, which is not mentioned in [8].

Figure 4.6: Time averaged SIR of the desired user with AIC and MDL in AWGN channel versus
the iteration number. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB,
i = 2, 3, 4, 5; SNR6=40 dB. 1000 independent runs.)

Figure 4.6 depicts that although, rank-r detector using AIC reaches a higher SIR

level during the first 300 iterations, rank-r detector using MDL converges to a level of 18

dB after 800 iterations. After 2000 iterations rank-r detector using AIC only reaches a

level of 17 dB and it has still not converged.

Figures 4.9, 4.10 and 4.11 correspond to Scenario − 2 given in Section 4.3.3.

Figures are plotted for both AIC and MDL comparing the average SIR performances,

signal subspace rank and reduced-rank tracking behaviors, respectively.

Except the first adaptation period till t = 2000 both type of rank-r detectors using

AIC and using MDL are seen to be very similar while adapting the entering or exiting

users.

In Figures 4.10 and 4.11 tracked rank of signal subspace and the reduced-rank of

signal subspace are given respectively. In Figure 4.10 we see that AIC and MDL behaves
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Figure 4.7: Estimated rank with AIC and MDL in AWGN channel versus the iteration number.
(Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB, i = 2, 3, 4, 5; SNR6=40
dB. 1000 independent runs.)

Figure 4.8: Estimated reduced-rank with AIC and MDL versus the iteration number. (Walsh
spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB, i = 2, 3, 4, 5; SNR6=40 dB.
1000 independent runs.)
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very similar on tracking the subspace beginning with the 2000th iteration where two 40

dB users enter the system.

Note here that even the convergence takes at least 1000 iterations at the beginning,

once the detectors track the signal subspace rank, they adapt themselves to changing

channel conditions very fast. This may be observed in three of the figures for this scenario

(4.9, 4.10 and 4.11) looking around 2000th and 4000th iterations.

Figure 4.9: Time averaged SIR of the desired user and estimated rank versus the iteration
number in the case of entering/exiting users. (Walsh spreading codes with N=32, beginning:
six 10 dB MAIs, at t = 2000 two 20 dB MAIs enter, at t = 4000 two 20 dB MAIs and four of
the 10 dB MAIs exit. SNR1=20 dB. 1000 independent runs.)

4.4.2.2 The Case of Multipath Fading Channel with AWGN

The Figures 4.12, 4.13 and 4.14 show the performance of the reduced-rank MMSE

detector in a multipath channel with information criterion as a parameter. The multipath

channel is modelled again with three taps, L = 3. Delay times are chosen as a multiples

of a chip period, and power parameters are taken from [30] for Pedestrian A which are

derived from physical tests on IMT-2000 channels. Properties of the system are as in

Scenario-1 again.
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Figure 4.10: Estimated rank with AIC and MDL in AWGN channel versus the iteration number.
(Walsh spreading codes with N=32, beginning: six 10 dB MAIs, at t = 2000 two 20 dB MAIs
enter, at t = 4000 two 20 dB MAIs and four of the 10 dB MAIs exit. SNR1=20 dB. 1000
independent runs.)

Figure 4.11: Estimated reduced-rank with AIC and MDL in AWGN channel versus the iteration
number. (Walsh spreading codes with N=32, beginning: six 10 dB MAIs, at t = 2000 two 20
dB MAIs enter, at t = 4000 two 20 dB MAIs and four of the 10 dB MAIs exit. SNR1=20 dB.
1000 independent runs.)

53



In Figure 4.12 it is seen that both SIR graphs, one for MDL and other for AIC

differ beginning at about t = 200 and gather again at t = 2000. Between these two

iteration levels the difference reaches nearly 8 dB at t = 800. Then they get closer till

they intersect about 18 dB level at t = 2000. Rank-r detector with MDL converges this

level at t = 800 whereas the other one using AIC at t = 2000.

The better performance of MDL to AIC is also seen in subspace tracking capabil-

ities in Figure 4.13. Tracking the signal subspace rank better, MDL helps the detector

to reduce this rank easier as it is seen in Figure 4.14.

Figure 4.12: Time averaged SIR of the desired user with AIC and MDL in a multipath channel
versus the iteration number. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30
dB, i = 2, 3, 4, 5; SNR6=40 dB. 1000 independent runs. Pedestrian A delay profile for IMT-2000
channels [30]. 1000 independent runs.)
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Figure 4.13: Estimated rank with AIC and MDL in a multipath channel versus the iteration
number. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB, i = 2, 3, 4, 5;
SNR6=40 dB. 1000 independent runs. Pedestrian A delay profile for IMT-2000 channels [30].
1000 independent runs.)

Figure 4.14: Estimated reduced-rank with AIC and MDL in a multipath channel versus the
iteration number. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30 dB,
i = 2, 3, 4, 5; SNR6=40 dB. 1000 independent runs. Pedestrian A delay profile for IMT-2000
channels [30]. 1000 independent runs.)
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4.5 Performance Comparison of Rank-K and Rank-r MMSE

Detectors

In this thesis, mostly, signal-to-interference ratio (SIR) is used as the performance cri-

terion. In most cases the probability of error is very closely approximated by Q(
√

SIR)

[16]. For this reason SIR is a meaningful criterion to compare the error probability per-

formances of different algorithms. Therefore, following SIR comparisons of these two

detectors also give an idea about their BER characteristics. An example for SIR and

BER relation is given in Section 4.5.3 where BER characteristics of these two detectors

are similar to their SIR characteristics for the AWGN channel given in this section in

Figure 4.15. For further BER comparisons in different scenarios, SIR relations given in

this section will also be a measure.

In this section comparison of two detectors, rank-K and reduced-rank (rank-r)

detector, are given. For this, the simulation results above are brought together. Since

through the previous simulations, MDL is seen to show better performance for both

detectors, MDL is used for both rank-r and rank-K detectors.

4.5.1 The Case of AWGN Channel

Figure 4.15 corresponds to Scenario-1 given in Section 4.3.3. The SIR of rank-

r detector attains a value of approximately 18 dB after 800 iterations and till 1200th

iteration it remains higher than the other. On the other hand, with lower SIR values

until 1200th iteration rank-K detector converges to 19 dB level after then. Both SIR

levels are very near to the ultimate limit of 20 dB given by the SNR of user-1.

In Figure 4.16 the SIR performances of the detectors in Scenario − 2 given in

section 4.3.3 are compared. Again, both detectors use MDL here.

The overall SIR performance of rank-r detector is superior to the one of rank-K

detector. Furthermore, rank-r is more robust since its response to entering/exiting users

is faster as mentioned in previous sections. Additionally, just after t = 2000, the estimates

of the data bits would be mistaken with a higher percentage for rank-K detector. Its

performance to entering users is not as good as its performance to exiting user and also

not as good as the rank-r detector.

Figure 4.15 and Figure 4.16 prove the idea of rank-K and rank-r detectors, that

is, since rank-K detector tracks the full rank signal subspace, its steady state SIR per-

formance is better than rank-r detector as indicated in Figure 4.15. However, since the
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Figure 4.15: Time averaged SIR comparison of the desired user with rank-K and rank-r
MMSE detectors in AWGN channel. (Walsh spreading codes with N=32, K=6, SNR1=20
dB; SNRi=30 dB, i = 2, 3, 4, 5; SNR6=40 dB. 1000 independent runs.)

Figure 4.16: Time averaged SIR of the desired user comparison with rank-K and rank-r detec-
tors in the case of entering/exiting users. (Walsh spreading codes with N=32, beginning: six
10 dB MAIs, at t = 2000 two 20 dB MAIs enter, at t = 4000 two 20 dB MAIs and four of the
10 dB MAIs exit. SNR1=20 dB. 1000 independent runs.)
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parameters to be estimated are less in number for rank-r detector, its convergence is

faster than rank-K. Figure 4.16 depicts how convergence speed is important in a real-

istic channel. Therefore, in real life applications rank-r becomes a better alternative to

rank-K detector with its higher convergence speed and acceptable SIR performance.

4.5.2 The Case of Multipath Fading Channel with AWGN

In Figure 4.17 the SIR performance of two detectors, namely rank-K and rank-r

are compared in a fading multipath channel whose parameters are given before in section

4.3.3.

At the beginning of the iterations rank-K detector starts adapting with about a

-15 dB average SIR value whereas the rank-r detector with an average SIR value of 15

dB. While rank-K detector converges 15 dB level at t = 1500, with a faster response

rank-r detector reaches approximately 18 dB at t = 1000.

Figure 4.17: Time averaged SIR comparison of the desired user with rank-K and rank-r detec-
tors in a multipath channel. (Walsh spreading codes with N=32, K=6, SNR1=20 dB; SNRi=30
dB, i = 2, 3, 4, 5; SNR6=40 dB. 1000 independent runs. Pedestrian A delay profile for IMT-2000
channels [30]. 1000 independent runs.)
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4.5.3 Comparison of BERs

In this section, BER performance comparison of five detectors, namely rank-K and rank-

r, blind adaptive MMSE detectors with conventional and adaptive MMSE detectors and

the batch algorithm JADE are plotted in Figure 4.18. For this comparison Scenario-1

defined in Section 4.3.3 is used. Since for performing JADE, information of the number

of users in the channel, K, and the whole data (transmitted bits) is required at the

beginning, JADE performs very similar to the conventional MMSE mentioned in section

3.4. Beside this, adaptive MMSE that requires no information about signature codes but

requires training sequences and timing of users gives worse but close performance results

to JADE and conventional MMSE. They made no erroneous decision in 1000000 bit long

simulations, more or less, after 5 dB SNR level. The BER performance of rank-r detector

was better than all until about 0 dB SNR. As the SNR value increased rank-K detector

performed slightly better than rank-r detector similar to the SIR behavior in Figure 4.15.

Figure 4.18: BER versus SNR comparison of JADE, MMSE, adaptive MMSE, rank-K and
rank-r detectors in AWGN channel. (Walsh spreading codes with N=32, K=6, SNRi=30 dB,
i = 2, 3, 4, 5; SNR6=40 dB.)

While commenting on this comparison the prior information requirements of those

detectors should be taken into account. For example, while comparing blind detectors
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JADE with rank-K and rank-r it should not be forgotten that rank-K and rank-r de-

tectors work in a sample-by-sample fashion and both detectors track the signal subspace

iteratively. However, JADE is given the whole data and the rank at the beginning.

According to this BER comparison rank-K and rank-r detectors are two powerful

alternatives to others. Especially in conditions where the power of the desired user’s signal

is less than the power of the additive noise and at the same time when all interferers’

SNRs are much higher, rank-r detector will be the best choice. Additionally, both rank-

K and rank-r detectors provide such performances while remaining blind, just requiring

the signature code of the desired user which is an important advantage.

Because of the fact that the BER curve can be closely approximated by the for-

mula Q(
√

(SIR)) [16], the simulated BER values for rank-K and rank-r detectors are

computed with this formula using the asymptotic SIR value in the simulations, analyti-

cally.
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CHAPTER 5

CONCLUSION

Multiuser detection techniques of CDMA communication are superior to single user de-

tection in that they discriminate the signals of other users from the additive noise and

try to eliminate their contribution in the demodulated signal in order to increase the

noise margin of the detector. Additionally, subspace-based MUD methods emphasized in

this thesis may be preferable to other batch methods because they work in a sample by

sample fashion adaptively without requiring the whole data for performing the detection.

After introducing the rank-K detector which is defined by [6] and rank-r detector

which is defined by [8], we have compared their performances. These comparisons were

based on several scenarios defined for testing several abilities of the two detectors. Firstly,

the performances were tested for an AWGN channel. One scenario was about a stable

system in which the number of active users in the system is fixed during the simulation

(Scenario-1 ). Secondly, we applied both detectors to a scenario where they had to

track the changing rank of the signal subspace (Scenario-2 ). For the first scenario,

SIR performance of rank-K detector reached a level about 1 dB higher than the other,

but with a poor convergence speed. On the other hand, rank-r detector reached a very

reasonable SIR level with a much higher convergence speed. For the second scenario,

we made this comparison for a more realistic channel where rank-r detector remained

as a preferable alternative to rank-K detector with its higher convergence speed and

acceptable SIR performance related to its parameters to be estimated which are less in

number than that of the rank-K detector.

Another performance comparison was done for a multipath channel which is a

more realistic wireless channel. The parameters of the multipath channel which are

taken from [30] where they are derived from measurement results for IMT-2000 systems.

This comparison also showed the superiority of the rank-r detector with respect to the

rank-K detector where similar behaviors as in the case of AWGN channel are observed.

All simulations for both detectors in [6] and in [8] were done by using Akaike

information criterion (AIC) for tracking the rank of the signal subspace. In this thesis, we

have also searched the performance with minimum description length (MDL) information

criterion instead of AIC for both detectors. As a result, we have seen that MDL performed

better than AIC for both detectors. This is a new remark not mentioned in [6] and [8],
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and may be useful for further researches on the subject.

Finally, we compare the rank-K and the rank-r detectors with conventional and

adaptive MMSE and batch type JADE detectors based on the BER performances. Upon

this comparison, we may remind some notes here; JADE and conventional MMSE de-

tectors perform very close to each other whereas the BER of adaptive MMSE detector

is worse but very close to these previous two detectors. Rank-r detector performs best

when the SNR level of the desired user is negative. As the SNR of the desired user is

increased, BER of the rank-r detector becomes worse than the previous three but re-

mains close to them. Rank-K detector gives the worst BER results when compared to

others. As mentioned in the previous section, its BER performance increases only when

the SNR of the desired user is greater than the MAIs’ SNRs otherwise it remains still. As

a result, when working fashions either batch or sample-by-sample and prior information

requirements are taken into account rank-r (reduced-rank) detector seems to be a serious

alternative to all other blind and non-blind detectors.

As advices for future works on the subject, we should mention a disadvantage of

the reduced-rank blind adaptive MMSE detector. The most important one is the com-

putational speed of the algorithm that is used for this detector. The rank adaptation

algorithm of reduced-rank method is more computationally intensive compared to the

one of the rank-K method. Since LORAF1 has a computational complexity of O(NK2),

although its convergence speed is better, it is not as fast as PASTd of O(NK) , compu-

tationally. Some other algorithms may be searched for and tested with this detector in

order to track orthogonal eigenvectors with faster computation speed. Since, the infor-

mation criterion used with the algorithm clearly affects the capability and performance

of the detectors other information criteria, or the way of using more than one criterion

together may be searched.
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APPENDIX A

TDMA(IS-136)

Table A.1: The IS-136 System Features
Multiple Access Scheme TDMA
Spectrum Allocation 824 - 849 Mhz Uplink

869 - 894 Mhz Downlink
Channel Bandwidth 30 kHz
Modulation Data Rate 48.6 kb/s
on an RF Channel
Modulation π/4 - Shifted DQPSK
Number of Users 3 for full-rate speech and 6 for half-rate.
per Channel There are 6 time slots / frame.
Digital Coding of Speech Vector Sum Excited Linear Predictive coder

(VSELP) at 7.95 kb/s with 159 bits per
20 ms frame.

Channel Coding Combination of 7 - bit CRC and
Convolutional Coding of rate 1/2.

User Data Transfer Limited capability, such as short messages
Capability on a dedicated control channel (DCCH)
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APPENDIX B

GSM

Table B.1: GSM System Features
Multiple Access Scheme TDMA
Spectrum Allocation 890 - 915 Mhz Uplink

935 - 960 Mhz Downlink
Channel Bandwidth 200 kHz
Modulation Data Rate 270.8333 kb/s
on an RF Channel
Modulation 0.3 GMSK
Number of Users per Channel 8 for full-rate speech
Digital Coding of Speech Regular pulse Excitation with Long-Term Predictor

(RPE - LTP) at 13 kb/s for full-rate coding
Channel Coding Combination of Block Coding and

Convolutional Coding
User Data Transfer Capability Circuit-switched data up to 12 kb/s and SMS
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APPENDIX C

cdmaOne(Based on IS-95-A and IS-95-B)

Table C.1: cdmaOne System Features
Multiple Access Scheme CDMA, FDD
Spectrum Allocation Cellular CDMA:

824 - 849 MHz uplink
869 - 894 MHz downlink

PCS CDMA:
1850 - 1910 MHz uplink
1930 - 1990 MHz downlink

Channel Bandwidth 1.23 MHz
Chip Rate 1.2288 Mb/s
Modulation(for Digital Data) QPSK and OQPSK
Speech Coding Code Excited Linear Predictive Coder

(CELP) - 1.2, 2.4, 4.8, 9.6 kb/s for Cellular IS-95
and CELP - 14.4 kb/s for PCS IS-95

Number of Users per Channel ∼16
User Data Transfer Capability Packet data at 9.6 and 14.4 kb/s.

In IS-95B, higher data rates may also be supported
in steps of 8 kb/s.
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APPENDIX D

3G System Features (UMTS and cdma2000)

Table D.1: UMTS and cdma2000 system Features
W-CDMA(UTRA) cdma2000

Multiple Access Scheme FDD, TDD FDD
Spectrum Allocation FDD mode 1850 - 1910 MHz uplink

1920 - 1980 MHz uplink 1930 - 1990 MHz downlink
2110 - 2170 MHz downlink
TDD mode
1900 - 1920 MHz
2010 - 2025 MHz

Channel Bandwidth 5 MHz 1.25 X N MHz.
In initially, N may be 1, 2,or 3,
but later could be 6, 9,or 12.

Chip Rate 3.84 Mc/s 1.2288 X N Mc/s
Frame Structure 10 ms 20 ms
Modulation QPSK QPSK
(for Digital Data)
Speech Coding Adaptive Multirate (AMR) AMR

Coding
User Data Transfer circuit mode: 144, 384, 2048 kb/s
Capability up to 144, 384 kb/s and

2.048 Mb/s
packet mode:
at least 144, 384 kb/s,
and 2048 kb/s

3G Network Interface GSM MAP ANSI-41
(evolved version) (evolved version)
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