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ABSTRACT 

 

Fractal geometry is first defined by Benoit Mandelbrot. A fractal structure is 

generated with an iterative procedure of a simple initiator by replicating many times at 

different scales, positions and directions. Fractal structures generated with this method 

are generally self-similar and the dimensions of these structures cannot be defined with 

integers. Koch, Minkowski and Sierpinski structures are the most known fractal 

structures. These structures are commonly used as multiband and wideband antenna 

designs because of the self-similarity. Furthermore, their special geometry is useful to 

obtain small antennas which are resonant at lower frequencies. Lowering the resonant 

frequency has the same effect as miniaturizing the antenna at a fixed resonant 

frequency. 

Other important and interesting fractal structures used in antenna designs are the 

various types of the fractal trees. However, in recent studies the branch length ratios of 

the fractal tree antennas are taken constant. In this study fractal tree antennas with 

nonuniform branch length ratios are investigated. By changing the geometry and 

number of branches of the fractal tree structures the antenna characteristics are 

examined. The branch lengths and number of branches of the fractal tree antennas are 

determined by using the Fibonacci sequence. Leonardo Fibonacci (~1170 - ~1240), a 

famous Italian mathematician, dealt with geometry and developed a number sequence 

while observing the nature. Fractal tree antennas are designed with two different 

geometries in order to improve the resonance behavior of the antennas. The number of 

branches is decreased, so that less complex fractal tree antennas with the similar 

performance can be obtained. 
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ÖZ 

 

Fraktal geometri ilk olarak Benoit Mandelbrot tarafından tanımlanmıştır. Fraktal 

bir yapı, basit bir geometriye sahip olan bir şeklin, defalarca farklı pozisyonlarda ve 

yönlerde kendini tekrarlamasıyla oluşur. Bu yöntemle oluşturulan fraktal yapılar genel 

olarak kendine benzer yapılardır ve bu yapıların boyutları tamsayılarla ifade edilemez. 

Koch, Minkowski ve Sierpinski, en çok bilinen fraktal yapılardır. Bu tip yapıların 

kendine benzer olması çok ve geniş bantlı anten tasarımlarında yaygın olarak 

kullanılmalarına olanak sağlamıştır. Ayrıca, özel geometrileri, düşük frekanslarda 

rezonansa girebilen küçük antenlerin elde edilmesinde faydalıdır. Rezonans frekansının 

düşmesi, sabit bir rezonans frekansında antenin küçülmesiyle aynı etkiye sahiptir.  

Değişik tiplerdeki fraktal ağaçlar anten tasarımlarında kullanılan diğer önemli ve 

ilginç fraktal yapılardır. Fakat son zamanlardaki çalışmalarda fraktal ağaç antenlerin dal 

uzunluk oranları sabit alınmıştır. Bu çalışmada ise, dal uzunluk oranları sabit olmayan 

fraktal ağaç antenler incelenmiştir. Fraktal ağaç yapılarının geometrisi ve dal sayıları 

değiştirilerek anten karakteristikleri incelenmiştir. Fraktal ağaç antenlerin dal 

uzunlukları Fibonacci sayı dizisi kullanılarak elde edilmiştir. Ünlü bir İtalyan 

matematikçi olan Leonardo Fibonacci (1170 - 1240 civarı), geometri ile ilgilenmiş ve 

doğayı gözlemlemesi sonucu sayı dizisi geliştirmiştir. Antenlerin rezonans frekansını 

iyileştirebilmek amacıyla iki farklı geometriye sahip fraktal yapıda ağaç antenler 

tasarlanmıştır. Bunun yanı sıra benzer performansa sahip daha basit yapıda fraktal ağaç 

antenler elde etmek için dal sayıları azaltılmıştır. 
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Chapter 1 

INTRODUCTION 
 

Fractal geometry is defined by Benoit Mandelbrot in order to classify the 

structures, whose dimensions were not an integer [1]. Fractal structures have different 

geometrical properties than Euclidean structures. They are generated with an iterative 

procedure. In this procedure an initial structure called generator is copied many times at 

different scales, positions and directions [2]. Resulting structures are fine structures, and 

very detailed on small scales. They are irregular and cannot be described with 

traditional geometrical approaches. Fractals can have self-similar or similar forms and 

their fractal dimension can be greater than their topological dimension [3]. 

Many complex shapes found in nature can be formed with fractal geometry, 

such as clouds, mountains, coastlines and trees. Some examples for these complex 

shapes are given in Figure 1.1. 

 

 
(a) 

 

 
(b) 

Figure 1.1 Examples of fractal geometry found in nature: (a) Tree (b) Fern. 
 

The tree shown in Figure 1.1a has a fine structure and it is irregular. The fern given 

in Figure 1.1b has a self-similar form. It means that it contains copies of itself at many 

scales. 

Fractal geometries have been recently used in antenna designs in order to obtain 

small and miniaturized antennas, which have lower resonance frequencies. Koch curves, 

Koch and Minkowski loops are used as fractal structures in [4] and [5] to decrease the 

resonance frequency. In the analysis, lowering the resonance frequency has the same 

effect as miniaturizing the antenna at a fixed resonant frequency. Therefore, examining 
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the shift in the resonance frequency gives a good information about the miniaturization 

effect of the antenna. They are self-similar structures, so their scaled versions have same 

characteristics with the whole object. These fractal antennas can be used as wideband or 

multiband antenna. Additionally, fractal element antennas, including fractal loops, 

fractal dipoles and multiband fractal antennas, enhance miniaturization and other 

properties, making them suitable for a variety of many applications [6]. 

The factors affecting the antenna resonance characteristic have been discussed in 

[4-7]. It was given that there is a relation between the properties of the fractal geometry 

and the electromagnetic behaviour of an antenna. With respect to this relation it can be 

said that some fractals can be used in multiband antenna designs because of their self-

similarity. The Sierpinski fractal antenna, which is investigated in [8] and [9], has 

similar performance at various frequencies. In these studies, the characteristic scale 

factor of the Sierpinski antenna is taken to be 1/2. However in the next studies the scale 

factor of the Sierpinski antenna is perturbed and it is observed that the radiating bands 

are shifted according to this perturbed scale factor [10-11].  

A thin wire structure based on a fractal tree is investigated in order to find the wire 

equivalent model of the Sierpinski monopole patch antenna [12]. The tree was called a 

ternary fractal tree. Even though this antenna doesn’t behave as efficiently as a 

multiband antenna, it can be used in the design of multiband electromagnetic filters or 

absorbers. The significance of the self similar fractal geometry in determining the 

multiband behavior of the Sierpinski antenna is discussed in [13]. It is analyzed that the 

multiband behavior of the Sierpinski gasket is primarily a function of the periodic 

placement of the four gaps located along the central vertical axis of the antenna. In the 

study [14] the height of the Sierpinski monopole is reduced by using Koch island loop 

as initiator. On the other hand, the multiband properties and the main cuts of the 

radiation patterns of this pre-fractal monopole doesn’t change by reducing the height of 

the antenna. 

Another fractal structure with a denser distribution is investigated in [15]. The 

antenna has many resonance frequencies because of its denser tree configuration.  

Other fractal structures can exhibit multiband behavior. The multiband behavior of 

a fractal structure with various dimensions have been investigated and evaluated in [16]. 

The multiband behaviors of the Koch fractal monopole antennas generated with 

meander lines have been investigated in [17]. The Koch fractals are generated with 

meander lines and the multiband behavior of this pre-fractal is compared with the 
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original Koch curve. Both kinds of antennas show multiband behavior. Additionally, it 

can be said that antennas can show similar multiband behavior independent of 

differences in the antenna geometry and total wire length.  

The significance of fractal structures in determining the resonant behavior is given 

in [18]. The performance of the Koch and Minkowski fractal antennas has been 

compared with non-Euclidean antennas. Both antennas have same performance. 

However the fractal structures of the non-Euclidean antennas in this study cannot be 

represented with Koch and Minkowski structures. These non-Euclidean structures aren’t 

generators for the fractal structures Koch and Minkowski. Many antennas can be given 

as examples which show the same performance as Koch and Minkowski fractal 

antennas, but the comparison of the antennas’ performance should be made with similar 

antenna structures to decide which antenna is better. 

In study [19] it is given the space-filling ability of the fractal curves is affecting the 

resonance frequency whether or not. The performance of the Hilbert fractal curves are 

compared with meander line dipole antennas. It is given that the space filling ability 

cannot be the unique factor that affects the resonance frequency of the antennas.  

The fractal dimension is another important parameter in the antenna designs [20]. 

The fractal dimension can be affected from the scale factor and the geometry of the 

antenna, however the form of the fractal structure is important [21]. If the fractal 

structure is self-similar then the similarity dimension is used, which is calculated with 

the number of copies and the scale factor of the antenna. Hausdorff dimension is a 

general formula to find the dimension of an antenna. The increase of fractal dimension 

of self-resonant fractal antenna does not improve its performance against Euclidean 

antennas in terms of radiation efficiency and quality factors [22-23].  

Some pre-fractal monopole antennas have been investigated in [24]. The antennas 

can be miniaturized with using fractal geometry in antenna configuration. As explained 

in [24] the quality factor of the pre-fractal should be in lower values and radiation 

efficiency should have higher values when compared with the standard monopole 

antennas.  

A simple straight wire has been analyzed long time ago in [25]. The performance 

of the straight dipole antenna is investigated in this study. Many two and three-

dimensional fractal tree antennas have been recently used in the antenna designs. These 

fractal trees have similar forms and usually uniform branch length ratios. Various fractal 

tree antennas are designed to reduce the height of the dipole and monopole antennas. 
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The branch lengths of the fractal tree antennas are increasing according to the number 

sequence 1, 2, 4, 8, 16, 32, … from the tip of the antenna to the base and the branch 

length ratio is 1/2 [4]. The use of fractal tree configurations in antenna designs leads 

lower resonance frequencies than monopole antennas.  

In many fractal tree antenna designs the branch length ratios have been taken 

uniform. In this study, 2D fractal tree antennas with nonuniform branch length ratios are 

investigated. The Fibonacci number sequence is used in determining branch lengths, 

which results nonuniform branch length ratios. The Fibonacci number sequence is 

developed by Leonardo Fibonacci [26]. In Chapter 2, the Fibonacci number sequence is 

explained in detail. Fractal tree antennas are simulated by using SuperNEC 2.7 [27]. 

SuperNEC uses Moment method for the calculations of the antenna parameters, such as 

input impedance, return loss, radiation pattern. In Chapter 3, the Moment method is 

investigated. Furthermore, fractal tree antennas with different branch length ratios are 

designed and analyzed in Chapter 4. Furthermore fractal tree configurations are changed 

by modifying the Fibonacci number sequence and the geometry of the branches. In 

Chapter 5, it is tried to improve the resonance behavior by changing the geometry of the 

tree branches. In order to reduce the complexity of the fractal tree antennas, the numbers 

of branches is changed according to the Fibonacci number sequence. In Chapter 6, the 

simulation solutions of the fractal tree antennas with different geometries are compared 

each other. The multiband behavior of the fifth iteration of the fractal tree antennas are 

examined in Chapter 7. Some applications for fractal antennas are given in Chapter 8. 

Finally, the conclusion is constituted according to the simulation results of the fractal 

tree antennas. 
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Chapter 2 

FIBONACCI NUMBER SEQUENCE 

 

Leonard Fibonacci (~1170 - ~1240), also called Leonard Pisano or Leonard of 

Pisa, was one of the most outstanding mathematicians of the European Middle Ages 

[26]. He wrote books about numeration system, arithmetic algorithms, geometry and 

trigonometri. “Liber Abaci” and “Practica Geometriae” (Practice Geometry) are some 

of his most famous books. Fibonacci employed algebra to solve geometric problems and 

geometry to solve algebraic problems. He dealt with many elementary problems. The 

rabbit population in a year is one of these problems, and it is explained numerically in 

his book “Liber Abaci”. He developed a number sequence while observing the rabbit 

population in one year. The original pair of rabbits was born in January 1. One month 

later they become mature, so there is one pair on February 1. On March 1 they are two 

months old and produce a new mixed pair, a total of two pairs. It continues like this and 

there are three pairs on April, five pairs on May, and so on. Hence, the pairs in rabbit 

population are increasing with the numbers 1, 1, 2, 3, 5, 8, 13, … in each month. This 

number sequence based on a recurrence algorithm, such as  

                                        12,
1221
==>+=

−−
FFandnFFF

nnn
                       (2.1) 

is called Fibonacci sequence. The amazing Fibonacci numbers appear in quite 

unexpected places in nature, such as in some spiral arrangements of the leaves on the 

twigs of plants and trees, on the mature sunflowers, on the petals of many flowers, on 

the pine cones, pineapples and artichokes. Additionally, many examples from plants can 

be given, in which Fibonacci sequence occurs. Sneezewort and Coltsfoot are special 

plants which include Fibonacci numbers in their body. In Figure 2.1, the sunflower is 

given as an example from nature. 

Fibonacci number sequence occurs on the spiral numbers of the sunflower in the 

clockwise and counterclockwise direction.  

Fibonacci numbers can be mathematically represented in many different ways. 

This special sequence is used in numerical applications. Several numerical identities of 

the Fibonacci numbers will be given in the next subsection. 
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Figure 2.1 Fibonacci sequence in nature: sunflower. 

 

2.1 Fibonacci Identity 

 

The Fibonacci number sequence has different mathematical representations, 

which have been discovered over the centuries. For example a formula can be 

developed to find the sum of the Fibonacci numbers. The sum of the Fibonacci numbers 

can be found with a simple formula instead of summing the numbers step by step. In 

order to calculate the sum , the following interesting pattern can be constructed 

as 

∑
=

n

i
i

F
1

                                                                  (2.2) 

.111312

1187

1154

1132

1121

754321

64321

5321

421

31

−=−==++++

−=−==+++

−=−==++

−=−==+

−=−==

FFFFFF

FFFFF

FFFF

FFF

FF

According to the above pattern  can be obtained. 1
21
−=

+
=
∑ n

n

i
i

FF

Another way of obtaining the sum is to write the Fibonacci numbers as 
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                                                                                                          (2.3) 
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342

231

++

+−

−=

−=

−=

−=

−=

nnn

nnn

FFF

FFF

FFF

FFF

FFF

M

After adding these equations, we again get Eq.(2.3) as . 1
2221
−=−=

++
=
∑ nn

n

i
i

FFFF

One of the most important relation between the numbers of Fibonacci sequence 

will be presented in the next subsection. The relation between the numbers of Fibonacci 

sequence will be observed in the next subsection. It is an interesting question whether 

the ratio of consecutive numbers of this special sequence converges to a number or not. 

 

2.2 Golden Ratio 

If the sequence of ratios 
n

n

F

F
1+  of consecutive Fibonacci numbers is represented 

with an one can have  

 

               
1

1

111 11111
−

−

−−+ +=+=+=
+

==
n

n

nn

n

n

nn

n

n
n a

F

FF

F

F

FF

F

F
a  .                          (2.4) 

 

If the limit can be obtained as the solution of the Equation (2.4) then the equation will 

be equal to 

 

                                                            
x

x
11+=                                                           (2.5) 

where  

 

                                                          .lim n
n

ax
∞→

=                                                          (2.6) 
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By solving Equation (2.5), the roots are found as  

                                                           .
2

51
2,1

±
=x                                                    (2.7) 

 

Since Fn≥1 and Fn+1/Fn>0, the limit of the sequence an can’t be a negative number. 

Therefore the positive root is the limit value. Then the limit is equal to the  

 

                                        ...618033.1
2

51lim 1 =
+

=+

∞→
n

n

n F

F
                                           (2.8) 

 

and is called as the ‘Golden ratio’. This ratio is used by Fibonacci to solve many 

geometric problems.  

The Golden ratio can occur in extremely unlikely places such as several 

proportions of the human body, on many famous paintings. This ratio is used in 

engineering, mathematics, architecture, art and in music. Mimar Sinan, a famous 

architect, is used this special ratio in the minaret configurations of the Selimiye and the 

Süleymaniye mosques. 

There are a lot of examples in mathematics and geometry. Golden triangles and 

golden rectangles are geometrical representations of the golden ratio and they are 

generated to solve some geometric problems. An isosceles triangle is a golden triangle 

if the ratio of one of its lateral sides to the base is nearly equal to the golden ratio. The 

top angle of the golden triangle is equal to the 36°. When a decagon (10-gon) is 

investigated, it is observed that each triangle in a regular decagon is a golden triangle. In 

addition to these geometric structures, it can be said that the pentagon contains golden 

triangles. In Figure 2.2 the golden triangle is shown. 

x

y

618033.1=
y

x
x

 

                                     Figure 2.2 The golden triangle. 
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In the five pointed star the golden ratios can also be obtained [28]. As shown in 

Figure 2.3 the ratio of the distances ab and ac is equal to the golden ratio. 

 

a

c

b

618033.1=
ac

ab

 
Figure 2.3 Five pointed star. 

 

In Figure 2.4 a special rectangle can be examined, whose ratio of the length x of 

the longer side to the length y of the shorter side equals the ratio of their sum to the 

length of the longer side, that is 

                                                           .
x

yx

y

x +
=                                                         (2.9) 

and it is called golden rectangle.  

x

y

618033.1=
y

x

 
                                  Figure 2.4 Golden rectangle. 
 

Fibonacci numbers appear even in the study of electrical networks. In Figure 2.5, a 

ladder network with n equal resistors is shown. If this network is examined it is seen 

that the currents i1 through in are proportional to 1, 1, 2, 3, 5, 8, 13, …, Fn, which are the 

sequential numbers of the Fibonacci sequence [28]. 
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Figure 2.5 n ladder sections. 
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2.3 Outline of Work 

 

The branch lengths of the fractal tree antennas are designed according to the 

Fibonacci number sequence from the tip of the antenna to the base in this study. The use 

of this special sequence in determining branch lengths leads to nonuniform branch 

length ratios in fractal tree antennas. The ratio of the consecutive branch lengths of 

these fractal tree antennas is equal to the ‘Golden Ratio’ while the iteration number goes 

to infinity. 

The new tree is designed by leaving the first number out of the Fibonacci 

sequence. Then a similar algorithm is obtained with the previous recurrence algorithm, 

such as 

                 .1,22,
1221
==>+=

−− mmmmm
FFandnFFF

nnn
                         (2.10) 

The sequence 1, 2, 3, 5, 8, … is obtained according to the above algorithm and it is 

called modified Fibonacci sequence. Although the two algorithms are similar to each 

other, tree configurations are changing and different simulation results are obtained at 

lower iterations. Additionally, the branch lengths of the fractal tree antennas are 

increasing according to the modified Fibonacci sequence. 

Another tree configuration is generated by changing the number of branches 

according to the modified Fibonacci sequence as shown in Figure 2.6 and called ‘Dream 

tree.  

 

1
1

2

3

5

8

13

 
Figure 2.6 Dream Tree 

 

The Dream tree presented in Figure 2.6 also shows the growth of the rabbit 

population mentioned in the beginning of this chapter. 
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Chapter 3 

SIMULATION METHODS 

 
SuperNEC 2.7 Academic version is used for the simulation of the fractal tree 

antennas [27]. SuperNEC is an object-oriented version of the FORTRAN program 

NEC-2 (Numerical Electromagnetic Code version 2). The basic idea for modelling 

antenna with the SuperNEC code is to use short and straight line segments. An antenna 

and any other conducting object in its vicinity that affect its performance can be 

modelled using those segments. Proper choice of the segments for an antenna model is 

the most critical step to achieving accurate results. Generally the segment length should 

be less than about one tenth of a wavelength at the frequency of operation and the 

model is analyzed by using the Moment of Methods.  

 

3.1 Moment Method 

 

The Moment method is a numerical technique for solving an integral equation 

obtained for the current density on the body of a structure [29]. In this study, perfectly 

conducting wires on an infinitely extending ground plane are simulated. 

The moment method is employed by using the electrical field integral equation 

(EFIE) on perfect electrical conductors (PEC). The total electric field is obtained as 

 

                                                                                                             (3.1) si EEE t +=

 

and the boundary condition to be enforced on the PEC is  

 

                                                                                                                    (3.2) 0=×
∧

tn E

 

The scattered field Es can be obtained in terms of the magnetic vector potential 

A and the scalar electric potential Φ as 

                                                                                                  (3.3) Φ∇−−= )(rAjE ωs
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If the Equation 3.3 is substituted into Equation 3.2 then the Electric Field 

Integral Equation (EFIE) is found as  

 

                                                                                  (3.4) )()]()([ rrrj
tan

i
tan

EA −=∇−− Φω

where  

 

                                                                                             (3.5) ')',()'()( dSrrGrJr
S
∫= µA

                                          ∫ ∇
−

= ⋅
S

dSrrGrJ
ej

r ')',()'('1)(
ω

Φ                                          (3.6) 

                                                      
R

e
rrG

jkR

π4
)',(

−

=                                                        (3.7) 

 

and 'rrR −=  is the distance between the observation point r and the source point 'r  

and k=2π/λ with λ being the wavelength. The surface currents can be represented with a 

set of basis functions, fn

 

                                                                                                        (3.8) )'()'(
1

rfIrJ
n

N

n n
∑=
=

 

where In are unknown current coefficients to be determined. After solving the current 

coefficients one can obtain the current by using the Equation (3.8). 

Integrals are approximated by the sum of integrals over N small segments. When 

the antennas are fed with a voltage source, then the integral equation can be converted 

to a form such as 

 

                                                       [Z][I] = [V]                                                          (3.9) 

 

and the unknown current coefficients can be obtained as 

 

                                                    [I] = [Z]-1[V].                                                         (3.10) 

 

There are other factors that affect the solution in SuperNEC. The wire radius, a, 

relative to the wavelength is limited by the approximations used in the kernel of electric 
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field equation. There are two approximation options available in SuperNEC. The first 

one is the thin wire kernel and the second is extended thin wire kernel. In the thin wire 

kernel, the current on the surface of a segment is reduced to a filament of current on the 

segment axis. In the extended thin-wire kernel, a current uniformly distributed around 

the surface of the segment is assumed. 

The accuracy of the numerical solution also depends on the ratio of the segment 

length to the wire radius . Studies of the computed field on a segment due to its 

own current have shown that with the thin-wire kernel, 

( a/∆ )
( )a/∆  must be greater than 

about 8 for errors of less than 1%. For the extended thin wire kernel,  may be as 

small as 2 for the same accuracy. Reasonable current solutions have been obtained with 

the thin wire kernel for (  down to about 2 and with the extended thin wire kernel 

for  down to 0.5. When a model includes segments with 

( a/∆ )

)
)

a/∆

( a/∆ ( )a/∆  less than about 2, 

the extended thin-wire kernel should be used. 

 

3.2 Far field Calculations 

 

The far field patterns of the fractal tree antennas are calculated with using 

standard far field approximations, such that 

 

                                                            
T

AE ωj−=                                                        (3.11) 

 

                                                        
T

AH ×
−

=
∧
r

j

η
ω                                                      (3.12) 

 

where AT is the transverse component of the magnetic vector potential, ω is the angular 

frequency, 
ε
µη =  and 

∧
r  is a unit vector in the observed direction of the far field such 

that 

 

                                                                              (3.13) .cossinsincossin θϕθϕθ
∧∧∧∧

++= zyxr

 

The magnetic vector potential can be calculated as 
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Since the antenna surface is PEC there is no losses on the antenna, and the 

efficiency of the antenna is equal to 1. The directivity of the antenna is calculated with 

the ratio of the radiation intensity to the input power of the antenna. 

 

                                            
inP

U
D

),(4),( ϕθπϕθ =                                                     (3.15) 

 

where  

 

                                )),(),((
2
1),(

22
ϕθϕθ

η
ϕθ

ϕθ
EEU +=                                       (3.16) 

 

and 

 

                                              )Re(
2
1 ∗= VIPin                                                       (3.17) 

 

As shown in Equation (3.16) the radiation intensity U(θ,ϕ) (W/unit solid angle), 

is a far field parameter and it can be calculated from both the polarization components 

of the scattered electric field. By examining the Equation (3.17) one can see that the 

power supplied to the antenna is computed from the applied voltage and computed 

current.  
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Chapter 4 

FRACTAL TREE ANTENNAS 
 

Fractal geometry is used in antenna designs in order to improve the resonance 

behavior of the antennas and to obtain smaller antennas that have lower resonance 

frequencies. When the resonance frequency for the antennas is set to be constant, the 

height of the fractal antennas becomes smaller than the standard monopole antennas. 

Hence lowering the resonance frequency has the same effect as miniaturizing an 

antenna at a fixed resonance frequency. In order to use small and efficient antennas 

instead of longer antennas, fractal tree structures are used in antenna designs, which 

provide to decrease the resonance frequency of the straight monopole or dipole.  

In this chapter, the performance in decreasing resonance frequency of the similar 

fractal tree antenna structures is investigated. Fibonacci number sequence is used to 

design fractal tree antenna that has nonuniform branch length ratios. The performance 

of the fractal tree antennas are evaluated by means of the simulation results of the return 

loss, quality factor and system gain and the radiation patterns. The simulation results of 

the Fibonacci fractal tree antennas are compared with fractal tree antennas, which have 

uniform branch length ratios. The numerical computer simulation tool SuperNEC 2.7 is 

used for these investigations. [27]. 

4.1 D (Double) version Fractal Tree Antennas 

 

The first fractal tree antenna is called Double version and the geometry of this 

fractal tree antenna feeding as a dipole is given in Figure 4.1. 

The fractal tree antenna is generated by applying an iterative procedure to the 

generator monopole. At the first iteration, the top of the monopole is splitting with an 

angle 60° into two branches; one of the branches is splitting with an angle 60° through 

left, the other one is splitting in the same direction with the previous branch. The 

iterative process goes on to generate fractal tree antennas called D version. The antennas 

have closed structures like shown in Figure 4.2.  

The branch lengths are increasing according to the number sequence 1, 2, 4, 8, 16, 

32, …, from the tip of the antenna to the base. Therefore their branch length ratios are 

1/2, and they have uniform branch length ratios. The ratio of the branch lengths to the 

total length is given in Table 4.1.  
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Figure 4.1 Geometry of the D version fractal tree dipole antenna. 
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Figure 4.2 D version fractal tree monopole antenna configurations. 
 

Table 4.1 Branch length ratios of D version fractal tree antennas. 
 

iteration 0 1 2 3 4 5 
1 1/3 1/7 1/15 1/31 1/63 
 2/3 2/7 2/15 2/31 2/63 
  4/7 4/15 4/31 4/63 
   8/15 8/31 8/63 
    16/31 16/63 

B
ra

nc
h 

le
ng

th
 

ra
tio

s 

     32/63 
 

The length of the fractal tree antennas is 3.75 cm from the base to the tip of the 

last branches for all cases. The first five iterations and a straight monopole are analyzed. 

The antenna is fed at its bottom, which is connected to an infinitely extended ground 

plane. The radius of all wires is 0.0075cm and the wires are perfectly electrical 

conductors. The antenna is divided into 60 segments which correspond to a length l/60, 

where l is still the length of a path from the base to one tip of the antenna. 
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4.2 F (Fibonacci) version Fractal Tree Antennas 

 

The special fractal tree antenna that is designed by using Fibonacci number 

sequence is called F version fractal tree antenna. The antenna is obtained in a similar 

way with the previous antenna, D version. 

The angles between branches are 60°; one of them at each path is splitting with 

an angle 60° through the left or right, other one is splitting in the same direction with 

the previous branch. The five iterations of the F version fractal tree antenna with a 

straight monopole are given in Figure 4.3. The antennas have closed structures because 

of the geometry of the branches. The bottom part of the antennas is connected to an 

infinitely extending ground plane. All antennas are in same length, which is 3.75 cm. 

The radius of wires is 0.0075 cm. Each segment length is equal to the l/60 of the total 

length. 
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Figure 4.3 F version fractal tree configurations. 
 

Some branches are touching each other at the tip of the antenna because of this 

special Fibonacci sequence. In this case the length of the branches is increasing from the 

tip to the base according to this special sequence. As shown in Table 4.2 the ratios of 

the branch lengths to the total lengths are nonuniform. 

Table 4.2 Branch length ratios of F version fractal tree antennas.  
 

iteration 0 1 2 3 4 5 
1 1/2 1/4 1/7 1/12 1/20 
 1/2 1/4 1/7 1/12 1/20 
  2/4 2/7 2/12 2/20 
   3/7 3/12 3/20 
    5/12 5/20 
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     8/20 
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4.3 Fm (modified Fibonacci) version Fractal Tree Antennas 

 

The branch lengths of the antennas are configured with using modified 

Fibonacci sequence and called Fm version. The initiator of this similar fractal geometry 

is monopole that is divided in two branches; one of the each branches is splitting with 

an angle 60° through left or right, the other stays in the same direction with the previous 

branch as shown in Figure 4.4. 

 

 
Fm0                 Fm1                            Fm2                             Fm3                                  Fm4                                   Fm5    

Figure 4.4 The configurations of the Fm version fractal tree antennas. 
 

By examining Figure 4.4, one can see that there are some branches which are 

touching each other at the tip of the antenna. However, the number of touching wires in 

Fm version is less than those of the F version.  

The antenna branch length ratios are nonuniform. In Table 4.3 the branch length 

ratios of the antennas are represented. The ratios are given from the tip of the antenna to 

the base.  

 

Table 4.3 Branch length ratios of the Fm version fractal tree antennas. 
 

iteration 0 1 2 3 4 5 
1 1/3 1/6 1/11 1/19 1/32 
 2/3 2/6 2/11 2/19 2/32 
  3/6 3/11 3/19 3/32 
   5/11 5/19 5/32 
    8/19 8/32 
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s 

     13/32 
 

The monopole fractal antennas are fed at the bottom of the geometry and they 

are connected to an infinitely extending ground plane. The length of the antennas 

remains same in all cases and equal to the 3.75 cm from the base to the tip of the last 
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branches. The antennas are divided into 60 segments from the base to the tip. The radius 

of the wires is 0.0075 cm. 

 

4.4 Results 

 

Figure 4.5 shows the input reflection coefficients between 800 MHz and 2000 

MHz. The index n=0, 1, 2, … at D, F and Fm designates the iteration. Hence, Do, Fo and 

Fmo correspond to the standard monopole. The resonance frequencies of the fractal tree 

antennas are decreasing while the iteration number increases. With increasing iteration 

the effect of the frequency shift diminishes. The number of branches is increasing while 

the iteration number increases. This adds more conduction paths at the top of the 

antenna and it causes an increase in total conducting path lengths. 
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Figure 4.5 The input reflection coefficients of the D, F and Fm version fractal tree 
antennas. 
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The resonance frequencies of the F and Fm versions are closing each other while 

the iteration number increases. However their resonance frequencies are lower than the 

D version. 

The resonance frequencies and the percent resonance frequency shifts of the 

proposed antennas, F and Fm with respect to the D version are given for each iteration in 

Table 4.4.  

 

Table 4.4 The resonance frequencies* and the percent shifts of the closed structures. 
 

Iteration fres,D  fres,Fm  % Shift fres,F  % Shift 
0 1900 1900 - 1900 - 
1 1590 1590 - 1550 13 
2 1400 1360 8 1350 10 
3 1300 1255 7.5 1250 8.3 
4 1245 1200 6.8 1195 7.6 
5 1200 1158 6 1155 6.4 

            *All resonance frequencies are given in MHz. 

 

By examining the Table 4.4, one can see that the resonance frequencies are 

decreasing while the iteration number increases. F and Fm versions decrease the 

resonance frequency more than the D version for the same iteration. Furthermore, F3 

version can be used instead of D4 version and F4 and Fm4 versions can be used instead 

of D5 version, because these antennas have nearly same resonance frequencies.  

The frequency shift is calculated by comparing the resonance frequency shifts of 

the F or Fm versions and the frequency shift of the D version with respect to the 

standard monopole. The resonance frequency shift in percent can be expressed as  

 

                                                      
iDressdres

ifresiDres

ff

ff

,,

,,

−

−
                                                     (4.1) 

 

where fres, ,D i  is the resonance frequency of the D version for the ith iteration, fres, f i is the 

resonance frequencies of the F and Fm  version for the ith  iteration, fres, sd is the 

resonance frequency of the standard monopole and is equal to 1900 MHz. 

As shown in Table 4.4, the frequency shift of F and Fm versions is decreasing 

while the iteration number increases. The amount of frequency shift in percent of the F 

and Fm is at the same magnitude while the iteration number increases. It can be said that 
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the performance of the F and Fm versions in decreasing resonance frequency is similar 

at high iterations, since the antennas show nearly same resonance frequencies. 

Figure 4.6 plots the resonance frequency of the D, F and Fm versions versus the 

iteration. F and Fm  versions have nearly same resonance frequencies after the second 

iteration. As shown in Figure 4.6 the performance of the Fibonacci antennas in 

decreasing resonance frequency is better than the D (Double) version.  
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Figure 4.6 The comparisons of the antennas’ resonance frequencies. 

 

The input impedances of the antennas are measured using Moment Method 

mentioned in the previous chapter. The input impedance of the fractal tree antennas are 

decreasing while the iteration number increases. The input impedance of the D5 is equal 

to 40Ω, while F5 and Fm5 have 34.6 Ω and 35.1 Ω input impedances.  

Comparing the 3 dB bandwidths of D5, F5 and Fm5 show that the bandwidths are 

very close. The Fm5 version has a relative bandwidth of 24%, while D5 and F5 show 

relative bandwidths of 21% and 22% respectively. 

The 10 dB bandwidths of D5, F5 and Fm5 are about 6.6%. 

The overall quality factor (Q) is defined as the ratio of the stored electric or 

magnetic energy, We and Wm respectively, to the radiated power Prad and is given as 
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Q can be computed as  
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where ω is the angular frequency and Rin and Xin are the input resistance and reactance 

of the antennas respectively [30-34]. The derivative of the input reactance can be 

obtained approximated by applying the central differences 
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in the numerical calculations [35]. As shown in Figure 4.7, the overall quality factors of 

the antennas are decreasing while the iteration number increases. The Q of the antennas 

are approaching to the fundamental limit of the antenna [36]. Fundamental limit for a 

small antennas can be calculated while ka=1, where k is the wave number associated 

with the electromagnetic field and a is the radius of a sphere which encloses the 

antenna.  
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Figure 4.7 The overall quality factors of the D, F and Fm versions. 
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The overall system gain Gsys of the fractal tree antennas can be computed by using 

the formula  

                                            ).1log(10)()( 2
Γ−+= dBGdBG

Asys
                                     (4.5) 

where GA is the antenna gain and Γ is the reflection coefficient at the input of the 

antenna. The overall system gains of the antennas are shown in Figure 4.8. The overall 

system gains are shifting to the lower frequencies while the iteration number increases. 

Furthermore, tree antennas have same overall system gains. The antennas have 

maximum system gain at their resonance frequencies.  
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Figure 4.8 The simulated system gains of the fractal tree antennas versus frequency. 
 

The radiation patterns of the D5, F5 and Fm5 version fractal tree antennas at the first 

band frequencies are given in Figure 4.9. The patterns are similar with that of the 

standard monopole antennas. The polarization of the antennas is linear. 

The fractal dimension of the tree antennas is calculated with a formula 
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where i is the iteration number, si is the ith iteration scale factor (or branch length ratio) 

and d is the fractal dimension. Total conducting path lengths of a fractal tree antenna 

can be calculated while the dimension is equal to 1. The dimensions of the D5, F5 and 

Fm5  version fractal tree antennas are close to values 1.5, 1.67 and 1.65 respectively. 

while their total conducting path lengths are equal to 11.4 cm, 15.75 cm and 14.625 cm. 

 

 ϕ=0° ϕ=90° θ=90° 

 

 

D0

   

 

 

D5

   

 

 

F5

  

 

 

Fm5

   
Figure 4.9 The radiation patterns of the closed D5, F5 and Fm5 versions at the first band 

frequencies 1200 MHz, 1155 MHz and 1158 MHz respectively compared with 

straight monopole resonant at 1900 MHz. 

                                                                                                                                          24
 



Chapter 5 

THE EFFECT OF THE GEOMETRY ON THE FRACTAL TREE 

ANTENNAS 

 

The geometry of the proposed fractal tree antennas is changed. To improve the 

resonance behavior of the antennas in the previous chapter, it is expected that the 

change in geometry affects the resonance frequency of the fractal tree antennas. Also, 

the number of branches is increased according to the Fibonacci number sequence. The 

tree, whose branches are increasing from the base to the tip of the antenna according to 

the Fibonacci number sequence, is called ‘Dream tree’. 

 

5.1 Geometrical Changes on the Antennas 

 

5.1.1 D version Fractal Tree Antennas 

 

The initiator of the fractal tree antennas is a monopole. Then at the first iteration 

step the monopole is divided into two branches. Each branch is splitting with an angle 

30° through left and right at the second iteration step. The process is applied to the 

remaining branches until the fifth iteration. The branch length is equal to the double of 

the previous branch from the tip to the base of the antenna. The branch length ratios are 

same with the D version antenna given in Chapter 4. The geometry of the branches of 

this version is given in Figure 5.1. The antennas are open structures. 

 

 
D0                      D1                                D2                                    D3                                  D4                                  D5

Figure 5.1 D version fractal tree antenna configuration with open structures. 

The antenna is fed at its bottom, which is connected to an infinitely conducting 

plane. The length of the antennas is 3.75 cm from the base to one tip of the antenna. 
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Monopole antennas are divided into 60 segments from the base to one tip of the 

antenna. The radius of the wires is 0.0075 cm for all cases. 

 

5.1.2 F version Fractal Tree Antennas 

 

The geometry of the branches of the F version fractal tree antennas in Chapter 4 

is modified. As shown in Figure 5.2 the branches of the trees are splitting with an angle 

30° through the left and right at each iteration step. The end of the branches is getting 

closer while the iteration number increases. The branch lengths are increasing according 

to the Fibonacci number sequence and the branch length ratios are given in Chapter 4. 

The antennas have open structures like shown in Figure 5.2. 

 

 
F0                    F1                             F2                                F3                                      F4                                      F5

Figure 5.2 F version fractal tree antenna configurations with open structures. 

 

The antenna is fed again at its bottom, where it is connected to an infinitely 

extending ground plane. The length of the antenna from the base to one tip is 3.75cm. 

The radius of the wires is 0.0075 cm for all cases. 
 

5.1.3 Fm version Fractal Tree Antennas 

 

The branch lengths and the branch length ratios are same with the Fm version in 

Chapter 4. The branch lengths of the trees are increasing according to the modified 

Fibonacci sequence. A recursive generating algorithm is applied to the monopole until 

the fifth iteration. Geometry of the branches are different than those of the previous Fm 

version antennas mentioned in Chapter 4. The branches of the fractal tree antennas are 

splitting with an angle 30° through the left and right. The tree configuration is shown in 

Figure 5.3. 
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Fm0            Fm1                        Fm2                               Fm3                                   Fm4                                        Fm5  

Figure 5.3 The configuration of the Fm version with open structures. 

 

The length of the trees from the base to one tip of the last branch remains same and 

it is equal to 3.75 cm. Monopole antennas are divided into 60 segments. Wire radius is 

equal to 0.0075 cm at this time. 
 

5.2 Dream Tree Antennas 

 

5.2.1 D version Dream Tree Antennas 

 

The tree, whose number of branches is increasing according to the Fibonacci 

sequence, is called ‘Dream tree’. If the branch lengths of the Dream tree antenna are 

increasing according to the number sequence 1, 2, 4, 8, 16, 32, … then the antenna is 

called D version Dream tree. The geometry of the D version Dream tree antenna is 

given in Figure 5.4. The branch lengths and the branch length ratios of the D version 

Dream tree antenna are same with the previous D version fractal tree antenna in Chapter 

4. The number of branches of the tree antennas is reduced in this case. The geometry of 

the branches is open like shown in Figure 5.4. 

 

 
D0               D1                            D2                                D3                                          D4                                        D5       

Figure 5.4 D version Dream Tree Antennas. 
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5.2.2 F version Dream Tree Antennas 

 

The number of branches of the F version is changed according to the Fibonacci 

number sequence from the base to one tip of the antenna and called F version Dream 

tree. The tree configurations are shown in Figure 5.5. The change in the branch lengths 

and branch length ratios of this dream tree antenna are same with the F version. 

However the number of branches of dream trees is less than those of F version and 

dream tree antennas are less complex structures. 

 

 
 F0                   F1                                 F2                                   F3                                     F4                                    F5

Figure 5.5 F version Dream tree configurations. 
 

5.2.3 Fm version Dream Tree Antennas 

 

The number of branches of the Fm version is changing according to the 

Fibonacci sequence from the base to one tip of the antenna and called Fm version dream 

tree. The tree configurations are shown in Figure 5.6. A recursive generating algorithm 

is applied to a monopole until the fifth iteration. Branch lengths and branch length ratios 

are same with the Fm version. The number of branches is increasing according to the 

Fibonacci sequence from the base to one tip of the antenna. The antenna has an 

asymmetric branch geometry.  

The length of the antennas is same from one of the tips to the base and equal to 

3.75 cm. Monopole antennas are divided into 60 segments, whose lengths are equal to 

0.0625 cm. The radius of the wires is 0.0075 cm.  
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Fm0        Fm1                  Fm2                      Fm3                        Fm4                            Fm5

Figure 5.6 Fm version dream tree configurations. 
 

5.3 Results 

 

Figure 5.7 shows the input reflection coefficients of the fractal tree antennas. 

The resonance frequencies of the antennas are decreasing while the iteration number 

increases. The resonance frequencies of the antennas with same geometries are affected 

from the total conducting path lengths. For Dream tree antennas the total conducting 

path lengths are reduced, so the decrease in resonance frequency becomes less than the 

open D, F and Fm version fractal tree antennas like shown in Figure 5.7. 

The 3 dB bandwidths of the open structures are nearly same, 22%. The 10 dB 

bandwidths of the antennas change between 5% and 6%. 

The overall quality factors (Q) of these antennas are shown in Figure 5.8. As given 

in Figure 5.8, the Q values are decreasing and they are approaching a limiting curve for 

high iteration numbers. 

The overall system gains of the D version and the Fibonacci fractal tree antennas  

are decreasing while the iteration number increases. The antennas have maximum 

system gains at their resonance frequencies. As shown in Figure 5.9 the antennas have 

similar system gains. 

        The far field patterns are same with the straight dipole antenna like shown in 

Figure 5.10. The antennas are omnidirectional. The radiation patterns of the antennas at 

the first band frequencies don’t be affected from the branch length ratios and the 

asymmetrical tree configurations. The antennas are linearly polarized. 
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Figure 5.7 The input reflection coefficients of the D,F and Fm versions with open 
structures. 
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Figure 5.8 The overall quality factors of the D, F and Fm versions with open structures. 
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Figure 5.9 The overall system gains of the fractal tree antennas with open structures. 
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Figure 5.10 The far field patterns of the D0, D5, F5 and Dream tree F5 version antennas 

at the first band frequencies 1900 MHz, 1125MHz, 1000MHz and 1125 MHz 

respectively. 
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Chapter 6 

COMPARISONS AND DISCUSSIONS ON THE FRACTAL 

TREE ANTENNAS 

 
The results of the fractal tree antennas with closed structures are compared with 

the antennas with open structures. The performance of the antennas is evaluated in 

terms of the resonance behavior of the fractal tree antennas. 

 

6.1 The Resonance Frequencies and the Percent Shifts 

 

The resonance frequencies of the fractal tree antennas with different geometries 

are compared each other and the values are given in Figure 6.1. By examining the 

Figure 6.1, one can see that closed F version antennas are decreasing the resonance 

more than the closed D version fractal tree antennas. Furthermore, when the geometry 

of the branches changes and branches construct open structures, the performance of the 

antennas in decreasing resonance frequency is improved. 

The resonance frequencies and the percent shifts of the fractal tree antennas with 

closed structures are compared with those of the open structure in Table 6.1. As shown 

in Table 6.1, closed F is better than the closed D version in decreasing resonance 

frequency. However, open structures have lower resonance frequencies than the closed 

structures. Furthermore, same performance can be get at lower iterations by using 

Fibonacci antennas, which are similar but simpler structures compared to D version. 

The miniaturization effect of the F versions is more than that of the D version. The 

percent resonance frequency shifts of the closed F and Fm versions with respect to the D 

version are decreasing while the iteration number increases. They are closing each other 

at high iteration levels. On the other hand, the percent resonance frequency shifts of the 

open antennas are increasing while the iteration number increases. It can be said that 

open F and open Fm are better in decreasing resonance frequency than their closed 

structures. 

The resonance frequencies of the closed antennas are compared with those of the 

open antennas in Figure 6.2. For closed antennas, the resonance frequencies of the F 

and Fm versions are close to each other while the iteration number increases. The 

Fibonacci antennas are better than the Double version in decreasing resonance 

frequency. Open structures have lower resonance frequencies than the closed structures. 
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Additionally, lowering the resonance frequency has the same effect as miniaturizing the 

antenna at a fixed resonant frequency. Generally, the miniaturization effect of the 

Fibonacci antennas are more than the Double version fractal tree antennas. 
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Figure 6.1 The comparison of the input reflection coefficients of the D, F and Fm

                  version fractal tree antennas. 
 
 

Table 6.1 The resonance frequencies* and the percent shifts shifts. 
 
 Closed structures Open structures 

itr fres,D fres, Fm % Shift fres, F % Shift fres,D fres, Fm % Shift fres, F % Shift
0 1900 1900 - 1900 - 1900 1900 - 1900 - 
1 1590 1590 - 1550 13 1590 1590 - 1550 12.9 
2 1400 1360 8 1350 10 1392 1351 8 1308 16.5 
3 1300 1255 7.5 1250 8.3 1262 1207 8.6 1168 14.7 
4 1245 1200 6.8 1195 7.6 1174 1090 11.5 1065 15 
5 1200 1158 6 1155 6.4 1125 1019 13.6 1000 16.1 
*Resonance frequencies are given in MHz. 
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Figure 6.2 The relative comparison of the resonance frequencies of the closed and open  

                  fractal tree antennas. 
 

Open D version is compared with the closed F version and F version Dream tree 

antennas in Table 6.2. Closed F has similar miniaturization effect on the antennas with 

D version even though its geometry is different than the D version. Same performance 

can be get by using F version Dream tree, which are similar structures compared to D 

version. 

 

Table 6.2 The comparison of the resonance frequencies* of the open D version with the 
closed F and Dream tree F version antennas. 

 
itr D version with open 

structures 
F version with closed 

structures 
F version Dream 

tree 
0 1900 1900 1900 
1 1590 1550 1550 
2 1392 1350 1400 
3 1262 1250 1275 
4 1174 1195 1200 
5 1125 1155 1125 

              * Resonance frequencies of the antennas are given in MHz. 

 

The resonance frequencies of the open D version, closed F version and F 

version Dream tree antennas are given in Figure 6.3. These structures have same 

miniaturization effects on the antennas at a fixed resonance frequency. 

The resonance frequencies of the F version Dream tree antenna are similar with the 

D version. The F version Dream tree antennas are less complex than the D version. So, 

same performance can be obtained with using simple fractal structure instead of 

complex one. 
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Figure 6.3 The relative comparison of the resonance frequencies of the open D, closed 

F and Dream tree F version antennas. 
 

6.2 The Quality Factors at Resonance Frequencies 

 

The overall quality factors of the fractal tree antennas are decreasing while the 

iteration number increases. However the quality factors of the fractal tree antennas at 

resonance frequencies are increasing while the iteration number increases. In Figure 6.4 

the quality factor of the D5 and F5. and Fm5 versions at the resonance frequencies are 

given. The quality factors for closed structures in Figure 6.4 change between 7 and 10, 

while for open structures they change between 7 and 13 and 7 and 12. However, the 

difference between the Q values at resonance frequencies is smaller than the difference 

between resonance frequencies of the antennas. For example the difference between the 

Q values of open F5 and open F4 antennas is 1.75 while the difference between 

resonance frequencies is 65 MHz. 

The fractal dimensions are increasing while the iteration number increases. When 

the geometry of the branches changed, the fractal dimension of the antennas didn’t 

change noticeably.  
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Figure 6.4 The quality factors at resonance frequencies of the fractal tree antennas. 
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Chapter 7 

MULTIBAND BEHAVIOR OF THE FRACTAL TREE ANTENNAS 

 

There is a relation between the properties of fractal geometry and 

electromagnetic behavior of an antenna. Fractal geometry has self-similar forms, which 

can lead to multiband characteristics in antennas that is displayed when an antenna 

operates with a similar performance at various frequencies. Sierpinski antenna is given 

as an example for a multiband antenna. 

In this chapter the multiband properties of the fifth iterations of D version, F 

version and the F version Dream tree are investigated. There are two reasons to choose 

these three antennas for simulations. One of them is that the antennas have nonuniform 

branch length ratios and similar forms. It is investigated whether they have multiband 

property or not like Sierpinski antenna, which has self-similar form and uniform scale 

factor. The other reason is about Dream tree antennas. Dream tree antennas have 

asymmetric branch geometry. It is investigated that the asymmetry of the fractal trees 

are affecting the multiband behavior or not. 

 

7.1 D5 version Fractal Tree Dipole Antenna 

 

The multiband behavior of the D5 version is observed. The tree configuration is 

shown in Figure 7.1. The antenna in Figure 7.1 is the fifth iteration of the D version 

fractal tree antenna, whose branches are splitting with an angle 30° through left and 

right. The branch lengths of the antennas are the double of the previous branches and 

the branch lengths are increasing according to the number sequence 1, 2, 4, 8, 16, 32, 

64,… from the tip of the antenna to the center of the dipole. So they have uniform 

branch length ratios. 

The antenna is fed at its center. The antenna is 7.5 cm from one of the tips of the 

antenna to the other tip. The radius of the wires is 0.0075 cm and 120 segments are used 

from one tip of the antenna to the other tip. 

The resonance frequencies for five bands are given in Figure 7.2. The antenna 

shows same performance at various frequencies. It can be said that the multiband 

behavior is consistent from the input return loss. 
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Figure 7.1 D5 version fractal tree dipole antenna. 
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Figure 7.2 The input reflection coefficients of the D5 version fractal tree dipole antenna. 

 

Five frequency bands of the D5 version are investigated in Table 7.1. The 

frequencies (fn) are given in the second column. The relative bandwidth at each band for 

VSWR<2 is nearly 6.6%. The third one is the input return loss (S11) and the fourth one 

represents the frequency ratio between two adjacent bands. The antenna has similar 

performance at various frequencies, so it shows multiband behavior.  

 
Table 7.1 The parameters of the D5 version antenna for the five band frequencies. 

 
n (band n°) fn (MHz) S11 (dB) fn+1/fn

1 1125 15.1 5.22 
2 5875 29.1 1.63 
3 9625 9.59 1.5 
4 14500 9.39 1.22 
5 17775 5.23 - 
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The far field patterns of the D5 version dipole antenna at the first frequency band 

is given in the previous chapter. The patterns of the first frequency band are compared 

with the second, third, fourth and fifth frequency bands in Figure 7.3. The simulated 

antennas are placed in the x-z plane. While the frequencies are increases the variations 

on the side lobes are faster. The omnidirectional behavior of the antennas is disturbing 

after the second frequency band. It can be said that the elevation patterns (ϕ=0°, and 

ϕ=90°) are approximately similar at the band frequencies. 

 

7.2 F5 version Fractal Tree Dipole Antenna 

 

The fifth iteration of the F version fractal tree antenna is given in Figure 7.4. The 

branch lengths of the trees are increasing according to the Fibonacci sequence 1, 1, 2, 3, 

5, 8, … from one of the tips to the center of the dipole. F5 version has nonuniform 

branch length ratios. 

The length from one of the tips to the other tip of the F5 version antenna is 7.5 cm. 

The radius of the wires is 0.0075 cm and the segment length is l (length of the 

antenna)/120, which nearly equals to 0.0625 cm. The feed is located at the center of the 

antenna. 

The resonance frequencies for five bands are given in Figure 7.5. The antenna has 

same performance at various frequencies. It behaves like a multiband antenna. 

Five band frequencies are investigated for the F5 version in Table 7.2. The relative 

bandwidth at each band for VSWR<2 is nearly 4.5%. The ratios between two adjacent 

bands of the F5 version are closer to those of the D5 version, even though the branch 

lengths and branch length ratios are different than D5. 

The far field patterns of the five bands are given in Figure 7.6. The ripples on 

the far field patterns are increasing after the first band frequency. The omnidirectional 

behavior is disturbing while the band frequency is increasing. The elevation patterns of 

the F5 version are approximately similar. 
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Figure 7.3 The radiation patterns of D5 version for the band frequencies f1-f5. 
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Figure 7.4 F5 version fractal tree dipole antenna. 
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Figure 7.5 The input reflection coefficients of the F5 version fractal tree dipole antenna. 

 

Table 7.2 The parameters of the F5 version antenna for the five band frequencies. 
 

n (band n°) fn (MHz) S11 (dB) fn+1/fn

1 1000 9.8 6.05 
2 6050 5.92 1.69 
3 10250 9.21 1.38 
4 14150 3.48 1.33 
5 18875 14 - 
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Figure 7.6 The far field patterns of the f1-f5 band frequencies of the F5 version. 
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7.3 F5 version Dream Tree Dipole Antenna 
 

The fifth iteration of the F version dream tree is given in Figure 7.7. The number 

of branches are increasing according to the Fibonacci sequence, which corresponds to a 

sequence 1, 1, 2, 3, 5, 8,… from the center to the one of the tips of the dipole. The 

branch lengths are increasing again according to this special sequence from one tip of 

the antenna to the center. 

 

 
Figure 7.7 The configuration of the F5 version dream tree dipole antenna. 

 

The length is 7.5 cm from one of the tips to the other tip. The radius of the wires is 

0.0075 cm. Segment lengths of the antennas are equal 0.0625 cm.. The antenna is fed at 

its center.  

The five band frequencies are given in Figure 7.8. By examining the Figure 7.8, 

one can see that F5 version Dream tree has similar performance at various frequencies. 
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Figure 7.8 The band frequencies of the F5 version dream tree dipole antenna. 
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The five frequency bands are given in Table 7.3. The bandwidth at each band is 

nearly 5.7%. The ratios of two adjacent bands of F5 version dream tree antenna is nearly 

equal to D5 version, even though they have less number of branches and nonuniform 

branch length ratios compared to D version. 

 

Table 7.3 The parameters of the F5 version Dream antenna for the five band frequency. 
 

n (band n°) fn (GHz) S11 (dB) fn+1/fn

1 1125 11.9 5.28 
2 5950 6.05 1.65 
3 9850 11.3 1.41 
4 13950 5.32 1.32 
5 18425 7.14 - 

 

The far field patterns for five frequency bands are given in Figure 7.9. The 

ripples are increasing while the band frequencies are increasing. The effect of the 

asymmetry of the branch geometry occurs after the second band frequency while ϕ=0°. 

The omnidirectional property is disturbing after the first frequency band. The elevation 

patterns of the F version Dream tree antennas are approximately similar. 

 

7.4 Comparison of the Multiband Behavior of the D5, F5 and F5 version Dream  

     Tree 
 

The length of the antennas compared in this chapter is 7.5 cm from one tip to the 

other tip of the antenna. There is a relation between electromagnetic behavior and the 

geometrical properties of the antennas. Because of the similarity, the fractal tree 

antennas are behaving like multiband antennas. The return losses of the compared 

antennas are given in Figure 7.10. They have similar performance at various 

frequencies. The frequency ratios between two adjacent bands are nearly similar each 

other. The multiband behaviour is consistent from the input return losses of the 

antennas. 

The radiation patterns for the first band are equal to the straight dipole. As a 

comparison the radiation patterns for the second band frequency is given in Figure 7.11. 

All antennas show similar performance at the second band frequencies. The elevation 

patterns of the F5 and Dream tree F5 are same. All antennas have same directionality at 

the second band frequency.  
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Figure 7.9 The far field patterns of the f1-f5 band frequencies of F5 version dream tree. 
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Figure 7.10 The five band frequencies of the D5, F5 and and dream tree F5 version. 

 

Elevation pattern 

ϕ=0°, 0°≤θ≤180°. 

 
Azimuth pattern 

θ=90°, 0°≤ϕ≤360°. 

 
Elevation pattern 

ϕ=90°, 0°≤θ≤180°. 

 
Figure 7.11 The radiation patterns of the second band frequencies of D5, F5 and Dream 

tree F5 version antennas. 
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Chapter 8 

APPLICATIONS OF THE FRACTAL ANTENNAS 

 
Many fractal antennas are used in communication systems. The sudden increase 

in wireless communication systems causes a need for small and efficient antennas. 

Wireless communication systems have attracted a great amount of interest in recent 

years. The advances in cellular systems, wireless Local Area Networks (LANs), 

personal area networks, and sensor networks are bound to play a significant role in the 

way people will communicate with each other in the future. It is expected that in the 

following years most of the access part of the internet will be wireless, and wired 

networks will retreat to the backbone and core segments of the network. 

In wireless communication systems, the antenna is the interface between the 

electronics of the terminal and the wireless medium. The specifications of this interface 

and its performance play a significant role in the acceptability of a wireless 

communications product. Characteristics like aesthetics, endurance, size, cost, and 

signal quality of a product are greatly affected by its antenna design. Therefore, the 

understanding of antenna capabilities and specifications is essential in order to be able 

to evaluate and choose the best antenna for a certain application.  

Fractal antennas can enhance radiation of electromagnetic energy from electric 

systems. Fractal antennas have therefore the potential to be efficient. For example, a 

monopole based on the Koch fractal curve is more efficient than an ordinary monopole 

of same size. Fractal configurations can decrease the resonance frequencies of the 

standard monopole antennas. Hence lower resonance frequencies cause a 

miniaturization effect on the antennas. Fractal structures with a self-similar geometric 

shape consisting of multiple copies of themselves on many different scales have 

multiband behaviour. Because of these special properties of the fractal antennas they are 

used in many wireless communication areas. Motorola has started using fractal antennas 

in many of its cellular phones, and reports that they're 25% more efficient than the 

traditional piece of wire [37]. They're also cheaper to manufacture, can operate on 

multiple bands, and can be put into the body of the phone. Additionally, Fractenna is the 

company which sells the fractal antennas. The benefits depend on the fractal applied, 

frequency of interest, and so on [38]. 
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Fractal antennas can also decrease the area of a resonant antenna, which could 

lower the radar cross section (RCS). This benefit can be used in military applications 

where the RCS of the antenna is an important parameter. 

In the Electrical Engineering department of the University of California many 

fractal antennas are designed and many applications are made in the laboratories to 

miniaturize the standard monopole antennas [39]. 
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Chapter 9 

CONCLUSION 
 

Fractal geometry is used to define irregular sets. Its dimension isn’t an integer. 

In nature many complex shapes can be found, which can be defined with fractal 

geometry, such as clouds, mountains, coastlines and snowflakes. You can define many 

problems with fractal geometry, which you can’t understand and solve with Euclidean 

geometry. Fractal geometries have many distinct properties, which separated them from 

Euclidean one. 

So far many self-similar fractal structures have been used in antenna designs. 

Sierpinski, Koch curve and Minkowski loop are examples to self-similar fractal 

structures, which are mostly used in many applications. The electromagnetic behavior 

of the antennas related with the properties of the fractal geometry. Sierpinski antennas 

behave like a multiband antenna because of their self similarity. They have similar 

performance at various frequencies. Koch and Minkowski loops are efficient and small 

antennas. Longer antennas can be packed in a given small volumes when using these 

fractal loops instead of Euclidean loops.  

Fractal tree configurations are similar structures. They can be used in antenna 

designs to decrease the resonance frequencies of the dipoles or monopoles. So far many 

fractal tree antennas designed with constant branch ratios and various scale factors. In 

this study, the branch lengths have been changed in order to improve the performance of 

the antennas in decreasing resonance frequency. Fibonacci number sequence is used to 

design fractal tree antennas with nonuniform branch length ratios. The fractal tree 

antennas, which are formed by Fibonacci sequence, are better in decreasing resonance 

frequency than Double (D) version. Same performance can be get at lower iterations by 

using Fibonacci version fractal tree antennas, which are similar but simpler structures 

when compared to the Double version. Because the tree structures were similar each 

other the same quality factors and overall system gains obtained at the end of the 

simulations. The far field patterns of the fractal tree antennas were same with straight 

monopole antenna at first resonance frequencies. Their radiation patterns were 

omnidirectional at the first resonance frequency.  

The geometry and the number of branches of the fractal tree antennas have been 

changed to improve the resonance characteristic of the antenna. The geometry was an 
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important factor which affects the resonance frequency of the antenna. The resonance 

frequency decreased with changing the geometry of the branches of the trees. Lowering 

resonance frequency means that the miniaturization effect of the antennas increases at a 

fixed resonance frequency. The Fibonacci fractal tree antennas are decreasing the 

resonance frequencies of the standard monopole antennas without disturbing the 

radiation patterns of the antennas at the first band frequency. The change in geometry 

really affected the resonance frequencies of the antennas. The total conducting path 

lengths and also the fractal dimension increased while the iteration number increased. 

However they aren’t the main reasons, which decrease the resonance frequency of the 

antenna. 

The number of branches of the 2D fractal tree antennas was reduced in order to 

have same performance with a simpler fractal structure compared to Double version. 

Dream tree antennas’ branches are increasing according to the special Fibonacci 

sequence. Fibonacci version dream tree antenna has same performance with the Double 

version, whose structure is more complex than the dream tree antennas. Even though the 

branch lengths and the number of branches are different than the Double version fractal 

trees, the far field patterns for the first frequency band is same. The other interesting 

point is that the patterns of Dream tree antennas are symmetric at the first and second 

band frequencies, although the geometry of the branches of the antennas is asymmetric.  

The fractal tree antennas have same performance at various frequencies, so they 

behave like multiband antennas. Five frequency bands are observed for the fifth 

iteration of the Fibonacci and the Double version antennas. The antennas have same 

patterns at the first band frequency at each iterations, even though their resonance 

frequencies are different. The ripples in pattern figures are increasing at the higher band 

frequencies and the antennas are loosing the omnidirectional property. The fractal tree 

antennas show same behavior against various frequency bands. The main parameters 

derived from return loss figures are similar each other even though the branch lengths, 

number of branches and branch length ratios of the fractal tree antennas are different. 

The multiband behavior of the fractal tree antennas is consistent from the input return 

loss and radiation patterns points of view. 
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