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ABSTRACT 
 

  In this study, thermodynamic properties, namely retention volume, infinitely 

dilute weight fraction activity coefficient, Flory- Huggins interaction parameter, 

solubility parameters of solute and polymer, partition coefficient and diffusion 

coefficients of the various solvents in poly (methyl methacrylate co butyl methacrylate) 

(PMMA co BMA) and poly (lactide co glycolide) (PLGA) at infinite dilution of the 

solvent have been determined by inverse gas chromatography (IGC). In this technique, 

a small amount of the solvent was injected into the capillary column and its retention 

time was measured and used to calculate several polymer-solvent interaction parameters 

which are mentioned above. The solutes used in this study were methanol, ethanol, 

propanol, butanol, methyl acetate, ethyl acetate, propyl acetate, dichloromethane, 

trichloromethane, acetone, methyl methacrylate, butyl methacrylate, water for PMMA 

co BMA and acetone, dichloromethane, trichloromethane, ethyl acetate, ethyl alcohol, 

tetrahydrofuran,  water for PLGA.  

 The glass transition temperature of the polymers were determined as 106 0C 

and 42 0C  for PMMA co BMA and PLGA respectively by differential scanning 

calorimetry. Experiments were performed in the range of 150-200 0C for PMMA co 

BMA and 80-120 0C for PLGA which are above the glass transition temperature of the 

polymer.  

 The thermodynamic results, obtained from the experiments, indicated that 

trichloromethane and dichloromethane were the most suitable solutes among all the 

solvents studied for both of the polymers. The partition (K) and diffusion coefficients 

(Dp) of various solvents at infinite dilution of the solvent were calculated by using the 

model developed by Pawlisch et al. (1987). The optimum K and Dp values that best fit 

the data were found and the model predicted experimental data very well. In summary, 

IGC method is a powerful tool for the determination of thermodynamic and diffusion 

properties of solvent in polymer at infinite dilution of the solvent. Vrentas- Duda free 

volume theory was used to correlate the diffusion data and to investigate the effect of 

solvent size on diffusion process. The theory has shown to correlate diffusion data 

above the glass transition temperature very well for the PMMA-co-BMA –solvent 

system.      
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ÖZ 
 

 Bu çalı�mada, de�i�ik çözeltilerin poli (metil metakrilat ko bütil metakrilat) 

(PMMA ko BMA) ve (poli laktid ko glikolid) (PLGA) içindeki termodinamik 

özellikleri (kalı� hacmi, ihmal edilebilecek çözücü konsantrasyonda a�ırlık kesri 

aktivasyon katsayısı, Flory Huggins parametresi, çözücünün ve polimerin çözünürlük 

parametreleri), çözünürlük katsayısı ve difüzyon katsayısı, çok dü�ük konsantrasyonda 

(ihmal edilebilecek düzeyde) ters gaz kromatografisi metoduyla hesaplanmı�tır. Çok az 

miktarda çözücü kolona enjekte edilir ve bu çözücünün çıkı� zamanından yaralanarak 

yukarıdaki parametreler hesaplanır. Bu çalı�mada PMMA ko BMA kolonu için 

metanol, etanol, propanol, butanol, metil asetat, etil asetat, propil asetat, diklorometan,  

triklorometan, aseton, metil metakrilat, bütil metakrilat, su ve PLGA kolonu için  

aseton, diklorometan, triklorometan, etil asetat, etil alkol, tetrahydrofuran, su 

kullanılmı�tır.  

Polimerlerin camsı geçi� sıcaklı�ı termal analiz metoduyla PMMA ko BMA için     

106 0C ve PLGA için 42 0C olarak belirlenmi�tir. Bu nedenle çalı�ma PMMA ko BMA 

için 150-200 0C, PLGA için 80-120 0C sıcaklık aralı�ında gerçekle�tirilmi�tir. 

Deneylerden elde edilen termodinamik sonuçlar triklorometanın ve 

diklorometanın her iki polimer için de en uygun çözücüler oldu�unu göstermi�tir. 

Çözünürlük (K) ve difüzyon (Dp) katsayıları ihmal edilebilecek çözücü 

konsantrasyonunda Pawlisch ve ark. (1987) tarafından geli�tirilen kapiler kolon ters gaz 

kromatografisi modeli kullanılarak bulunmu�tur. Modeli en iyi fit eden K ve Dp 

de�erleri regresyonla hesaplanmı� ve modelin deneysel verilerle uyum içerisinde oldu�u 

gözlemlenmi�tir.Kısaca, ters gaz kromatografisi metodunun çözücülerin polimer 

içindeki termodinamik ve difüzyon özelliklerinin hesaplanması için uygun bir metot 

oldu�u belirlenmi�tir. PMMA co BMA kolonu için  difüzyon katsayılarının Vrentas ve 

Duda tarafından geli�tirilen free volume teorisiyle korelasyonu gerçekle�tirilmi� ve 

modelin iyi sonuç verdi�i saptanmı�tır.  
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CHAPTER 1 
 
 

INTRODUCTION 
 

 Molecular diffusion of solvents and monomers is important and finds wide 

range of applications in many areas. These areas include solvent devolatilization, 

residual monomer stripping, packaging, polymer synthesis, drying of paints and coating 

processes. These processes rely on transport and thermodynamic data of the polymer 

solvent system. Various techniques exist to measure these data, including gravimetric 

sorption, piezoelectric sorption, nuclear magnetic resonance, light scattering and inverse 

gas chromatography. 

 Conventional methods like gravimetric sorption rely on bulk equilibration and 

hence it is slow. Also, these methods are difficult to apply when the solute is present in 

small amount (ie. at infinite dilution of solvent). So, inverse gas chromatography 

method is being introduced. It is a fast, simple, accurate and reliable technique, feasible 

to measure small diffusion coefficients, can be applied both above and below glass 

transition temperature. Also, the changes in the solute and the temperature can be made 

readily in a chromatographic experiment.  By this method, many parameters like 

solubility parameters, interaction parameters, degrees of crystallinity, enthalpies of 

mixing, partition coefficient, diffusion constants can be determined.  

 Inverse gas chromatography (IGC) is an extension of conventional gas 

chromatography in which a non-volatile material to be investigated is immobilized 

within a gas chromatographic column. The term “inverse “ indicates that the stationary 

phase is under investigation in contrast to conventional gas chromatography. (Kaya et 

al., 1999) This stationary phase is then characterized by monitoring the passage of 

volatile probe molecules of known properties as they are carried through the column via 

an inert gas. While IGC was initially used only in the study of synthetic polymers, today 

it is used to study of synthetic and biological polymers, copolymers, polymer blends, 

glass and carbon fibers, coal and solid foods. ( Schreiber et al.,1989)  

  IGC method has been used to determine the diffusion coefficient of solvent in 

polymers by many researchers using both packed and capillary column 

chromatography. Packed column models,  firstly derived by Gray and Guillet (1973), 

had disadvantage of having a nonuniform distribution of the polymer. This resulted the 
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higher diffusion coefficients by almost 2 orders of magnitude than those expected. 

(Romdhane, 1995). Therefore, the reliability of the calculated diffusivities was clouded 

by the nonuniformity in the packed column. So; capillary column models were 

introduced to overcome this problem.. Modeling  capillary column chromatography is a 

well-developed subject, because the simple geometry frequently leads to models 

described by analytical solutions. (Pawlisch et al., 1987) 

 The early capillary column models were developed by Golay et al. (1958), 

Aris et al. (1959) and Khan et al. (1962), taking into account that dispersion occured as 

a result of coupling between radial diffusion and axial convection in gas phase including 

mathematical complexity in the resulting differential equations. Edwards and Newman 

(1977) presented a model that neglects the gas phase transport processes. But they 

didn’t generate moment equations. Noting that further simlifications to the model can 

be achieved for certain applications, Macris et al. (1979) had developed a model and 

this model had been improved by Pawlisch et al. (1985). All these models were 

developed for infinitely dilute case of the solvent. Tıhmınlıo�lu et al. (1998) had 

derived a capillary column model to determine the diffusion coefficient of solvent for 

the finite concentration range of the solvent.      

 The objective of this project is to investigate the equilibrium and diffusion 

behavior of two polymer solvent systems. In this work, the polymers under 

investigation include poly (D-L-lactide-co-glycolide) and (poly methyl methacrylate-co-

butyl methacrylate). These polymers were coated on the fused silica capillary columns 

by the static coating technique. Several solvents at different temperatures were used  to 

obtain thermodynamic and diffusion data at infinite dilute case of the solvent. Diffusion 

coefficients were obtained by the model developed by Pawlisch et. al (1987). Vrentas- 

Duda free volume diffusion theory was used to correlate the diffusion data and to test its 

ability to account for the temperature and solvent effects. 

 The thesis is organized in the following way: Chapter 2 includes the 

background and modeling of inverse gas chromatography, Chapter 3 deals with 

background on Vrentas-Duda free volume diffusion theory. Chapter 4 presents the 

experimental methods & procedure used in this study. In chapter 5 thermodynamic 

results for two polymer-solvent sytems, the results of diffusion coefficients obtained by 
capillary column inverse gas chromatography model and also the free volume 
correlation of the diffusion data are presented. Finally, Chapter 6 provides conclusions 

and future work.   
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CHAPTER 2 
 
 

THE THEORY AND MODELING OF INVERSE 

 GAS CHROMATOGRAPHY 
 

2.1 Background 

 

 Chromatography is a separation technique in which the separation of 

compounds is based on the partition or distribution of the analytes between two phases 

in a dynamic system.  

 Modern chromatography has developed almost entirely during the past fifty 

years and now widely employed for both qualitative and quantitative analysis in 

virtually every chemical field. Of all of the chromatographic techniques, gas 

chromatography is the most powerful with regard to its ability to separate very complex 

mixtures. (Grant, 1995) 

 Inverse gas chromatography is an extension of conventional gas 

chromatography in which the species of interest is the stationary phase in contrast to 

conventional gas chromatography, where the stationary phase is of interest only as far 

as its ability to separate the injected compounds concerned. (Etxeberria,1992) 

Dozens of detectors have been investigated and used during the development 

of gas chromatography. The most widely used detectors are flame ionization detector 

(FID), thermal conductivity detector (TCD), electron capture detector (ECD).  

The flame ionization detector (FID) is one of the most widely used and 

generally applicable one. The effluent from the column is mixed with hydrogen and air 

and then ignited electrically. It is a mass flow sensitive device. The flame ionization 

detector exhibits high sensitivity, large linear response range and low noise. A 

disadvantage of the FID is that the destructive of the sample.   

Thermal conductivity detector (TCD) is an early detector for gas 

chromatography, is based upon the changes in the thermal conductivity of the gas 

stream. The advantage of the thermal conductivity detector is its simplicity, its large 

linear dynamic range, its general response to both organic and inorganic species, and its 
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nondestructive character. A disadvantage of this detector type is its relatively low 

sensitivity.  

Electron capture detector (ECD) operates in much the same way as a 

proportional counter for measurement of X-radiation. The ECD is selective in its 

response, being highly sensitive toward molecules that contain electronegative 

functional groups such as halogens, peroxides, quinones, and nitro groups. It is 

insensitive toward functional groups such as amines, alcohols, and hydrocarbons. ECD 

detectors are highly sensitive and possess the advantage of not altering the sample 

significantly. On the other hand, their linear response range is usually limited to about 

two orders of magnitude.  

Gas chromatographs require a supply of carrier gas of sufficient quality and 

pressure to achieve the desired separations. Carrier gases, usually nitrogen, helium or 

hydrogen are normally supplied from compressed gas cylinders. Carrier gas should be 

inert, dry and free of oxygen to prevent degradation of the column. (Skoog, 1991) 

 Inverse gas chromatography is based on the characteristic equilibrium 

partitioning of a solute between a mobile phase and a stationary phase. As a solute 

sample passes through the column via an inert gas, resistances occur. Most important 

resistances are; 

i. The longitudinal diffusion in the gas phase 

ii. The mass transfer resistance in the polymeric stationary phase 

The longitudinal diffusion occurs because solute molecules tend to move from 

center of the band to the edges. Since the equilibrium of the solute between the 

stationary and mobile phase can not be reached instantaneously, mass transfer resistance 

in the polymeric stationary phase results. Due to the mass transfer resistance in the 

polymer phase, the material in the mobile phase is swept forward while that in the 

stationary phase lags behind. The output elution profile of the peak from the gas 

chromatogram gives the solubility or the partition coefficient and the diffusion 

coefficient for a polymer solvent system. The outlet elution profile can be used to 

determine the thermodynamic and transport properties of the system. (Surana et. al,1997 

;Tıhmınlıo�lu , 1998) 

  IGC is a fast, reliable, accurate simple and available technique which can 

measure the diffusion coefficients as small as  10-13 cm2/sec.(Huang et. al, 2001 ; 

Tıhmınlıo�lu et. al,1997 ;   Zhao et. al, 2001)  
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2.2 Thermodynamic Properties 

 

 Inverse gas chromatography is a useful method in the study of some of the 

thermodynamic properties of polymers. Only peak retention time data are needed. 

Retention time is generally expressed as retention volume (Vg
0) 

 

2.2.1 Retention Volume (Vg
0) 

 

The knowledge of the retention volume due to the dissolution of a substance 

makes it possible to calculate relevant thermodynamic characteristics of the solution 

process, namely the partition coefficient, the activity coefficient and the change in the 

excess partial molar thermodynamic functions of the solute in the given stationary 

phase. 

A plot of the logarithm of the specific retention volume, ln Vg
0, versus 

reciprocal of  absolute temperature, 1/T is linear when the polymer is either glassy or 

amorphous. Such a plot is called retention diagram and a typical one was shown in 

Figure 2.1. At temperatures below T1, retention proceeds by surface adsorption and the 

corresponding retention diagram is linear. The probe interacts only with the surface 

because the rate of diffusion of the probe throgh the polymer is too slow to permit 

significant bulk interaction. Penetration of the solute into the bulk of the polymer begins 

at the first deviation (T1) from the linear plot. In IGC studies, T1 is commonly identified 

with the glass transition temperature of the polymer, Tg. The region between T1 and T2 

is called the non-equilibrium region due to the very slow rate of diffusion of the solute 

into and out of the stationary phase. Both factors contribute to retention. As T increases, 

the increasing penetrability outweights the effects of increasing vapour pressure, so that 

retention volume increase with increasing temperature in this region. At T2, bulk-

sorption equilibrium is established and the retention diagram becomes linear at 

temperatures above T2 indicating absorption by the bulk polymer. (Romdhane, 1990; 

Etxeberria et al.,1992)  Braun and Guillet stipulate that equilibrium bulk sorption is 

achieved at least at Tg+50 0C for most polymers. Linear retention diagram should 

assume the bulk sorption equilibrium in the column in the above temperature range, that 

is a fulfilment of the precondition for thermodynamic measurements. (Tyagi et al ,1987)   
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Figure 2.1. Typical retention diagram of polymer stationary phases (Romdhane,1990) 

 

 

 Specific retention volume at 0 0C (Vg
0) is (Laub and Pecsok, 1978): 
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where VN is the net retention volume at temperature in K, w2 is the mass of polymer, tr 

and tc are the retention times of solute and marker gas, F is the flow rate of gas and J is 

the pressure drop correction factor which is negligible for capillary columns.  

 The specific retention volume is related to the partition coefficient by (Laub and 

Pecsok,1978): 
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K is the partition coefficient (ratio of the concentration of solvent in the polymer phase 

to the concentration of solvent in the gas phase), T is the column temperature and ρp is 

the density of the polymer.  

 

2.2.2 Weight Fraction Activity Coefficient (ΩΩΩΩ1
∞∞∞∞)  

 

 The weight fraction activity coefficient may be written as; (Braun and 

Guillet,1976) 

  

                                                                                                                                      (2.3)              

 

where Ω1
∞ is the infinite dilution activity coefficient, R is the ideal constant, T is the 

system pressure, M1 is the molecular weight of the solute, B11 is the second virial 

coefficient of the solute, V1 molar volume and P1 is the vapor pressure of the solute.   

 Ω1
∞ gives an idea of the polymer- solvent compatibility indicating that; 

                                                    Ω1
∞<5 good solvents 

                                                    5<Ω1
∞<10 moderate solvents 

      Ω1
∞>10 bad solvents (Kaya et. al,1999) 

 

 

2.2.3. Flory Huggins Interaction Parameter (χχχχ) 

 

 Flory Huggins interaction parameter (χ) which was used as a measure of the 

strength of interaction, and therefore as a guide in the prediction of polymer solvent 

compatibility is ralated to the weight fraction activity coefficient by the following 

equation; (Gray,1977)                                       
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where r is referred to as number of segments in polymer chain and given as;  

 
(2.5)                                                                                                                                                                                                                                  

 

Here, ρi is the density and Mi is the molecular weight of component i. 

 The values of χ greater than 0.5 represent unfavourable polymer- solvent 

interactions, while the values lower than 0.5 indicate favourable interactions. 

(Demirelli,2001)  

 
2.2.4 Solubility Parameters    

 

       The solubility parameter for the volatile solvent (δ1) and the relation 

between the polymer solubility parameter (δ2) is as follows; (Romdhane,1990) 

  

 
                                                                                                                                      (2.6) 

                                                                                                                                                                

                                                                   

                                                         
(2.7)                                                                                                                            

 

  

 After χ, V1and δ1 are known,the polymer solubility parameter at infinite 

dilution (δ2
∞) can be determined graphically by using the combination of Hildebrand 

Scatchard and Flory Huggins Eqn. (Romdhane,1999). According to Eqn (2.7.), δ2
∞ can 

be found by drawing, a plot of (δ1
2/(RT)- χ/V1) versus δ1 should yield a straight line 

with  2δ2
∞/(RT) as the slope and –(δ2

∞2/(RT)+ χ/V1) as the intercept.  
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2.3 Chromatographic Models 

 

 Various mathematical models have been developed by many researchers in 

order to determine diffusion coefficients for both packed and capillary columns.  

 

 2.3.1 Packed column inverse gas chromatography 

 

 Gray and Guillet (1973) were the first researchers that used packed column 

inverse gas chromatography to determine diffusion coefficients of some hydrocarbon 

penetrants in low-density polyethylene (LDPE). In all of the previous studies, Van 

Deemter approach was used to obtain diffusion coefficients for packed column IGC.  

The general form of Van Deemter model can be represented by;  

       

 

                                                                                                                                      (2.8)                                       

 

where H is the height equivalent to a theoretical plate and V is the mean velocity of the 

carrier gas. A, B, C are the constants which represent the contributions of eddy 

diffusion, gas, -phase molecular diffusion, and stationary phase mass-transfer 

resistances toward broadening of the peak.  

 The Van Deemter model is applicable only if the elution profiles are 

symmetric (Gaussian). In reality, the distribution of the polymer will not be uniform. 

 So, Romdhane et. al proposed a new mathematical model and developed a 

moment analysis procedure to analyze the chromatographic peaks eluting from a packed 

column.  
They derived the solvent diffusion equation as; 

  

                                                                                                                       (2.9)                        

 

v is the average linear velocity of the carrier gas, Cp and Cg0 are the resistance 

to mass transfer in the polymer and the gas phase respectively, j is the James Martin 

compressibility factor and f is the compressibility factor of Giddings.  
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                                                                                                                                    (2.10) 

                   

 

  

                            

 

 

                                                                 (2.11) 

 

 

 

where Pi and Po are the inlet and outlet pressures of the column respectively. 

                                                                         

                          (2.12) 

  

 

A is the multi-path factor; B0 is the longitudinal diffusion term, L is the length of the 

column, µ1 and µ*
2 are the first temporal moment and the central second moment of the 

elution curves, respectively, which are defined as; 

 

 

                                                                                                                                                                                                   

(2.13) 
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C (t) is the eluting concentration of solvent at the moment of t. The values of µ1 and µ*
2 

at different temperatures and velocities of the carrier gas can be obtained by numerical 

integration of the data of the elution curves according to the above equations.  

 As shown in Eq 2.9 the plot of Heff/v versus j/f should yield a straight line with 

a slope of Cp and an intercept Cg0. According to the definitions of Cp and Cg0, 

                               
 

(2.15) 

 

 

  

                                                                                                                                    (2.16)             

 

If the capacity ratio k and the film thickness df are determined, the diffusion coefficient 

of solvent in polymer Dp will be obtained from Cp. 

 The major disadvantage of the packed column is the difficulty to achieve a 

uniform polymer film thickness. So, capillary columns are introduced. Since, there is no 

packing inside the column, stationary phase is coated around the inner wall of the 

capillary, more uniform polymer thickness can be obtained.  

 

2.3.2 Capillary Column Inverse Gas Chromatography 

 

 Early capillary column models, which were developed by Golay, Aris and 

Khan evolve from the pioneer work of Taylor. He treated the problem of the dispersion 

in early capillaries. Golay (19589 has considered the effect of solute sorption on 

dispersion but he used a simplified description of the transport of solute in the stationary 

phase. Axis (1959) has treated the stationary-phase transport processes in a more 

rigorous fashion but his method requires numerical solution. Khan’s (1962) model leads 

to temporal moments. He also obtained the Laplace transform of the solution. 

 Edwards and Newman (1972) presented plug-flow model, which neglects the 

gas phase transport processes. They examined the effect that increasing stationary-phase 

transport resistance has upon the shift in the time of peak maximum with respect to the 

mean residence time of the sample. Although they use Laplace transform to solve the 
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governing differential equations, they do not generate the moment equations in their 

analysis. Afterwards, Macris introduced (1979) further simplifications to their model 

and presented a plug-flow model in which curvature of the polymer coating and axial 

transport in the stationary phase were neglected. Then Pawlisch (1985) has used this 

model and developed this model for nonuniform coatings. All these models were 

developed for infinitely dilute region. In 1998, Tıhmınlıo�lu has introduced a capillary 

column inverse gas chromatography model for the finite concentration range of the 

solvent.  

 In this project, the model developed by Pawlisch et. al (1985) was used for 

infinitely dilute region. 

 The capillary column is modeled as straight cylindrical tube with a polymer 

film deposited on the wall. The following initial assumptions were made; 
1) The system is isothermal. 

2) The carrier gas is an incompressible fluid. 

3) The carrier flow is steady laminar flow. 

4) The polymer stationary phase is homogeneous. 

5) The polymer film is constant in thickness. 

6) The polymer film thickness is much less than the radius of the column. 

7) Axial diffusion in the stationary phase is negligible. 

8) The carrier gas is insoluble in the polymer. 

9) The absorption isotherm is linear. 

10) No surface adsorption occurs at the polymer-gas interface or the polymer-

column interface. 

11) No chemical reaction occurs between the sample gas and the polymer.  

12) Diffusion coefficients are concentration independent. 

13) The injected sample enters the column as a narrow pulse so that the inlet 

concentration profile can be modeled as an impulse function.  

 With these assumptions, the continuity equations for the gas and polymer 

phase can be written as; 
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Gas phase: 

  

      (2.17) 

 

Polymer phase: 

 

          (2.18)                  

 

 

where C and C’ are the gas and stationary phase solute concentrations, Dg and Dp are the 

gas and stationary phase diffusion coefficients for the solute, z and r are the axial and 

radial coordinates, u, is the mean velocity of the carrier gas. Appropriate initial and 

boundary conditions are; 
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 t(δ ) is the Dirac delta function, C0 is the strength of the inlet pulse, K is the 

partition coefficient, R is the radius of the gas polymer interface, and τ is the thickness 
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 The solution of this model at the exit of the column in the dimensionless 

Laplace domain is: 

 

  

                                                                                                                                    (2.25)                                            

 

 

                                             (2.26) 

 

where C is the outlet concentration of the solute in the gas phase, tc=L/u, the residence 

time of the carrier gas, L is the length of the column, τ is the thickness of the polymer 

film, s is the Laplace operator, α is a thermodynamic parameter where as Γ and β 

represent the gas and the polymer phase transport properties.   

   

2.4 Evaluation of the Model Parameters 

Methods to obtain model parameters are developed and they divide into four 

main categories, moment fitting, Laplace domain fitting, Fourier domain fitting and 

time domain fitting. 

In this project, time domain fitting method is chosen since it is a direct and 

reliable method.   

 

2.4.1 Time Domain Fitting Method 

 

 Moment generating properties of Laplace transforms can be used to obtain 

analytical information on the concentration distribution.  
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                                                                                                                                    (2.29)     

            

Central moments, usually defined as higher moments than the first, can be 

calculated using the normalized moments. 

The k th central moment is; 

                                                                                                   
                                                                                                                 (2.30)                          

 
By solving these equations; 

  
                                                  (2.31)                                                     

 

 

 
                                                                           (2.32)                                                             

 

µ1 is the first temporal moment and µ2 is the second central moment. The first moment 

depends only on the thermodynamic properties where as second moment depends both 

on thermodynamic and transport properties of the polymer solvent system. 

To obtain the model parameters, the elution curve is integrated numerically to 

determine first and second moments. Then, these moments are used as initial estimates 

of partition and diffusion coefficients. By these initial estimates, Laplace transform eqn 

was then numerically inverted using an algorithm. Experimental data is regressed by the 

CCIGC model to obtain K and D which best characterize the experimental elution 

curve. 
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CHAPTER 3 
 

FREE VOLUME THEORY 
 
3.1 Free Volume Concept 
 
 
 Molecular transport by free volume was first introduced by Cohen and 

Turnbull (1959). According to their perspective, the hard sphere molecules which 

constitute an idealized liquid exist in cavities (cages) formed by nearest neighbors. 

Thus, the total volume of the liquid, therefore, could be divided into two components: 

occupied volume and free volume. Each sphere was presumed incapable of migration 

until natural fluctuations caused a hole (or vacancy) to form adjacent to its cage. The 

hole had to be sufficiently large to permit a significant displacement of a spherical 

molecule. A single step of the diffusional transport mechanism was successfully 

completed when the cavity a molecule left behind was occupied by a neighboring 

molecule. Translational motion, according to Cohen and Turnbull, did not require a 

molecule to attain a prerequisite energy level to overcome an activation energy barrier. 

Rather than creating holes by physically displacing nearest neighbors, as suggested by 

the activation energy approach, molecular transport was presumed to rely on the 

continuous redistribution of free-volume elements within the liquid. (Duda,1985) 

 In this manner, two criteria must be satisfied; i) a sufficiently large hole opens 

up next to the molecule due to a fluctuation in local density and ii) the molecule has 

sufficient energy to break away from its neighbors. The diffusional transport will be 

completed only if another molecule jumps into the hole before the next molecule returns 

to its initial position.  

 This model provides a relationship between the system free volume and the 

self-diffusion coefficient, D1, for a one component liquid. This relation can be extended 

to describe self-diffusion of a single species in a binary mixture:  

       

                                                                                                                                                                                                   

                                                                                                                                                
                                                                                                                                      (3.1) 
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V1 is the critical molar free volume required for a jumping unit of species 1 to migrate, 

and VFH is the free volume per mole of all individual jumping units.  

 In solutions of real molecules, particularly in mixtures of macromolecules, 

however, an individual molecule can be comprised of multiple jumping units, each 

covalently bonded together. Free volume holes that readily accommodate entire 

polymer molecules simply do not form. Instead, polymer chain migration is envisioned 

to result from numerous jumps of small segments along the polymer chain. To 

complicate matters further, low molecular weight molecules of sufficient size and 

flexibility are also capable of migrating by a mode, reminiscent of polymers, which 

involves coordinated motion between several parts of the molecule. To generalize the 

Cohen and Turnbull theory to describe motion in binary liquids, Vrentas and Duda used 

the following relationship,  

 

                                                                                                              
                                                                                     (3.2)                                                                        

                                                                                                                                      
 

                                                                                                                                 
         

where VFH is the specific hole free volume of a liquid with a weight fraction, w1, of 

species 1, and with jumping unit molecular weights of Mıj (ı=1 or 2) 

 Combining Eqns (3.1) and (3.2) results in an expression for solvent self 

diffusion in a polymer solution; 

                                                                                                                       

                                                                

                

                                                                                                                                      (3.3)                                                                                                                                

 

    

V1 is the specific hole free volume of component 1 required for a diffusive step and  
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 )(TV
∧

 is the specific volume of an equilibrium liquid at any temperature T. 
0∧

V  is the 

specific volume of the equilibrium liquid at 0 0K and can be estimated by the group 

contribution methods.  

 Vrentas and Duda divided free volume into two types as shown in Figure 3.1. 

One portion, redistribution energy and, thus, is not implicated in facilitating transport 

through the mixture. The remaining free volume, which is presumed to dictate 

molecular transport, is termed the hole free volume, and is redistributed effortlessly.  

   

Figure 3.1. Free Volume Concept (Duda,1983) 
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 At low solvent concentrations, a small increase in the solvent weight fraction 

will cause a very significant increase in available free volume and a correspondingly 

large increase in the diffusion coefficient. The sensitivity of the diffusion coefficient to 

the solvent concentration will increase as the temperature approaches the glass 

transition temperature of the polymer. The diffusivity becomes more independent of 

concentration as the temperature increases and as the molecular size of the solvent 

decreases. (Duda,1985)  

 Vrentas and Duda developed a relationship between the hole free volume and 

well-defined volumetric characteristics of the pure components in solution: 
       (3.6) 

  

For polymer solutions, K11 and K21 denote free volume parameters for the solvent, while 

K12 and K22 are free volume parameters for the polymer. The glass transition 

temperature of species are given by Tgi.  

γ
FHV

∧

 is the total free volume available for diffusion and defined as; 

        

                                                                                                                                      (3.7)                                                   

 
       

 In concentrated polymer solutions, the pre-exponential factor D01 is often less 

dependent on temperature than the exponential term related to free volume, in many 

cases D01 can be taken as constant.  

 With all of these modifications, the self diffusion coefficient of a solvent in a 

polymer solution becomes as; 

                                                                                                                       
                                                                 (3.8)                                                                               
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Combining Eqns (3.6) and (3.8); self diffusion coefficient of solvent in mixture at 

temperatures above the glass transition temperature of the polymer; 

 
        

                                                                                                                                      (3.9) 

                                                                                                                                                                                          

 

 

3.2 Mutual Diffusion Coefficient 

 

 Bearman (1961) and Duda et al.(1977) proposed an approximation for low 

solvent concentrations which couples D, the mutual binary diffusion coefficient, to the 

self diffusion coefficients for polymer solvent systems: 

 
                

(3.10)        

 

where µ1 is the chemical potential of the solvent.  

 

 Many thermodynamic theories are available to determine the concentration 

dependence of the solvent chemical potential. The Flory-Huggins theory has provided 

an adequate representation of polymer solution thermodynamics in many 

cases.(Flory,1942; Huggins,1942). Eqn (3.10.) is often rewritten as; 

 

      (3.11)       

 

where φ1 is the solvent volume fraction in the solution and χ is the polymer-solvent 

interaction parameter. 
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3.3 Influence of the Glass Transition  

 

 As amorphous rubbers are cooled, the motion of individual polymer chains 

become so constrained that the cooling rate becomes faster than the rate at which the 

polymer sample can volumetrically relax. The resulting non-equilibrium condition is 

referred to as the glassy state and the passage from the rubbery to glassy states is 

denoted the glass transition.  

 At T>Tg polymer chains are capable of achieving equilibrium conformations  

within commonly referenced time scales. So, extra hole free volume becomes trapped 

within the polymer as it is cooled through the glass transition. It is assumed that this 

nonequilibrium structure does not change during the self diffusion process and thus the 

average hole-free volume does not change. (Duda) 

 The fluctuations in the local density occurs both above and below Tg. So, 

Vrentas and Duda accomplished that the free volume theory should provide an adequate 

description of transport in glassy polymers. 

 Therefore, Eqn (3.8.) can be used to describe the diffusion of a solvent at 

temperatures below Tg2 and at conditions approaching zero solvent concentration. The 

equation could be written as ; 

       

(3.12) 

 
 
where VFH2g is the specific average hole free volume for the non equilibrium liquid and 

expressed as; 

 

          (3.13) 

 

V2g is the specific volume of the pure glassy polymer, V2 and VF12 are the specific 

volume at 0 K and the specific interstitial free volume of the polymer respectively. 

Vrentas and Duda expressed that α2g, expansion coefficient for the glassy state, can be 

approximated by an average value over the temperature of interest. They derived the 

following expression for the average hole free volume.  
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          (3.14)  

       

 

where λ describes the character of change of the volume contraction which can be 

attributed to the glass transition temperature and expressed as  

 

          

                                                                                                                                    (3.15) 

 

Combination of Eqn (3.15.) with  Eqn (3.12.) yields the following expression describing 

the diffusion of a trace amount of solvent in glassy polymers: 

 

     

                                                                                                                                    (3.16)                                                                                        

                

 

 λ is evaluated by regressing D0,E, and ε above the glass transition temperature. Once 

these parameters are known, λ can be determined by the aid of equation 3.16. 

 

3.4 Estimation of Free Volume Parameters 

 

 Ten independent parameters, K11/γ, K12/γ, K21-Tg1, K22-Tg2, V1, V2, χ, D0, E and 

ε are regressed from diffusion data. Assuming E zero yields reliable results. 

 V1 and V2 can be calculated by using the group contribution method. (Sugden 

and Blitz and Haward, 1970)  

 K11/γ and K21-Tg1 are determined from the viscosity data for the solvent. The 

relationship between the viscosity of the solvent and its free volume parameters are 

given by  Vrentas and Duda (1998), 

 

                                                                                                                                    (3.17)                      
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 K22-Tg2, K12/γ are calculated from Williams, Landel and Ferry (WLF) constants 

(c1, c2) that can be regressed from viscosity versus temperature data. 

 

                                                                                                                                    (3.18) 

                                                                                                                                                                                                                                                                    

                                   

                                                                                                                                                                                              

                                                                                                                      (3.19) 

  

 These constants are published for several polymers, but if the data for the 

polymer of interest is not available, then they are obtained from the experimental shift 

factor. Shift factor (aT) is denoted by the following expression,  

                                                                                                                                                         

                                                                                                                                    (3.20) 

                                                              

 

 Shift factor can be obtained by superimposing dynamic mechanical 

measurements (loss modulus, G’, and storage modulus, G’’ as a function of frequency) 

at different temperatures. 

 χ, Flory Huggins interaction parameter can be estimated by using the Flory 

Huggins equation; 

 

      (3.21)       

 

P1 and P0
1 are the solvent saturation vapor pressure, respectively. B11 is the 

second virial coefficient of the solvent, φ1, φ2 are the volume fraction of the solvent and 

the polymer respectively.    
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CHAPTER 4 

 
 

EXPERIMENTAL METHODS, PROCEDURE AND ANALYSIS 

 

 

 This chapter deals with the materials used in the experiments, the equipment, 

the experimental method and procedure. It also focuses on the method of analyzing the 

data.  

 
 
4.1 Materials 
 
 
 The capillary columns used in this study were prepared by Restek,Inc by the 

static polymer coating technique. In this technique, a coating solution was filtered and 

degassed by boiling under reduced pressure to half its original volume. The final 

concentration of the solution determines the coating thickness. The solution is cooled 

rapidly and drawn into the column under reduced pressure to hinder redissolution of 

gases. Once the column has been filled, sufficient additional liquid is drawn through the 

column to eliminate axial concentration gradients that may have formed as the column 

was being filled. One end of the column is sealed with a commercial epoxy. After the 

seal has hardened, the column is mounted in a cascade of constant temperature baths 

and connected to a vacuum system via an open end. 

 The coating solution is evaporated at nearly full vacuum. If the column has 

been properly cleaned and sealed, spontaneous boiling will be suppressed, and the 

coating solution will evaporate at a slow steady rate. The steady state drying rate is 

dependent upon the polymer, solvent, temperature, and solution concentration. 

 The polymers that were used for the coating of capillary columns were poly D-

L lactide co glycolide (PLGA) and polymethyl methacrylate co butylmethacrylate 

(PMMA co BMA). The detailed information about the capillary columns were given in 

Table 4.1. 

 All solvents, supplied by Aldrich Chemicals were used without further 

purification. 
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Table 4.1 Characterization of the capillary columns 

 
Polymer Inner Diameter 

(mm) 
Axial Length 

(m) 
Film Thickness 

(mm) 
 

PMMA co BMA � 0.53 15 6.0 
PLGA� 0.53 15 5.0 

 
 
4.2 Characterization Studies 

 

 The two copolymers were analyzed by Fourier Transform Infrared 

Spectroscopy, Differential Scanning Calorimetry and Thermal Gravimetry. 

 

4.2.1 Fourier Transform Infrared Spectroscopy (FTIR) 

 

 To determine the functional groups in the two copolymers, a Shimadzu 8601  

Fourier Transform Infrared Spectrophotometer in the range of 400-4000 cm-1 

wavelength was used. Polymer in filmform was used in FTIR analysis.   

 
4.2.2 Differential Scanning Calorimetry (DSC) 

 

 Thermal behavior of the copolymers were investigated by a Shimadzu DSC 50.  

3.8 mg PLGA sample was placed in an aluminum pan and heated at a constant rate of 

10 C0/min up to 500 C in an nitrogen atmosphere at a rate of 40 ml/min. Also 3.1 mg 

PMMA co BMA sample was analyzed at the same conditions.  

 

4.2.3 Thermal Gravimetric Analysis (TGA) 

 

 The thermal degradation of PLGA and PMMA co BMA was observed by 

thermal gravimetry (Shimadzu TGA51). A 10.79 mg sample of PLGA was heated 

continuosly at a rate of 10 C0/min to 600 C0 under nitrogen flow at a rate of 40 ml/min. 

Also, thermal degradation of PMMA co BMA of a  7.33 mg was observed at the same 

conditions.    
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4.3 Experimental Set-up 

 

  The schematic diagram of chromatographic apparatus used for the 

experiments is shown in Figure 4.1. The gas chromatograph used was Schimadzu 17A 

equipped with a thermal conductivity detector (TCD), a flame ionization detector (FID), 

an electron capture detector (ECD), on column injector, air-circulating oven. Thermal 

conductivity detector and flame ionization detector were selected as the detector and 

helium was used as the carrier gas in all experiments. The temperature of the injector 

and detector was set about 50 C above the normal boiling point to avoid condensation in 

the detector assembly. Air and methane were used as the marker gas for TCD and FID 

respectively. Small amounts of solvent were injected through the rubber septum of the 

injection port into the carrier gas using a Hamilton 1 µl syringe and air by 10 µl syringe. 

The output signal from the detector was stored and recorded in Hewlett Packard 

computer. 

 
4.4 Experimental Procedure 

 

The capillary column was installed in the oven and conditioned to remove any 

residual volatile components that may be still present in the polymer. Then, the 

temperature of the column oven, injection port, detector and the carrier gas flow rate, 

split ratio, were set. When GC has reached a stable steady state operation, a drift-

baseline was observed. So, gas chromatograph is ready to use. Afterwards, air or 

methane, used as marker gas, and a small pulse of solvent were injected into the 

column. The output elution profile was monitored and stored by a computer for the 

analysis. 

 

4.5 Data Analysis  

The raw data stored in the computer were converted into ASCII format. Then 

the data were corrected for baseline offset. After the baseline correction, the elution 

curve was integrated using a FORTRAN program to determine first and second 

moments. These moments were used as initial estimates of the partition and diffusion 

coefficients, K and Dp. The Laplace transform equation was then numerically inverted 

using  an  algorithm.  The  predicted  response curve  was then  compared  with  the  
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The residual was minimized using a nonlinear regression package to find K and Dp that 

best fit the experimental elution curve.     
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experimental elution curve. The residual was minimized using a nonlinear regression 

package to find K and Dp that best fit the experimental elution curve. The K and Dp 

values were the average values of each set that were obtained after at least 5 runs of 

each set. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 
5.1 Characterization of the polymers 

 
The characterization of the polymers were performed with Fourier Transform 

Infrared Spectroscopy, Thermal Gravimetric Analysis and Differential Scanning 

Calorimetry.   

 

5.1.1 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 

 
 FTIR analysis of PMMA co BMA was shown in Figure 5.1. The broad peak 

ranging from 1500-1000 cm-1 is due to  the stretching of the C-O (ester) bonds. The 

sharp intense peak at 1730  is referred to C-O bond. The broad band at 2900-3000  cm-1 

corresponds to C-H stretching vibrations.    

 

 

Figure 5.1. Fourier Transform Infrared Spectroscopic Analysis of PMMA-co BMA 
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 FTIR analysis of PLGA was shown in Figure 5.2. The broad peak ranging from 

1350-980 cm-1 is due to  the stretching of the C-O (ester) bonds. The peak at about 1700 

cm-1 corresponds to C=O bond. The broad band at 2800-3000  cm-1 is due to the C-H 

stretching vibrations.    

 

 

 

Figure 5.2. Fourier Transform Infrared Spectroscopic Analysis of PLGA 
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5.1.2 Thermal Gravimetric Analysis (TGA) 

 
 Thermal degradation of PMMA co BMA is shown in figure 5.3. It was 

observed that one step thermal degradation takes place. The weight loss starts at about 

250 0C and significant weight loss continues up to about 375 0C. When the temperature 

is above 400 0C, almost all of the polymer degrades.    
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Figure 5.3. Thermal Gravimetric Analysis of PMMA co BMA 

 

 Figure 5.4 shows TGA curve of PLGA copolymer. In this figure,  weight loss 

of the sample starts at 240 0C. After 290 0C the polymer loses its weight significantly 

due to the sharp decrease in the figure. When the temperature is above 400 0C, all of the 

polymer degrades. 
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Figure 5.4. Thermal Gravimetric Analysis of PLGA 

 

5.1.3 Differential Scanning Calorimetry (DSC) Analysis 

  

 Figure 5.5 and 5.6 show the differential scanning calorimetry analysis of 

PMMA co BMA and PLGA copolymers respectively. By DSC, the glass transition 

temperature of the sample can be obtained. The glass transition temperature of pmma co 

bma was determined as 106.35 oC from the sharp decrease between 109 oC and 121 oC 

in figure 5.5. Then the heat flow curve remains constant up to 280 oC and after this 

temperature a negative peak is observed due to the degradation of the polymer. The heat 

of degradation was determined as –676.48 kJ/kg from the area under the curve.  

 In figure 5.6 the differential scanning analysis of plga is shown. The sharp 

decrease which corresponds to glass transition range was between 45 oC and 55 oC and 

the glass temperature of plga was obtained as 42.53 oC. The heat flow curve which 

remains constant to the temperature of 300 oC indicates that the structure of the polymer 

does not change. When the temperature exceeds this temperature, a negative peak, 

corresponding to the degradation of the polymer was observed. The area under the 

curve gives the heat of degradation as  –680.80 kJ/kg. 
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   Figure 5.5. Differential Scanning Calorimetry Analysis of PMMA co BMA 

 

 

                 Figure 5.6. Differential Scanning Calorimetry Analysis of PLGA 
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5.2. Thermodynamic Measurements of PMMA co BMA-solvent systems 

 

 Thermodynamic properties (retention volume Vg, infinitely dilute activity 

coefficient Ω1
∞, polymer solvent interaction parameter χ, solvent and  polymer 

solubility parameters δ1 δ2) can be determined using the retention volume by inverse gas 

chromatography. 

   

5.2.1 Retention Volume 

  

 Retention volume (Vg) is a key parameter to obtain the thermodynamic 

properties of the system by inverse gas chromatography using Equation 2.1. Vg of the 

solvents for the polymethyl methacrylate co butyl methacrylate at four different 

temperatures were reported in Table 5.1.  Generally Vg decreased as temperature 

increased. This behavior exhibited that  this temperature range was in the equilibrium 

sorption as explained in section 2.1. Braun and Guillet (1976) stipulate that equilibrium 

bulk sorption was achieved at temperatures in excess of about Tg+50 oC for most 

common polymers. If temperature decreases near to the glass transition of the polymer 

non-equilibrium region starts and Vg increases with the temperature. Since the 

experiments were performed at least 5 runs of each set, an error analysis was applied. 

The results are given in Appendix B.     

 

Table 5.1.Retention volumes for PMMA co BMA-solvent systems 

  

Solutes 423 K 443 K 453 K 473 K 
methanol 4.25 3.03 2.69 1.61 
ethanol 5.22 3.86 3.35 2.08 
1-propanol 7.72 6.29 5.55 3.36 
1-butanol 12.03 10.08 7.37 5.25 
methyl acetate 4.12 3.57 2.97 1.99 
ethyl acetate 4.93 4.42 3.87 2.39 
propyl acetate 6.85 6.12 5.64 3.82 
dichloromethane 6.60 4.95 3.94 2.79 
trichloromethane 7.58 7.58 6.25 4.30 
acetone 4.50 3.65 3.10 2.19 
MMA 7.76 7.23 6.33 4.36 
BMA 21.35 20.52 16.84 11.10 
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 To investigate the temperature dependence of ln (Vg) on solute  molecular 

weight , ln Vg with respect to 1/T were plotted. In Figure 5.7, ln Vg versus 1/T were 

plotted for the alcohol series including methanol, ethanol, propanol, butanol in the 

temperature range of 423-443 K. As temperature increased, ln Vg decreased and linear 

molecular weight dependence of ln Vg was observed in Figure 5.7 which yielded the 

highest value for butanol and the lowest for methanol.   

   

 

Figure 5.7. Temperature dependence of ln Vg for the alcohols in PMMA co BMA 

                          

  

 The same behavior of ln Vg was observed for the other solvents and these 

behaviors were shown in Figure 5.8 for acetate series (methyl, ethyl, propyl acetate); in 

Figure 5.9 for dichloromethane, trichloromethane, acetone; in Figure 5.10 for methyl 

methacrylate and butyl methacrylate which were the monomers of the PMMA co BMA 

in the temperature range of 423-443 K.   
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Figure 5.8. Temperature dependence of ln Vg for the acetates in PMMA co BMA  

 

Figure 5.9. Temperature dependence of ln Vg for the dichloromethane,  

                                 trichloromethane,acetone in PMMA co BMA 

0

0.5

1

1.5

2

2.5

0.002 0.0021 0.0022 0.0023 0.0024

1/T (K-1)

ln
 V

g

dichl
trichl
acet

0

1

2

3

0.002 0.0021 0.0022 0.0023 0.0024

1/T (K-1)

ln
 V

g

metac

etac

propac



 37

 

Figure 5.10. Temperature dependence of ln Vg for the MMA,BMA in PMMA co BMA 

                        

 Retention volumes of water are obtained by thermal conductivity detector 

using air as the marker gas at temperatures 383, 403, 423 and 443 K. Figure 5.11 shows 

a perfect linear relationship of ln Vg with respect to reciprocal of temperature.  

 

 

Figure 5.11. Temperature dependence of ln Vg for water in PMMA co BMA  
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5.2.2 Weight Fraction Activity Coefficient (WFAC) 

 

 The weight fraction activity coefficients (Ω1
∞)  of the solvents in PMMA co 

BMA were determined by using Eqn (2.3.) The parameters used for calculation of Ω1
∞    

were given in Appendix A. Table 5.2 listed the activity coefficients for these solutes at 

four different temperatures (423, 443, 453, 473 K). Activity results showed that, 

trichloromethane had the lowest activity coefficient for the same temperature and 

methanol had the greatest value in a significant manner. According to our findings 

based on the 13 solvents studied in this polymer, we can say that trichloromethane is the 

best solvent for this polymer. Although, Ω1
∞ exhibited a maximum at 473 K,   it was 

found that Ω1
∞ was not a strong function of temperature.      

 

Table 5.2.  Weight Fraction Activity coefficients for PMMA co BMA-solvent systems 

 

 Ω1
∞ 

Solutes 423 K 443 K 453 K 473 K 
methanol 88.31 83.09 77.89 92.54 
ethanol 16.88 15.56 15.18 18.29 
1-propanol 10.21 8.64 8.33 10.48 
1-butanol 11.20 8.75 9.93 10.03 
methyl acetate 11.73 10.27 10.93 13.15 
ethyl acetate 13.34 10.92 10.86 13.78 
propyl acetate 16.79 10.51 10.86 12.07 
dichloromethane 4.66 4.86 5.46 6.37 
trichloromethane 4.70 3.74 3.78 4.37 
acetone 13.70 12.80 13.34 15.32 
MMA 14.18 10.82 10.60 11.59 
BMA 16.98 10.86 10.61 10.80 

                    

 

 Figures 5.12 and 5.13 show the temperature dependence of Ω1
∞ of alcohol and 

acetate series respectively. Ω1
∞ decreased as temperature increased from 423 K up to 

453 K and when temperature proceeded to 473 K a slight decrease in Ω1
∞ was observed. 

Methanol  had farly the greatest value at all temperatures. Propanol and butanol had 

closer values in the alcohol series and in the acetate series, methyl, ethyl, propyl 

acetates both had closer values especially at 443 and 453 K.   
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Figure 5.12. Temperature dependence of Ω1
∞ for alcohols in PMMA co BMA 

 

 

 

 

Figure 5.13.Temperature dependence of  Ω1
∞ for acetates in PMMA co BMA 
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 The activity coefficient behavior with respect to temperature of 

dichloromethane,  trichloromethane, acetone and methyl methacrylate, butyl 

methacrylate in PMMA co BMA were shown in Figure 5.14 and 5.15, respectively. The  

Ω1
∞ of dichloromethane and trichloromethane depict similar values resulting from their 

similar structures. Acetone had greater Ω1
∞ values when compared with these solvents. 

Monomers of PMMA co BMA, MMA and BMA have also similar values especially at 

443 and 453 K. Generally, the  Ω1
∞ of all of these solutes decreased as temperature 

increased from 423 K up to 453 K and  then slightly increased at 473 K.  

 

 

 

Figure 5.14.Temperature dependence of Ω1
∞ for dichl,trichl, acet. in PMMA co BMA 
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Figure 5.15.Temperature dependence of Ω1
∞ for MMA,BMA in PMMA co BMA 

 

            The weight fraction activity coefficient of water were determined at four 

different temperatures (383, 403, 423, 443 K) and was shown in Figure 5.16. The 

relatively high values indicated very poor solubility characteristic of water.  

 

Figure 5.16. Temperature dependence of Ω1
∞ for water in PMMA co BMA  
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5.2.3. Flory Huggins Interaction Parameter (χχχχ) 

 

 Flory Huggins interaction parameter values (χ) for 13 solvents with PMMA co 

BMA were determined by using Eqn (2.4.) at four different temperatures (423, 443, 

453, and 473 K). A close inspection of the tabulated interaction data revealed useful 

information about the degree of compatibility between PMMA co BMA and the various 

solvents used in this study. When the stability analysis was applied to the Flory Huggins 

equation, complete polymer solubility exists only when χ is less than 0.5. 

(Romdhane,1990) If the χ parameters in Table 5.3 were examined, trichloromethane 

appeared to have the minimum value for χ at all temperatures except 423 K at which 

dichloromethane had the lowest value. Thus one may predict that trichloromethane is 

the most suitable solvent for PMMA co BMA. On the other hand, considering all of the 

solvents studied in this study, methanol had the highest χ value at all temperatures. This 

indicated that methanol had very poor solubility characteristic among the studied 

solvents for PMMA co BMA showing no affinity to this polymer as menifested by their 

relatively high χ values and the decreasing values of Ω1
∞ with increasing temperature.   

Previously the highest Ω1
∞ values also proved that methanol was the unsuitable solvent 

for PMMA co BMA.  In the alcohol series, propanol has the minimum value but still all 

of its values at these temperatures are higher than 0.5. The monomers of PMMA co 

BMA gave similar interaction parameters and the values were higher than 0.5 at all 

temperatures. Figures 5.17 to 5.20 show the temperature dependence of interaction 

parameters in PMMA co BMA for alcohols; acetates; dichloromethane, 

trichloromethane, acetone and monomers respectively.    

 

 

 

 

 

 

 

 

 



 43

 

 

Table 5.3. Interaction parameters of PMMA co BMA-solvent systems 

 

 χ 
Solutes 423 K 443 K 453 K 473 K 
methanol 3.00 2.88 2.79 2.89 
ethanol 1.29 1.16 1.10 1.22 
1-propanol 0.76 0.54 0.47 0.62 
1-butanol 0.92 0.64 0.74 0.71 
methyl acetate 1.05 0.85 0.88 0.98 
ethyl acetate 1.16 0.91 0.87 1.04 
propyl acetate 1.40 0.890 0.90 0.95 
dichloromethane 0.47 0.45 0.54 0.60 
trichloromethane 0.64 0.36 0.35 0.44 
acetone 1.03 0.90 0.90 0.95 
MMA 1.30 0.99 0.95 0.99 
BMA 1.47 0.99 0.95 0.94 

 
                                                                  

 

 

Figure 5.17.Temperature dependence of χ for alcohols in PMMA co BMA 
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Figure 5.18.Temperature dependence of χ for acetates in PMMA co BMA 

                                 

 

 

 

Figure 5.19.Temperature dependence of  χ for dichl,trichl, acet. in PMMA co BMA                     
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Figure 5.20.Temperature dependence of χ for MMA,BMA in PMMA co BMA 

                  Flory Huggins interaction parameter (χ) of water at four different 

temperatures, (383, 403,423,443 K) were determined. As temperature increased, 

solubility parameter of water decreased but all the values at these temperatures were 

farly higher than 0.5. So, water showed no affinity to this polymer as shown by their 

high χ values and one may predict that water was not a suitable solute for PMMA co 

BMA. The temperature dependence was shown in Figure 5.21 in which  χ versus 

temperature was plotted.  

Figure 5.21. Temperature dependence of χ for water in PMMA co BMA 
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5.2.4. Solubility Parameter (δδδδ) 

 

 Solute solubility parameters were computed through Equation 2.6. In this eqn, 

the molar volume (V1) and latent heat of vaporization were (∆Hv) obtained for each 

solute at appropriate temperatures from Chemcad software and given in Appendix A. 

The calculated values of δ1 were compiled in Table 5.4.  

 

Table 5.4 Solute solubility parameters (δ1) 

δ1(J/cm3)1/2 

    423 K 443 K 453 K 473 K 
methanol 21.97 20.22 19.22 16.83 
ethanol 20.17 18.72 17.90 15.92 
1-propanol 18.07 16.75 16.01 14.33 
1-butanol 17.69 16.59 16.00 14.71 
methyl acetate 13.93 12.67 11.95 10.19 
ethyl acetate 13.60 12.56 11.98 10.65 
propyl acetate 13.72 12.87 12.41 11.39 
dichloromethane 14.31 12.94 12.16 10.29 
trichloromethane 14.43 13.48 12.95 11.78 
acetone 14.37 13.05 12.29 10.42 
MMA 14.39 13.55 13.10 12.13 
BMA 14.24 13.68 13.39 12.77 

    

 A least- square analysis of plots of (δ1
2/(RT)- χ/V1) versus δ1 was carried out 

to obtain the PMMA co BMA solubility parameters at 423, 443, 453, 473 K. As 

discussed in section 2.2.4, these plots give a slope of 2δ2
∞/(RT) and an intercept of        

–(δ2
∞2/(RT) + χV1). Figure 5.22 to 5.25 illustrate plots for various solvents in PMMA 

co BMA at these temperatures. Derived values of  δ2
∞ for 423, 443, 453, 473 K were 

15.22, 13.81, 13.37, 11.79 (J/cm3)1/2   respectively.  

 By comparing the solvent solubility parameters δ1 listed in Table 5.4 with the 

estimated PMMA co BMA solubility parameter, one could distinguish between solvents 

and non solvents. Good examples are dichloromethane and trichloromethane which 

possess the closest solubility parameters to that of PMMA co BMA , indicating their 

strong solvency power, just as predicted through the other interaction parameters. 

Alcohols, especially methanol, on the other hand, with their higher solubility parameters 

were poor solvents of PMMA co BMA, in agreement with the conclusions based on the 

other parameters.  
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Figure 5.22.Estimation of PMMA co BMA solubility parameter at 423 K  

 

 

Figure 5.23. Estimation of PMMA co BMA solubility parameter at 443 K  

                                 

                                                     

 

δ2=15.22 (J/cm3)1/2

0.00

0.04

0.08

0.12

12 14 16 18 20 22

δ1

(
12 /(

R
T

)-
/V

1)

δ2=13.81 (J/cm3)1/2

0.00

0.04

0.08

0.12

12 14 16 18 20
δ1

(
12 /(

R
T

)-
/V

1)



 48

 

Figure 5.24.Estimation of PMMA co BMA solubility parameter at 453 K  

 

 

Figure 5.25. Estimation of PMMA co BMA solubility parameter at 473 K 
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 The solubility parameters of water in PMMA co BMA were determined at 

383, 403,423, 443 as 44.73, 43.86, 42.91, 41.88 J/cm3. Since these results were so far to 

the polymer solubility parameter, water can be considered as a bad solvent for PMMA 

co BMA. This is in agreement with the interaction parameters results.  

 In general, the prediction of the degree of compatibility of the various solvents 

with PMMA co BMA using the solubility concept agreed well with that obtained 

through the stability analysis approach by using  χ parameter.  
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5.3. Diffusion Measurements of PMMA co BMA-solvent systems 

 

 The partition and diffusion measurements of various solvents were performed 

in PMMA co BMA over a temperature range of 423-473 oK which was above the glass 

transition temperature of the polymer (Tg=379 oK). The diffusion and partition 

coefficients of methanol, ethanol, propanol, butanol, methyl acetate, ethyl acetate, 

propyl acetate, dichloromethane, trichloromethane, acetone, methyl methacrylate, butyl 

methacrylate at 403, 423, 443 and 453 K were determined by flame ionization detector 

and also water by thermal conductivity detector  at 393, 403,423 and 443 K.  

 Figures 5.26 to 5.30 show the theoretical and experimental elution profiles of 

methanol, ethyl acetate, dichloromethane and methyl methacrylate and also water at 443 
oK respectively. The points and solid lines in these figures represent the experimental 

and theoretical data respectively. The partition (K) and diffusion coefficients (Dp) were 

obtained by regressing these curves.  The good agreement between experimental and 

CCIGC model accurately describes the chromatographic process.   

 

 

 

Figure 5.26.Comparison of experimental and theoretical elution profiles for PMMA co  

                     BMA- methanol system at 443 oK 
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Figure 5.27.Comparison of experimental and theoretical elution profiles for PMMA co  

                     BMA- ethyl acetate system at 443 oK 

 

 

Figure 5.28.Comparison of experimental and theoretical elution profiles for PMMA co  

                     BMA- dichloromethane system at 443 oK 
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Figure 5.29.Comparison of experimental and theoretical elution profiles for PMMA co  

                     BMA-methyl methacrylate system at 443 oK 

 

 

Figure 5.30.Comparison of experimental and theoretical elution profiles for PMMA co  

                     BMA-water system at 443 oK 
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 The values of infinitely dilute partition coefficients (K) of methanol, ethanol, 

propanol, butanol, methyl acetate, ethyl acetate, propyl acetate, dichloromethane, 

trichloromethane, acetone, methyl methacrylate, butyl methacrylate at 423, 443, 453 

and 473 K  and also water  at 383, 403, 423 and 443 K at infinite dilution were tabulated 

in Tables 5.5 and 5.6. respectively. These table exhibited that partition coefficient 

increased as temperature decreased indicating that the solvent solubility was inversely 

related to the temperature of the system. At the same temperature butyl methacrylate 

had the highest partition coefficient where as methanol had the minimum value among 

all the solvents. The change in partition coefficient was greater at lower temperatures. 

The standard deviation in K were calculated and are given in Appendix B.  

 

Table 5.5. Partition coefficients for solvent- PMMA co BMA system 

K   
  423 K 443 K 453 K 473 K 

Methanol 6.34 4.60 3.96 2.96 

Ethanol 8.47 6.12 5.10 3.89 

1-Propanol 14.41 10.34 8.78 6.31 

1-Butanol 24.38 16.73 13.97 9.89 

Methyl acetate 7.74 5.66 4.17 3.68 

Ethyl acetate 10.40 7.56 6.40 4.79 

Propyl acetate 15.70 11.49 9.43 7.24 

Dichloromethane 10.55 7.78 6.47 5.07 

Chloroform 15.75 12.93 10.20 7.96 

Acetone 7.90 6.08 5.01 3.89 

MMA 17.94 12.68 10.73 7.87 

BMA 50.97 35.44 28.82 19.76 
      

 

Table 5.6. Partition coefficients for water- PMMA co BMA system 

 

T(K) K 
383 12.68 
403 10.64 
423 8.35 
443 6.06 



 54

 To investigate the dependence of K on temperature, K with respect to 1000/T 

were plotted. The functionality of log (K) with temperature is linear for all solvents 

studied at temperatures above the glass transition of the polymer as expected and found 

by other researchers (Tıhmınlıo�lu, 1998; Romdhane, 1994; Pawlisch 1987).  For the 

alcohols butanol had the highest partition coefficient and methanol had the lowest 

partition coefficient since the molecular weight of butanol was greater than methanol. 

Figure 5.31. shows temperature dependence of alcohol series. Acetates reflected the 

same behavior for the molecular weight dependence of partition coefficient as shown in 

Figue 5.32. Propyl acetate had the highest K value at all temperatures among the 

acetates supporting this idea. Figure 5.32 showed the partition coefficient of acetates 

with respect to inverse temperature. 

 

 

 

 

Figure 5.31. Temperature dependence of K for alcohols-PMMA co BMA system 
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Figure 5.32. Temperature dependence of K for acetates-PMMA co BMA system 

 

 Partition coefficients for dichloromethane, trichloromethane and acetone were 

plotted in Figure 5.33. Among these, trichloromethane had the greatest value and 

acetone had the lowest at all temperatures. Temperature dependence of K of the 

monomers of this polymer (MMA and BMA) was shown in Figure 5.34. BMA had farly 

higher values than MMA. Altough molecular structure of these monomers were similar 

the molecular weight difference caused K values to differ from each other.  Water also 

depicted a perfectly linear relationship with the inverse temperature supporting the other 

solute behavior of the system.  
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Figure 5.33. Temperature dependence of K for dichloromethane, trichloromethane,  

                      acetone-PMMA co BMA system 

 
Figure 5.34. Temperature dependence of K for MMA, BMA- PMMA co BMA system 
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Figure 5.35 Temperature dependence of K for water- PMMA co BMA system 

 
 The  reported K and Dp values were the average values of each set. So, an error 

analysis was performed. When standard deviation were calculated, it was in the range of 

0.06 –0.4. The analyses of two samples (acetone, methyl acetate) were shown in Figures 

5.36 and 5.37. These figures exhibited that the results were reproducible.  

      
Figure 5.36. Error analysis for acetone- PMMA co BMA system 
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Figure 5.37. Error analysis for methyl acetate- PMMA co BMA system 

 
 

 The diffusion coefficients (Dp) of methanol, ethanol, propanol, butanol, methyl 

acetate, ethyl acetate, propyl acetate, dichloromethane, trichloromethane, acetone, 

methyl methacrylate, butyl methacrylate at 423, 443, 453 and 473 K  and also water  at 

383, 403, 423 and 443 K were determined at infinite dilution and tabulated in Table 5.7. 

The diffusion coefficients were correlated with the free volume theory to analyze the 

temperature dependence of diffusion coefficients.. The free volume parameters for 

PMMA co BMA were determined using the data reported by Tonge et. al (2001). Tonge 

et. al (2001) calculated the pure PMMA and PBMA free volume parameters using 

viscosity versus temperature data. Free volume parameters of PMMA co BMA were 

calculated using the mixing rule and found as K22= 93.44 K, K12/γ2=1.4x10-4 cm3/gK 

V2
*=0.7659 cm3/g (Tonge, 2001). All diffusion data were regressed using two fitting 

parameters, Do and ξ, using non linear regression analysis. 
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Table 5.7. Diffusion coefficients for solvent- PMMA co BMA system 

 

  Dp(cm2/sec) 

  423 K 443 K 453 K 473 K 

Methanol 2.20 x10-7 5.64 x10-7 8.05x10-7 1.38x10-6 

Ethanol 4.36 x10-8 1.34 x10-7 2.08x10-7 4.91x10-7 

1-Propanol 1.48 x10-8 5.25 x10-8 8.62x10-8 2.41x10-7 

1-Butanol 8.20 x10-9 3.38 x10-8 6.24x10-8 1.94x10-7 

Methyl acetate 2.54 x10-8 8.48 x10-8 1.39x10-7 3.41x10-7 

Ethyl acetate 1.25 x10-8 4.53 x10-8 8.43x10-8 2.34x10-7 

Propyl acetate 7.24 x10-9 2.94 x10-8 4.64x10-8 1.45x10-7 

Dichloromethane 3.34 x10-8 9.81 x10-8 1.86x10-7 4.42x10-7 

Chloroform 8.70 x10-9 2.81 x10-8 6.12x10-8 1.27x10-7 

Acetone 2.37 x10-8 7.90 x10-8 1.36x10-7 3.49x10-7 

MMA 7.01 x10-9 2.86x10-8 5.25x10-8 1.63x10-7 

BMA 2.55 x10-9 1.17x10-8 2.30x10-8 8.68x10-8 

 
 The comparison of experimental diffusion coefficients and the correlated 

values with the free volume theory are shown in Figures 5.38 to 5.42. These figures 

pointed out that besides temperature effect on D, molecular size had an effect on 

diffusion coefficient. As molecular size increased, diffusion coefficient decreased.  

 In literature, to our knowledge, no one studied the diffusion or thermodynamic 

properties of PMMA co BMA polymer-solvent system. Diffusion data of MMA and 

BMA in PMMA co BMA were studied using the pulsed field gradient (PFG)- NMR 

sorption data of MMA and BMA in pure PMMA and PBMA polymers by Tonge et. al 

(2001). They obtained the diffusion coefficients at 298 K and 313 K. The diffusion 

coefficients of MMA in PMMA at 298 & 313 K were in the range of 3x10-9 m2/s –

0.5x10-9 m2/s in the polymer weight fraction of 0-0.4.  The diffusion coefficients of 

MMA in PBMA was in the range of 3.5x10-9 m2/s -1x10-9 m2/s at 298 K and  6x10-9 

m2/s -1x10-9 m2/s  at 313 K in the polymer weight fraction of 0-0.4. In the same polymer 

weight fraction, Dp of BMA in PBMA was in the range of 1.5x10-9 m2/s –0.4x10-9 m2/s 

at 298 K and  1.3x10-9 m2/s –0.5x10-9 m2/s  at 313 K.  
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 Rodriguez et. al (2003) studied water vapor sorption in PMMA and found 

water diffusion coefficients in PMMA as 1.6 x10-8 cm2/s – 2.3x10-8 cm2/s at high 

activities at 35 0C. This temperature was lower than the temperature range performed 

and higher values were obtained in this study. 

 Arnould (1989) studied diffusion of various solvents (methanol, acetone, 

methyl acetate, ethyl acetate, propyl acetate) in pure PMMA and they have obtained 

diffusion coefficients in the range of 1.29 x10-7-7.22 x10-10 cm2/s at 433-343 K.  

   

 

 

 
Figure 5.38 Temperature dependence of Dp for alcohols-PMMA co BMA system 

 

 

 

 

     ♦  experimental
 free volume correlation

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

4 5 6 7 8

1000/(K22-Tg2+T) 

D
p(

cm
2 /s

ec
)

metoh 
etoh
propoh
butoh



 61

 
Figure 5.39. Temperature dependence of Dp for acetates-PMMA co BMA system 

 

 

 
 

Figure 5.40.Temperature dependence of Dp or dichl.trichl.acet.-PMMA co BMA system 
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Figure 5.41. Temperature dependence of Dp for MMA, BMA- PMMA co BMA system 

 

 

 

Figure 5.42. Temperature dependence of Dp for water- PMMA co BMA system 
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 The free volume parameters of PMMA co BMA-solvent systems were 

tabulated in Table 5.8. From Table 5.8., one can also see that with increasing molecular 

size of the solvent molecule, Do and ξ also increased. The dependence of the parameter 

ξ on solvent molar volume at 0 0K for all solvents was presented in Figure 5.43. The 

data are well described by a straight line. A least squares fitting gives;  

)0(~0
1Vm=ξ  

the reciprocal of slope corresponds to the critical molar volume of PMMA co BMA 

jumping unit. The higher the ξ can be attributed to the its geometry or its lower 

flexibility.   

 

Table 5.8 Free Volume Parameters 

 

Solutes Do(cm2/s) ξ  
methanol 2.28x10-04 0.17 
ethanol 3.54x10-04 0.23 
1-propanol 4.59x10-04 0.26 
1-butanol 1.06x10-03 0.29 
methyl acetate 4.11x10-04 0.24 
ethyl acetate 6.96x10-04 0.27 
propyl acetate 4.63x10-04 0.28 
dichloromethane 5.35x10-04 0.24 
trichloromethane 2.38x10-04 0.26 
acetone 5.37x10-04 0.25 
MMA 8.44x10-04 0.29 
BMA 1.20x10-03 0.33 
water 7.01x10-05 0.07 
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Figure 5.43. ξ versus molar volume V1
0 (0 K) for PMMA co BMA- solvent system 

 

 The predictive capability of the theory was also tested using experimental data 

measured at 443, 453, 473 K. Diffusion coefficients were predicted using the free 

volume parameters and were in good agreement with the experimental data at 423 K. 

The results (Dpmethanol(pred)=2.52x10-7 cm2/sec , Dpmethanol(exp) = 2.20x10-7 cm2/sec; 

Dpethanol(pred)=4.83x10-8 cm2/sec,  Dpethanol(exp)=4.36x10-8 cm2/sec;  Dpacetonel(pred)=1.83x10-8 

cm2/sec,  Dpacetone(exp)=2.37x10-8 cm2/sec) indicated that correlation obtained from 

Vrentas and Duda free volume theory can be accurately used to predict diffusivity of 

solvents in PMMA co BMA. 
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5.4 Thermodynamic Results of PLGA-Solvent Systems 

 

 Thermodynamic measurements (retention volume Vg, infinitely dilute weight 

fraction activity coefficient Ω1
∞, polymer solvent interaction parameter χ, solvent and  

polymer solubility parameters δ1 δ2), partition coefficients (K)  and diffusion 

coefficients (Dp) of solvents were determined for PLGA –solvent systems by inverse 

gas chromatography. The measurements were performed at four different temperatures 

(353, 363, 373, 393 K) for acetone, dichloromethane, trichloromethane, ethyl acetate, 

ethyl alcohol, tetrahydrofuran and water.  

  

5.4.1 Retention Volume (Vg) 

 

 Retention volume (Vg) of the solvents which is a key parameter and basic step 

for thermodynamic properties were determined according to Eqn. (2.1.). The values 

were tabulated in Table 5.9. As temperature increased retention volume decreased 

exhibiting the equilibrium sorption occured in this temperature range as explained in 

Section 2.2.1. Trichloromethane had the highest value and tetrahydrofuran had the 

lowest value for all temperatures. Ln Vg versus 1/T was plotted for all the solvents and 

the results were shown in Figures 5.44. and 5.45. Retention volume depicted linear 

behavior with the inverse temperature which again showed that Vg for acetone and 

dichloromethane were similar to each other.  

 

Table 5.9. Retention volumes for PLGA -solvent systems 

 

  Vg (cm3/g) 
Solutes 353 K 363 K 373 K 393 K 
acetone 19.79 16.07 12.25 7.06 
dichloromethane 19.73 14.69 11.52 7.00 
trichloromethane 34.39 22.33 18.10 10.12 
ethyl acetate 15.15 14.63 12.36 6.90 
ethyl alcohol 17.22 13.51 10.76 4.13 
THF 13.52 12.08 10.20 6.88 
water 25.58 18.33 13.47 7.72 
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Figure 5.44. Temperature dependence of ln Vg for the acet., dichl., trichl., etoh in PLGA  

 

 

 

 

Figure 5.45. Temperature dependence of ln Vg for the Etac., THF, water in PLGA 
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5.4.2 Weight Fraction Activity Coefficient (WFAC) (ΩΩΩΩ1
∞∞∞∞) 

 

 The weight fraction activity coefficient of the solvents which were determined 

from Eqn (2.3.) were listed in Table 5.10. Water had the highest value among all the 

solvents with very high values again showing the poor solvent property for this 

polymer. Since  Ω1
∞<5  for good solvents which was indicated in Section 2.2.2., 

trichloromethane was found to be the most suitable solvent for this polymer. Also, 

dichloromethane had close values to 5 and may be considered a suitable solute for this 

polymer after trichloromethane. Ω1
∞ showed weak dependence to temperature except 

for water which exhibited a decrease in  Ω1
∞ as temperature increased. The temperature 

dependence of the weight fraction activity coefficient of the solvents were shown in 

Figures 5.46 to 5.48.   

 

 

 

 

Table 5.10.  Weight Fraction Activity coefficients for PLGA-solvent systems 

 

  Ω1
∞ 

Solutes 353 K 363 K 373 K 393 K 
acetone 12.43 11.98 12.52 14.47 
dichloromethane 5.31 5.73 5.98 6.87 
trichloromethane 4.11 4.97 4.89 5.85 
ethyl acetate 20.54 16.12 14.76 16.76 
ethyl alcohol 35.18 31.86 29.15 43.06 
THF 19.94 17.40 16.34 16.01 
water 135.46 131.53 127.52 120.36 
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Figure 5.46. Temperature dependence of Ω1
∞ for acet., dichl., trichl. in PLGA  
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Figure 5.47. Temperature dependence of Ω1
∞ for etac., etoh, thf in PLGA 

 

 

0

5

10

15

20

25

30

350 360 370 380 390 400

T (K)

Ω
1∞

 

acet.

dichl.

trichl.



 69

 

Figure 5.48. Temperature dependence of Ω1
∞ for water in PLGA 

 

 

 

5.4.3. Flory Huggins Interaction Parameter (χχχχ) 

 

 Flory Huggins interaction parameter of 7 solvents at four different 

temperatures (353, 363, 373, 393 K) were determined by using Eqn (2.4.) and the values 

were tabulated in Table 5.11. Since χ of a solute should be less than 0.5 to be a good 

solvent for the polymer according to this criteria, it can be expressed as none of the 

solvents were good solvents for this polymer. But, among them, trichloromethane can 

be considered as the most suitable one with its close values to 0.5. After 

trichloromethane, dichloromethane can also be considered a suitable solvent for PLGA. 

On the other hand, considering all of the solvents studied in this study, water had the 

highest χ value at all temperatures. This indicated again and confirmed with the other 

thermodynamic results and  water was found the worst solvent among the studied 

solvents for PLGA showing no affinity to this polymer. Figures 5.49. and 5.50. show 

the temperature dependence of interaction parameters in PLGA for acetone, 

dichloromethane, trichloromethane; ethyl acetate, ethyl alcohol, tetrahydrofuran, water 

respectively.    
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Table 5.11. Interaction parameters of PLGA-solvent systems 

 

  χ 
Solutes 353 K 363 K 373 K 393 K 
acetone 0.98 0.92 0.94 1.05 
dichloromethane 0.64 0.70 0.73 0.82 
trichloromethane 0.52 0.69 0.66 0.81 
ethyl acetate 1.62 1.36 1.25 1.34 
ethyl alcohol 2.04 1.92 1.82 2.18 
THF 1.58 1.43 1.35 1.30 
water 3.68 3.64 3.61 3.54 

   

 

 

 

 

Figure 5.49.Temperature dependence of χ for acetone, dichl., trichl. in PLGA 
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Figure 5.50.Temperature dependence of χ for etac, etoh, THF, water in PLGA 

 

 

5.4.4. Solubility Parameter (δδδδ) 

 

 Solute solubility parameters were computed through Equation 2.4. In this eqn, 

the molar volume and latent heat of vaporization were obtained for each solute at 

appropriate temperatures from Chemcad. The calculated values of δ1 were compiled in 

Table 5.12. 

  

Table 5.12. Solute solubility parameters (δ1) 

 

solutes δ1 (J/cm3)1/2 
  353 K 363 K 373 K 393 K 
acetone 17.76 17.35 16.92 15.99 
dichloromethane 18.05 17.58 17.10 16.07 
trichloromethane 17.16 16.81 16.45 15.69 
ethylacetate 16.50 16.14 15.75 14.95 
ethylalcohol 24.06 23.58 23.08 22.01 
thf 17.32 16.96 16.59 15.81 
water 45.92 45.53 45.14 44.30 
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 A least- square analysis of plots of (δ1
2/(RT)- χ/V1) versus δ1 was carried out 

to obtain the PLGA solubility parameters at 353, 363, 373, 393 K. These plots give a 

slope of 2δ2
∞/(RT) and an intercept of –(δ2

∞2/(RT) + χV1). Figures 5.51. to 5.54. show 

solubility parameters for different solvents at four temperatures (353, 363, 373, 393 K) 

respectively. Solubility of PLGA at four different temperatures were determined and the 

values were 21.86, 21.28, 20.78, 19.77 (J/cm3)1/2   respectively.  

 If solvent solubility parameters, δ1 listed in Table 5.12. were compared with 

the estimated PLGA solubility parameter, dichloromethane and trichloromethane 

possessed the closest solubility parameters to that of PLGA, indicating their strong 

solvency power, just as predicted through the other interaction parameters. Water, on 

the other hand, with its higher solubility parameters was a poor solvent of PLGA, in 

agreement with the conclusions based on the other parameters. 

 

 

 

 

Figure 5.51.Estimation of PLGA solubility parameter at 353 K  
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Figure 5.52. Estimation of PLGA solubility parameter at 363 K  
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Figure 5.53. Estimation of PLGA solubility parameter at 373 K  
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Figure 5.54. Estimation of PLGA solubility parameter at 393 K  

 

 The solvents studied in this study were used by many researchers. Liu et. al 

(2003) prepared PLGA microspheres using dichloromethane as the solvent. Engelberg 

et. al (1991) prepared  PLGA films and films were cast in dichloromethane at room 

temperature. Price at. al (1996) used PLGA as the biodegradable carrier and gentamicin 

as the antiobiotic. They mixed PLGA with gentamicin sulfate in a dichloromethane 

solution. Karp et. al (2002) prepared PLGA films and they dissolved PLGA  in 

trichloroform solution. So, the  literature studies supported our results indicating that 

trichlot,romethane and dichloromethane are the most suitable solvents for PLGA.      
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5.5. Diffusion Measurements of PLGA-solvent systems 

 

 The partition and diffusion measurements of acetone, dichloromethane, 

trichloromethane, ethyl acetate, ethyl alcohol, tetrahydrofuran and water were 

performed in PLGA by thermal conductivity detector over a temperature range of 353-

393 oK which was above the glass transition temperature of the polymer (Tg= 315 oK).  

 Figures 5.55 and 5.56 show the theoretical and experimental elution profiles of 

ethyl alcohol at 373 K and ethyl acetate at 363 K respectively. The points and solid lines 

in these figures represent the experimental and theoretical data respectively. The 

partition (K) and diffusion coefficients (Dp) were obtained by regressing these curves. 

These curves exhibited that the model described the data well.  

 

 

 

Figure 5.55. Comparison of experimental and theoretical elution profiles for PLGA  

                         ethyl alcohol system at 373 K 
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Figure 5.56. Comparison of experimental and theoretical elution profiles for PLGA-  

                         ethyl acetate system at 363 K 

 

 The values of infinitely dilute partition coefficients (K) of  acetone, 

dichloromethane, trichloromethane, ethyl acetate, ethyl alcohol, tetrahydrofuran and 

water at 353, 363, 373, 393 K were tabulated in Table 5.13. This table exhibited that 

partition coefficient increased as temperature decreased indicating that the solvent 

solubility was inversely related to the temperature of the system. Among all the 

solvents, trichloromethane had the highest partition coefficient value where as ethyl 

alcohol had the lowest one.  

 

Table 5.13. Partition coefficients for PLGA- solvent systems 

 

Solutes 353 K 363 K 373 K 393 K 
Acetone 38.22 30.12 23.49 15.28 
Dichloromethane 33.30 25.73 21.90 13.51 
Trichloromethane 53.62 39.95 31.72 20.48 
Ethyl acetate 39.37 32.58 25.79 16.45 
Ethyl alcohol 32.07 25.41 20.19 12.71 
Tetrahydrofuran 35.03 28.98 24.22 16.42 
Water 46.46 35.55 28.09 18.04 

 

K=32.58
 Dp=1.39E-08 cm2/sec

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1.5 2.5 3.5 4.5 5.5

t/tc

C
L

/C
ou

experimental
CCIGC model



 77

 Temperature dependence of the partition coefficients for the solvents were 

plotted in Figure 5.57 and 5.58. The functionality of log (K) with temperature was linear 

for all the solvents studied at temperatures higher than the glass transition of the 

polymer as expected and found by other researchers. (Tıhmınlıo�lu, 1998; Romdhane, 

1994; Pawlisch 1987) 

 

 

 

 

 

Figure 5.57. Temperature dependence of K for acet., dichl., trichl. – PLGA system 
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Figure 5.58. Temperature dependence of K for etac., etoh., thf, water. – PLGA system 

 

 The infinitely dilute diffusion coefficients of acetone, dichloromethane, 

trichloromethane, ethyl acetate, ethyl alcohol, tetrahydrofuran and water at 353, 363, 

373, 393  Dp were tabulated in Table 5.14. Water had the highest diffusion  coefficient  

values (5.3x10-7-2.1x10-6 cm2/s) at all temperatures and tetrahydrofuran had the lowest 

Dp value (4.4 x10-9-1.2x10-7 cm2/s). The temperature dependence of Dp were plotted for 

these solvents and shown in Figure 5.59. and 5.60. These figures pointed out that 

diffusion coefficient was dependent on temperature since Dp increased as temperature 

increased. 

 

Table 5.14. Diffusion coefficients of PLGA- solvent system 

 

  Dp (cm2/sec) 
Solutes 353 K 363 K 373 K 393 K 
Acetone 7.01x10-9 2.23x10-8 6.83x10-8 2.57x10-7 
Dichloromethane 1.09x10-8 3.08x10-8 9.11x10-8 3.49x10-7 
Trichloromethane 6.02x10-9 1.42x10-8 3.72x10-8 1.76x10-7 
Ethyl acetate 5.10x10-9 1.39x10-8 3.71x10-8 1.59x10-7 
Ethyl alcohol 1.03x10-8 1.39x10-8 7.28x10-8 3.08x10-7 
Tetrahydrofuran 4.40x10-9 1.02x10-8 2.78x10-8 1.19x10-7 
Water 5.31x10-7 8.43x10-7 1.25x10-6 2.09x10-6 
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Figure 5.59. Temperature dependence of Dp for various solvents in PLGA 

 

 

Figure 5.60. Temperature dependence of Dp for various solvents in PLGA 
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CHAPTER 6 

 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES 
 
 Polymer- solvent interactions, partition and diffusion coefficients at infinite 

dilution of solvent were obtained for various solvents in two different polymers by 

inverse gas chromatography (IGC). Since IGC technique is rapid, simple, reliable; this 

tecnique has been preferred by many authors to obtain polymer- solvent interactions. In 

this study, both thermodynamic and diffusion measurements were performed by this 

technique.  

 The polymers used in this study were poly (methyl methacrylate co butyl 

methacrylate) (PMMA co BMA) and poly (lactide co glycolide) (PLGA). PMMA co 

BMA had a composition of 85% (by weight) MMA, 15% BMA and PLGA had a 

composition of 65% (by weight) D-L lactic acid, 35% glycolic acid. The 

characterization results showed that the PMMA co BMA had glass transition 

temperature of 106 0C, degradation temperature of 250 0C and PLGA had glass 

transition temperature of 42 0C, degradation temperature of 240 0C. Since the 

equilibrium bulk sorption was achieved at temperatures in excess of about Tg+50 oC for 

most common polymers, the experiments were performed in the range of 150-200 0C 

for PMMA co BMA and 80-120 0C for PLGA which are above the glass transition 

temperature and below the degradation temperature of the polymer.  

 Thermodynamic results obtained in this study were used revealed useful 

information about the degree of compatibility between the polymers and the various 

solvents used. The weight fraction activity coefficient Ω1
∞, Flory Huggins interaction 

parameters χ of various solvents in PMMA co BMA and in PLGA were determined and 

trichloromethane and dichloromethane were obtained as the most suitable solvents for 

both of the polymers. Water showed no affinity for these polymers at all with its high 

Ω1
∞ and χ values. The solubility parameters of both solvents (δ1) and polymers (δ2) 

were also estimated. The prediction of the degree of compatibility of the various 

solvents with PMMA co BMA and PLGA using the solubility concept agreed well with 

that obtained through the stability analysis approach by using  χ parameter.  

 The mathematical model derived by Pawlisch et al. (1987) for calculating the 

partition and diffusion coefficients of solvents in polymers at infinite dilute of solvent 
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was used.  The optimum K and Dp values that best fit the data were well found and the 

model predicted the experimental data well.  The effect of temperature on partition and 

diffusion coefficients was investigated and it was observed that as temperature 

increased partition coefficient decreased where as diffusion coefficient increased. 

Vrentas –Duda free volume theory was used to correlate the diffusion coefficients and 

free volume parameters of various solvents in PMMA co BMA polymer were calculated 

by regression method. The results indicated that the diffusion data were correlated by 

the free volume theory.   

 Investigations done in this thesis have led to some suggestions for future work. 

For instance, other applications of inverse gas chromatography can be considered. The 

laboratory equipment could be modified to extend finite concentration of the solute in 

the stationary phase or conventional techniques (sorption) could be applied to these 

polymers to measure diffusion coefficients. Vrentas – Duda free volume theory can be 

used to correlate the diffusion data in finite concentration range.  So, both temperature 

and concentration effect on diffusion and partition coefficients could be observed. Also, 

the free volume parameters of PLGA polymer could be calculated and the diffusion data 

of solvents in this polymer could be investigated.   
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APPENDIX A 

RAW DATA 

 
Table A.1. Saturation Pressure (P1) of solvents for PMMA co BMA 

 

  P1 sat (atm) 
Solutes 423 K 443 K 453 K 473 K 
methanol 2.78 4.39 5.43 8.09 
ethanol 9.62 15.55 19.41 29.25 
1-propanol 8.43 13.61 16.95 25.38 
1-butanol 3.78 6.28 7.91 12.09 
methyl acetate 11.33 16.53 19.72 27.55 
ethyl acetate 6.78 10.13 12.21 17.33 
propyl acetate 3.61 5.58 6.82 9.95 
dichloromethane 15.64 22.10 26.01 35.44 
trichloromethane 9.19 13.32 15.85 22.01 
acetone 11.33 16.50 19.67 27.35 
MMA 3.39 5.14 6.23 8.97 
BMA 0.69 1.20 1.55 2.47 

 

Table A.2. Second Virial Coefficient (B11) of solvents for PMMA co BMA 

 

  B11(cm3/mol) 
Solutes 423 K 443 K 453 K 473 K 
methanol -258.82 -236.88 -227.60 -211.73 
ethanol -357.58 -324.46 -310.47 -286.59 
1-propanol -483.50 -436.34 -416.44 -382.52 
1-butanol -652.84 -585.83 -557.60 -509.52 
methyl acetate -378.89 -356.94 -347.58 -331.45 
ethyl acetate -512.69 -478.50 -463.98 -439.03 
propyl acetate -686.74 -633.90 -611.53 -573.24 
dichloromethane -278.81 -267.24 -262.26 -253.59 
trichloromethane -349.40 -331.78 -324.24 -311.20 
acetone -380.69 -359.60 -350.59 -335.06 
MMA -634.39 -589.12 -569.93 -537.03 
BMA -1339.14 -1201.31 -1143.29 -1044.56 
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Table A.3. Molar Volume (V1) of solvents for PMMA co BMA 

 

  V1(cm3/mol) 
Solutes 423 K 443 K 453 K 473 K 
methanol 49.79 52.42 54.02 58.17 
ethanol 69.49 72.93 75.02 80.40 
1-propanol 94.82 100.09 103.34 111.96 
1-butanol 109.46 113.58 115.93 121.47 
methyl acetate 101.04 107.26 111.10 121.31 
ethyl acetate 122.32 128.75 132.56 142.00 
propyl acetate 140.05 146.10 149.55 157.62 
dichloromethane 81.89 86.90 89.96 97.92 
trichloromethane 98.29 102.90 105.57 111.98 
acetone 94.58 100.54 104.19 113.76 
MMA 128.90 134.20 137.18 143.96 
BMA 184.50 189.93 192.88 199.33 

 

 

Table A.4. Heat of Vaporization (Hv) of solvents for PMMA co BMA 

 

  Hv (J/kmol) 
Solutes 423 K 443 K 453 K 473 K 
methanol 27564348 25116357 23722125 20407006 
ethanol 31798728 29252313 27795922 24316776 
1-propanol 34473493 31754485 30260637 26925349 
1-butanol 37755896 34931949 33432397 30215310 
methyl acetate 23126166 20909545 19632149 16528242 
ethyl acetate 26128121 23985666 22789323 20035534 
propyl acetate 29898323 27879662 26785410 24375624 
dichloromethane 20300783 18242792 17075188 14307694 
trichloromethane 23984119 22372925 21483071 19472389 
acetone 23038600 20814066 19505495 16291008 
MMA 30209644 28323362 27311949 25117347 
BMA 40926549 39226276 38331950 36439853 
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Table A.5. Thermodynamic data of water for PMMA co BMA 

 

 P1 sat (atm) B11(cm3/mol) V1(cm3/mol) Hv (J/kmol) 
383 K 1.41 -211.40 18.57 40327315 
403 K 2.65 -185.23 18.70 39312637 
423 K 4.67 -164.87 18.84 38209578 
443 K 7.78 -148.80 19.00 37005892 

  

 

Table A.6. Saturation Pressure (P1)of solvents for PLGA 

 

  P1 sat (atm) 
Solutes 353 K 363 K 373 K 393 K 
acetone 2.12 2.81 3.67 5.98 
dichloromethane 3.42 4.42 5.63 8.75 
trichloromethane 1.78 2.34 3.04 4.91 
ethyl acetate 1.09 1.49 2.00 3.41 
ethyl alcohol 1.06 1.55 2.20 4.19 
THF 1.54 2.04 2.67 4.35 
water 0.47 0.69 0.99 1.95 

 

 

Table A.7. Second Virial Coefficient (B11) of solvents for PLGA 

 

  B11(cm3/mol) 
Solutes 353 K 363 K 373 K 393 K 
acetone -509.37 -483.22 -460.37 -422.64 
dichloromethane -347.68 -333.83 -321.69 -301.51 
trichloromethane -456.37 -434.69 -415.72 -384.37 
ethyl acetate -724.01 -680.83 -643.18 -581.20 
ethyl alcohol -565.54 -522.77 -485.55 -424.53 
THF -494.00 -469.93 -448.89 -414.11 
water -266.46 -245.50 -227.29 -197.48 
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Table A.8. Molar Volume (V1) of solvents for PLGA 

 

  V1(cm3/mol) 
Solutes 353 K 363 K 373 K 393 K 
acetone 80.90 82.43 84.07 87.74 
dichloromethane 70.34 71.63 73.02 76.12 
trichloromethane 86.78 88.12 89.55 92.68 
ethyl acetate 106.82 108.60 110.50 114.68 
ethyl alcohol 61.49 62.39 63.36 65.50 
THF 88.08 89.39 90.78 93.82 
water 18.39 18.45 18.51 18.63 

 

 

Table A.9. Heat of Vaporization (Hv) of solvents for PLGA 

 

  Hv(J/kmol) 
Solutes 353 K 363 K 373 K 393 K 
acetone 28445350 27821620 27159706 25697514 
dichloromethane 25847804 25160992 24445986 22917285 
trichloromethane 28493957 27927087 27338834 26089014 
ethyl acetate 32029930 31292887 30526979 28895274 
ethyl alcohol 38522132 37700738 36842351 34995736 
THF 29355706 28731929 28086293 26720492 
water 41706175 41264098 40804845 39830332 

 

 

 

 

 

 

 

 

 

 

 

 



 89

 

APPENDIX B 

ERROR ANALYSIS 

 
Table B.1. Error Analysis of Vg for PMMA co BMA 

 

  Standard deviation  
Solutes 423 K 443 K 453 K 473 K 
methanol 0.07 0.03 0.06 0.03 
ethanol 0.09 0.08 0.04 0.05 
1-propanol 0.14 0.09 0.07 0.06 
1-butanol 0.43 0.18 0.06 0.08 
methyl acetate 0.09 0.08 0.01 0.02 
ethyl acetate 0.17 0.06 0.03 0.09 
propyl acetate 0.29 0.07 0.18 0.06 
dichloromethane 0.23 0.07 0.11 0.03 
trichloromethane 0.38 0.58 0.11 0.12 
acetone 0.29 0.05 0.07 0.05 
MMA 0.40 0.13 0.08 0.02 
BMA 0.88 0.80 0.29 0.12 

 
Table B.2. Error Analysis of K for PMMA co BMA 

 

  Standard deviation  
Solutes 423 K 443 K 453 K 473 K 
methanol 0.07 0.03 0.09 0.06 
ethanol 0.29 0.12 0.09 0.08 
1-propanol 0.24 0.06 0.17 0.14 
1-butanol 0.24 0.07 0.09 0.16 
methyl acetate 0.08 0.08 0.02 0.19 
ethyl acetate 0.61 0.21 0.06 0.06 
propyl acetate 0.24 0.13 0.36 0.04 
dichloromethane 0.26 0.18 0.17 0.04 
trichloromethane 0.93 0.30 0.14 0.37 
acetone 0.47 0.18 0.13 0.04 
MMA 0.52 0.24 0.08 0.03 
BMA 2.19 0.43 0.23 0.19 
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Table B.3. Error Analysis of water of Vg & K for PLGA 

 

Standard deviation 

  Vg K 
383 K 0.07 0.08 
403 K 0.05 0.12 
423 K 0.02 0.28 
443 K 0.04 0.04 

 

 

Table B.4. Error Analysis of Vg for PLGA 

 

  Standard deviation 
Solutes 353 K 363 K 373 K 393 K 
acetone 0.49 0.23 0.05 0.21 
dichloromethane 0.32 0.06 0.56 0.16 
trichloromethane 0.46 0.34 0.04 0.05 
ethyl acetate 0.14 0.15 0.87 0.17 
ethyl alcohol 0.05 0.18 0.46 0.11 
THF 0.99 0.09 0.40 0.05 
water 0.04 0.03 0.02 0.05 

 

Table B.5. Error Analysis of K for PLGA 

 

  Standard deviation 
Solutes 353 K 363 K 373 K 393 K 
acetone 0.25 0.32 0.26 0.39 
dichloromethane 0.34 0.15 0.58 0.46 
trichloromethane 0.15 0.23 0.12 0.19 
ethyl acetate 0.14 0.11 0.04 0.36 
ethyl alcohol 0.69 0.04 0.11 0.15 
THF 0.57 1.05 0.1 0.12 
water 0.24 0.09 0.06 0.02 

 

 

 
 


