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ABSTRACT 
 

 
Polychlorinated biphenyls (PCBs) are human made toxic chemicals which were 

first synthesized in 1920s.  Because of their inverse effects on environment and human 

health the usage and production of PCBs were banned in 1970s in United States and all 

over the Europe.  PCBs are prone to long- range atmospheric transport and this makes 

them ubiquitous in the environment.  Due to the importance of long-range transport of 

PCBs, their concentrations have been measured in many different countries. 

In order to determine the atmospheric concentration levels of total (gas+particle) 

PCBs (ΣPCB) and 41 PCB congeners in İzmir, two sampling programs were designed.  

20 successive day and nighttime (called short-term), and 40 a year around representing 

particle and gas phase samples (called long-term) were collected from May 2003 to 

March 2004.  Effects of temperature, wind speed and direction, and seasonal change on 

atmospheric concentrations of PCBs were investigated.  

In the short-term period, average ΣPCB(41) concentration was ~520 pg m-3, while 

congener base total (gas+particle) polychlorinated biphenyl concentrations ranged from 

0.37  0.65 pg m-3 (PCB 158) to 305.07  86.01 pg m-3 (PCB 33).  Similarly, in the 

long-term analysis average ΣPCB(41) concentration was found as 419 pg m-3, while the 

minimum and maximum concentrations of congener base total (gas+particle) PCB 

concentrations ranged from 0.11  10.58 pg m-3 (PCB 70) to 919.69  281.18 pg m-3 

(PCB 208).  Short-term average total concentration was higher than a year average total 

concentration.  The reason could be the revolatilization of these compounds from the 

contaminated surfaces due to the increase in temperature in early summer/late spring.  

Generally, the levels of PCB were within the ranges previously measured at different 

sites. 

The temperature dependence of gas-phase atmospheric concentrations of PCBs 

was investigated by using Clausius-Clapeyron relationship.  The results were 

statistically significant (p<0.05) for 12 PCB congeners (PCB 74, 70, 101, 99, 87, 

82/151, 153, 138, 158, and 128).  In addition to temperature, the effect of wind speed 

and direction was investigated using multiple linear regression analysis.  Results of the 

multiple regression analysis indicated that wind speed was a statistically significant 
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factor for PCB 18 and PCB 17, which have low molecular weights and tendency to be 

in gas phase. 

In the long-term data analysis with respect to Clausius-Clapeyron relationship 13 

congeners (PCB 18, 17, 31, 28, 33, 74, 70, 95, 99, 153, 138, 187, and 209) were 

statistically significant (p<0.05) with temperature.  Introduction of wind speed and wind 

direction to the Clausius-Clapeyron equation did not resulted in a better correlation.  

The statistically significant correlated congeners were attributed as they were originated 

from short-range transport.  The other congeners with lower R2 values and poor 

correlations exhibited that their sources were originated from long-range transport. 

The only positive slope was obtained for PCB 209 and this could be attributed to 

the influence of its ongoing source.  Since the usage and production of PCBs were 

banned, the source may be the exchange processes from buildings, indoor air, soils, etc., 

to overlying atmosphere. 
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ÖZ 
 

Poliklorlu bifeniller (PCBler), ilk olarak 1920 yılında insanlar tarafından 

sentezlenmiş toksik bir kimyasal maddedir.  İnsan ve çevre sağlığı üzerindeki zaralı 

etkilerinden dolayı üretimleri ve kullanımları 1970’lerde Amerika’da ve bunu takiben 

tüm Avrupa ülkelerinde yasaklanmıştır.  Uzun mesafeli taşınıma maruz kalmaları 

nedeniyle çevrede fazlaca yayılmış durumdalardır ve seviyelerinin bilinmesi için çeşitli 

ülkelerde PCB konsantrasyonları hala ölçülmektedir. 

PCB’lerin toplam (gaz+partikül) atmosferik konsantrasyonlarının İzmir’deki 

ölçümleri için iki ayrı ölçüm programı planlanmıştır.  20 adet gece ve gündüz (kısa 

dönem), 40 adet de gündüz (uzun dönem) olmak üzere Mayıs 2003 ile Mart 2004 

tarihleri arasında yaklaşık bir yıllık örnekler toplanmıştır.  Sıcaklığın, rüzgar hızı ve 

yönünün ve mevsimsel farklılıkların atmosferik konsantrasyonlar üzerindeki etkileri 

incelenmiştir. 

Kısa dönemde, ortalama toplam (41 çeşit PCB için) konsantrasyon 520 pg m-3 

olarak belirlenmiştir ve, her bir PCB bazında incelendiğinde toplam (gaz+partikül) 

konsantrasyonlar 0.37  0.65 pg m-3 (PCB 158) ile 305.07  86.01 pg m-3 (PCB 33) 

aralığında değiştiği gözlenmiştir.  Benzer şekilde uzun dönemde ortalama toplam 

konsantrasyon 419 pg m-3 olarak belirlenmiştir ve minimum ve maksimum toplam 

(gaz+partikül) konsantrasyon değerleri, her bir PCB için incelendiğinde, 0.11  10.58 

pg m-3 (PCB 70) ile 919.69  281.18 pg m-3 (PCB 208) aralığında değiştiği görülmüştür.  

Ortalama toplam konsantrasyonlar üzerinden karşılaştırma yapıldığında ölçülen 

değerlerin farklı bölgelerde daha önce yapılmış çalışmalarda rapor edilen minimum ve 

maksimum değerler arasında oldukları gözlenmiştir. 

PCB’lerin atmosferdeki gaz fazdaki konsantrasyonlarının sıcaklıkla ilişkisi 

Clausius-Clapeyron eşitliği kullanılarak araştırılmıştır.  Araştırma sonuçlarına göre 12 

çeşit poliklorlu bifenilin (PCB 74, 70, 101, 99, 87, 82/151, 153, 138, 158, and 128) gaz 

fazdaki konsantrasyonunun sıcaklıkla ilişkisinin istatistiksel olarak önemli olduğu 

(p<0.05) bulunmuştur.  Sıcaklığın gaz konsantrasyonlarındaki etkisine ek olarak, rüzgar 

yönü ve hızının etkisi de lineer regresyon analizi kullanılarak araştırılmıştır.  Regresyon 
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analizi katsayıları göstermiştir ki rüzgar hızı ölçülen PCB’lerin en hafifleri olan PCB 18 

ve PCB 17 için önemli, rüzgar yönü ise sadece PCB 18 için önemli bir faktördür. 

Uzun dönem analizlerinde ise Clausius-Clapeyron ilişkisine göre 13 çeşit 

PCB’nin (PCB 18, 17, 31, 28, 33, 74, 70, 95, 99, 153, 138, 187, ve 209) gaz fazdaki 

konsantrasyonunun sıcaklıkla ilişkisinin istatistiksel olarak önemli olduğu (p<0.05) 

bulunmuştur.  Rüzgar hızı ve rüzgar yönünün etkileri de incelendiği modele göre önemli 

bir etki görülmemiştir.  Sıcaklıkla önemli bir ilişkide olan PCB’lerin kısa mesafeli 

taşınımdan kaynaklandıkları söylenebilir.  Korelasyon katsayıları daha düşük olan ve 

sıcaklıkla önemli bir etkileşim göstermeyen PCB’ler için ise uzun mesafeli taşınımın 

daha baskın olduğu söylenebilir. 

Tek pozitif eğim veren PCB 209 için de aktif durumda olan bir kaynak olduğu 

düşünülebilir.  PCB üretimi ve kullanımı yasak olduğundan bu kaynak, binalardan, iç 

ortam havasından, topraktan, vs. havaya transport prosesleriyle geçişi olarak 

değerlendirilebilir.  
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CHAPTER 1 

 

INTRODUCTION 

 

Semivolatile organic compounds (SOCs) have been found to be widely 

distributed in the atmosphere because of their moderate vapor pressure, low solubility 

and low reactivity.  Polychlorinated Biphenyls (PCBs) are one of the group in SOCs and 

are relatively ubiquitous in the environment due to common usage in the past.  

The atmosphere is a major pathway for the transport, deposition, degradation 

and cycling of past and present SOCs.  Because of their chlorine content, PCBs are 

toxic, persistent in the environment and have the capability of bioaccumulation through 

the food chain (Breivik et al., 2004).  The persistency of these chemicals plays a major 

role in the transport; especially they are subject to long-range transport.  Most of the 

persistent organic pollutants (POPs) were detected in the remote areas like Arctic 

(Bidleman et al. 1990) and Antarctica (Montone et al. 2003).  Due to their long-range 

transport potential and harmful effects on man and wildlife, PCBs are subject to 

international agreements (the 1998 UNECE Protocol on Persistent Organic Pollutants 

(POPs) signed by 35 governments in Europe and North America and the European 

Community, Stockholm Convention on Persistent Organic Pollutants signed by 151 

governments).  Objective of these agreements is to control, reduce or eliminate 

discharges, and emissions of environmental burdens of POPs. 

It has been also shown that the ambient concentrations of SOCs are affected by 

seasonal temperature variations and long-range transport (Sofuoglu et al., 2001; Lee and 

Jones, 1999; Cortes et al., 1998; Hoff et al., 1998; Honrath et al., 1997; Hillery et al., 

1997; Wania et al., 1998).  As the temperature rises, air concentrations increase as a 

result of (re)volatilization from previously contaminated surfaces such as soil, 

atmospheric particles, water, and vegetation.  Short-term studies have indicated that 

SOCs also respond to short-term temperature changes, hence resulting in rapid 

movement between environmental compartments (i.e. diurnal cycling) (Lee et al., 1998, 

2000).  Advection and ongoing sources are other important factors affecting the 

variation of ambient SOCs. 
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 Because of the short and long range transport and cycling behavior of these 

compounds, PCB levels have been widely measured around the world.  However, there 

is no available study on atmospheric concentrations of these compounds in Turkey.  The 

motivation of this research is to obtain knowledge and to begin creating a database on 

the levels of these compounds in the suburban atmosphere. 

İzmir metropolitan city is the center of a highly industrialized area by the 

Aegean Sea shoreline of Turkey.  İzmir is situated in a basin surrounded by mountain 

series of approximately 1000-1500 m height with only the west end open to the Aegean 

Sea.  The climate in the area is dominantly Mediterranean with warm and rainy winters, 

hot and dry summers.  The major air movements over the area are mainly from 

northerly directions.  The city with the 2.7 million population has sizeable economic, 

industrial, and agricultural activities emitting high quantities of air pollutants.  The use 

and production of polychlorinated biphenyls (PCBs) was banned/restricted in Turkey as 

in many countries due to persistent contamination of the environment. 

The objective of this study is to obtain the concentration profiles of 

polychlorinated biphenyls in the ambient air of İzmir.  Specifically the objectives of this 

research are: 

 

 To determine atmospheric gas and particle phase concentrations of PCBs in the 

ambient air of  İzmir. 

 

 To determine day/night and seasonal variation.  

 

 To determine the dominating transport mechanism (short or long-range) based 

on the temperature dependency point of view. 

 

This thesis is divided into five different chapters.  The first chapter is an 

overview and objectives of the study.  The second chapter reviews concepts and 

previous studies in the literature.  The third chapter presents site description and 

sampling program, sample preparation and analysis, and quality assurance/quality 

control applications. 
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Results and discussions are presented in the fourth chapter.  In the fifth chapter 

includes the conclusions drawn from this research and recommendations for possible 

future work are given. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter introduces the sources, ambient concentrations, phase distribution 

and environmental fate of polychlorinated biphenyls (PCBs) as they are reported in the 

literature. 

 

2.1. Chemical Structure and Properties of PCBs  

 

PCBs are a group of synthetic organic chemicals consisting of two aromatic 

rings of carbon atoms binded with carbon-carbon bonds.  The general chemical formula 

for PCBs is: 

 

C12H10-n Cln 

 

with n indicating the number of chlorine substitutions.  PCBs can have 1 to 10 chlorine 

atoms substituting for hydrogen atoms on the biphenyl rings (Figure 2.1).  According to 

the number and position of the chlorine atoms on the biphenyl ring, PCBs can have 209 

possible chemical structures designated as congeners.  For instance, if a biphenyl ring 

has two chlorine atoms at 2 and 4’ position, the name becomes 2, 4’-dichlorobiphenyl 

based on the number of chlorine atoms per biphenyl molecule.  PCBs are subdivided 

into groups such as thrichlorobiphenyls which have exactly three chlorines in the 

structure while tetrachlorobiphenyls have four chlorines.  According to the International 

Union of Pure and Applied Chemistry (IUPAC) system of nomenclature, the 209 PCB 

congeners are arranged in ascending numerical order (e.g. PCB 1, PCB 2, etc.). 

Between 1930 and 1977, they were used widely and marketed under the name of 

Aroclors.  Each Aroclor has a code number (e.g., Aroclor 1242, Aroclor 1248, etc.), in 

which the first two digits indicate that the parent molecule is biphenyl and the last two 

digits refer to the chlorine content by weight percent in the mixture (LaMP 2000).  For 

example Aroclor 1242 is 42 % chlorine by weight.  The other trade-names of PCBs 
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depending upon the manufacturer are; Apirolio, Ascarele, Clophen, Delor, Fenclor, 

Inerteen, Kanechlor, Phenoclor, Pyralene, Pyranol, Pyroclor, Sovtol and etc. 

 

Figure 2.1.  General Structure of the Biphenyl Ring System 

 

The superior chemical properties of PCBs made them desirable in use until their 

environmental effects were noticed.  For example, PCBs are nonflammable, chemically 

and thermally stable chemicals.  They also are miscible with organic compounds, and 

have high dielectric constants and high absorption capacity.  These properties can vary 

for every individual congener due to the chlorine content.  As the degree of chlorination 

increases, PCBs become less soluble, less volatile, less biodegradable (more persistent) 

and more toxic.  In contrast to these properties, their hydrophobicity and sorption 

tendency increases with the degree of chlorination (Vallack et al. 1998, Jones and Voogt 

1999, LaMP 2000).  Examples of some PCB structure, important physical and chemical 

properties are given in Table 2.1.  The examples are given to represent each chlorine 

group and all values are given at 20-25 °C temperature range. 

The most important property of PCBs is their persistency in air, water, and soil.  

PCBs have low water solubility and low vapor pressures that allow them to partition 

among water, soil, and the atmosphere.  They have a high potential for bioaccumulation 

and when released to the environment they are sorbed strongly on the organic matter.  

They are hydrophobic and lipophilic in nature, so they can accumulate on the fatty 

tissues, and enter the food chain.  PCBs are very resistant and do not degrade easily.  

The high thermodynamic stability of PCBs makes the degradation difficult (Erickson 

1997).  However, under certain conditions, PCBs may be destroyed by chemical, 

thermal, and biological processes (Erickson 1997).  With intentional degradation, PCBs 

can be generally degraded or destroyed by high temperature or by catalytic degradation.  

The unintentional degradation, on the other hand, may be proceeded by the 

environment.  Chemical degradation occurs by photolysis with hydroxyl radicals 
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(Anderson et al. 1996, Wania et al. 2002) while microbial degradation occurs 

anaerobically or aerobically (Totten et al. 2002).  However, microbial degradation is 

quite slow and does not have a significant role in the degradation of PCBs.  Therefore, 

PCBs are considered as one of several truly global environmental pollutants, including 

mercury, lead, and many pesticides (Erickson 1997).  In fact, atmosphere is the primary 

mode of global distribution of PCBs.  For instance, Eisenreich et al. (1981) estimated 

that the atmospheric pathway was responsible for 60-90% of PCB input into the Great 

Lakes region. 

 

Table 2.1.  Chemical and physical properties of some PCBs 

 
Congener 

name 

 
Chlorine place in the 

structure 

 
Molecular 

Weight     
(g/gmole) 

 
Subcooled 

liquid 
solubility 

(g m-3) 

Subcooled 
liquid 
vapor 

pressure 

(Pa) 

 
Henry’s 
Constant 

(m3Pa/mole) 

PCB 1 2 188.66 5.5 2.5 70.1 

PCB 14 3,5 223.11 NA 0.12 NA 

PCB 18 2,2’,5 257.56 0.4 0.22 92.21 

PCB 52 2,2’,5,5’ 292.01 0.03 0.002 47.59 

PCB 87 2,2’,3,4,5’ 326.46 0.004 0.0023 24.81 

PCB 128 2,2’,3,3’,4,4’ 360.91 0.0006 0.00034 11.91 

PCB 171 2,2’,3,3’,4,4’,6 395.36 0.002 0.00025 5.4 

PCB 202 2,2’,3,3’,5,5’,6,6’ 429.81 0.0003 0.0006 38.08 

PCB 206 2,2’,3,3’,4,4’,5,5’,6 464.26 0.00011 0.000012 82.2 

PCB 209 2,2’,3,3’,4,4’,5,5’,6,6’ 498.71 0.000001 0.00003 20.84 

NA: not available 

 

The vapor pressures of PCBs indicate that they generally exist in the vapor phase 

in the atmosphere.  It is reported that 87-100% of PCBs are found in the gas phase 

(LaMP 2000; Axelman and Broman 2001; Mandalakis et al. 2002; Yeo et al. 2003a).  

Their melting temperatures and boiling temperatures range between 98-181°C and 275-

450°C, respectively.  Additionally, they are semivolatile and toxic chemicals.  
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According to Environmental Protection Agency (EPA) they are classified as probable 

human carcinogens (group B). 

 
2.2. Sources of Polychlorinated biphenyls (PCBs) 
 

PCBs were first synthesized in the late 1920s.  The industrial production started 

in 1929 and reached at maximum level in 70’s.  Due to their physical and chemical 

properties, PCBs were used widely in many industrial processes.  They had been used 

as dielectric fluids, coolants, and lubricants in transformers and large capacitors, as 

insulating fluids in electrical equipment and surface coatings.  In addition, they were 

used as pesticide extenders, plasticisers in sealant, as heat exchange fluids, cutting oils, 

flame retardant, dedusting agents, laminating and impregnating agents, waxes, additives 

in cement and plaster, and in plastics, paints, inks, fluorescent lights, adhesives and 

carbonless copy paper, and old immersion oils. 

As a result, sources for PCBs can be (a) continued use and disposal of PCB-

containing products (such as transformers etc., that were manufactured before 1977), (b) 

recycling of PCB-contaminated products (such as carbonless copy paper), (c) 

combustion of PCB-containing materials, (d) release of PCBs from waste storage and 

disposal.  Old consumer goods and household waste might also contain PCBs and their 

use and disposal are unregulated, (e) spill of PCBs during handling or transport, and (f) 

minor quantities emitted from various combustion processes (Vallack et al. 1998, Jones 

and Voogt 1999, Axelman and Broman 2001, EPA, Farrington et al. 2001, Breivik et al. 

2004).  The contaminated aquatic media can also act as sources of persistent pollutants 

(POPs) in the atmosphere.  For example, it has been shown that such compounds were 

readily volatilized from water, as shown in the Great Lakes in North America (Achman 

et al. 1994, Hornbuckle et al. 1993) and Lake Baikal in Russia (Iwata et al. 1995), and 

also from contaminated soil in United Kingdom (Harrad et al. 1994). 

Although the usage and manufacturing of PCBs were banned in many countries, 

they are reported to be manufactured in Russia and might also be manufactured in North 

Korea (Farrington et al. 2001).  It is estimated that 2 million tones of PCBs have been 

produced world-wide since 1930s (Tanabe 1988, WHO 1993, Breivik et al. 2004). 
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2.3. Health Effects of PCBs 

 

Even though PCBs are no longer manufactured, people can still be exposed to 

them due to the volatilization from the old contaminated areas.  Many older 

transformers and capacitors containing PCBs can be in use for 30 years or more.  Old 

fluorescent lighting fixtures and old electrical devices and appliances, such as television 

sets and refrigerators may contain PCBs if they were made before PCB use was banned.  

The devices that contain PCBs could leak with age and cause also a source of skin 

exposure to PCBs. 

Exposure to PCBs can be in three ways; inhaling the contaminated air, ingesting 

the contaminated food, and dermal contact to contaminated surfaces.  Health effects of 

PCBs on human beings was obtained from the studies of people exposed in their 

workplace by the consumption of contaminated food (the Yusho incident, 1968, and the 

Yu-Cheng incident, 1979) (Agency for toxic substances and disease registry(ATSDR) 

2000).  They have revealed that PCBs contributed adverse health effects on humans, but 

which congeners could have caused the effects could not be determined.  The most 

commonly observed health effects on people exposed to large amounts of PCB are skin 

problems such as acne and rashes.  PCBs may also cause irritation of the nose and 

lungs, depression and fatigue, liver, thyroid dermal and ocular changes, immunological 

alterations, neurodevelopment changes, reduced birth weight, reproductive toxicity, and 

cancer.  The US Department of Health and Human Services (DHHS) has concluded that 

PCBs may reasonably be anticipated to be carcinogens.  In addition, the EPA and the 

International Agency for Research and Cancer (IARC) have determined that PCBs are 

probably carcinogenic to humans (ATSDR 2000). 

Similarly, animal studies showed that they had mild liver damage with some 

observed deaths and developing anemia, acne-like skin conditions, and liver, stomach, 

and thyroid gland injuries, changes in immune system, behavioral alterations, and 

impaired reproduction after consumption of PCB contaminated food.  Rats that ate food 

containing high levels of PCBs for two years developed liver cancer (ATSDR 2000). 
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2.4. Ambient Concentrations of Polychlorinated Biphenyls (PCBs) 

 

 Last two decades, the development in analytical techniques of PCB isolation and 

measurement made it possible to detect very low levels of concentrations.  Then 

increased attention was given to the local concentration measurements of these 

compounds due to the fact that they have been detected in remote areas. 

Ambient air concentrations of PCBs were measured in urban (Granier and 

Chevreuil 1997, Mandalakis et al. 2002, Totten et al. 2002), suburban and rural 

(Mandalakis et al. 2002, Yeo et al. 2003a) areas throughout the world.  

The concentrations in remote areas like Arctic and Antarctic have always been 

concerned.  The presence of PCBs in the Arctic atmosphere was taught to be the result 

of a combination of processes.  These include long-range transport, revolatilization from 

previously contaminated surfaces (snow, ice and water bodies) (Hung et al. 2001).  The 

five year concentration trend of Canadian Arctic was studied and seen that PCB 

concentrations have not declined significantly over the period of 1993-1997 (Hung et al. 

2001).  They worked with 102 PCB congeners and measured the concentrations both in 

the gas and particulate phases.  It was noted that the lower chlorinated congeners (PCB 

28, 31, and 52) declined in the five-year period of investigation.  The reason of this 

trend is taught to be the dominating effect of long-range transport, whereby levels in the 

Arctic would simply reflect the falling levels encountered in the source regions, and the 

fast OH depletion rates (which is the most important degradation mechanism of PCBs) 

during the Arctic summer.  A significant decreasing trend was seen for PCB 180 

(heptachlorinated) while no clear trend was apparent for the penta- and hexachlorinated 

congeners.  Nevertheless, the lack of declining trend may be the result of slow biotic 

and abiotic degradation because of the lower temperatures in Arctic, coupled with 

winter darkness.  Lastly it was implied that the Arctic is still acting as a sink for PCBs 

transported from the south. 

Mostly, the total (gas+particulate phase) concentrations are reported in previous 

studies.  In Table 2.2 the total concentrations of PCBs are listed for several countries.  

The other study related to a remote area was conducted by Montone et al. (2003) 

in the other polar region, Antarctica.  They searched for 10 PCB congeners (PCB 18, 

44, 52, 101, 118, 128, 138, 153, 180 and 187) and found a total mean concentration of 

37 pg m-3.  The lower chlorinated congeners predominated in the samples and 
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represented 66.7% of the total PCB concentrations.  On the other hand, the results of a 

previous study (Kallenborn et al. 1998) where the similarities and differences between 

the PCB concentrations in Arctic atmosphere were discussed exhibited there were no 

big difference between two polar regions.  While the minimum and maximum values 

for PCB 28, 31 and 52 were approximately the same, those of the higher chlorinated 

PCBs (PCB 101 and higher) were approximately two to three times lower in Antarctica.  

 

Table 2.2.  Ambient air concentrations of PCBs  

LOCATION Concentration 
(ng/m3) 

Reference 

Antarctic Coast 0.06-0.2 Tannabe et al.,1983 
Arctic 0.002-0.013 Bidleman et al.,1990 

Canadian Arctic 0.1-0.3 Bidleman et al.,1990 
Bombay,Goa,Bangalore, 

Calcutta,India 
0.5-4.5 Iwata et al.,1994 

Chicago,USA 1.3 Cotham and 
Bidleman,1995 

London,Manchester, 
Cardiff,UK 

0.2-3.5 Halsall et al.,1995 

Tainan City,Taiwan 2.6-7.1 Lee et al.,1996 
Paris,France 2.0-6.0 Granier and 

Chevreuil,1997 
Gardsjön,Sweden 0.298 Brorström and Löfgren, 

1998 
Galveston Bay, Texas 1.18 Park et al., 2001 

Athens,Greece 0.35 Mandalakis et al., 2002 
Madrid, Spain 1,155 Garcia-Alonso et al., 2002 

Kyonggi-do,Korea 0.066 Yeo et al., 2003 
Antarctica 0.037 Montone et al., 2003 

Birmingham, UK 0.252 Harrad and Mao, 2004 
 

In Korea, the concentration distribution and temperature dependency of PCBs in 

air were studied in rural areas (Yeo et al. 2003a).  In this study, a total of 22 types of 

PCB congeners [tri-(PCB 18, 27, 28, 33, 38), tetra-(PCB 47, 49, 52, 60, 61/74, 66), 

penta-(PCB 87, 101, 118, 126), hepta-(PCB 170, 180/193, 183, 187), deca-CB (PCB 

209)] were detected and the average concentration of total PCB was 19.9 pg m -3.  The 

highest concentrations were belong to tri-CBs followed by tetra-CBs, penta-CBs, hepta-

CBs, hexa-CBs, and deca-CBs.  There seemed a tendency for the concentration of PCBs 

in the atmosphere to decrease with increasing number of Cl.  Therefore, tri-CBs were 

found to be the most abundant homologs in air in the rural area of Korea.  From the 



 20

correlation analysis of PCB homologs with temperature it was reported that, except 

deca-CBs, PCBs were significantly temperature dependent.  The amount of PCBs in the 

gas phase was 90% and they observed that particle-bound fractions of higher molecular 

PCB congeners with low vapor pressure were considerably higher than those of lower 

molecular PCB congeners ( Yeo et al. 2003a). 

For representing a recent study and to be the nearest country, the atmospheric 

concentrations of PCBs measured in Athens, Greece is an important study for 

comparison while long-range transport is one of the transport mechanisms of an 

atmospheric contamination.  Mandalakis et al. (2002) have worked with 38 PCB 

congeners (6, 8, 5, 18, 17, 16, 32, 31, 28, 33, 20, 22, 52, 49, 47, 48, 44, 41, 46, 74, 70, 

66, 95, 101, 90, 136, 110, 123, 149, 118, 153, 132, 105, 138, 163, 164, 158, and 160).  

They measured the atmospheric concentrations at three sites representing the urban, 

coastal and rural sites.  The total mean PCB concentrations of the urban site, which is 

348.6 pg m -3 and has the highest concentrations among the other two sites, is given here 

to be comparable with the results in this study.  The tri- and tetra-chlorinated biphenyls 

(PCB congener 18 to PCB congener 66) were reported to be the most abundant 

homolog groups and 99% of the total concentration was in the gas phase in the urban air 

of Athens.  In the other study by Kouimtzis et al. (2002) only particulate phase 

concentrations of six PCB congeners (PCB 28, 52, 101, 138, 153, 180) were measured 

in urban and subrural (suburban) atmosphere of Thessaloniki area and found total mean 

concentrations of 9.8 and 3.0 pg m-3 .  These concentrations are comparable with those 

obtained in Athens, however they are much lower than the other reported 

concentrations. 

In the urban air of Madrid, Σ PCB (gas+particulate) concentrations were 

determined to be 1154.6 pg m-3 where 72% of it represented gas phase PCBs.  They 

selected 31 congeners to analyze and 20 of them were determined in gas phase (PCB 7, 

8, 18, 28+31, 44, 52, 66, 70, 77, 97, 101, 105, 118, 138, 151, 153, 170, 180, 194, 195, 

207) and particulate phase (PCB 8, 18, 28+31, 44, 52, 66, 70, 77, 97, 101, 105, 118, 

138, 151, 153, 170, 180, 187, 195, 194) samples. 

Granier and Chevreuil (1997) made a five-year study to determine the trend in 

the total concentration of PCBs (15 congeners; PCB 28, 31, 33, 22, 101, 110, 149, 118, 

108, 153, 138, 196, 201, 189 and 206) in the urban atmosphere of Paris.  They observed 

approximately twofold drop (from 12 ng m-3 to 5.2 ng m-3) in the level of PCBs between 

1986-1990, and concluded that this would be the result of a greater control by the 
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authorities and a greater awareness of the public.  In this investigation PCBs did not 

exhibit a clear seasonal cycle and this was explained by the presence of a variety of low 

intensity sources still emitting PCBs in the Paris atmosphere.  The distribution between 

the vapor phase and the particle phase was 79 and 21%, respectively.  The percent of 

particle-bound PCB components increased, in general, with their degree of chlorination 

as a consequence of their decreasing vapor pressure from light to heavy component. 

In Galveston Bay, Texas the total mean air concentration of PCBs (97 

congeners) was 1.18 ng m-3 and 96% of it was in the gas phase (Park et al. 2001).  It 

was observed that highly chlorinated PCBs were found in the particulate phase while 

lower molecular weight congeners were found in the gas phase.  There was no apparent 

seasonal trend, however the highest concentration of total PCBs was reached in the 

warmest weather of the sampling period and specific wind directions and speeds 

effected the trend.  High temperature accompanied by wind from urban and 

industrialized areas (S, SW, W, and NW) and relatively slower wind speed resulted in 

elevated PCB concentrations in air samples.  The higher atmospheric concentrations in 

USA is probably due to the fact that much larger amounts of PCB commercial mixtures 

were produced and consumed in this country. 

The recent study representing an urban site in UK (Harrad and Mao 2004) 

searched for atmospheric concentrations and seasonal trends of 41 PCB congeners.  

They got lower values for an urban site (total gas and particulate phase PCBs (ΣPCBs) 

252 pg m-3).  PCB congeners influenced by a combination of reciprocal temperature, 

wind direction, and wind speed.  However, when samples for which the wind speed 

<4.4 m s-1 were analysed; only temperature and relative humidity were influential for 

most congeners.  They concluded that the long-range transport rather than local sources 

exerts the greatest influence on PCB concentrations at Birmingham. 

In the literature, similar sampling methods were used for the measurement of 

atmospheric concentrations of PCBs.  High volume samplers were used with glass fiber 

filters (GFF) for collecting particulate matter and polyurethane foam plugs (PUF) for 

collecting the gas phase PCBs and other organochlorine compounds (Granier and 

Chevreuil 1997, Brorström and Löfgren 1998, Mandalakis et al. 2002, Montone et al. 

2003, Yeo et al. 2003b, Harrad and Mao 2004). 
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2.5. Fate of PCBs in the Environment 

 

As discussed before, persistent organic pollutants (POPs) are resistant to 

photolytic, biological and chemical degradation so that they are capable of long-range 

transport.  As a result of this phenomenon they have become ubiquitous.  They were 

detected even in the Arctic in 1960s and 1970s where they have never been used or 

manufactured (Vallack et al. 1998).  Atmosphere is the major pathway for the transport 

and deposition of POPs to ecosystems both far and near source areas.  Due to their 

lipophilic property they are able to accumulate in the ecosystem, and they can also be 

released back to the atmosphere by some environmental processes which will be 

discussed later (Wania and Mackay 1996, Brorström and Löfgren 1998). 

POPs have tendency to migrate from warmer regions and deposit in polar 

regions.  This is explained with their moderate volatility and ambient temperature, 

meaning that POPs tend to volatilize from tropical and temperate regions of the globe, 

and condense, and then tend to remain in colder regions.  For example, PCB congeners 

having one chlorine can move world-wide being deposited, whereas congeners with 8-9 

chlorines tend to be deposited closer to the source.  The concentration of volatile 

compounds is thus low in tropical areas, and higher in temperate or Polar Regions 

(Wania and Mackay 1996).  In Figure 2.2 the schematic view of migration process is 

summarized. 

It has been suggested that POPs migrate to higher latitudes in a series of short 

jumps, called as “grasshopper effect”, whereby they migrate, remain in the atmosphere 

and migrate again with seasonal temperature changes at mid-latitudes.  Another 

suggestion is, more highly volatile POPs will tend to remain airborne and migrate faster 

and further towards the Polar Regions than the less volatile ones.  While the cooler 

conditions favor greater adsorption onto atmospheric particulate matter and promote 

enhanced adsorption from the vapor phase onto environmental surfaces (e.g. vegetation, 

water, soil, snow and ice), deposition is the dominating mechanism over evaporation in 

polar regions and it is opposite in low latitudes (Vallack et al. 1998, Jones and Voogt 

1999). 
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2.5.1 Temperature Dependency of PCBs 

 

It has been known that the air concentrations of PCBs have a strong relationship 

with ambient air temperature (Halsall et al. 1995, Hillery et al. 1997, Lee et al. 1998, 

Sofuoglu et al. 2001).  The processes of volatilization, deposition, transport and 

transformation for these atmospheric chemicals respond to variations in ambient 

temperature.  This is an important factor for understanding the distribution and 

movement of POPs far from areas where they are discharged (Gouin et al. 2002).  At  

 

Figure 2.2.  Global POP Migration Process (Vallack et al. 1998) 

 

high temperatures, the air gas phase concentrations increase indicating that 

volatilization from the Earth’s surface (e.g. vegetation, soil, water, etc.).  Temperature 

dependence of air concentrations appears to be most pronounced for the more 

chlorinated congeners.  This is caused by the energy required to effect the phase 

transition from the environmental surface to the atmosphere.  Therefore, the temperature 

dependency generally increases with the degree of chlorination.  In other words, less 

volatile PCBs show the strongest temperature dependence (Breivik et al. 2004).  The 

temperature dependence of a phase transition has been expressed by the Clausius-
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Clapeyron equation when the system is at equilibrium (Burgoyne and Hites 1993, 

Hornbuckle and Eisenreich 1996, Honrath et al. 1997, Hoff 1998): 

 

ln P= (- ΔHv / R ) (1/ T) + constant                                    (2.1) 

 

where P is the gas-phase semivolatile organic compound (SOC) partial pressure (atm), 

ΔHv is the enthalpy of vaporization (kJ mol-1), R is the gas constant (K atm mol kJ -1), 

and T is the average atmospheric temperature (K) during the sampling period. ΔHv is 

the heat required for phase change of a pure compound.  It has been suggested that the 

slopes of Clausius Clapeyron equation could be interpreted as a parameter that implies 

the source of the chemicals of concern (Hung et al. 2001, Harrad and Mao 2004).  For a 

more moderately volatile chemical, long-range transport becomes less important and the 

overall slope becomes steeper.  For a chemical that is more strongly bound to surfaces, 

long-range transport is going to be a very small contributor to the local variation in 

partial pressure and the slope will assume a shape that is strongly dependent on the ratio 

of concentrations in local surface sources.  In other words a steep slope indicates that 

compound concentrations in air are controlled by revolatilization from surfaces in the 

local surroundings of the sampling site, and when the slopes begin to flatten out, it can 

be assumed that long-range transport is becoming dominant in the contribution to the air 

concentration (Hoff 1998, Sofuoglu et al. 2001, Gauin et al. 2002, Yeo et al. 2003a).  

By considering the source of the contaminants it can be dealt that contaminant on a 

continental or global basis.  This information would be necessary for the international 

agreements on persistent organic pollutants. 

When the number of chlorine atom increases in the form of PCBs, their 

atmospheric concentrations seemed to decrease.  The log KOA (octanol-air partition 

coefficient), vapor pressure, solubility and the physical and chemical characteristics of 

PCBs, may explain this.  As the number of chlorine increases, log KOA also increases   

Eventually, PCB homologs, having higher chlorine atoms than penta-CBs, settle more 

easily on surfaces and evaporate less to the atmosphere because of having lower vapor 

pressure than the tri- and tetra-CBs.  Due to their lower KOA values these lighter 

homologs mainly exist in the gas phase in air (LaMP 2000, Axelman and Broman 2001, 

Mandalakis et al. 2002, Yeo et al. 2003a). 

PCBs can be found either in the gas phase or particle phase in the atmosphere.  

Therefore, they reach a partitioning equilibrium between these two phases according to 
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the temperature dependences and the vapor pressure of the chemicals.  The partitioning 

of semivolatile organic compounds in the atmosphere is an important factor in their 

transformation and transport (Mandalakis et al. 2002).  The atmospheric transport is the 

main pathway for the spread of PCBs in the environment (Gevao et al. 1998, Harner and 

Bidleman 1998, Yeo et al. 2003a).  SOCs are present in the gas phase and in the 

condensed form in the atmosphere, sorbed to a particulate matter (Gevao et al. 1998, 

Sanusi et al. 1999).  Their distribution between these phases influences the atmospheric 

transport and removal of chemicals via deposition or degradation.  This partitioning 

phenomenon is controlled by factors such as the vapor pressure of the compound, the 

ambient temperature and the nature, size distribution and total suspended particle (TSP) 

concentration.  PCBs are removed from the atmosphere by wet deposition (by 

dissolving in a rain/ snow droplet), dry deposition (by adsorption on effective surfaces) 

and vapor absorption at the air-water interface (Finizio et al. 1997, Gevao et al. 1998, 

Sanusi et al. 1999, Mandalakis et al. 2002, Yeo et al. 2003b).  The removal mechanism 

could be manifested by Henry’s law constant (H) for the gas phase compounds, having 

longer atmospheric residence times.  For example, having low H values shows that the 

compound is more effectively washed out by rain, while the high H values demonstrate 

the long atmospheric residence time since they are removed by neither precipitation nor 

particle deposition.  The dominating removal mechanism for gaseous compounds is the 

vapor deposition on a suitable surface in environment or atmospheric chemical or 

photochemical reactions (Sanusi et al. 1999). 
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CHAPTER 3 

 

MATERIALS AND METHODS 

 

Sampling techniques and experimental procedures, quality control and assurance 

for the measurement of ambient air concentrations of PCBs and calculations will be 

given in this chapter. 

 

3.1. Sampling Program 

 

Samples were collected at the Dokuz Eylül University, Tınaztepe campus 

(Figure 3.1) where a 4 m-high platform is located on 38 degrees 22 minutes 08 seconds 

North latitude and 27 degrees 12 minutes 43 seconds East longitude.  The sampling site 

was located in a suburban area, approximately 10 km southeast of Izmir city center.  

The campus is relatively far from any settlement zone and industrial facilities.  For 

example, there are residential areas located approximately 3 km southwest and a 

highway 0.5 km south of the sampling site.  Land cover in the immediate area is a 

young coniferous forest.  There are steel plants, a petroleum refinery and a 

petrochemical industry located 45 km to the northwest.  The nearest industrial facility is 

a cement work about 10 km at the north and an open road gravel storage site nearly 3 

km at the east.  Annual windrose for Izmir points to prevalence of northerly winds. 

In this investigation, 20 short-term (daytime and nighttime), and 40 long-term 

(daytime) ambient air samples were collected both for PCBs and total suspended 

particulates (TSP), between May-2003 and May-2004.  All samples were collected 

when there is no rain and also long-term samples were collected once in every six days 

in order to see if any fluctuation occurs throughout a week. 

Meteorological data was obtained from a 10 m high tower located on top of the 

same platform where sampling instruments were located.  However, during blackout 

periods and the malfunctionin of instruments, meteorological data was obtained from 

the İzmir Menderes Airport’s meteorological unit.  A summary of meteorological, TSP 
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Figure.3.1.  Area of study and location of the sampling site. 

 

and organic matter (OM) data is shown in Table 3.1 and Table 3.2 for daytime and 

nighttime sampling period, respectively.  Long-term sampling information is given in 

Table 3.3.  The average sampling volumes were 223 ±8 and 41 ± 4 m3 for PCB and TSP 

samples, respectively. 

 

Table 3.1.  Summary of Sampling Information for the short-term daytime sampling 

Date  
(2003) 

Sample 
Number 

T 
(°C) 

Relative 
Humidity   

(%) 

Wind 
Speed   
(m/s) 

Wind 
Direction   

TSP 
(µg m-3) 

 

OM 
(µg m-3) 

 

OM 
(%) 

 
14.05 1 23.50 53.17 2.76 WNW 72.44 59 81 
15.05 2 25.04 46.75 2.16 WNW 84.47 44 52 
16.05 3 26.38 43.08 3.38 WNW 127.4 54 43 
17.05 4 25.66 45.05 3.50 WNW 94.63 59 62 
18.05 5 23.19 58.22 4.99 WNW 108.97 57 52 
19.05 6 21.90 63.92 5.08 NW 108.25 59 55 
20.05 7 22.49 55.90 5.54 N 68.79 47 44 
21.05 8 24.16 53.26 3.10 ESE 93.4 55 59 
22.05 9 22.63 50.79 6.03 ESE 72.6 34 47 
23.05 10 21.50 50.47 3.78 SE 42.94 25 58 

Average   52.06 4.03  87.39 49.30 55 
SD   1.91 0.72  20.86 24.04 16 
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Table 3.2.  Summary of Sampling Information for the short-term nighttime sampling 

 

 

3.2. Sampling Method 

 

Air samples were collected using a high-volume sampler modified Model GPS-

11 (Thermo-Andersen Inc.).  The PUF sampler (Figure 3.2) is designed to collect 

suspended airborne particulate matter on a filter and vapor phase compounds on a 

backup sorbent.  Particles were collected on 10.5 cm diameter glass fiber filters.  The 

gas phase compounds were collected in a modified cartridge containing XAD-2 resin 

placed between two sections of polyurethane foam (PUF) plug (Figure 3.3). 

The PUF is 2-inch thick sheet stock polyurethane type (density 0.022 g cm-3).  

The PUF cylinders (plugs) were slightly larger in diameter than the internal diameter of 

the cartridge.  

Date  
(2003) 

Sample 
Number 

T 
(°C) 

Relative 
Humidity   

(%) 

Wind 
Speed   
(m/s) 

Wind 
Direction   

TSP 
(µg m-3) 

 

OM 
(µg m-3) 

 

OM 
(%) 

 
14.05 1 18.24 68.86 1.43 ESE 72.78 45 62 
15.05 2 20.08 64.11 0.76 N 101.42 52 51 
16.05 3 20.77 62.74 0.90 N 95.31 39 41 
17.05 4 20.04 67.98 1.19 N 88.65 18 20 
18.05 5 17.98 78.57 1.74 NW 89.51 35 39 
19.05 6 17.21 74.08 4.28 WNW 77.37 37 48 
20.05 7 18.47 72.40 1.00 NW 84.39 87 69 
21.05 8 16.94 71.71 2.41 WNW 48.20 27 57 
22.05 9 17.25 71.59 3.82 SSE 25.01 14 55 
23.05 10 15.71 82.64 2.15 SE 39.88 24 73 

Average   71.47 1.97  72.25 37.8 52 
SD   9.74 0.51  23.26 14.85 8 
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Table 3.3.  Summary of Sampling Information for Long-term Sampling 

Sample 
Number 

Date T (°C) Relative 
Humidity   

(%) 

Wind 
Speed   
(m/s) 

Wind 
Direction   

TSP 
(µg m-3) 
 

OM 
(µg m-3) 

 

OM
(%)

 
1 14.05.2003 23.50 53.17 2.76 WNW 72.44 59 81 
2 17.05.2003 25.66 45.05 3.50 WNW 94.63 59 62 
3 23.05.2003 21.50 50.47 3.78 SE 42.94 25 58 
4 29.05.2003 20.98 60.11 6.14 N 51.0 7.3 14 
5 23.06.2003 31.70 28.62 5.22 N 163.1 64.8 40 
6 27.06.2003 29.50 34.26 5.77 WNW 103.1 59.8 58 
7 29.06.2003 30.25 25.64 5.03 WNW 73.3 50.3 69 
8 05.07.2003 34.61 25.35 4.28 WNW 71.0 22.3 31 
9 17.07.2003 30.01 32.14 6.93 S 52.2 25.1 48 

10 23.07.2003 29.89 29.53 7.12 N 24.6 12.3 50 
11 29.07.2003 29.56 30.48 7.03 N 39.1 30.9 79 
12 04.08.2003 30.36 41.59 8.31 N 73.3 12.2 17 
13 10.08.2003 27.43 47.90 6.73 WNW 44.3 23.2 52 
14 16.08.2003 30.75 29.15 3.91 WNW 84.57 45.14 53 
15 28.08.2003 28.44 45.48 3.36 WNW 40.64 28.45 70 
16 03.09.2003 27.87 51.69 4.87 WNW 87.48 27.22 31 
17 08.09.2003 22.78 36.69 4.05 WNW 51.12 16.27 32 
18 15.09.2003 21.33 57.97 5.74 WNW 104.35 53.97 52 
19 21.09.2003 24.54 30.62 7.81 N 57.16 43.97 77 
20 27.09.2003 22.68 55.67 5.24 N 76.24 30.03 39 
21 03.10.2003 21.52 53.67 4.21 WNW 70.76 30.66 43 
22 10.10.2003 16.55 55.00 4.63 NNW 28.40 26.03 92 
23 15.10.2003 19.41 47.40 4.67 N 84.66 44.68 53 
24 22.10.2003 25.33 41.96 4.86 SSE 38.72 13.67 35 
25 05.11.2003 18.16 67.08 9.17 N 84.57 45.14 53 
26 10.11.2003 9.07 62.94 8.44 N 32.10 23.33 73 
27 16.11.2003 13.70 57.57 1.58 WNW 86.15 80.76 94 
28 22.11.2003 17.06 56.04 2.35 SSE 18.42 42.98 79 
29 05.12.2003 8.97 61.62 5.92 N 35.71 6.49 18 
30 18.12.2003 1.85 60.00 7.95 N 84.57 45.14 53 
31 27.12.2003 6.85 72.87 7.29 N 78.51 75.49 96 
32 07.01.2004 -1.20 54.42 4.65 N 44.77 11.94 27 
33 14.01.2004 9.50 81.50 0.15 N 17.4 10.20 58 
34 30.01.2004 2.60 82.50 1.70 SSE 476.29 235.09 49 
35 05.02.2004 5.75 67.00 4.25 NW 91.44 22.86 25 
36 11.02.2004 3.80 43.50 4.05 N 84.61 45.14 53 
37 19.02.2004 4.85 65.50 2.00 WNW 80.74 53.82 67 
38 26.02.2004 13.90 70.50 7.60 SE 44.03 12.58 29 
39 05.03.2004 4.00 59.50 9.40 N 48.48 10.77 22 
40 11.03.2004 7.85 62.00 4.00 N 45.57 22.79 50 

Average   50.85 5.16  74.56 38.90 52. 
SD   15.22 2.18  71.20 37.30 22 
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Figure.3.2.  Schematic of PUF sampler (Bunckland et. al. 1999) 

 

 

Figure.3.3. Schematic of sorbent cartridge and filter holder (Bunckland et. al. 1999) 
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Particulate samples were collected on 11-cm diameter quartz filters using another 

high volume sampler to determine total suspended particulate matter (TSP) and its organic 

matter (OM) content.  The high-volume design causes the TSP to be deposited uniformly 

across the surface of a filter located downstream of the sampler inlet.  The high volume 

sampler is a compact unit consisting of a protective housing; an electric motor driven; a 

high-speed. high-volume blower; a filter holder capable of supporting a filter. 

 

3.3. Sample Preparation  

 

Glassware: All glassware used in the sampling and analysis processes were washed with 

tap water and detergent, and rinsed for a number of times with tap water and then distilled 

water.  Subsequently the glassware was rinsed with a series of polar and non-polar solvents 

(acetone. hexane) and dried in an oven at 110 C for 4 hours.  The openings of the 

glassware were covered with aluminum foil as soon as they were removed from the oven. 

Glassware was rinsed prior to use with dichloromethane. 

 

Glass Fiber Filters (GFFs) and Quartz Filters: Glass fiber filters used in PUF sampler 

and quartz filters used in high volume air sampler were wrapped loosely with aluminum 

foil and baked in a muffle furnace at 450 C for 2 hours to remove any organic residues.  

Then they were stoppered and allowed to cool to room temperature in a desiccator. 

 

PUF Cartridges and XAD-2 Resin: PUF cartridges and XAD-2 resin used in PUF 

sampler were cleaned by Soxhlet extraction using a series of solvents (deionized water 

(DI) 1:1 acetone: hexane mixture) for 24 hours.  After extraction cartridges, including 

polyurethane foam (PUF) and XAD-2 resin, were wrapped loosely with aluminum foil and 

dried in an oven at 70 C.  Cleaned cartridges were stored in glass jars with Teflon-Lined 

lids. 

 

3.4.  Sample Handling 

 

Cleaned and prepared glass fiber filters, quartz filters, and PUF cartridges were 

transported to the field in air-tight containers, in order not to allow any exposure to air 

prior to sampling.  After sampling, glass fiber filters were wrapped with aluminum foil, 

quartz filters were placed in a box of comparable size and then both of them transferred 
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into storage bags.  PUF cartridges were wrapped with foil and transferred into glass jars.  

Then samples were brought back to laboratory and stored in the dark at -20 C until they 

were analyzed. 

 

3.5. Sample Extraction and Clean-up 

 

 PCB congeners were adsorbed onto a matrix from the ambient air and removed 

from the matrix by extraction.  Then the samples were purified and concentrated prior to 

analysis.  The procedure used in this thesis was a combination of methods developed by 

University of Minesota and Atmospheric Environment Service in Canada. 

 

3.5.1. Extraction: Gas phase and particulate phase samples (including GFFs and sorbent 

cartridges) were spiked with PCB surrogate standards prior to extraction in order to 

determine analytical recovery efficiency.  Then they were Soxhlet extracted with a mixture 

of dichloromethane (DCM): petroleum ether (PE) (20:80) for 12 hours.  After extraction, 

solvents with the extracted samples were stored in dark colored glass bottles with Teflon 

lined caps at -20 C. 

 

3.5.2. Concentration: All sample extracts were concentrated using a rotary evaporator.  

They were evaporated to approximately 5 mL, then solvent exchanged into hexane by the 

addition of 15 mL and 10 mL hexane in two steps, respectively and again the volume was 

reduced to 5 mL.  The temperature of the water bath was maintained at 30 C during 

sample concentration and solvent exchange.  The 5 mL sample was transferred to a 40 mL 

vial.  The sample flasks used for evaporation were rinsed with 5 mL of hexane and this 

also added into the same vial.  The total volume of 10 mL was concentrated down to 2 mL 

by gently blowing a high purity stream of nitrogen on the surface at a flow rate of 150-200 

mL/min. 

 

3.5.3. Sample Clean-up and Fractionation: All concentrated samples were cleaned and 

fractionated on alumina-silicic acid column (Figure 3.4) to enhance the PCB phase and to 

get rid of any other organic contamination (Sofuoğlu et al. 2001).  Silicic acid was 

prepared by oven drying at 100 C for several hours in a flask loosely covered with 

aluminum foil to remove moisture and then cooled in a desiccator.  Three grams of silicic 

acid was deactivated by adding 100 L of deionized (DI) water and shaking the mixture 
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(silicic acid- 3 % water).  The mixture sat at room temperature for 1 hour before use and 

was used within 12 hours. 

Alumina was prepared by oven drying at 450 C for several hours.  After cooling to 

room temperature, two grams of alumina was deactivated by addition of 120 L DI water 

(alumina-6% water).  Na2SO4 placed in beakers and baked in a muffle furnace at 450 C 

for several hours, then cooled to room temperature in a desiccator.  The column was pre-

washed with 20 mL DCM followed by 20 mL PE.  The sample in 2 mL hexane was added 

into the column with a 2 mL rinse of PE and eluent was collected in a vial at a rate of two 

drops per second.  After letting the sample pass through the column, 20 mL PE was added 

and eluent collected in the same vial.  This fraction (Fraction 1) contained PCBs.  The vial 

used for eluent collection was changed, 20 mL DCM was added into the column and eluent 

containing organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons 

(PAHs) (Fraction 2), collected at the same rate. 

 For both fractions the solvent was exchanged into hexane, and the final sample 

volume was adjusted to 1 ml by nitrogen blow-down and then the samples were taken into 

2 mL vials and get ready for the analysis in gas chromatography. 

 

 

Figure 3.4.  Clean-up and fractionation column 
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3.6. Determination of TSP and Organic Matter Content 

 

Glass fiber filters were wrapped loosely with aluminum foil and they were baked 

overnight at 450 ºC in a muffle furnace to remove any organic residues.  They were then 

allowed to cool to room temperature in a desiccator and were weighed using a micro 

balance capable of weighing 0.1 mg.  After sample collection filters were kept in a 

desiccator overnight and they were reweighed.  TSP was determined by subtracting the 

initial weight from the final weight.  To determine the organic matter content of the 

particles, filters were then baked for 1 h at 450 ºC in a furnace, allowed to cool to room 

temperature in a desiccator, and weighed.  Organic matter was determined by subtracting 

the final weight (after baking) from the initial weight (before baking).  It is possible that 

the determination of OM content by this method may be interfered by the weight loss of 

glass fiber filters at high temperatures.  The hourly weight loss of filters at 450 ºC with 

time was monitored for 12 hours.  It was observed that the maximum weight loss (3 mg) 

occurs within a 2 h period and the weight loss decreases to 0.3 mg h-1 and becomes stable 

for the remaining period.  To minimize the interference from weight loss of filters at high 

temperatures in OM determination, concurrent blank filters were run for each sample.  

Determined OM contents were corrected using the weight loss in blank filters during 

baking.  The average weight loss of blank filters (0.3 mg) was significantly lower than the 

average weight loss of the samples (2.4mg) indicating that the interference was not 

significant in OM determination. 

 

3.7. PCB Analysis 

 

 Samples were analyzed for PCBs using an Agilent 6890N gas chromatography 

(GC) equipped with a micro-electron capture detector (µ-ECD).  A capillary column (HP-

5, 30 m, 0.25 mm, 0.25 µm) was used.  Instrument operating conditions for PCB analysis 

are given in Table 3.4. 

The software Chemstation was used to acquire and quantify the data.  

Concentrations of the congeners and compounds were calculated using the internal 

standard method, where the calculation of the corrected concentration ratio of a compound 

in an unknown sample occurs in four steps (Cakan. 1999). 
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Table 3.4.  GC/ ECD Operating Conditions 

Gas Chromatography 

Column 

Carrier gas 

Detector make-up gas 

Injection mode 

Injection temperature 

Injection volume 

Purge time 

Temperature program for PCBs  

 

 

HP-5. 30 m. 0.25 mm. 0.25 μm 

Helium at 35 cm s-1 linear velocity 

Nitrogen 

Splitless 

250 ºC 

1 μl 

0.6 min  

Initial oven temperature 50 ºC for 1 min. Raised 

to 100 ºC at 25 ºC min-1. 100 ºC to 300 ºC at 5 

ºC min-1. hold time 7 min. 

Detector temperature 320 ºC. 

 

1. The calibration points are constructed by calculating a concentration ratio and a 

response ratio for each level of a calibration for a particular compound, 

 

                                               Concentration ratio = Cxc/Cic                                     (3.1) 

                                                  Response ratio = Axc/Aic                                         (3.2) 

 

where Cxc is the concentration of the compound, Cic the concentration of the internal 

standard, Axc is the response of the compound, and Aic is the response of the internal 

standard at this calibration level. 

 

2. A line is fitted through the calibration points using linear regression: 

 

                                                  Y = mx+b                                                                 (3.3) 

where y is the response ratio, x is the concentration ratio, m is the slope of the line, and b is 

the intercept of y, 
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3. The response ratio for the unknown is calculated using the response of the compound 

in the sample (Axs) and response of the internal standard in the sample (Ais), 

 

                                Response ratio for unknown = Axs/Ais                                        (3.4) 

 

4. A corrected concentration of the compound in the sample (Cxs) is calculated as 

follows: 

 

                             Cxs = Corrected concentration ratio x Cis                                        (3.5) 

 

Procedural recovery efficiencies were calculated by spike recovery: 

 

                       Recovery Efficiency (%) = 100x(Cf /Ci)                                         (3.6) 

 

where Cf is the concentration of the spiked sample processed as a regular sample and Ci is 

the initial concentration in the spike solution. 

  

3.8. Quality Assurance / Quality Control 

 

3.8.1 Sample Collection Efficiency 

 

Sample collection efficiency can be evaluated using the important parameters for 

the samplers used in this study.  These parameters are adsorption on the filters, 

volatilization and breakthrough for SOC sampling with polyurethane foam (PUF).  

Polyurethane foam has been used by other researchers for SOC sampling with volumes 

ranging from 300 to 600 m3.  The most volatile compound in a previous study was found in 

the back plug in an amount less than 11% of the front plug (average for all compound was 

4%).  It has been determined by many researchers that with these samplers using PUF 

breakthrough is not a problem at reasonable flow rates and sample volumes (Cakan, 1999).  

In this study, the sample volume used ~230 m3 was significantly lower than the volumes 

used in other studies.  In addition, XAD-2 resin was used between two PUF plugs, XAD-2 

resin has a higher collection and retention efficiency than PUF for relatively volatile 
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organics.  This combination increases adsorption capacity and minimizes post-

volatilization problems (Cakan, 1999).  Therefore breakthrough was not considered as a 

problem in this study. 

Sampling artifacts associated with the glass fiber filter (GFF) and polyurethane 

foam (PUF) can affect the apparent gas-particle distributions of PCBs.  The glass fiber 

filter may exhibit two such artifacts with counteracting effects on the distribution.  The 

more volatile compounds maybe stripped from the filter by continuing gas flow if the gas-

phase concentration decreases, the temperature increases during the sampling periods, or if 

there are gas-phase reactions on the filter.  Another possible artifact is the adsorption of gas 

phase compounds by the filter.  The extent of gas adsorption is often estimated using a 

tandem back-up filter.  In a recent study, a backup filter was used on five samples collected 

in Ansung City (Yeo et al. 2003a).  The percent mass on the back-up filter was either 

below 5% or not detected at all for PCBs.  Therefore, the mass from the filter was neither 

subtracted from the particle phase concentration nor added to the gas-phase concentration.  

Also, volatilization from the filter for PCBs has the opposite effect and its impact is usually 

less than or equal to 10% (Yeo et al. 2003a).  Since the impact of volatilization and 

adsorption artifacts is generally less than 5%, they were considered as insignificant and 

were not determined in this study. 

 

3.8.2 Calibration Standards 

 

The calibration standard solution contained 41 PCBs (AccuStandard. Inc., Quebec 

Ministry of Environment Congener Mix) and PCB 14, 65, and 166 as the internal standard.  

Five levels of calibration standards (1, 2.5, 10, 15, and 25 ng ml-1 for PCB 17 and 158; 2, 

5, 20, 30, and 50 ng ml-1 for PCB 95; 3, 7.5, 30, 45, 75 ng ml-1 for PCB 31, 132/105, 199-

201; 4, 10, 40, 60, and 100 ng ml-1 for 30 PCBs; 5, 12.5, 50, 75, and 125 ng ml-1 for PCB 

82/151; 8, 20, 80, 120, and 200 ng ml-1 for PCB 171/156, and PCB 14, 65, and 166 at a 

fixed concentration of 26.25 ng ml-1 ) were used to prepare the calibration curves.  For all 

compounds the linear fit was good (R2>0.99). 

 

3.8.3 GC Performance 

 

A mid-range calibration standard was analyzed for every twelve-hour period to 

confirm GC-ECD performance (i.e., peak area, and retention time).  If the percent 
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difference of a response factor of any compound was greater than 20%, the initial 

calibration was asssumed to be invalid, and the system was recalibrated.  Samples were 

analyzed occasionally as duplicates.  Differences in duplicate samples were less than 5%. 

 

3.8.4 Procedural Recovery 

 

Hi-vol PUFs (n=3) and Hi-vol filters (n=3) were spiked with a mid-range PCB 

calibration standard (10-40 ng ml-1) prior to extraction and clean-up to determine the 

analytical recoveries.  Table 3.5 shows the average recovery efficiencies for each internal 

standart. 

Procedural recoveries of PCBs ranged from 58.7+32.9% (PCB 132/105) to 

130.9+16.3% (PCB 49).  Thirty seven of the PCBs had recoveries greater than 70%.  Since 

the recoveries were generally high, sample amounts were not corrected for procedural 

recoveries. 

On the other hand, all samples were spiked with internal standarts prior to 

extraction to determine the recovery efficiencies of PCB internal standarts.  The average 

recovery efficiencies were 107.26 +35.26% for PCB 14, 122.68 + 32.60% for PCB 65, and 

71.48 +10.60% for PCB 166.  Each samples were checked for the internal recovery 

efficiencies if they were in the range of 50-120%.  The PCBs that should be integrated for 

that internal standart were not integrated if the recovery efficiency of the standart was out 

of the range. 

 

 

  
Hi-Vol PUF 

 
Hi-Vol Filter 

 
(Filter+PUF) 

 
PCBs AVG SDa AVG SDa AVG SDa 
PCB-14 117.6 46.65 96.91 10.72 107.3 35.26 
PCB-65 123.7 24.99 121.7 38.96 122.7 32.6 
PCB-166 74.65 11.82 68.3 8.154 71.48 10.6 

a Standart Deviations of the recovery efficiencies  

Table 3.5.  Summary of Recovery Efficiencies (%) of  Internal Standarts 
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3.8.5 Blanks 

 

Field blanks were analyzed to assess possible contamination through the sample 

collection and analysis process.  The PCB amounts found in field blanks are presented in 

Table 3.6. 

 

       Table 3.6.  PCB Amounts in Field Blanks  

  
PCBs 

  

PUF Filter 
AVG SD AVG SD 
(ng)   (ng)   

PCB 18 1.6 0.2 1.4 0.1 
PCB 17 1.0 0.2 0.8 0.1 
PCB 31 - - - - 
PCB 28 1.7 0.3 1.2 0.4 
PCB 33 1.7 0.4 1.0 0.2 
PCB 52 6.6 3.4 - - 
PCB 49 - - - - 
PCB 44 4.1 0.5 - - 
PCB 74 - - - - 
PCB 70 0.2 0.2 0.2 0.3 
PCB 95 0.9 0.4 1.0 1.1 

PCB 101 0.5 0.2 1.1 1.2 
PCB 99 - - 0.2 0.2 
PCB 87 0.4 0.4 0.8 0.4 

PCB 110 1.0 0.9 1.7 0.7 
PCB 82/151 - - - - 

PCB 149 - - - - 
PCB 118 - - - - 
PCB 153 - - - - 

PCB 132/105 - - - - 
PCB 138 - - 0.8 1.2 
PCB 158 - - - - 
PCB 187 - - - - 
PCB 183 1.2 1.1 - - 
PCB 128 - - - - 
PCB 177 - - - - 

PCB 171/156 - - - - 
PCB 180 - - 2.2 1.9 
PCB 191 - - - - 
PCB 169 - - - - 
PCB 170 2.1 1.9 1.2 1.0 

PCB 199-201 - - - - 
PCB 208 - - - - 
PCB 195 - - - - 
PCB 194 - - - - 
PCB 205 - - - - 
PCB 206 - - - - 
PCB 209 - - - - 
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3.8.6 Detection Limits 

 

Limit of detection (LOD) has been used to determine the analytical quality of the data.  

The lower limit of quantification is based on the sensitivity of the analytical equipment.  

Quantifiable amounts of pesticides were determined from sequential injections of diluted 

standard solutions to the GC, using a signal to noise ratio of ten.  The quantifiable amounts of 

PCBs ranged from 11.72 (PCB 199-201) to 62.5 fg (PCB 18, 17, 33, 52, 208+195) for 1 µl 

injection volume. 

The limit of detection (LOD) is defined as average blank mass plus three standard 

deviations (mean + 3σ).  Instrumental detection limits were used for compounds that were not 

detected in blanks.  LODs for PCBs ranged from 4 pg (PCB 199-201) to 17 ng (PCB 52) for 

PUFs and from 8 pg (PCB 31) to 8 ng (PCB 180) for filters (Table 3.7).  Sample quantities 

exceeding the LOD were quantified and blank-corrected by subtracting the mean blank 

amount from the sample amount. 

 

3.8.7 Compound Identification 

 

ChemStation software was used for the identification of PCBs in the samples.  

Identification of individual PCBs was based on their retention times (within±0.05 minutes of 

the retention time of calibration standard). 
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       Table 3.7.  LODs for Individual PCBs 

 
PCBs 

PUF Filter Instrumental PUF Filter 
LOD LOD LOD LOD LOD 
(ng) (ng) (ng) (blank+instr.) (blank+instr.)

18 2.1 1.7 0.063 2.168 1.723 
17 1.7 1.2 0.063 1.786 1.271 
31 - - 0.023 0.008 0.008 
28 2.6 2.2 0.031 2.651 2.273 
33 2.9 1.5 0.063 2.932 1.585 
52 16.9 - 0.063 16.958 0.063 
49 - - 0.031 0.031 0.031 
44 5.5 - 0.031 5.547 0.031 
74 - - 0.031 0.031 0.031 
70 0.7 1.2 0.031 0.715 1.199 
95 2.1 4.2 0.031 2.128 4.197 

101 1.2 4.8 0.031 1.271 4.816 
99 - 0.7 0.031 0.031 0.757 
87 1.5 1.9 0.016 1.506 1.937 

110 3.7 3.9 0.031 3.696 3.978 
82/151 - - 0.020 0.020 0.020 

149 - - 0.016 0.016 0.016 
118 - - 0.016 0.016 0.016 
153 - - 0.016 0.016 0.016 

132/105 - - 0.047 0.047 0.047 
138 - 4.3 0.016 0.016 4.316 
158 - - 0.016 0.016 0.016 
187 - - 0.016 0.016 0.016 
183 4.5 - 0.016 4.511 0.016 
128 - - 0.016 0.016 0.016 
177 - - 0.016 0.016 0.016 

171/156 - - 0.031 0.031 0.031 
180 - 7.9 0.016 0.016 7.942 
191 - - 0.016 0.016 0.016 
169 - - 0.016 0.016 0.016 
170 7.6 4.2 0.016 7.646 4.181 

199-201 - - 0.012 0.004 0.012 
208+195 - - 0.063 0.063 0.063 

194 - - 0.016 0.016 0.016 
205 - - 0.016 0.016 0.016 
206 - - 0.016 0.016 0.016 
209 - - 0.016 0.016 0.016 

 
 
 
 
 
 
 
 



 42

 
CHAPTER 4 

 

RESULTS AND DISCUSSION 

 
 

This chapter presents and discusses the results of 20 day and night time samples 

(short-term), and 40 a year around daytime (long term) samples for ambient air concentration 

measurements of polychlorinated biphenyls (PCBs).  The atmospheric concentrations of 

samples were given as total PCB (PCB), gas and particle phase concentrations based on 

congeners and their variations with temperature, wind speed and direction, seasonal change 

were also investigated. 

 

4.1. Ambient PCB Concentrations  

 

4.1.1  Short-term Sampling Period 

 

Twenty successive daytime and nightime air samples were collected between 14–23 

May 2003.  The results of gas and particle phase PCB concentrations (pg m-3) measured in 

this study is presented in Table 4.1.  Congener base total (gas+particle) polychlorinated 

biphenyl concentrations ranged from 0.37  0.65 pg m-3 (PCB 158) to 305.07  86.01 pg m-3 

(PCB 33), average of total concentration for each congener and their deviation over the 

sampling duration is given in Figure 4.1.  PCB 169, which has a dioxin-like toxicity, was not 

detected either in daytime or in nighttime samples.  PCB 49 had the highest average total 

concentration and was followed by PCB 33, 44, and 18 which are among the tri- and tetra-

chlorinated PCB homologs.  Average gas phase and particle phase PCB concentrations were 

418.21 and 101.02 pg m-3, respectively.  The most similar study was conducted by Harrad and 

Mao (2004) in England.  Their total concentrations were obtained from 38 PCB congeners 

most of which are similar to those investigated at this thesis and was held for approximately a 

year time.  Average total PCB concentration was 252 pg m-3 which was lower than what was 

detected in this thesis. 
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n: Number of the samples above the detection limit 
nd: Not Detected 
 

On the other study held by Mandalakis et al. (2002) in Greece, was similar to short-term 

results of this thesis.  They reported average of 4 samples from the urban atmosphere and 

analysed for 38 congeners.  The average ΣPCB concentration was 344.9 pg m-3 which was 

comparable to the results found in this thesis.  Mandalakis et al. (2002) also reported that 400 

  
Cg 

  
Cp 

 
PCBs n min max average SD n min max average SD 

18 16 4 119 51 36 8 2 24 13 8 
17 15 5 60 24 15 6 3 10 7 3 
31 10 18 73 41 17 6 5 27 15 9 
28 16 4 66 34 20 8 5 24 15 7 
33 14 11 277 73 82 11 3 28 11 9 
52 4 47 72 58 11 20 23 62 33 10 
49 7 91 150 118 21 0  nd  nd  nd  - 
44 16 7 88 41 24 13 8 22 13 5 
74 19 2 21 11 5 17 1 5 3 1 
70 19 3 35 19 9 19 0 10 3 3 
95 19 7 60 29 14 0  nd  nd nd   - 

101 16 7 53 20 13 1 3 3 3  - 
99 19 3 23 10 5 7 2 4 3 1 
87 15 5 20 10 4 0 nd nd nd  - 

110 11 13 36 22 6 0 nd nd nd  - 
82/151 14 6 35 13 8 8 3 8 6 2 

149 9 31 64 47 12 1 31 31 31  - 
118 1 45 45 45  - 0 nd nd nd  - 
153 19 3 17 9 4 16 2 9 3 2 

132/105 0 nd nd nd  - 8 1 86 19 35 
138 19 3 19 10 4 0 nd nd nd  - 
158 14 0 2 1 1 4 0 1 0 0 
187 15 1 5 3 1 3 1 3 2 1 
183 0 nd nd nd  - 7 1 4 2 1 
128 16 1 6 3 1 5 1 3 2 1 
177 8 4 11 8 3 2 3 8 5 4 

171/156 10 1 12 5 3 5 2 3 3 1 
180 13 5 22 12 6 11 0 12 7 3 
191 0 nd nd nd  - 1 10 10 10  - 
169 0 nd nd nd  - 0 nd nd nd  - 
170 0 nd nd nd  - 2 1 2 1 1 

199-201 4 3 12 8 4 2 3 3 3 0 
208 2 4 6 5 1 3 1 3 2 1 
195 2 4 5 4 0 0 nd nd nd  - 
194 0 nd nd nd  - 2 1 2 2 0 
205 0 nd nd nd  - 1 3 3 3  - 
206 5 4 10 8 2 17 4 11 8 2 
209 4 2 10 6 4 0  nd nd nd  - 

Σ PCBs       418         101   

Table 4.1.  Summary of Gas (Cg) and Particle Phase (Cp) PCB Concentrations (pg m-3)  
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transformers and 15,000 capacitors containing PCBs were used in 1993.  Since the determined 

mean ΣPCB concentration in İzmir were higher than the results of Mandalakis et al. (2002), it 

can be speculated that the usage of PCB containing material could be higher than Greece. 
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Figure 4.1.  Average total air concentrations of each PCB congener. Error bars represent 

the standart deviation. 

 
The contribution of homolog groups on to PCB(41) was also investigated.  The 

dominancy of the homolog groups could give an idea about what kind of commercial 

mixtures were used in PCB containing materials (capacitors, transformers, etc.).  The 

dominating homolog groups on PCB concentrations were in the order of 

tetra>tri>penta>hexa>hepta>octa>nona>deca chlorobiphenyls (CBs).  These results were also 

comparable with the other studies in the literature.  For example, Simcik et al. (1997) reported 

that the concentrations of PCB 28+31, 44, 52+43, 49, and 74, which are tri-and tetra-

chlorinated, were dominant than the other congeners in Chicago area where the detected 

PCB concentration was one of the highest level compared to the other areas in the world 

(270-14000 pg m-3). 

In this investigation, about 81% (average) of the total PCBs (gas + particle) resided in 

the gas phase, which was in good agreement with the previous studies (Mandalakis et al. 

2002, Montone et al. 2003, Yeo et al. 2003a).  Distribution of gas and particle phase 

percentages are given in Figure 4.2. for congeners detected in both phases. 

Gas phase concentrations were dominated with the lower chlorinated PCBs while the 

particle phase PCB concentrations increased for the heavier congeners (Yeo et al. 2003a). 
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Fig. 4.2.  Average Particle/Gas Phase Distribution of Individual PCB congeners. Error 

Bars Represent the Standart Deviation. 

 

4.1.2. Long-term Sampling Period 

 

PCB congener concentrations of gas and particle phases were measured in suburban 

atmosphere from May 2003 to March 2004.  The mean total  concentration of 41 PCB 

congeners were 319.46 pg m-3  in gas phase and 102.24 pg m-3 in particle phase, respectively 

(Table 4.2).  Backe et al. (2000) measured 51 congener concentrations at 11 rural and urban 

sites in Sweden.  There was no detail about specific congener names, but the sampling 

duration was a year.  The values detected in the two urban sites showed a wide range in 

concentration 22-983 and 9-211 pg m-3, respectively.  Due to the variation of the total number 

of investigated PCB congeners with each study in the literature, it was not possible to 

compare total air concentrations of the results of this study with others.  Therefore, the 

comparison was done based on the similarities in congener numbers and names. 

 

 

 

 

 

 

 



 46

  Cg (pg m-3) Cp (pg m-3) 
PCBs n min max average SD n min max average SD  

18 32 4 434 47 74 29 3 50 19 13 
17 28 6 180 25 33 20 5 19 11 4 
31 27 9 381 40 70 16 6 27 15 5 
28 25 9 278 34 53 11 6 24 10 5 
33 26 5 302 56 81 22 4 28 9 5 
52 3 8 187 80 -  16 22 62 44 12 
49 4 7 215 119 91 1 93 93 93 -  
44 11 5 88 28 26 4 11 17 14 3 
74 22 1 35 9 8 19 1 4 2 1 
70 22 5 40 14 8 27 0 9 4 3 
95 19 8 60 22 14 2 2 2 2 0 

101 17 4 60 16 15 0 nd nd nd -  
99 21 2 34 9 7 2 3 3 3 0 
87 11 5 23 11 6 0 nd nd nd -  

110 6 1 41 22 13 0 nd nd nd -  
82/151 12 6 41 15 10 2 3 8 5 3 

149 8 19 130 64 31 1 31 31 31 -  
118 2 72 73 72 -  0  nd nd  nd  -  
153 21 2 32 10 7 16 1 9 3 2 

132/105 2 6 25 16 14 6 1 3 2 1 
138 20 1 33 10 8 0 nd nd nd -  
158 17 0 27 3 6 1 1 1 1 -  
187 27 1 19 4 4 4 1 5 3 2 
183 2 1 39 20 27 5 1 4 2 1 
128 24 1 39 6 8 3 1 2 2 0 
177 10 3 25 11 7 1 3 3 3 -  

171/156 10 2 19 9 6 5 2 11 5 3 
180 12 8 53 27 16 4 5 16 9 5 
191 0 nd nd nd  - 0 nd nd nd  - 
169 0 nd nd nd  - 0 nd nd nd  - 
170 0 nd nd nd  - 1 2 2 2  - 

199-201 5 3 61 28 21 4 2 8 5 3 
208 9 18 429 137 137 9 1 490 113 158 
195 1 21 21 21  - 0 nd nd nd   
194 3 7 21 12 7 2 6 6 6 0 
205 1 11 11 11  - 0 nd nd nd  - 
206 19 5 31 15 6 23 6 21 13 4 
209 9 1 13 4 4 7 1 6 3 2 

Σ PCBs       319         102   
 
n: Number of the samples above the detection limit 
nd: Not Detected 
 

In this thesis, the measured PCB 18, 28, 101 were lower, but PCB 180 was relatively 

higher than those measured in the urban atmosphere of Baltimore (UK) and suburban 

atmosphere of New Brunswick (USA) (Brunciak et al., 2001a, Brunciak et al., 2001b).  As it 

was mentioned in chapter 2 (2.4), generally the total mean concentrations of PCBs were 

Table 4.2.  Summary of Gas (Cg) and Particle Phase (Cp) PCB Concentrations (pg m-3)  
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reported, and the total mean concentration observed in this study (~422 pg m-3) was in the 

range of the other studies (Table 2.2). 

Congener base total (gas+particulate) polychlorinated biphenyl concentrations ranged 

from 0.11  10.58 pg m-3 (PCB 70) to 919.69  281.18 pg m-3 (PCB 208), average of total 

concentration for each congener is given in Figure 4.3.  PCB 169 was also not detected in 

long-term samples. 

 

0

50

100

150

200

250

300

18 17 31 28 33 52 49 44 74 70 95 10
1 99 87 11
0

 8
2/

15
1

14
9

15
3

 1
32

/1
05 13

8
15

8
18

7
18

3
12

8
17

7
 1

71
/1

56 18
0

20
1

20
8

19
4

20
6

20
9

PCB congeners

C
t (

pg
 m

-3
)

  

Figure 4.3.  Average total air concentrations of each PCB congener. Error bars represent 

the standart deviation. 

 

Homolog contribution order was also computed to see if there were any change in the 

order by comparing long term results to short term results.  Unfortunately, due to unexpected 

increase in the PCB 208 concentration in the long term sampling duration for the last five 

samples affected the order of homolog contribution. 

The sudden increase of concentration reasons could be the effect of long-range 

transport on that sampling period which needs further investigation such as back trajectory 

analysis.  Therefore, this compound was excluded in the homolog contribution calculation and 

the order became similar to the short term results (Figure 4.4). 
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Figure 4.4.  Average total air concentrations of each PCB congener without PCB 208. 

 

The ΣPCB (gas+particulate) concentration pattern shows the highest level for tetra-

chlorinated biphenyls (CBs) (222.37 pg m-3), followed by tri-CBs (221.94 pg m-3), penta-CBs 

(167.59 pg m-3), hexa-CBs (104.19 pg m-3), octa-CBs (64.13 pg m-3), hepta-CBs (48.43 pg m-

3), nona-CBs (20.42 pg m-3) and deca-CBs (4.28 pg m-3), in that order.  In other words, there 

was a decreasing tendency in the concentrations of PCB in the atmosphere with increasing 

number of chlorine, as expected. 

In the long-term period, about 76% (average) of the total PCBs (gas + particle) resided 

in the gas phase (Figure 4.5), consistent with short-term sampling results.  These values were 

comparable with the two studies conducted in European countries Spain (Garcia-Alonso et al. 

2002) and France (Granier and Chevreuil 1997) with the percentages 72 and 79, respectively. 

The analysis of the seasonal or temporal variation results showed that highest mean 

concentration for ΣPCBs (41 congeners) was observed in autumn (493 pg m-3).  This could be 

the result of highest concentration presence in the beginning of September.  In the literature it 

was mentioned that higher temperature in early summer results in higher PCB concentration 

in air (Backe et al. 2000). 

Moreover, some research results showed that the peak concentration in SOCs could 

occure between May and September (Halsall et al. 1999).  This seasonal average was 

followed by spring (446 pg m-3, n=6) which has also second highest concentration presence, 

summer (419 pg m-3, n=11), and winter (291 pg m-3, n=10). 

 



 49

0

50

100

150

200

18 17 31 28 33 74 70 153 208 206

PCB Congeners

G
as

 a
nd

 P
ar

ti
cl

e 
D

is
tr

ib
ut

io
n 

(%
)

GAS

PARTICLE

 

Figure 4.5.  Average Particle/Gas Phase Distribution of Individual PCB Congeners for 

Long-term Sampling. Error Bars Represent the Standart Deviation. 

 

Figure 4.6 describes the seasonal contribution of PCB homologs relative to the 

PCBs.  Maximum concentrations were achieved in summer for tetra (206.93 pg m-3), penta 

(106.1 pg m-3), hexa (82.07 pg m-3) and hepta-CBs (67.7 pg m-3).  Tri-CBs highly detected in 

fall (755.79 pg m-3).  Highest concentrations for all tri-CBs (PCB 18-484.62 pg m-3, 17-

196.09 pg m-3, 31-380.60 pg m-3, 28-278.32 pg m-3, and 33-313.28 pg m-3, while the average 

concentrations in this season for each congener were 64.74, 29.67, 43.83, 24.40, 30.95 pg m-3, 

respectively) were observed in the first sample in autumn.  Octa-CBs were detected in only 1 

sampling day in spring, 5 days in summer, and 2 days both in autumn and winter.  Thus, the 

percentages were very small but they had the highest concentrations in fall (21.19 pg m-3, 2%) 

and minimum in spring (2.89 pg m-3, 0.4%).  Because of the unusual increased concentrations 

of PCB 208, nona-CBs were at the highest concentration in winter (70%) when PCB 208 was 

detected at highest levels and minimum (4%) in summer. 

Deca-CB (PCB 209) was not detected in every sampling day for each season, the 

minimum concentration was 0.69 pg m-3 (spring, 0.03%), the maximum was 39.56      pg m-3 

(in fall, 0.6%), and was not detected in winter.  As seen in the Figure 4.5 the highest seasonal 

contribution was attributed to nona-CBs in winter time while all the other compounds 

contributed to every season varies.  In the study conducted by Yeo et al. (2003) showed 

similar behavior on the deca-CB. 
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Figure 4.6.  Seasonal contribution (%) of PCB homologs (May 2003-March 2004) 

 
4.2. Effect of Temperature 

 

Semivolatile organic compounds such as PCBs have an ability to revolatilize from the 

secondary source compartment which can be referred as soil, vegetation, water and 

atmospheric particles.  Since PCBs were banned, their primary sources such as manufacture 

and specific use of PCBs, have been largely reduced.  Therefore, these secondary sources 

becomes more important for the condensation and volatilization process which controls the 

cycling nature of SOCs between air and other surfaces (Halsall et al. 1999).  It has also been 

shown that the air concentrations of semivolatile organic compounds (SOCs) have a strong 

relationship to ambient temperature (Lee and Jones 1999; Cortes et al. 1998; Hoff et al. 1998; 

Honrath et al. 1997, Hillery et al. 1997). 

 

4.2.1. Short-term Sampling Period 

 

In order to see the temperature effect, the study was designed in two different 

sampling program.  Shortterm sampling programme was designed to see sharp temperature 

changes between night and daytime, and to see the concentration variation.  The long-term 

sampling was designed to see seasonal temperature effect on PCB concentrations. 

The average day and night temperature and mean PCB(41) concentration variations 

were given in Figure 4.7.  There was not any significant diurnal variation in concentrations for 
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short-term sampling periods, however nighttime concentrations were lower than daytime 

concentrations as a result of the decreasing temperature at night (Tables 3.1 and 3.2). 
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Figure. 4.7.  Total concentration of PCBs for each day and nighttime sampling days 
 
 

SOCs are reported to follow clear diurnal cycles (Lee et al. 1998; 2000).  Two 

homolog groups of PCBs (tri-and penta-CBs)showed diurnal cycling of  in some sampling 

days for the short-term sampling duration are given in Figures 4.8 and 4.9.  Diurnal cycling 

was observed for only a few days and they can not be interpreted as strong cycles. 

The diurnal variations of SOCs are explained by sorption processes.  Strong variations 

are mostly dominated by surface adsorption processes, because adsorption response times to 

changes in temperature are relatively fast while absorption response times are slow 

(Hornbuckle and Eisenreich 1996).  Gouin et al. (2002) explained this mechanism by 

comparing molar volumes of two groups of SOCs.  When the molar volume is small there is 

more tendency to absorb into the organic matrix than to adsorp on to surfaces. 
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Figure 4.8.  Diurnal variation of tri-chlorinated biphenyls and temperature 
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Figure 4.9.  Diurnal variation of penta-chlorinated biphenyls and temperature 

 

As referred before, the Clausius-Clapeyron equation was used to interpret the 

temperature dependency of gas phase PCB congeners and total gas phase concentration for a 

detailed information about cycling and transport behavior of PCBs.  The partial pressures 

(atm) of individual compounds were calculated for each sample using gas-phase 

concentrations and the ideal gas law.  Natural logarithms of calculated partial pressures were 

plotted against reciprocal mean temperature for each sampling day.  The mean temperature 
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was obtained by averaging the temperatures measured in 1-minute intervals over the each 

sampling period and ranged from 15.7 to 26.4°C during the short-term sampling program. 

ΣPCB(41) gas concentration was plotted ln P of versus 1/T (Figure 4.10) and a steeper 

(-11200) slope was obtained with a very low correlation coefficient.  The statistical analysis 

showed that ΣPCB(41) gas phase was significantly (<0.05) correlated with temperature which 

was reported in the literature (Hoff et al. 1998; Halsall et al.. 1999).  It is better to analyse the 

congener based temperature dependency to get detailed information. 

ln P = -11209 (1/T) + 6,96
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Figure 4.10.  Temperature dependence of atmospheric gas phase PCB concentrations 

 

The results of congener based temperature dependency analysis were presented in 

Table 4.3.  The statistical results showed that the partial pressures of 12 PCB congeners were 

significantly correlated with the inverse temperature (p<0.05).  For all PCBs, except PCB 49, 

slope was negative indicating that their concentrations increased with increasing temperature.  

The slopes belong to statistically significant congeners were relatively steep and varied 

between -5845.43 and -10088.8.  These steeper values suggests that their ambient 

concentrations were influenced by short-range transport or regional volatilization.  The 

sudden temperature change between day and night time showed the change more clear, but 

still was not enough to make a conclusion becuse of the low correlation value implying the 

other factors, like wind speed, could effect the concentration variation.  Scattering in the data 

interpreted as wind speed causing advection in the area and masking the temperature effects 

on gas phase concentrations. 
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For the PCBs that did not have significant correlation with the temperature, other 

meteorological conditions such as wind speed and wind direction might have been effective 

factors for gas phase PCBs.  In order to investigate the effect of  these 

 

Table 4.3.  Summary of regression parameters for Clasius-Clapeyron equation 

PCBs  m p b r2 n 
18 -6952  -9.7 0.04 16 
17 -10234  0.9 0.26 15 
28 -6182  -13 0.06 16 
33 -3824  -20 0.02 14 
49 4201  -46 0.41 7 
44 -2857  -24 0.02 16 
74 -8878 <0.05 -4.6 0.31 19 
70 -7607 <0.05 -8.4 0.22 19 
95 -6355  -12 0.16 19 

 101 -8880 <0.05 -4.2 0.33 16 
 99 -7493 <0.05 -9.5 0.25 19 
 87 -5845 <0.01 -15 0.43 15 

 110 -3151  -23 0.13 11 
82/151 -8947 <0.01 -4.4 0.44 14 

 149 -2516  -25 0.10 9 
 153 -6841 <0.05 -12 0.31 19 
 138 -6744 <0.05 -12 0.26 19 
 158 -10089 <0.05 -3 0.31 14 
 187 -3060  -26 0.09 15 
 128 -8281 <0.01 -7.9 0.54 16 
 177 -1839  -29 0.04 8 

 171/156 -1880  -29 0.01 10 
 180 -2454  -27 0.02 13 

Σ PCBs -11209 <0.05 7 0.26 18 
 

 

meteorological parameters, the following model including wind speed and direction as factors 

was applied ( Hillery et al. 1997. Harrad and Mao 2004): 

 

ln P = m1 (1/T) + m2 U + m3 Cos WD + b                           (4.1) 

 

where U is the wind speed (m s-1), WD is the predominant wind direction during the sampling 

period (degrees), m1, m2, m3, and b are the regression parameters.  The results of multiple 

linear regression analysis are presented in Table 4.4.  The correlation was statistically 

significant for 14 PCB congeners (p<0.01 to p<0.05).  For all PCBs m1 was negative 

indicating that their concentrations increased with increasing temperature.  This approves that 

the model including wind speed and wind direction reveals the effect of those factors on tri- 
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and tetra-chlorinated biphenyls.  When effect of advection (opposite correlation of gas phase 

concentrations with high wind speeds) was considered by this model.  Temperature effect 

happened to be significant yielding higher slopes on the forementioned congeners.  

The gas phase PCBs and the the total gas phase PCB that were significantly correlated 

to temperature were already significant in the previous model, which implies the consistency 

of the two models.  Besides, regression coefficients were improved by introduction of new 

factors.  Hence, it could be possible to discuss the source and behavior of the PCBs 

considering the meteorological conditions. 

The PCBs with significant correlations by wind direction were PCB 18, and 171/156 

with relatively high positive correlation factors, PCB 49 exhibited an exceptional 

characteristics with very low dependence on temperature and high correlation with wind 

direction.  When the wind directions at the intervals at time PCB 49 appeared were looked up, 

it was obvious that northerly winds were dominating.  Remarking the unexpected positive 

slope yielded by the single factor model which correlated the lnP values according to 1/T, it is 

concluded that the second model fits well for the specific case for this congener.  Besides, it 

can be speculated that those PCBs that correlated well with wind direction may have an 

ongoing source. 

Some of the PCBs showed low correlation factors for all of the parameters considered 

and considerably high constant values that were significant.  These results showed that gas 

phase concentrations of those PCBs, namely PCB110, 149, 187, 177 and 180, were almost 

constant at various levels with very shallow slopes when correlated to temperature. 
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Table 4.4.  Summary of regression parameters for eq. (4.1) 

PCBs m1 m2 m3 b r2 n 

18 -20088b -0.34b 0.90b 35.63 0.62a 16 
17 -15588 b -0.20 0.42 19.39 0.47 15 
28 -14960b -0.31b 0.38 17.95 0.48b 16 
33 -8307 -0.20 -0.37 -4.08 0.15 14 
49 -2865 0.06 0.90 -23.35 0.76 7 
44 -7582 -0.20 -0.57 -6.97 0.37 16 
74 -11446a -0.17b -0.09 4.70 0.51a 19 
70 -10277 a -0.18b -0.12 1.30 0.42b 19 
95 -8876 b -0.17b -0.10 -3.17 0.36 19 
101 -10562 b -0.08 -0.14 1.84 0.38 16 
99 -9068 b -0.11 0.00 -3.84 0.35 19 
87 -5711 b 0.01 -0.01 -15.53  0.44 15 
110 -1221 0.12 0.13 -30.33  0.38 11 

82/151 -10681 b -0.05 0.22 1.53 0.50 14 
149 -2293 0.00 -0.06 -25.60 0.10 9 
153 -8225a -0.10 0.02 -6.85 0.42b 19 
138 -8225a -0.11 0.06 -6.82 0.38 19 
158 -14138.a -0.08 0.59 10.75 0.52 14 
187 -4946 -0.09 -0.05 -19.29 0.23 15 
128 -8938a -0.05 0.09 -5.47 0.61a 16 
177 -4077 -0.14 0.01 -21.08 0.37 8 

171/156 -10910 -0.15 0.87 2.07 0.52 10 
180 -482 0.14 -0.24 -33.66 0.38 13 

Σ PCBs -12987b -0.32b 0.63 13.51 0.46b 20 
a p<0.01 
b p<0.05 
 

 

4.2.2. Long-term Sampling Period 

 

The variation of PCB concentrations were researched for long-term sampling results.  

In Figure 4.11, the variation of total gas phase concentrations of 41 PCB congeners, with the 

temperature of the sampling days is given.  Similarly with the short-term investigation, it can 

be drawn out that PCBs did not exhibited strong variation for each sampling day. 
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Figure 4.11. Variation of total gas phase concentrations with temperature 

 

Since the temperature variation of total gas phase PCB concentration was not clear, 

variation of gas phase PCB homologs were investigated separately.  Variations with the 

temperature are given in Figure 4.12 and 4.13 for tri-and penta-CBs. 

 

-4

1

6

11

16

21

26

31

36

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Sample numbers

T
em

pe
ra

tu
re

 (o C
)

0

50

100

150

200

250

300

350

400

450

500

C
on

ce
nt

ra
tio

n 
(p

g 
m

-3
)

Temperature
PCB 18
PCB 17
PCB 28
PCB 31
PCB 33

 

Figure 4.12.  Variation of tri-CBs and temperature. 
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Figure 4.13.  Variation of penta-CBs and temperature. 

 

The variation with temperature in two homolog groups was similar to short-term 

results.  No clear daytime variation with the temperature observed for gas phase PCB 

homologs in long-term results.  The reason could be long sampling times andchange in 

meteorological conditions, advection effect due to wind direction and speed, and also their 

chemical properties which could drect different sorption processes for each compound and 

result in inhibition of volatilization. 

Same procedure was followed for long-term results to have a detailed conclusion 

about temperature dependency.  Table 4.5 presents the results of regression analysis including 

the slope and intercept values with the degree of correlation.  The congeners with less than 8 

number of observations were not taken into account in the regression analysis because fewer 

observations displayed inconsistent correlations when applied to different models. 

ΣPCB gas concentration was plotted ln P of versus 1/T and a steep slope was      -

4197.6 (Figure 4.14) was obtained.  The statistical analysis showed that ΣPCB gas phase was 

significantly (<0.01) correlated with temperature.  The slope was shallower  (-4197) than the 

slope of the short-term plot (-12987), but the correlation coefficient was better.  To see the 

individual temperature variation congener based temperature dependencies were investigated 

for long-term period. 
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Table 4.5.  Summary of regression parameters for Clasius-Clapeyron equation 

PCBs m1 b r2 n 
18 -28134b -23.8824 0.13 32 
17 -2509b -25.406 0.15 26 
31 -2858b -23.8504 0.21 27 
28 -3797b -20.92 0.18 24 
33 -4814b -17.1963 0.19 26 
44 -2682 -26.651 0.01 9 
74 -4257a -20.7142 0.34 22 
70 -3691b -22.074 0.22 21 
95 -4798b -18.311 0.29 17 
101 -1561 -29.373 0.01 16 
99 -3386b -23.667 0.26 21 
87 -1705 -29.231 0.04 9 

82/151 -2589 -25.835 0.07 11 
153 -3827a -22.2034 0.36 21 
138 -5643a -16.2259 0.46 20 
158 -8709 -7.729 0.21 15 
187 -2905b -26.4219 0.19 27 
128 -1507 -30.6222 0.02 24 

171/156 -1131 -31.259 0.09 8 
180 -2063 -27.376 0.03 11 
206 -1266 -30.624 0.06 17 
209 10840b -72.7903 0.47 9 

Σ PCBs -4198a -17.3 0.34 36 
 

a p<0.01 
b p<0.05 
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Figure 4.14.  Temperature dependence of atmospheric gas phase PCB concentrations in the 

long-term 
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The partial pressures of 13 PCB congeners were significantly correlated with the 

inverse temperature (<0.001 to <0.05), and negative slopes varied between -2508.9 and -5643 

as coefficients of 1/T.  In both of the short and long-term analysis almost the same congeners 

were significantly correlated with temperature.  The significant m1 coefficients of the long-

term sampling were lower than those in short-term due to gradual seasonal variation in 

temperature.  Hence, more shallow slopes in the long-term sampling were reasonable due to 

scattering in the data.  The reasons for the scattering of the data may be the changes in the 

meteorological conditions during the sampling time.  Increase in the wind speed causes the 

dilution of the atmospheric concentration even though the temperature increases.  Brunciak et 

al. (2001) mentioned that on a warm summer days due to the convective mixing, the 

occurrence of turbulence caused by warm “bubbles” of air rising from the ground yielding a 

faster dilution. 

 

The Clausius-Clapeyron equation was applied to each seasonal data and were compared with 

variation of ln P versus 1/T obtained from the complete long-term data.  It was observed that 

the slopes decreased as the temperature variation range increased.  Considering this effect, 

short and long-term results confirm each other with comparable significant values in terms of 

temperature dependance.  In this case, except the heavier congeners (PCB 171/156, 180, and 

206) the source of these PCBs with significant correlation with 1/T were attributed to short-

range transport.  The others with lower r2 values and poor correlations exhibited that their 

sources were originated from long-range transport. 

However, the positive slope obtained for PCB 209 can be attributed to the influence of 

its ongoing source.  The source may be the exchange processes from buildings, indoor air, 

soils, urban dust etc... to overlying atmosphere.  For instance, Halsall et al. (1995) identified 

building air as one of the primary PCB sources of gas phase PCB 52 to the urban atmosphere 

of Manchester.  As the heaviest PCB with ten chlorine PCB 209 has a tendency to deposit on 

surfaces.  The temperature was above 20 °C (especially 29-30 °C) when this congener was 

detected and the concentrations were low (0.79 to 12.98 pg m-3).  It can be concluded that 

PCB 209 was volatilized as a result of elevated temperatures. 
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CHAPTER 5 

 

CONCLUSIONS  

 

Twenty successive daytime and nighttime, and forty daytime air samples were 

collected during May, 2003-March, 2004, for representing short-term and long-term periods, 

respectively.  They were analyzed for 41 polychlorinated biphenyls (PCBs).  Ambient air gas 

and particulate concentrations and their temperature dependency were investigated. 

The short term average ΣPCB(41) (gas+particle) concentration was higher than long 

term average concentration, but all the values were in the range of the values reported in the 

literature.  Particulate phase total concentration were found one order of magnitude than 

literature value.  In the congener base evaluation resulted in absence of PCB 169, which has 

adioxin-like toxicity, in long-term samples. 

Lower chlorinated congeners (tri-and tetra-chlorinated biphenyls) were the abundant 

group in both term samplings.  This can be attributed to their high vapor pressures which 

make their volatilization easier than the higher chlorinated congeners. 

Temperature dependency of PCBs were investigated by using Clasius-Clapeyron 

equation.  The slope of the function of ln P versus 1/T helps to describe the source of these 

chemicals whether they originated from long or short-range atmospheric transport.  Short-

term data was analysed for this model and the partial pressures of 12 PCB congeners (PCB 

74, 70, 101, 99, 87, 82/151, 153, 138, 158, and 128) were significantly correlated with the 

inverse temperature (<0.05).  The slopes belong to statistically significant congeners were 

negative indicating that their concentrations increased with increasing temperature. were 

relatively steep and ranged between -5845.43 and              -10088.8 suggesting that their 

ambient concentrations were influenced by short-range or regional transport.  The sudden 

temperature change between day and night-time made the change more clear to see this steep 

slope, but the wind change showed its effect with a scattering data resulted in low correlation 

values.  For the PCBs that did not have significant correlation with the temperature, wind 

speed and wind direction could be other meteorological parameters which effected gas phase 

PCB concentrations.  In order to investigate these effects another model including wind speed 

and direction as factors were incorporated and it was observed that two more congeners 
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yielded significant correlations with temperature.  These PCBs were the lighter congeners 

which could easily be influenced by the wind. 

In the long-term data analysis with respect to Clasius-Clapeyron relationship 13 PCB 

(PCB 18, 17, 31, 28, 33, 74, 70, 95, 99, 153, 138, 187, and 209) congeners were statistically 

significant (p<0.05) with temperature.  Introduction of wind speed and wind direction did not 

yield a significant model.  The sources of these congeners were attributed as the PCBs 

originated from short-range transport due to their significant temperature correlations having 

coefficients -2508.9 to -5643.  The others with lower R2 values and poor correlations 

exhibited that their sources might be originated from long-range transport. 

When compared with the short-term values the slopes obtained in long-term analysis 

were relatively shallow.  It is predicted that, in the long-term other environmental factors 

affecting PCB concentrations interfere and effectiveness of temperature variation is reduced 

when compared with the short-term.  Besides, seasonal investigations exhibited intermediate 

slopes for the temperature dependent correlation. 

The only positive slope obtained for PCB 209 and this can be attributed to the 

influence of its ongoing source.  Since the usage and production of PCBs were banned the 

source may be the exchange processes from buildings, indoor air, soils, urban dust etc., to 

overlying atmosphere. 

 

FUTURE RECCOMENDATIONS 
 

In the study, even though the slopes were statistically significant for some congeners, 

the correlation coefficient was too low to conclude a strong temperature dependency.  Back 

trajectory analysis could give more idea about dominating transport mechanisms in the area. 

Additionally, the average particle phase concentration in the area was one order of 

magnitude higher than the other measured data in the literature.  At the same time, the organic 

content of the particulate phase was higher than that was assume in the literature.  Due to high 

particulate phase concentration and organic matter content in the suspended particle, dry 

deposition would play an important role in the surface contamination.  Therefore, dry 

deposition concentrations onto surfaces (buildings, soil, vegetation etc.) can be a future study. 
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