

AN ANALYSIS OF KEY GENERATION
EFFICIENCY OF RSA CRYPTOSYSTEM IN

DISTRIBUTED ENVIRONMENTS

A Thesis Submitted to

the Graduate School of Engineering and Sciences of
İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Gökhan ÇAĞRICI

October 2005
İZMİR

We approve the thesis of Gökhan ÇAĞRICI

Date of Signature

…………………………………………. 19 October 2005
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Supervisor

Department of Computer Engineering

İzmir Institute of Technology

…………………………………………. 19 October 2005
Asst. Prof. Dr. Tuğkan TUĞLULAR
Department of Computer Engineering

İzmir Institute of Technology

…………………………………………. 19 October 2005
Prof. Dr. Şaban EREN
Department of Computer Engineering

Ege University

…………………………………………. 19 October 2005
Prof. Dr. Kayhan ERCİYEŞ
Head of Department

Department of Computer Engineering

İzmir Institute of Technology

………………………………………….
Assoc. Prof. Dr. Semahat ÖZDEMİR

Head of the Graduate School

ACKNOWLEDGEMENTS

I would like to thank Assoc Prof. Ahmet KOLTUKSUZ, PhD., for his intimacy

and for his great support during all the steps of this thesis. I would also like to thank

Asst. Prof. Tuğkan TUĞLULAR, PhD. and Prof. Şaban EREN, PhD. for their valuable

suggestions.

If I had the chance to append an acknowledgement for my life, it would give me

immense pleasure to express my deep gratitude towards Deniz TOLGAY for her

existence and being the reason for mine thereupon.

 iv

ABSTRACT

 As the size of the communication through networks and especially through

Internet grew, there became a huge need for securing these connections. The symmetric

and asymmetric cryptosystems formed a good complementary approach for providing

this security. While the asymmetric cryptosystems were a perfect solution for the

distribution of the keys used by the communicating parties, they were very slow for the

actual encryption and decryption of the data flowing between them. Therefore, the

symmetric cryptosystems perfectly filled this space and were used for the encryption

and decryption process once the session keys had been exchanged securely.

Parallelism is a hot research topic area in many different fields and being used to

deal with problems whose solutions take a considerable amount of time. Cryptography

is no exception and, computer scientists have discovered that parallelism could certainly

be used for making the algorithms for asymmetric cryptosystems go faster and the

experimental results have shown a good promise so far.

This thesis is based on the parallelization of a famous public-key algorithm,

namely RSA.

 v

ÖZET

Ağlar arasında ve de özellikle Internet üzerinde gerçekleşen veri iletişiminin

boyutları arttıkça bu bağlantıları güvenli bir hale getirme ihtiyacı da önem kazanmıştır.

Simetrik ve asimertik kriptosystemler ise bu soruna tümleşik bir çözüm sunmaktadırlar.

Asimetrik kriptosistemler, anahtarların değişimi ile ilgili sorunlara mükemmel çözümler

getirmesine karşın, veri iletişimi gerçekleşirken kullanılan şifreleme ve deşifreleme

işlemleri için yavaş kalmaktadırlar. İşte simetrik kriptosistemler de, bağlantı için

kullanılacak anahtarın değişiminin tamamlanmasını takiben bu boşluğu mükemmel bir

şekilde doldururlar.

Paralelizm bir çok alan için sıcak bir araştırma konusu olup çözümleri uzun

zaman dilimleri gerektiren problemler için kullanılmaktadır. Kriptografi de bunlardan

biridir ve asimetrik kriptosistemlerin daha hızlı çalıştırılması için paralel algoritmaların

kullanılabileceği farkına varılmış ve deneysel sonuçlar da gayet umut verici sonuçlar

ortaya koymuştur.

Bu tez, sıkça kullanılan bir açık anahtar kriptosistemi olan RSA’nın

paralelizasyonu ile ilgilidir.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ...viii

LIST OF TABLES... ix

CHAPTER 1. PRIMES... 1

 1.1. Primes and Cryptography ... 1

 1.1.1. Ciphers Based on Computationally Hard Problems 3

 1.2. Prime Number... 5

 1.3. Strong Prime ... 5

 1.3.1. Strong Prime Definition.. 6

 1.3.2. Strong Prime Construction.. 8

 1.4. Prime Certification.. 10

CHAPTER 2. RSA ... 16

 2.1. Cryptosystems and Cryptanalysis ... 16

 2.1.1. Requirements for Secrecy... 18

 2.1.2. Requirements for Authenticity and Integrity 19

 2.2. Public-Key Cryptography... 20

 2.2.1. The Need for Public-Key Cryptography... 20

 2.2.2. Historical Background .. 21

 2.2.3. Public-Key Cryptosystems ... 22

 2.2.3.1. Secrecy and Authenticity .. 22

 2.2.3.2. Applicability and Limitations ... 24

 2.3. RSA Cryptosystem ... 25

 2.4. The Mathematics of RSA ... 26

 2.5. Modes of Operation .. 29

 2.5.1. Electronic Code Book (ECB) ... 29

 2.5.2. Cipher Block Chaining (CBC).. 31

 2.5.3. Cipher Feedback Mode (CFM)... 33

 2.5.4. Stream Cipher Mode (SCM)... 34

 2.5.5. Counter Mode ... 35

 vii

CHAPTER 3. PARALLEL COMPUTING.. 37

 3.1. Introduction... 37

 3.1.1. Decomposition and Granularity.. 37

 3.1.2. Historical Background .. 39

 3.2. Parallel Programming Platforms... 41

 3.2.1. Implicit Parallelism: Trends in Microprocessor Architectures....... 41

 3.2.1.1. Pipelining and Superscalar Execution 42

 3.2.1.2. Very Long Instruction Word Processors 42

 3.2.2. Dichotomy of Parallel Computing Platforms 43

 3.2.2.1. Control Structure of Parallel Platforms 44

 3.2.2.2. Communication Model of Parallel Platforms 46

 3.2.2.2.1. Shared-Address-Space Platforms 46

 3.2.2.2.2. Message-Passing Platforms .. 48

 3.3. Message Passing Interface (MPI) ... 49

 3.3.1. Introduction to MPI .. 51

 3.4. Inclusions of MPI.. 54

 3.5. MPI Standard .. 55

CHAPTER 4. PARALLEL ALGORITHMS.. 57

 4.1. Simple Prime Generation.. 57

 4.2. Double Prime Generation ... 59

 4.3. Strong Prime Generation .. 60

 4.4. Parallel Prime Certification .. 61

 4.5. RSA in Operation.. 61

CHAPTER 5. EXPERIMENTAL RESULTS .. 63

CHAPTER 6. CONCLUSION AND RECOMMENDED FURTHER WORKS........... 66

REFERENCES ... 68

APPENDIX A. DISTRIBUTED ENVIRONMENT .. 69

 viii

LIST OF FIGURES

Figure Page

Figure 1.1. Complexity Classes .. 3

Figure 2.1. The Encryption Model (Symmetric Case).. 17

Figure 2.2. The Plaintext of a File Encrypted as 16 DES Blocks................................... 30

Figure 2.3. Cipher Block Chaining. (a) Encryption. (b) Decryption 31

Figure 2.4. Cipher Feedback Mode. (a) Encryption. (b) Decryption.............................. 34

Figure 2.5. Stream Cipher Mode. (a) Encryption. (b) Decryption.................................. 35

Figure 2.6. Encryption Using Counter Mode ... 36

Figure 3.1. A typical SIMD architecture (a) and a typical MIMD architecture (b)........ 44

Figure 3.2. Typical shared-address-space architectures ... 47

Figure 5.1. Strong Primes Generation .. 65

 ix

LIST OF TABLES

Table Page

Table 3.1. Message Passing Libraries... 50

Table 5.1. The Measured Values Using Different Seeds.. 64

Table 5.2. The Measured Values Using the Same Seed ... 65

 1

CHAPTER 1

PRIMES

1.1 . Primes and Cryptography

Complexity theory classifies a problem according to the minimum time and

space needed to solve the hardest instances of the problem on a Turing Machine (or

some other abstract model of computation). A Turing Machine (TM) is a finite state

machine with an infinite read-write tape. A TM is a “realistic” model of computation in

that problems that are polynomial solvable on a TM are also polynomial solvable on real

systems and vice versa.

Problems that are solvable in polynomial time are called tractable because they

can usually be solved for reasonable size inputs. Problems that cannot be systemically

solved in polynomial time are called intractable or simply “hard” because as the size of

the input increases, their solution becomes infeasible on even the fastest computers.

Turing proved that some problems are so hard they are undecidable in the sense that it

is impossible to write an algorithm to solve them. In particular, he showed the problem

of determining whether an arbitrary TM (or program) halts is undecidable. Many other

problems have been shown to be undecidable by providing that if they could be solved,

then the “halting problem” could be solved.

There are several important complexity classes and they have several

relationships with others.

The class P consists of all problems solvable in polynomial time.

The class NP (nondeterministic polynomial) consists of all problems solvable in

polynomial time on a nondeterministic TM. This means if the machine guesses the

solution, it can check its correctness in polynomial time. Of course, this does not really

“solve” the problem, because there is no guarantee the machine will guess the right

answer; it depends on the capability of the computer to guess the answer correctly.

To systematically (deterministically) solve certain problems in NP seems to

require exponential time. An example of such a problem is the “knapsack problem”:

given a set of n integers A = {a1, ..., an} and an integer S, determine whether there exists

a subset of A that sums to S. The problem is clearly in NP because for any given subset,

 2

it is easy to check whether it sums to S. Finding a subset that sums to S is much harder,

however, as there are 2
n
 possible subsets; trying all of them has time complexity T =

O(2
n
). Another example of a problem that seems to have exponential time complexity is

the “satisfiability problem”, which is to determine whether there exists an assignment of

values to a set of n boolean variables v1, ..., vn such that a given set of clauses over the

variables is true.

The class NP includes the class P because any problem polynomial solvable on

a deterministic TM is polynomial solvable on a nondeterministic one. If all NP

problems are polynomial solvable on a deterministic TM, then P = NP. Although many

problems in NP seem much “harder” then the problems in P (e.g., the knapsack problem

and satisfiability) no one has yet proved P ≠ NP.

It has been shown that the satisfiability problem has the property that every other

problem in NP can be reduced to it in polynomial time. This means that if the

satisfiability problem is polynomial solvable, then every problem in NP is polynomial

solvable, and if some problem in NP is intractable, then satisfiability must also be

intractable. Since then, other problems (including the knapsack problem) have been

shown to be equivalent to satisfiability in the preceding sense. This set of equivalent

problems is called the NP-complete problems, and has the property that if any one of

the problems is in P, then all NP problems are in P and P = NP. Thus, the NP-complete

problems are the “hardest” problems in NP. The fastest known algorithms for

systematically solving these problems have worst-case time complexities exponential in

the size n of the problem. Finding a polynomial-time solution to one of them would be a

major breakthrough in computer science.

A problem is shown to be NP-complete by proving it is NP-hard and in NP. A

problem is NP-hard if it cannot be solved in polynomial time unless P = NP. To show a

problem A is NP-Hard, it is necessary to show that some NP-Complete problem B is

polynomial-time reducible to an instance of A, and a polynomial-time algorithm for

solving A would also solve B. To show A is in NP, it is necessary to prove that a correct

solution can be proved correct in polynomial time.

The class CoNP consists of all problems that are the complement of some

problem in NP. Intuitively, problems in NP are of the form “determine whether a

solution exists,” whereas the complementary problems in CoNP are of the form “show

there are no solutions.” It is now known whether NP=CoNP, but there are problems that

fall in the intersection NP ∩ CoNP. An example of such a problem is the “composite

 3

numbers problem”: given an integer n, determine whether n is composite (i.e., there

exist factors p and q such that n = pq or prime (i.e., there are no such factors). The

problem of finding factors, however, may be harder than showing their existence.

Figure 1.1. Complexity Classes.

The class PSPACE consists of those problems solvable in polynomial space, but

not necessarily polynomial time. It includes NP and CoNP, but there are problems in

PSPACE that are thought by some to be harder than problems in NP and CoNP. The

PSPACE-complete problems have the property that if any one of them is in NP, then

PSPACE = NP, or if any one is in P, then PSPACE = P. The class EXPTIME consists

of those problems solvable in exponential time, and includes PSPACE.

1.1.1. Ciphers Based on Computationally Hard Problems

In their 1976 paper, Diffie and Hellman suggested applying computational

complexity to the design of encryption algorithm. They noted that NP-complete

 4

problems might make excellent candidates for ciphers because they cannot be solved in

polynomial time by any known techniques. Problems that are computationally more

difficult than the problems in NP are not suitable for encryption because the enciphering

and deciphering transformations must be fast (i.e., computable in polynomial time). But

this means the cryptanalyst could guess a key and check the solution in polynomial time

(e.g., by enciphering known plaintext). Thus, the cryptanalytic effort to break any

polynomial-time encryption algorithm must be in NP.

Diffie and Hellman speculated that cryptography could draw from the theory of

NP complexity but examining ways in which NP-complete problems could be adapted

to cryptographic use. Information could be enciphered by encoding it in an NP-

complete problem in such a way that breaking the cipher would require solving the

problem in the usual way. With the deciphering key, however, a shortcut solution would

be possible.

To construct such a cipher, secret “trapdoor” information is inserted into a

computationally hard problem that involves inverting a one-way function. A function f

is a one-way function if it is easy to compute f(x) for any x in the domain of f, while,

for almost all y in the range of f, it is computationally infeasible to compute f
−1

(y) even

if y is known. It is a trapdoor one-way function if it is easy to compute f
−1

 given

certain additional information. This additional information is the secret deciphering key.

Public-key systems are based on this principle. The trapdoor knapsack schemes

are based on the knapsack problem. The RSA scheme forming the basis of this thesis

work is based on factoring composite numbers.

The strength of such a cipher depends on the computational complexity of the

problem on which it is based. A computationally difficult problem does not necessarily

imply a strong cryptosystem; however, Shamir gives three reasons:

1. Complexity theory usually deals with single isolated instances of a problem.

A cryptanalyst often has a large collection of statistically related problems

to solve (e.g., several ciphertexts generated by the same key).

2. The computational complexity of a problem is typically measured by its

worst-case or average-case behavior. To be useful as a cipher, the problem

must be hard to solve in almost all cases.

3. An arbitrarily difficult problem cannot necessarily be transformed into a

cryptosystem, and it must be possible to insert trapdoor information into the

 5

problem in such a way that a shortcut solution is possible with this

information and only with this information (Denning 1982).
1

1.2 . Prime Number

Definition 1.1. A prime number is an integer greater than 1 that can only be divided by

1 and itself with no remainder.

Here are the first few prime numbers:

2,3,5,7,11,13,17,19,23,29 … (1.1)

As proceeded in the set of natural numbers N = {1,2,3, . . .}, primes are seen less

and less frequent in general. However, there is no largest prime number. As the Greek

mathematician Euclid stated in the ancient times, for every prime number p, there exists

a prime number p′ such that p′ is greater than p.

Prime numbers are important since they form the building blocks of the

multiplicative structure on integers, which means that every integer can be factorized in

terms of prime numbers and this assertion is known as The Fundamental Theorem of

Arithmetic. This property is very useful in many application areas of mathematics

(WEB_1 2002).

1.3. Strong Prime

The security of the RSA cryptosystem relies heavily upon the characteristics of

the modulus chosen for the encryption and decryption process.

1
 Denning, E. R. D., 1982. “Cryptography and Data Security”, Purdue University, (Addison-Wesley,

USA), pp. 31-35.

 6

1.3.1. Strong Prime Definition

It is desired that the modulus is not to be factorized by any special-purpose

factoring algorithm within any feasible amount of time. There are four basic factoring

attacks that can be applied to an RSA modulus.

The first factoring technique is related with the polynomial running time passed

until the smallest prime factor of the product is found. One simple technique is to divide

the product by increasing numbers starting from a small number until a factor is found,

which is called as trial division. If a small factor p is found, then it means that the

running time is O(p). There are also more complex algorithms that can perform the

same task faster than O(p). To prevent this attack, the prime numbers must be chosen

approximately the same size during the formation of the RSA modulus to make this

attack infeasible for the attacker.

The second factoring technique developed by Fermat is similar to the previous

technique, however, it starts searching starting from the square root of the product. The

running time of the algorithm is directly proportional to the difference between the two

prime factors of the RSA modulus. It means that if the two primes are chosen very close

to each other, then this factoring technique will be able to find them easily using the

product. Therefore, there must be a substantial difference between the primes.

The first and the second factoring technique have a contradictory nature. To

avoid the RSA modulus from being factored by these two techniques, the primes must

not only be approximately the same size but also be far from each other significantly.

For example, if the primes with two hundred decimal digits will be used, the first prime

might be 2x10
100

 whereas the second might be 4x10
100

. Since they have the same size

and there is a substantial difference between them (which is 2x10
100

), then the two

requirements have been satisfied. In fact, if the two primes are selected very large with

the same size, these requirements can be fulfilled more easily.

For the third factoring technique, there are two special-purpose algorithms that

are very similar indeed. The first algorithm is called Pollard’s p − 1 method.

Considering a product with a prime factor p, if p−1 has only small prime factors, then

this algorithm can factor the product in a reasonable amount of time. The second

algorithm, Williams’ p + 1 method, differs from the first one by taking p + 1 into

consideration instead of p − 1. As a consequence, to avoid suffering from this kind of

 7

attacks, for each prime p factor of the RSA modulus, p + 1 and p − 1 must contain at

least one large prime factor, which means that p − 1 and p + 1 must be a multiple of

large primes r and s, respectively. Mathematically;

p ≡ 1 (mod r) (1.2)

p ≡ s − 1(mod s) (1.3)

The last kind of attacks is related with the repeatedly application of the

encryption algorithm to the ciphertext produced by the RSA encryption. This method

will get a large percentage of the plaintext after the application of the algorithm for a

small number of times if the chosen RSA modulus is poor. There are two approaches

proposed to decrease the probability of success of these attacks:

1. Each prime factor p of the RSA modulus should be chosen such that

p − 1 = 2r where r is a large prime, which is a case of p ≡ 1 (mod r)

described in the previous paragraph.

2. Each prime factor p of the RSA modulus should be chosen such that p − 1 is

a multiple of r where r is a large prime and r − 1 is also a multiple of another

large prime t.

Among these two approaches, the second one will be preferred since it is much

easier to satisfy its requirements than the first one.

Combining all the requirements described above, the definition of a strong prime

comes to the scene:

Definition 1.2. A strong prime is a prime that satisfies all the conditions shown below:

p ≡ 1 (mod r) (1.4)

p ≡ s − 1 (mod s) (1.5)

r ≡ 1 (mod t) (1.6)

 8

where p, r, s, and t are all large primes.

1.3.2. Strong Prime Construction

Some primes possess special characteristics over the others and they are given

certain names. Other than strong prime, there is also another kind of prime called as

double prime.

Definition 1.3. A prime r is a double prime if it satisfies the requirement of

r ≡ 1 (mod t) (1.7)

where t is another prime.

Definition 1.4. A prime p is a simple prime if it does not possess any special

characteristics.

The definitions of these primes are not mutually exclusive. In fact, a strong

prime is also a double prime and thus a simple prime in turn. However, the reverse is

not always true. It means, a simple prime may be a double prime or not until it is looked

for if it satisfies the requirements.

To generate a strong prime, first, two simple primes, s and t must be generated.

After this, a double prime r should be chosen such that r − 1 is a multiple of t. To

search for such a double prime r, an integer k can be used to calculate kt + 1 and

iterated until kt + 1 is a prime.

Using Theorem 1.1, a strong prime p can be calculated.

Theorem 1.1. If r and s are odd primes, then prime p satisfies

p ≡ 1 (mod r) ≡ s − 1 (mod s) (1.8)

if p is of the form

 9

p = u(r, s) + krs (1.9)

where

u(r, s) = s
r−1

 − r
s−1

 mod rs (1.10)

and k is an integer.

Since r and s are both odd, rs is odd and krs is alternately odd and even while

iterating k. The initial value of p (denoted as p0) should be chosen so that p0 is odd,

which means that if u(r, s) is odd then p0 = u(r, s), otherwise p0 = u(r, s) + rs.

Then, 2krs will be added to p0 continuously until a prime is found since the sum

of an odd number by an even number is always odd. Consequently, the prime p takes

the form of p0 + 2krs.

The pseudocodes related to simple, strong and double prime generation are

given in Algorithm 1.1, Algorithm 1.2, and Algorithm 1.3.

Algorithm 1.1. Generating Strong Primes.

procedure StrongPrime(seed1,seed2:positive integers)

{seed1 and seed2 will be used to feed the random number generator}

s:=SimplePrime(seed1)

t:=SimplePrime(seed2)

r:=DoublePrime(t)

rs:=r*s

u:=(rs+modpower(s,r-1,rs)-modpower(r,s-1,rs)) mod rs

/* modpower(a,b,c) calculates aˆb mod c */

if even(u) then u:=u+rs

while not certify(u)

begin

u:=u+2rs

end

{u is the value of the strong prime}

 10

Algorithm 1.2. Generating Double Primes.

Algorithm 1.3. Generating Simple Primes.

1.4. Prime Certification

Primality testing is the process of distinguishing primes from composites

(products of more than one prime). In the last two decades, the importance of primality

testing gained much importance after the introduction of the public-key cryptography

that is now the standard form for encryption for electronic commerce. The security of

this type of cryptography primarily relies on the difficulty involved in factoring a large

integer into its prime factors. Certification of a prime candidate is accomplished by

using mathematical methods some of which will be described soon (Greenfield 1994).
2

2
 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”,

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, pp. 37-44.

procedure DoublePrime(x:positive integer)

{x is assumed to be a prime that will be used to find a double prime}

do

begin

y:=k*x+1

k:=k+2

end while(not certify(y))

{y is the value of the double prime}

procedure SimplePrime(x:positive integer)

{x is the starting point for searching a prime}

if even(start) then start:=start+1

while not certify(start)

begin

start:=start+2

end

{start is the value of the simple prime}

 11

Both the ancient Greeks and the ancient Chinese independently developed

primality tests. One of the simplest and most famous primality test is the Sieve of

Eratosthenes.

The Sieve of Eratosthenes. Eratosthenes lived in Greece circa 200 B.C. His

method works as follows. A number n is chosen to test for primality. A list of all

integers up to the largest integer that is less than or equal to n is made. Next, 2 is

circled and all its multiples are crossed off. Then, 3 is circled and all its multiples are

crossed off. This process is repeated by circling the next least integer that has not been

crossed off yet and again, crossing off its multiples. Each of these circled numbers is

tested to see if any divides n. If the list of circled numbers is exhausted and no divisor is

found, then n is prime. This algorithm is based on the simple observation that, if n is

composite, then n has a prime factor less than or equal to n . Although the algorithm

itself is very straightforward and easy to implement, it is not efficient. In the application

of cryptography, most primality testing is concerned with large numbers, usually in

excess of 100 digits and often much larger. For example, if a number with 100 digits is

to be tested for primality, then at least all the primes up to 10
50

 must be found, which

makes the method inefficient.

There are other approaches to the problem of finding a faster algorithm for

primality testing. One way is to find a pattern among primes, and then determine if a

given integer n follows that pattern. So far, no complete and easily implementable

pattern has been found. Another method is to find a pattern among all composites, and

then determine if a given n follows that pattern. In fact, these two methods are the same,

since if an integer is not prime, then it is composite and vice versa.

The two more approaches discussed below are all based on finding patterns that

are unique to composites. However, these approaches are not perfect. The patterns that

they rely on fit most, but not all, composites. In other words, the numbers fitting the

patterns are always composite, but there are some exceptions. These exceptions are

called as pseudoprimes. Despite this flaw, test with almost perfect accuracy are quite

useful in many applications.

There are some tests such as the Sieve of Erastosthenes that fully establish

primality and do so even faster. One such test is the Elliptic Curve Primality Procedure

(ECPP). However, whereas composite-based tests can digest a 500-digit number in only

a few minutes, ECPP takes several hours. Therefore, though ECPP is much more

 12

efficient than the Sieve of Eratosthenes, it is not nearly as efficient as other tests.

Generally, ECPP is used to verify results given by the other tests.

Two composite-based tests will be discussed below: Fermat Primality Test and

Strong Pseudoprimality Test (Miller-Rabin Test).

1. Fermat Primality Test. In 1640, Fermat rediscovered what the ancient

Chinese had known nearly 200 years before him. The result of his work is

now known as Fermat’s Little Theorem.

Theorem 1.2. (Fermat’s Little Theorem). Let p be a prime, and a any

positive integer. If gcd(p, a) = 1, then

a
p−1

 ≡ 1 (mod p) (1.11)

Fermat’s primality test is another form of this theorem:

Theorem 1.3. (Fermat’s Primality Test). An odd positive whole number n

is composite if there exists a positive whole number a such that

gcd(a, n) = 1 and a
n−1

 ≠ 1 (mod n) (1.12)

Unfortunately, some composites are pseudoprimes.

Definition 1.5. Let n be a composite. If a
n−1

 ≡ 1 (mod n) for every positive

integer a with gcd(a, n) = 1, then n is called a Carmichael number.

Carmichael numbers are few and far between. Richard Pinch (unpublished)

has recently found that there are 246,683 Carmichael numbers below 10
16

.

Below 10
16

, there are 279,238,341,033,925 primes; so there is less than a

one-in-a-billion chance that a number is a Carmichael number. Fermat’s Test

could be a perfect test if there were some way to easily distinguish a prime

from a Carmichael number, however, nobody has succeeded that.

2. Strong Pseudoprimality Test. Fermat’s Test can be improved with an

algorithm based on the following theorem given by G. Miller.

 13

Theorem 1.4. Let n be an odd prime, and write n in the form 1 + 2
s
 * d

where d is odd. Then the Miller-Rabin sequence

a
d
, a

2d
, . . . , ds

a
*2 1−

, ds

a
*2

 (mod n) (1.13)

ends with 1; moreover, if a
d
 is not congruent to 1 (mod n), then the value

directly preceding the first appearance of 1 is n − 1.

This theorem also suggests a concept of pseudoprime:

Definition 1.6. If a composite n has the characteristics described in the

previous theorem for some base a, then n is called a strong pseudoprime to

the base a. If n is either a prime or a pseudoprime, then n is called probably

prime.

To implement this theorem, it can be restated as follows:

Proposition 1.1. (Strong Pseudoprimality Test). If n − 1 = 2
s
 * d with d odd

and s nonnegative, then n is probably prime if a
d
 ≡ 1 (mod n) or

r
d

a
2

≡ n − 1

(mod n) for some nonnegative r less than s.

This test is even stronger than Fermat’s Test; in fact, it reduces the number

of pseudoprimes by half. If S(x) is the probability that x is a strong

pseudoprime, as x goes to infinity, S(x) goes to zero. So, the larger x is, the

better the Strong Test is. More important, there is no strong pseudoprime

equivalent to the Carmichael number.

Since Miller-Rabin Test is a probabilistic test, the accuracy is really

important, which is stated as follows:

Proposition 1.2. (Miller-Rabin Probabilistic Primality Test). While testing

an odd integer n for k randomly selected bases, if n is prime, then the result

 14

of the test is always correct. If n is composite, then the probability that n

passes all k tests is at most

k










4

1
(McGregor-Dorsey 1991).

3

Miller-Rabin test is the prime certification algorithm for this thesis since it is fast

when compared to nonprobabilistic prime certification methods (which is the main

reason for the existence of probabilistic prime certification methods), highly reliable

since the probability of the test to erroneously certify a composite number as a prime

number is equal to

k










4

1
as stated in Proposition 1.2 where k is number of tests applied,

and does not have a flaw caused by Carmichael numbers. The pseudocode for the

Miller-Rabin Test is given in Algorithm 1.4.

Algorithm 1.4. Miller-Rabin Test

3
 McGregor-Dorsey Z. S., 1991. “Methods of Primality Testing”, pp. 133-141.

procedure miller rabin test(p,factor:integer)

{p is the prime candidate and factor is to identify how many times to repeat

the test to decrease the probability of an undetected composite selected as a

prime}

composite:=false

write p in the form of p = 1 + 2ˆs * t where t is an odd number

while factor > 0

begin

select a random base b that is between 1 and p-1

if bˆt (mod n) := 1 or bˆt (mod n) := n-1 then continue with the next base to test

else

begin

for i:=1 to s

begin

t:=t*2

if bˆt (mod n) := 1 composite := true

else if bˆt (mod n) := n -1 then continue with the next base to test

end

composite:=true

end

factor := factor - 1

end

{composite is the return value}

 15

To decrease the time passed while certifying a prime candidate, trial division

will be performed with small prime numbers to test if the candidate can be divided by

them or not before using the other slower test, that is, Miller- Rabin Test. The complete

certify algorithm is now complete and shown in Algorithm 1.5.

Algorithm 1.5. Certification Procedure.

The trial division algorithm shown in Algorithm 1.6 uses the first n small primes to test

if the candidate is divisible by any of them or not.

Algorithm 1.6. Testing for Small Factors.

procedure certify(p:integer)

{p is the prime candidate}

passed:=false

if not SmallFactor(p) then

passed:=miller rabin test(p,40)

{passed is the return value}

procedure SmallFactor(p:integer)

{p is the prime candidate}

found:=false

while not found and j < NumPrimes do begin

found:=(p mod primes[j]=0)

j:=j+1

end

{found is the return value}

 16

CHAPTER 2

RSA

2.1. Cryptosystems and Cryptanalysis

Cryptography deals with the transformation of ordinary text (plaintext) into

coded form (ciphertext) by encryption, and transformation of ciphertext into plaintext

by decryption. Normally these transformations are parameterized by one or more keys.

The reason for encrypting text is security for transmissions over insecure channels

(Simmons 1992).
4

Until the advent of computers, one of the main constraints on cryptography had

been the ability of the code clerk to perform the necessary transformations, often on a

battlefield with little equipment. An additional constraint has been the difficulty in

switching over quickly from one cryptographic method to another one, since this entails

retraining a large number of people. However, the danger of a code clerk being captured

by the enemy has made it essential to be able to change the cryptographic method

instantly if need be. These conflicting requirements have given rise to the model shown

below.

The messages to be encrypted, known as the plaintext, are transformed by a

function that is parameterized by a key. The output of the encryption process, known as

the ciphertext, is then transmitted, often by messenger or radio. The so-called enemy,

or intruder, hears and accurately copies down the complete ciphertext. However,

unlike the intended recipient, he does not know what the decryption key is and so

cannot decrypt the ciphertext easily. Sometimes the intruder can not only listen to the

communication channel (passive intruder) but can also record messages and play them

back later, inject his own messages, or modify legitimate messages before they get to

the receiver (active intruder). The art of breaking ciphers, called cryptanalysis, and the

art devising them (cryptography) is collectively known as cryptology (Tanenbaum

2003).

4
 Simmons, G. J., 1992. “Contemporary Cryptology”, (IEEE Press, New York, USA), p. 180.

 17

Figure 2.1. The Encryption Model (Symmetric Case).

(Source: Tanenbaum 2003)

Three of the most important services provided by cryptosystems are secrecy,

authenticity, and integrity. Secrecy refers to denial of access to information by

unauthorized individuals. Authenticity refers to validating the source of a message; that

is, that it was transmitted by a properly identified sender and is not a replay of a

previously transmitted message. Integrity refers to assurance that a message was not

modified accidentally or deliberately in transit, by replacement, insertion, or deletion. A

fourth service that may be provided is nonrepudiation of origin, that is, protection

against a sender of a message later denying transmission.

Classic cryptography deals mainly with the secrecy aspect. It also treats keys as

secret. In the past 15 years, two new trends have emerged:

1. Authenticity as a consideration that rivals and sometimes exceeds secrecy in

importance.

2. The notion that some key material need not be secret.

The first trend has arisen in connection with applications such as electronic mail

systems and electronic funds transfers. In such settings, an electronic equivalent of the

handwritten signature may be desirable. Also, intruders into a system often gain entry

by masquerading as legitimate users; cryptography presents an alternative to password

systems for access control.

The second trend addresses difficulties that have traditionally accompanied the

management of secret keys. This may entail the use of couriers or other costly,

 18

inefficient, and not really secure methods. In contrast, if keys are public, the task of key

management may be substantially simplified.

An ideal system might solve all of these problems concurrently, that is, using

public keys, providing secrecy, and providing authenticity. Unfortunately, no single

technique proposed to date has met all three criteria. Conventional systems such as the

Data Encryption Standard (DES) or the Advanced Encryption Standard (AES) require

management of secret keys; systems using public key components may provide

authenticity but are inefficient for bulk encryption of data due to low bandwidths.

Fortunately, conventional and public key systems are not mutually exclusive; in

fact, they can complement each other. Public key systems can be used for signatures

and also for distribution of keys used in systems such as DES or AES. Thus, it is

possible to construct hybrids of conventional and public key systems that can meet all

of the above goals: secrecy, authenticity, and ease of key management.

In the following, E and D represent encryption and decryption transformations,

respectively. It is always required that D(E(M)) = M. It may also be the case that

E(D(M)) = M; in this event E or D can be employed for encryption. Normally, D is

assumed to be secret, but E may be public. In addition, it may be assumed that E and D

are relatively easy to compute when they are known.

2.1.1. Requirements for Secrecy

Secrecy requires that a cryptanalyst (i.e., an intruder) should not be able to

determine the plaintext corresponding to given ciphertext, and should not be able

reconstruct D by examining ciphertext for known plaintext. This translates into two

requirements for a cryptosystem to provide secrecy:

1. A cryptanalyst should not be able to determine M from E(M); that is, the

cryptosystem should be immune to ciphertext-only attacks.

2. A cryptanalyst should not be able to determine D given E(Mi) for any

sequence of plaintexts M1,M2,...; that is, the cryptosystem should be immune

to known-plaintext attacks. This should remain true even the cryptanalyst

can choose Mi (chosen-plaintext attack), including the case in which the

 19

cryptanalyst can inspect E(Mi),...,E(Mj) before specifying Mj+1 (adaptive

chosen-plaintext attack).

To illustrate the difference between these two categories, two examples will be

used. First, it is supposed that E(M) = M
3

modN, N = p * q, where p and q are large

secret primes. Then, it is infeasible for a cryptanalyst to determine D, even after

inspecting numerous pairs of the form M, E(M). However, an eavesdropper who

intercepts E(M) = 8 can conclude M = 2. Thus, a ciphertext-only attack may be feasible

in an instance where known- or chosen-plaintext attack is not useful.

On the other hand, it is supposed that E(M)=5M mod N where N is secret. Then,

interception of E(M) would not reveal M or N; this would remain true even if several

ciphertexts were intercepted. However, an intruder who learns that E(12) = 3 and

E(16) = 4 could conclude N = 19. Thus, a known- or chosen-plaintext attack may

succeed where a ciphertext-only attack fails.

Deficiencies in (1), that is, vulnerability to ciphertext-only attack, can frequently

be corrected by slight modifications of the encoding scheme, as in the M
3

mod N

encoding above. Adaptive chosen-plaintext is often regarded as the strongest attack.

Secrecy ensures that decryption of messages is infeasible. However, the

enciphering transformation E is not covered by the above requirements; it could even be

public. Thus, secrecy leaves open the possibility that an intruder could masquerade as a

legitimate user, or could compromise the integrity of a message by altering it. That is,

secrecy does not imply authenticity/integrity.

2.1.2. Requirements for Authenticity and Integrity

Authenticity requires that an intruder should not be able to masquerade as a

legitimate user of a system. Integrity requires that an intruder should not be able to

substitute false ciphertext for legitimate ciphertext. Two minimal requirements should

be met for a cryptosystem to provide these services:

1. It should be possible for the recipient of a message to ascertain its origin.

2. It should be possible for the recipient of a message to verify that it has not

been modified in transit.

 20

These requirements are independent of secrecy. For example, a message M

could be encoded by using D instead of E. Then, assuming D is secret, the recipient of

C = D(M) is assured that this message was not generated by an intruder. However, E

might be public; C could then be decoded by anyone intercepting it.

A related service which may be provided is nonrepudiation; that is, a third

requirement may be added if desired:

3. A sender should not be able to deny later that he sent a message.

It may also be added that:

4. It should be possible for the recipient of a message to detect whether it is a

replay of a previous transmission (Simmons 1992).
5

2.2. Public-Key Cryptography

2.2.1. The Need for Public-Key Cryptography

Before going on to the concept of public-key systems, the reason for their

existence must be argued. Before these systems, there was symmetric ones and their

weaknesses resulted in a need for the asymmetric ones. One of the problems is the key

distribution problem. Since each party must have the key to encrypt or decrypt a

message, it soon became a problem to distribute this key to everyone as the number of

the parties increased. Furthermore, if the conversations are distinct, then each one must

have a unique key.

If sharing keys is not an option, a trusted third party (TTP) can be used. In this

scheme, the trusted third party shares a key with each individual. Actually, the keys are

key-encrypting keys, or KEKs. When one individual wants to communicate with the

other side, he requests a session key from the TTP. To fulfill the request, the TTP

generates a new session key, encrypts it with the KEK they are sharing and sends it to

the requester. The TTP also sends the session key to the other side by encrypting it with

the other KEK they are sharing this time. Now, each side can exchange messages

securely without using the TTP. However, the main disadvantage with this solution is

5
 Simmons, G. J., 1992. “Contemporary Cryptology”, (IEEE Press, New York, USA), pp. 180-183.

 21

that the TTP can read all the messages and some people may not want to trust such a

TTP (Burnett and Paine 2001).
6

2.2.2. Historical Background

In the mid-1970s, Stanford University graduate student Whitfield Diffie and

professor Martin Hellman investigated cryptography in general and the key distribution

problem in particular. The two came up with a scheme whereby two people could create

a shared secret key by exchanging public information. They could communicate over

public lines, sending information back and forth in a form readable by eavesdroppers, at

the same time generating a secret values not made public. The two correspondents

would then be able to use that secret value as a symmetric session key. The name given

to this is Diffie-Hellman, or DH.

DH solves a problem –sharing a key– but it is not encryption. That does not

make it unusable; in fact, DH is in use to this day. But it was not the “ultimate”

algoritm, one that could be used for encryption. Diffie and Hellman published their

result in 1976. That paper outlined the idea of public-key cryptography (one key

encrypts, the other descrpts), pointed out that the authors did not yet have such an

algorithm, and described what they had so far.

Ron Rivest, a professor at MIT, liked Diffie and Hellman’s idea of public-key

cryptography and decided to create the ultimate algorithm. He recruited two colleagues

–Adi Shamir and Len Adleman– to work on the problem. In 1977, the trio developed an

algorithm that could indeed encrypt data. They published the algorithm in 1978, and it

became known as RSA, the initials of its inventors.

In 1985, working independently, two men Neal Koblitz of the University of

Washington and Victor Miller of IBM’s Watson Research Center– proposed that an

obscure branch of math called elliptic curves could be used to perform public-key

cryptography. By the late 1990s, this class of algorithms had begun to gain momentum.

Since 1977 (and 1985), many researchers have invented many public-key

algorithms.

To this day, however, the most commonly used public-key algorithm for solving

the key distribution problem is RSA. In second place is DH, followed by elliptic curves.

6
 Burnett, S. and Paine, S. 2001. “RSA Security’s Official Guide to Cryptography”, (Osborne, Berkeley,

California, USA), p. 85.

 22

2.2.3. Public-Key Cryptosystems

As explained before, a cryptosystem is an algorithm that can convert input data

into something unrecognizable (encryption), and convert the unrecognizable data back

to its original form (decryption). The idea behind any public-key cryptosystem is that a

user can release a public key which can be used only for encryption; in other words, that

key cannot be used to decipher encrypted text without performing a lot of work. Private

and public keys are associated by a function. In the RSA cryptosystem, the private and

public keys are linked by the factorization of prime numbers.

Public-key cryptosystems are based on trap-door one-way functions. A one-way

function is a function for which forward computation is easy, while the backward

computation is very hard. In other words, a function f : X → Y (where X and Y are

arbitrary sets) is one-way if it is easy to compute f(x) for every x € X, while it is hard for

most y € Y to find any x € X such that f(x) = y.

A function is said to be trap-door one-way if it is possible to easily perform both

forward and backward computation; however, the algorithm for backward computation

cannot be easily determined without certain secret information, even with knowledge of

the complete algorithm for forward computation. In a public-key cryptosystem, an

individual makes the algorithm public to allow anyone encipher a message by using it.

All the messages directed to a specific receiver are encrypted using a key that is known

by every individual, but the key which will be used to do the backward computation for

getting the original message is known only by the receiver.

It has not been proven that any one-way functions exist, but some known

functions are candidates. For example, integer multiplication is very easy, while the

inverse function, integer factoring, is currently considered to be very hard. The

existence of one-way functions is related to the P = NP question (Greenfield 1994).
7

2.2.3.1. Secrecy and Authenticity

To support secrecy, the transformations of a public key system must satisfy

D(E(M)) = M. For example, if A wishes to send a secure message M to B. Then, A must

7
 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”,

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, p. 11.

 23

have access to EB, the public transformation of B. Now, A encrypts M via C = EB(M)

and sends C to B. On receipt, B employs his private transformation DB for decryption;

that is, B computes DB(C) = DB(EB(M)) = M. If A’s transmission is overheard, the

intruder cannot decrypt C since DB is private. Thus, secrecy is ensured. However,

presumably anyone can access EB; B has no way knowing the identity of the sender.

Also, A’s transmission could have been altered. Thus, authenticity and integrity are not

assured.

To support authentication and integrity, the transformations in a public key

system must satisfy E(D(M)) = M. If A wished to send an authenticated message M to

B, that is, B will be able to verify that the message was sent by A and was not altered; in

this case, A could use his private transformation DA to compute C = DA(M) and send C

to B. That is, A employs DA as a de facto encryption function. Now B can use A’s

public transformation EA to find EA(C) = EA(DA(M)) = M; that is, EA acts as a de facto

decryption function. Assuming M is valid plaintext, B knows that C was in fact sent by

A, and was not altered in transit. This follows from the one-way nature of EA: if a

cryptanalyst, starting with a message M, could find C′ such that EA(C′) = M, this would

imply that he can invert EA, a contradiction.

If M, or any portion of M, is a random string, then it may be difficult for B to

ascertain that C is authentic procedure and unaltered merely by examining EA(C).

Actually, however, a slightly more complex procedure is generally employed: an

auxiliary public function H is used to produce a much smaller message S = DA(H(M))

that A sends to B along with M. On receipt, B can compute H(M) directly. The latter

may be checked against EA(S) to ensure authenticity and integrity, since once again the

ability of a cryptanalyst to find S′ for a given M would violate the one-way nature of EA.

Actually, H must also be one-way.

Sending C or S above ensures authenticity, but secrecy is nonexistent. In the

second scheme, M was sent in the clear along with S; in the first scheme, an intruder

who intercepts C = DA(M) presumably has access to EA and hence can compute M =

EA(C). Thus in either case, M is accessible to an eavesdropper.

It may be necessary to use a combination of systems to provide secrecy,

authenticity, and integrity. However, in some cases, it is possible to employ the same

public-key system for these services simultaneously. It has been noted that for

authenticity and integrity purposes, D is regarded as an encryptor; for secrecy, E is the

encryptor. If the same public key system is to be used in both cases, then D(E(M)) = M

 24

and E(D(M)) = M must both hold; that is, D and E are inverse functions. A requirement

is that the plaintext space (i.e., the domain of E) must be the same as the ciphertext

space (i.e., the domain of D).

In addition to E and D being inverses for each user, for each pair of users A and

B, the functions EA, DA, EB, and DB all have a common domain. Then, both secrecy and

authenticity can be accomplished with a single transmission: A sends C = EB(DA(M)) to

B; then B computes EA(DB(C)) = EA(DA(M)) = M. An intruder cannot decrypt C since

he lacks DB; hence secrecy is assured. If the intruder sends C′ instead of C, C′ cannot

produce a valid M since DA is needed to produce a valid C. This assures authenticity.

2.2.3.2. Applicability and Limitations

The range of applicability of public key systems is limited in practice by the

relatively low bandwidths associated with public key ciphers, compared to their

conventional counterparts. It has not been proven that time or space complexity must

necessarily be greater for public key systems than for conventional systems. However,

the public key systems that have withstood cryptanalytic attacks are all characterized by

relatively low efficiency. For example, some are based on modular exponentiation, a

relatively slow operation. Others are characterized by high data expansion (ciphertext

much larger than plaintext). This inefficiency, under the conservative assumption that it

is in fact inherent, seems to preclude the use of public key systems as replacements for

conventional systems utilizing fast encryption techniques such as permutations and

substitutions. That is, using public key systems for bulk data encryption is not feasible,

at least for the present.

On the other hand, there are two major application areas for public key

cryptosystems:

1. Distribution of secret keys

2. Digital signatures

The first involves using public key systems for secure and authenticated

Exchange of data-encrypting keys (DEKs) between two parties as explained before.

DEKs are secret shared keys connected with a conventional system used for bulk data

 25

encryption. This permits users to establish common keys for use with a system such as

DES. Classically, users have had to rely on a mechanism such as a courier service or a

central authority for assistance in the key exchange process. Use of a public key system

permits users to establish a common key that does not need to be generated by or

revealed to any third party, providing both enhanced security and greater convenience

and robustness.

Digital signatures are a second major application. They provide authentication,

nonrepudiation, and integrity checks. As noted above, in some settings, authentication is

a major consideration; in some cases, it is desirable even when secrecy is not a

consideration. Moreover, nonrepudiation is another property desirable for digital

signatures. Public key cryptosystems provide this property as well.

No bulk encryption is needed when public key cryptography is used to distribute

keys, since the latter are generally short. Also, digital signatures are generally applied

only to outputs of hash functions. In both cases, the data to be encrypted or decrypted

are restricted in size. Thus, the bandwidth limitation of public key is not a major

restriction for either application (Simmons 1992).
8

2.3. RSA Cryptosystem

Three natural numbers < e, d, M > define a particular instance of an RSA

cryptosystem, where e is the public enciphering component, d is the secret deciphering

exponent, and M is the modulus. A plaintext message m (assumed to be in the form of

an integer that is greater than 1 and less than M) is enciphered into a cryptogram

c = E(m), where E(m) = m
e
 mod M. The cryptogram may subsequently be deciphered to

retrieve the plaintext message m = D(c), where D(c) = c
d
 mod M. < e, M > is called the

public-key and < d, M > is called the secret-key. The modulus M is chosen to be the

product of two large primes, p and q. This fact allows a cryptographer to publish an

RSA public-key without revealing the secret-key.

8
 Simmons, G. J., 1992. “Contemporary Cryptology”, (IEEE Press, New York, USA), pp. 185-187.

 26

2.4. The Mathematics of RSA

The RSA cryptosystem exploits a property of modular arithmetic described by

Euler’s Generalization of Fermat’s Theorem. Fermat made the following conjecture,

now known as Fermat’s Theorem:

Theorem 2.1. Fermat’s Theorem. If p is prime, and gcd(a, p) = 1 then a
p−1

 ≡ 1 (mod

p).

The term gcd(a, p) is used to mean the greatest common divisor of a and p.

When the greatest common divisor of any two numbers is equal to one, then they are

said to be relatively prime to each other. Euler generalized Fermat’s theorem into a form

that applied to both prime and non-prime moduli:

Theorem 2.2. Euler’s Generalization. If gcd(a, n) = 1 then a
Φ(n)

 ≡ 1 (mod n).

Here, Φ(n) is known as Euler’s totient function, and is defined to be the number

of non-negative integers less than n that are relatively prime to n. For a prime p, every

integer from 1 to p − 1 is relatively prime to p. Accordingly, Φ(p) is defined to be p − 1.

For an RSA modulus M = pq, Φ(M) is easily computed from p and q. There are

M −1 positive integers less than M. Of those integers, p−1 are divisible by q:

q, 2q, 3q, ..., (p − 1)q (2.1)

and q-1 are divisible by p:

p, 2p, 3p, ..., (q − 1)p (2.2)

Therefore,

Φ(M) = (M − 1) − (p − 1) − (q − 1)

 = pq − p − q + 1

 = (p − 1)(q − 1)

(2.3)

 27

Using RSA cryptosystem, a message m is enciphered into a cryptogram

c = m
e
 mod M (2.4)

and similarly, the cryptogram is deciphered to reveal the message

m = c
d
 mod M (2.5)

Substituting 2.4 into 2.5 gives

m = c
d
 mod M

 = (m
e
 mod M)

d
 mod M

 = m
ed

 mod M

(2.6)

This specifies a relationship between e,d, and M necessary for the cryptosystem to

function. The keys must be chosen so that

m = m
ed

 mod M (2.7)

If the two prime factors of M have approximately 100 digits each, the number of

possible messages that can be enciphered is approximately 10
200

. Since M = pq,

(p−1)+(q−1) ≈ 10
100

 integers between 1 and M are not relatively prime to M. So the

probability that any given message shares a factor with M is approximately

10
100

/10
200

 = 10
−100

. Consequently, even if an RSA modulus were used to encipher a

million different messages, the probability that any of the messages would share a factor

with the modulus would be negligibly small.

Therefore, it may be assumed that an arbitrary message m is relatively prime to

modulus M. By Euler’s Generalization,

m
Φ(M)

 ≡ 1 (mod M) (2.8)

It can be shown that 2.7 is satisfied when the keys are chosen so that

 28

ed ≡ 1 (mod Φ(M)) (2.9)

which is equivalent to

ed = uΦ(M) + 1 (2.10)

for some positive integer u.

When 2.10 is true:

M
ed

 mod M = m
uΦ(M)+1

mod M

 = (m
uΦ(M)

mod M)(m
1
 mod M)

 = (m
uΦ(M)

 mod M)m

 = ((m
Φ(M)

 mod M)
u
modM)m

 = (1
u

mod M)m

 = m

(2.11)

and requirement 2.7 is satisfied.

A set of RSA keys is created by first constructing the modulus as the product of

two primes (M = pq). Φ(M) is easily computed from the prime factors p and q, as

described.

Next, an enciphering exponent e, relatively prime to Φ(M), is chosen. Finally,

the deciphering component d is computed so that ed ≡ 1(mod Φ(M)). Such a d is called

the inverse of e modulo Φ(M). When Φ(M) and e are known, this inverse can be found

by means of a fast extended gcd algorithm.

There is no known method for computing Φ(M) without knowing the factors of

M. Furthermore, there is no known algorithm to compute an inverse modulo Φ(M)

without Φ(M).

RSA security requires, therefore, that modulus M be chosen so that it cannot be

factored. If a cryptanalyst could factor the modulus, Φ(M) and d could be easily

computed, and the system would be broken.

To prevent a factoring attack, the modulus is chosen to be the product of two

large primes. By making the prime factors sufficiently large, general-purpose factoring

 29

algorithms are useless. In addition, the prime factors are chosen to have special

properties that make the modulus safe from special-purpose factoring attacks.

The choice of the size of the prime factors represents a balance between security

from factoring attacks and speed of enciphering and deciphering. The execution times

for general-purpose factoring algorithms are exponential in the number of digits of the

modulus. On the other hand, the running time for RSA enciphering and deciphering,

using a standard modular exponentiation algorithm, is cubic.

As a result, the time required to factor a modulus grows much faster with

modulus size than does the time required to perform enciphering and deciphering

operations (Greenfield 1994).
9

2.5. Modes of Operation

While applying many encryption techniques to long messages, there is a need to

break the plaintext message into short blocks for enciphering. For example, an RSA

enciphered message is encoded modulo M. Such an RSA enciphering can encode no

more than M distinct messages. An arbitrary plaintext message to be enciphered,

however, may contain considerably more information than could be encoded without

loss, by a single application of the RSA enciphering algorithm.

To prevent any information loss, a long plaintext message is broken into short

blocks, each of a size that may be encoded using the desired enciphering technique,

without loss. The plaintext message becomes a sequence of plaintext message blocks

and the enciphered message becomes a sequence of ciphertext blocks.

A variety of modes of operation exist for breaking a large message into short

blocks and each will be described below.

2.5.1. Electronic Code Book (ECB)

The simplest mode of operation is known as Electronic Code Book (ECB). ECB

consists of splitting the plaintext message into a sequence of short blocks, m0,m1,m2, ….,

9
 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”,

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, pp. 12-15.

 30

and subsequently enciphering each of the short blocks, independently, to form a

sequence of ciphertext blocks, c0 = E(m0), c1 = E(m1), c2 = E(m2),

While this mode of operation is particularly simple to understand and

implement, it suffers from a number of security problems when used for certain

applications. In particular, ECB enciphering has the undesirable property that duplicate

portions of plaintext may be encoded into duplicate ciphertext portions, with a relatively

high probability. This can make cryptanalysis of the ciphertext considerably easier. In

addition, since the ECB enciphering of a block is independent of its position within the

plaintext message, a cryptanalyst may be able to cut and paste segments of ciphertext, in

order to forge a message (Greenfield 1994).
10

To see how this monoalphabetic substitution cipher property can be used to

partially defeat the cipher, (triple) DES will be used because it is easier to depict 64-bit

blocks than 128-bit blocks, but AES has exactly the same problem (and other

cryptosystems). The straightforward way to use DES to encrypt a long piece of plaintext

is to break it up into consecutive 8-byte (64-bit) blocks and encrypt them one after

another with the same key. The last piece of plaintext is padded out to 64 bits, if need

be.

Figure 2.2. The Plaintext of a File Encrypted as 16 DES Blocks.

In Figure 2.2, there is the start of a computer file listing the annual bonuses a

company has decided to award to its employees. This file consists of consecutive 32-

byte records, one per employee, in the format shown: 16 bytes for the name, 8 bytes for

the position, and 8 bytes for the bonus. Each of the sixteen 8-byte blocks (numbered

from 0 to 15) is encrypted by (triple) DES.

Leslie can get access to the file after it is encrypted but before it is sent to the

bank. All Leslie has to do is make a copy of the 12th ciphertext block (which contains

10

 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”,

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, p. 84.

 31

Kim’s bonus and Leslie can guess that Kim has a higher bonus) and use it to replace the

4th ciphertext block (which contains Leslie’s bonus) (Tanenbaum 2003).

2.5.2. Cipher Block Chaining (CBC)

A second mode of operation is known as Cipher Block Chaining. This is the

mode of operation normally used for RSA enciphering. Like ECB, cipher block

chaining starts with splitting the plaintext message into a sequence of short blocks, m0,

m1, m2, The first plaintext block is then encoded to form ciphertext block c0 = E(m0).

The remaining blocks are encoded using a chaining technique, so that the second

plaintext block is encoded to form ciphertext block c1 = E(c0 ⊕ m1), where oplus

represents bitwise exclusive-or. The third plaintext block is enciphered to form

ciphertext block c2 = E(ci−1 ⊕ mi), for i > 0.

Figure 2.3. Cipher Block Chaining. (a) Encryption. (b) Decryption.

Cipher text block chaining possesses a number of properties that make it a

desirable mode of operation. Duplicate portions of plaintext, encoded using this

technique, have a very low probability of being encoded into duplicate portions of

ciphertext. In addition, due to the chaining of ciphertext blocks, each ciphertext block

depends upon all previous blocks of the message. This makes it virtually impossible for

a cryptanalyst to simply cut and paste blocks of ciphertext in order to form a forged

message.

At the same time, arbitrary blocks of ciphertext can be deciphered individually,

without the need to decipher the entire ciphertext message. For i > 0, mi = ci−1 ⊕ D(ci),

so only one deciphering operation is required.

Similarly, cipher block chaining allows the deciphering algorithm to recover

from temporary transmission or enciphering errors. For example, if ciphertext block ci is

 32

improperly transmitted, only message blocks mi = ci−1 ⊕ D(ci) and mi+1 = ci ⊕ D(ci+1),

depend on the value of ci. Therefore, only those two blocks are affected by the

transmission error.

As a result, cipher block chaining maintains much of its simplicity of ECB,

while providing more secure encoding (Greenfield 1994).
11

 There are also other modes

of operation that may be used. The sequential algorithm of RSA encryption and

decryption with cipher block chaining is shown below:

Algoritm 2.1. RSA Encryption and Cipher Block Chaining.

11

 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”,

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, pp. 84-85.

procedure encrypt(e,N:positive integers)

{e is the encryption key and N is the modulus}

ulast:=0

do

begin

ReadBlock(mi)

chain(ui,ulast,mi)

ci:=modpower(ui,e,M)

WriteBlock(ci)

end while not eof ci is the encrypted form of the message mi

procedure chain(ui,ulast,mi:positive integers)

{ui is the value of the message block mi after chained, ulast is the value of the last

chained block and mi is the message to be chained}

ui:=xor(ulast,mi)

ulast:=ui

{ui is the chained value of mi}

 33

Algoritm 2.2. RSA Decryption and Cipher Block Unchaining.

2.5.3. Cipher Feedback Mode (CFM)

Cipher block chaining requires an entire 64-bit block to arrive before decryption

can begin. For use with interactive terminals, where people can type lines shorter than

eight characters and then stop, waiting for a response, this mode is unsuitable. For byte-

by-byte encryption, cipher feedback mode, using (triple) DES is used, as shown in

Figure 2.4. For AES, the idea is exactly the same, only a 128-bit shift register is used. In

this figure, the state of the encryption machine is shown after bytes 0 through 9 have

been encrypted and sent. When plaintext byte 10 arrives, as illustrated in the left part,

the DES algorithm operates on the 64-bit shift register to generate a 64-bit ciphertext.

The leftmost byte of that ciphertext is extracted and XORed with P10. That byte is

transmitted on the transmission line. In addition, the shift register is shifted left 8 bits,

causing C2 to fall off the left end, and C10 is inserted in the position just vacated at the

right end by C9. It should be noted that the contents of the shift register depend on the

entire previous history of the plaintext, so a pattern that repeats multiple times in the

plaintext will be encrypted differently each time in the ciphertext. As with cipher block

chaining, an initialization vector is needed to start the process.

procedure decrypt(d,N:positive integers)

{d is the decryption key and N is the modulus}

ulast:=0

do

begin

ui:=modpower(ci,d,M)

unchain(mi,ulast,ui)

WriteBlock(ci)

end while not eof

{mi is the decrypted form of the cipherblock ci}

procedure unchain(mi,ulast,ui:positive integers)

{ui is the value of the message block mi after chained, ulast is the value of the last

chained block and mi is the message that is unchained}

mi:=xor(ulast,ui)

ulast:=ui

{mi is the unchained value of ui}

 34

Figure 2.4. Cipher Feedback Mode. (a) Encryption. (b) Decryption.

Decryption with cipher feedback mode just does the same thing as encryption. In

particular, the content of the shift register is encrypted, not decrypted, so the selected

byte that is XORed with C10 to get P10 is the same one that was XORed with P10 to

generate C10 in the first place. As long as the two shift registers remain identical,

decryption works correctly. It is illustrated in the right part.

A problem with cipher feedback mode is that if one bit of the ciphertext is

accidentally inverted during transmission, the 8 bytes that are decrypted while the bad

byte is in the shift register will be corrupted. Once the bad byte is pushed out of the shift

register, correct plaintext will once again be generated. Thus, the effects of a single

inverted bit are relatively localized and do not ruin the rest of the message, but they do

ruin as many bits as the shift register is wide.

2.5.4. Stream Cipher Mode (SCM)

Nevertheless, applications exist in which having a 1-bit transmission error mess

up 64 bits of plaintext is too large an effect. For these applications, a fourth option,

stream cipher mode, exists. It works by encrypting an initialization vector, using a key

to get an output block. The output block is then encrypted, using the key to get a second

output block. This block is then encrypted to get a third block, and so on. The

(arbitrarily large) sequence of output blocks, called the keystream, is treated like a one-

time pad and XORed with the plaintext to get the ciphertext, as shown in the left part of

the related figure. It should be noted that the IV is used only on the first step. After that,

the output is encrypted. Also it should be noted that the keystream is independent of the

 35

data, so it can be computed in advance, if need be, and is completely insensitive to

transmission errors. Decryption is shown in the right part.

Figure 2.5. Stream Cipher Mode. (a) Encryption. (b) Decryption.

Decryption occurs by generating the same keystream at the receiving side. Since

the keystream depends only on the IV and the key, it is not affected by transmission

errors in the ciphertext. Thus, a 1-bit error in the transmitted ciphertext generates only a

1-bit error in the decrypted plaintext.

It is essential never to use the same (key, IV) pair twice with a stream cipher

because doing so will generate the same keystream each time. Using the same

keystream twice exposes the ciphertext to a keystream reuse attack. For example, the

plaintext block, P0, is encrypted with the keystream to get P0 XOR K0. Later, a second

plaintext block, Q0, is encrypted with the same keystream to get Q0 XOR K0. An

intruder who captures both of these ciphertext blocks can simply XOR them together to

get P0 XOR Q0, which eliminates the key. The intruder now has the XOR of the two

plaintext blocks. If one of them is known or can be guessed, the other can also be found.

In any event, the XOR of two plaintext streams can be attacked by using statistical

properties of the message. For example, for English text, the most common character in

the stream will probably be the XOR of two spaces, followed by the XOR of space and

the letter “e”, etc. In short, equipped with the XOR of two plaintexts, the cryptanalyst

has an excellent chance of deducing both of them.

2.5.5. Counter Mode

One problem that all the modes except electronic code book mode have is that

random access to encrypted data is impossible. For example, suppose a file is

transmitted over a network and then stored on disk in encrypted form. This might be a

 36

reasonable way to operate if the receiving computer is a notebook computer that might

be stolen. Storing all critical files in encrypted form greatly reduces the damage due to

secret information leaking out in the event that the computer falls into the wrong hands.

However, disk files are often accessed in nonsequential order, especially files in

databases. With a file encrypted using cipher block chaining, accessing a random block

requires first decrypting all the blocks ahead of it, an expensive proposition. For this

reason, yet another mode has been invented, counter mode, as illustrated in the figure.

Here, the plaintext is not encrypted directly. Instead, the initialization vector plus a

constant is encrypted, and the resulting ciphertext XORed with the plaintext. By

stepping the initialization vector by 1 for each new block, it is easy to decrypt a block

anywhere in the file without first having to decrypt all of its predecessors.

Figure 2.6. Encryption Using Counter Mode.

Although counter mode is useful, it has a weakness that is worth pointing out.

For example, the same key, K, may be used again in the future (with a different

plaintext but the same IV) and an attacker may acquire all the ciphertext from both runs.

The keystreams are the same in both cases, exposing the cipher to a keystream reuse

attack of the same kind we saw with stream ciphers. All the cryptanalyst has to do is to

XOR the two ciphertexts together to eliminate all the cryptographic protection and just

get the XOR of the plaintexts. This weakness does not mean counter mode is a bad idea.

It just means that both keys and initialization vectors should be chosen independently

and at random. Even if the same key is accidentally used twice, if the IV is different

each time, the plaintext is safe (Tanenbaum 2003).

 37

CHAPTER 3

PARALLEL COMPUTING

3.1. Introduction

Parallel computing is accomplished by splitting up a large computational

problem into smaller tasks that may be performed simultaneously by multiple

processors. For example, the addition of two very long vectors of numbers, A and B,

can be performed by two processors if one of them adds the first half of vector A to the

first half of vector B, while the second adds the second half of vector A to the second

half of vector B. While this theoretically halves the time needed to solve the problem,

the resulting vector, C, is now split across two different processor memories.

Because of this split, communication must occur to get the entire solution in one

place. The distribution of the initial data, A and B, and the collection of the result, C,

adds overhead to the computational problem and reduces the actual speedup of the

entire task to less than double.

Symmetric multi-processor (SMP) and other shared memory computers can be

used to reduce the amount and cost (in terms of time) of this communication; however,

these systems typically have only a small number of processors or are very expensive,

custom-built supercomputers. On the other hand, distributed memory platforms --

including Beowulf clusters -- are relatively inexpensive and can be scaled to hundreds

or thousands of processors.

Most clusters built today are hybrids; they consist of many nodes (i.e., individual

computers), each having two or more processors.

3.1.1. Decomposition and Granularity

Computational problems may be parallelized in a variety of ways. Parallelization

may be accomplished by decomposing the data (as in the vector addition example

above), by decomposing functionality so that one processor performs one type of

 38

operation while other processors simultaneously perform different operations, or by

decomposing both the data and the functionality.

This decomposition may be established a priori or, more often, is performed

dynamically once the program is running. Good parallel code most often automatically

decomposes the problem at hand and allows the processors to communicate with each

other when necessary -- this is called "message passing" -- while performing individual

tasks.

Not all computational problems are amenable to parallel computing. If an

algorithm cannot be restructured so that sub-tasks can be performed simultaneously or if

the model components are highly interdependent, attempts to parallelize these codes

may result in increased time-to-solution. Such "fine grained" problems do not scale well

as more processors are applied to the computation. Performance of the finest-grained

problems is limited by the speed of the fastest single CPU that is available.

Other computational problems, such as image processing where which each

pixel may be manipulated independently, are "coarse grained". Image processing is a

good example of this type of problem. These problems are generally easier to parallelize

and tend to benefit the most from parallel processing, particularly in distributed memory

environments. The coarsest grained problems are often referred to as "embarrassingly

parallel".

Fortunately, most complex scientific problems may be decomposed by

performing separate tasks independently and simultaneously on multiple processors or

by splitting up the space and/or time coordinates of the system being modeled. These

problems tend to fall somewhere between coarse and fine granularity and usually

require a moderate amount of interprocessor communication to coordinate activities and

share data.

For example, values for cells on a map may depend on neighboring cell values.

If the map is decomposed into two pieces, each being processed on a separate CPU, the

processors must exchange cell values along the adjacent edges of the map.

Problem decomposition is very important for successful parallel processing. A

balance must be struck between computation and communication so that what was a

computational problem on a single processor does not become a communications

problem in a parallel environment. Writing good parallel code is actually more of an art

than a science; practitioners must be able to think about algorithms in novel ways

(WEB_3 2002).

 39

3.1.2. Historical Background

Until relatively recently, the standard architecture model for most digital

computers was that introduced by von Neumann. The von Neumann model assumes that

the program and data are held in the store of the machine and that a central processing

unit (CPU) fetches instructions from the store and executes them. The instructions result

in either data in the store being manipulated or information being input or output.

Machines based on this model are entirely sequential in operation – one instruction is

executed in each time interval.

The first general-purpose electronic digital computer, called ENIAC, was

developed at the University of Pennsylvania, USA, in 1946. Programming of the

machine was achieved by special wiring, and rewiring was necessary if the operations

were to be modified. The first stored-program computers, and thus the first realizations

of the von Neumann model, were the EDSAC and the EDVAC prototype machines,

leading to commercial systems such as the UNIVAC 1. These early machines used bit-

serial access to memory and consequently performed bit-serial arithmetic. By 1953 the

IBM 701, the first commercial computer with bit-parallel access to memory and bit-

parallel arithmetic, was available; thus from the earliest days, parallelism was

introduced into digital computers.

The four decades that have elapsed since the development of the first

commercial systems have witness to dramatic improvements in computer technology.

Between 1950 and 1980, every five-year period has seen an approximately tenfold

increase in the achievable performance of computers. These improvements were partly

the result of advances in semiconductor technology, but also arose from an evolution of

the original von Neumann model in which the requirement of purely serial processing

was abandoned.

The development of parallel computers has been at two levels, both of which

have attempted to enhance the performance of a particular class of machine. Early

efforts centered on the development of high performance supercomputers to solve very

large scientific problems such as are encountered in accurate weather forecasting. The

most popular supercomputer of the mid-1970s was the Cray-1, a vector processor

capable of 130 Mflops (megaflops, or millions of flops, floating-point operations per

second). The eight-processor Cray Y-MP and the four-processor Cray-2 of the late

 40

1980s are capable of Gflops (gigaflops, or thousands of Mflops) performance. These

machines exhibit limited parallelism (as far as the user is concerned) with just a small

number of powerful processing units operating in parallel. The race is on for the

development of Tflops (teraflops, or millions of Mflops) machines.

The second strand of parallel computer development has centered around the

desire to produce machines (minisupercomputers, or superminicomputers) which are

capable of performances approaching that of a supercomputer, but at considerably

reduced cost. These machines achieve their performance either by using vector

processing capabilities, or by including a number of parallel processing units, or both.

Thus, parallelism in computing is not only present in supercomputers, but also

increasingly common less powerful machines.

It is instructive to relate these developments in computer architecture to the

computer solution of numerical problems. Throughout the decades 1950-1980, the

architectural developments were, for the most part, invisible to the user. Programs

which worked optimally on one machine were likely also to work well on some other

system. The only hardware feature of which the programmer might need to be aware

was the available memory. Virtual memory aided portability; programs simply had to

minimize the amount of data transfer between main and secondary storage. The

development of units possessing vector processing capabilities meant that the way a

user chose to express his algorithm could have a significant affect on the performance

of an implementation. By making the vector structure of the algorithm visible to the

compiler, significant improvements could be obtained over a corresponding code for

which this structure was not apparent. The impact of the computer architecture on the

user is greater in the case of a multiprocessor system and is compounded if its memory

is distributed over the individual processors. Such architectural considerations crucially

affect the choice of algorithm and the way that an algorithm is expressed.

The demand for increased performance may result from a desire

• to decrease the execution time of certain programs so that results can be

obtained in a reasonable time (possibly even in real time), or

• to run programs for the same amount of time but obtain higher accuracy or

more accurate modeling of the underlying physical problem by increasing

the problem size in some way, or

• to solve problems previously considered too large for existing architectures.

 41

In the history of computing, it has been largely possible to achieve these

requirements by improved technology aimed at a uniprocessor. However, there are

physical limits to just how far such a machine can be improved and the use of

parallelism is seen to be one of the most attractive avenues to explore in the quest for

increased performance (Freeman and Phillips 1992).
12

3.2. Parallel Programming Platforms

The traditional logical view of a sequential computer consists of a memory

connected to a processor via a datapath. All three components – processor, memory, and

datapath – present bottlenecks to the overall processing rate of a computer system. A

number of architectural innovations over the years have addressed these bottlenecks.

One of the most important innovations is multiplicity – in processing units, datapaths,

and memory units. This multiplicity is either entirely hidden from the programmer, as in

the case of implicit parallelism, or exposed to the programmer in different forms.

3.2.1. Implicit Parallelism: Trends in Microprocessor Architectures

While microprocessor technology has delivered significant improvements in

clock speeds over the past decade, it has also exposed a variety of other performance

bottlenecks. To alleviate these bottlenecks, microprocessor designers have explored

alternate routes to cost-effective performance gains.

Clock speeds of microprocessors have posted impressive gains - two to three

orders of magnitude over the past 20 years. However, these increments in clock speed

are severely diluted by the limitations of memory technology. At the same time, higher

levels of device integration have also resulted in a very large transistor count, raising the

obvious issue of how best to utilize them. Consequently, techniques that enable

execution of multiple instructions in a single clock cycle have become popular. Indeed,

this trend is evident in the current generation of microprocessors such as the Itanium,

Sparc Ultra, MIPS, and Power4.

12

 Freeman, T.L. and Phillips, C. 1992. “Parallel Numerical Algorithms”, (Prentice Hall, UK), pp. 5-6.

 42

3.2.1.1. Pipelining and Superscalar Execution

Processors have long relied on pipelines for improving execution rates. By

overlapping various stages in instruction execution (fetch, schedule, decode, operand

fetch, execute, store, among others), pipelining enables faster execution. The assembly-

line analogy works well for understanding pipelines. It should be noted that the speed of

a single pipeline is ultimately limited by the largest atomic task in the pipeline.

Furthermore, in typical instruction traces, every fifth to sixth instruction is a branch

instruction. Long instruction pipelines therefore need effective techniques for predicting

branch destinations so that pipelines can be speculatively filled. The penalty of a

misprediction increases as the pipelines become deeper since a larger number of

instructions need to be flushed. These factors place limitations on the depth of a

processor pipeline and the resulting performance gains.

An obvious way to improve instruction execution rate beyond this level is to use

multiple pipelines. During each clock cycle, multiple instructions are piped into the

processor in parallel. These instructions are executed on multiple functional units.

3.2.1.2. Very Long Instruction Word Processors

The parallelism extracted by superscalar processors is often limited by the

instruction look-ahead. The hardware logic for dynamic dependency analysis is

typically in the range of 5-10% of the total logic on conventional microprocessors

(about 5% on the four-way superscalar Sun UltraSPARC). This complexity grows

roughly quadratically with the number of issues and can become a bottleneck. An

alternate concept for exploiting instruction-level parallelism used in very long

instruction word (VLIW) processors relies on the compiler to resolve dependencies and

resource availability at compile time. Instructions that can be executed concurrently are

packed into groups and parceled off to the processor as a single long instruction word

(thus the name) to be executed on multiple functional units at the same time.

The VLIW concept, first used in Multiflow Trace (circa 1984) and subsequently

as a variant in the Intel IA64 architecture, has both advantages and disadvantages

compared to superscalar processors. Since scheduling is done in software, the decoding

and instruction issue mechanisms are simpler in VLIW processors. The compiler has a

 43

larger context from which to select instructions and can use a variety of transformations

to optimize parallelism when compared to a hardware issue unit. Additional parallel

instructions are typically made available to the compiler to control parallel execution.

However, compilers do not have the dynamic program state (e.g., the branch history

buffer) available to make scheduling decisions. This reduces the accuracy of branch and

memory prediction, but allows the use of more sophisticated static prediction schemes.

Other runtime situations such as stalls on data fetch because of cache misses are

extremely difficult to predict accurately. This limits the scope and performance of static

compiler-based scheduling.

Finally, the performance of VLIW processors is very sensitive to the compilers'

ability to detect data and resource dependencies and read and write hazards, and to

schedule instructions for maximum parallelism. Loop unrolling, branch prediction and

speculative execution all play important roles in the performance of VLIW processors.

While superscalar and VLIW processors have been successful in exploiting implicit

parallelism, they are generally limited to smaller scales of concurrency in the range of

four- to eight-way parallelism.

3.2.2. Dichotomy of Parallel Computing Platforms

The increasing gap in peak and sustainable performance of current

microprocessors, the impact of memory system performance, and the distributed nature

of many problems present overarching motivations for parallelism. Now, the elements

of parallel computing platforms that are critical for performance oriented and portable

parallel programming will be produced at a high level. The logical organization refers to

a programmer's view of the platform while the physical organization refers to the actual

hardware organization of the platform. The two critical components of parallel

computing from a programmer's perspective are ways of expressing parallel tasks and

mechanisms for specifying interaction between these tasks. The former is sometimes

also referred to as the control structure and the latter as the communication model.

 44

3.2.2.1. Control Structure of Parallel Platforms

Parallel tasks can be specified at various levels of granularity. At one extreme,

each program in a set of programs can be viewed as one parallel task. At the other

extreme, individual instructions within a program can be viewed as parallel tasks.

Between these extremes lie a range of models for specifying the control structure of

programs and the corresponding architectural support for them.

Processing units in parallel computers either operate under the centralized

control of a single control unit or work independently. In architectures referred to as

single instruction stream, multiple data stream (SIMD), a single control unit

dispatches instructions to each processing unit. Figure 3.1(a) illustrates a typical SIMD

architecture. In an SIMD parallel computer, the same instruction is executed

synchronously by all processing units. Some of the earliest parallel computers such as

the Illiac IV, MPP, DAP, CM-2, and MasPar MP-1 belonged to this class of machines.

More recently, variants of this concept have found use in co-processing units such as the

MMX units in Intel processors and DSP chips such as the Sharc. The Intel Pentium

processor with its SSE (Streaming SIMD Extensions) provides a number of instructions

that execute the same instruction on multiple data items. These architectural

enhancements rely on the highly structured (regular) nature of the underlying

computations, for example in image processing and graphics, to deliver improved

performance.

Figure 3.1. A typical SIMD architecture (a) and a typical MIMD architecture (b).

 45

While the SIMD concept works well for structured computations on parallel data

structures such as arrays, often it is necessary to selectively turn off operations on

certain data items. For this reason, most SIMD programming paradigms allow for an

"activity mask". This is a binary mask associated with each data item and operation that

specifies whether it should participate in the operation or not. Primitives such as

where (condition) then <stmnt> <elsewhere stmnt> are used to support selective

execution. Conditional execution can be detrimental to the performance of SIMD

processors and therefore must be used with care.

In contrast to SIMD architectures, computers in which each processing element

is capable of executing a different program independent of the other processing

elements are called multiple instruction stream, multiple data stream (MIMD)

computers. Figure 3.1(b) depicts a typical MIMD computer. A simple variant of this

model, called the single program multiple data (SPMD) model, relies on multiple

instances of the same program executing on different data. It is easy to see that the

SPMD model has the same expressiveness as the MIMD model since each of the

multiple programs can be inserted into one large if-else block with conditions specified

by the task identifiers. The SPMD model is widely used by many parallel platforms and

requires minimal architectural support. Examples of such platforms include the Sun

Ultra Servers, multiprocessor PCs, workstation clusters, and the IBM SP.

SIMD computers require less hardware than MIMD computers because they

have only one global control unit. Furthermore, SIMD computers require less memory

because only one copy of the program needs to be stored. In contrast, MIMD computers

store the program and operating system at each processor. However, the relative

unpopularity of SIMD processors as general purpose compute engines can be attributed

to their specialized hardware architectures, economic factors, design constraints,

product life-cycle, and application characteristics. In contrast, platforms supporting the

SPMD paradigm can be built from inexpensive off-the-shelf components with relatively

little effort in a short amount of time. SIMD computers require extensive design effort

resulting in longer product development times. Since the underlying serial processors

change so rapidly, SIMD computers suffer from fast obsolescence. The irregular nature

of many applications also makes SIMD architectures less suitable.

 46

3.2.2.2. Communication Model of Parallel Platforms

There are two primary forms of data exchange between parallel tasks –

accessing a shared data space and exchanging messages.

3.2.2.2.1. Shared-Address-Space Platforms

The "shared-address-space" view of a parallel platform supports a common data

space that is accessible to all processors. Processors interact by modifying data objects

stored in this shared-address-space. Shared-address-space platforms supporting SPMD

programming are also referred to as multiprocessors. Memory in shared-address-space

platforms can be local (exclusive to a processor) or global (common to all processors).

If the time taken by a processor to access any memory word in the system (global or

local) is identical, the platform is classified as a uniform memory access (UMA)

multicomputer. On the other hand, if the time taken to access certain memory words is

longer than others, the platform is called a non-uniform memory access (NUMA)

multicomputer. Figures 3.2(a) and (b) illustrate UMA platforms, whereas Figure 3.2(c)

illustrates a NUMA platform. An interesting case is illustrated in Figure 3.2(b). Here, it

is faster to access a memory word in cache than a location in memory. However, we

still classify this as a UMA architecture. The reason for this is that all current

microprocessors have cache hierarchies. Consequently, even a uniprocessor would not

be termed UMA if cache access times are considered. For this reason, we define NUMA

and UMA architectures only in terms of memory access times and not cache access

times. Machines such as the SGI Origin 2000 and Sun Ultra HPC servers belong to the

class of NUMA multiprocessors. The distinction between UMA and NUMA platforms

is important. If accessing local memory is cheaper than accessing global memory,

algorithms must build locality and structure data and computation accordingly.

 47

Figure 3.2. Typical shared-address-space architectures: (a) Uniform-memory-access

shared-address-space computer; (b) Uniform-memory-access shared-address-space

computer with caches and memories; (c) Non-uniform-memory-access shared-address-

space computer with local memory only.

The presence of a global memory space makes programming such platforms

much easier. All read-only interactions are invisible to the programmer, as they are

coded no differently than in a serial program. This greatly eases the burden of writing

parallel programs. Read/write interactions are, however, harder to program than the

read-only interactions, as these operations require mutual exclusion for concurrent

accesses. Shared-address-space programming paradigms such as threads (POSIX, NT)

and directives (OpenMP) therefore support synchronization using locks and related

mechanisms.

The presence of caches on processors also raises the issue of multiple copies of a

single memory word being manipulated by two or more processors at the same time.

Supporting a shared-address-space in this context involves two major tasks: providing

an address translation mechanism that locates a memory word in the system, and

ensuring that concurrent operations on multiple copies of the same memory word have

well-defined semantics. The latter is also referred to as the cache coherence

mechanism. Supporting cache coherence requires considerable hardware support.

Consequently, some shared-address-space machines only support an address translation

mechanism and leave the task of ensuring coherence to the programmer. The native

programming model for such platforms consists of primitives such as get and put. These

primitives allow a processor to get (and put) variables stored at a remote processor.

However, if one of the copies of this variable is changed, the other copies are not

automatically updated or invalidated.

 48

It is important to note the difference between two commonly used and often

misunderstood terms – shared-address-space and shared-memory computers. The term

shared-memory computer is historically used for architectures in which the memory is

physically shared among various processors, i.e., each processor has equal access to any

memory segment. This is identical to the UMA model we just discussed. This is in

contrast to a distributed-memory computer, in which different segments of the memory

are physically associated with different processing elements. The dichotomy of shared-

versus distributed-memory computers pertains to the physical organization of the

machine. Either of these physical models, shared or distributed memory, can present the

logical view of a disjoint or shared-address-space platform. A distributed-memory

shared-address-space computer is identical to a NUMA machine.

3.2.2.2.2. Message-Passing Platforms

The logical machine view of a message-passing platform consists of p

processing nodes, each with its own exclusive address space. Each of these processing

nodes can either be single processors or a shared-address-space multiprocessor – a trend

that is fast gaining momentum in modern message-passing parallel computers. Instances

of such a view come naturally from clustered workstations and non-shared-address-

space multicomputers. On such platforms, interactions between processes running on

different nodes must be accomplished using messages, hence the name message

passing. This exchange of messages is used to transfer data, work, and to synchronize

actions among the processes. In its most general form, message-passing paradigms

support execution of a different program on each of the p nodes.

Since interactions are accomplished by sending and receiving messages, the

basic operations in this programming paradigm are send and receive (the corresponding

calls may differ across APIs but the semantics are largely identical). In addition, since

the send and receive operations must specify target addresses, there must be a

mechanism to assign a unique identification or ID to each of the multiple processes

executing a parallel program. This ID is typically made available to the program using a

function such as whoami, which returns to a calling process its ID. There is one other

function that is typically needed to complete the basic set of message-passing operations

– numprocs, which specifies the number of processes participating in the ensemble.

 49

With these four basic operations, it is possible to write any message-passing program.

Different message-passing APIs, such as the Message Passing Interface (MPI) and

Parallel Virtual Machine (PVM), support these basic operations and a variety of higher

level functionality under different function names. Examples of parallel platforms that

support the message-passing paradigm include the IBM SP, SGI Origin 2000, and

workstation clusters.

It is easy to emulate a message-passing architecture containing p nodes on a

shared-address-space computer with an identical number of nodes. Assuming

uniprocessor nodes, this can be done by partitioning the shared-address-space into p

disjoint parts and assigning one such partition exclusively to each processor. A

processor can then "send" or "receive" messages by writing to or reading from another

processor's partition while using appropriate synchronization primitives to inform its

communication partner when it has finished reading or writing the data. However,

emulating a shared-address-space architecture on a message-passing computer is costly,

since accessing another node's memory requires sending and receiving messages

(Grama et al. 2003).

3.3. Message Passing Interface (MPI)

Of the many parallel programming languages, the three main ones are HPF

(High Performance Fortran), OpenMP (Open Message Passing) and MPI (Message

Passing Interface). The choice of which one to use is simply governed by the following

key issues:

• Portability

• Ease of use

• Efficiency

• Cost/Effort

HPF was the first widely supported, portable parallel programming language. It

is basically a set of directive-based extensions to Fortran 90, available on both shared

and distributed memory machines from workstation clusters to massively parallel

supercomputers. One of the advantages of HPF is that the interactions between

 50

processors do not have to be specified explicitly. Unfortunately, HPF has not been

adopted by many developers.

OpenMP is a set of compiler directives and callable runtime libraries that extend

Fortran and C to allow the development of scalable parallel programs on shared

memory machines. OpenMP takes account of developments in the programming

languages (e.g. can handle the implementation of pointers in F90) and has been

designed to be extensible. Shared memory usage appears to be growing rapidly through

the use of OpenMP, perhaps because it is targeted at programmers who need to quickly

parallize existing programs without rewriting. OpenMP provides access to the strengths

of shared memory parallel computation without excessive programming effort. For

example, a single loop can be parallelized by simply inserting standard directives,

facilitating incremental parallelism – a real bonus if most of the program execution time

is dominated by a single, simple do loop.

Despite the promise of simplicity and scalability, developers have resisted

adopting the shared memory programming model because of portability concerns.

Previously, every vendor of shared memory systems had created its own extensions to

Fortran and C for developers to produce parallel code. The absence of portability has

encouraged many developers to adopt a portable message passing model like MPI or

PVM. In Message Passing, a distributed memory machine holds all variables in local

memory. Work shared across processes requires communication and message passing is

the context in which this communication takes place.

Currently, there are a number of Message Passing standards, the main ones

being summarized in Table 3.1.

Table 3.1. Message Passing Libraries.

Standard Acronym Usage Portability

Message Passing Interface MPI Common All vendors

Paralel Virtual Machine PVM Used less often Most vendors

Shared Memory SHMEM Machine specific SGI/CRAY

Portable SHMEM library BSP Uncommon Unknown

From the table, it is perhaps clear that MPI would be the library of choice if one

wanted to write a portable message passing program. Its popularity is partly due to the

fact that it was developed by an international consortium that involved virtually every

 51

parallel computing vendor. As a consequence of the almost universal acceptance of MPI

as standard message passing library, many manufacturers have invested a great deal of

effort into the performance of MPI. Furthermore, programs can be written in several

dialects of FORTRAN and in C. In short, one can use MPI on virtually any computer,

even a serial one. This last comment may seem rather pointless, but its worth pointing

out that some researchers do not have access to parallel machines and have published

research in which the parallel computation was simulated.

The reasons for choosing MPI among the alternatives may be summarized as

follows:

• Standardization - MPI is the only message passing library which can be

considered a standard. It is supported on virtually all HPC platforms.

Practically, it has replaced all previous message passing libraries.

• Portability - There is no need to modify your source code when you port

your application to a different platform that supports (and is compliant with)

the MPI standard.

• Performance Opportunities - Vendor implementations should be able to

exploit native hardware features to optimize performance.

• Functionality - Over 115 routines are defined.

• Availability - A variety of implementations are available, both vendor and

public domain (WEB_4 2003).

3.3.1. Introduction to MPI

Message passing is a programming paradigm used widely on parallel computers,

especially Scalable Parallel Computers (SPCs) with distributed memory, and on

Networks of Workstations (NOWs). Although there are many variations, the basic

concept of processes communicating through messages is well understood. Over the last

ten years, substantial progress has been made in casting significant applications into this

paradigm. Each vendor has implemented its own variant. More recently, several public-

domain systems have demonstrated that a message-passing system can be efficiently

and portably implemented. It is thus an appropriate time to define both the syntax and

semantics of a standard core of library routines that will be useful to a wide range of

 52

users and efficiently implementable on a wide range of computers. This effort has been

undertaken over the last three years by the Message Passing Interface (MPI) Forum, a

group of more than 80 people from 40 organizations, representing vendors of parallel

systems, industrial users, industrial and national research laboratories, and universities.

The designers of MPI sought to make use of the most attractive features of a

number of existing message-passing systems, rather than selecting one of them and

adopting it as the standard. Thus, MPI has been strongly influenced by work at the IBM

T. J. Watson Research Center, Intel's NX/2, Express, nCUBE's Vertex, p4, and

PARMACS. Other important contributions have come from Zipcode, Chimp, PVM,

Chameleon, and PICL. The MPI Forum identified some critical shortcomings of

existing message-passing systems, in areas such as complex data layouts or support for

modularity and safe communication. This led to the introduction of new features in

MPI.

The MPI standard defines the user interface and functionality for a wide range of

message-passing capabilities. Since its completion in June of 1994, MPI has become

widely accepted and used. Implementations are available on a range of machines from

SPCs to NOWs. A growing number of SPCs have an MPI supplied and supported by

the vendor. Because of this, MPI has achieved one of its goals - adding credibility to

parallel computing. Third party vendors, researchers, and others now have a reliable and

portable way to express message-passing, parallel programs.

The major goal of MPI, as with most standards, is a degree of portability across

different machines. The expectation is for a degree of portability comparable to that

given by programming languages such as Fortran. This means that the same message-

passing source code can be executed on a variety of machines as long as the MPI library

is available, while some tuning might be needed to take best advantage of the features

of each system. portability Though message passing is often thought of in the context of

distributed-memory parallel computers, the same code can run well on a shared-

memory parallel computer. It can run on a network of workstations, or, indeed, as a set

of processes running on a single workstation. Knowing that efficient MPI

implementations exist across a wide variety of computers gives a high degree of

flexibility in code development, debugging, and in choosing a platform for production

runs.

Another type of compatibility offered by MPI is the ability to run transparently

on heterogeneous systems, that is, collections of processors with distinct architectures.

 53

It is possible for an MPI implementation to span such a heterogeneous collection, yet

provide a virtual computing model that hides many architectural differences. The user

need not worry whether the code is sending messages between processors of like or

unlike architecture. The MPI implementation will automatically do any necessary data

conversion and utilize the correct communications protocol. However, MPI does not

prohibit implementations that are targeted to a single, homogeneous system, and does

not mandate that distinct implementations be interoperable. Users that wish to run on an

heterogeneous system must use an MPI implementation designed to support

heterogeneity. heterogeneous interoperability

Portability is central but the standard will not gain wide usage if this was

achieved at the expense of performance. For example, Fortran is commonly used over

assembly languages because compilers are almost always available that yield acceptable

performance compared to the non-portable alternative of assembly languages. A crucial

point is that MPI was carefully designed so as to allow efficient implementations. The

design choices seem to have been made correctly, since MPI implementations over a

wide range of platforms are achieving high performance, comparable to that of less

portable, vendor-specific systems.

An important design goal of MPI was to allow efficient implementations across

machines of differing characteristics. efficiency For example, MPI carefully avoids

specifying how operations will take place. It only specifies what an operation does

logically. As a result, MPI can be easily implemented on systems that buffer messages

at the sender, receiver, or do no buffering at all. Implementations can take advantage of

specific features of the communication subsystem of various machines. On machines

with intelligent communication coprocessors, much of the message passing protocol can

be offloaded to this coprocessor. On other systems, most of the communication code is

executed by the main processor. Another example is the use of opaque objects in MPI.

By hiding the details of how MPI-specific objects are represented, each implementation

is free to do whatever is best under the circumstances.

Another design choice leading to efficiency is the avoidance of unnecessary

work. MPI was carefully designed so as to avoid a requirement for large amounts of

extra information with each message, or the need for complex encoding or decoding of

message headers. MPI also avoids extra computation or tests in critical routines since

this can degrade performance. Another way of minimizing work is to encourage the

reuse of previous computations. MPI provides this capability through constructs such as

 54

persistent communication requests and caching of attributes on communicators. The

design of MPI avoids the need for extra copying and buffering of data: in many cases,

data can be moved from the user memory directly to the wire, and be received directly

from the wire to the receiver memory.

MPI was designed to encourage overlap of communication and computation, so

as to take advantage of intelligent communication agents, and to hide communication

latencies. This is achieved by the use of nonblocking communication calls, which

separate the initiation of a communication from its completion.

Scalability is an important goal of parallel processing. MPI allows or supports

scalability through several of its design features. For example, an application can create

subgroups of processes that, in turn, allows collective communication operations to

limit their scope to the processes involved. Another technique used is to provide

functionality without a computation that scales as the number of processes. For

example, a two-dimensional Cartesian topology can be subdivided into its one-

dimensional rows or columns without explicitly enumerating the processes. scalability

Finally, MPI, as all good standards, is valuable in that it defines a known,

minimum behavior of message-passing implementations. This relieves the programmer

from having to worry about certain problems that can arise. One example is that MPI

guarantees that the underlying transmission of messages is reliable. The user need not

check if a message is received correctly.

3.4. Inclusions of MPI

The goal of the Message Passing Interface, simply stated, is to develop a widely

used standard for writing message-passing programs. As such the interface should

establish a practical, portable, efficient, and flexible standard for message passing.

• Design an applciation programming interface. Although MPI is currently

used as a run-time for parallel compilers and for various libraries, the design

of MPI primarily reflects the perceived needs of applications programmers.

• Allow efficient communication. Avoid memory-to-memory copying, allow

overlap of computation and communication, and offload to a communication

coprocessor-processor, where available.

 55

• Allow for implementations that can be used in a heterogeneous environment.

• Allow convenient C and Fortran 77 bindings for the interface. Also, the

semantics of the interface should be language independent.

• Provide a reliable communication interface. The user need not cope with

communication failures.

• Define an interface not too different from current practice, such as PVM,

NX, Express, p4, etc., and provides extensions that allow greater flexibility.

• Define an interface that can be implemented on many vendor’s platforms,

with no significant changes in the underlying communication and system

software.

• The interface should be designed to allow for thread-safety.

3.5. MPI Standard

The standard includes:

• Point-to-point communication

• Collective operations

• Process groups

• Communication domains

• Process topologies

• Environmental management and inquiry

• Profiling interface

• Bindings for Fortran 77 and C (WEB_2 1995)

MPI standard supports point-to-point, multicast, and broadcast communication

styles. From computer networks, it is well known that to use multicast communication,

there must be a mechanism to create/destroy groups. MPI provides this mechanism via

process groups and communication domains. The communicating parties can also

collaborate with each other effectively to reach a single solution collectively. Among

many popular programming languages, C and Fortran 77 can be preferred to code

parallel programs using MPI.

 56

In fact, MPI has a huge library, however, it has been documented and designed

in a good fashion; therefore it does not require enormous effort to get accustomed to it.

 57

CHAPTER 4

PARALLEL ALGORITHMS

The parallel platform chosen for this thesis is not a shared-address-space

platform but message-passing platform instead, which means that each process is

executed in a completely-isolated memory space and the communication is only

available through the passing of messages between. Therefore, the algorithms will be

illustrated suited for those platforms.

There are two classes of nodes used to perform a task in parallel. One is the

master process and the other is the slave one. There is probably more than one slave

process, however, there is usually only one master process coordinating the others. The

algorithms are also grouped that way: some algorithms are only for the master process,

whereas some are for the others.

4.1. Simple Prime Generation

To generate a prime candidate y, again a seed value x should be selected to

define a starting point for the search process. The parameter id is the process number.

The servers are numbered from 0 to p − 1.

The servers must examine disjoint portions of the search space. To achieve this,

each server starts searching at x + 2 * id using increments of 2p. This interleaves the

numbers examined by each server, and allows the node array, as a whole, to examine

odd numbers greater than or equal to x until a prime candidate is found.

 58

Algorithm 4.1. Simple Prime Generation Algorithm at Master.

Algorithm 4.2. Simple Prime Generation Algorithm at Slave.

procedure SimplePrimeGenerationMaster(x:positive integer)

{x is the starting point for searching a prime}

if even(x) x:=x+1

do

begin

broadcast the value of x to all the other nodes

wait until the slave nodes find a candidate and certify it

get the collective result found

x:=x+2

end until not found

get the simple prime p

procedure SimplePrimeGeneration(x:positive integer)

{x will be used to calculate the starting point for this node}

x:=x+2*id

do

begin

start := start + 2*p

if not SmallFactor(start) then

found:=miller rabin test(start,1)

end while not found and any other node has not found a prime candidate yet

share the candidate with other nodes

collectively certify the candidate

return the result found to the master

 59

4.2. Double Prime Generation

While finding a double prime, the servers will again search disjoint search

places. The only difference from the simple prime generation algorithm is that a search

is initiated for double prime r = kt + 1, for some k ≥ 0. If received candidate r is not

prime, the process is repeated with a new search starting at k = (r div t) + 2.

Algorithm 4.3. Double Prime Generation Algorithm at Master.

Algorithm 4.4. Double Prime Generation Algorithm at Slave.

procedure DoublePrimeGenerationMaster(t:positive integer)

{x is the simple prime to be used for finding a double prime}

k:=0

do

begin

broadcast the value of t and k to all the other nodes

wait until the slave nodes find a candidate r and certify it

get the collective result found

k:=(r div t) + 2

end until not found

get the double prime r

procedure DoublePrimeGeneration(x,k:positive integer)

{t is the simple prime to calculate a double prime using the formula kt+1 by iterating

k }

k:=k+2*(id+1)

do

begin

y := k*start + 1

if not SmallFactor(y) then found:=miller rabin test(y,1)

k:=k+2*p

end while not found and any other node has not found a prime candidate yet

share the candidate with other nodes and master

collectively certify the candidate

return the result found to the master

 60

4.3. Strong Prime Generation

While finding a strong prime, the servers will again search disjoint search

places. The only difference from the two previous algorithms is that a search is initiated

for strong prime p = p0 + krs, for some k ≥ 0. If received candidate p is not prime, the

process is repeated with a new search starting at k = (p div rs) + 2.

Algorithm 4.5. Strong Prime Generation Algorithm at Master.

Algorithm 4.6. Strong Prime Generation Algorithm at Slave.

procedure StrongPrimeGenerationMaster(r,s:positive integer)

{r is the double prime whereas s is the simple prime to be used while generating the

strong prime}

rs:=r*s

u:=(rs+modpower(s,r-1,rs)-modpower(r,s-1,rs)) mod rs;

if odd(u) then p0:=u else p0:=u+rs

k:=0

do

begin

broadcast the value of p0, rs and k to all the other nodes

wait until the slave nodes find a candidate p and certify it

get the collective result found

k:=(p div rs) + 2

end until not found

get the double prime r

procedure StrongPrimeGeneration(p0,rs,k:positive integer)

{p0 is the starting point to be used in the formula p = p0+krs, s is the simple prime

and r is the double prime. k is the value to be iterated until a prime p is found}

k:=k+2*(id+1)

do

begin

y := p0+k*rs

if not SmallFactor(y) then found:=miller rabin test(y,1)

k:=k+2*p

end while not found and any other node has not found a prime candidate yet

share the candidate with other nodes and master

collectively certify the candidate

return the result found to the master

 61

4.4. Parallel Prime Certification

The parallelization of the Miller-Rabin Test is quite straightforward: if the

primality test is applied m times to a prime candidate n in a serial algorithm; in the

parallel case, each slave applies the test for m/p times where p is the number of total

nodes. Then, the results are combined to see if any of these nodes has found that the

candidate is composite. If not, the candidate is prime, otherwise it is composite.

4.5. RSA in Operation

After generating the strong primes to compute the encryption and generation

keys, the process is again distributed among the slaves. The pseudocode will only be

shown for the encryption process since the decryption process is the symmetric of it.

Algorithm 4.7. RSA Encryption at Master.

procedure RSAEncryptionMaster(p,q:positive integer; srcFile, dstFile:

character array)

{p and q are the strong primes that will be used for generating the keys; srcFile and

dstFile are the source file to be encrypted and the destination file where the

encrypted data will be output, respectively}

Compute M := p*q

Compute N := (p-1)*(q-1)

Find an exponent e that is relatively prime to N

Find an exponent d where e*d := 1 mod N

Share e, d and N with the slaves

open srcFile

open dstFile

begin

Read n times the BLOCKSIZE from srcfile to be encrypted

Apply the chaining operation to the multiple block

Send each partition to a distinct slave

Collect the results and write to dstFile

end until there is any remaining block with a size of n * BLOCKSIZE

if there is any data left in the file then

encrypt it yourself

write the result to the file end and the remaining data size to the header field of

 dstFile

end if

close srcFile

close dstFile

 62

Algorithm 4.8. RSA Encryption at Slave.

procedure RSAEncryption(e,N:positive integer; buf[]:character array)

{e is the encryption key, N is the modulus and buf is the array holding the partition

of the file to be encrypted}

Encrypt the data found in buf using the key and the modulus by using the equation of

 c = m^e modM

Send c to the master

 63

CHAPTER 5

EXPERIMENTAL RESULTS

Since approximately one in every Ln(n) numbers around n is prime, testing can

be averaged over O(Ln(n)) trials (Greenfield 1994).
13

 However, to see the probabilistic

distribution of primes clearly, another approach has been selected in this thesis. That is,

two modes have been used to collect the measures. In one mode, the prime searching

process for the serial and parallel case has been initiated from randomly chosen origins;

and in the other mode, the same origin has been selected for both. It is expected that

when the origins are randomly chosen, the speedup measures will have a higher

variability than the ones which are taken when the same origin is used.

After the pseudocodes were converted into source code representations and then

compiled, the executable program was run against a sample file with a size of 9820

bytes that was used for the encryption/decryption process using different key sizes and

different modes. As explained before, these two modes differ in the selection of using

either different seeds or the same seed for the random number generator which is

supplied by a multiprecision arithmetic library, namely MIRACL. The measures taken

for this work are the times elapsed for the strong prime generation (p and q), the

creation of the keys, the encryption process and the decryption process; and the speedup

values related to those measures. The measures were entered in two tables one set for

each seeding mode; namely, different seeds and the same seed for the random number

generator. To be able to make a sound judgement based on the measures shown in Table

5.1 and Table 5.2 more easily, the measures related to strong prime generation are

plotted in Figure 5.1.

Figure 5.1 illustrates the speedup measures in two modes. On average, the speed

up value is greater than one for all key lengths in each mode, however, for the case of

using the same seed, it can be observed schematically that the speedup measures have a

smaller variability (it does not have sharp edges like the other one). Mathematically, the

standard deviation of speedup values for the case of using different seeds is 3.67439,

where as the standard deviation of speedup values for the other case is 1.473729. This

13

 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”,

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, p. 108.

 64

result can be explained as such: if the sequential and the parallel algorithm starts

searching the prime numbers randomly, then the starting point for one of them may be

very close to a prime number, and moreover, if that algorithm is the sequential one, the

results may show wrongly that the parallel one is less efficient than the sequential one.

The luck comes into the play in this scenario and may add very much noise to the

measures. To overcome this problem, the algorithms should be started from the same

origin for searching and the noise may be decreased as much as possible. Using that

method, they will run in the same search space starting from the same origin and the

comparison will be more accurate. The standard deviations calculated also justifies this

fact.

Table 5.1. The Measured Values Using Different Seeds.

TIME ELAPSED (secs) SPEEDUP

DIFFERENT
SEEDS
(k = 4)

Strong
Prime
Gen.
(p , q)

Key
Gen.

E
n

c
ry

p
tio

n

D
e
c
ry

p
tio

n

Strong
Prime
Gen.
(p , q)

Key
Gen.

E
n

c
ry

p
tio

n

D
e
c
ry

p
tio

n

Serial 7,806 0,034 3,013 3,202
1024

Parallel 1,162 0,033 0,822 0,804
6,720 1,028 3,665 3,984

Serial 11,829 0,069 9,345 9,410
2048

Parallel 5,823 0,074 2,956 2,977
2,031 0,938 3,161 3,160

Serial 50,241 0,116 19,788 19,920
3072

Parallel 11,295 0,121 6,099 6,077
4,448 0,957 3,245 3,278

Serial 376,63 0,148 34,069 34,770
4096

Parallel 45,036 0,159 13,795 13,774
8,363 0,932 2,470 2,524

Serial 1079,663 0,197 51,712 52,286
5120

Parallel 120,716 0,197 22,941 22,938
8,944 1,001 2,254 2,279

Serial 1978,144 0,286 71,538 71,772
6144

Parallel 153,130 0,285 22,176 22,245
12,918 1,002 3,226 3,226

Serial 1445,904 0,351 93,451 93,964
7168

Parallel 485,526 0,568 42,904 43,611
2,978 0,617 2,178 2,155

Serial 3797,425 0,399 124,936 126,250
8192

Parallel 1184,646 0,450 50,645 50,601
3,206 0,885 2,467 2,495

Serial 2641,749 0,627 159,090 160,244
9216

Parallel 1205,353 0,503 53,438 54,125
2,192 1,246 2,977 2,961

Serial 2448,290 0,542 193,214 193,330

K
E

Y
 L

E
N

G
T

H
 (b

its
)

10240
Parallel 998,131 0,496 121,686 122,144

2,453 1,092 1,588 1,583

 65

Table 5.2. The Measured Values Using the Same Seed.

TIME ELAPSED (secs) SPEEDUP

SAME SEED
(k = 4)

Strong
Prime
Gen.
(p , q)

Key
Gen.

E
n

c
ry

p
tio

n

D
e
c
ry

p
tio

n

Strong
Prime
Gen.
(p , q)

Key
Gen.

E
n

c
ry

p
tio

n

D
e
c
ry

p
tio

n

Serial 3,322 0,031 2,934 3,011
1024

Parallel 1,048 0,032 0,861 0,843
3,170 0,969 3,407 3,570

Serial 22,147 0,070 9,765 9,894
2048

Parallel 3,589 0,065 2,923 2,953
6,171 1,071 3,341 3,350

Serial 62,914 0,148 19,743 19,645
3072

Parallel 23,161 0,130 6,113 6,198
2,716 1,135 3,230 3,170

Serial 179,319 0,167 34,020 34,341
4096

Parallel 68,038 0,156 13,140 13,244
2,636 1,068 2,589 2,593

Serial 367,050 0,237 51,436 52,658
5120

Parallel 82,935 0,197 22,770 23,090
4,426 1,198 2,259 2,280

Serial 972,797 0,249 70,565 71,726
6144

Parallel 207,798 0,250 21,985 22,121
4,681 0,995 3,210 3,242

Serial 2812,432 0,307 94,817 96,474
7168

Parallel 511,983 0,448 42,896 43,978
5,493 0,686 2,210 2,194

Serial 1376,377 0,551 124,575 125,200
8192

Parallel 813,666 0,580 50,552 51,596
1,692 0,950 2,464 2,427

Serial 4408,174 0,504 160,328 161,161
9216

Parallel 1016,627 0,431 53,627 54,002
4,336 1,167 2,990 2,984

Serial 11644,961 0,830 196,065 194,632

K
E

Y
 L

E
N

G
T

H
 (b

its
)

10240
Parallel 2098,976 0,537 121,142 122,839

5,548 1,546 1,618 1,584

Strong Primes Generation

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

Bit Length (bits)

S
p

e
e
d

u
p

Different Seeds

Same Seed

Figure 5.1. Strong Primes Generation.

 66

CHAPTER 6

CONCLUSION AND RECOMMENDED FURTHER

WORKS

As seen from the experimental results, there is little doubt that the parallelism

can be used for speeding up the operation of several cryptosystems. However, it should

be noted that the amount of speedup achieved has a strong relationship with the choice

of the platform used for parallelism. If the data to be exchanged between nodes are

large, then the shared memory approach will be better. On the other hand, if the data to

be exchanged can be limited to a small amount, then message-passing platforms will

certainly be more useful. Each method has its own advantages and disadvantages.

Shared-memory approach makes the communication faster since all the nodes share a

common place for data storage; however, it is more difficult to code and debug due to

synchronization and contention problems, and to scale when new nodes are added to

increase the speedup value. Message-passing platforms make the programming and

maintenance task easier, but they are less efficient when there needs to be heavy

communication between the nodes since each data exchanged means a message going

between the parties.

It is certain that parallelism can not only be used on the cryptographers’ side for

forming an unbreakable cryptosystem but also on the cryptanalysts’ side to try to break

a cryptosystem as soon as possible. In this thesis, the impact of parallelism on

generation and certification of primes numbers and the encryption and decryption

processes were discussed, but this does not mean that the parallelism can only be used

in a constructive manner; in fact, it can also be used in destructive manner –

cryptanalysis. This means that the usage of parallelism is not limited to any specific area

but has a general usability.

This work may certainly be extended by parallelizing other cryptosystems such

as El-Gammal and several techniques used for cryptanalysis such as factoring large

primes, which can be used for testing the strength of any new cryptosystem before it is

standardized for public usage. In fact, the parallelism is used much more by

cryptanalysts than cryptographers in real life.

 67

It should never be overlooked that the hardest work is not just to set up a parallel

environment for running parallel algorithms but to find the logic for devising effective

parallel solutions; otherwise, it is inevitable to code a parallel program that is inefficient

or even worse, that executes slower than its serial counterpart.

 68

REFERENCES

Burnett, S. and Paine, S. 2001. “RSA Security’s Official Guide to Cryptography”,

(Osborne, Berkeley, California, USA).

Denning, E. R. D., 1982. “Cryptography and Data Security”, Purdue University,

(Addison-Wesley, USA).

Freeman T.L. and Phillips C. 1992. “Parallel Numerical Algorithms”, (Prentice Hall,

UK).

Grama, A., Gupta, A., Karypis, G. and Kumar, V. 2003. “Introduction to Parallel

Computing”, Second Edition, E-Book, (Addison-Wesley, USA).

Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography

Applications”, Distributed Computing Environments Group, M/S B272, Los

Alamos, New Mexico, USA.

McGregor-Dorsey, Z. S., 1991. “Methods of Primality Testing”.

Simmons, G. J., 1992. “Contemporary Cryptology”, (IEEE Press, New York, USA).

Tanenbaum, A. S., 2003. “Computer Networks”, Fourth Edition, E-Book, (Prentice

Hall).

WEB_1, 2002. Prime Numbers, 15/10/2003.

http://odin.mdacc.tmc.edu/~krc/numbers/prime.html.

WEB_2, 1995. MPI: The Complete Reference, 15/10/2003.

http://www.netlib.org/utk/papers/ mpi-book/node2.html.

WEB_3, 2002. An Introduction to Parallel Programming, 17/10/2003.

http://www.linux-mag.com/2002-03/extreme_01.html.

WEB_4, 2003. Message Passing Interface, 18/10/2003.

http://www.llnl.gov/computing/tutorials/workshops/workshop/mpi/MAIN.html.

 69

APPENDIX A

DISTRIBUTED ENVIRONMENT

The distributed environment used in this thesis is formed by four identical PCs

each with Pentium IV 2 GHz processor and 512 MB RAM connected via a 100 Mbps

Ethernet LAN. The operating system preferred is RedHat Linux 9 which is the popular

version of RedHat during the time of writing this thesis. Although some parts of the

environment setup is a must (such as a multiprecision integer arithmetic library), some

other parts are optional (such as NFS) just for increasing the efficiency. All of the

environment work will be discussed.

Since the programs are all written in C programming language, the standard C

compiler, gcc, is preferred and the parallel platform is constructed with MPI (Message

Passing Interface). There are many implementations of MPI, and among them, MPICH1

is used which is just a library that can be linked with other C programs. The usual

registers used in a standard PC nowadays are at most 64 bits long which forces the users

dealing with cryptography to use a multiprecision integer arithmetic library. MIRACL2

is a popular one in this area and it is also another library just like MPICH. To allow

each PC send messages to each other, there must be a remote login mechanism used by

them, which is Secure Shell (SSH) in this work. SSH allows the remote login process to

be done with public-key cryptographic techniques.

The components mentioned in the previous paragraph are the must-part of the

work. Besides those, there are also some optional parts to improve the efficiency. NFS

and NIS are two techniques used for sharing any directory or system-wide file (such as

the shadow file) between several computers, respectively. Using them, there is no need

to compile a program in one computer and then copying it to others or to create several

accounts on each of them to allow login from terminals.

 70

A.1. Network Setup

The four PCS are connected to each other via an Ethernet LAN using a switch.

The PCS are given virtual IPS starting from 192.168.0.1 up to 192.168.0.4 using a

netmask of 255.255.255.0.

A.2. MIRACL Setup

After downloading MIRACL to a temporary location, it can be extracted by using a

command like

% unzip -j -aa -L miracl.zip

Next, a tailored build of MIRACL for the underlying system can be created by typing

% bash linux

All C programs must be linked with miracl.a and during compilation, the MIRACL

header files must be included by using specific gcc parameters. For example, a typical

compilation and linking command can be

% gcc -c <filename>.c -o <obj>.o I/location/to/miracl/include

% gcc -o <output> <objname>.o /location/to/miracl/miracl.a

A.3. MPICH Setup

The downloaded TAR.GZ file can be extracted with

% tar -zxvf mpich.X.X.X.tar.gz

Then, the unzipped and untarred MPICH source must be configured by giving the target

location using –prefix option, and the login procedure between PCs using

-RSHCOMMAND option and it must be compiled and installed using make utility. A

typical example may be

% ./configure --prefix=/location/to/targetdir -RSHCOMMAND=ssh

% make

% make install

Successfully completing all of these, the source program can be compiled and linked

with MPICH (and also MIRACL) by typing

 71

% gcc -c <filename>.c -o <obj>.o -I/location/to/mpich

-I/location/to/miracl/include

% gcc -o <output> <objname>.o -L/location/to/mpich/lib

-lmpich /location/to/miracl/miracl.a

A.4. SSH Setup

sshd is the name of the server daemon and ssh is the name of the client program.

Both of them are set up in each PC to allow each of them to communicate with each

other. To use SSH, a user must create a public and private key and save the public key

in the server he/she wants to connect to, whereas save the rivate key in the client

system. The command for creating the key is

% ssh-keygen -t rsa

This command creates the keys using RSA as the public-key cryptosystem and puts

them under the .ssh directory under the user’s home as default.

There are two configuration files for the server daemon and the client program:

sshd_config and ssh_config, respectively, residing under /etc/ssh directory. The

contents of them are shown in Configuration A.1 and Configuration A.2.

Configuration A.1. /etc/ssh/sshd config.

Port 22

Protocol 2

ListenAddress 0.0.0.0

HostKey /etc/ssh/ssh host rsa key

SyslogFacility AUTHPRIV

PermitRootLogin no

RSAAuthentication yes

PubkeyAuthentication yes

AuthorizedKeysFile .ssh/id rsa.pub

RhostsAuthentication no

IgnoreRhosts yes

RhostsRSAAuthentication no

PasswordAuthentication no

PermitEmptyPasswords no

X11Forwarding yes

PrintMotd yes

Subsystem sftp /usr/libexec/openssh/sftp-server

 72

Configuration A.2. /etc/ssh/ssh config.

A.5. NFS Setup

NFS is used to share a directory between hosts. To avoid the executable file

from copying each PC individually, the user’s home directory has been shared between

each one.

The steps for sharing a directory is a two-step process:

At the server-side, the directory to be shared is defined in a configuration file,

namely /etc/exports. The content is shown below:

Configuration A.3. /etc/exports

At the client-side, the shared directory can be mounted at startup by entering the

necessary directive in the /etc/fstab configuration file which is shown below:

Configuration A.4. /etc/fstab.

ForwardX11 yes

RhostsAuthentication no

RhostsRSAAuthentication no

RSAAuthentication yes

PasswordAuthentication yes

IdentityFile /.ssh/identity

IdentityFile /.ssh/id rsa

IdentityFile /.ssh/id dsa

Port 22

Protocol 2

Host *

ForwardX11 yes

/user/home/dir 192.168.0.0/24(rw)

This configuration allows the user directory to be shared with

the hosts in the network of 192.168.0.0/24 with read/write

access

<serverIP or hostname>:<remotePathToBeMounted> </local/mount/point>

nfs soft 0 0

 73

A.6. NIS Setup

NIS is used to share system-wide files between hosts. In this work, it is preferred

to ease the management of login accounts. NIS setup is again a two-step process like

NFS. The tool to be used is yp that comes with standard RedHat distributions.

At the server-side, the configuration file /etc/ypserv.conf is used to define what

kind of system-wide information will be shared (passwd info, shadow info etc.) and

among which hosts it can be shared. The content of it, which is shown below, says that

all system-wide info can be shared with any host. Since the LAN is a virtual one, there

is no need to think about security restrictions to avoid any attacks.

Configuration A.5. /etc/ypserv.conf.

Then, the database that will be used by yp tool must be created by the ypinit command:

% /usr/lib/yp/ypinit -m

At the client-side, the /etc/yp.conf file is used to direct the host to which server it must

bind for getting the system-wide information. Its content is shown below:

Configuration A.6. /etc/yp.conf.

Then, another configuration file, namely /etc/nsswitch.conf, must be adjusted to define

the order of the lookups for an account, service or other system-wide information when

needed. The content shown below directs the client to search its own shadow, group, or

passwd file and then the server’s if it cannot find the necessary information in its own

one.

* : * : * : none

domain test server <serverIP>

 74

Configuration A.7. /etc/nsswitch.conf.

There is one important point left to be mentioned: all the hosts must share a common

NIS domain which can be set in /etc/sysconfig/network. An example is shown:

Configuration A.8. /etc/sysconfig/network.

passwd: files nis

shadow: files nis

group: files nis

hosts: files dns

bootparams: nisplus [NOTFOUND=return] files

ethers: files

netmasks: files

networks: files

protocols: files

rpc: files

services: files

netgroup: files

publickey: nisplus

automount: files

aliases: files nisplus

NETWORKING=yes

HOSTNAME=<hostname>

NISDOMAIN=<nisdomain>

