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ABSTRACT 

 

 
 Blind source separation (BSS) methods, independent component analysis (ICA) 

and independent factor analysis (IFA) are used for detecting the signal coming to a 

mobile user which is subject to multiple access interference in a CDMA downlink 

communication. When CDMA models are studied for different channel characteristics, 

it is seen that they are similar with BSS/ICA models. It is also showed that if ICA is 

applied to these CDMA models, desired user’s signal can be estimated successfully 

without channel information and other users’ code sequences. ICA detector is 

compared with matched filter detector and other conventional detectors using 

simulation results and it is seen that ICA has some advantages over the other methods. 

 The other BSS method, IFA is applied to basic CDMA downlink model. Since 

IFA has some convergence and speed problems when the number of sources is large, 

firstly basic CDMA model with ideal channel assumption is used in IFA application. 

With simulation of ideal CDMA channel, IFA is compared with ICA and matched 

filter.  

 Furthermore, Pearson System-based ICA (PS-ICA) method is used for 

estimating non-Gaussian multipath fading channel coefficients. Considering some 

fading channel measurements showing that the fading channel coefficients may have 

an impulsive nature, these coefficients are modeled with an α-stable distribution whose 

shape parameter α takes values close to 2 which makes the distributions slightly 

impulsive. Simulation results are obtained to compare PS-ICA with classical ICA. 

Also IFA is applied to the single path CDMA downlink model to estimate fading 

channel by using the advantage of IFA which is the capability to estimate sources with 

wide class of distributions.      
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ÖZ 

 

 
Gözü kapalı kaynak ayrıştıma (BSS) yöntemlerinden bağımsız bileşen analizi 

(ICA) ve bağımsız etmen analizi (IFA), vericiden alıcıya kod bölüşümlü çoklu erişim 

(CDMA) iletişiminde kullanıcının sinyalinin diğer kullanıcıların girişim oluşturan 

sinyallerinden ayrıştırılması için kullanılmıştır. Farklı çokyollu sönümlemeli kanal 

karakteristikleri için CDMA modelleri incelendiğinde, oluşturulan modellerin BSS 

modelleri ile aynı olduğu görülmüştür. Bu CDMA modellerine ICA uygulandığında, 

kanal bilgisi ve kullanıcıların kod dizileri olmadan istenilen kullanıcının sinyallerinin 

kestirilebildiği görülmektedir. Benzetim çalışmaları yapılarak, BSS yöntemleri, 

uyumlu süzgeç alıcısı gibi klasik yöntemlerle karşılaştırılmış ve bu yöntemin 

avantajlarıyla öne çıktığı görülmüştür..  

Bir diğer BSS yöntemi olan IFA da vericiden alıcıya basit CDMA modeline 

uygulanmıştır. Çok sayıda kaynak olan durumlarda IFA yavaş olduğu için ilk aşamada  

basit CDMA modeli kullanılmış ve benzetimler yoluyla ICA ve uyumlu süzgeç alıcısı 

ile karşılaştırılmıştır.  

BSS için yeni bir yaklaşım olan Pearson Sistemi’ne dayalı ICA (PS-ICA) 

yöntemi, Gauss olmayan çokyollu sönümlemeli kanalın katsayılarının kestirilmesinde 

kullanılmıştır. Bu uygulamada, literatürde bulunan Gauss olmayan, dürtün özelliklere 

sahip kanallar üzerine yapılan çalışmalara dayanılarak, vericiden kullanıcıya 

sönümlemeli CDMA kanalı, şekil parametresi α dürtünce bir niteliği gösteren 2’ ye 

yakın değerler alabilen α-kararlı bir dağılımla modellenmiştir. Benzetimler yoluyla 

PS-ICA yönteminin başarımı klasik ICA yöntemininkiyle karşılaştırılmıştır. Ayrıca tek 

yollu CDMA modeline IFA uygulanarak, bu yöntemde kaynakların Gauss 

karışımlarıyla modellendiğinden dolayı farklı dağılımlara sahip kaynakları 

ayrıştırabilmesindeki başarısından yararlanılmaya çalışılmıştır.   
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Chapter 1 
 
 

INTRODUCTION 

 
Code Division Multiple Access (CDMA) is a multiple access technique that 

uses spread spectrum modulation by each user with its own unique spreading code 

with all users sharing the same spectrum [1]. Spread spectrum modulation is done by 

pseudo-noise (PN) codes. By using PN codes, the narrowband information signal is 

modulated and spreaded to a substantially greater bandwidth prior to transmission. 

Digital cellular telephone system based on CDMA technology was proposed in 1990 

by Qualcomm, Inc. In July 1993 it was adopted as a second U.S digital cellular 

standard, designated IS-95 [2]. The IS-95 system provided a very high capacity by 

using spread-spectrum signaling techniques. Third generation cellular systems are 

being designed to support wideband services like high speed internet access, video and 

high quality image transmission with the same quality as the fixed networks and one of 

the most promising approaches to 3G is to combine a Wideband CDMA (WCDMA) 

air interference with the fixed network of GSM. The 3G standard was created by the 

International Telecom Union (ITU) and is called IMT-2000 (International Mobile 

Telecommunications year 2000) based on CDMA (W-CDMA, CDMA 2000 and TD-

SCDMA). 806-960 MHz, 1710-1885 MHz, 2110-2200MHz and 2500-2690 MHz 

frequency bands are separated by ITU for 3G mobile cellular communication systems. 

 In the CDMA downlink transmission in which information is transmitted from 

base stations to mobile units, symbol detection is an important problem in fading 

channels. In a downlink transmission the receiver is interested in only one of the 

information sources transmitted by the base stations [3]. In CDMA downlink problem, 

since desired user has not got any information about other users’ spreading codes, 

separation of desired user’s signals from other users’ signals is a blind source 

separation (BSS) problem. Because of this, independent component analysis (ICA), 

one of the BSS methods, has been applied to CDMA models in last years. 

 In BSS problem, data measured by sensors arise from source signals that are 

mixed together by some linear transformation corrupted by noise. The task is to obtain 
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those source signals. However, the sources are not observable and there is no 

information about their properties beyond their statistical independence nor about the 

properties of the mixing process and the noise [4]. ICA is a statistical signal processing 

technique whose main application is BSS [5]. The sources can be found using ICA 

provided that all sources are independent and non-Gaussian [6]. Most of the work in 

the field of BSS since its emergence in the mid’ 80s, in which ICA was used, aimed at 

idealized version of the problem where the mixing matrix is square and noiseless but in 

the mid’ 90s a satisfactory solution was found (Bell and Sejnowski 1995; Cardoso and 

Laheld 1996; Pham 1996; Pearmuter and Parra 1997; Hyvarinen and Oja 1997). 

Algorithms for ICA assumes non-Gaussian models of the source densities and 

maximum likelihood (ML) estimate of mixing matrix is unique for chosen source 

densities. 

 One of the other solutions for BSS problem is independent factor analysis 

(IFA), which was proposed by Attias. In this method, each source model is described 

by a mixture of Gaussians and for learning of an associated probabilistic model of the 

mixing situation expectation-maximization (EM) algorithm is used. 

In this thesis, the applications of ICA in CDMA downlink problem will be 

investigated. Simulation results will be shown to analyze the performance of these 

applications. Also, IFA is applied to CDMA. Simulation results will be given to 

compare ICA and IFA applications in CDMA systems.  

Firstly, chapter 2 contains an overview about CDMA. Basic asynchronous 

model, asynchronous model in ideal channel and in multipath fading channels will be 

explained. Also in this chapter an overview about multipath fading channel will be 

given. In chapter 3, ICA will be explained. It contains objective functions ICA used 

which are classified as multi-unit and one-unit objective functions. A new technique, 

Pearson System-based ICA will be given in this chapter, too. Chapter 4 focuses on 

IFA. The IFA method and advantages of IFA over ICA will be given in this chapter. In 

Chapter 5, ICA is applied to detect desired user’s symbols for basic CDMA downlink 

model and for CDMA transmission systems in multipath fading channel. Also in this 

chapter, FastICA is used for estimating multipath delays. Simulation results of these 

applications will be given too. Furthermore, IFA is applied and compared with ICA for 

basic CDMA downlink model. In Chapter 6, non-Gaussian fading coefficients of 

multipath channel were estimated by Pearson System-based ICA. The reason of 
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choosing Pearson System-based ICA and simulation results will be given in this 

chapter too. 

Last chapter gives a discussion on ICA and IFA applications in CDMA 

downlink problem and also it contains some information about future work that can be 

worked on.  



Chapter 2 

 

CODE DIVISION MULTIPLE ACCESS 
  

2.1 Multiaccess Communication 
 

Multiaccess communication is a type of communication where several 

transmitters share a common channel like in the cases of a bus with multitaps, local 

area networks (LAN), cable television networks, mobile telephones transmitting to a 

base station, ground stations communicating with a satellite [3]. In these examples, the 

common point is that the receiver receives a superposition of signals sent by different 

transmitters and noise. 

 

Receiver

User 1

User 2

User 3

User 4

User K

Noise
 

Figure 2.1 Multiaccess Communication 

 

 Message sources are not co-allocated and they can operate autonomously. For 

these reasons, the term “multiaccess” is used. In multiaccess communications, message 

sources are referred to as users. 

 Multiaccess communications is sometimes referred to as point to multipoint 

communication. Radio broadcasting and base station to mobile unit communication are 

the examples of this case. In the radio broadcasting, all receivers receive the same 
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information, but in the base station to mobile unit communication although all 

receivers receive the same information, one receiver or mobile unit is interested in only 

one of the information signals transmitted by the base station. 

  

2.2 Comparison of CDMA with TDMA and FDMA 

 
Time Division Multiple Access (TDMA), Frequency Division Multiple Access 

(FDMA) and Code Division Multiple Access (CDMA) are the three major multiaccess 

techniques used in communication systems. There are many extensions and hybrid 

techniques for these methods but an understanding of the three major methods is 

required firstly for understanding extensions of their methods [7]. Each multi-access 

technique has advantages and disadvantages related to the usage of the allowed 

bandwidth.  

 In TDMA, sending time is segmented into disjoint time slots as shown in 

Figure 2.2. All users are active for short periods of time on the same frequency [8]. 

Demodulation is carried out by simply switching on to the received signal at the 

appropriate epochs. 

 

 

User 1 User 2 User 3 User 1 User 2 User 3

Guard Time

      Time  
Figure 2.2 TDMA Communication 

 

 

 FDMA segments the frequency band into disjoint sub-bands and assigns a 

different carrier frequency to each user so that the resulting spectra do not overlap [3]. 

In FDMA each channel can be demodulated separately by using band-pass filtering in 

the frequency domain. 
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Figure 2.3 FDMA Communication 

   

 

 
Figure 2.4 FDMA- TDMA- CDMA Communications 

 

 
 TDMA does not allow completely uncoordinated transmission and all 

transmitters and receivers must have access to a common clock [3]. Synchronization is 

very important in TDMA and it is difficult to synchronize all users. In FDMA, 

opposite to TDMA, no synchronization is required among the users. Because of 

nonideal effects of channel, guard time insertion in TDMA and spectral guard bands 

insertions in FDMA may be required as shown in Figures 2.2 and 2.3. Also 
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noninterfering multiaccess strategies may waste channel resources. Especially when 

the number of potential users is much greater than the number of simultaneous active 

users at any given time, wasting channel resources becomes an important problem. 

Because at these times, in TDMA most of the time slots are empty and in FDMA small 

part of spectrum is used.  

 In contrast to TDMA and FDMA, in CDMA, signals of users overlap both in 

time and frequency (Figure 2.7). All users send on the same frequency probably at the 

same time and they can use the whole bandwidth of the transmission channel. No 

planning and synchronization is required. However, it can be pointed as a disadvantage 

of CDMA that it requires more complex receiver structures. In the next sections of 

Chapter 2, CDMA will be given in more details. 

 

2.3 CDMA Details 

 
 In CDMA, the narrowband message is multiplied by a large bandwidth signal, 

which is a pseudo random noise code (PN code) and these signals are called “code 

sequences”, “user codes” or “signature sequences”. When the users’ codes are 

orthogonal, there is no interference between the users after despreading and the privacy 

of the communication of each user is protected. In practice, the codes cannot be 

orthogonal and cross-correlations between codes introduce performance degradation 

and this limits the number of active users. If signature waveforms’ mutual interference 

is sufficiently low, the requirement that the waveforms be orthogonal can be dropped 

in CDMA. However selection of signature sequences is still very important since their 

cross-correlation must be very low. Non-orthogonal code sequences make CDMA a 

useful multiaccess technique for multiuser communication systems. As a result of this, 

users can be asynchronous and sharing of channel sources is dynamic since it depends 

on active users rather than on the number of potential users of the system. 

 The term “process gain”, “spreading factor” or “bandwidth expansion factor” is 

one of the most important concepts in spread spectrum techniques. It points out to the 

signal to noise ratio (SNR) improvement as a result of spreading and despreading 

process. Process gain of a system is equal to the ratio of chip rate “RC” to the data 

symbol rate “RS”. 
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In Eq. (2.1), BWSS is the bandwidth of the spreading data, BWinfo is the bandwidth of 

the sent information data. TC is the chip period of the spreading sequence, and Tb is the 

period of the transmitting signal. 

 Figure 2.5 shows a basic CDMA transmitter. 

 

PN
Generator

Data bit stream
              BPSK Modulator

              RF out

Local
Oscillator

 
Figure 2.5 Basic CDMA Transmitter 

 

As Figure 2.5 shows, data signal is modulated by the PN code which has a chip rate 

higher than the bit rate of the data. In Figure 2.6, the generation of a CDMA signal 

using a 10 chip length code is given. 

 

Data Stream

                  PN-Code (10 Chip
length)

Output Spread
Text

            1 chip period 1 bit period

 
Figure 2.6 Generation of a CDMA signal using a 10 chip length code 

 

 The receiver side of the CDMA systems is more complex than other 

multiaccess system receivers. Because of non-orthogonal code sequences, simple 

correlator receivers cannot achieve good detection performances. As a consequence of 
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non-orthogonal signature waveforms, other users cause interference to the desired user 

called “Multiple Access Interference” (MAI). MAI affects the performance of the 

system and an interfering signal that is more powerful than the desired signal at a 

receiver which is the result of the near-far problem, causes high performance 

degradation. In addition to this problem, the characteristics of a wireless channel like 

multipath fading and propagation delay, affect the performance of CDMA systems. In 

subsection 2.3.3.2, the multipath channel will be given in more detail. 

   

2.3.1 Signature Waveforms 

 

 In direct sequence spread spectrum (DS-SS) CDMA system, chip waveform 

and “spreading factor” or “processing gain” are common to all users. Also the 

selection of the code is important because the type and the length of the code set 

bounds on the system capability. In addition to this, as it was mentioned before, cross-

correlations of codes must be sufficiently low. PN signature sequences, for given 

spreading factor, N, and number of users, K, achieve low cross-correlations for all 

possible offsets [3].  

 PN code sequence acts as a noise-like carrier used for bandwidth spreading of 

the signal energy. It is a pseudo-random sequence of 1’s and 0’s but not a real random 

sequence since it is periodic but it looks random for the user who doesn’t know the 

code. The PN sequence code can be divided into two categories: short code and long 

code. In the short code, for each data symbol the same PN sequence is used but in the 

long code, the PN sequence period is much longer than the data symbol and so a 

different chip pattern is associated with each symbol [9]. 

 PN sequence codes can be produced by many ways. Gold codes, Barker codes 

and m-sequence are examples of PN sequence codes. Since a large number of codes 

with the same length and low cross-correlations can be generated, Gold code 

sequences are often used in CDMA systems. So, in this thesis, Gold codes are used for 

spreading data in a CDMA downlink system. 

 

2.3.2 Direct Sequence CDMA (DS-CDMA) 

 

 Direct sequence is a specific approach to construct spread spectrum waveforms.  

 9



If chip waveform is “ ”, number of chips per bit is “N” and binary sequence 

p

CTP

t={c1,c2,…,cN} is used to modulate the chip waveform antipodally, the direct sequence 

spread spectrum waveform with duration NTC is [3]: 

 

                                                                         (2.2) ∑
=

−−−=
N

i
CT

C TitPAts
C

i

1
))1(()1()(

 

In the transmitter, the binary data dt with symbol rate RS is multiplied with the PN 

sequence pt with chip rate RC and transmitted baseband signal txb is produced: 

 

                             tx ttb pd ⋅=                                                            (2.3) 

 

Multiplication of dt with pt is spreading the baseband bandwidth RS of dt to a baseband 

bandwidth of RC. In the receiver, the received baseband signal rxb is multiplied with 

the PN sequence pr. If pr = pt, txb is again produced and bandwidth of rxb is despreaded 

to RS. If pr ≠ pt, the receiver cannot reproduce the transmitted data txb [9]. For BPSK 

modulation, the building blocks of DS-SS system are shown in Figure 2.7. 
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Figure 2.7 DS-SS System 
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2.3.2.1 Modulation 

 

 To modulate the input data dt that has a bandwidth BWinfo, it is multiplied with 

the PN sequence pt and the transmitted data txb that has larger bandwidth BWSS is 

produced [9]. 

BWinfo ≈ RS << RC ≈ BWSS 
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Figure 2.8 Modulation of data 

 

2.3.2.2 Demodulation 

 

 To demodulate the received signal, rxb is multiplied by the PN sequence pr 

which is the same with pt. This operation is called spectrum despreading. Figure 2.9 

shows the demodulation of the received signal rxb. 

 Then the receiver output, dr, can be found as: (if pr = pt and pr ⋅ pt=1 for all t) 

 

                              dr = rxb ⋅ pr = (dt ⋅ pt)⋅pt                                                     (2.4) 

                                                        dr = dt  
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If the received signal is multiplied by a PN sequence pr which is different from pt, the 

received output becomes: 

 

                    dr =rxb ⋅ pr = (dt ⋅ pt)⋅pr                                                      (2.5) 

 

For security in communication, the cross-correlation of pt and pr, which is given as   

              Cross-correlation RC(τ)= ( ) ( )( )τ+tptp rt << 1 for all τ                                (2.6)     

As a consequence of Eq. (2.6), dt cannot be reproduced by a user that does not know 

the PN sequence pt. This orthogonality property of the allocated spreading codes 

means that the output of the correlator used in the receiver is approximately zero for all 

but the desired transmission [9]. 
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Figure 2.9 Demodulation of received signal 
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2.3.3 Basic CDMA Models 

 

2.3.3.1 Basic Synchronous CDMA Model 

 

 A basic synchronous CDMA model for K users in an ideal channel consists of 

modulated synchronous signature waveforms embedded in additive white Gaussian 

noise (AWGN) [3]: 

 

                                                                      (2.7) [ TttntsbAty
K

k
kkk ,0)()()(

1
∈+= ∑

=

σ ]

}

 

In this model, sk(t) is the signature waveform of the k’th user and assumed to be zero 

outside the interval [0,T], Ak is the amplitude of the k’th user’s received signal, 

 is the transmitted bit of the k’th user and n(t) is the AWGN with unity 

power spectral density. For special case of two users, Eq. (2.7) can be rewritten as: 

{ 1,1 +−∈kb

 

                              )()()()( 222111 tntsbAtsbAty σ++= .                                           (2.8) 

 

2.3.3.2 Basic Asynchronous CDMA Model 

 

 In the asynchronous case the stream of bits must be taken into account opposite 

to one-shot synchronous CDMA model: 

 

                                [ ] [ ] [ ]Mb,b,,M kkk ………… 0−b .                                              (2.9) 

 

The CDMA model becomes: 

 

                           .                                 (2.10) [ ]∑ ∑
= −=

+−−=
K

k

M

Mi
kkkk tniTtsibAty

1
)()()( στ

 

In this equation,τk is the offset of the k’th user and the data rate, 1/T, is equal for all 

users. In Figure 2.10, bit epochs are shown for three asynchronous users in a case 
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where M=1. If  all offsets are identical (τ1=τ2= ⋅⋅⋅ =τK), the asynchronous CDMA model 

is reduced to a synchronous CDMA model. 

 

 
-T                     0                     T                2T                3T

b1[-1] b1[0] b1[1]

b2[-1] b2[0] b2[1]

b3[-1] b3[0] b3[1]

2τ 3τ  

Figure 2.10 Bit epochs for K=3 and M=1 [3] 

 

2.3.3.3 CDMA Downlink Model in a Multipath Channel 

 

 In transmission systems, the received signal consists of a combination of 

attenuated, reflected and refracted replicas of the transmitted signal and noise. If the 

receiver or the transmitter is moving, there can be a carrier frequency shift called 

“Doppler Effect”. The amount of frequency change due to the Doppler Effect depends 

on the relative motion of the source and the receiver and on the speed of propagation 

of the wave. 

 In multipath channels, signals from transmitters may be reflected from objects 

such as hills, buildings or moving objects like vehicles. Figure 2.11 shows some of 

these possible reflection waves. 

 Because of the extra path length, the reflected signals arrive at a later time than 

the direct signal. This situation spreads the received energy. The time spread between 

the arrival of the first and last multipath seen by the receiver is called “delay spread” 

and it can lead to intersymbol interference (ISI). In Figure 2.12, multipath “delay 

spread” is shown. 

 Small scale fading or simply fading is used to describe the rapid fluctuations of 

the amplitude of a radio signal over a short period of time or travel distance [10]. If the 

channel possesses a constant gain and a phase response over a bandwidth that is 

smaller than the bandwidth of the transmitted signal, the fading depends on frequency 
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and it is called “frequency selective fading” else it is called “frequency flat fading” 

[10]. 

 
Figure 2.11 Reflection of the signal 

 

 
Figure 2.12 Multipath delay spread 

 15



When fading is studied in the time domain, channel may be classified as “fast fading” 

or “slowly fading” (Figure 2.13). In a fast fading channel, the channel impulse 

response changes within the symbol duration but in a slowly fading channel, channel 

impulse response changes at a rate much slower than that of the transmitted baseband 

signal. 
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Figure 2.13 Fading in time and frequency domain 

 

 Rayleigh distribution and Rice distribution are commonly used in modeling 

fading channels. Rayleigh fading arises when the real and the imaginary parts of the 

channel fading coefficient are independent zero mean Gaussian random processes, in 

which case the phase of the coefficient is uniformly distributed on [0, 2π]. If the real 

and imaginary parts of coefficients are independent Gaussian random processes with 

non-zero means, Rician fading arises [11]. In the second case, there is a direct line of 
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sight between transmitter and receiver. But recent works show that some channel 

models can be non-Rayleigh and sometimes the real and imaginary parts of fading 

coefficients can deviate from a Gaussian process [12, 13 and 14]. In the following 

sections, these kinds of channel models will be explained. 

 If the multipath strength remains the same during the observation interval, 

which leads to a slow fading case, the downlink data in the observation interval have 

the form [3]: 

 

                             .                               (2.11) ∑∑ ∑
= = =

+−−=
N

m

K

k

L

l
lklkm tndmTtsabtr

1 1 1
)()()(

 

In this model, K simultaneous users send N symbols via L independent paths. The 

strengths of each path is denoted by al. bkm is the k’th user’s m’th symbol, sk(t) is the 

k’th user’s binary chip spreading sequence in the interval [0,T] where T is symbol 

duration and sk(t)∈ {-1,+1}. Each path’s delay is denoted by dl and it is assumed to 

change slowly for long time durations and be constant during the observation time. n(t) 

denotes the AWGN. 

 If fading is fast and changes symbol by symbol, Eq. (2.11) can be rewritten as: 

 

                                                           (2.12) ∑∑ ∑
= = =

+−−=
N

m

K

k

L

l
lklmkm tndmTtsabtr

1 1 1
)()()(

 

where alm is the fading factor of the l’th path corresponding to m’th symbol.  

 The two Equations (2.11) and (2.12) are the models for CDMA downlink 

communication in fast fading and slowly fading channels used in this thesis. 
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Chapter 3 

 

INDEPENDENT COMPONENT ANALYSIS (ICA) 

 
 Independent component analysis is a statistical signal processing technique 

whose goal is to express a set of random variables as linear combinations of 

statistically independent component variables [15]. In order to distinguish the 

independent signals in a mixture, the separation method must take all higher order 

correlations into consideration. ICA does take these higher order correlations into 

account [6]. BSS, feature extraction, blind deconvolution are important applications of 

ICA. In BSS problem, data measured by sensors arise from source signals that are 

mixed together by some linear transformation corrupted by noise. The task is to obtain 

those source signals. The sources can be found using ICA provided that all sources are 

independent and non-Gaussian [6]. If the ICA model in Eq. (3.4) is considered, the 

goal is to find a matrix W from observations such that the output y is an estimate of 

source vectors. In Figure 3.1, this model is given. 
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Figure 3.1 ICA Model 
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3.1 Statistical Independence 

 
 To understand ICA, firstly the term “statistical independence” must be known. 

Denote by y1,y2,....,ym some random variables with zero mean and joint density 

f(y1,y2,....,ym). If the density function can be factorized as: 

 

                             ,                                    (3.1) )(.).........()()....( 22111 mmm yfyfyfyyf =

it is said that the variables yi’s  are mutually independent. In Eq. (3.1),  fi(yi) denotes 

the marginal density of yi.  

 Independence must be distinguished from uncorrelatedness. Independence is a 

much stronger requirement than uncorrelatedness [16]. 

If  yi’s are uncorrelated,  

 

                                    { } { } { } jiyEyEyyE jiji ≠=− for0 .                                (3.2) 

 

If  yi’s are independent, 

 

                            ( ) ( ){ } ( ){ } ( ){ } jiygEygEygygE jiji ≠=− for02121  

 

for any measurable functions g1 and g2. This is a stronger condition than the condition 

of uncorrelatedness. If two variables are independent, they are also uncorrelated but 

uncorrelatedness does not imply independency [17]. However there is one case in 

which uncorrelatedness and independence are equivalent. This is the case when 

y1,y2,....,ym have a jointly Gaussian distribution [16]. Because of this ICA cannot 

separate source that has a Gaussian distribution. 

 

3.2 Definition of ICA 

 
 In the literature there are at least three definitions of linear ICA. In the 

definitions given below, the observed m-dimensional random vector is denoted by 

x=(x1, x2 ... xm) 
T [16]. 
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Definition 1: (General Definition) ICA of the random vector x consists of finding a 

linear transformation s = Wx so that the components si’s are as independent as 

possible in the sense of maximizing some function F(s1,s2,.....,sm) that measures 

independence. 

Definition 2:  (Noisy ICA Model) ICA of random vector x consists of estimating the 

following generative model for the data: 

 

                                                nAsx +=                                                                   (3.3) 

 

where the latent variables (components) {si, i=1,…,n} in the vector s = (s1,s2,.....sn)T 

are assumed to be independent. The matrix A is a constant m×n “mixing matrix” and n 

is an m-dimensional random noise vector. 

Definition 3: (Noise-free ICA Model) ICA of the random vector x consists of 

estimating the following generative model for the data. 

 

                                                   Asx =                                                                      (3.4) 

 

where A and s are the same as in Definition 2.  

 In Definition 3, the noise vector has been omitted. This definition is introduced 

by Jutten and Herault and it was probably the earliest explicit formulation of ICA [16]. 

In addition to the basic assumption of statistical independence, there are some 

fundamental restrictions. These are [16]: 

1. All the independent components {si} with the possible exception of one 

component must be non-Gaussian. 

2. The number of observed linear mixtures, m, must be at least as large as the 

number of independent components n, i.e. m ≥ n. 

3. The mixing matrix A must have full column rank. 

Non-Gaussianity of independent components is necessary for ICA. Because for 

Gaussian random variables, uncorrelatedness implies independence and any 

decorrelating representation would give independent components. The second 

restriction, m ≥ n, is not completely necessary. Some recent works on the case m<n, 

called “ICA with overcomplete bases” can be found. Lastly third restriction about rank 

of mixing matrix A is also necessary for ICA.  
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 In Eq. (3.4), by using ICA, independent components si  and mixing matrix A’s 

columns can be estimated up to a multiplicative constant but it is an insignificant 

indeterminacy because any constant multiplying an independent component in Eq. 

(3.4) could be canceled by dividing the corresponding column of the mixing matrix A 

by the same constant. In addition to this, generally it is assumed that independent 

components {si, i=1,…,n}  have unity variances. So, independent components are 

unique up to a multiplicative sign. 

 There is no ordering in estimating independent components in ICA but it is 

possible to introduce ordering in estimation by using norms of mixing matrix’s 

columns or by using non-Gaussianity between the independent components.  

 The estimation of the data model of ICA is usually performed by formulating 

an objective function and then minimizing or maximizing it [16]. This objective 

function is called as “contrast function”. The terms “loss function” or “cost function” 

are also used for objective functions. 

 

ICA Method

Objective
Function

Optimization
Algorithm

 
Figure 3.2 Summary of ICA Model 

 

The choice of objective functions affects the statistical properties like consistency, 

asymptotic variance, robustness where the algorithmic properties like convergence 

speed, memory requirements, stability depend on the optimization algorithm. 

 Some ICA methods estimate the whole data model or all of the independent 

components at the same time. Others estimate one independent component at a time. 

The contrast functions of the first group are categorized as multi-unit contrast 

functions where the ones of the second group are one-unit contrast functions. 

 

 

 21



3.3 Objective Functions for ICA 
 

3.3.1 Multi-unit Contrast Functions 

 

 In the literature, there are numerous multi-unit contrast functions but in this 

section major ones, which are likelihood and mutual information, will be depicted. 

 

3.3.1.1 Likelihood and Network Entropy 

 

 Denoting by W=(w1,w2,.......,wm)T  the matrix A-1 , the log-likelihood of the 

noise-free ICA model in Eq. (3.4) takes the form [16]: 

                              ( )( ) Wdetlnlog
1 1

KkxwfL
K

k

m

i

T
ii += ∑∑

= =

                                     (3.5) 

 

where fi is the density function of the independent component si and it is assumed to be 

known and x(k), k = 1,.....,K, is the realization of  x [16]. 

Another contrast function is based on maximizing the output entropy of a 

neural network with non-linear outputs. If it is assumed that x is the input to the neural 

network whose output is of the form gi(wTx) where gi’s are non-linear functions and 

{wi, i=1,…,m}  are the weight vectors of the neurons, entropy of the output can be 

written as: 

 

                                                                             (3.6) ))(),.......,(( 112 xwxw T
mm

T ggHL =

 

where )()(log)( ⋅⋅⋅−=⋅ ∫ dff)H(  denotes the differential entropy. 

It is an interesting result that if gi is chosen as the cumulative distribution function 

corresponding to fi i.e. )()( ⋅=⋅′ ii fg , network entropy maximization is equivalent to 

maximum likelihood (ML) estimation.  

 The advantage of the ML contrast function is its asymptotical efficiency but the 

requirement of the knowledge of the probability densities is the disadvantage of this 

approach. A second drawback is that the ML approach is sensitive to outliers. 
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3.3.1.2 Mutual Information 

 

 Mutual information is the most satisfactory contrast function in the multi-unit 

case. Mutual information “I” between m random variables {yi, i=1,.....,m} is found as 

follows [16]: 

 

                               )()(),....,( 1 yHyHyyI
i

im −= ∑ .                                                (3.7) 

 

 The mutual information is a measure of dependence between two random 

variables. If random variables are independent, mutual information is equal to zero. 

Finding a transform that minimizes the mutual information between the components 

{si, i=1,…,m}  is a very natural way of estimating the ICA model. If y =Wx where x is 

the observation matrix, Eq. (3.7) can be rewritten as: 

 

                            |det|log)()()....( 1 Wx −−= ∑ HyHyyI
i

im .                               (3.8) 

 

The use of mutual information can be motivated by using Kullback-Leibler (KL) 

divergence that can be considered as a kind of distance between the two probability 

densities: 

                             ( ) ( )
( ) y
y
yy d

f
ff)f,f(

2

1
121 glo∫=δ                                                   (3.9) 

 

The independence of {yi, i=1,…,m} can be measured by finding KL divergence 

between f(y) and the factorized density  where                        

{f

)().......()(ˆ
11 mm yfyff =y

i(⋅), i=1,…m} are marginal densities of the {yi, i=1,…,m} . This quality is also equal 

to mutual information of yi . 

 

3.3.2 One-unit Contrast Functions 

 

 The expression “one-unit contrast function” is used to designate any function 

whose optimization enables estimation of a single independent component. In many 
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applications like the CDMA downlink problem, there is no need to estimate all the 

independent components. This reduces the computational complexity of the method if 

the input data has a high dimension. If one needs to estimate other independent 

components, they can be estimated one by one by using a simple decorrelator since 

independent components are by definition uncorrelated. 

 Negentropy and higher order cumulants are the major one-unit contrast 

functions used for estimating one independent component. 

 

3.3.2.1 Negentropy (Negative Normalized Entropy) 

 

 The negentropy J is defined as: 

 

                                              ( ) ( ) ( )yyy HHJ −= Gauss                                         (3.10) 

where yGauss is a Gaussian random vector of the same covariance matrix as y. 

Negentropy is always non-negative and it is zero if and only if y has a Gaussian 

distribution. When mutual information is expressed using negentropy: 

 

                              ( ) ( ) ( ) y
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∑ =+−=                       (3.11) 

 

where is the covariance matrix of y and C is its i’th diagonal element. If the {yyC y
ii i} 

are uncorrelated the third term in Eq. (3.11) becomes zero and mutual information can 

be written as: 

  

                                   ∑−=
i

im yJJyyI )()().....( 1 y .                                             (3.12) 

 

Finding maximum negentropy directions is equivalent to finding directions where the 

elements of the sum  are maximized and also it is equivalent to finding a 

representation in which mutual information is minimized. 

)( iyJ

 Since the estimation of negentropy is difficult, it can be approximated by 

higher order cumulants like: 
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where )(yiκ is the i’th  order cumulant of y but this approximation is too sensitive to 

outliers in many cases. 

 

3.3.2.2 Higher Order Cumulants 

 

 Mathematically the simplest one-unit contrast functions are provided by higher 

order cumulants. Kurtosis is one of them and it is the mostly used function in 

applications (See Appendix A). The kurtosis of a Gaussian variable is equal to zero 

while the kurtosis of a non-Gaussian is nonzero. Therefore kurtosis can be used as a 

measure of the non-Gaussianity of a variable. For the ICA model given in Eq. (3.4), x 

is the observed data vector. To find one independent component, kurtosis of a linear 

combination of the observation {xi, i=1,…,N }, wTx, is maximized or minimized. It is 

assumed that { } 1)( 2 =xwTE . Using the unknown mixing matrix A, z is defined such 

that z=ATw. Then using that data model x=As one obtains 

{ } 1||)( 2 ==xwTE ||= zwAAw TT  ( E ) and well known properties of kurtosis 

give: 

Iss =)( T

 

                                       (3.14) ( ) ( ) ( ) ( )∑
=

===
m

i
ii sz
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4kurtkurtkurtkurt szAswxw TTT

 

Minimizing or maximizing the kurtosis in Eq. (3.14) under the constraint ||z||=1, one 

obtains one of the independent components as w . The drawback of kurtosis is 

that it is sensitive to outliers in the data. 

js±=xT

 

3.3.2.3 General Contrast Functions 

 

 The generalized contrast functions, which can be considered as a generalization 

of kurtosis, have statistically appealing properties. They require no prior knowledge of 
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the densities of the independent components and allow a simple algorithmic 

implementation and they are simple to analyze. 

 One intuitive interpretation of contrast functions is that they are measures of 

non-Gaussianity. A family of such measures of non-normality could be constructed 

using practically any function G and considering the difference of the expectation of G 

for the actual data and the expectation of G for Gaussian data [16].  

 A contrast function J that measures the non-normality of a zero-mean random 

variable y using any even, non-quadratic, sufficiently smooth function G is given as 

follows: 

 

                                        ( ) ( ){ } ( ){ } p
νyG |νGEyGE|yJ −=                                   (3.15) 

 

where ν is a standardized Gaussian random variable, y is assumed to be normalized to 

unity variance and p∈{1,2}. For ( ) 4yy =G , JG is simply the modulus of the kurtosis of 

y. 

 For suitable choice of G, the statistical properties of the estimator (asymptotic 

variance and robustness) are considerably better than the properties of the cumulant 

based estimators. The choices of G are: 

 

                                           
)

2
exp()(

coshlog)(
2

2
2

11

uu

uu

aG

aG

−=

=
                                                   (3.16)                          

 

where a1 , a2 ≥ 1 are suitable constants.  

 After choosing one of the contrast functions for ICA, a practical algorithm is 

needed to optimize the chosen contrast function. In ICA, before applying an 

optimization algorithm, some preprocessing should be done to make the ICA 

estimation simpler and that the convergence is faster. 

 

3.4 Preprocessing of Data 
 In order to make a random vector, x, zero-mean, the mean of x, m=E{x} is 

substracted from x. In this way, there is no information loss in sources since after 
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estimating the mixing matrix A with ICA, the mean vector of s can be estimated by   

A-1m. After making the data a zero-mean vector, second preprocessing step is 

whitening or sphering which means making the data uncorrelated and of unity variance 

[17]. By applying a linear transformation V on the data whitening can be done. If the 

original data is x with zero mean, then the whitened data Vxz =  has the property: 

 

                                                 [ ] Izz =TE .                                                              (3.17) 

By applying eigenvalue decomposition to [ ]TE xxR =x , V can be found as [17]: 
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[ ] [ ]
[ ]

I
ΕΕDΕDΕΕΕD

VxxV
VVxxzz

=
=

=

=

−− ΤΤΤ

TT

TTT

E
EE

2
1

2
1

                                 (3.20) 

 

where E is an orthonormal matrix. 

 This whitening operation also makes the mixing matrix orthonormal under the 

assumption of sources with unit variance ( VAA =
~ ), so: 

 

                                [ ] [ ] IAAAssAzz
I

=== TTTT EE ~~~~                                              (3.21) 

 After preprocessing operation of observed data, by using practical algorithms, 

the chosen contrast function can be optimized. The Jutten-Herault algorithm, non-

linear decorrelating algorithms, non-linear PCA algorithms and least squares type 

algorithms are the most known algorithms for optimizing contrast functions but the 

fastest and simplest one is FastICA algorithm which is based on a fixed-point iteration 

[16,18]. 

 

 27



3.5 FastICA Algorithm 

 
 FastICA is a general algorithm that can be used to optimize both one-unit and 

multi-unit contrast functions. Basic advantages of FastICA are [16]: 

1. Algorithm is easy to use. 

2. It does not need to estimate the pdfs first. 

3. Its convergence is cubic. 

Some disadvantages of FastICA are: 

1. The choice of the non-linearity used in this algorithm, affects the stability of 

Fast ICA in estimating original signals. 

2. It always has a certain lower bound limit which is the best possible estimate by 

FastICA. 

For sphered data, the one-unit FastICA algorithm for maximization of non-

Gaussianity by finding a direction, i.e. unit vector w, such that wTx maximizes non-

Gaussianity, has the following form [16]: 

 

                 { } { } )1())1(('))1(()( −−−−= kkgEkgEk TT wxwxwxw                        (3.22) 

 

where w is a weight vector and it is normalized to unit norm after every iteration. g is 

the derivative of the functions G in Eqs. (3.15) and (3.16) (Short derivation of the 

basic FastICA Algorithm is given in Appendix B).  

 In the FastICA algorithm, independent components can be estimated one by 

one by using a decorrelator or they can be estimated simultaneously by using a 

symmetric decorrelator. To estimate several independent components, FastICA 

algorithm is needed to be run several times with vector w1 ,..., wn to prevent vectors 

from converging to the same maxima, so in every iteration  each of them must be 

orthogonolized. 

 The simplest way to orthogonalize the vector wp is to orthogonalize all previous 

vectors w1 ,....., wp-1 and apply orthogonalization at every iteration: 
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after estimating p-1 independent components. Sometimes, it may be desirable to 

estimate all independent components in parallel. The symmetric orthogonalization of 

W is accomplished by the classical method involving square roots: 

 

                                        .                                                      (3.24) WWWW 2
1

)(
−

← T

 

The steps of FastICA can be summarized as [16]: 

1. Center the data to make it zero-mean. 

2. Whiten the data to get z. 

3. Choose initial vector w of unit norm. 

4. Let { } { }wzwzwz )(')( TT gEgE −←w  where 

        where 1≤ a3
3

2
211 )())2/(exp()()tanh()( yyyyyyy =−== ggag 1≤2 

5. w = w/norm(w) 

6. If not converged, go back to step 4. 

 

3.6 Pearson System-Based ICA 

 

 By using ICA, independent sources are separated from their linear mixtures 

using only observed signals. In BSS, there is only limited information about sources. 

Distribution of sources should have a non-Gaussian distribution to be separated. 

Pearson System-based ICA is a BSS method that minimizes mutual information using 

a Pearson System-based parametric model. This model covers a wide class of source 

distributions those include skewed distributions with different values of kurtosis, e.g. 

Rayleigh distribution and log-normal distribution that are common in 

telecommunication applications [19]. 

 For the ICA model in Eq. (3.4), the goal is to find a matrix W only using 

observations such that  is a possibly scaled and permuted estimate of the 

source vector s. As it was mentioned before, a contrast function is maximized or 

minimized in order to separate sources. The derivative of the contrast function is 

called the estimating function [19]. 

Wxy =

KL divergence defined earlier is a measure employed in mutual information 

and likelihood contrasts. A ML type contrast function can be defined as 
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)//()( syy KML =Φ   where  is the KL divergence between the densities of y 

and s. The mutual information contrast can be defined as 

)//( syK

)~//()( yyy KMI =Φ  where 

y~ denotes the vector with independent entries with each entry distributed as the 

corresponding marginal of y. Likelihood is the sum of the mutual information and the 

term that gives the marginal mismatch between the output and the hypothesized 

sources leading to  

 

                            ( ) ( ) ( )syyysy //~K~//K//K += .                                   (3.25) 

 

A well known result is that optimal choices for estimating functions in ML approach 

are the score functions of source distributions but this implies only when the source 

densities are positive everywhere [20]. 

 

3.6.1 Minimization of Mutual Information by Score Function 

 

 Relative gradient for minimization of mutual information leads to adaptive 

estimation of score functions of mixtures. Mutual information can be defined as the 

KL divergence between the joint density function and the product of marginal density 

functions found as [20] 

                                     Φ                                          (3.26) 
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The relative gradient of the mutual information ( )wMIΦ is [21] 
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where 
( )

y
y

y y
y d

flogd
)( −=ϕ is the score function of y.  Eq. (3.27) can be rewritten by 

using the relation y =Wx as 

 

                                     ( ) ( ) ( ) ( )∫ −ϕ= IyyyyWw yy df|det|' T
MIΦ .                      (3.28) 

 

If y(t) is an ergodic random process, where individual samples are distributed 

according to fy(y) and where |det(W)|=1 in the orthogonal case, the relative gradient 

can be estimated as 

 

                                      ( )( ) ( )∑
=

ϕ=
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t
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1

1 yyw yΦ                                            (3.29) 

 

where yϕ̂ is an estimate of the score function of y. Since the output y changes at every 

iteration of the optimization algorithm, the optimal estimating functions also change at 

each iteration and in mutual information approach, the optimal estimating function is 

the score function of y [19]. 

 

3.6.2 The Pearson System 

 

 The Pearson System is a parametric family of distributions that may be used to 

model a wide class of source distributions [19]. Many widely used distributions, 

including normal, Student’s t, gamma and beta distributions belong to the Pearson 

family. It is defined by the differential equation: 
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where a, b0, b1 and b2 are the parameters of the distribution. The score function which 

is used as a contrast function is easily solved from Eq. (3.30) as 
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and the derivative of the score function is 
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The parameters of the Pearson System can be estimated by the method of moments 

when the mean is zero and the variance is one as 
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where µ2, µ3, µ4 are the second, the third and the fourth central moments, respectively 

and . For estimating theoretical moments to use in 

parameter estimation, sample moments are used as 
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where σ̂  is the estimated standard deviation of distribution. The source distributions 

are estimated through the marginal distributions by fitting them to the Pearson family. 

This is done iteratively until the optimization algorithm converges. Any suitable ICA 

algorithm can be used to optimize the derived criterion such as the natural gradient 

algorithm, the relative gradient algorithm and fixed-point algorithm [19]. In the 

relative gradient algorithm, the iteration procedure is done by using: 
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                                       k
T

kk yyIη WWW ))((1 ϕ−+=+                                        (3.36) 

 

where η is the learning rate. In fixed-point algorithm, iteration procedure is  

 

                        ( ){ } ( ){ }( )( ) kii
T

kk yyEE WyyDWW ϕ−ϕ+=+ diag1                        (3.37) 

 

where ( ){ } ( ){ }( )( )iii y'EyyE/ ϕ−ϕ= 1diagD . 

 When the kurtosis of the source distribution differs from the kurtosis of a 

normal distribution, in modeling distributions that are far from normal distribution 

there is no advantage of the Pearson System. For these situations fixed non-linearities 

can be used as a contrast function, so one speeds up the computation and avoids the 

estimation problems. When the source distribution is sub-Gaussian and super-

Gaussian, the cubic contrast and the hyperbolic tangent contrast are used, respectively.  

When the distribution is close to Gaussian or has the same kurtosis as that of the 

normal distribution, Pearson System can be used for estimation. How to choose a 

function as a contrast can be found out from the third and the fourth moments 

according to Figure 3.3. 
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Figure 3.3 The choice of contrast function 
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The procedure to apply the Pearson System-based ICA may be given as: 

1. Calculate the third and fourth order sample moments for current data yk=Wkx 

and select the Pearson System or fixed contrasts according to Figure 3.3. 

2. If the Pearson System is chosen, estimate parameters of the distributions by 

methods of moments. 

3. Calculate scores for the Pearson System or for the fixed-point contrast. 

4. Calculate demixing matrix Wk+1 using Eqs (3.36) and (3.37). 

 

3.6.3 A Simulation Example 

 

 In order to demonstrate the source separation performance of Pearson-System-

based ICA, simulations are performed where four sources are mixed linearly. The 

sources are independent and they have Rayleigh distribution that is used to model the 

envelope of the received signals passed through a fading channel generally. Pearson 

System-based ICA (PS-ICA) is applied to noise-free observations and it can separate 

sources successfully [22]. Simulation results are given in the Figures 3.4-3.6. Figure 

3.4 shows the sources, Figure 3.5 shows observations and Figure 3.6 shows the 

separated signals and source signals. 

 

 

 
Figure 3.4 Source Signals 
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Figure 3.5 Observed Signals 

 

 
Figure 3.6 Separated Signals and Source Signals (points: original source signals, 

continuous lines: separated signals) 

 

3.7 Applications of ICA 

 
 BSS is the classical application of ICA. By using observed signals, source 

signals can be estimated by ICA in BSS. Using EEG signals to separate brain signals, 

using ECG signals to separate heart signals, communication problems including 
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multipath propagation in mobile systems and separation of speech signals are among 

the popular applications of BSS/ICA. Another application of ICA is feature extraction. 

In such an application, columns of A in Eq. (3.4) represent features and si is the 

coefficient of the i’th feature of an observed data vector x and by using ICA, features 

can be extracted.  In addition to these applications, in data analysis of economics, in 

psychology and in density estimation, ICA can be used [16]. 



Chapter 4 

 

INDEPENDENT FACTOR ANALYSIS 

 
 Independent factor analysis (IFA) is a statistical method like ICA which is also 

used for recovering independent hidden sources from their observed mixtures [4]. The  

BSS problem considered in IFA allows also contamination of the mixture signal by 

additive noise. The task is to obtain those source signals without any information about 

the mixing process and the noise. The model is given by a probabilistic linear model 

[4]: 

 

                                                                                   (4.1) '.....1
1

LiuxHy ij

L

j
iji =+= ∑

=

 

where yi depends on linear combinations of the xj’s with constant coefficients Hij and ui 

are additive noise signals, L is the number of sources and L′  is the number of sensors. 

In this model, the task is to estimate Hij and xj . 

 In the mid’80s, most of the work in the field of BSS aimed at a highly idealized 

version of the problem where mixing matrix is square, invertible and there is no noise. 

This model is called ICA which was the subject of the previous chapter. However in 

realistic situations, models have noise and number of sources and observations 

(sensors) can be different. As the noise level increases, separation quality of ICA 

decreases. Determining the source density model is another important problem in ICA 

since learning the densities of sources from the observed data is crucial. 

 IFA is a new algorithm for blind separation of noisy mixtures with a possibly 

non-square mixing matrix. It is performed in two steps: 

1. Learning the IF model, mixing matrix, noise covariance, source density 

parameters from the data where each source density is modeled by a mixture of 

one-dimensional Gaussian density. 

2. Recovering the sources from the sensor signals using the posterior density of 

the sources given the data. 
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4.1 The Independent Factor (IF) Generative Model 
 

 In the first step of IFA, a generative model named as the independent factor 

(IF) model is generated. The model in Eq. (4.1) can be rewritten in matrix form as 

 

                                                        uHxy +=                                                          (4.2) 

 

where y is observed sensor signals vector, x is the unobserved source signals 

vector, H is the mixing matrix and u is the noise vector.  

1×′L

 Before generating a model for probability density of the sensor signals, p(y), 

density of the sources and noise must be specified. The sources xi are modeled as L 

independent random variables with arbitrary distributions p(xi|θi), where the individual 

i’th source density is parameterized by the parameter set θi . 

 The noise is assumed to be Gaussian with zero mean and covariance matrix Λ. 

Even though sensor noise signals are independent, correlations may arise because of 

source noise or propagation noise. The density function of the noise is: 

 

                                                  ),()( Λuζu =p                                                         (4.3) 

 

The generative IF model can be defined by Eqs. (4.2) and (4.3). It is parameterized by 

the source parameters θ, mixing matrix H and noise covariance matrix Λ: 

 

                                                     ( )θΛHW ,,= .                                                      (4.4) 

 

The resulting model sensor density is 
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where . The IF parameters W should be adopted to minimize an error  ∏=
i

idxdx
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function which measures the distance between the model and observed sensor 

densities.  

 

4.1.1 Source Model: Factorial Mixture of Gaussians 

 

 To perform the integration in Eq. (4.5) analytically, it is important to choose a 

parametric form p(xi) which is sufficiently general to model arbitrary source densities. 

Mixture of Gaussians (MOG) model can satisfy these requirements. The density of 

source i is a mixture of ni Gaussians given by [4]:  
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with means
iqi,µ , variances 

iqi ,ν  and mixing proportions where q
iqiw , i=1...ni. 

For a normalized mixture, the mixing proportions for each source should sum 

up to unity∑ . In the generative description of the sources different Gaussians 

play the role of hidden states. To generate source signals x

1, =
i

i
q

qiw

iqp )(

i, first a state qi is picked 

with probability , and then a number is found from the corresponding 

Gaussian density 

iqiw ,=

( ) ( ).,νµx
ii i,qi,qiζ|qixp i −=  

 The joint source density p(x) is formed by the product of the one-dimensional 

MOGs in Eq. (4.6) as 
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where collective hidden states are 

 

                            ( )L1 q.,,.........qq =                                                      (4.8) 

 

with mixing proportions wq, mean µq and diagonal covariance matrix νq which are 

defined as: 
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In Eq. (4.7), Gaussians factorize as ( ) ( )∏ −=−
i

i,qi,qi ii
,νµxζν,µx qqζ  and the sum over 

collective states q represents summing over all the individual source 

states . For situations with many sources, this summation over all the 

individual source states causes problems and some other solutions must be considered. 

∑∑ ∑∑=
1 2q q qLq

The joint source density p(x) is itself a MOG as marginal source density in Eq. (4.6). 

Contrary to ordinary MOGs, the Gaussians in Eq. (4.7) is not free to adapt 

independently [4]. Changing the mean and variance of a single source state qi leads to 

shifting the whole column of collective states q. Then the source model in Eq. (4.7) is 

a mixture of “co-adaptive Gaussians” and called “Factorial MOG” [4]. 

 

4.1.2 Sensor Model 

 

 Combining Eq. (4.2), the noise model in Eq. (4.3) and source model in Eq. 

(4.7) give a two-step generative model of the observed sensor signals as shown in 

Figure 4.1. 

 

jn jn

jj qjqj ,, , νµ

jx

ijijH Λ,

iy

top hidden units

bottom hidden units

visible units
 

Figure 4.1 Network representation of the IF generative model [4]. 

 

The steps to generate a sensor signal y is given as follows [4]: 

1. Pick a unit qi for each source i with probability  
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                                              ( ) qq w=p                                                      (4.10) 

 

from the top hidden layer of source states. This unit has a top-dawn generative    

connection with weight 
jqjw ,  to each of the units j in the bottom hidden layer. It 

causes the unit j to produce a sample from a Gaussian density centered at 
jqj ,µ  

with a variance of v  . The probability of generating a particular source vector 

x in the bottom hidden layer is: 

jqj ,

 

                                         ( ) ( )qq ν,µxζqx −=|p .                                      (4.11) 

 

2. Each unit j in the bottom hidden layer has a connection with weight Hij to each 

unit i in the visible layer. After the generation of x, unit i produces a sample yi 

from a Gaussian density centered at ∑ j jij xH . Although sensor noise is 

independent, generally the noise is correlated across sensors and probability for 

generating a particular sensor vector y in the visible layer is 

 

                                        ( ) ( )ΛHx,yζxy −=|p .                                       (4.12) 

 

This model is described by the joint density of the visible layer and the two 

hidden layers: 

 

                                ( ) ( ) ( ) ( )xyqxqWyx,q, |p|pp|p = .                       (4.13) 

 

Note that sensor signals depend on the sources but not on the source states so  

 

                                      ( ) ( )xyqx,y |p|p = ,                                            (4.14) 

 

and IF network layers in Figure 4.1 form a top-down first order Markov chain. 

By using Eq. (4.13) and Eq. (4.14), p(y) can be expressed as: 
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where because of Gaussian forms in Eqs. (4.11) and (4.12) 

                                   ( ) ( )ΛHHν,Hµyζqy T
qq +−=|p .                        (4.16) 

 

4.2 Learning the IF Model 

 
4.2.1 Error Function and Maximum Likelihood 

 

 The IF model parameters can be found iteratively by minimizing error between 

model sensor density p(y|W) in Eq. (4.15) and observed one po(y). KL distance 

function can be chosen as the error function [4]: 
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                                     (4.17) 

 

When po(y)=p(y), KL distance ξ vanishes. Error function in Eq. (4.17) consists of two 

terms. First one is the negative log-likelihood of the observed sensor signals given the 

model parameters W. The second term, sensor entropy, is independent of W and will 

be dropped. So, minimizing ξ is equivalent to maximizing the likelihood of the data 

with respect to the model. 

 To minimize the error in Eq. (4.17), classical gradient-descent method can be 

used but it results in slow learning. Instead of gradient-descent method, an 

Expectation-Maximization (EM) algorithm can be developed for learning the IF 

model. 

 

4.2.2 The EM Algorithm 

 

 The EM algorithm is an iterative method to maximize the log-likelihood of the 

observed data with respect to the parameters of the generative model describing that 
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data [4]. Instead of the likelihood E[log p(y | W)] of the observed sensor data, one may 

consider the likelihood E[log p(y, x, q | W)] of the complete data, i.e., the unobserved 

source signals and states. In EM algorithm, each iteration consists of two steps [4]: 

1. Calculating the expected value of the complete-data likelihood, given the   

observed data and the current model: 

 

                  ( ) ( )[ ] ( )WWyxqWW ′+−=′ HF|,,plogE,F                          (4.18) 

 

For each observed y, the average in the first term on the r.h.s is taken over the 

unobserved x and q using the source posterior ( )',|,p Wyqx

W'

.  are the model 

parameters obtained in the previous iteration. F

W'

H( ) is the entropy of the 

posterior and since it is independent of W, it has no effect. 

2. Minimizing  (maximizing the averaged likelihood ) with respect to 

W to obtain new model parameters: 

( WW' ,F )
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F .                                         (4.19) 

 

In the following, the EM algorithm is developed for the IF model. Firstly it must be 

shown that F in Eq. (4.18) is bounded from below by the error in Eq. (4.17). By 

dropping the average over the observed y in the error function, it is obtained that: 
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where the second line follows from Jensen’s inequality [4] and holds for any 

conditional density . In the derivation of the EM algorithm for IF model, source 

posterior computed using the parameters from the previous iteration is chosen as

p′

p′ : 

 

                                          ( ) ( )Wyxqyxq ′=′ ,|,p|,p                                           (4.21) 
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which is obtained from Eq. (4.13) with WW ′= . After the previous iteration, an 

approximate error function ),( WW′F is obtained due to the Markov Property of IF 

model in Eq. (4.13): 

 

                              HTBv FFFFF +++=′≤ ),()( WWWξ                                    (4.22) 

 

where 
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and the last one is the negative entropy of the source posterior:  

 

                           ( ) ( ) ( )∑∫ ′′=′
q

xWyxqWyxqW .d,|,p,|,pFH log                   (4.24) 

 

Note that to get FB in Eq. (4.23), ( ) ( ) ( ) ( )yqxyqyxxq ,|p|p|p|p = is used. It can be 

obtained from Eq. (4.13). 

 When WW = , because of the choice in Eq. (4.21), Eq. (4.22) becomes an 

equality: 

′

 

                                             )(),( WξWW ′=′′F .                                                   (4.25) 

 

Next is considered and it is minimized with respect to W and then new 

parameters are obtained from Eq. (4.19) to satisfy: 

),( WW′F

 

                              ξ )(),(),()( WWWWWW ′=′′≤′≤ ξFF                                 (4.26) 
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which proves that the current EM step does not increase the error [4]. After the 

derivation of EM algorithm for IF model, learning rules for the mixing matrix and 

noise covariance are found as (see Appendix C):  
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and learning rules for source MOG parameters are: 

 

                                      

( ){ }
( ){ }

( ){ }
( ){ }

( ){ }.|qpEw
|qpE

,q|x|qpE

|qpE
,q|x|qpE

iqi,i

qi,i
i

iii
qi,i

i

iii
qi,i

y
y

yy

y
yy

=

µ−=ν

=µ

2
2

                                 (4.28) 

 

where yx |  is an L×1 vector and it denotes the conditional mean of sources given the 

sensors y. yxx |T  is the L×L matrix denoting the source covariance conditioned on 

the sensors. Lastly y,q|x ii  denotes the mean of sensor i conditioned on both the 

hidden states qi of this source and the observed sensors. 

 In the BSS problem, the sources are recovered only within an order 

permutation and scaling. The effect of arbitrary permutation of sources can be solved 

by a corresponding permutation of the columns of H, leaving y unchanged. Scaling 

source xi by a factor σj would not affect y. If the j’th column of  H is scaled by 1/σj at 

the same time, then the following scaling transformation is performed at every 

iteration [4]:  
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It can be shown that scaling transformation does not change the error function [4]. 

 

4.3 Recovering the Sources 

   
After IF generative model parameters have been estimated, the sources can be 

reconstructed from the sensor signals. One method of recovering the sources is the 

least mean squares (LMS) estimation. 

 

4.3.1 LMS Estimator 

 

 The optimal estimate in the least squares sense is the conditional mean of the 

sources given the observed sensor outputs [4]: 

 

                                   ( ) ( ) xWyxxyxyx d,|p|LMSˆ ∫==                                  (4.30) 

 

where source posterior ( ) ( ) [ ]yq,xyqWyx |p|p,|p
q
∑= depends on the generative 

parameters. The calculation of Eq. (4.30) is given in Appendix D. It is given by a 

weighted sum of terms that are linear in the data y: 
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4.3.2 Simulation Results  

 

The performance of IFA is demonstrated on mixtures of sources corrupted by 

Gaussian noise (variance of noise=0.02). The source signals have α-stable distribution 

where the shape parameter of the distribution α, has the value 1.8. Detailed 
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information on α-stable distributions can be found in Appendix E. There are two 

source signals and the mixture is formed multiplying the 2×1 source vector by a 

random 2×2 mixing matrix. In the simulation, each source density was modeled by 

ni=3 state MOG which provided a sufficiently accurate description of the signals. 

 
Figure 4.2 The estimated pdf of first source 

 
The length of the observation is 1000 samples for each sensor. In Figure 4.2, 

the estimated pdf of the first source is given. The 3 components of the pdf of the first 

source can be seen in Figure 4.3. 

 

 
Figure 4.3 Estimated components of the pdf of the first source 
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 In Figure 4.4, the signal estimated by IFA and the source signal is given. As it 

is seen IFA can estimate the source signal successfully. 

  

 
Figure 4.4 Estimation of the signal 

 

In the second experiment, the source signals are chosen as binary signals and 

they were mixed again by a 2×2 mixing matrix. The mixtures of sources were 

corrupted by a Gaussian noise that has 0.2 variance. IFA were used to separate sources 

from noisy mixtures. In Figure 4.5 the estimated and the original binary signals are 

seen. As the figure depicts IFA can separate binary numbers successfully. 

 
Figure 4.5 Estimated and original binary signals 
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Also Figure 4.6 and 4.7 show the estimated pdf and its components of binary 

data which were estimated by IFA. 

 
Figure 4.6 Estimated pdf of the second source 

 
Figure 4.7 Components of the pdf of the second source 
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 Chapter 5 

 

ICA AND IFA APPLICATIONS IN CDMA 

 
 In CDMA communication, especially in CDMA downlink problem, e.g. from 

base station to mobile receiver, each user must separate the received signal and detect 

its own symbols since the mobile receiver does not know the other users’ code 

sequences [23]. This separation is a BSS problem. That’s why, there are many works 

on ICA applications in CDMA systems. In this chapter, application of ICA to CDMA 

downlink problem is considered and performance of systems is analyzed with 

simulation results. In addition to this, a new technique of BSS methods called IFA 

presented in the previous chapter is applied to a basic CDMA downlink model.  

 First, CDMA models for different channel scenarios are given in section 5.1. 

 

5.1 CDMA Downlink Models used in ICA Applications 

 
5.1.1 Basic K-user DS-CDMA Downlink Model 

 

 In this model, channel is assumed to be ideal and there is no multipath fading. 

The antipodal K-user baseband DS-CDMA downlink system is modeled as [24, 25]: 

 

                                                               (5.1) [ ] ( ) )()(
1

tniTtsibAtr
K

k

M

Mi
kkkk σ+τ−−= ∑ ∑

= −=

 

where r(t) is the received signal, Ak is the k’th user’s received signal amplitude, bk[i] is 

the i’th antipodal data bit of the k’th user, sk(t) is the k’th user’s signature waveform 

with normalized energy (||sk(⋅)||=1), T is the symbol period, τk is the relative offset of 

the k’th user, σ2 is the noise power, n(t) is the AWGN with unit power spectral density. 

In this model 2M+1 symbols are observed. The simplified synchronous one-shot 

CDMA model is: 
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After chip matched filtering and sampling, the received signal r can be expressed in 

C×1 vector form: 

 

                                         r                                                            (5.3) ns σ+= ∑
=

K

k
kkk bA
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where C is the processing gain or spreading gain, sk is the C×1 vector of the k’th user 

signature sequence and n is the C×1 AWGN vector. Eq. (5.3) can be rewritten in 

matrix form as: 

 

                                            r nGb +=                                                                      (5.4) 

 

where r is the C×1 observed data vector, G is the C×K unknown full rank mixing 

matrix, b is the K×1 source data vector and n is C×1 noise vector as mentioned before. 

Here G=SA where S=[s1 s2.....sK] and A=diag(A1....AK) [24]. As it was given before in 

Chapter 3, model in Eq. (5.4) is a classical noisy ICA model. This K-user CDMA 

model is a simple model under the assumption of ideal channel models with no 

multipath fading and delays. 

 

5.1.2 DS-CDMA Downlink Models in Multipath Fading Channels 

 

5.1.2.1 Model in Slow Fading Case 

 

 As the CDMA downlink model in slow fading case, the model in Eq. (2.11) is 

adopted. In this model, the length of the chip sequence is C and then C-vectors rm are 

collected from subsequent discretized equispaced data samples r(n) as 

 

                                r                                (5.5) [ ]Tm CmrmCrmCr )1)1(()1()( −++= …

 

and Eq. (5.5) has the form [26]: 
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where ,   and nE
klg L

klg m denote the “early” and the “late” parts of code vectors and the 

noise vector, respectively. In Eq. (5.6), and g  are: E
klg L

kl
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In Eqs. (5.7) and (5.8), dl is a discrete delay and generally it is assumed that 

dl∈{0,....,(C-1)/2}. In a more compact form, Eq. (5.6) can be represented as: 

 

                                                r mmm nGb +=                                                           (5.9) 

 

where  is a C×2K matrix and contains the basis vectors and fading 

terms 
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and the 2K-vector bm contains the transmitted symbols 

 

                                  b .                                 (5.11) [ ]TmKmKmmm bbbb ,1,,11,1 −−=

 

For N transmitted symbols Eq. (5.9) can be rewritten in a pure matrix form as 

 

                                                 NGBX +=                                                             (5.12) 

 

where  
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                                                      (5.13) 

 

5.1.2.2 Model in Fast Fading Case 

 

 In the fast fading case the CDMA downlink model is given in Eq. (2.12). The 

derivation of the previous model in section 5.1.2.1 can be developed for this model 

given in Eq.  (2.12). After sampling and chip matched filtering, C-vectors rm given in 

Eq. (5.5) 
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can be written as [27]: 
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where  and  as they are given in Eqs (5.7) and (5.8), respectively. E
klg L

klg

The matrix  can be represented in compact form with N 

transmitted symbols as: 

[ NrrR 1=

 

                                                       NGFR +=                                                       (5.16) 

 

where C×2KL matrix G contains the basis vectors: 

 

                                       [ ]L
KL

E
KL

LE gggg 1111=G                                          (5.17) 

 

and the 2KL×N matrix  contains the symbol and fading terms: [ NffF 1= ]
 

                       [ ]m,Km,Lm,Km,Lm,m,m,m,m babababa 11111111 −−−−=f .                       (5.18) 
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5.2 Multiuser Detection of DS-CDMA Signals Using FastICA                              

 
5.2.1 Fast ICA Application to DS-CDMA Signals 

 

 CDMA downlink models in Eqs. (5.4), (5.12) and (5.16) are just the linear ICA 

models. The goal is solving the symbol process directly without knowing the codes or 

any channel parameters like delays or fading. FastICA algorithm is the simplest and 

fastest linear ICA algorithm as mentioned in Chapter 3. For FastICA applications in 

CDMA models, firstly data is sphered or whitened [26, 18, and 28]. Whitening is a 

common preprocessing task which normalizes the component variances and filters 

some additive noise simultaneously. It is performed by using SVD or eigenvalue 

decomposition. In this application, the model in Eq. (5.12) is considered. After the 

whitening operation the new data has the form: 

 

                                                                                                         (5.19) XUΛY T
SS

2/1−=

 

where ΛS and US corresponds to the 2K eigenvalues  and eigenvectors of the 

correlation matrix estimate XXT/N.  

Then the FastICA algorithm using the fourth order statistic kurtosis has the 

following form [29]: 

1. Initialize w(0) with a random value of unity norm. 

2. [ ] )1(3)1(1)( 3
−−−= kk

N
k T wwYYw  

3. ( ) ( )
( )||k||

kk w
ww ←+1  

4. Repeat steps 2 and 3 until )1()( −kk T ww  is sufficiently close to 1. 

In step 2, (.)3 corresponds to an elementwise operation. The final vector w(k) separates 

one of the non-Gaussian source signals and an important property of  this algorithm is 

that a very small number of iterations is needed for convergence. 

 This procedure is the fixed-point rule for estimating one basis vector. In 

CDMA application for model in Eq. (5.12), there are 2K independent components, so, 

the algorithm must be run 2K times to find 2K independent components. For this 
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operation, let C be the mixing matrix which is the orthonormal basis of the sphered 

data [26]. This simply means that in the noiseless case of Eq. (5.12): 

 

                                                   C .                                                    (5.20) GUΛ T
S

/
S

21−=

 

Then the estimated vector w(k) equals one of the columns of C. Several independent 

components can be estimated by using an orthonormal projection  in the beginning of 

step 3: 

 

                                       )(~~)1()( kkk T wCCww −−=                                            (5.21) 

 

where C~ is a matrix whose columns are previously found. 

 

5.2.2 Simulation Results 

 

 In simulation experiments, CDMA downlink model for slowly fading channel 

in subsection 5.1.2.1 is considered. Gold codes are used as a signature waveform and 

length of the code is C=31. N=500 symbols are observed. The number of paths is L=3. 

In simulations only the real part of the data is used where the same simulations can be 

done for imaginary part of the signal, too. In the first experiment, it is assumed that 

there are no path losses.  

  

For a relatively high SNR of 20 dB FastICA can estimate all of the transmitted 

symbols successfully when the number of users is five. Result of five users’ case is 

given in Figure 5.1 

   

Figure 5.2 shows 500 estimated symbols as a function of number of users, K, 

where the SNR is a parameter and takes values of 5, 10 and 20 dB. In this simulation, 

number of paths, L, is 3 and they have 0dB, -5dB and -5dB path losses. For 12 users, 

the number of correctly estimated symbols decreases for three SNR values.  
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Figure 5.1 Estimation of CDMA symbols with FastICA for 5-users 

 

 
Figure 5.2 The number of correctly estimated symbols versus K 

 

In Figure 5.3, the performance of FastICA detector is given for different number of 

users as a function of SNRs. The number of observation is 5000 and it is applied for 

100 independent simulations. Also in Figure 5.4, MF is used for symbol detection and 

in this case there is no delay information. From Figures 5.3-5.4 it is clearly seen that 

FastICA outperforms matched filter detectors. At every SNR values, even when there 

are 12 users FastICA has a good performance and can detect symbols successfully. If 
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number of user increases, for low SNR values, FastICA detector’s performance 

decreases but still it performs better than matched filter. 

 

 
Figure 5.3 BER as a function of SNR with K as a parameter for FastICA 

 

 

 

 
Figure 5.4 BER as a function of SNR with K as a parameter for MF 

 

For the ideal case in which delays are assumed to be known, single user detector 

(SUD) estimates symbols for the first user with [ ]m
T

m signˆ rG firstuser=b  where G is 
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given in Eq. (5.10) and Gfirst user is the corresponding column of the first user. In Figure 

5.5, FastICA, SUD and MMSE (Minimum Mean Square Error) are compared.   

  

 
Figure 5.5 BER as a function of SNR for FastICA, SUD and MMSE 

 

 

In this simulation, FastICA does not have any information about multipath delays or 

fading but it is assumed that the SUD and MMSE detector have perfect channel 

information. FastICA, SUD and MMSE detector are applied for 6 users and 4 paths 

which have 0 dB, -5 dB, -5 dB and -5 dB losses. The observation number is 5000 and 

100 independent simulations are realized. It is seen from Figure 5.5 that FastICA 

outperforms SUD without channel information. For 10-5 BER value, SUD needs 4 dB 

more power compared to Fast ICA. Also it is seen that MMSE detector is superior to 

FastICA. For 10-5 BER value, FastICA needs 1 dB more power compared to MMSE 

detector but considering that FastICA reaches this performance without channel 

information, this performance degradation can be accepted. 

   

5.3 Delay Estimation Using FastICA Algorithm in CDMA Systems 

 
 In CDMA systems, timing acquisition is an important subject for finding the 

synchronization information. FastICA algorithm can also be used for simultaneous 

demodulation of the symbol sequence and finding the synchronization information 
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[18]. In this application, the derivation of the compact matrix form of the downlink 

model is different from the derivations in section 5.1. 

 

5.3.1 Signal Model in Delay Estimation for Slowly Fading Multipath Channels  

 

 The CDMA data and the C-vectors from subsequent discretized equispaced 

data samples have again the forms in Eq. (2.11) and (5.5), respectively. If a 2C-vector 

is defined as q , this vector can be shown by: [ TT
mmm 1+= rr ]
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where nm denotes the noise vector and denote the “early”,”full” and “late” 

parts of the code vectors with size 2C, respectively, given as:  
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Here contains the original chip sequence of user k, padded by dF
klg l zeros in the 

beginning and C-dl zeros in the end [18]. Then the matrix Q=[q1.....qN-1] can be 

represented in compact form as: 

 

                                                       Q NGB +=                                                       (5.24) 

 

where 2C×3K mixing matrix  
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contains the code vectors as column basis vectors and the attenuation coefficients and 

3K ×(N-1) matrix B=[b1....bN-1] contains the symbols transmitted by the user with 
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5.3.2 Synchronization Algorithm 

 

 Assuming that transmitted symbol sequences belonging to different users are 

independent, FastICA algorithm is applied to the CDMA data model Eq. (5.24) to 

estimate the unknown matrix G that contains code sequences and to estimate symbols 

simultaneously. 

 As it was mentioned in Chapter 3, firstly the data is whitened to normalize the 

component variances. At the same time some part of the noise is filtered out [18]. The 

new whitened data Y is given by  

 

                                                                                                        (5.27) QUΛY T
SS

2/1−=

 

where ΛS and US corresponds to the 3K eigenvalues and eigenvectors of correlation 

matrix estimate QQT/(N-1), respectively [18]. Then FastICA algorithm is applied 

where kurtosis is used as the contrast function. Since in CDMA downlink only one 

signal is of interest, estimating only one basis vector would be desirable. For this 

reason, initial vector w(0) has to be given with a good enough initial guess. This can be 

provided by training sequence w(0)=YP[b11....b1P]T where first P symbols of the user of 

interest are known and YP is the corresponding part of Y [18]. The procedure of 

applying FastICA algorithm was shown section 5.2.1. The only difference here is 

initialization of w(0) in step 1 since in this application, initialization of  w(0) is not 

random and it depends on the first P symbols of the user of interest. Then the 

corresponding basis vector of the mixing matrix G in the non-whitened space will be 

found by a reverse transform [18]: 
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In fact v is an estimate of the column of G corresponding to b1m: 
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Let the index of the strongest path be 1 and d1 be the corresponding delay which is 

needed to be found. The magnitudes of the fading terms of the secondary paths are 

smaller than the ones of the main path and it is assumed that the delay d1 of the main 

path is smaller than other delays {dl, l=2....L}. Under these assumptions, the estimate 

of v will contain values close to zero in absolute value, i.e. |vi|≈0 for i=1,....,d1, so the 

delay of the main path d1 can be found by finding first index i for which |vi|>t where t 

is a threshold that can be found by using experimental results and it depends on 

channel noise and strength of the other paths [18].  

 

5.3.3 Simulation Results 

 

 FastICA algorithm is tested for CDMA model in Eq. (2.11) with Gold codes of 

length C=31. The channel paths’ powers are -5,-5 and 0dB for every user and SNR of 

the main path changes from 10 dB to 30 dB. The number of samples of the observed 

signal is N=300. The length of the training sequences for assuring convergence to the 

desired user of FastICA algorithm is P=20. In simulations, probability of acquisition 

(POA) which is the ratio of correctly estimated delays to total estimation number is 

analyzed. Optimum threshold values that are also used in simulations can be found 

from Figure 5.6. These threshold values are found through extensive simulations by 

trial. In Figure 5.7, the relation between probability of acquisition and number of user 

K is given for SNR=10dB and 20dB. It shows that up to 6 users, FastICA technique 

can estimate time delay successfully for both SNR values. So, the POA performance of 

FastICA is compared to MF and Constrained Minimum Output Energy (CMOE) 

detectors when K=2, 4 and 6 in Figures 5.8, 5.9 and 5.10. CMOE minimizes the output 

energy of the interfering sources and leaves the desired source undistorted. By using 

this method delay estimation can be found by using [18] 

 

   )(ˆ)(minargˆ 1 ddd xx
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where [ ])()1()()1()( 1111 dCssCsdCsd −+−=g  and  is estimate of the 

autocorrelation matrix of the observed data.  

1ˆ −
xxC

 
Figure 5.6 Choosing the threshold value 

 

 
Figure 5.7 Probability of acquisition as a function of K for SNR=10 and 20dB 

 

Figure 5.8 depicts that FastICA is superior to both MF and CMOE detectors when the 

number of users, K=2, 4 and 6. For K=2, FastICA can reach perfect POA at SNR=20 

dB whereas MF detectors and CMOE detector cannot reach this performance. For 

K=6, FastICA detector can reach POA=0.95 where MF and the CMOE detectors can 

only achieve POA values of 0.9 even if the SNR is increased without bound.  
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Figure 5.8 Probability of acquisition as a function of SNR and K for FastICA 

 

 

 

 

 
Figure 5.9 Probability of acquisition as a function of SNR and K for Matched Filter 
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Figure 5.10 Probability of acquisition as a function of SNR and K for CMOE 

 

The number of the training symbols is an important point in delay estimation and it 

affects the probability of acquisition. In simulation P is chosen as 10 and it can be seen 

from Figure 5.11 that even for two users and for high SNR values FastICA cannot 

estimate all delays correctly. In Figure 5.12, for two P values performances are 

compared. If P is chosen as 5, it is seen that performance of delay estimation fails and 

it cannot reach to 0.9 value of POA even for two users. 

 

 
Figure 5.11 Probability of acquisition as a function of SNR and K for FastICA (P=10) 
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Figure 5.12 Probability of acquisition as a function of SNR and P for FastICA (K=2) 

 

FastICA algorithm based on BSS for timing acquisition is noticed to perform better 

than matched filter or other conventional algorithms and also this technique needs only 

a few training symbols for estimating delays of the channels. 

 

5.4 Blind Detection of DS-CDMA Signals based on Regularized ICA 

 
 Classical ICA algorithms are effective in separating non-Gaussian signals but 

they don’t incorporate any information of the weighting matrix. For instance in CDMA 

problems, those algorithms do not use the signature sequence. Regularized ICA (Reg. 

ICA) is a new method that combines a contrast function and a regularization function 

to integrate the information of the user’s sequence [24]. The traditional ICA has a 

problem in distinguishing which extracted source is the desired signal and determining 

its polarity. The new ICA detector solves this problem and it is flexible, robust and 

provides good interference suppression, fast convergence and low BER performance 

when compared with a MF. The only information required is the signature and timing 

of the desired user. However MMSE detector and decorrelating detector require the 

complete knowledge of all the users’ signature sequences. 

 For this method’s application, basic CDMA model with ideal channel 

assumption given in section 5.1.1. To goal is to estimate filter weight w such that 

filtered output can be used to estimate the data symbol. 
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5.4.1 Blind Reg. ICA detector 

 

 For this method, a new one unit cost function J(w) is proposed to evaluate the 

filter weight w [24]:  

 

                              [ ] [ ]{ } )()()(
2
1)( 2 wvyw CFEFEJ η+−=                                   (5.30) 

where F(⋅) is a smooth even function, v is a normalized Gaussian distributed random 

variable, η is the regularization parameter and C(w) is the regularization functional. 

The contrast function is the measure of non-Gaussianity which is an approximation to 

the negentropy that measures the mutual information among the sources. For 

estimating the desired user’s signals, “C(w)” regularization functional is used that 

incorporates prior information of the desired user’s signature [24]. The filter weight 

estimation can be described mathematically: 
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where Ω is the solution space for filter weight w. By using stochastic gradient descent 

method to optimize Eq. (5.31), the detector weight update algorithm is given by: 
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where  

 

                                      [ ] [ ])()()( vrww FEFE T −=α .                                           (5.33)             

In Eq. (5.32), f(⋅) is the derivative of F(⋅), γ is the learning step size for contrast 

function, λ=γη is the effective learning step size for the regularization functional. If 
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F(y)=y4 is chosen, α(w) becomes the kurtosis of y that ensures the identifiability and 

convergence of the detector. In this case: 

 

                              [ ] [ ] [ ] [ ]44)()()( vyvrww EEFEFE T −=−=α                        (5.34) 

 

If the output y is normalized that [ ] [ ] 1)( 22 == yrw EE T  and [ ] 12 =vE  since Gaussian 

random variable is normalized, α(w) is equal to the kurtosis of y: 
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Both the data sources and filtered output are sub-Gaussian distributed which means 

that kurt(bi)<0 and kurt(y)<0. The kurtosis of y can be found as: 
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Since kurt(bi)<0 for binary antipodal modulation, kurt(y)<0. In order to achieve good 

results, it is sufficient to estimate α(w)’s polarity since it is part of the learning factor. 

If positive scalar β is introduced as a substitute for -α(w), Eq. (5.32) can be rewritten 

as: 
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where γβµ = . C(w) should be chosen as a meaningful, differentiable function with the 

optima at w=sj under the constraint ||w||=1 [24]. If a second order cost function is 

used for regularization functional [24]: 
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where . T
jjj ssS =

 If Eq. (5.38) and 4

4
1)( yy =F is substituted into Eq. (5.37), regularized ICA 

detector weight estimation algorithm is obtained as: 

 

                        ( ) j
T
j

T nnnnnn swsrrwww ))(()()()()()1( 3 λµ +−=+ .                    (5.39)  

 

 

5.4.2 Simulation Results 

 

 In simulations, a CDMA system of K=5 users and C=31 Gold codes is used 

where the modulation is binary phase shift keying (BPSK) modulation. Signal to 

interference noise ratio (SINR) of the j’th user at n’th iteration is defined as [24]: 
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where S is number of independent simulations and Rnn is the noise autocorrelation 

matrix.  

 In the first experiment, signal power of the desired user is 10dB and other 

users’ signal powers are 30dB. In Figure 5.13 the SINR of desired user is given. It is 

observed that after 400 symbols, SINR is found to approach the optimum value of 

10dB, on the other hand, matched filter does not offer any SINR improvement. 

 

In the second experiment, again all the interfering signal powers are 30dB and 

desired user’s signal power varies from 4dB to 12dB. After the steady state has been 

achieved BER is computed by 1000 symbols in Figure 5.14. It is observed from the 

figure that Regularized ICA detector offers better BER performance over the MF 

detectors for basic CDMA model under the ideal channel assumptions. 
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Figure 5.13 Average SINR performance as a function of iteration number of MF and  

ICA (λ=µ=2×10-5) 

 Since this technique integrates the user’s signature sequence to address the 

order and polarity indeterminacy of classical ICA algorithms, there is no need to use 

training symbols to estimate desired user’s symbols. Also with this technique, MAI 

can be suppressed as it is shown in Figure 5.13. This system is applied for basic 

CDMA model but then, adaptation of this system to multipath CDMA models can be 

worked and analyzed as a future work.  

 

 
Figure 5.14 BER performances of ICA and MF as a function of user SNR (K=5, for 

the other users SNR= 30 dB) 
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5.5 IFA Detector for Basic CDMA Downlink Model 
 

 IFA is a new algorithm for blind seperation of noisy mixtures with non-square 

matrix. As it was mentioned in Chapter 4, for high noisy situations, IFA can 

outperform ICA. In this section, IFA is applied to the basic CDMA downlink model in 

Eq. (5.1) and compared with Reg. ICA given in previous section. For these 

applications of CDMA, a matrix form of the basic CDMA model in Eq. (5.4) is used.                          

  If Eq. (5.4) is rewritten in open form: 
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where sj are code sequences of users, Ai are amplitudes of users, bi are transmitted 

symbols. In simulations, IFA is applied to the model in Eq. (5.4) and results are 

obtained to compare ICA and IFA in symbol detection for the CDMA downlink 

model. 

 

5.5.1 Simulation Results 

 

 In simulations, a CDMA system of K=2 users with C=31 Gold codes is 

considered. In the first experiment signal power of the desired user is varied from 1 to 

12 dB while signal power of the interfering user is fixed to 30 dB. IFA, ICA and 

matched filter detectors are applied for 10 independent simulations and 1000 

transmitted symbols.  

 In Figure 5.15, the number of correctly estimated symbols is given for ICA, 

IFA and matched filter detector. It can be seen clearly from the figure that IFA can 

estimate all transmitted symbols correctly even though there is high noise (variance of 

noise is 0.7) and the desired user’s signal power is low. On the other hand, Reg. ICA 

can estimate all symbols correctly after the 6dB of desired user’s power.  
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Figure 5.15 Number of correct estimated symbols as a function of User SNR for IFA 

Reg. ICA and MF 
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Chapter 6 

 

Estimating Non-Gaussian Fading Channels in CDMA 

Systems 

 
 In this chapter, PS-ICA is used for estimating non-Gaussian fading channels. 

Considering some fading channel measurements showing that the fading channel 

coefficients may have an impulsive nature, these coefficients are modeled with an α-

stable distribution whose shape parameter α takes values between 1.8 and 1.9. These α 

values show that the distribution resembles a Gaussian distribution but has a more 

impulsive nature. In this chapter, also IFA method is applied for estimating fading 

channels in a basic CDMA model in order to achieve faster convergence. 

  

6.1 Non-Gaussian Fading Channels in CDMA Communication 

 
 In mobile communication systems, multipath fading channels are modeled by 

Gaussian distribution. This Gaussian assumption for the in phase and quadrature 

components of the received signal leads to Rayleigh and Rice distributions for the 

envelope of the signal and to a uniform distribution  for the phase of the signal [12]. 

Many systems are designed with Gaussian assumption of the multipath channels in 

mobile communication. However, empirical results show that Gaussian model does not 

hold for a large variety of wireless fading channels every time [13]. Many 

measurements performed in Europe over the GSM system show that the received in-

phase and quadrature components are non-Gaussian and so the envelope of the signal 

cannot be Rayleigh or Rician distributed. This deviation of channel statistics from the 

“Gaussianity” assumption leads to a degradation in system performance [14]. In the 

literature, distributions which have more impulsive characteristics than Gaussian 

distribution as Middleton Class A and Gauss-Laplace models were used for modeling 

channel coefficients and also SIRP (spherically invariant random process) was used for 

non-Gaussian channel models [12, 13, 14, 30]. 
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 In this work, fading channel coefficients are modeled with an α-stable 

distribution whose “shape parameter” or “characteristic exponent” α takes values 

between 1.8 and 1.9. These values show that the distribution resembles a Gaussian 

distribution but has a more impulsive nature [31, 32]. α-stable distribution is given in 

more detail in Appendix E. 

 

 

6.2 Non-Gaussian Fading Channel Estimation by PS-ICA 

 

 PS-ICA is a BSS method that minimizes mutual information using a PS-based 

parametric model. When source distributions are nearly Gaussian or have same 

kurtosis with the Gaussian distribution PS-ICA can separate sources faster than a 

conventional ICA method. In Chapter 3, Pearson System based ICA is given with 

more details. 

 This method is used in estimating non-Gaussian fading coefficients of the 

multipath channel in CDMA communication. As it is explained in the beginning of the 

chapter, the coefficients of fading channels are usually modeled by a Gaussian 

distribution but sometimes other cases exist where non-Gaussian distributions model 

these channels more successfully. In the model, the fading channel is assumed to be 

nearly Gaussian. To model this case, an α-stable distribution is used. The channel in 

the CDMA downlink model used in this application is assumed to be the fast fading 

multipath channel model given in Eq. (2.12). The fading channel coefficients {alm; 

m=1, ...,N; l=1,…,L} have an α-stable distribution. The ICA formulation of the CDMA 

downlink signal in a fast fading multipath channel scenario was given in section 

5.1.2.2. 

In this system, it is assumed that channel coefficients are constant for some 

number of bits. With the help of training symbols bkm=1, F becomes containing only 

channel coefficients. After separating the received signal into its real and imaginary 

parts as shown in Figure 6.1, PS-ICA is applied and coefficients of fading channels are 

estimated. 
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Figure 6.1 Separation of received signal into the real and the imaginary parts 

 

6.2.1 Simulation Results 

 

 In simulations, CDMA downlink model given in Eq.(2.12) is used for K=2 

users and L=3 paths. 1000 symbols are assumed to be transmitted and only real part of 

the received signal is considered. In Figure 6.2, 1.85-stable fading channel is estimated 

and the system follows channel coefficients. For the same model ICA can estimate 

fading coefficients (Figure 6.3) but PS-ICA performs faster than ICA. 

 If α is chosen as 1.95 which corresponds to a stable distribution very close to 

Gaussian, PS-ICA can still estimate channel but classical ICA cannot give the same 

performance for the same number of iterations (Figures 6.4-6.5). 

 
Figure 6.2 Fading channel estimation by Pearson System based ICA (alpha=1.85) 
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Figure 6.3 Fading channel estimation by classical ICA (alpha=1.85) 

 

As a result it can be said that PS-ICA can be chosen for estimating non-Gaussian 

fading channels for faster convergence when the channel fading coefficients have a 

distribution close to Gaussian. Also it is more robust than conventional ICA to 

variations in channel statistics since PS can model a wide class of distributions like 

Rayleigh and log-normal distributions. 

 

 
Figure 6.4 Fading channel estimation by Pearson System based ICA (alpha=1.95) 
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Figure 6.5 Fading channel estimation by classical ICA and PS-ICA (alpha=1.95) 

 

Figure 6.6 shows estimation error as a function of SNR for PS-ICA and classical ICA. 

In 10-30 dB SNR interval, for PS-ICA, estimation error stays in acceptable values 

where classical ICA has worse performance than PS-ICA when alpha is 1.90. 

 

 

 

 
Figure 6.6 Estimation errors as a function of SNR (α=1.90) 
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Lastly, for different numbers of training symbols, channel estimation performances are 

analyzed where SNR is 6 dB. Like the other methods numbers of training symbols 

affects channel estimation which is given in Figure 6.7. The figure depicts that to 

estimate fading coefficients with acceptable average estimation error interval, at least 

1000 observation symbols are needed. 

 
Figure 6.7 Average estimation error as a function of number of symbols 

 

 

 

6.3 Channel Estimation by IFA in CDMA System 

 
 As explained in Chapter 4, in IFA method, each source distribution is modeled 

by MOG. Because of this, IFA can separate sources successfully for wide class of 

distributions. Especially increasing the number of Gaussians in modeling sources can 

make more successful separations but on the other hand this decreases the convergence 

speed. 

 In this section IFA is applied to CDMA system for estimating channel 

coefficients. These fading coefficients are modeled by an alpha-stable distribution that 

has alpha values close to 2. This makes the distribution close to Gaussian. The 

convergence speed problem of IFA exists again in this application. So, to overcome 

this problem, again the basic model is used as it is given in simulation part 6.3.1.  
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 In this application there is an advantage of using IFA in channel estimation. In 

this case, in contrast to the channel estimation by PS-ICA, instead of choosing all 

users’ symbols equal to 1, only one user’s symbols can be chosen 1. So there is no 

need to assume constant channel coefficients for a known number of symbols. Even 

when the coefficients vary at every symbol period, IFA can estimate fading 

coefficients.  

 

6.3.1 Simulation Results 

 

 In the simulations, fast fading CDMA model in Eq. (5.16) is used. In the 

experiments, K=2 and L=1 are chosen to limit the number of sources to 4 to overcome 

the convergence problem of IFA. Fading coefficients are modeled by 1.85-stable 

distribution. In Figures 6.8 and 6.9, it is seen that IFA estimator tracks channel 

coefficients for both noise variances 0.1 and 0.01. According to simulation results, it 

must be pointed that both PS-ICA and IFA can estimate channel if channel coefficients 

have a distribution close to Gaussian. In the case of IFA method using pilot symbols 

for only a single user is enough to estimate the channel where ICA method requires 

pilots for every user.  

 

 

 
Figure 6.8 Fading channel estimation (variance of noise = 0.01) 
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Figure 6.9 Fading channel estimation (variance of noise = 0.1) 

 

 Estimating transmission channel with IFA is a new method and in this work, to 

overcome convergence speed problem of IFA, the CDMA system with two users and 

one path is considered but for more practical CDMA systems IFA is needed to speed 

up by introducing modifications into its formulation. 
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Chapter 7 
 
 

CONCLUSION AND SUGGESTIONS FOR FUTURE 

RESEARCH 
  

 CDMA is a multiple access technique where all users use the same frequency 

and transmit simultaneously. In CDMA, spread spectrum modulation is used and each 

user has its own unique spreading code. The receiver side of CDMA systems is more 

complex than other multiaccess system receivers. Because of non-orthogonal code 

sequences, simple correlator receivers which handle the MAI like the additional noise 

cannot achieve good performances. So in CDMA downlink transmission, multiuser 

detection algorithms continue to be a very active area of research. 

 In the CDMA downlink problem, the receiver is interested in only one of the 

information sources transmitted by the base station. The desired user has not got any 

information about other users’ code sequences. Because of this, separation of desired 

user’s signal from other users’ signals is a typical blind source separation problem. 

 In the BSS, source signals are mixed together by some linear transformation 

corrupted by noise and observation data measured by sensors arise from that mixture 

of sources.  In BSS problem, those source signals are recovered by using observations. 

One of the techniques used in BSS is ICA. The sources can be found using ICA 

provided that all sources are independent and non-Gaussian. 

 In this thesis, examples of ICA applications in CDMA downlink problem are 

provided. First of all CDMA downlink model that is used in ICA applications are 

described. Two downlink models are used. First one is a basic CDMA downlink model 

in which ideal channel without multipath fading is considered and the second one is 

DS-CDMA downlink model in a multipath fading channel. These models are 

expressed in matrix form which is similar to classical noisy ICA models. Using 

FastICA algorithm, symbols are detected. Simulation results are provided to 

demonstrate that without any information about code sequences, symbols of the 

desired user can be detected successfully even in low signal-to-noise ratios. In the case 
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that FastICA algorithm is used for detecting symbols in CDMA systems, there is no 

need to estimate other channel parameters by using extra systems.  

 In CDMA systems, time acquisition is an important subject. Simultaneously, 

ICA algorithm can detect symbols and multipath delays for time acquisition 

successfully under some assumptions. Simulation results show that the delay 

estimation capability seems to be best with FastICA algorithm. Also this technique 

needs only few training symbols in delay estimation. However with this method, only 

delays which are integer times of chip duration can be estimated but as a future work, 

standard delay profiles and chip pulse shaping can be used to consider more realistic 

channels and non-integer delays. 

 Also blind regularized ICA detector is shown. In this method, prior knowledge 

which is the code sequence of the desired user, is used in ICA to detect desired user’s 

symbols correctly. Since this technique integrates the user’s signature sequence to 

address the order and polarity indeterminacy of classical ICA algorithms, there is no 

need to use training symbols to estimate desired user’s symbols. It is also shown that 

multiple access interference can be suppressed by regularized ICA successfully. As it 

is mentioned, this technique is applied for basic CDMA model in which there is no 

multipath fading or delays. As a future work, adaptation of this technique to a 

multipath CDMA model that is more realistic than the model used in this application 

can be studied and analyzed. 

 A new method of BSS, IFA is also applied for basic CDMA downlink model 

and simulation results are given to compare regularized ICA and IFA. It is shown that 

for small number of users, IFA can give good detection performance even when the 

desired user has low power with respect to other users. In the cases with many users, 

IFA has disadvantages and can fail. It has time and speed problem.  

 In this thesis, the non-Gaussian fading coeffients of a CDMA transmission 

channel are estimated by PS-ICA. In mobile communication systems, multipath fading 

channels are modeled by Gaussian distribution and many receiver systems are 

designed for Gaussian assumption of the fading characteristics. However many 

measurements show that sometimes fading characteristics can deviate from Gaussian 

distribution. For these cases existing estimators can fail in getting channel information. 

In this thesis, to model fading that deviate from Gaussian,  alpha-stable distribution is 

used. For alpha values close to 2, the alpha stable distribution resembles to a Gaussian 
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distribution. Because of this 1.8-1.95-stable distribution is used for modeling multipath 

fading characteristic. Since PS-ICA is a fast technique for separating sources that have 

distribution close to a Gaussian distribution, PS-ICA is applied for estimating fading 

coefficients. Simulation results show that our system can estimate fading coefficients 

in acceptable error margins. 

 Future research should focus on IFA and IFA applications in CDMA systems. 

Since IFA has a better performance than ICA in very noisy cases, it can separate 

symbols in low signal to noise ratios. Also in IFA since sources are modeled by MOG, 

it can estimate fading coefficients correctly regardless of the fading distributions and it 

can be more robust to variations in fading characteristics. For IFA applications, 

number of users or paths is very important since in many sources cases, IFA is very 

slow and complex. To solve this problem some approximations can be done  as a 

future work. After solving this problem, applying IFA to CDMA systems will be 

easier. For these reasons, IFA applications in CDMA will be a very active area of 

research. 
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APPENDIX A 
 

Definition of Kurtosis 

 
 Consider a scalar random variable of zero mean, say x, whose characteristic 

function is denoted by  [16]: )(ˆ tf

 

                                                        { })exp()(ˆ itxEtf =                                             (A.1) 

 

Expanding the logarithm of the characteristic function as a Taylor series, one obtains 
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where the rκ are some constants. These constants are called the cumulants of x. In 

particular, the first three cumulants (for zero mean variables) have simple expressions: 
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Fourth-order cumulant, called kurtosis, can be expressed as: 

 

                                                 ( ) { } { }( )224 3kurt xExEx −=                                      (A.4) 

 

Kurtosis can be considered a measure of the non-Gaussianity of x. For a Gaussian 

random variable, kurtosis is zero. 
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APPENDIX B 

 
Derivation of FastICA Algorithm 

 
The iterative optimization algorithm used here to estimate w, is called Newton’s 

method. 

Given a cost function F(w), Newton’s method applies the iteration [17] 
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to estimate its maxima. 

 The measure of non-Gaussianity will be the approximation of negentropy 

J(wTz) . The maxima of this approximation are typically obtained at certain optima of  

E{G(wTz)} . The function G can be any of the nonquadratic functions. 

 The optima of E{G(wTz)} under the constraint E{(wTz)2}=||w||2=1 are 

obtained using its Lagrangian 
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They are found where the gradient of the Lagrangian is zero: 
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The function g is the derivative of G. Eq. (B.3) can be solved applying Newton’s 

method on the Lagrangian. The second-order gradient of the Lagrangian is 
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The Newton method supposes an inversion of this matrix. In order to avoid this 

computational load in every iteration, an approximation of the second-order gradient is 

made. Since the data is whitened, we can write: 

                             { } { } { } { }Izwzwzzzwzz )()()( TTTTT gEgEEgE ′=′≈′                    (B.5) 

 

The iteration of the Newton method given in Eq. (B.1) is then obtained as 
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After multiplying both sides of Eq. (B.6) by { } β+′ )( zwTgE  and simplifying the 

expression, basic iteration in FastICA is obtained: 
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APPENDIX C 

 
Derivation of Learning Rules in IFA 

 
To derive the EM learning rules, ),( WW′F must be minimized with respect to W. 

This can be done by first computing its gradient W∂
∂F  layer by layer. For the visible 

layer parameters [4]: 
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whereas for the bottom hidden layer 
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APPENDIX D 

 
Derivation of the EM Algorithm 

 
To obtain F in terms of IF model parameters W, Eq. (4.12) is substituted in Eq. (4.23) 

and after a bit of algebra [4] 
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The integration over the sources x required to compute FV appears in Eq. (D.1) via the 

conditional mean and covariance of the sources given the observed sensor signals, 

defined by 
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where the integration over the source xi indicated in FB in Eq. (4.23) enters via the 

conditional mean and variance of this source given both the observed sensor signals 

and the hidden state of this source, defined by 
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Starting from the Eq. (4.13), it is straightforward to show that, had both the sensor 

signals and the state from which each source is drawn been known, the sources would 

have a Gaussian density, 

 

                                                     )),((),|( qqp Σ−= yρxςyqx                                (D.5) 

 

with covariance matrix and mean given by 
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Note that the mean depends linearly on the data. 

 The posterior probability of the source states given the sensor data can be 

obtained from Eqs. (4.10-16) via 
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From Eq. (D.5) it is obtained that: 
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To obtain the conditional averages given in Eq. (D.2), Eq. (D.8) is summed over the 

states q with probabilities in Eq. (D.7) to get 
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taking .  Individual source averages in Eq. (D.4) together with the 

corresponding state posterior and their product is given by summing over all the other 

sources with Eqs. (D.7) and (D.8), 

Tm xxxx ,)( =
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Finally, the individual state posterior is obtained from Eq. (D.7): 
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APPENDIX E 
 

α-stable Distribution 
 

 An important class of non-Gaussian phenomena encountered in practice can be 

characterized by its impulsive nature [31]. Signals in this class have sharp spikes. 

Their pdfs decay in the tails less rapidly than the Gaussian density function. 

 α-stable distribution is a result of generalization of the Gaussian distribution 

and it includes Gaussian distribution as a limiting case. 

 

 
Figure E.1 Stable densities corresponding to alpha values 

 

The main difference between non-Gaussian and Gaussian distribution is the tails of 

density functions. Tails of the stable density are heavier than those of the Gaussian 

density (Figure E.1). It has a parameter α (0 < α ≤ 2) called “characteristic exponent” 

that controls the heaviness of its tails. A value of α close to 2 indicates a more 

Gaussian type of behavior. A small value of α indicates impulsiveness of distributions 

(Figure E.2). 

If α=2, α-stable distribution is reduced to Gaussian distribution. It is known 

that for α-stable distribution with characteristic exponent α, only moments of order 

less than α are finite so the second order moment (variance) of  a stable distribution 

with α<2 does not exist [31]. As a result of this property, many statistical signal-

processing tools give misleading results. 
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Figure E.2 Stable distributed signals for different α values. 

 

E.1. Basic Properties of the α-stable Distribution 

 

 Stability property and Generalized Central Limit theorem are the important 

properties of α-stable distribution. 

Theorem 1 Stability Property: A random variable X is stable if and only if for any 

independent random variables X1, X2 with same distributions as X and for arbitrary 

constants a1, a2, there exist constants a and b such that: 

 

                                                                                                 baXXaXa
d

+=+ 2211

 

where the notation YX
d
= means that X and Y have the same distribution [31]. 

Theorem 2 Generalized Central Limit Theorem: X is the limit in distribution of 

normalized sums of the form [31]: 

 

                                        nnnn baXXS −++= /)....( 1                                      

 

where X1, X2, ......, are i.i.d and an → ∞, if and only if X is stable.  

Proposition 1: If X is α-stable random variable and 0 < α <2 then: 
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                                            ∞=PXE  if p ≥ α and 

                                            ∞<PXE  if 0 ≤ p < α 

if α=2 then 

                                            ∞<PXE  for all p ≥ 0 

 

so for 0 < α ≤ 1, stable distributions have no first or higher order moments, for 1<α<2, 

all the fractional moments of order p where p < α exist. For α=2 all moments exist. 

 The stable distribution can be described by its characteristic function. A 

distribution function F(x) is stable iff its characteristic function has the following form 

[32]: 
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In Eq. (E.1), four parameters determine the stable distributions: 

1. a: The location parameter (-∞<a<∞) 

2. γ: Dispersion –Scale parameter (γ>0) 

3. β: The index of skewness (-1<β<1) 

4. α: The characteristic exponent (0<α≤2) 
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A stable distribution is called “standard” if a=0, γ=1. When β=0, the distribution is 

symmetric about the center and with characteristic function “α”, stable distribution is 

called symmetric α-stable or SαS [31, 32]. 

 No closed form expression exists for α-stable distribution except for the 

Gaussian (α=2), Cauchy (α=1, β=0) and Pearson (α=1/2, β=-1) distributions. 
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