

IMPROVEMENTS IN K-MEANS ALGORITHM TO

EXECUTE ON LARGE AMOUNTS OF DATA

 Erhan SÜLÜN

 OCTOBER, 2004

Improvements in K-means Algorithm to Execute on

Large Amounts of Data

By

Erhan SÜLÜN

A Dissertation Submitted to the

Graduate School in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Computer Engineering

 Major: Computer Software

Izmir Institute of Technology

Izmir, Turkey

October 2004

 ii

We approve the thesis of Erhan SÜLÜN

 Date of Signature

27.10.2004
..
Prof. Dr. Halis PÜSKÜLCÜ
Supervisor
Department of Computer Engineering

27.10.2004
..
Prof. Dr. Sıtkı AYTAÇ
Department of Computer Engineering

27.10.2004
..
Prof. Dr. Fikret �K�Z
Ege University
Department of Computer Engineering

27.10.2004
..
Prof. Dr. Sıtkı AYTAÇ
Head of Department

 iii

ACKNOWLEDGEMENTS

I would like to give my deepest thanks and respects to my advisor Prof. Dr. Halis

PÜSKÜLCÜ for his encouragement, suggestions, valuable comments, support and

supervision in all steps of this study.

I also owe very special thanks to Asst. Prof. Dr. Haluk TOPÇUO�LU for providing

a parallel programming laboratory for the executions of parallel program.

Finally, I owe my very special thanks to my family, Mrs. Perihan SÜLÜN and Mr.

Necati SÜLÜN, for their encouragements and patience.

 iv

ABSTRACT

 By the help of large storage capacities of current computer systems, datasets of

companies has expanded dramatically in recent years. Rapid growth of current

companies’ databases has raised the need of faster data mining algorithms as time is very

critical for those companies.

Large amounts of datasets have historical data about the transactions of

companies which hold valuable hidden patterns which can provide competitive advantage

to them. As time is also very important for these companies, they need to mine these huge

databases and make accurate decisions in short durations in order to gain marketing

advantage. Therefore, classical data mining algorithms need to be revised such that they

discover hidden patterns and relationships in databases in shorter durations.

In this project, K-means data mining algorithm has been proposed to be improved

in performance in order to cluster large datasets in shorter time. Algorithm is decided to

be improved by using parallelization. Parallelization of the algorithm has been considered

to be a suitable solution as the popular way of increasing computation power is to

connect computers and execute algorithms simultaneously on network of computers. This

popularity also increases the availability of parallel computation clusters day by day.

Parallel version of the K-means algorithm has been designed and implemented by

using C language. For the parallelisation, MPI (Message Passing Interface) library has

been used. Serial algorithm has also been implemented by using C language for the

purpose of comparison. And then, algorithms have been run for several times under same

conditions and results have been discussed. Summarized results of these executions by

using tables and graphics has showed that parallelization of the K-means algorithm has

provied a performance gain almost proportional by the count of computers used for

parallel execution.

 v

ÖZ

Günümüzün büyük saklama kapasiteli bilgisayar sistemlerinin deste�iyle

�irketlerin veritabanı boyutları yakın tarihte ciddi bir �ekilde artmı�tır. Zaman �irketler

açısından büyük önem ta�ıdı�ı için, günümüz �irketlerinin hızla büyümü� olan

veritabanları daha hızlı veri madencili�i algoritmaları ihtiyacını da birlikte getirmi�tir.

�irketlerin tarihsel hareketlerini tutan büyük boyutlardaki veritabanları �irketlere

rekabet avantajı sa�layacak olan de�erli gizli bilgiler içermektedir. Ayrıca zaman da

�irketler açısından çok önemli oldu�u için bu �irketler yüklü miktarlardaki veritabanlarını

kısa sürede veri madencili�i ile inceleyip kısa sürede kendilerine rekabet avantajı

sa�layacak do�ru kararları almaları gerekmektedir. Bu nedenle, klasik veri madencili�i

algoritmalarının gözden geçirilerek iyile�tirilmesi ve daha kısa sürede veritabanlarındaki

gizli bilgileri ortaya çıkaracak hale getirilmeleri gerekmektedir.

Bu projede K-means veri madencili�i algoritmasının büyük veri tabanlarını kısa

sürede gruplandıracak �ekilde geli�tirilece�i öne sürülmü�tür. Algoritmanın,

paralelle�tirme yöntemi ile geli�tirilmesine karar verilmi�tir. Günümüzde, i�leme

gücünün artırılmasının en popüler yolunun bilgisayarların birbirine ba�lanması ve

algoritmaların bilgisayar a�ları üzerinde e� zamanlı olarak çalı�tırılması oldu�u için

paralelle�tirme yöntemi bu geli�tirme çalı�ması için uygun görülmü�tür. Ayrıca bu

popülarite, paralel bilgisayar laboratuarlarının bulunulabilirli�ini de günden güne

artırmaktadır.

K-means algoritmasının paralel versiyonu C Programlama Dili kullanılarak

geli�tirildi. Paralelle�tirme i�lemi için ise MPI (Message Passing Interface) kütüphanesi

kullanıldı. Zaman açısından bir kar�ıla�tırma yapılabilmesi için klasik (seri versiyon)

algoritma da C Programlama Dili kullanılarak geli�tirildi. Daha sonra, algoritmalar aynı

�artlar altında birden fazla kez çalı�tırılarak sonuçları tartı�ıldı. Tablolar ve grafikler

kullanılarak özet haline getirilen çalı�tırma sonuçları göstermi�tir ki K-means

algorithmasının paralelle�tirilmesi sonucunda hemen hemen paralel çalı�tırmada

kullanılan bilgisayar sayısı kadar performans kazanımı elde edilmi�tir.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ..viii

LIST OF TABLES.. ix

CHAPTER 1 INTRODUCTION...1

 1.1 Motivation and Objectives..1
 1.2 Used Materials and Environments..2
 1.3 Structure of the Study ...3

CHAPTER 2 KNOWLEDGE DISCOVERY IN DATABASES AND DATA
AAAAAAI MINING...5

 2.1 Data Mining..6
 2.1.1 Data Warehousing ..7
 2.1.2 OLAP (On Line Analytical Processing).....................................7
 2.1.3 AI (Artificial Intelligence) and Statistics9

 2.2 Types of Data Mining Algorithms..9
 2.2.1 Association Rules Algorithms..9
 2.2.2 Classification Algorithms...10
 2.2.3 Clustering Algorithms ..10

CHAPTER 3 SERIAL K-MEANS ALGORITHM...12

 3.1 Measurement of Distance Between Objects and Means...................13
 3.2 Selection of Initial Means ...14
 3.3 Steps of K-means Algorithm ..14
 3.4 An Example for K-means Convergence ...16
 3.5 Implementation of K-means Clustering Algorithm..........................19
 3.6 Deficiencies of Serial K-means Algorithm.......................................28

CHAPTER 4 PARALLELIZATION OF ALGORITHMS30

 4.1 Parallel Programming Architectures..32
 4.2 Parallel Programming Models ...32
 4.3 Parallel Programming with MPI..33

CHAPTER 5 PARALLEL K-MEANS ALGORITHM34

 5.1 Overview of the Parallel K-means Algorithm...................................35
 5.2 Steps of Parallel K-means Algorithm ..36
 5.3 Example Convergence for Parallel K-means Algorihtm38

 vii

 5.4 Implementation of Parallel K-means Algorithm43
 5.5 Network Environment for the Test of Parallel Program....................46
 5.6 Expectations from the Parallel Algorithm ...47

CHAPTER 6 RESULTS OF SERIAL AND PARALLEL K-MEANS
AAAAAAALGORITHMS...48

 6.1 Datasets Used for K-means Clustering..48
 6.1.1 Color Histogram Dataset ...48
 6.1.2 US Census Dataset of year 1990 ...50

 6.2 Execution Strategy for Testing the Algorithms53
 6.3 K-means Clustering Results of Datasets..59

 6.3.1 Execution Results of Dataset1...60
 6.3.2 Execution Result’s of Dataset2 ...62

 6.4 Comparison of Results of Serial and Parallel K-means.....................65

CHAPTER 7 CONCLUSION AND FUTURE WORKS....................................76

REFERENCES ...78

 viii

LIST OF FIGURES

Figure 2.1 Overall Representation of KDD Process ...…………………….. 5
Figure 3.1 Illustration for the Convergence of K-means Algorithm ………. 13
Figure 3.2 Steps of Classical K-means Algorithm ………………………… 15
Figure 3.3 Steps of K-means Algorithm in Schematic Representation …… 16
Figure 3.4 Initial State of the Process in Serial K-means …………………. 17
Figure 3.5 Second State of the Process in Serial K-means ………………... 17
Figure 3.6 Third State of the Process in Serial K-means ………………….. 18
Figure 3.7 Forth State of the Process in Serial K-means ………………….. 18
Figure 3.8 Fifth State of the Process in Serial K-means …………………... 18
Figure 3.9 Sixth State of the Process in Serial K-means …………………... 19
Figure 3.10 Seventh State of the Process in Serial K-means ……………..… 19
Figure 3.11 Type Definition of Instances …………………..………………. 21
Figure 3.12 Implementation of “push” Function ...…………………………. 22
Figure 3.13 Implementation of “pop” Function ………………………..…... 23
Figure 3.14 Part of the Program that Performs K-means Clustering ……….. 24
Figure 3.15 Generation of Initial Means for the First Dataset ……………… 25
Figure 3.16 Generation of Initial Means for the Second Dataset …………… 26
Figure 3.17 Function that Finds the New Cluster of an Object …………….. 26
Figure 3.18 Function that Calculates Means in Each Iteration ……………... 27
Figure 3.19 Function to Calculate the Means in Each Iteration of K-means

Algorithm ………………………………………………………

28
Figure 5.1 Steps of Parallel K-means Algorithm ………………………….. 37
Figure 5.2 Steps of Parallel K-means Algorithm in Schematic

Representation .….……………………………………………...

38
Figure 5.3 Initial State of the Processes in Parallel K-means ……………... 39
Figure 5.4 Second State of the Processes in Parallel K-means ……………. 39
Figure 5.5 Third State of the Processes in Parallel K-means ……………… 40
Figure 5.6 Forth State of the Processes in Parallel K-means ……………… 41
Figure 5.7 Fifth State of the Processes in Parallel K-means ……………..... 42
Figure 5.8 Sixth State of the Processes in Parallel K-means ……………… 42
Figure 5.9 Seventh State of the Processes in Parallel K-means …………... 43
Figure 5.10 Definition and Initialization of MPI Variables ……………...… 44
Figure 5.11 Usage of MPI_Barrier Command ……………………………… 44
Figure 5.12 MPI Communications in K-means Clustering …………………. 45
Figure 6.1 Means of Execution Times for Color Histogram Dataset ……... 71
Figure 6.2 Means of Execution Times for US Census Dataset ……………. 72
Figure 6.3 Execution Times for Color Histogram Dataset ………………... 73
Figure 6.4 Execution Times for US Census Dataset ………………………. 74

 ix

LIST OF TABLES

Table 6.1 Statistical Values for Color Histogram Dataset ……………....... 49
Table 6.2 Attribute Names of US Census Dataset ……………...………… 51
Table 6.3 First Half of Statistical Values for US Census Dataset …...…… 51
Table 6.4 Second Half of Statistical Values for US Census Dataset …...… 52
Table 6.5 Naming of Datasets …………………………………………….. 55
Table 6.6 Naming of Random Initial Points ……………………………… 55
Table 6.7 Naming of K-means Algorithm Versions ……………………… 56
Table 6.8 Execution Sequence and Naming of Serial Algorithm ………… 56
Table 6.9 Execution Sequence and Naming of Parallel1 Algorithm ……... 57
Table 6.10 Execution Sequence and Naming of Parallel2 Algorithm ……... 57
Table 6.11 Execution Sequence and Naming of Parallel5 Algorithm ……... 57
Table 6.12 Execution Sequence and Naming of Parallel11 Algorithm ……. 58
Table 6.13 Expected Results of Executions ………………………………... 58
Table 6.14 Item Distribution for Result1 Which uses Random11 ……...….. 61
Table 6.15 Item Distribution for Result2 Which uses Random12 …………. 61
Table 6.16 Item Distribution for Result3 Which uses Random13 …………. 61
Table 6.17 Item Distribution for Result4 Which Uses Random14 ………… 62
Table 6.18 Item Distribution for Result5 Which Uses Random15 ………… 62
Table 6.19 Item Distribution for Result6 Which Uses Random21 ………… 63
Table 6.20 Item Distribution for Result7 Which Uses Random22 ………… 63
Table 6.21 Item Distribution for Result8 Which Uses Random23 ………… 63
Table 6.22 Item Distribution for Result9 Which Uses Random24 ………… 64
Table 6.23 Item Distribution for Result10 Which Uses Random25 ……….. 64
Table 6.24 Summary of 10 Results of K-means Clustering ……………….. 65
Table 6.25 Execution Summary in Time for Dataset1 and Random11 ……. 66
Table 6.26 Execution Summary in Time for Dataset1 and Random12 ……. 66
Table 6.27 Execution Summary in Time for Dataset1 and Random13 ……. 67
Table 6.28 Execution Summary in Time for Dataset1 and Random14 ……. 67
Table 6.29 Execution Summary in Time for Dataset1 and Random15 ……. 67
Table 6.30 Execution Summary in Time for Dataset2 and Random21 ……. 68
Table 6.31 Execution Summary in Time for Dataset2 and Random22 ……. 68
Table 6.32 Execution Summary in Time for Dataset2 and Random23 ……. 68
Table 6.33 Execution Summary in Time for Dataset2 and Random24 ……. 69
Table 6.34 Execution Summary in Time for Dataset2 and Random25 ……. 69
Table 6.35 Execution Times in Seconds for the First Dataset ……………... 69
Table 6.36 Execution Times in Seconds for the Second Dataset ………….. 70

1

CHAPTER 1

INTRODUCTION

Parallel version of the K-means algorithm has been designed and implemented in this

project for the purpose of improvement of K-means algorithm in execution time. Serial

(Classical K-means) version of the algorithm has also been implemented for the purpose of

comparison with parallel the version in time. Both implementations have been tested on the

same environment and results have been discussed. As K-means is a clustering algorithm

which is a type of data mining algorithm, data mining and clustering have also been

examined in the project. KDD (Knowledge Discovery in Databases) has also been

discussed, because data mining is a step of it. After addressing where K-means stands,

details of serial and proposed parallel K-means algorithms has been presented. Before

examining parallel K-means algorithm, parallelisation concept of algorithms has been

introduced in order to prepare a background for the details of parallel K-means algorithm.

After all, both versions (serial and parallel) of the algorithm have been executed on the

same platform and results have been discussed.

1.1 Motivation and Objectives

 Historical data is very important for companies in order to make better business

decisions for their future. Historical data includes valuable hidden information which is

waiting to be discovered. This information can help companies in order to acquire new

customers, protect their existing customers, detect fraudulent use of their services,

determine security holes of their systems and lots of other things.

In order for a company to gain competitive advantage in the market, it must save all of

its historical data, mine this data to gather patterns-relationships and then interpret these

patterns-relationships to get the information and knowledge. For this purpose, large

companies establish data warehouse departments. Data warehouse departments of

2

companies collect and store transactional data from the activities of the company during the

day. This data is then evaluated by some statistical works (for example OLAP – On Line

Analytical Processing for past and data mining for present) in order to help in their decision

making.

In recent years, databases of companies have grown dramatically in size. Together

with the size of data, amount of strategic and valuable hidden information has also become

great. By the grow of historical data, classical data mining algorithms have become

inadequate in performance. Classical algorithms seriously lack in performance while trying

to mine huge amounts of data which causes companies to loose time and also the marketing

advantage.

Need of fast mining of large databases has brought need of revising existing data

mining algorithms. In this project, parallelization of K-means algorithm has been proposed

as an improvement in classical K-means algorithm in order to cluster large databases in

short times.

Objective of the parallelization of K-means algorithm is to make the algorithm

produce exactly same results with the serial algorithm in shorter duration. Serial K-means

algorithm lacks in performance especially in large databases.

And also, parallel version should not require special hardware to execute on. The

parallel algorithm proposed and developed in this project can execute on a network of

standard PC’s on which classical K-means execute also.

1.2 Used Materials and Environments

C Programming Language has been used in order to develop both serial and the

parallel K-means algorithm. For the parallel version of the algorithm a tool called MPI

(Message Passing Interface) has been used. This collection of libraries enables the C

programmer in order to coordinate computers in the network for the purpose of performing

a task in parallel manner.

Two datasets have been used for the executions of the algorithms. First one of the

datasets is Color Histogram Dataset (smaller dataset). This dataset has 68,040 records with

32 dimensions. Dataset holds colour histogram information of 68,040 images in other

3

words. Second dataset is the US Census Dataset (larger dateset). This datset has 1,000,000

records with 68 dimensions. Both of these datasets have been gathered from the KDD

(Knowledge Discovery in Databases) archive of University of California, Irvine

(http://kdd.ics.uci.edu/). Lots of datasets are published in the web site of this university and

these datasets are available to be used in KDD researches. These data are standard for KDD

researchers for the purpose of benchmarking.

Execution of serial and parallel K-means programs has been performed on the

parallel programming laboratory of Computer Engineering Department of Marmara

University. This is a well constructed network of 11 PC’s which have linux operating

system and MPI library installed. Details of this laboratory have been presented in chapter

5.5.

1.3 Structure of the Study

In Chapter 2 of the project, data mining and KDD (Knowledge Discovery in

Databases) have been introduced. Relations of data mining with data warehousing, OLAP

(On Line Analytical Processing) and AI (Artificial Intelligence) have also been discussed in

this chapter. And also, types of data mining algorithms have been presented shortly.

K-means algorithm, which is the main focus of this project, has been examined in

detail in chapter 3. Steps and implementation details of the algorithm have also been

provided. Besides, deficiencies of the serial K-means algorithm have been discussed at the

end of this section.

Parallelization concept of algorithms in general has been examined in chapter 4.

Before the parallelization of K-means algorithm, aim of parallelization, architectures of

parallel algorithms, models of parallel algorithms according to the memory access and

important things for a parallel algorithm in order to perform its goal have been discussed in

this chapter.

In chapter 5, parallelization of K-means algorithm has examined in detail. Steps and

implementation details of the parallel version have presented in detail and expectations

from the parallel algorithm have been discussed.

4

Finally in chapter 6, serial and parallel versions of the algorithm are executed

several times on two different datasets in order to make a comparison. Results of both

algorithms are gathered and discussed in detail in this section.

5

CHAPTER 2

KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING

KDD refers to the overall process of discovering useful knowledge from databases.

KDD consist of several steps. Data mining refers to a particular one of those steps of

overall KDD process. Data mining is the application of specific algorithms for extracting

patterns, which then will be interpreted and evaluated to produce knowledge, from data

[Fayyad, Piatetsky-Shapiro, and Smyth 1996]. Main aspect of this Master’s Thesis Project

is the data mining itself, not the whole KDD process. Therefore, data mining will be

examined in more detail then the overall KDD process.

In addition to data mining step, KDD process also has data selection, preprocessing,

transformation and interpretation steps as shown in Figure 2.1 [Fayyad, Piatetsky-Shapiro,

and Smyth 1996]. Composition of these steps constitutes the KDD process. In order to

understand what data mining is and address where it stands, overall KDD process will be

presented shortly. In Figure 2.1, overall representation of KDD process, which also

includes data mining step, can be seen.

Figure 2.1 Overall Representation of KDD Process

6

KDD process consists of Data Selection, Preprocessing, Transformation, Data

Mining and Interpretation / Evaluation steps. First step of KDD process is to create a target

dataset on which KDD will be performed. This is to select an application dataset or a subset

of it. Second step of KDD is the cleaning and preprocessing. Basically, removal of noise in

data is performed and strategies for handling missing data fields are developed in this step.

As a third step, transformation of preprocessed data is performed. This is to find useful

features of data which defines the data according to the needs of data mining algorithm.

Next step is the data mining itself, which uses transformed data and produces patterns and

relationships. Final one is the interpretation and evaluation step which is to comment on

mined patterns in order to develop knowledge. In this step, return back to each of other

steps may be performed for further iterations.

Simply put, as a result of KDD process, knowledge is produced which helps people

make better business decisions [Ganti, Gehrke and Ramakrishnan 1999]. Data mining is a

step in KDD which is used to discover hidden patterns and relationships in data. Data

mining is a process that uses a variety of data analysis tools to discover patterns and

relationships in data that may be used to make valid predictions. As shown in the Figure

2.1 [Fayyad, Piatetsky-Shapiro, and Smyth 1996], data mining produces patterns, not the

knowledge itself. Knowledge can then be produced by interpreting and evaluating these

patterns, which are produced by data mining algorithms.

2.1 Data Mining

As mentioned above, data mining is the task of discovering hidden patterns and

relationships in databases which are prior to knowledge production. In companies’ large

databases, there are lots of hidden patterns of strategic importance [Ganti, Gehrke and

Ramakrishnan 1999]. Data mining is the only method of digging these databases and

finding these valuable patterns. Without data mining, it is impossible to examine such large

databases and produce valuable information.

Data mining is very critical for companies in order to produce strategic information

by using their historical data. By using data mining, companies can control their costs and

7

increase revenue [Palace 1996]. Currently, data mining is being used in wide variety of

business areas for lots of purposes. Most organizations use data mining in order to manage

their customer life cycle such as acquiring new customers, increasing revenue of existing

ones and retaining good customers [Edelstein]. When a company defines the characteristics

of its customers by using historical data, it can predict the future behaviors of existing and

candidate ones, so that it can develop required strategies. And also, a lot of organizations,

such as telecommunication, credit card and insurance companies, use data mining in order

to detect and reduce fraudulent use of their services [Hengl 2003]. Besides, financial

companies use data mining to determine market and industry characteristics and retailers

use it in order to decide which product to stock in their stores.

Data mining is strongly related and supported with some other data processing and

statistical works. Most important ones of these efforts are mentioned shortly in the

following parts in relation with data mining.

2.1.1 Data Warehousing

Success of data mining is strongly related with data warehousing functions of

companies. Data mining uses pre-processed data which are supplied by data warehouses.

Companies’ data warehousing departments develop functions which collect valuable data

from business activities continuously. Collected and cleansed data are then stored in data

warehouses in order to be used in statistical works. Data mining is the one of the most

important ones of those statistical works which uses the data stored in data warehouses.

2.1.2 OLAP (On Line Analytical Processing)

One of the most confusing points in data processing is the difference between data

mining and OLAP (On Line Analytical Processing). Although they seem to be similar, they

are very different techniques of data processing and they are complements of each other

[Two Crows Corporation 1999].

8

OLAP is a part in evolutionary of decision support tools. OLAP goes further than

traditionally querying and reporting of data to search what is in a database. OLAP is used to

verify whether certain things are true or not. User of the OLAP tool makes a hypothesis and

tries to verify his or her hypothesis by using a series of queries on data [Two Crows

Corporation 1999]. If it is not verified by the OLAP tool, user modifies his or her guess and

retries to verify it by the tool. In other words, the user makes guesses to find patterns and

relationships in data and tries to verify or disprove those guessed patterns and relationships

by using OLAP tool. This effort continues until desired patterns and relationships in data

are discovered.

OLAP analysis is a deductive process which means that the pattern is found initially

and then it is verified by the data. It is clear that when dealing with huge amounts of data

that have large number of variables (attributes), it is very hard for users to make valuable

hypothesis. This is where importance of data mining arises.

Unlike OLAP, data mining is an inductive process. In data mining, data itself is

used to uncover hidden patterns and relationships. Users do not need to make guesses for

patterns, because hidden patterns are discovered by data mining algorithms by using data

without any interaction of users. Successful data mining algorithms can uncover more

valuable patterns in much less time than using OLAP tools especially when the amount of

data and number of variables are great.

When it comes to the complementary part of data mining and OLAP, discovered

patterns of data mining algorithms can be analyzed by using OLAP tools [Two Crows

Corporation 1999]. OLAP is a very useful data processing technique to verify patterns on

data before using those patterns to produce knowledge. Companies can test discovered

patterns by using OLAP tools in order to find what deficiencies and implications may arise

when using those patterns. While OLAP may be used in order to verify the validity of

produced patterns, it may also be used to discover possible harms or unexpected results of

using even valid patterns.

9

2.1.3 AI (Artificial Intelligence) and Statistics

Data mining, in fact, is the application of AI and statistical techniques in order to

perform a common task. Therefore, advances in both AI and statistics are very beneficial

for data mining. Both disciplines make progress on pattern recognition and classification

which are also the work are of data mining [Two Crows Corporation 1999]. Data mining

does not replace these communities but combines them and goes further for discovering

patterns and relationships.

2.2 Types of Data Mining Algorithms

Data mining algorithms are the collection of techniques in order to perform data

mining task. Currently, there are a lot of data mining algorithms for a wide range of data

mining tasks. Mainly, these algorithms can be categorized into there groups according to

the types of patterns which those algorithms try to discover [Apte 1997]. These three types

of algorithm are presented in the following parts.

2.2.1 Association Rules Algorithms

Association Rules algorithms (Link Analysis in other words) deal with finding the

statistical relations (associations) between two given types of objects that exist in the

dataset. In other words, these algorithms find how often events occur together. For

example, a statement like “A customer who buys tea from a supermarket will likely buy

sugar” is an association. Associations of items in a business unit must be considered

carefully in order to develop good strategies.

10

2.2.2 Classification Algorithms

Classification is assigning the objects in the dataset into a predefined set of classes.

Classification is a type of supervised learning, because the set of classes are introduced to

the system before executing classification algorithm. Classification of objects in a dataset is

very useful both to understand the characteristics of existing objects and to predict the

behaviors of new objects. Classification of e-mails, incoming to an e-mail server, into

predefined e-mail classes can be an example for this type of data mining. In this way,

behaviors of an e-mail server, such as giving priority to e-mails or blocking some ones, can

be determined for incoming e-mails.

2.2.3 Clustering Algorithms

Clustering is the grouping of similar objects and a cluster of a set is a partition of its

elements that is chosen to minimize some measure of dissimilarity [Kantabutra 1999].

Unlike classification which is a supervised learning technique, clustering is a type of

unsupervised learning [Crocker and Keller]. In clustering, objects in the dataset are grouped

into clusters, such that groups are very different from each other and the objects in the same

group are very similar to each other. In this case, clusters are not predefined which means

that result clusters are not known before the execution of clustering algorithm. These

clusters are extracted from the dataset by grouping the objects in it. For some algorithms,

number of desired clusters is supplied to the algorithm, whereas some others determine the

number of groups themselves for the best clustering result. Clustering of a dataset gives

information on both the overall dataset and characteristics of objects in it.

As an example for clustering, categorization of documents (books, assays,

magazines and etc.) in a document collection can be considered. After grouping these

documents, an overall view for the major topics of the collection will be gathered including

the number and characteristics of groups of documents in the collection. And also, because

documents in each group are similar to each other and represent the features of their group,

11

an overview of each document will be gathered and access to required document will be

much easier.

K-means algorithm, which is the subject of this project, is a type of clustering

algorithm. Classical K-means algorithm will be examined and compared with the newly

designed parallelized K-means algorithm in the scope of project. Since parallelization is

considered, classical K-means algorithm will be referred as serial K-means algorithm and

the other one will be referred as parallel K-means algorithm in the following parts. At first,

serial K-means will be examined and then the parallel one will be focused.

12

CHAPTER 3

SERIAL K-MEANS ALGORITHM

K-means is a data mining algorithm which performs clustering. As mentioned

previously, clustering is dividing a dataset into a number of groups such that similar items

fall into same groups [Kantabutra 1999]. Clustering uses unsupervised learning technique

which means that result clusters are not known before the execution of clustering algorithm

unlike the case in classification. Some clustering algorithms takes the number of desired

clusters as input while some others decide the number of result clusters themselves.

K-means algorithm uses an iterative procedure in order to cluster database [Ali,

Ghani and Saeed 2001]. It takes the number of desired clusters and the initial means as

inputs and produces final means as output. Mentioned initial and final means are the means

of clusters. If the algorithm is required to produce K clusters then there will be K initial

means and K final means. In completion, K-means algorithm produces K final means

which answers why the name of algorithm is K-means.

After termination of K-means clustering, each object in dataset becomes a member

of one cluster. This cluster is determined by searching throughout the means in order to

find the cluster with nearest mean to the object. Shortest distanced mean is considered to be

the mean of cluster to which examined object belongs.

K-means algorithm tries to group the items in dataset into desired number of

clusters. To perform this task it makes some iteration until it converges. After each

iteration, calculated means are updated such that they become closer to final means. And

finally, the algorithm converges and stops performing iterations.

Expected convergence of K-means algorithm is illustrated in the image below.

Algorithm converges in three iterations in the illustrated example. Blue points represent the

initial means which may be gathered randomly. Purple points stands for the intermediate

means. Finally, red points represent the final means which are also the results of K-means

clustering. As presented in the illustration, means move to the cluster centroids by each

13

iteration of K-means algorithm. When they reach to the cluster centroids, the algorithm

converges.

Figure 3.1 Illustration for the Convergence of K-means Algorithm

In following parts, subjects on K-means, steps of it and convergence condition of

the algorithm will be discussed.

3.1 Measurement of Distance Between Objects and Means

Different techniques can be used in K-means clustering in order to measure the

distance between objects and means. Most popular two distant metrics are Manhattan

Distance and Euclidean Distance.

Manhattan distance is the simplest one of those metrics. This metric is the absolute

value of difference between object and the mean. Euclidean distance is the square root of

addition of squared differences between corresponding dimensions of object and the mean.

Since Euclidean distance is the most common distance metric, especially when dealing with

multi-dimensional data, Euclidean distance is used for K-means clustering in this project as

a distance metric.

14

3.2 Selection of Initial Means

Selecting of initial means is up to the developer of clustering system [Bradley and

Fayyad 1998]. This selection is independent of K-means clustering, because these means

are inputs of K-means algorithm. Some developers prefer to select initial means randomly

from dataset while some others prefer to produce initial points randomly.

It is known that selection of initial means affects the execution time and success of

K-means algorithm. Some strategies are developed to gather better results considering the

initial means. The simplest of these strategies is to execute K-means algorithm with

different sets of initial means and then select the best results. But this strategy is hardly

feasible especially for serial K-means when dataset is large.

Another strategy to gather better clustering results is to refine initial points [Bradley

and Fayyad 1998]. If it is possible to begin K-means algorithm with initial means which are

closer to final means, it is strongly possible that number of iterations that the algorithm

needs to converge will decrease which also lessens the required time for conversion and

increase the accuracy of final means.

There are different ways of evaluating clustering results, which will be discussed

later, in order to select best results. Developers of clustering systems need to decide on

which criteria to use in order to select the best clustering results.

3.3 Steps of K-means Algorithm

As stated earlier, K-means algorithm takes initial means as input. Then it iterates

and updates the means in each iteration. Each of updates to means in iterations makes those

means closer to final means. This is why K-means algorithm converges after a number of

iterations.

Initial means and produced subsequent means are used to assign objects into

clusters. Initially, objects are assigned into clusters that have the nearest mean to them by

using initial means which are supplied to the algorithm as input. This is the first iteration of

algorithm. When all objects are assigned into clusters, cluster means are recalculated by

15

using the objects in the clusters. These means are supposed to be closer to final means

when compared with initial ones. Next, all objects are reassigned to clusters by using new

means. This is the conclusion of second iteration. Probably, some objects will move to

different clusters when using new means considering their clusters with the previous

means. These iterations of K-means algorithm continues until no object moves to another

cluster between to iterations. This is the convergence of the algorithm. Since means get

closer to final means, which has the minimum distortion compared with other means, by

each iteration, it is certain that K-means algorithm will converge after a number of iteration.

Steps of K-means algorithm are seen below in Figure 3.2,

• Calculate initial means

• Assign objects into clusters by using initial means

• Do while objects move to another clusters

o Recalculate means of clusters by using objects belonging to them

o Assign objects into clusters by using calculated means

• End of while (Convergence of the algorithm)

Figure 3.2 Steps of Classical K-means Algorithm

It is certain that steps of K-means algorithm are very simple and straightforward, but

the task performed is great as a result of the iterative structure of algorithm. Simplicity,

execution in linear time and the ability of successful clustering makes the K-means

algorithm one of the most common clustering algorithms all over the world. A schematic

version of steps of Serial K-means algorithm is also presented in Figure 3.3.

16

Figure 3.3 Steps of K-means Algorithm in Schematic Representation

3.4 An Example for K-means Convergence

In this section, an example representative small dataset will be clustered in order to

simulate the iterations and convergence of K-means algorithm. This dataset consists of

eight integer valued instances with only one dimension. Desired number of clusters is two.

States of the process with the dataset in each stage of K-means clustering are

presented in the figures below. The computer, executing the K-means algorithm, is referred

as process in these figures, because in the following parts of the project, parallelized

version of the algorithm will be introduced and in that case there will more than one

processes.

Select Initial Means Randomly

Compute New Means

Reform Clusters

Any Movement?

YES

End
NO

Continue
Iteration

Form Initial Clusters

17

Figure 3.4 Initial State of the Process in Serial K-means

In the initial state, as shown in Figure 3.4, cluster means do not exist and clusters of

the process is empty. Data in dataset is shown in the right hand side of dataset.

Figure 3.5 Second State of the Process in Serial K-means

In the second state, initial means are selected from the dataset randomly. This

selection is up to the designer of K-means clustering. The designer may choose to select

initial means randomly from the dataset or produce those means randomly in the range of

data. And also, some other one may prefer to produce better initial means which are closer

to final means by using some statistical techniques.

Cluster Mean 1 Cluster Mean 2

27 12

Cluster 1 Cluster 2

34

11

5

27

19

21

20

12

Dataset

Cluster Mean 1 Cluster Mean 2

Cluster 1 Cluster 2

34

11

5

27

19

21

20

12

Dataset

18

Figure 3.6 Third State of the Process in Serial K-means

In third state, data in dataset are assigned to clusters with the nearest means.

Figure 3.7 Forth State of the Process in Serial K-means

In forth state, means are recalculated using the values of objects in the clusters.

Figure 3.8 Fifth State of the Process in Serial K-means

In fifth state, objects are reassigned into clusters using new means which are equal

to 25,50 and 11,75.

Cluster Mean 1 Cluster Mean 2

27 12

Cluster 1 Cluster 2

34

Dataset

20

27 21
11 5

19 12

34 27

19

21

20

12

11

5

Cluster Mean 1 Cluster Mean 2

25,50 11,75

Cluster 1 Cluster 2

34

Dataset

20

27 21
11 5

19 12

34 27

19

21

20

12

11

5

Cluster Mean 1 Cluster Mean 2

25,50 11,75

Cluster 1 Cluster 2

34 20

27 21

11 5

19
12

Dataset

34 27

19
21

20

12
11
5

19

Figure 3.9 Sixth State of the Process in Serial K-means

In sixth state, cluster means are recalculated by using the values of objects in the

clusters.

Figure 3.10 Seventh State of the Process in Serial K-means

As it can be seen, seventh and sixth states of the process is the same because no

object has moved to another cluster after reassignment of objects by using means 24,20 and

9,33. This condition makes the K-means algorithm to converge and terminate execution. In

summary, 24,20 and 9,33 are the result (final) means of K-means clustering algorithm.

3.5 Implementation of K-means Clustering Algorithm

Some decisions have been made before starting to the development of K-means

clustering program. One of these decisions is the selection of initial points. Initial means of

Cluster Mean 1 Cluster Mean 2

24,20 9,33

Cluster 1 Cluster 2

34 20
27 21

11 5

19

12

Dataset

34 27
19
21

20

12

11
5

Cluster Mean 1 Cluster Mean 2

24,20 9,33

Cluster 1 Cluster 2

34 27
19
21

20

12
34 20

11
5

27 21

11 5

19
12

Dataset

20

K-means have been decided to be generated randomly in the range of data in dataset. Since

the purpose of development of K-means program in this project is to compare serial K-

means with parallelized K-means in execution times, generating initial means randomly is

suitable. It is important here that initial points in both versions must be produced in the

same way in order to have the chance of comparing them.

Another decision for the program is the choice of metric for the distances between

objects and cluster means. Euclidean Distance has been decided to be used for distance

metric, because it is a commonly preferred metric especially for multi dimensional data.

C Programming Language is used for the development of K-means program. C

Language has a lot of advantages such as executability on most platforms and fast

execution in time. Therefore it is a good choice for performance comparison. And also, the

language supports parallel programming by the help of a tool which is called MPI1

(Message Passing Interface). MPI will also be examined in detail in the following sections.

Data in datasets are read from physical data files. These files are read into memory

by using file reading functions of C Language. Data file is read into memory sequentially,

because all the data need to be read into memory.

Management of data in memory is performed by using stacks which is a type of link

list. Each cluster in memory is represented by a stack and movement of objects in memory

from one cluster (stack) to another one is performed by calling “pop” and “push” functions

of previous and next stacks. Stacks are preferred to be used instead of arrays, because

stacks are dynamic (increases and decreases dynamically by usage of “pop” and “push”

functions) unlike arrays which need to be resized when adding or removing an object which

decreases the readability of program and brings an overhead for the execution of program.

Code fragments for stack management are presented below. Memory management

strategy for a program is very important, because all the business logic in a program relies

on the memory management functions which are the background for those logic. A

deficiency or an error in memory management functions of a program will certainly cause

the program not to work correct.

1 MPI (Message Passing Interface) is a collection of libraries that allow to produce parallel
applications by using C Language on network of computers (Ethernet Networks)

21

At first, a struct type is created in order to define objects (instances) in dataset. A

record type, called INSTANCE, is defined as presented blow in Figure 3.11. This

definition holds both a double typed data and a link to the next instance because of the

requirement of linked lists.

 typedef struct node
 {
 double *data;
 struct node *link;
 } INSTANCE;

Figure 3.11 Type Definition of Instances

“push” and “pop” functions are also presented below in Figure 3.12 and Figure

3.13. These functions are used in order to add and remove items of type INSTANCE into

and from stacks. After development of these functions, it is easy to manage stacks (add and

remove items).

22

 int push(INSTANCE **ptr, double *item)
{
 INSTANCE *p;

 if(empty(*ptr))
 {
 p = malloc(sizeof(INSTANCE));
 if(p != NULL)
 {
 p->data = item;
 p->link = NULL;
 *ptr = p;
 }
 else
 {
 return 0;
 }
 }
 else
 {
 p = malloc(sizeof(INSTANCE));
 if(p != NULL)
 {
 p->data = item;
 p->link = *ptr;
 *ptr = p;
 }
 else
 {
 return 0;
 }
 }

 return 1;
} //int push

Figure 3.12 Implementation of “push” Function

As it seen in the code fragment, “push” function at first allocates memory space for

the INSTANCE and then connects it to the stack. Code fragment for the “pop” function is

presented below.

23

int pop(INSTANCE **ptr, double **item)
{
 INSTANCE *p;

 p = *ptr;
 if(empty(p))
 {
 *item = NULL;
 return 0;
 }
 else
 {
 *item = p->data;
 *ptr = p->link;
 free(p);
 return 1;
 }
} //int pop

Figure 3.13 Implementation of “pop” Function

“pop” function detaches an INSTANCE from the stack with the “last in first out”

manner, frees the memory space for that INSTANCE and returns the double typed valued

in the INSTANCE by the reference parameter to the caller of function. If the stack is

empty, function returns zero as a return value.

Last in first out characteristic of stack does not make any sense for K-means

algorithm, because in K-means algorithm all objects (INSTANCE’s) are removed from old

cluster and added to the new cluster. Sequence of addition and removal of objects is not

important for K-means algorithm.

In developed K-means clustering program, all data in dataset is read sequentially

into a stack which is then distributed into K clusters at first iteration by the use of initial

means. In subsequent iterations, all objects in all stacks (clusters) are popped from the old

clusters and pushed to the new clusters by using the intermediate means. A code fragment

that performs this task is shown below.

24

 get_initial_means(means_array, clus_count, means_dim);
 iter_count = 0;
 chg_exist = 1;

 while (chg_exist == 1)
 {
 chg_exist = 0;

 //swap clus_arr_new and clus_arr_old
 clus_arr_tmp = clus_arr_new;
 clus_arr_new = clus_arr_old;
 clus_arr_old = clus_arr_tmp;

 for (k = 0; k < clus_count; k++)
 {
 while (pop(&clus_arr_old[k],&data) == 1)
 {
 new_index = find_new_index(means_array, clus_count, means_dim, data);
 push(&clus_arr_new[new_index], data);
 if (new_index != k)
 {
 chg_exist = 1;
 }
 }
 }

 calculate_means(clus_arr_new, means_array, clus_count, means_dim);
 iter_count++;
 } //while (chg_exist == 1)

Figure 3.14 Part of the Program that Performs K-means Clustering

The above code fragment in Figure 3.14 actually performs the K-means clustering.

It uses some functions which are highlighted by bold characters. Above code, in general,

produces initial means, pops all items in clusters and pushes them into their new cluster

which is the one that has the shortest distanced mean to the item. After reassignment of

items, algorithm recalculates means by using items in clusters and continues to iterate.

Algorithm terminates (converges) when no movement of items between clusters occurs.

As it can be seen in previous code fragment, K-means clustering part of the program

uses some functions which are “get_initial_means”, “find_new_index” and

“calculate_means”. In this part, these functions will be presented and examined shortly.

25

 void get_initial_means1(double *p_means_arr, int p_clus_count, int p_dim_count)
 {
 int k,i;
 double divident;

 //Select means randomly
 for (k = 0; k < p_clus_count; k++)
 {
 for (i = 0; i < p_dim_count; i++)
 {
 divident = 0;
 while (divident == 0)
 {
 divident = rand() % 1000;
 }

 p_means_arr[p_dim_count * k + i] = 1 / divident;
 }
 }

 } //get_initial_means1

Figure 3.15 Generation of Initial Means for the First Dataset

“get_initial_means1”, presented in Figure 3.15, is the function that produces

random initial cluster centroids for the first dataset. Points, in the range of first dataset, are

generated by the presented function. It first generates a random number between 0 and 999.

Then, it divides 1 by the generated number and produces a result between 0 and 1 which is

mostly closer to 0. This method is used in order to generate each dimension of each initial

point.

 Void get_initial_means2(double *p_means_arr, int p_clus_count, int
p_dim_count)
 {
 int k,i;

 //Select means randomly
 for (k = 0; k < p_clus_count; k++)
 {
 for (i = 0; i < p_dim_count; i++)
 {
 p_means_arr[p_dim_count * k + i] = rand() % 10;

26

 }
 }
 } //get_initial_means

Figure 3.16 Generation of Initial Means for the Second Dataset

“get_initial_means2”, presented in Figure 3.16, is the function that produces

random initial cluster centroids for the second dataset. It produces points in the range of

second dataset. Simply, an integer number between 0 and 9 is generated for each dimension

of each initial point.

int find_new_index(double *p_means, int p_clus, int p_col, double *p_data)
{
 double min_diff;
 double diff;
 int k;
 int result;

 for (k = 0; k < p_clus; k++)
 {
 diff = calc_euclid_diff(p_means, p_col, p_data, k);
 if (k == 0)
 {
 min_diff = diff;
 result = k;
 }
 else
 {
 if (diff < min_diff)
 {
 min_diff = diff;
 result = k;
 }
 }
 }

 return result;
}

Figure 3.17 Function that Finds the New Cluster of an Object

Above function in Figure 3.17 is used in order to find the new cluster of an object

in dataset. It calculates the Euclidean Difference of the object to each cluster and returns the

27

index of the cluster with the minimum difference. Differences are calculated by the

“calc_euclid_diff” function which is highlighted in the code fragment. This function is

presented below.

 double calc_euclid_diff(double *p_means, int p_col, double *p_data,int p_cur_row)
 {
 int k;
 double result;

 result = 0;
 for (k = 0; k < p_col; k++)
 {
 result += pow(p_data[k + 1] - p_means[p_col * p_cur_row + k], 2);
 }
 result = sqrt(result);

 return result;
 }

Figure 3.18 Function that Calculates Means in Each Iteration

Above function in Figure 3.18 calculates the Euclidean Difference between an

object and a cluster centroid. It sums the squares of differences of each dimension and

finally performs a square root operation to calculate the result difference.

 void calculate_means(INSTANCE **p, double *p_means, int p_clus, int p_dim)
 {
 int k, i;
 int count;
 INSTANCE *ptr;

 for (k = 0; k < p_clus; k++)
 {
 ptr = p[k];
 count = 0;

 //First, calculate totals of current cluster
 while(ptr != NULL)
 {
 for (i = 0; i < p_dim; i++)
 {

28

 p_means[p_dim * k + i] += ptr->data[i + 1];
 }
 count++;
 ptr = ptr->link;
 }

 //Second, Calculate means of current cluster
 if (count > 0)
 {
 for (i = 0; i < p_dim; i++)
 {
 p_means[p_dim * k + i] /= count;
 }
 }
 }

 } //void calculate_means

Figure 3.19 Function to Calculate the Means in Each Iteration of K-means Algorithm

Function in Figure 3.19 calculates the means of all clusters in dataset. It performs

add operation on corresponding dimensions of objects in a cluster and finally divides the

totals by the count of objects in that cluster in order to produce cluster means. It iterates for

each cluster in order to calculate means of all clusters.

3.6 Deficiencies of Serial K-means Algorithm

In today’s world, company’s databases have grown explosively which makes it very

time consuming or sometimes impossible to run traditional data mining algorithms on their

data bases. Therefore, serial K-means algorithm will either lack in performance or crash

when trying to cluster huge amounts of databases which arises the need of improvement of

K-means algorithm in order for the K-means algorithm to cluster large amounts of data in

reasonable times.

An ideal data mining algorithm should scale well. In other words, the algorithm

should produce true results in reasonable time even the database grows to very large

amounts. Therefore, some modifications should be done to traditional data mining

algorithms in order to make them scale well in case of huge amounts of data.

29

 The most popular and well working technique of increasing computation power is

parallel processing. Therefore, in this project, parallel processing is used in order to

improve K-means algorithm for clustering large databases in shorter times. Parallelization

techniques and developed parallelized version of K-means algorithm are presented in the

following sections in detail.

30

CHAPTER 4

PARALLELIZATION OF ALGORITHMS

Theory of parallelisation is mainly breaking large tasks into smaller ones, assigning

these smaller tasks to multiple working units and finally managing these multiple working

units [MHPCC 1999]. When efficient coordinating (well parallelism) of working units is

present, tasks can be completed in much shorter durations. Parallelisation of tasks is very

common in real life such as building construction.

Parallelisation is also applicable for algorithms. In the scope of this master thesis

project, serial version of K-means algorithm is implemented and the parallel version of the

algorithm is designed and implemented in C Language. Development of the parallel version

of the algorithm is to improve the algorithm in order to scale well for large volumes of data

and produce correct results in reasonable time.

As parallelisation is a strategy for performing large and time consuming tasks faster,

when parallel computing is considered, it is obvious that process power will be increased

and the process time will be decreased with the provision that design and implementation

of parallelization is done properly [MHPCC 1999]. And also, properties of algorithms,

which are to be parallelized, are very important for parallelization task. Some algorithms

are very suitable for parallelization but some of them are not.

In the best case, by parallelization of an algorithm, a performance gain by the

proportion of number of parallel computers can be observed. Let’s say, if a highly suitable

algorithm for parallelization is properly designed and implemented in parallel, it won’t be

surprising that the parallel version will complete execution “N” times faster than the serial

version when “N” computers are used.

Properties of parallel programming environment are also very important for the

success of parallelization. Parallel programming tool (the tool which distributes processes

into physical processors and manages the synchronization of them) and connection speed of

processors (computers in our case) with each other are very important ones of these

31

properties. When poor connections are available between computers which are to operate

synchronously to perform a common task, it may be very difficult to have a performance

gain, because physical communication time is much longer than the computation time of

computers. But even in these cases, performance gain may be observed for the large

volumes of data if the process communication of the parallel algorithm is not so much

frequent.

Small volumes of process communication for a parallel algorithm can be present

only when the algorithm is parallelized properly. In order for a parallel algorithm to be a

well designed one, processing load must be divided equally between processors and the

communication of processors must be lessen as much as possible. Because, when

processing load is not divided equally between processors, processors with light weight

jobs will be idle and the total processing time will be determined by the processors which

lasts longer as they have heavy weight jobs. And also, if connections of computers are

poor, a considerable loss of time for communication will arise which affects the success of

parallel algorithm.

Parallel programming is mentioned above as a technique which allows algorithms to

perform N times faster in best case when N computers are used. Besides, performance gain

and the importance of parallelization may be greater when the data to be used by algorithm

is as large that it can not fit into the memory of a single machine. In this case, single

machine, which executes serial algorithm, will either crash or continue execution by using

swap space (physical disk space) which will cause the execution last very long time.

However, in parallel program side, data will be divided by the number of parallel

computers. In other words, each computer will hold a small part of the whole dataset. In

this way, it is much more probable that the data will fit in to real memory.

Generally, it is easier to find a network of computers than to find a computer with a

huge size of memory. This issue of data and memory sizes is another important benefit of

parallel computing. But, this situation should not make the sense that a parallel program

may complete the task even faster than N times when N is the number of computers. In

order to make a healthy benchmark, serial program should also be able to hold all of the

data in its memory. In this case, parallel version will be N times faster in the best case.

32

4.1 Parallel Programming Architectures

Architecture taxonomy according to the data in relation with program instructions will

be examined in this part. There are four types of parallel programming architecture as listed

below [Beddo 2002].

• SISD (Single Instruction, Single Data): Single instruction deals with a single dataset
in this case. When memory access is slow, this architecture causes bottlenecks.

• SIMD (Single Instruction, Multiple Data): In this case, single instruction deals with

multiple data which means that target data of the processors are distinct which
solves the bottleneck on accessing the memory.

• MISD (Multiple Instruction, Single Data): Application area of multiple instructions

dealing with single data is not present currently.

• MIMD (Multiple Instruction, Multiple Data): In this case, each process executes

different instructions and deals with different sets of data. This types of parallel
programs are more complex than the others to design and implement.

4.2 Parallel Programming Models

In this part, parallel programming models according to the memory environments will

be discussed. There are three types of programming models according to the memory

access which are listed below [Beddo 2002].

• Shared Memory Model: In this model, all processes share a single memory space.
Processes can be coordinated by changing data items in the shared memory. As
memory area is shared in this model, there is a risk of producing error prone
programs such as deadlocks.

• Virtual Shared Memory Model: This model is very similar to shared memory

model, except that memory is not physically shared but the processes access the
memory as it is shared physically by some interfaces. Same problems of shared
memory model exist in this model also.

• Distributed Memory Model: In this case, there is no shared memory are. Each

process has its own memory area distinct from the others. This increases the
memory access speed. As there is no shared communicating area for processes, they
communicate each other by message passing. Deficiency of this model is the time

33

overhead of message passing. In order to achieve parallelization successfully,
message sizes should be minimized.

4.3 Parallel Programming with MPI

Before designing the parallel algorithm, a parallel programming technique should be

selected in order to design the parallel algorithm according to that technique. In this project,

a tool called LAM-MPI (Local Area Multicomputer – Massage Passing Interface) which

uses MPI (Message Passing Interface) standard will be used as the parallel programming

tool and technique2. LAM-MPI is selected as the parallel programming tool because of its

widely acceptance in the world and availability of platforms to execute LAM-MPI

programs. In order to execute LAM-MPI programs, an Ethernet network with Linux

operating systems is enough. And also the LAM-MPI utility must be installed to the

computers.

LAM-MPI utility is a collection of runtime components and libraries which helps

writing parallel programs in C Programming Language without dealing with networking

tasks and scheduling of processors. Written C program by the programmer must only deal

with parallelization of the business logic to be performed. Programmer deals with processes

(not the processors) which of each perform the same task on different data and uses

massage passing commands to communicate the processes. Scheduling of processes to

computers in the network and communicating the computers in the network with each other

is the job of LAM-MPI utility.

LAM-MPI uses master slave SIMD (Single Instruction Multiple Data) parallel

programming architecture distributed memory model. A process is accepted as master

(root) process and the others are accepted as the slave processes. Master process may

perform some initial and final tasks, such as getting inputs and giving outputs, and

synchronize slave processes. Same instruction (program) is executed on all processes which

of each uses different dataset.

2 MPI library has been downloaded from the “http://www.lam-mpi.org/” website.

34

CHAPTER 5

PARALLEL K-MEANS ALGORITHM

As mentioned in previous chapters, parallel K-means algorithm has been developed

and implemented in this project by the aim of performance increase when compared with

serial K-means. Parallelization of K-means algorithm has been proposed to be a solution

for the need of a faster K-means algorithm in order to cluster large amounts of databases in

reasonable durations. And also, by using parallel K-means, it has been aimed to gather

exactly same clustering results with serial algorithm, since purpose of parallelization in this

project is to perform exactly same clustering in shorter duration.

K-means algorithm has been re-designed to run in parallel manner by using the

message passing technique of parallelization. LAM-MPI (Local Area Multicomputer –

Message Passing Interface) utility has been used in order to implement the parallelized

version of K-means algorithm. This utility provides development of parallel programs

which are to be executed on network of computers (ethernet networks). LAM-MPI utility

has been preferred to be used for the development of message passing based parallel

algorithm because of widely acceptance of the utility.

 In order to be able to make a valid comparison of execution times between

the serial and parallel algorithms, both algorithms have been implemented in the same way

except the manner of execution (serial or parallel). As in serial algorithm, Euclidean

Distance has been used for distance measurement. And also, selection of initial means has

been performed by random number generation in the range of dataset as it had been

performed in the serial algorithm.

In following sections, steps and implementation of parallel K-means algorithm will

be presented after introducing the algorithm as an overview. Then, expectations from the

parallelized version will be discussed. Finally, properties of the Ethernet network, used for

the execution of parallel program, will be presented and discussed.

35

5.1 Overvie of the Parallel K-means Algorithm

When considering the serial K-means algorithm, it is observed that a single process

calculates the means of clusters and tries to assign all the objects in dataset into clusters in

the iteration of algorithm. Especially, reassignment of all objects into clusters is a very time

consuming task for a single machine. Because, the processor has to calculate the Euclidean

distances of an object; which includes subtraction, addition, square and square-root

operations; to the cluster centroids in order to find the nearest cluster. When number of

objects in the dataset becomes huge, time needed to assign objects into clusters goes

beyond the reasonable durations for a single processor.

Since objects in the dataset are independent of each other when assigning them into

clusters, this part has been thought to be parallelized such that each process deal with an

equally divided part of the dataset. Let’s say, if there are N processes, each process deals

with a subset which is the 1/Nth of real dataset. In this part of the parallel algorithm,

processes do not need to communicate, because each process has cluster means (these

means are general for all clusters and will be broadcasted to all clusters by root process)

and its own dataset (subset). This part has been parallelized such that, each process

performs reassignment of its own subset independently without considering the other parts

of the dataset.

As mentioned previously, algorithm also calculates cluster means in all iterations by

using the all object in dataset. This task is also very time consuming for a single machine

when the dataset is large and therefore considered to be parallelized. In this part of the

algorithm, a communication of processes is needed. For the calculation of means of clusters

by using all objects in dataset, one computer needs to have information about the overall

dataset. This part has been parallelized such that, each process calculates totals and counts

of objects in its subset and sends these values (total and count) to root process. Then, root

process calculates the cluster centroids by dividing the global total to the global count

gathered from all processes. After calculation of cluster means, root process broadcasts

these means to all processes, because all processes need global cluster means for the

reassignment procedure.

36

As it can be observed, only two messaging have been used for each iteration of K-

means algorithm. One is for the calculation of cluster means (each process sends sub-totals

and sub-counts to root process) and the other one is the broadcasting of calculated means to

all processes.

5.2 Steps of Parallel K-means Algorithm

Steps of serial K-means algorithm needs some revision in order to run in parallel

manner. In designed parallel version, all the dataset does not remain in one computer’s

memory; instead, each computer reads and holds an equally divided (by the number of

computers used in parallel execution) part of the dataset. This is the point why computers

need to communicate for performing the clustering operation. Since each computer has its

own memory space and there is no shared memory area, they need to communicate by

using message passing.

A root computer has been used in parallel algorithm. Root computer is used for the

synchronisation of all computers. It broadcasts data to all computers and gathers data from

all computers in order to perform K-means clustering.

Root computer is not idle when other computers perform clustering task. It also

performs the same clustering operations as slave computers. It performs synchronisation

tasks in addition to those clustering operations.

In LAM-MPI programming, algorithms are parallelized by using processes. These

processes are distributed into computers in the Ethernet network by LAM-MPI utility. If

there are enough computers in the network, each process is distributed into distinct

computers, but if there are not enough computers in the network, groups of processes are

distributed into computers. Therefore, in LAM-MPI programming, it is better to talk about

processes rather than computers. Developer of the program only knows about the

processes, distribution of processes into computers in the network is the duty of LAM-MPI.

Steps of parallel K-means algorithm are seen below, in Figure 5.1

37

• Root process calculates initial means
• Root process broadcasts initial means to all processes
• Each process, including the root process, assigns its internal objects into its

internal clusters by using initial means
• Do while any object in any process moves to another cluster of the process

o Each process sends internal sum and count of objects of its clusters to root
process

o Root process calculates new means of clusters by using the partial sum and
count values gathered by all processes

o Root process broadcasts calculated means to all processes
o Each process, including the root process, reassigns its internal objects into

its internal clusters by using calculated new means
• End of while (Convergence of the algorithm)

Figure 5.1 Steps of Parallel K-means Algorithm

As shown above, root process produces initial means at the beginning of the program

and broadcasts those initial means to other processes. Then, each process, including the

root process, assigns objects in its memory into clusters by using the initial means as cluster

centroids. Then, the iterations of K-means algorithm for convergence start. Each process

sends partial sums and item counts of its internal clusters to root process. After this

operation, root process gathers all sub totals and sub item counts which are enough for the

root process in order to calculate new cluster means. After calculation of new cluster

means, root process broadcasts these means to other computers. Next, each computer re-

assigns its internal objects into its internal clusters. These iterations continue until no

change occurs between internal clusters of any computers.

A schematic version of steps of Parallel K-means algorithm is also presented below in

Figure 5.2.

38

Figure 5.2 Steps of Parallel K-means Algorithm in Schematic Representation

5.3 Example Convergence for Parallel K-means Algorithm

Convergence of parallel K-means algorithm for the representative small dataset

used in section 3.4 will be presented in this section. Two processes will be used for

illustration purposes. As in serial convergence, desired number of clusters will be 2.

In the previous case (serial algorithm), there was only one process and single

memory of it. However, in this case (parallel algorithm), there will be two processes and

they will have their own internal memories. Therefore, states of both processes will be

displayed in each stage. These stages for parallel K-means convergence are presented

Select Initial Means Randomly (Root Process)

Broadcast initial means to all processes (Root Process)

Calculate new means by using partial sum and counts (Root Process)

Any Movement?

YES

End NO

Continue
Iteration

Assign internal objects into internal clusters (All Processes)

Send partial sum and count of objects to root process (Root Process)

Reassign internal objects into internal clusters (All Processes)

Broadcast calculated means to all processes (Root Process)

39

below. Process 1 is determined to be used as root process. Therefore, mean calculation (by

using partial sums and counts) and broadcasting of them will be performed by process 1.

Process 1 Process 2

Cls. Mean
1

Cls. Mean 2

Cluster 1 Cluster 2

Cls. Mean 1 Cls. Mean 2

Cluster 1 Cluster 2

Datas
et 34

11

5

20

Dataset

27

19

21

12

Part.Sum&Cnt 1 Part.Sum&Cnt 2 Part.Sum&Cnt 1 Part.Sum&Cnt 2

Figure 5.3 Initial State of the Processes in Parallel K-means

In the initial state, in Figure 5.3, cluster means do not exist and clusters of the

processes are empty. Internal data of processes are shown in the upper right hand side of

each process. As mentioned previously, whole dataset is split into parts for each process,

and each process has its own internal dataset. In parallel case, each process has also values

of partial sums and counts of its internal clusters. These values will be sent to root process

(process 1) in each iteration for the purpose of mean calculation.

Process 1 Process 2

Cls. Mean 1 Cls. Mean 2

27 12

Cluster 1 Cluster 2

Cls. Mean 1 Cls. Mean 2

27 12

Cluster 1 Cluster 2

Dataset

34

11

5

20

Dataset

27

19

21

12

Part.Sum&Cnt 1 Part.Sum&Cnt 2 Part.Sum&Cnt 1 Part.Sum&Cnt 2

Figure 5.4 Second State of the Processes in Parallel K-means

40

In second state, root process has generated the initial means and broadcasted them

to each process. Therefore, in this state both processes have global initial means in their

internal memories.

Process 1 Process 2

Cls. Mean 1 Cls. Mean 2

27 12

Cluster 1 Cluster 2

Cls. Mean 1 Cls. Mean 2

27 12

Cluster 1 Cluster 2

Dataset

34

11

5

20

Dataset

27

19

21

12

Part.Sum&Cnt 1 Part.Sum&Cnt 2

54 2 16 2

Part.Sum&Cnt 1 Part.Sum&Cnt 2

48 2 31 2

34 20 11 5 27 21 19 12

Figure 5.5 Third State of the Processes in Parallel K-means

In third state, both processes have assigned their internal objects into internal

clusters and calculated partial sums and counts. These partial sums and counts will be sent

to root process (process 1) in next stage in order to help root process to calculate cluster

means.

41

Process 1 Process 2

Cls. Mean 1 Cls. Mean 2

25,5 11,75

Cluster 1 Cluster 2

Cls. Mean 1 Cls. Mean 2

25,5 11,75

Cluster 1 Cluster 2

Dataset

34

11

5

20

Dataset

27

19

21

12

Part.Sum&Cnt 1 Part.Sum&Cnt 2

54 2 16 2

Part.Sum&Cnt 1 Part.Sum&Cnt 2

48 2 31 2

34 20 11 5 27 21 19 12

Figure 5.6 Forth State of the Processes in Parallel K-means

In forth state, both processes have sent their partial sums and counts to root process

and root process has calculated new means by using these values. When we trace the

calculation of root process, root process has gathered the values 54 and 48 for partial sums

of cluster1, 2 and 2 for partial counts of cluster1, 16 and 31 for partial sums of cluster2, 2

and 2 for partial counts of cluster2. For the mean of first cluster it calculates the global sum

and global count which are 102 (54 + 48) and 4 (2 + 2). And then, divides global sum to

global count which makes 25,5 (102 / 4). Mean of the second cluster is also calculated in

the same way which makes 11,75 ((16 + 31) / (2 + 2)).

After calculation of new means, root process has broadcasted these means to both

processes (including itself). Therefore, in this state both processes have the new means. In

this step, after broadcasting of new means, values in internal clusters, partial sums and

partial counts are invalid because they had been calculated for previous cluster means.

Therefore, they are shown with a line on them. New assignments and calculation for partial

values will be performed by using new means in the next stage.

42

Process 1 Process 2

Cls. Mean 1 Cls. Mean 2

25,5 11,75

Cluster 1 Cluster 2

Cls. Mean 1 Cls. Mean 2

25,5 11,75

Cluster 1 Cluster 2

Dataset

34

11

5

20

Dataset

27

19

21

12

Part.Sum&Cnt 1 Part.Sum&Cnt 2

54 2 16 2

Part.Sum&Cnt 1 Part.Sum&Cnt 2

67 3 12 1

34 20 11 5 27 21

19

12

Figure 5.7 Fifth State of the Processes in Parallel K-means

In fifth state, both processes have reassigned objects in their internal dataset into

internal clusters. And then, they have calculated the partial sums and partial counts of their

internal clusters.

Process 1 Process 2

Cls. Mean 1 Cls. Mean 2

24,20 9,33

Cluster 1 Cluster 2

Cls. Mean 1 Cls. Mean 2

24,20 9,33

Cluster 1 Cluster 2

Dataset

34

11

5

20

Dataset

27

19

21

12

Part.Sum&Cnt 1 Part.Sum&Cnt 2

54 2 16 2

Part.Sum&Cnt 1 Part.Sum&Cnt 2

67 3 12 1

34 20 11 5 27 21

19

12

Figure 5.8 Sixth State of the Processes in Parallel K-means

In sixth state, root process has gathered partial values from both processes and

calculated new means by using these values (Mean1 = ((54 + 67) / (2 + 3)), Mean2 = ((16 +

12) / (2 + 1))). After calculation of new means, it has broadcasted these values to both

processes. Therefore, in this state both processes have new means. In the following stage,

43

both will reassign objects into internal clusters by using these new means and calculate the

partial values.

Process 1 Process 2

Cls. Mean 1 Cls. Mean 2

24,20 9,33

Cluster 1 Cluster 2

Cls. Mean 1 Cls. Mean 2

24,20 9,33

Cluster 1 Cluster 2

Dataset

34

11

5

20

Dataset

27

19

21

12

Part.Sum&Cnt 1 Part.Sum&Cnt 2

54 2 16 2

Part.Sum&Cnt 1 Part.Sum&Cnt 2

67 3 12 1

34 20 11 5 27 21

19

12

Figure 5.9 Seventh State of the Processes in Parallel K-means

In seventh state, both processes have performed reassignment and calculated partial

values which have resulted to a stage which is identical to sixth state. This means that, no

object has moved to another cluster when using new means (24,20 and 9,33) which causes

the convergence of K-means algorithm. As a result, values of 24,20 and 9,33 are produced

as the final means of parallel K-means algorithm which are identical to the results of serial

K-means algorithm.

5.4 Implementation of Parallel K-means Algorithm

As discussed previously, parallel K-means algorithm has been implemented in the

same way with the serial one except for the manner of execution (serial or parallel). Initial

means are generated randomly and Euclidean Distance is used for distance metric as in

serial algorithm. Also, C programming language (as in serial one) and LAM-MPI utility has

been used for the development of the parallel program.

44

Data in datasets are read from physical data files by each process. Each process

reads an equally divided part of the dataset sequentially into its internal memory. These

files are read into memory by using file reading functions of C Language.

Stacks are used for the management of internal memories of processes. Usage of

stacks and details of “push” and “pop” functions won’t be examined again, because they

have been presented in chapter 3. Stacks are used in the same way as the implementation of

serial algorithm.

All parts except the ones for the purpose of parallelization are the same in both

implementations. Therefore, code fragments related to parallelization and MPI will be

presented in this section.

Firstly, MPI specific variables and initializations are seen below in Figure 5.10.

//MPI variables
int rank, size, dest, tag;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

tag = 2000;

Figure 5.10 Definition and Initialization of MPI Variables

“rank”, “size”, “dest” and “tag” are MPI specific variables. “rank” holds the index

of current process in the communication world. “size” gives the number of all processes in

that world. “tag” is an integer value which can be used for different communication groups.

Since one communication world has been used in this project, each process uses 2000 as

the “tag”. “dest” is used in order to send a message to the destination.

MPI_Barrier(MPI_COMM_WORLD);

Figure 5.11 Usage of MPI_Barrier Command

In the code fragment above in Figure 5.11, barrier command of the MPI is used in

order to block all processes in that command. Each process stops and waits when it reaches

45

to this point until all processes reach to the point. This command is used after processes

read dataset from file. When all processes finish reading data file, time has been taken from

system for the measurement of execution time, similar to the serial implementation which

also takes system time after file read.

Code fragment in Figure 5.12 shows the clustering loop (iteration) of the parallel

algorithm. Most parts of the code are removed from the fragment except the ones specific

to MPI programming in order to focus on MPI parallel programming. Other parts of the

program are very similar to serial algorithm which has been examined in detail in chapter 3.

 //Root process generates initial means
 if (rank == 0)
 {
 //Generate initial means here
 }

 //Broadcast initial means
 MPI_Bcast(means_array, clus_count * means_dim + 1, MPI_DOUBLE, 0,

 MPI_COMM_WORLD);

 while (chg_total > 0) //Continue iteration
 {
 //swap clus_arr_new and clus_arr_old
 clus_arr_tmp = clus_arr_new;
 clus_arr_new = clus_arr_old;
 clus_arr_old = clus_arr_tmp;

 for (k = 0; k < clus_count; k++)
 {
 //Assignment of objects into internal clusters

 }

 //All processes will send total, count and chg info to root
 process with SUM operation
 MPI_Reduce(send_data, recv_data, data_cnt, MPI_DOUBLE,
 MPI_SUM, 0, MPI_COMM_WORLD);

 //Root process will calculate means
 if (rank == 0)
 {
 //Calculation of means
 }

 //Broadcast calculated means
 MPI_Bcast(means_array, clus_count * means_dim + 1,

 MPI_DOUBLE, 0, MPI_COMM_WORLD);
 } //while (chg_total > 0) //Continue iteration

Figure 5.12 MPI Communications in K-means Clustering

46

As shown above, before entering the clustering loop, root process generates the

initial means and broadcasts them to all processes by using “MPI_Bcast” function. This

function is executed by all processes including root process. After execution of this

function, data stored in root process (initial means in this case) is copied into memories of

all processes.

After entering the clustering loop, each process performs assignment of its internal

objects into internal clusters and calculates partial sums and counts. And then, all of them,

including root process, stores their internal partial sums and counts to the root process by

using the SUM option of “MPI_Reduce” function. This function is also executed by all

processes. After execution of this function, root process gathers the sum of data in

memories of all processes. This data is then used to calculate new means. After calculation

of new means, root process broadcasts these means again. This iteration continues until no

change of objects occurs between clusters.

5.5 Network Environment for the Test of Parallel Program

Developed parallel program has been tested on the parallel programming laboratory

of Computer Engineering Department of Marmara University. This laboratory is a well

constructed network of computers with MPI library installed on them. Properties of the

laboratory are listed below.

• Number of computers: 11
• Ethernet Speed: 100 Mbit
• CPU frequency of computers: 2.4 Giga Herz
• Memory size of computers: 2 Giga Byte for root computer and 1 Giga Byte for the

others
• Linux version installed on computers: RedHat 9.0
• MPI version installed on computers: Lam-MPI 7.0.3-1

47

5.6 Expectations from the Parallel Algorithm

Aim of the parallelization of K-means algorithm was to improve the algorithm such

that it will produce the same results with serial algorithm. As no change has been

performed on the K-means algorithm during parallelization, it is expected that the

algorithm will produce exactly same clustering results with serial one. This can also be seen

by the sample convergences of both the serial algorithm (Section 3.4) and the parallel

algorithm (Section 5.3).

In the design of a parallel algorithm, overhead of root computer for synchronisation

and the amount of data interchanged between computers should be minimized as possible

for the success of parallelization. If root overhead of synchronisation and frequency of data

interchange are high and if large amount of data are passed between computers then it

won’t be surprising that parallelization of the algorithm.

In this project, K-means algorithm has been designed carefully to run in parallel

manner such that frequency of messaging and the amount of messages transmits between

processes have been lessened as much as possible.

As it can be seen in the steps and implementation of parallel K-means algorithm

(Section 5.2 & Section 5.4), parallelized version of the algorithm performs messaging only

two times in one iteration (one for mean calculation and one for broadcasting of those

means). And also, amount of data transmitted between processes are very low in amount.

Only summary data is moved between processes which is about to the size of double

multiplied by the count of clusters and dimension of dataset. Let’s say, if there are 5

clusters with a 50 dimensional data, size of double multiplied by 250 will be messaged

between root process and the other processes for one messaging (two messaging occur in

each iteration) which is a very small amount for data transmission in an Ethernet network.

When considering above information, it is expected that parallel algorithm will

produce same results with the serial algorithm in a much shorter time. A performance gain

is expected almost by the count of computers used.

Also, in the case of very large datasets which do not fit into the memory of a single

computer, performance gain would be enormous as the whole dataset is split equally into

memories of all computers in the parallelized version.

48

CHAPTER 6

RESULTS OF SERIAL AND PARALLEL K-MEANS ALGORITHMS

Both serial and parallel versions of the K-means algorithm have been tested on the

same platform by using the same datasets. Then, results of them have been collected in

order to make a comparison between two versions. Expected result of these executions is

that the parallel algorithm will produce exactly the same results with the serial algorithm

but in shorter time than the serial one.

6.1 Datasets Used for K-means Clustering

Two different datasets have been used for these executions. First one of those

datasets, which is relatively smaller than the second one, is about color histogram

information of a pictures collection. Second dataset holds the information about US Census

of year 1990 and this dataset is larger than the first one.

Both of these datasets have been gathered from the KDD (Knowledge Discovery in

Databases) archive of University of California, Irvine (http://kdd.ics.uci.edu/) [Hettich and

Bay 1999]. A lot of datasets are published in the web site of this university and these

datasets are available to be used in KDD researches. This repository supplies standard

datasets, which are very useful for KDD researchers in order to benchmark their

algorithms.

6.1.1 Color Histogram Dataset

This dataset contains image features extracted from an image collection. These

features are about color histogram of images in the collection. Dataset contains information

49

for 68,040 images and it has 32 attributes for each image. In other words this is a dataset

with 32 dimensions.

Each line in the dataset file represents an image. First column of the line is row-id

and the following 32 columns constitute the color histogram attributes vector. Each of 32

attributes in dataset represents the density of a color in the image. It means that, color space

is split into 32 parts, and density of each part in the image is presented in dataset. Because

these attributes contains the density of colors in the image, histogram intersection can be

used to measure the similarity between images. But this is not in the scope of this project.

Only, clustering of the dataset will be performed in this project in order to calculate

clustering time.

 Each of the attributes in dataset holds a value between 0 and 1 having 6

decimals which means that it contains continuous data. Some statistical values (mean, min

value, max value, variance and standard deviation) for each dimension of color histogram

dataset are presented in Table 6.1.

 Table 6.1 Statistical Values for Color Histogram Dataset

Attribute
Number Mean

Min
Value Max Value Variance

Standart
Deviation

1 0.063897 0 0.961688 0.010697 0.103424
2 0.086427 0 0.984752 0.014954 0.122287
3 0.066824 0 0.924375 0.011981 0.109459
4 0.062394 0 0.995938 0.015788 0.125651
5 0.105824 0 1.000104 0.024289 0.155849
6 0.087096 0 0.919587 0.01362 0.116705
7 0.044644 0 0.895882 0.006362 0.079764
8 0.028169 0 0.938856 0.003838 0.061952
9 0.040842 0 0.905319 0.004615 0.067934
10 0.032316 0 0.870524 0.005198 0.072096
11 0.012677 0 0.772502 0.001448 0.038057
12 0.016994 0 0.956147 0.000885 0.029741
13 0.048576 0 0.941949 0.007595 0.087149
14 0.021772 0 0.92969 0.002765 0.052582
15 0.007352 0 0.698658 0.000676 0.026001
16 0.005935 0 0.92978 0.000459 0.021416
17 0.053699 0 0.979688 0.010476 0.102354
18 0.064447 0 0.95605 0.013481 0.116109

50

19 0.038117 0 0.965208 0.007889 0.08882
20 0.028463 0 0.998438 0.00734 0.085674
21 0.01916 0 0.957836 0.003179 0.056383
22 0.008503 0 0.782815 0.001088 0.032992
23 0.004367 0 0.907708 0.000564 0.023747
24 0.006586 0 0.864583 0.000986 0.031397
25 0.00665 0 0.829167 0.00054 0.023234
26 0.002324 0 0.923958 0.000218 0.014756
27 0.001182 0 0.715625 0.000135 0.011599
28 0.000972 0 0.819063 0.000133 0.011527
29 0.011189 0 0.793854 0.000993 0.031504
30 0.007517 0 0.905005 0.000846 0.02909
31 0.006566 0 0.901771 0.000787 0.028054
32 0.008622 0 0.980729 0.001857 0.043089

6.1.2 US Census Dataset of year 1990

Second dataset contains information about US Census of year 1990. This dataset is

a discretized version of US Census row dataset for the purposes of data mining algorithms.

A lot of less useful attributes in the original dataset had been dropped by the publisher of

the dataset. And also, some continuous attributes had been discretized and some discrete

variables which have a large number of possible values had been collapsed, so that they had

fever possible values. In summary, dataset had been modified to have discrete values in all

attributes.

Dataset contains 1,000,000 records and there are 68 categorical attributes in it. This

is not the full census dataset of US but a part of it. 1,000,000 records were thought to be

enough for the purposes of this project.

Each line in dataset represents a person and each column of the row holds data

about the person. First column of the dataset file is row-id and the other 68 columns make

the attributes vector of dataset. Labels which define the meaning of attributes are listed in

Table 6.2. It is not considered to be necessary to give detailed information about meaning

of attributes, as the aim of this work is to compare clustering time of different algorithms

not to interpret clustering results of the datasets. It is important here to verify that clustering

51

results are accurate (clustering is really being performed) and each algorithm produces the

same accurate results. Then it comes to the comparison of execution times of different

algorithms.

Table 6.2 Attribute Names of US Census Dataset

1 2 3 4 5 6 7 8
Age Ancstry1 Ancstry1 Avail Citizen Class Depart Disabl1
9 10 11 12 13 14 15 16
Disabl2 English Feb55 Fertil Hispanic Hour89 Hours Immigr
17 18 19 20 21 22 23 24
Income1 Income2 Income3 Income4 Income5 Income6 Income7 Income8
25 26 27 28 29 30 31 32
Industry Korean Lang1 Looking Marital May75880 Means Military
33 34 35 36 37 38 39 40
Mobility Mobillim Occup Othserv Perscare POB Poverty Pwgt1
41 42 43 44 45 46 47 48
Ragechld Rearning Relat1 Relat2 Remplpar Riders Rlabor Rownchld
49 50 51 52 53 54 55 56
Rpincome RPOB Rrelchld Rspouse Rvetserv School Sept80 Sex
57 58 59 60 61 62 63 64
Subfam1 Subfam2 Tmpabsnt Travtime Vietnam Week89 Work89 Worklwk
65 66 67 68
WWII Yearsch Yearwrk Yrsserv

Some statistical values (mean, min value, max value, variance and standard

deviation) for each dimension of US Census dataset are presented in Table 6.3 and Table

6.4. As dataset has 68 attributes, table has been divided into two parts of 34 rows.

Table 6.3 First Half of Statistical Values for US Census Dataset

Attribute
Number Mean

Min
Value Max Value Variance

Standart
Deviation

1 3.85 0 7 4.2 2.05
2 3.3 0 11 16.32 4.04
3 1.58 1 12 2.88 1.7
4 0.12 0 4 0.45 0.67
5 0.29 0 4 0.94 0.97
6 1.24 0 9 3.09 1.76
7 1.4 0 5 3.1 1.76
8 1.43 0 2 0.71 0.84
9 1.47 0 2 0.72 0.85

52

10 0.21 0 4 0.42 0.65
11 0.02 0 1 0.02 0.14
12 1.18 0 13 3.47 1.86
13 0.14 0 9 0.82 0.91
14 1.58 0 5 2.99 1.73
15 1.4 0 5 3.07 1.75
16 0.45 0 10 2.87 1.7
17 0.9 0 4 1.2 1.09
18 0.05 0 1 0.05 0.22
19 0.01 0 1 0.01 0.1
20 0.2 0 1 0.16 0.4
21 0.14 0 1 0.12 0.35
22 0.03 0 1 0.03 0.18
23 0.07 0 1 0.06 0.25
24 0.04 0 1 0.04 0.2
25 3.92 0 12 14.05 3.75
26 0.02 0 1 0.02 0.14
27 1.73 0 2 0.35 0.59
28 0.54 0 2 0.75 0.87
29 1.9 0 4 3.51 1.87
30 0.01 0 1 0.01 0.1
31 0.86 0 12 4.07 2.02
32 2.81 0 4 2.84 1.68
33 1.34 0 2 0.38 0.61
34 1.52 0 2 0.69 0.83

Table 6.4 Second Half of Statistical Values for US Census Dataset

Attribute
Number Mean

Min
Value Max Value Variance

Standart
Deviation

35 1.77 0 8 4.11 2.03
36 0 0 1 0 0.04
37 1.52 0 2 0.69 0.83
38 0.28 0 6 0.94 0.97
39 1.83 0 2 0.19 0.43
40 1.12 0 3 0.51 0.71
41 1.79 0 4 3.5 1.87
42 1.49 0 5 2.39 1.55
43 1.75 0 13 6.81 2.61
44 0.08 0 9 0.54 0.73

53

45 35.29 0 223 4243.96 65.15
46 0.48 0 8 0.52 0.72
47 2.22 0 6 5.74 2.4
48 0.24 0 1 0.18 0.42
49 1.87 0 5 2.16 1.47
50 16.92 10 52 133.76 11.57
51 0.26 0 1 0.19 0.44
52 2.15 0 6 4.88 2.21
53 0.76 0 11 5.47 2.34
54 1.25 0 3 0.35 0.6
55 0.02 0 1 0.02 0.13
56 0.51 0 1 0.25 0.5
57 0.06 0 3 0.15 0.39
58 0.03 0 3 0.03 0.17
59 0.79 0 3 1.71 1.31
60 1.48 0 6 3.86 1.97
61 0.03 0 1 0.03 0.18
62 0.83 0 2 0.74 0.86
63 1 0 2 0.47 0.68
64 1.1 0 2 0.55 0.74
65 0.04 0 1 0.04 0.19
66 8.45 0 17 16.67 4.08
67 1.82 0 7 4.45 2.11
68 0.14 0 2 0.16 0.4

6.2 Execution Strategy for Testing the Algorithms

In order to compare two different versions (Serial and Parallel) of K-means

algorithm, both algorithms have been executed on two different sets of data (Color

Histogram Dataset and US Census Dataset) which are mentioned previously. Each

execution is repeated for 5 times by using different sets of random initial points in order to

have more reliable results. Final results will be gathered by computing the means of those 5

runs all of which use different random initial points. It is obvious that, means of those 5

runs will give more valuable results than using the result of a single run.

54

Also, parallel version of the algorithm have been executed by using different

number of computers (1, 2, 5 and 11 computers) in order to understand the relation of

performance gain with the number of computers used. Here, it is important to make a

parallel run by using 1 computer in order to compare with the serial one and evaluate the

reliability of serial and parallel implementations. Trial of the parallel algorithm with only

one computer can not produce results in shorter time than the serial algorithm, because

there is only one CPU (Central Processing Unit) and physical memory for the use of

parallel algorithm. Parallel algorithm should process clustering in the same duration with

serial one in best, and sometimes it should last a little bit longer because of the

parallelisation overhead when using 1 computer. When the number of computers increases,

it should be observed that execution time of the parallel algorithm decreases almost

proportional by the number of computers used. These results have been gathered as

expected and will be presented in the following parts of the document.

It is important that, corresponding runs of each version must have the same random

initial points in order for us to observe that the produced clustering results are the same and

compare the execution times. Let’s say, second run of the serial algorithm must use the

same random initial points with second run of parallel version. In fact, parallel algorithm

will also be executed by using different number of computers which also be repeated for 5

times. Executions of the parallel algorithm for different number of computers can be

considered as different versions of parallel algorithm. Therefore, for the previous example,

second run of the serial algorithm and each of the parallel versions must use the same

random initial numbers and produce same results.

Because there are two different datasets, which are to be used for benchmarking,

and because clustering of these datasets will be repeated 5 times with different random

initial points, 10 different random initial point sets must be produced in total. Five set of

random initial points for the first dataset, plus five sets of random initial points for the

second dataset makes 10 different sets of random initial points. In order to distinguish

between random initial points they have been named by representing the dataset of it and

execution number of it. Naming of both datasets and random initial points are listed in

tables below.

55

Table 6.5 Naming of Datasets

Dataset Name Narrative
Dataset1 Color histograms of images (smaller dataset)
Dataset2 1990 US Census data (larger dataset)

Table 6.6 Naming of Random Initial Points

Random Initial Set Narrative
Random11 Random initial points for the 1st dataset’s 1st run
Random12 Random initial points for the 1st dataset’s 2nd run
Random13 Random initial points for the 1st dataset’s 3rd run
Random14 Random initial points for the 1st dataset’s 4th run
Random15 Random initial points for the 1st dataset’s 5th run
Random21 Random initial points for the 2nd dataset’s 1st run
Random22 Random initial points for the 2nd dataset’s 2nd run
Random23 Random initial points for the 2nd dataset’s 3rd run
Random24 Random initial points for the 2nd dataset’s 4th run
Random25 Random initial points for the 2nd dataset’s 5th run

Random initial numbers have been produced in different ranges for Dataset1 and

Dataset2, because data stored in datasets have different ranges. Random1x (random initial

points for the first dataset) sets have been produced between 0 and 1, having 6 decimal

points unlike Random2x (random initial points for the second dataset) sets which are

produced between 1 and 10 without having decimal points. These ranges have been

selected according to the nature of datasets in order to have better clustering.

It will be better to name the algorithms also in order to refer them clearly in the

following parts. As mentioned previously parallel algorithm is executed on different

numbers of computers and these executions can be considered as the different versions of

parallel algorithm. Naming of the mentioned versions is presented in the table below.

56

Table 6.7 Naming of K-means Algorithm Versions

Algorithm Name Narrative
Serial Serial version
Parallel1 Parallel version executed by using 1 computer
Parallel2 Parallel version executed by using 2 computer
Parallel5 Parallel version executed by using 5 computer
Parallel11 Parallel version executed by using 11 computer

Finally, execution sequence of algorithms can be presented by using the naming

standard listed above tables. Each algorithm (5 algorithms) has been executed by using

each dataset (2 datasets) and by using each random initial point set (5 random initial

points). Therefore, 50 executions in total have been performed (5 * 2 * 5 = 50). Mentioned

executions are listed in the tables below. Table has been split into 5 sub tables in order to

increase the understandability. As can be observed in the tables, Random1x sets are used

with Dataset1 and Random2x sets are used with Dataset2.

Table 6.8 Execution Sequence and Naming of Serial Algorithm

Execution Name Narrative
Run111 Serial on Dataset1 by using Random11
Run112 Serial on Dataset1 by using Random12
Run113 Serial on Dataset1 by using Random13
Run114 Serial on Dataset1 by using Random14
Run115 Serial on Dataset1 by using Random15
Run121 Serial on Dataset2 by using Random21
Run122 Serial on Dataset2 by using Random22
Run123 Serial on Dataset2 by using Random23
Run124 Serial on Dataset2 by using Random24
Run125 Serial on Dataset2 by using Random25

57

Table 6.9 Execution Sequence and Naming of Parallel1 Algorithm

Execution Name Narrative
Run211 Parallel1 on Dataset1 by using Random11
Run212 Parallel1 on Dataset1 by using Random12
Run213 Parallel1 on Dataset1 by using Random13
Run214 Parallel1 on Dataset1 by using Random14
Run215 Parallel1 on Dataset1 by using Random15
Run221 Parallel1 on Dataset2 by using Random21
Run222 Parallel1 on Dataset2 by using Random22
Run223 Parallel1 on Dataset2 by using Random23
Run224 Parallel1 on Dataset2 by using Random24
Run225 Parallel1 on Dataset2 by using Random25

Table 6.10 Execution Sequence and Naming of Parallel2 Algorithm

Execution Name Narrative
Run311 Parallel2 on Dataset1 by using Random11
Run312 Parallel2 on Dataset1 by using Random12
Run313 Parallel2 on Dataset1 by using Random13
Run314 Parallel2 on Dataset1 by using Random14
Run315 Parallel2 on Dataset1 by using Random15
Run321 Parallel2 on Dataset2 by using Random21
Run322 Parallel2 on Dataset2 by using Random22
Run323 Parallel2 on Dataset2 by using Random23
Run324 Parallel2 on Dataset2 by using Random24
Run325 Parallel2 on Dataset2 by using Random25

Table 6.11 Execution Sequence and Naming of Parallel5 algorithm

Execution Name Narrative
Run411 Parallel5 on Dataset1 by using Random11
Run412 Parallel5 on Dataset1 by using Random12
Run413 Parallel5 on Dataset1 by using Random13
Run414 Parallel5 on Dataset1 by using Random14
Run415 Parallel5 on Dataset1 by using Random15
Run421 Parallel5 on Dataset2 by using Random21
Run422 Parallel5 on Dataset2 by using Random22
Run423 Parallel5 on Dataset2 by using Random23
Run424 Parallel5 on Dataset2 by using Random24
Run425 Parallel5 on Dataset2 by using Random25

58

Table 6.12 Execution Sequence and Naming of Parallel11 Algorithm

Execution Name Narrative
Run511 Parallel11 on Dataset1 by using Random11
Run512 Parallel11 on Dataset1 by using Random12
Run513 Parallel11 on Dataset1 by using Random13
Run514 Parallel11 on Dataset1 by using Random14
Run515 Parallel11 on Dataset1 by using Random15
Run521 Parallel11 on Dataset2 by using Random21
Run522 Parallel11 on Dataset2 by using Random22
Run523 Parallel11 on Dataset2 by using Random23
Run524 Parallel11 on Dataset2 by using Random24
Run525 Parallel11 on Dataset2 by using Random25

It is obvious that, corresponding runs of algorithms must produce exactly same

results. When explaining by using the names given above, results of Run111-Run211-

Run311-Run411-Run511 must be equal to each other, because each of them uses Dataset1

and Random11. Similarly, results of Run112-Run212-Run312-Run412-Run512 must be

same too, because they also use the same dataset and random initial points which are

Dataset1 and Random12.

When considering that there are 2 different datasets and 5 different random initial

point sets for each of these datasets, there must be 10 distinct clustering results of all

executions. In the table below, these clustering results are named and executions, used

datasets and random point sets in order to get these clustering results are listed.

Table 6.13 Expected Results of Executions

Result
Name

Execution Names to Produce this Result Used Dataset and
Random Point Set

Result1 Run111, Run211, Run311, Run411, Run511 (Dataset1 & Random11)
Result2 Run112, Run212, Run312, Run412, Run512 (Dataset1 & Random12)
Result3 Run113, Run213, Run313, Run413, Run513 (Dataset1 & Random13)
Result4 Run114, Run214, Run314, Run414, Run514 (Dataset1 & Random14)
Result5 Run115, Run215, Run315, Run415, Run515 (Dataset1 & Random15)
Result6 Run121, Run221, Run321, Run421, Run521 (Dataset2 & Random21)
Result7 Run122, Run222, Run322, Run422, Run522 (Dataset2 & Random22)
Result8 Run123, Run223, Run323, Run423, Run523 (Dataset2 & Random23)
Result9 Run124, Run224, Run324, Run424, Run524 (Dataset2 & Random24)
Result10 Run125, Run225, Run325, Run425, Run525 (Dataset2 & Random25)

59

As shown in Table 6.13, there are 10 distinct result sets of 50 executions. In order

for the parallelization of K-means algorithm to achieve its goal, executions listed in the

same row must produce same results and the execution times must decrease when the

number of computers used in the parallel versions increases (when moving right in the

same row).

6.3 K-means Clustering Results of Datasets

Before benchmarking the serial and parallel versions of the K-means algorithm,

initial runs for 10 different result sets have been performed by using classical K-means

(serial one) without considering the times that they take to perform clustering. Results will

only be discussed by the point of view of clustering concept. Whether the implemented K-

means algorithm performs clustering successfully or not will be the point of view for this

part. In the following parts, these produced results will not be examined again. They will

only be evaluated by being equal to these previously examined results or not.

In order not to list pages of numbers, only summarised data about the clustering

results will be listed in the document. These complete results of each of 50 executions can

be found in the CD of the project.

As mentioned previously, K-means algorithm takes the number of clusters and

initial means (initial points) as inputs and produces final means as output. Algorithm

produces K means (this is why it is called K-means) where K is the number of clusters. At

the termination of K-means algorithm, all points are grouped into one of K clusters and the

total distances of points to the corresponding cluster means are minimized.

Number of produced clusters, which is one of the inputs of K-means algorithm, is

up to the user of K-means clustering algorithm. The algorithm makes its best to produce the

desired number of clusters. In this project, Dataset1 (smaller dataset) has been grouped into

5 clusters (K=5) and Dataset2 (larger dataset) has been grouped into 7 clusters (K=7) by

using serial and parallel K-means algorithms. As the selection of result cluster counts does

not make any sense for the scope of this project, count of result clusters are selected

60

without any consideration. As mentioned previously, clustering times is the first deal for

this project.

Now, it is time to examine 10 distinct clustering results which have been produced

by the execution of serial algorithm 10 times (for 2 datasets and 5 different initial points for

each dataset). Total distortion using initial means and the total distortion using final means

will also be listed in this section. Distortion is the sum of distances (Euclidean distances in

this case) of all objects in a dataset into their cluster centroids. Final distortion must always

be less than the initial distortion, because aim of the K-means clustering algorithm is to

lessen this distortion. In other words, aim of the algorithm is to group similar objects into

same clusters, which decreases the total distortion. As additional information, item counts

of the result clusters will be supplied in order to have an overview of distribution of objects

into clusters.

6.3.1 Execution Results of Dataset1

At first, execution results for Dataset1 will be listed as tables. Dataset1 has been

clustered into 5 clusters as shown in the tables below by using 5 different random initial

point sets. Initial numbers have been selected as numbers between 0 and 1 having 6

decimal points which is suitable to the nature of real dataset.

Cluster means have not been listed in these tables. These values have been

presented in the CD of the project. A number of cluster count multiplied by dimension

count (5 * 32 for the first dataset, 7 * 68 for the second dataset) means are present for one

clustering result which require very much space to be listed in a document.

In following tables, item count column shows the number of items (objects) fall in

to that cluster. Percent column shows the percentage of cluster to the whole dataset

according to the item counts. And finally, cluster name is a naming method for addressing

specific clusters. This column is used in order to match specific clusters of each execution,

each of which uses different random initial number sets.

When different initial points are used, clustering results may differ. This is a small

difference and results resemble each other. Because of the different initial points, order of

61

clusters may also differ. Cluster name column is used in order to match these clusters, order

of which changes because of the initial points. In other words, a cluster which is produced

as the second result cluster of dataset may be produced as the third result cluster when

different initial points are used. This matching operation has been performed by observing

the item counts of clusters.

Table 6.14 Item Distribution for Result1 Which Uses Random11

Cluster No Item Count Percent (%) Cluster Name
1 12196 17.92 A
2 14143 20.79 B
3 5246 7.71 C
4 14161 20.81 D
5 22294 32.77 E

Total : 68040 100

Table 6.15 Item Distribution for Result2 Which Uses Random12

Cluster No Item Count Percent (%) Cluster Name
1 13151 19.33 B
2 23582 34.66 E
3 7758 11.40 A
4 6077 8.932 C
5 17472 25.68 D

Total : 68040 100

Table 6.16 Item Distribution for Result3 Which Uses Random13

Cluster No Item Count Percent (%) Cluster Name
1 7791 11.45 A
2 23590 34.67 E
3 13133 19.30 B
4 17492 25.71 D
5 6034 8.87 C

Total : 68040 100

62

Table 6.17 Item Distribution for Result4 Which Uses Random14

Cluster No Item Count Percent (%) Cluster Name
1 23591 34.67 E
2 6034 8.87 C
3 17492 25.71 D
4 13130 19.30 B
5 7793 11.45 A

Total : 68040 100

Table 6.18 Item Distribution for Result5 Which Uses Random15

Cluster No Item Count Percent (%) Cluster Name
1 13122 19.29 B
2 17475 25.68 D
3 7793 11.45 A
4 6044 8.88 C
5 23606 34.69 E

Total : 68040 100

6.3.2 Execution Result’s of Dataset2

In this section, execution results of Dataset2 will be examined. This dataset will be

clustered into 7 clusters by using 5 different initial point sets. For this dataset, random

initial numbers are produced between 1 and 10 having no decimal, because the attributes of

dataset mostly occur between 1 and 10 as discrete values. This makes the initial points

suitable with the nature of sample points which helps K-Means algorithm in order to

converge in shorter time into better results.

63

Table 6.19 Item Distribution for Result6 Which Uses Random21

Cluster No Item Count Percent (%) Cluster Name
1 232748 23.27 A
2 71900 7.19 B
3 60523 6.05 C
4 266843 26.68 D
5 129264 12.93 E
6 189470 18.95 F
7 49252 4.93 G

Total : 1000000 100

Table 6.20 Item Distribution for Result7 Which Uses Random22

Cluster No Item Count Percent (%) Cluster Name
1 189470 18.95 F
2 71900 7.19 B
3 60523 6.05 C
4 232748 23.27 A
5 266843 26.68 D
6 129264 12.93 E
7 49252 4.93 G

Total : 1000000 100

Table 6.21 Item Distribution for Result8 Which Uses Random23

Cluster No Item Count Percent (%) Cluster Name
1 249993 25.00 D
2 186606 18.66 F
3 71905 7.19 B
4 239017 23.90 A
5 67306 6.73 C
6 39628 3.96 G
7 145545 14.55 E

Total : 1000000 100

64

Table 6.22 Item Distribution for Result9 Which Uses Random24

Cluster No Item Count Percent (%) Cluster Name
1 49252 4.93 G
2 129264 12.93 E
3 60523 6.05 C
4 189470 18.95 F
5 71900 7.19 B
6 232748 23.27 A
7 266843 26.68 D

Total : 1000000 100

Table 6.23 Item Distribution for Result10 Which Uses Random25

Cluster No Item Count Percent (%) Cluster Name
1 280027 28.00 D
2 160799 16.08 G
3 60523 6.05 C
4 87758 8.78 E
5 149595 14.96 A
6 189470 18.95 F
7 71828 7.18 B

Total : 1000000 100

When results are examined in detail, it can be observed that 5 different clustering of

Dataset1 and again 5 different clustering of Dataset2 produces similar results. However,

because initial points differ in these executions, sequence of clusters changes. Let’s say 1st

cluster of one execution may arise as the 3rd cluster of another execution because of the

change of random initial points. In order to clarify these clusters, a naming column to final

tables has been added. Matching of clusters between different runs has been performed by

examining item counts of clusters.

First run of the Dataset1 (Result1) and last run of the Dataset2 (Result10) are less

similar to other results when considering item counts of clusters. Therefore, matching of

clusters mentioned above may not be exactly right, especially for Result1 and Result10.

Because, slightly different clustering results may occur when initial means differ. However,

the other runs have produced very similar (some times same) results to each other. Those

two less similar executions may prove that result of K-means algorithm is dependent to the

65

selected initial means. When considering final distortions of results, those mentioned two

executions are also similar to others. A final summary of results are listed in table below.

Table 6.24 Summary of 10 Results of K-means Clustering

Result
Name

Initial Distortion Final Distortion Decrease in
Distortion (%)

Iteration
Count

Result1 30740.00 21398.94 30.39 78
Result2 28804.89 21180.73 26.47 30
Result3 30467.40 21180.95 30.48 53
Result4 30418.94 21180.96 30.37 38
Result5 30547.58 21180.85 30.66 34
Result6 64615815 10221581 84.18 51
Result7 64917583 10221581 84.25 49
Result8 64724989 17220502 73.39 63
Result9 66206826 10221581 84.56 50
Result10 64855999 9976791 84.62 32

Since total distortions have been decreased considerably, in can be concluded that

items have been grouped better by using final means than using initial means which shows

that K-means clustering has been successfully performed.

Another important point in Table 6.24 is iteration counts. It can be observed that

total decreases in distortion are very close to each other but the iteration counts for

convergence of the algorithm are very different when using different initial points. This

shows how much the time of execution is depended to the initial points.

6.4 Comparison of Results of Serial and Parallel K-means

After gathering 10 different clustering results, previously mentioned 50 runs have

been performed by gathering time information also, for the purpose of benchmarking.

When results are examined, it has been observed that each parallel version (parallel

algorithm is same but the computer counts are different) have produced exactly the same

results with the serial algorithm which are also equal to previously gathered 10 results.

Therefore, in this section, these results won’t be listed and interpreted again but the

66

execution times will be considered. All of the detailed results can be examined by viewing

the CD of the project.

The goal of parallelization was to produce exactly same results in shorter times.

First step of this goal have been achieved for this point as same results are gathered in serial

and parallel versions. Now it is time to check for execution times. Execution times are

listed in the tables below. Because 50 runs are very large for a table, results are split into 10

different tables for 10 different results.

Table 6.25 Execution Summary in Time for Dataset1 and Random11

Execution Name Iteration
Count

Execution
Time(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run111 (Serial) 78 198 1 1
Run211 (Parallel1) 78 199 0.9950 1

Run311 (Parallel2) 78 100 1.9800 2

Run411 (Parallel5) 78 40 4.9500 5

Run511
(Parallel11)

78 24 8.2500 11

Table 6.26 Execution Summary in Time for Dataset1 and Random12

Execution Name Iteration
Count

Execution
Time(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run112 (Serial) 30 76 1 1
Run212 (Parallel1) 30 77 0.9870 1

Run312 (Parallel2) 30 38 2.0000 2

Run412 (Parallel5) 30 15 5.0667 5

Run512 (Parallel11) 30 9 8.4444 11

67

Table 6.27 Execution Summary in Time for Dataset1 and Random13

Execution Name Iteration
Count

Execution
Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run113 (Serial) 53 135 1 1
Run213 (Parallel1) 53 135 1 1

Run313 (Parallel2) 53 68 1.9853 2

Run413 (Parallel5) 53 28 4.8214 5

Run513 (Parallel11) 53 16 8.4375 11

Table 6.28 Execution Summary in Time for Dataset1 and Random14

Execution Name Iteration
Count

Execution Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run114 (Serial) 38 96 1 1
Run214 (Parallel1) 38 98 0.9796 1

Run314 (Parallel2) 38 48 2.0000 2

Run414 (Parallel5) 38 19 5.0526 5

Run514
(Parallel11)

38 12 8.0000 11

Table 6.29 Execution Summary in Time for Dataset1 and Random15

Execution Name Iteration
Count

Execution Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run115 (Serial) 34 87 1 1
Run215 (Parallel1) 34 87 1 1

Run315 (Parallel2) 34 44 1.9773 2

Run415 (Parallel5) 34 18 4.8333 5

Run515
(Parallel11)

34 10 8.7000 11

68

Table 6.30 Execution Summary in Time for Dataset2 and Random21

Execution Name Iteration
Count

Execution Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run121 (Serial) 51 5474 1 1
Run221 (Parallel1) 51 5482 0.9985 1

Run321 (Parallel2) 51 2767 1.9783 2

Run421 (Parallel5) 51 1096 4.9945 5

Run521
(Parallel11)

51 662 8.2689 11

Table 6.31 Execution Summary in Time for Dataset2 and Random22

Execution Name Iteration
Count

Execution Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run122 (Serial) 49 5267 1 1
Run222 (Parallel1) 49 5276 0.9983 1

Run322 (Parallel2) 49 2658 1.9816 2

Run422 (Parallel5) 49 1055 4.9924 5

Run522
(Parallel11)

49 637 8.2684 11

Table 6.32 Execution Summary in Time for Dataset2 and Random23

Execution Name Iteration
Count

Execution Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run123 (Serial) 63 6771 1 1
Run223 (Parallel1) 63 6779 0.9988 1

Run323 (Parallel2) 63 3417 1.9816 2

Run423 (Parallel5) 63 1355 4.9970 5

Run523
(Parallel11)

63 818 8.2775 11

69

Table 6.33 Execution Summary in Time for Dataset2 and Random24

Execution Name Iteration
Count

Execution Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run124 (Serial) 50 5373 1 1
Run224 (Parallel1) 50 5384 0.9980 1

Run324 (Parallel2) 50 2714 1.9797 2

Run424 (Parallel5) 50 1078 4.9842 5

Run524
(Parallel11)

50 650 8.2662 11

Table 6.34 Execution Summary in Time for Dataset2 and Random25

Execution Name Iteration
Count

Execution Time
(Seconds)

Ratio of
Performance
Gain

Number of
Computers

Run125 (Serial) 32 3439 1 1
Run225 (Parallel1) 32 3445 0.9983 1

Run325 (Parallel2) 32 1736 1.9810 2

Run425 (Parallel5) 32 690 4.9841 5

Run525
(Parallel11)

32 415 8.2867 11

In order to have overall information about execution times, these times are

summarized in the tables below. And also, mean of 5 different runs are listed at the last row

of tables. As it can be observed, selection of initial means is also an important criterion for

the convergence time of K-means algorithm. For example, first dataset converges in 198

seconds in first run (first set of random initial means) and converges in 76 seconds in

second run (second set of random initial means).

Table 6.35 Execution Times in Seconds for the First Dataset

Run Serial 1 Process 2 Processes 5 Processes 11 Processes
1 198 199 100 40 24
2 76 77 38 15 9
3 135 135 68 28 16
4 96 98 48 19 12
5 87 87 44 18 10
Mean 118.40 119.20 59.60 24.00 14.20

70

Table 6.36 Execution Times in Seconds for the Second Dataset

Run Serial 1 Process 2 Processes 5 Processes 11 Processes
1 5474 5482 2767 1096 662
2 5267 5276 2658 1055 637
3 6771 6779 3417 1355 818
4 5373 5384 2714 1078 650
5 3439 3445 1736 690 415
Mean 5264.80 5273.20 2658.40 1054.80 636.40

When calculating the means of above tables, ratio of performance gain becomes

0.9954 for Parallel1, 1.9845 for Parallel2, 4.9676 for Parallel5 and 8.3200 for Parallel11.

This results show that parallel version with one computer of the K-means algorithm

completes execution almost at the same time with the serial one. This is very normal,

because when one computer is used, parallelization of algorithm makes no sense. There is a

very little performance loss for one computer parallel version which is because of the

overhead of parallelization.

When 2 and 5 computers are used with parallelized version of algorithm, it

completes execution almost 2 and 5 times faster than the serial algorithm. Performance gain

is not exactly 2 or 5, because there is a little messaging overhead in parallelized version.

When 11 computers are used in parallel version, the performance gain becomes 8.32

instead of 11. This situation can be explained by several reasons. At first, because root

computer is responsible for the synchronization of all computers, when the number of

computers used increases, the overhead of root computer increases too. As all computers

are dependent to root computer, this situation may cause a performance loss. And also,

traffic of messages in the network increases by the raising number of computers. This

traffic load may also cause a performance loss in parallel computing. Besides, performance

lack of a computer in parallel computing network causes performance loss which decreases

the performance gain, because all computers need to wait for the slowest computer before

moving to the next iteration of K-means clustering.

Another important result of executions is the effect of initial points to the clustering

time. When considering execution times of different initial points for the same algorithm

71

version, in can be observed that sometimes a performance change with a proportion larger

than two is present. Such as, serial algorithm for the first dataset converges in 198 seconds

with first initial point set and converges in 87 seconds with fifth initial point set which

makes a performance change by the proportion of 2.6.

Now, it is time to present execution performance results in graphics in order to

clarify results in tables above. At first, execution times (means of 5 runs with different

initial points) of different versions of the algorithm will be presented in graphics one for

first dataset and one for second dataset.

Means of Execution Times for Dataset1

118.4 119.2

59.6

24

14.2

0

20

40

60

80

100

120

140

Version of the Algorithm

Ti
m

e
in

 S
ec

on
ds

Serial Par. 1 Par. 2 Par. 5 Par. 11

1 3 4 5 7 8 9 10 11 6 2

Figure 6.1 Means of Execution Times for Color Histogram Dataset

72

Means of Execution Times for Dataset2

5264.8 5273.2

2658.4

636.4

1054.8

0

1000

2000

3000

4000

5000

6000

Version of the Algorithm

Ti
m

e
in

 S
ec

on
ds

Serial Par. 1 Par. 2 Par. 5 Par. 11

 1 3 4 5 7 8 9 10 11 6 2

Figure 6.2 Means of Execution Times for US Census Dataset

Performance increase (decrease in required time for execution) corresponding to the

increase of computer count with parallel algorithm can be observed easily from the

graphics above. When considering the above tables and graphics, it can be concluded that

the parallel algorithm provides the same proportion of performance increase both with

smaller dataset (68,040 rows with 32 attributes) and with larger dataset (1,000,000 rows

with 68 attributes). In other words, parallelisation of K-means, proposed in this project,

works on all sizes of datasets.

In above graphics, means of execution times for different runs with random initial

points are used. As it has been observed in 50 times executions of K-means algorithm with

different variables (dataset, initial points, algorithm version) that initial points are also

effective for the execution time of the algorithm, it is also necessary to present graphics by

using execution times of different initial points in detail. This graphics (for Dataset1 and for

Dataset2) are presented below.

73

Below graphics are presented to distinguish between different random initial points.

Unlike the above graphics which show only the means of different initial points, these ones

show all values for different initial points in detail.

Execution Times for Dataset1 with 5 Different Random Sets

198 199

100

40

15

38

7776

28

68

135135

48

9896

18

44

8787

0

20

40

60

80

100

120

140

160

180

200

220

Version of the Algorithm

Ti
m

e
in

 S
ec

on
ds

Random11 Random12 Random13 Random14 Random15

Serial Par. 1 Par. 2 Par. 5 Par. 11

1 3 4 5 7 8 9 10 116 2

Figure 6.3 Execution Times for Color Histogram Dataset

74

Execution Times for Dataset2 with 5 Different Random Sets

0

1000

2000

3000

4000

5000

6000

7000

Version of the Algorithm

Ti
m

e
in

 S
ec

on
ds

Random21 Random22 Random23 Random24 Random25

Serial Par. 1 Par. 2 Par. 5 Par. 11
1 3 4 5 7 8 9 10 116 2

Figure 6.4 Execution Times for US Census Dataset

Effect of both parallelisation and selection of initial points to the performance of K-

means clustering algorithm can be seen from detailed graphics. When using 11 computers

by the parallelisation, algorithm converges more than 8 times faster. And also, by the

change of initial points, performance changes of up to 2.6 times are present in the trial runs

of this project. These results brings the idea of connection of both parallelisation of the

75

algorithm and refining the initial points of the algorithm in order to get even faster

executions. This work can be considered as a valuable future work.

When examining 25 runs for each dataset, top and bottom execution times occur as

follows. Dataset1 has been clustered in 198 seconds in worst case and in 9 seconds in best

case. Dataset2 has been clustered in 6771 seconds in worst case and in 415 seconds in best

case. In other words, a performance increase of 22 times for Dataset1 and a performance

increase of 16.3 times for Dataset2 is present. These performance gains are very valuable

for an algorithm especially for ones which deal with very large amounts of data. In

summary, although the most part of performance gain belongs to the parallelism,

connection of refining of initial points with parallelism may even take the performance

increase of the K-means algorithm further which leads to a great performance increase.

As a result, it can be concluded that developed parallelization of K-means clustering

algorithm provides a performance gain almost proportional by the number of computers

which shows that parallelization of K-means algorithm has achieved its goal. This

performance gain is gathered independent of dataset size, from small to very large datasets,

because messaging in developed parallel version is in very small amounts. Furthermore,

performance gain will be enormous when dealing with datasets that do not fit into real

memory of a single computer. Because dataset is split into real memories of different

computers in parallel version, total size of memory area increases dramatically when

compared to a single computer.

76

CHAPTER 7

CONCLUSION AND FUTURE WORKS

Main aspect of this project has been to improve the K-means algorithm so that it can

perform clustering on large datasets in reasonable durations. When considering databases of

current companies, this improvement becomes very critical, because current companies

have huge amounts of data and they need to mine their databases in short durations in order

to have marketing advantage.

When examining serial K-means algorithm, it can be observed that the algorithm

deals with all objects in dataset serially which very time consuming especially for large

databases. When huge datasets are in account, serial K-means algorithm either lacks in

performance or crashes because of the larger dataset than the amount of memory of a single

machine.

In this project, parallelization of K-means algorithm has been proposed as an

improvement for the algorithm. It has been proposed that, parallel version of the algorithm

will produce exactly the same results with the serial algorithm in much shorter durations

almost by the number of computers used.

Parallel version of the algorithm has been designed and implemented by using C

language and LAM-MPI (Local Area Multi Computer - Message Passing Interface) utility

which can be used by C programs. Serial algorithm has also been implemented by C

language for the purpose of comparison with parallel version.

Design of the parallel algorithm has been performed carefully, such that algorithm

requires minimal frequency of messaging between processes with minimal message sizes.

Unlike the previous parallelization works of K-means algorithm, which transmit objects in

whole dataset between processes in each iteration of the clustering algorithm, only

summary of objects in dataset is transmitted between processes. Summary of objects,

mentioned above, is the sum and count of objects in a cluster which is a very small data

when comparing with the all objects in dataset.

77

After executions of serial and parallel K-means algorithms, it has been observed that

parallel algorithm produces exactly the same results with the serial algorithm in much

shorter durations. Performance gain of parallelization is almost by the number computers

used for parallel execution. Let’s say, algorithm runs almost N times faster when N

computers used for parallel execution.

This performance gain is present for all size of datasets unlike the previous works

on parallelization of K-means algorithm which run slower than the serial algorithm unless

the dataset is large enough. And also previous parallel implementations of K-means

algorithm propose a performance gain by K/2 (K is the number of clusters) which is not a

considerable gain for large datasets and limited by the number of clusters.

When examining results of different runs with different sets of random initial points,

it has been observed that selection of initial points also affects the convergence time of K-

means algorithm. In one example, execution time of the algorithm has become the half of

the previous run time by the change of random initial points. This shows that, a technique

for selecting better initial points than random ones may be developed and used in

connection with the parallel algorithm as a future work in order to make K-means

algorithm even faster.

78

REFERENCES

[Ali, Ghani and Saeed 2001] R. Ali, U. Ghani, A. Saeed, “Data Clustering and Its
Applications”, Rudjer Boskovic Institute, 2001

[Apte 1997] C. Apte, “Data Mining – An Industrial Research Perspective”, IEEE
Computational Science and Engineering, 1997

[Beddo 2002] V. Beddo, “Applications of Parallel Programming in Statistics”, University
of California, 2002

[Bradley and Fayyad 1998] P. S. Bradley, U. M. Fayyad, “Refining Initial Points for K-
means Clustering”, Fifteenth International Conference on Machine Learning, pages 91-99,
Morgan Kaufmann, San Francisco, CA, 1998

[Bradley, Fayyad and Reina] P. S. Bradley, U. Fayyad, C. Reina, “Scaling Clustering
Algorithms to Large Databases”, Microsoft Research

[Crocker and Keller] M. Crocker, F. Keller, “Connectionist and Statistical Language
Processing”, University of Saarlandes

[Edelstein] H. Edelstein, “Building Profitable Customer Relationships With Data Mining”,
Two Crows Corporation

[Fayyad, Piatetsky-Shapiro and Smyth 1996] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
“From Data Mining to Knowledge Discovery in Databases”, American Association for
Artificial Intelligence, 1996

[Ganti, Gehrke and Ramakrishnan 1999] V. Ganti, J. Gehrke, R. Ramakrishnan,
“Mining Very Large Databases”, IEEE Computer, 1999

[Hengl 2003] T. Hengl, “What Is Data Mining? Finding The Pattern”, PC AI Magazine,
2003

[Hettich and Bay 1999] S. Hettich, S. D. Bay, “The UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of California, Department of Information
and Computer Science”, 1999

[Javid 1999] S. Javid, “Data Mining In The Next Millennium”, DM Direct Newsletter,
1999

[Kantabutra 1999] S. Kantabutra, “Parallel K-means Clustering Algorithm on NOWs”,
Department of Computer Science, Tufts University, 1999

79

[MHPCC 1999] Maui High Performance Computing Center, “Parallel Programming
Workshop – Parallel Programming Introduction”,
http://www.mhpcc.edu/training/workshop/parallel_intro/MAIN.html, 1999

[Moore 2001] A. W. Moore, “K-means and Hierarchical Clustering”, School of Computer
Science, Carnegie Mellon University, 2001

[MPI] http://www.lam-mpi.org/

[Palace 1996] B. Palace, “Data Mining”, Technology Note prepared for Management
274A, Anderson Graduate School of Management at UCLA, 1996

[Skillicorn 1999] D. Skillicorn, “Strategies for Parallel Data Mining”, IEEE Concurrency,
1999

[Stoffel and Belkoniene 1999] K. Stoffel, A. Belkoniene, “Parallel k/h-means Clustering
for Large Data Sets”, Euro-Par, 1999

[Two Crows Corporation 1999] Two Crows Corporation, “Introduction to Data Mining
and Knowledge Discovery”, 1999

