THE SYNTHESIS OF FURANONES VIA RHODIUM-CATALYZED CARBONYLATIVE ADDITION REACTIONS OF ARYLBORONIC ACIDS TO ALKYNES

A Thesis Submitted to
the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE
in Chemistry
by
Fatma Nurcan DEGE

İZMİR

We approve the thesis of Fatma Nurcan DEGE

Prof. Dr. Levent ARTOK
Supervisor

Prof. Dr. Işıl TOPALOĞLU SÖZÜER
Committee Member

Prof. Dr. Engin ÇETİNKAYA
Committee Member

03 June 2008
Date

Prof. Dr. Hasan BÖKE
Dean of the Graduate School
Engineering and Sciences

ACKNOWLEDGEMENTS

There are many people to thank. But first of all, I would like to thank my advisor Prof.Levent ARTOK. Three years ago, I had to take a break before my master education. And after this break I came back to İYTE to study a master program and I was quite sure about whom I would study with. I would like to thank my advisor for his guidance. He is an excellent scientist, researcher and teacher. It was an honour to study with him.

Also, I would like to thank all old and new members of IYTE organic research group. I would like to thank Özge Aksın, she has been always helpful to me, and has shared her experience whenever I need. And I would like to thank to Gülay Durgun, my friend. She was always helpful to me.

I would like to thank to the Scientific and Technical Research Council of Turkey (TBAG-106T385), BOR-EN (BOR-EN-2006-14-Ç13-09) and IZTECH (2007-IYTE14) for financial support for this study, Prof. Bekir Çetinkaya and Mr. Hayati Türkmen from Ege University for NMR analyses and some Rh-complexes syntheses, the Enviromental Research Center for GC-MS analyses, Hüseyin Özgener for FT-IR and Elemental Analyses, Özge Aksın for NOE analyses, Işın Öztürk for NMR analyses.

And I would like to thank my friends; Bahar Öztop, Deniz Kiraz and Özlem Sigay. I know that they are always with me, and they will be too.

Finally, I would like to thank to my great family; my mother, my father, my lovely sister and brother. They have always been by my side whenever I needed them. They were always gentle and helpful to me when I have felt tired and confused in these last three years. I love them too much.

Abstract

\section*{THE SYNTHESIS OF FURANONES VIA RHODIUM-CATALYZED CARBONYLATIVE ADDITION REACTIONS OF ARYLBORONIC ACIDS TO ALKYNES}

This study reveals that 5-Aryl-2(5H)-furanones can be synthesized by rhodiumcatalyzed reaction of arylboronic acids with internal alkynes under a CO atmosphere.

In this thesis, relatively mild and simple method for synthesis of $2(5 \mathrm{H})$ furanones was developed. Our method was found to be applicable for various arylboronic acids and alkynes.

The methodology of this study is well applicable for ortho-, para- and metasubstituted phenylboronic acids. But slightly higher yields were obtained with parasubstituted phenylboronic acids than ortho- or meta- substituted ones.

It was found that when an asymmetric alkyne is used under the optimized conditions, aroylation occurs more on the electron deficient acetylenic carbon as compared with electron rich acetylene when aroylrhodium(I) species undergoes 1,2addition to the carbon-carbon triple bond in the reaction. That affects the ratio of isomeric yields of furanones which were produced in the reactions of asymmetric alkynes with phenylboronic acid.
$2(5 \mathrm{H})$-Furanones that we synthesized can be used in many areas such as food manufacturing, perfume and medicinal industries.

ÖZET

ARİLBORONIK ASİTLERİN ALKİNLERE RODYUM KATALİZLİ KARBONILATİ OLARAK EKLENMESİ YOLUYLA FURANON SENTEZİ

Bu çalışma 2-Aril-2(5H)-furanonların arilboronik asitlerin alkinler ile rodyum katalizli olarak CO gazı altında sentezlenebileceklerini göstermektedir.

Bu tezde $2(5 \mathrm{H})$-furanon sentezi için nispeten daha ılımlı ve basit bir metod geliştirilmiştir. Yöntem, farklı arilboronik asit ve alkin yapıları için uygulanabilirdir.

Çeşitli orto- meta- ve para- sübstütiye fenilboronik asitler tepkimelerde kullanılabilmektedir. Ancak para- sübstütiye fenilboronik asitlerle orto- veya metasübstütiye boronik asitlere oranla daha yüksek verim elde edilmiştir.

Reaksiyon optimum koşullarda bir asimetrik alkinle gerçekleştirildiğinde, aroyilrodyum(I) kompleksinin alkinin üçlü bağına 1,2-katılması sırasında aroyillenmenin daha ziyade elektronca fakir olan asetilenik karbon üzerinde olduğu tespit edilmiştir. Bu durum, fenilboronik asitle asimetrik alkinlerin reaksiyonu sonucu oluşan furanon izomerlerinin ürün oranlarını etkilemektedir.

Sentezlenen 2(5H)-Furanonlar, gıda üretimi, parfüm ve ilaç endüstrisi gibi bir çok alanda kullanılabilirler.

TABLE OF CONTENTS

LIST OF FIGURES ix
LIST OF TABLES xii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. TRANSITION METAL CATALYZED ADDITION REACTIONS of ORGANOBORONS 3
2.1. Organoborons 3
2.1.1. Properties of Boron 3
2.2. Transition Metals Catalyzed Addition of Organoborons 4
2.2.1. Rhodium-catalyzed Addition Reactions of Organoborons 5
2.2.1.1. Rhodium-catalyzed Addition of Organoborons to Cyclic and Acyclic Enones 6
2.2.1.2. Rhodium-catalyzed Addition of Organoborons to Aldeyhdes 8
2.2.1.3. Rhodium-catalyzed Addition of Organoborons to oher Unsaturated Carbonyl Substrates 9
2.2.1.4. Rhodium-catalyzed Addition of Organoborons to Alkenes and Alkynes and their Derivatives 13
2.2.1.5. Rhodium-catalyzed Addition of Organoborons to other Unsaturated Systems 16
CHAPTER 3. FURANONES 18
3.1. Nomenclature of Furanones 18
3.2. Furanones in Use 18
3.3. Synthesis of 2(5H)-Furanones 21
3.3.1. Synthesis of Furanones from Carbonyl Compounds, Carboxylates and Miscellaneous Acids and from their Derivatives 22
3.3.2. Synthesis of Furanones from Alkynes and Allenes 25
3.3.3. Carbonylative Synthesis of Furanones 26
3.4. Photochemical Rearrangement in Furanones 32
CHAPTER 4. EXPERIMENTAL STUDY 35
4.1. General Procedures for Synthesis of Alkynes by Sonogashira C-C Coupling Reactions 35
4.2. General Prodecure for Drying of Solvents 36
4.3. General Procedures for the Synthesis of Rh Complexes 37
4.4. General Procedure for Rh-Catalyzed Carbonylative Addition Reactions of Arylboronic Acids to Alkynes 37
4.5. Characterization of Products 38
4.5.1. GC Method 38
4.5.1.1. Calculation of Reactant and Product Amount on GC. 38
4.5.1.2. Calculation of Reactant Conversion, Product Yield and Recovery 39
4.6. Purification of the Products 40
4.7. Identification of Furanone Isomers 40
CHAPTER 5. RESULTS AND DISCUSSIONS 50
5.1. Rh-Catalyzed Carbonylative Addition of Phenylboronic Acid to Diphenyl Acetylene 50
5.2. Rh-catalyzed Carbonylative Reactions of Different Arylboronic Acids with Diphenyl Acetylene 55
5.3. Rh-catalyzed Carbonylative Reactions of Alkynes with Phenylboronic Acid 56
5.3.1. Rh-catalyzed Carbonylative Reaction of 4-Octyne with Phenylboronic Acid 56
5.3.2. Rh-catalyzed Carbonylative Reaction of 4-Octyne with Phenylboronic Acid 58
5.4. Proposed Mechanism of Rh-catalyzed Carbonylative Reactions of Arylboronic Acids with Alkynes 59
5.5. Identification of Furanone Isomers 62
CHAPTER 6. CONCLUSION 64
REFERENCES 65
APPENDICES
APPENDIX A. ${ }^{13} \mathrm{CNMR},{ }^{1} \mathrm{H}$ NMR, HMQC, HMBC, NOESY AND NOE SPECTRUMS OF FURANONES 74
APPENDIX B. MASS SPECTRUMS OF FURANONES 171
APPENDIX C. FT-IR SPECTRUMS OF FURANONES 199
APPENDIX D. ${ }^{13}$ CNMR AND ${ }^{1}$ H NMR OF SONOGASHIRA PRODUCTS 225
APPENDIX E. MASS SPECTRUMS of SONOGASHIRA PRODUCTS 237

LIST OF FIGURES

Figure Page
Figure 2.1. Possible catalytic cycles with Rh-catalysts 5
Figure 2.2. Rh-catalyzed addition of aryl and alkenyl boronic acids to enones6
Figure 2.3. Rh complexes with two monodentate ligands using the ligand combination approach 7
Figure 2.4. Structures of chiral [2.2.2] diene ligands 7
Figure 2.5. Chiral Rh-complex 7
Figure 2.6. Structure of (2S-5S)-DIPHONANE 8
Figure 2.7. Structures of biofunctional Michael acceptors 8
Figure 2.8. Rh-catalyzed addition of boronic acids to aldehydes 9
Figure 2.9. Rh-catalyzed acylation of arylboronic acids with anhydrides 9
Figure 2.10. Rh-catalyzed acylation of arylboronic acids with anhydrides in the presence of norbornene 10
Figure 2.11. Rh-catalyzed addition of arylboronic acids to maleimides 10
Figure 2.12. Rh-catalyzed addition of arylboronic acids to isatin 11
Figure 2.13. Rh-catalyzed addition of arylboronic acids to isocyanates 11
Figure 2.14. Rh-catalyzed addition of arylboronic acids to 1,2-diketones and substituted α-ketoesters 12
Figure 2.15. Rh-catalyzed arylative cyclization of alkynones induced by addition of boronic acids 12
Figure 2.16. Rh-catalyzed 1,3-migration reaction of acetylenic β-ketoesters with arylboronic acids 13
Figure 2.17. Rh-catalyzed multiple alkylation on aromatic ring 13
Figure 2.18. Rh-catalyzed addition of arylboronic acids to olefins 14
Figure 2.19. Rh-catalyzed addition of boronic acids to the fluoroalkylated electron-deficient olefins 14
Figure 2.20. Rh-catalyzed addition reactions of arylboronic acids or arylboroxanes to alkynes 14
Figure 2.21. Proposed mechanism for the Rh-catalyzed addition reactions of arylboronic acids or arylboroxanes to alkynes 15

Figure 2.22. Rh-catalyzed addition reactions of arylboronic acids to
alkynes alkynyl heteroatomic compounds in the presence of
water-soluble pyridine-substituted ligand... 15
Figure 2.23. Rh-catalyzed addition of arylboronic acids to the alkyne- tethered electron-deficient olefins 16
Figure 2.24. Rh-catalyzed addition of arylboronic acids to C_{60} 17
Figure 3.1. E - and Z-isomers of Rubrolide O 19
Figure 3.2. Quorum-sensing system of bacteria inhibition results of some biologically active furanones 19
Figure 3.3. Structure of oxetanocin-A 20
Figure 3.4. Structure of sotolon 20
Figure 3.5. Some examples for biologically active γ-alkylidenebutenolides 21
Figure 3.6. Synthesis of furanone from cationic manganese carbene complex 22
Figure 3.7. Synthesis of furanone from 4-hydroxy-2-cyclobutenone. 23
Figure 3.8. Synthesis of tri-substituted furanone by condensation of ketone with $\quad \alpha, \alpha-$ dimethoxyketone with $\mathrm{TiCl}_{4}-\mathrm{Bu}_{3} \mathrm{~N}$ system. 23
Figure 3.9. Synthesis of 4-halomethyl-2(5 H -furanones 24
Figure 3.10. Synthesis of disubstituted $2(5 \mathrm{H})$-furanone 24
Figure 3.11. Reactions of 4-hydroxy-2-alkynecarboxylate 12 with organoboronic acids $13 \mathrm{a}-\mathrm{b}$ under conditions A and B 25
Figure 3.12. Formation of furanone with the reaction of alkynes in the $\mathrm{RMgX} / \mathrm{Fe}(\mathrm{CO})_{2} / \mathrm{CuCl}$ combination 26
Figure 3.13. Synthesis of furanone from cationic manganese carbene complex 27
Figure 3.14. Synthesis of furanone from dichloroacyl chloride 28
Figure 3.15. Synthesis of γ-alkylidenebutenolide by Co-catalyzed carbonylative reaction of alkyl halide 28
Figure 3.16. Synthesis of regioisomers of furanone by the Rh-catalyzed carbonylative reaction of asymmetric acetylene in alcohol. 29
Figure 3.17. Synthesis of furanone via Ru-catalyzed oxidative cyclocarbonylation of allylic alcohol 29
Figure 3.18. Sythesis of furanone via Pd-catalyzed carbonylative reactions of arylhalides with acetylenes 30
Figure 3.19. Synthesis of furanone via Pd-catalyzed cyclocarbonylations of alkynols 30
Figure 3.20. Synthesis of β-chloro- $\Delta^{\alpha, \beta}$-butenolides via Pd-catalyzed mercuration-carbonylations of propargyl alcohols 31
Figure 3.21. Synthesis of α, β-butenolides via Pd-catalyzed carbonylative couplings of vinyl triflates 31
Figure 3.22. Photochemical rearrangement of 3,5-diphenylfuran-2(5H)-one 32
Figure 3.23. Photochemical rearrangement of furanone derivatives 33
Figure 3.24. Proposed rearrangement scheme of p-anysyl and phenyl groups in MeOH and benzene solvents 34
Figure 4.1. The Experimental Set-up for Sonogashira Coupling Reactions 36
Figure 5.1. GC-Chromatogram of the sample after reaction finished 57
Figure 5.2. GC-Chromatogram of the sample after purification by column chromatography 57
Figure 5.3. Reaction rates of aryl-aryl alkynes and alkyl-alkyl alkynes 58
Figure 5.4. Proposed mechanism for the Rh-catalyzed carbonylative reaction of arylboronic acids with alkynes 61
Figure 5.5. Atropisomers of furanone 18a 62

LIST OF TABLES

Table Page
Table 4.1. Purification of furanones by column chromatography part I 48
Table 4.2. Purification of furanones by column chromatography part II 49
Table 5.1. The effect of temperature, solvent and additives on $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$ catalyzed carbonylative addition reaction of phenylboronic acid to diphenyl acetylene 51
Table 5.2. The effect of Rh amount and mole ratio of R^{1} and R^{2} on $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ catalyzed carbonylative addition reaction of phenylboronic acid with diphenyl acetylene 52
Table 5.3. Effect of Rhodium catalysts on carbonylative addition reaction of phenylboronic acid with diphenyl acetylene 53
Table 5.4. Effect of pressure and additives on carbonylative addition reaction of phenylboronic acid to diphenyl acetylene 54
Table 5.5. Reaction of arylboronic acids with diphenyl acetylene under CO 55
Table 5.6. Activity of different diaryl-substituted asymmetric alkynes 59
Table 5.7. Activity of aryl and alkyl substituted alkynes 60

CHAPTER 1

INTRODUCTION

After Sakai et al. (1997) reported the first example of the Rh-catalyzed addition reactions of organoborones to enones (Sakai, et al. 1997), Rhodium-catalyzed addition reactions to various unsaturated systems have been more popular method for construction of C-C bonds.

Organoboron reagents readily undergo transmetallation to form arylrhodium(I) species which have capacity to react with many electrophilic sides (Sakai, et al. 1997, Fagnou and Lautens 2003). Organoborons can undergo addition reaction to heterobicyclic alkynes (Lautens and Duckendorrf 2003) and cyclic or acyclic α, β unsaturated carbonyl compounds (Lin and Lu 2006) in the presence of water and ynones (Pearce, et al. 2007) with also palladium catalysts.

In the literature, there are various methods for Rh-catalyzed reactions of organoboronic reagents with unsaturated systems (Duursuma, et al.2003, Boiteau, et al. 2002, Frost anf Wadsworth 2001, Oguma, et al. 2002, Sébastien, et al. 2006, Shintani, et al. 2005, Iyer, et al. 2007).
$2(5 \mathrm{H})$-furanones which are one of the most stable form of lactones can be produced by various catalytic systems (DeShong, et al.1988, Nozaki, et al. 1995, Ohno 1999, Huang and Zhou 2002, Rossi, et al. 1998, Ma and Gu 2005).

But in the literature there are only a few examples of carbonylative synthesis of furanones. Furanones have an important role in industrial processes which can be used in synthesis of $(+)$ - and (-)-eldanolide (Vigneron, et al. 1982), the antileukaemic lignans $(+)$-transburseran (Tomioka et al. 1979), (-)-isostegane (Tomioka, et al. 1979), (+)- and (-)-steganacin (Tomioka, et al. 1984), (-)-verrucarinolactone (Tomioka, et al. 1982) and chrysanthemic acid analogues (Mann and Thomas 1985), for construction of some biologically active compounds (Bjeldanes 1977), for the synthesis of polyesters since they possess the ability to undergo ring opening (Alzemi, et al. 2002, Trollasas et al. 1998), in medicinal industry (Pearce, et al. 2007, Rustullet, et al. 2007), in food manufacturing and perfume industry (Blank, et al. 1996, Kuhnt, et al. 1990, Gaudin 1995).

In this thesis we have developed a mild and relatively simple method for Rhcatalyzed carbonylative synthesis of $2(5 H)$-furanones by using various alkynes and arylboronic acids.

CHAPTER 2

TRANSITION METAL CATALYZED REACTIONS OF ORGANOBORONS

2.1. Organoborons

Organoborons are chemical compounds having aryl or alkyl functional groups on the boron atom. The term organoboron refers to a compound which has at least one C-B bond. Trialkoxyboranes are also classified as organoboron, although they do not have any C-B bonds.

Some of the important organoborons are: trialkyl and arylboranes $\left(R_{3} B\right)$, alkoxydialkylboranes ($\mathrm{R}_{2} \mathrm{BOR}$), dialkoxyalkylboranes $\left(\mathrm{RB}(\mathrm{OR})_{2}\right)$, chlorodialkylboranes $\left(\mathrm{R}_{2} \mathrm{BCl}\right)$, dichloro(alkyl)borane $\left(\mathrm{RBCl}_{2}\right)$, hydroxydialkylborane $\left(\mathrm{R}_{2} \mathrm{BOH}\right)$, dihydroxy(alkyl)borane and aryl or alkylboronic acids $\left(\mathrm{RB}(\mathrm{OH})_{2}\right.$ or $\left.\operatorname{ArB}(\mathrm{OH})_{2}\right)$. Boronic acids are used extensively in the synthesis of organic compounds as building blocks or intermediates, especially in Suzuki cross-coupling reactions.

2.1.1. Properties of Boron

Boron, B, atomic weight of 10.811 is the fifth element in the periodic table. It is composed of two stable isotopes with mass numbers of 10 and 11 . Although widespread in nature, it has been estimated to consititute only 0.001% of the earth's crust. It occurs naturally only in combined form, usually as alkali or alkaline earth borates or as boric acid.

Boron exists in amorphous form and in at least three crystalline forms. Melting point of boron is not known accurately but it is considered to be near $2100^{\circ} \mathrm{C}$, and its boling point is about $2600^{\circ} \mathrm{C}$. Amorphous boron ranges from yellow to brown in color. Crystalline forms of the element are usually shiny, black, and completely opaque.

2.2. Transition Metal Catalyzed Addition Reactions of Organoborons

Transition metals have an important role in the sythesis of organic compounds. Transition metals can catalyze multistep reactions and this is the one of the most significant aspects of them (Oguma, et al. 2000). The interesting thing about transition metals is that their valence electrons, or the electrons they use to combine with other elements, are present in more than one shell. This is the reason why they often exhibit several common oxidation states.

In the past twenty-five years, using transition metals in the sythesis of organic compounds has dramatically increased.

Transition metal catalyzed conjugate addition of organoborons to the unsaturated systems have recently been developed. Cho et al. (1995) reported the $\operatorname{Pd}(\mathrm{OAc})_{2}$ catalyzed addition reactions of organoboron compounds to enones in the presence of NaOAc or SbCl_{3}. First key step of this reaction is oxidative addition of the $\mathrm{C}-\mathrm{B}$ bond to $\operatorname{Pd}(0)$ which results in the formation of arylpalladium species and the second one is the formation of antimony enolate derived from the initial coordination of SbCl_{3} to the carbonyl oxygen of organopalladium species.

In the literature there are many studies about the palladium-catalyzed addition reactions of organoborons to unsaturated compounds. In here, some examples of them will be given.

Lautens and Duckendorrf (2003) reported palladium-catalyzed ring-opening addition of various arylboronic acids to heterobicyclic alkenes such as aza- and oxabicyclic alkenes resulted in the formation of the corresponding products in excellent yields.

In 2006, a study about the palladium/bipyridine catalyzed addition of arylboronic acid to cyclic and acyclic α, β-unsaturated carbonyl compounds in aqueous media was reported. In this study moderate to excellent yields were obtained even for α, β-unsaturated esters (Lin and Lu 2006).

And recently, Arcadi et al. (2008) demonstrated the higly regioselective hydroarylation of readily available ynones with organoboron derivatives. The reaction was catalyzed by both $\operatorname{Pd}(\mathrm{II})$ and $\operatorname{Pd}(0)$ precatalysts, and can be carried out even under neutral conditions.

2.2.1. Rhodium-Catalyzed Addition Reactions of Organoborons

Rhodium is a transition metal which is also a member of the platinium metal group with a symbol Rh and atomic number 45 and was discovered by William Hyde Wollaston in 1803. Rhodium's primary use is an alloying agent which is used to harder Pd and Pt. These alloys can be used for thermocoupling elements, furnace windings, bushings for glass fiber production, electrodes for aircraft spark plugs, and laboratory crucibles. Rhodium is also used for jewellery, for decoration, and as a catalyst.

In the past twenty-five years, using transition metals in the synthesis of organic compounds has dramatically increased. Recently rhodium catalysts have been given much more attention by researchers in the $\mathrm{C}-\mathrm{C}$ bond forming reactions. Rh-catalyzed reactions are milder and more benign, because these reactions can be performed in the presence of water or even in water and show promises from environmental perspective.

Rhodium shows an interesting and new catalytic properties when catalytic cycles were compared with other commonly used metals such as palladium, nickel and platinium (Figure 2.1). In its catalytic reactions with organometallics, rhodium plies between the two oxidation states: Rh (I) and Rh (III), and it means that transmetallation can occur at two point of catalytic cycle.

Figure 2.1. Possible catalytic cycles with Rh-catalysts
(Source: Fagnou and Lautens 2003)

Alternatively, the organorhodium species can also be coupled with an unsaturated compounds as illustrated in cycle 2 (Figure 2.1) and the outcome of cycle 2 is a net R, H-addition across the unsaturated unit (Fagnou and Lautens 2003).

2.2.1.1. Rhodium-Catalyzed Addition Reactions of Organoborons to Cyclic and Acyclic Enones

Firstly, in 1997, Sakai et al. (1997) reported that Rh (I) complexes catalyze the addition reactions of aryl and alkenyl boronic acids to enones in an aqueous solvent to give excellent yield (Figure 2.2). They used various ligands in their reactions and bisphosphine ligands having large bite angles were found to give best results (Sakai, et al. 1997).

Figure 2.2. Rh-catalyzed addition of aryl and alkenyl boronic acids to enones
(Source: Sakai, et al. 1997)

Takaya et al. (1998) reported the first enantioselective variant of this transformation by changing the solvent, rhodium complex and temperature. Good results have also been obtained with the chiral amidomonophosphine ligand (Kuriyama and Tomioka 2001).

Monodentate phosphoramidites firstly used as chiral ligands in the Rh-catalyzed enantioselective conjugate addition of arylboronic acids to some unsaturated systems such as unsaturated esters, lactones, enones and nitro alkenes. Reactions resulted in high enantioselectivity (Boiteau, et al. 2002).

Duursma et al. (2003) reported that more efficient catalysts can be obtained by combining chiral monodentate phosphoramidite for the Rh-catalyzed conjugate additions of boronic acids to three different substances: cyclohexenone, benzylidene acetone and 4-methyl-nitrostyrene (Duursuma, et al. 2003). Chiral catalysts based on hetero-combinations of ligands are found to be more effective than the homocombinations (Figure 2.3).

Figure 2.3. Rh complexes with two monodentate ligands using the ligand combination approach (Source: Duursuma, et al.2003)

Another examples of Rh-catalyzed addition reactions of boronic acids to cyclic and acylic enones which were resulted in high to excellent enantioselectivity in the presence of a chiral [2.2.2] dienes as ligands (Figure 2.4) (Defieber, et al. 2004), or by using a coordinated Rh-complex (Figure 2.5) (Chen, et al. 2006), or by using the DIPHONANE which is a novel chiral biphosphine ligand (Figure 2.6) (Vandyck, et al. 2005) were reported.

Figure 2.4. Structures of chiral [2.2.2] diene ligands (Source: Defieber, et al. 2004)

Figure 2.5. Chiral Rh-complex
(Source: Chen, et al. 2006)

Figure 2.6. Structure of (2S-5S)-DIPHONANE (Source: Vandyck, et al. 2005)

Recently, Rh-catalyzed enantioselective and regioselective 1,4-addition reactions of arylboronic acids to substituted enones such as biofunctional Michael acceptors (Figure 2.7) was reported. Reactivity was high when reaction was performed under bacis conditions and in the presence of monodentate phosphoroamidites (Mediavilla, et al 2006).

Figure 2.7. Structures of biofunctional Michael acceptors (Source: Mediavilla, et al 2006)

Trenkle et al. (2006) demonstrated an efficient method for the conjugate addition of electron-deficient arylboronic acids to 2-cyclohexen-1-one by using low levels of catalyst and boronic acids in an aqueous solution and in the presence of LiOH .

2.2.1.2. Rhodium-Catalyzed Addition Reactions of Organoborons to Aldeyhdes

Sakai et al. (1998) developed a Rh-catalyzed addition reaction of organoboronic acids to aldehydes (Figure 2.8). Reaction was found to be spesific for aldehydes.

Figure 2.8. Rh-catalyzed addition of boronic acids to aldehydes (Source: Sakai, et al. 1998)

Excellent catalytic activity was reported in the additon of arylboronic acids to aldehydes with cationic rhodium complexes of certain nitrogen-containing ligands (Moreau, et al. 2001). High yields were also obtained in the additon of arylboronic acids to aldehydes with novel Rh-carbene complexes (Özdemir, et al. 2004) and by a catalyst system generated in situ from novel hexadentate imidazolium salts, $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$ and in the presence of a base (Chen, et al. 2005) and by using an anionic rhodium η^{4}-quinonoid complex as a multifunctional catalyst (Son, et al. 2005).

2.2.1.3. Rhodium-Catalyzed Addition Reactions of Organoborons to Other Unsaturated Carbonyl Substrates

Ketones can be synthesized in high yields by a new method which is defined as Rh-catayzed addition reactions of various of boronic acids to anhydrides (Figure 2.9) (Frost anf Wadsworth 2001).

Figure 2.9. Rh-catalyzed acylation of arylboronic acids with anhydrides
(Source: Frost anf Wadsworth 2001)

After they Oguma et al. (2002) reported a similar reaction with Frost and Wadswoth's study in 2002. The used tetraphenylborates instead of arylboronic acids and added ligands to the reaction medium such as dppf and dppb. Norbornene compound was also used in the reaction medium as a promoter (Figure 2.10) (Oguma, et al. 2002).

Figure 2.10. Rh-catalyzed acylation of arylboronic acids with anhydrides in the presence of norbornene (Source: Oguma, et al. 2002)

First example of catalytic asymmetric synthesis of trifluoromethyl substituted tertiary alcohols was developed in high isolated yields (up to 96%) with good enantioselectivities (up to 83%) by $\mathrm{Rh} /$ phosphoramidite catalyzed addition of arylboronic acids to trifluoromethyl ketones (Sébastien, et al. 2006).

Shintani et al. (2005) developed a novel chiral phosphine-olefin ligands which act as bidentate ligands with some transition metals and were found to be effective in the Rh-catalyzed 1,4-addition of arylboronic acids to maleimides. Another study was performed by using various electron-rich and electron-poor boronic acids. These reactions were also performed in microwave, which resulted in shorter reaction times and improved efficiencies (Figure 2.11) (Iyer, et al. 2007).

Figure 2.11. Rh-catalyzed addition of arylboronic acids to maleimides
(Source: Iyer, et al. 2007)

Toullec et.al. (2006) developed the 1,2 -addition reactions of arylboronic acids with isatin substrates (Figure 2.12) in the presence of a $\mathrm{Rh}(\mathrm{I})$ precursor and 2 equiv of PPh_{3}. An enantioselective version of this reaction was also reported (Toullec, et al. 2006).

Figure 2.12. Rh-catalyzed addition of arylboronic acids to isatin (Source: Toullec, et al. 2006)

Aryl- and alkenylboronic acids can also be used in the addition reaction to isocyanates (Figure 2.13) which resulted in the formation of secondary amines under mild reaction conditions (Miura, et al. 2007).

Figure 2.13. Rh-catalyzed addition of arylboronic acids to isocyanates
(Source: Miura, et al. 2007)

Recently, asymmetric addition of boronic acids to α, β-Unsaturated 2-Pyridyl Sulfones (Mauleon, et al. 2007), and unsaturated esters in the presence of Rh-diene complexes as catalysts (Paquin, et al. 2005), arylmethylene cyanoacetates in the presence of $\mathrm{Rh} /$ chiral diene (Sorgel, et al. 2007) and substituted cinnamaldehydes (Paquin, et al. 2005) were also reported. Additions of arylboronic acids to diketones and ketoesters were also performed (Figure 2.14) (Ganci and Chilshom 2007).

Figure 2.14. Rh-catalyzed addition of arylboronic acids to 1,2-diketones and substituted α-ketoesters (Source: Ganci and Chilshom 2007)

C-glycoside has been synthesized by a method which is based on cationic $\mathrm{Rh}(\mathrm{I})-$ catalyzed 1,4 -addition of arylboronic acids to enones derived from glycals. Reaction was found to be depended on the Rh-catalyst's nature and to be stereoselective (Ramnauth, et al. 2001).

Reactions of arylboronic acids with alkynones in the presence of $\mathrm{Rh}(\mathrm{I})$ catalyst results in the arylative cyclization of alkynones which produces a four- and five-membered-ring cyclic alcohols equipped with a tetrasubstituted exocyclic olefin (Figure 2.1). The presence of the carbonyl group as the secondary acceptor functionality greatly contributes to the high reactivity (Miura, et al. 2007).

Figure 2.15. Rh-catalyzed arylative cyclization of alkynones induced by addition of boronic acids (Source: Miura, et al. 2007)

In another study, a new $\mathrm{Rh}(\mathrm{I})$-catalyzed acyl 1,3-migration reaction of acetylenic $\beta-$ ketoesters with arylboronic acids was developed (Miura, et al. 2005). In this reactions an intermediate organorhodium(I) species undergoes intramolecular nucleophilic addition to a ketone carbonyl group in 4-exo following cyclobutane cleavage through a retro-aldol reaction (Figure 2.16).

Figure 2.16. Rh-catalyzed 1,3-migration reaction of acetylenic β-ketoesters with arylboronic acids (Source: Miura, et al. 2005)

2.2.1.4. Rhodium-Catalyzed Addition of Organoborons to Alkenes, Alkynes and Their Derivatives

Norbornene can undergo a Rh-catalyzed multistep arylation reactions with arylboronic acids which is called as "merry-go-round multiple alkylation" (Figure 2.17). This sequence results in the formation of a unique class of sterically encumbered aromatic molecules (Oguma, et al. 2000).

Figure 2.17. Rh-catalyzed multiple alkylation on aromatic ring
(Source: Oguma, et al. 2000)

Lautens et al. (2001) demonstrated the Rh-catalyzed addition of arylboronic acids to vinyl heteroaromatic compounds (Figure 2.18).

Figure 2.18. Rh-catalyzed addition of arylboronic acids to olefins (Source: Lautens, et al. 2001)

Recently, Rh-catalyzed addition of various organoboronic acids to the fluoroalkylated electron-deficient olefins in the presence of (S)-BINAP in toluene/water solvent system resulted in the formation of corresponding addition products with high yields and enantioselectivity (Figure 2.19) (Konno, et al. 2008).

Figure 2.19. Rh-catalyzed addition of boronic acids to the fluoroalkylated electrondeficient olefins (Source: Konno, et al. 2008)

Arylboronic acids also undergo addition reaction with alkynes. Hayashi and his co-workers demonstrated the Rh-catalyzed addition reaction of arylboronic acids and arylboroxanes which produces tri-substituted alkenes (Figure 2.20). This study also reported that the reaction showed 1,4 -shift of Rh from 2-aryl-1-alkenylrhodium to 2 alkenylarylrhodium intermediate in the proposed mechanism of the reaction (Figure 2.21) (Hayashi, et al. 2001).

Figure 2.20. Rh-catalyzed addition reactions of arylboronic acids or arylboroxanes to alkynes (Source: Hayashi, et al. 2001)

Figure 2.21. Proposed mechanism for the Rh-catalyzed addition reactions of arylboronic acids or arylboroxanes to alkynes (Source: Hayashi, et al. 2001)

A variant of this study was reported by Genin et al. in 2004. They studied on recycling of Rh / m-TPPTC catalyst and reactions were performed in toluene. Reactions with various boronic acids were resulted in regioselective formation of the corresponding functionalized alkenyl derivatives with high yields.

Addition reactions of arylboronic acids to alkynyl heteroatomic compounds in the presence of $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ and a water-soluble pyridine-substituted ligand were found to give tri-substituted alkenes with high regioselectivity (Figure 2.22) (Lautens and Yoshida 2002).

Figure 2.22. Rh-catalyzed addition reactions of arylboronic acids to alkynes alkynyl heteroatomic compounds in the presence of water-soluble pyridinesubstituted ligand (Source: Lautens and Yoshida 2002)

Shintani et al. (2005) reported an arylative cyclization of alkyne-tethered electron-deficient olefins with high chemoselectivity and enantioselectivity by using a chiral diene ligands (Figure 2.23). Reactions were performed in the presence of Rhdiene catalyst instead of Rh-biphosphine catalyst in order to obtain more efficient results (Lautens and Yoshida 2002).

Figure 2.23. Rh-catalyzed addition of arylboronic acids to the alkyne-tethered electrondeficient olefins (Source: Lautens and Yoshida 2002)

2.2.1.5. Rhodium-Catalyzed Addition of Organoborons to Other Unsaturated Systems

Rh-catalyzed asymmetric 1,4-addition of arylboroxines to 1alkenylphosphonates produced 2-arylakylphosphonates in high yields with high enantioselectivity in the presence of new catalytic system having a chiral phosphinerhodium (Hayashi, et al. 1999).

Hayashi et al. (2000) demonstrated the Rh-catalyzed asymmetric conjugate addition of organoboronic acids to nitroalkenes (Hayashi, et al. 2000).

A new and practical method for diastereoselective and enantioselective Rhcatalyzed addition of arylboronic acids to N-tert-butanesulfinyl and N diphenylphosphinoyl aldimines have been developed (Weix, et al. 2004).

Recently, Nambo et al. (2007) reported the rhodium-catalyzed arylation and alkenylation of C_{60} by using organoboron compounds (Figure 2.24).

Figure 2.24. Rh-catalyzed addition of arylboronic acids to the C_{60} (Source: Nambo, et al. 2007)

CHAPTER 3

FURANONES

3.1. Nomenclature of Furanones

5 H -furan-2-ones, also 2 -furanone, are heterocyclic organic compounds classified as lactones.

A lactone is a cyclic ester. Most stable structures of lactones are 5-membered lactones (called gamma-lactone) and 6-membered lactones (called delta-lactone) since angle strain in these structures is minimalized. Lactones are named by labelling the carbon atoms. First carbon atom after carbonyl-carbon atom is labelled as alpha and second is labelled as beta and so forth. Prefixes (beta-, gamma-, delta-) also show the ring size. Beta-lactones have 4-membered ring, gamma-lactones have 5-membered ring and delta-lactones have 6-membered ring.

3.2. Furanones in Use

Furanones, which can also be classified as butenolides are important building blocks for the synthesis of natural products. They have been used in synthesis of (+)and (-)-eldanolide (Vigneron, et al. 1982), the antileukaemic lignans (+)-transburseran (Tomioka, et al. 1979), (-)-isostegane (Tomioka, et al. 1979), (+)- and (-)-steganacin (Tomioka, et al. 1984), (-)-verrucarinolactone (Tomioka, et al. 1982) and chrysanthemic acid analogues (Mann and Thomas 1985).

Lactones containing both saturated and unsaturated five and larger rings are of interest since they are used for construction of some biologically active compounds (Bjeldanes 1977). Lactones can also be used for the synthesis of polyesters since they possess the ability to undergo ring opening (Alzemi, et al. 2002, Trollasas, et al. 1998).

Furanone and its derivatives are important compounds for medicinal industry. Pearce et al. reported first anti-inflammatory rubrolide (Figure 3.1) which is new and exists as a mixture of E - and Z - isomers (Pearce, et al. 2007).

Figure 3.1. E - and Z - isomers of Rubrolide O
(Source: Pearce, et al. 2007)

Jolivet, et al. (2002) demonstrated the activity of some furanones about inhibiting the formation of biofilms which are complicated accumulation of the microorganisms which grow on a firm substrate. They used three diffrent furanones in their experiments and reported that furanones can inhibit the formation of biofilms by interfering with the quorum-sensing system of bacteria. (Figure 3.2).

Figure 3.2. Quorum-sensing system of bacteria inhibition results of some biologically active furanones (Source: Jolivet, et al. 2002)

In another study, it was reported that carboxylic analogues of oxetanocin can be stereoselectively synthesized via [2+2] photocycloaddition to a chiral $2(5 \mathrm{H})$-furanone (Rustullet, et al. 2007). This study also has great importance since oxetanocin-A (Figure 3.3) is one of naturally occuring oxetane adenine nucleoside which was reported as exhibiting some antiviral activity towards some viruses such as herpes simplex virus 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), and human immunodeficiency virus (HIV).

Figure 3.3. Structure of oxetanocin-A
(Source: Rustullet, et al. 2007)

Furanones are also used in food manufacturing and perfume industry because of their flavor property (Gaudin 1995). In 1996, formation of sotolon (Figure 3.4) from 4-hydroxy-L-isoleucine and 3-Amino-4,5-dimethyl-3,4-dihydro-2(5H)-furanone was reported. Sotolon is used in sugar manufacturing as powerful flavor compound and it can also be found in various food and spices (Blank, et al. 1996).

Figure 3.4. Structure of sotolon
(Source: Blank, et al. 1996)

In 1998, Schnider and his co-workers reported the odor property of volatile compounds which include sotolon, involved in the aroma of sweet fortifies wines.

Regio- and stereospecifically identified γ-alkylidenebutenolides are used in medicinal and biological area because of their biological activities (Negishi and Kotora 1997), such as xerulin, xerulinic acid and dihydroxerulin which inhibit the cholesterol biosynthesis (Kuhnt, et al. 1990) and rubrolides which shows antibiotic activity (Pearce, et al. 2007).

Figure 3.5. Some examples for biologically active γ-alkylidenebutenolides (Source: Pearce, et al. 2007)

3.3. Synthesis of $\mathbf{2 (5 H})$-Furanones

Furanones can be synthesized in various ways. In the literature there have been many ways to synthesize $2(5 \mathrm{H})$-furanones: from their cycloalkane derivatives, from epoxides; cyanohydrins, acetylenic compounds, allenic acids, dienoic acids, vinylacetic acids, miscalleneous acids, other heterocyclic compounds, $3(2 \mathrm{H})$-furanones, from β keto sulfoxides or by using some methods such as electrolytic methods, photolysis of
sultones, reformatsky-elderfield reaction, stobbe condensation, condensation of pyruvic acid derivatives with carbonyl compounds (Rao 1976).

3.3.1. Synthesis of Furanones from Carbonyl Compounds, Carboxylates and Miscellaneous Acids and from their Derivatives

A common way to synthesize furanones is using a carbonyl compound or derivatives in the reaction.

Highly functionalized furanones were sythesized in high yields from activated carbonyl compounds and dimethyl acetylenedicarboxylate (Figure 3.6) (Nozaki, et al. 1995).

Figure 3.6. Synthesis of furanone from activated carbonyl compound and dimethyl acetylenedicarboxylate (Source: Nozaki, et al. 1995)

Kumar and Pandey reported an efficient and high-yielding synthesis of 5-hydroxy- $2(5 \mathrm{H})$-furanone by using a titanium silicate molecular sieve catalyst. In this study they developed an environmentally friendly and practically alternative method to synthesize corresponding hydroxylactone by oxidation of furan over a titanium silicate$1 / \mathrm{H}_{2} \mathrm{O}_{2}$ system (Kumar and Pandey 1999).
$2(5 \mathrm{H})$-furanones were also synthesized by the ring expansion of 4-hydroxy-2cyclobutenone with the reaction of $\mathrm{PhI}(\mathrm{OAc})_{2}$ in methanol (Figure 3.7) which was used as both solvent and nucleophile gave good yields for furanones (Ohno 1999).

Figure 3.7. Synthesis of furanone from 4-hydroxy-2-cyclobutenone
(Source: Ohno 1999)

Tanabe et al. (2002) reported an efficient method to synthesize tri-substituted $2(5 \mathrm{H})$-furanones in a one-pot manner by the $\mathrm{TiCl}_{4}-\mathrm{Bu}_{3} \mathrm{~N}$-mediated condensation of ketones with α, α-dimethoxyketones (Figure 3.8) and obtained good yields for those furanones. They also demonstrated application of these furanones to straightforward synthesis of (R)-mintlactone and (R)-menthofuran which are natural mint perfumes.

Figure 3.8. Synthesis of tri-substituted furanone by condensation of ketone with $\alpha, \alpha-$ dimethoxyketone with $\mathrm{TiCl}_{4}-\mathrm{Bu}_{3} \mathrm{~N}$ system (Source: Tanabe, et al. 2002)

Huang and Zhou exhibited a CuX_{2}-mediated cyclization reaction of cyclopropylideneacetic acids and esters to synthesize 4-halomethyl-2(5 H)-furanones, which are important pivotal skeleton molecules in the sythesis of many natural products, in a mild way with moderate to good yields (Figure 3.9). However when the reaction was performed with CuBr_{2} at $85^{\circ} \mathrm{C}$ for 10 h , furanone yield increased up to 78\% (Huang and Zhou 2002).

Figure 3.9. Synthesis of 4-halomethyl-2(5 H)-furanones
(Source: Huang and Zhou 2002)

Rossi and co-workers developed a simple method for the synthesis of racemic 4,5-disubstituted 5 H -furan-2-ones with the reaction of 3 -ynoic acids and organic halides such as (hetero)aryl bromides or iodides, alkenyl bromides or 1-alkynyl bromides (Figure 3.10). They reported that method is unfortunately not usable for the sythhesis of 4 -substituted 5 H -furan-2-ones (Rossi, et al. 1998).

Figure 3.10. Synthesis of disubstituted 2(5 H)-furanone
(Source: Rossi, et al. 1998)

Pd-catalyzed alkylative lactonization of 4-hydroxy-2-alkynecarboxylates with organoboronic acid resulted in regioselective formation of butenolides (Oh, et al. 2004). They demonstated lactonization in situ with excellent stereoselectivity and regioselectivity.

When the reaction was performed under condition B at $60^{\circ} \mathrm{C}$ for 4 hours, they found the selectivity to increase. For example reaction of $\mathbf{1 2 b}$ and $\mathbf{1 3 b}$ (Figure 3.11) in 1,4-dioxane gave only 15bb with 94% yield, reaction of 12c and 13b in again 1,4-
dioxane gave only $\mathbf{1 5 c b}$ with 96% yield, reaction of $\mathbf{1 2 d}$ and $\mathbf{1 3 b}$ in 1,4-dioxane gave only $\mathbf{1 5 d b}$ with 96% yield, reaction of $\mathbf{1 2 f}$ and $\mathbf{1 3 b}$ in THF gave only $\mathbf{1 5 f b}$ with 96 yield, reaction of $\mathbf{1 2 g}$ and 13a in THF gave only 15ga with 97% yield, and reaction of $\mathbf{1 2 g}$ and $\mathbf{1 3 b}$ in THF gave only $\mathbf{1 5 g b}$ with 98% yield.

When reaction was performed in under condition B in THF at $70{ }^{\circ} \mathrm{C}$ for 10 hours 12c and 12b gave only 15cb with 98% yield.

Figure 3.11. Reactions of 4-hydroxy-2-alkynecarboxylate 12 with organoboronic acids $13 \mathrm{a}-\mathrm{b}$ under conditions A and B (Source: Oh, et al. 2004)

3.3.2. Synthesis of Furanones from Alkynes, Allenes

Radhakrishan and Periasamy found a novel method for double carbonylation leading formation 1,2 -diketones with the $\mathrm{RMgX} / \mathrm{Fe}(\mathrm{CO})_{2} / \mathrm{CuCl}$ combination gave moderate yields (Figure 3.12) and system resulted in the formation of the corresponding furanone when reaction was performed in the presence of alkyne. They also reported that when phenylacetylene was used as alkyne, reaction gave only one isomer which is furanone in low yield (Radhakrishan and Periasamy 1996).

$$
\begin{array}{ll}
\text { R: }-\mathrm{CH}_{2} \mathrm{CH}_{3} \quad \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph} & \mathbf{1}=26 \% \quad \mathbf{2}=13 \% \\
\text { R: }-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph} & \mathbf{1}=32 \% \quad \mathbf{2}=10 \% \\
\text { R: }-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3} & \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph} \\
\text { R: }-\mathrm{CH}_{2} \mathrm{CH}_{3} & \mathrm{R}_{1}=35 \% \\
=1=35 & \mathbf{2}=10 \% \\
\mathrm{R}_{2}=\mathrm{H} & \mathbf{1}=32 \% \\
\mathbf{2}=0 \%
\end{array}
$$

Figure 3.12. Formation of furanone with the reaction of alkynes in the $\mathrm{RMgX} / \mathrm{Fe}(\mathrm{CO})_{2} / \mathrm{CuCl}$ combination (Source: Radhakrishan and Periasamy 1996)

Allene derivatives are suitable compounds for sythesis of furanones. Katritzky et al. (1996) reported a novel synthesis of γ-lactones via 1,2,4-triazole-stabilized allenic anions. Recently Ma and Gu developed an efficient route to synthesize $2(5 \mathrm{H})$-furanone derivatives by PdCl_{2}-catalyzed two-component cross-coupling cyclization of 2,3allenoic acids with 2,3 -allenols (Ma and Gu 2005). This is the first report about coupling cyclization of two different allenes leading formation of 4-(1', 3'-dien-2'yl)-2furanone derivatives in good yields.

Regio- and stereospecifically identified γ-Alkylidenebutenolides are also of a great interest in medicinal and biological area since many of them have been exhibited some biological activities (Negishi and Kotora 1997).

3.3.3. Carbonylative Synthesis of Furanones

In the literature there have been a few examples for the carbonylative synthesis of $2(5 \mathrm{H})$-furanones.

Alper and his research group developed a novel methodology which includes the double carbonylation of styrene oxides by Co-catalysis $\left(\mathrm{NaCo}(\mathrm{CO})_{4}\right)$ in the presence of iodomethane, NaOH and a phase transfer agent to form $2(5 \mathrm{H})$-furanone (Alper, et al. 1985).

Woo and Cheng showed a simple general method for the synthesis of 3,4-dialkyl-2(5H)-furanones by the carbonylation of aldehydes in strong acid (Woo and Cheng 1985).

Some examples of Rh-catalyzed carbonylation of acetylenes were reported in the literature. Joh et al. (1990) reported $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ catalyzed carbonylation reactions of
acetylenes under water-gas shift reaction conditions. But this method is restricted and it is applicable only for internal acetylenes having alkyl, aryl, and alkenyl substituents. They reported that method was not succesful for the monosubstituted acetylenes such as phenylacetylene. In these cases the catalyst was found to decompose to the metal and no definite compounds were isolated.

Migratory insertion of alkylmanganese pentacarbonyl complexes is a usable method to sythesize butenolides. DeShong et al. (1998) reported a general method to prepare butenolides from organomanganese pentacarbonyl complexes. In this study butenolides were sythesized by the enolization, cyclization and alkene isomerization of the ketene which was generated by the insertion of carbon monoxide into the cationic manganese carbene complex (Figure 3.13).

Figure 3.13. Synthesis of furanone from cationic manganese carbene complex
(Source: DeShong, et al.1988)

In another method, a new catalytic system was improved for such a double functionalisation reaction which follows the formation of chloroacyl or dichloroacyl chlorides which was synthesized with Pd-catalyzed chlorocarbonylation of allyl chlorides (Figure 3.14). Then these intermediates were used for sythesis of $2(5 \mathrm{H})$ furanones resulted in good yields (Bonnet, et al. 1998).

Figure 3.14. Synthesis of furanone from dichloroacyl chloride
(Source: Bonnet, et al. 1998)

Cobalt catalyzed carbonylative reactions of alkyl halides such as methyl bromoacetate and a nucleophilic base such as tertiary amine leaded to formation of 2,4-pentadieno-4-lactone (Figure 3.15). Yields were around 60% for various substituted alkynes and alkyl halides (Heck 1964).

Figure 3.15. Synthesis of γ-alkylidenebutenolide Co-catalyzed carbonylative reaction of alkyl halide (Source: Heck 1964)

Another study was done under water-gas shift conditions. Zhang et al. (1999) developed $\mathrm{Rh}_{6}(\mathrm{CO})_{16}$ catalyzed carbonylation reaction of 2-phenylethynylbenzaldehyde under water-gas shift reaction conditions to produce a tricyclic lactone, indeno [2,1-b] furan. On the other hand, a similar reaction of 2-phenylethynylbenzoate gave an isomeric mixture of furanone derivatives. Increasing the reaction temperature resulted in the formation of tetracyclic lactone and indeno [2,1-c]isocoumarin.

In a report, the syntheses of 5-alkoxy-2(5H)-furanones were performed by rhodium-catalyzed carbonylation of acetylenes in alcohos (Figure 3.16) (Mise, et al. 1981).

Figure 3.16. Synthesis of regioisomers of furanones by the Rh-catalyzed carbonylative reaction of asymmetric acetylene in alcohol (Source: Mise, et al. 1981)

Kondo et al. (1994) developed a new route to $2(5 \mathrm{H})$-furanones via Ru-catalyzed oxidative cyclocarbonylation of allylic alcohols (Figure 3.17). In this study many furanones were directly synthesized in moderate to good yields as the first example of ruthenium-catalyzed cyclocarbonylation of allylic alcohols.

Figure 3.17. Synthesis of furanones via Ru-catalyzed oxidative cyclocarbonylation of allylic alcohols (Source: Kondo, et al. 1994)

Palladium catalyzed carbonylative reactions of arylhalides with acetylenes in the presence of triethyl amine and triphenylphosphine in benzene afforded 3arylidenebutenolides in moderate to good yield (Figure 3.18) (Huang and Alper 1991).

Figure 3.18. Synthesis of furanones via Pd-catalyzed carbonylative reactions of arylhalides with acetylenes (Huang and Alper 1991)

Recently, Cho and Shim demonstrated a method to synthesize lactones by using a base and palladium as catalyst in such an unusual carbonylative cycliation of β bromovinyl aldehydes (Cho and Shim 2006).

Yu and Alper reported a method about direct synthesis of butenolide from propargyl alcohol using $\operatorname{Pd}(\mathrm{dba})_{2} / \mathrm{dppb}$ system as catalyst, but this method was not usable for internal alkynols (Ali and Alper 1991). Later they also developed a new method by which internal alkynols with alkyl, phenyl and vinyl units attached to one acetylenic carbon atom could be reacted to result in high to excellent corresponding furanone yields (Figure 3.19) (Yu and Alper 1991).

Figure 3.19. Synthesis of furanones via Pd-catalyzed cyclocarbonylations of alkynols
(Source: Yu and Alper 1991)

Propargylic alcohols also undergo to mercuration-carbonylation which leads to the formation of butenolides. In 1977, Larock et al. (1977) reported a method to produce β-chloro- $\Delta^{\alpha, \beta}$-butenolides in high yields via carbonylation of propargyl alcohol in the presence of catalytic amount of palladium (Figure 3.20).

Figure 3.20. Synthesis of β-chloro- $\Delta^{\alpha, \beta}$-butenolides via Pd-catalyzed mercurationcarbonylations of propargyl alcohols (Source: Larock, et al. 1977)
α, β-Butenolides can also be generated in good yields via Pd-catalyzed carbonylative coupling of vinyl triflates (trifluoromethanesulfonate) (Figure 3.21) (Crisp and Meyer 1992).

Figure 3.21. Synthesis of α, β-butenolides via Pd-catalyzed carbonylative couplings of vinyl triflates (Source: Crisp and Meyer 1992)

Yoneda and his co-workers developed ruthenium-catalyzed cyclocarbonylation of allenyl alcohols for selective sythesis of lactones (Yoneda, et al. 1999, Yoneda, et al. 2003).

3.4. Photochemical Rearrangement in Furanones

In the literature observed photochemical processes can be given as decarbonylation, aryl group migration, fragmentation, electron-transfer-mediated bond cleavage, and rearrangement upon [1,3]-sigmatropic shift.

Volkmann et al. (1975) investigated the photochemical rearrangement in $2(5 \mathrm{H})$ furanone system. They studied on photochemical behaviour of 3,5-diphenylfuran$2(5 H)$-one by using tert-butyl alcohol as solvent. Cis-3,4-diphenyl-trans-5-tert-butoxy-γ-lactone was the only isolated product of the reaction. However, photochemical reaction of 3,5 -diphenylfuran- $2(5 \mathrm{H})$-one in benzene under argon atmosphere gave only 3,4-diphenyl-2(5H)-furanone in quantitative yield. If molecular oxygen is present in the reaction medium, $\mathbf{2}$ the well-known stilbene-phenanthrene cyclization route to produce phenanthro[9,10-c]furanone (Figure 3.22).

Figure 3.22. Photochemical rearrangement of 3,5-diphenylfuran-2(5H)-one
(Source: Volkmann, et al. 1975)

In another study solvent controlled photochemical reactions of furanones la-e in methanol gave lactones $\mathbf{4}$ and 5. Then these lactones were treated with stannous chloride in refluxing acetic acid to establish their structures upon identification of the respective secondary products $\mathbf{2}$ and $\mathbf{3}$ (Figure 3.23). Compounds 2a-e and 3a-e were identified by comparison with authentic samples prepared by independent syntheses. Photochemical rearrangement scheme of $\mathbf{1 a}$ is shown in Figure 3.24. Results of this study offers an underline for the importance of electron distribution in photochemical migratory processes (Padwa and Blacklock 1976).

Figure 3.23. Photochemical rearrangement of a furanone derivatives

Figure 3.24. Proposed rearrangement scheme of p-anysyl and phenyl groups in MeOH and benzene solvents (Source: Padwa and Blacklock 1976)

CHAPTER 4

EXPERIMENTAL STUDY

4.1. General Procedures for Synthesis of Alkynes by Sonogashira C-C Coupling Reactions

Two types of procedures were used to synthesize alkynes by Sonogashira reaction.

In the one of the procedures (Procedure I), to a solution of aryl halide (bromo or iodo, 10 mmol) and alkyne (12 mmol) in $40 \mathrm{mLEt} \mathrm{Et}_{3} \mathrm{~N}$ was added $2 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$ with respect to the aryl halide (Figure 4.1). The mixture was stirred at room temperature for five minutes, after that $1 \mathrm{~mol} \% \mathrm{CuI}$ was added to the mixture. Then reaction flask was placed in a preheated oil bath at $50{ }^{\circ} \mathrm{C}$ and vigorously stirred under an argon atmosphere. Small amounts of samples were periodically taken by the help of a syringe during the reaction, diluted in ethyl acetate and analyzed by GC to check whether all alkyne was consumed in the reaction. The course of the reaction was followed until no further increase in the formation of coupling product was observed. Then the solution was allowed to cool to the room temperature, and the ammonium salts were taken by the filtration and the solvent was removed by evaporation. Then the residue was purified by column chromatography on silica gel to give the pure product. Alkynes: A1, A2, A3, A4 and A5 were sythesized with this procedure (Procedure I) (See appendices D and E) (Roesch and Larock 2001).

In the other procedure (Procedure II), a mixture of aryl bromide (0.5 mmol), alkyne (0.6 mmol), pyrrolidine (1.0 mmol), $\mathrm{PdCl}_{2}(0.01 \mathrm{mmol}), \mathrm{PPh}_{3}(0.02 \mathrm{mmol})$ and degassed water (1.0 mL) introduced in a two-neck rounded-bottomed flask under nitrogen or argon and flask was placed in a preheated oil bath at $120^{\circ} \mathrm{C}$. Small amounts of samples were periodically taken during the reaction, diluted in ethyl acetate and analyzed by GC to establish completion. The course of the reaction was followed until no further increase in the formation of coupling product was observed. It was then cooled and extracted with 5 mL diethyl ether for four times. After evaporation under reduced pressure, the residue was purified by column chromatography to give the pure
product. Alkyne A6 was sythesized with this procedure (Procedure I) (See appendices D and E) (Guan, et al. 2007).

Figure 4.1. The experimental set-up for sonogashira coupling reactions

4.2. General Prodecure for Drying of Solvents

Toluene was dried by using CaH . Toluene and CaH was put into a solventdrying system's flask and it was refluxed overnight under nitrogen atmosphere. Dried toluene was collected and put onto 4A sieve neads under nitrogen (Leonard, Lygo and Procter 1998).

For $200 \mathrm{~mL} \mathrm{MeOH}, 1.00 \mathrm{mg}$ Mg-turnings, 100 mg iodine and 10 mL methanol was put into a 250 mL round-bottom flask. This mixture was heated under inert atmosphere until iodine disappears. If stream of bubbles is not observed, more iodine was added (100 mg). Heating was continued until no Mg-turnings were observed. Then the remainder MeOH was added and it was refluxed for 3 hours and it was distilled onto 3A sieve beads ($10 \% \mathrm{w} / \mathrm{v}$). Dried solvent was not used for at least 1 day after drying (Leonard, Lygo and Procter 1998).

4.3. General Prodecure for the Synthesis of Rh Complexes

$[\mathrm{Rh}(\operatorname{cod}) \mathrm{OH}]_{2}$ was synthesized in our laboratory by the reaction shown in equation (4.1) (Uson, et al. 1985).

To a $50-\mathrm{mL}$ round-bottomed flask containing a magnetic stirring bar and charged with a solution of potassium hydroxide (1.337 mmol) in water (4 mL), $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(0.65 \mathrm{mmol})$ in acetone $(35 \mathrm{~mL})$ was added. Mixture was stirred for two hours at room temperature, then yellow suspension was concentrated to $\sim 10 \mathrm{~mL}$ with evaporation Then 15 mL of water was added. And solid part was taken by filtration which was done with a fine sintered-glass filter. Then it was washed with water (ten times $5-\mathrm{mL}$ portions) and vacuum-dried over phosphorus(V) oxide

$$
\begin{equation*}
[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}+2 \mathrm{KOH} \longrightarrow[\mathrm{Rh}(\operatorname{cod}) \mathrm{OH}]_{2}+2 \mathrm{KCl} \tag{4.1}
\end{equation*}
$$

$[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ was also synthesized in our laboratory. To a $100-\mathrm{mL}$ roundbottomed flask containing a magnetic stirring bar $7.3 \mathrm{mmol} \mathrm{RhCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}$ (Precious Metal), $3 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 35 \mathrm{~mL}$ EtOH and 6 mL 1,5-cyclooctadiene (cod) were added. Mixture was overnight refluxed under inert atmosphere. After refluxing, solution was cooled and recrystallized from dichloromethane DCM/ Hexane (82% yield) (Giordano and Crabtree 1979).

4.4. General Procedure for Rh-Catalyzed Carbonylative Addition Reactions of Arylboronic Acids to Alkynes

4-acetylbenzeneboronic acid, 2-methylbenzeneboronic acid, 4fluorobenzeneboronic acid, 1-phenyl-1-propyne, bis(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate and (acetylacetonate)bis(ethylene)rhodium(I) were supplied from Alfa Aesar. Diphenylacetylene, phenylboronic acid, phenylacetylene, bis(ethylene)rhodium(I) chloride dimer ($53 \% \mathrm{Rh}$), 1-hexyne and hexadecane were supplied from Merck. Rhodium(III)chloride hydrate was supplied from Precious Metal;, 3-tolylboronic acid from Acros, 4-Octyne from ABCR and 1-phenyl-1-pentyne from Avocado.4-methoxyphenylboronic acid was supplied from Aldrich. Another phenylboronic was supplied from Fluka.

A mixture of arylboronic acid (1.2 mmol), alkyne (1 mmol) hexadecane (as an internal standard, $0,56 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{cod}) \mathrm{OH}]_{2}(1 \mathrm{~mol} \% \mathrm{Rh})$ and 10 mL toluene (predried and degassed before used) was added into glass insert which was then placed into a stainless-steel reactor. Reactor was evacuated and purged with 10 atm CO two times. Then reactor was pressurized to 20 atm with CO and the mixture was stirred magnetically in a pre-heated oil bath. After cooling reactor, reaction mixture was recovered with ethyl acetate. After that, a sample was taken from reaction mixture and diluted with ethyl acetate, then analyzed by GC (Aksin, et al. 2006).

4.5. Characterization of Products

4.5.1. GC Method

The samples were analyzed by GC/MS (HP GC/MS 6890/5973N on a HP-5MS, $30 \mathrm{~m}, 0.25 \mathrm{~mm}$ capillary column, 5% phenylmethoxysiloxane with $0.25 \mu \mathrm{~m}$ film thickness) and GC (19091J-413 HP-5 6890N on a $30 \mathrm{~m}, 0.25 \mathrm{~mm}$ capillary column (5% dimetylsiloxane, 95% phenyldimethylsiloxane with a $0.25 \mu \mathrm{~m}$ film thickness and FID detector).

The GC program applied throughout the analysis is as follows: the column temperature was $40^{\circ} \mathrm{C}$ at the beginning of the program and it was heated with a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ up to $300^{\circ} \mathrm{C}$, then it was kept at this temperature for 15 min . Throughout the analysis the injector and detector temperatures were kept constant at $280^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$, respectively. The analysis was performed on a split mode with a split ratio of $1 / 50$.

4.5.1.1. Calculation of Reactant and Product Amount on GC

For the calculation of amount of reactants and products, response factor of each reactant and product for the set temperature program of GC was determined. As internal standard, hexadecane was used. The amount of internal standard does not change throughout the reaction, so the response factor of each compound was determined according to the amounts and areas under the peaks of internal standard and standard compound of interest. For the determination of response factor of a compound, a known amount of standard compound together with a known amount of internal standard dissolved in the reaction solvent and diluted with ethyl acetate, and then was injected to

GC. After the analysis was complete according to the set temperature program, the equation (4.2) was used for the determination of response factor of that compound:
R.F. $=\frac{\text { internal standart area }}{\text { compound area }} \quad \mathrm{x}\left(\frac{\text { compound amount }}{\text { internal standart amount }}\right)$

In order to calculate the amount of both reactant and products at the end of reaction, aliquots of reaction sample taken from the glass-reactor and diluted samples were injected to GC. At the end of GC analysis, taking the amount of hexadecane and the area under the hexadecane peak into account, equation (4.3) was used in order to calculate the amount of reactant and products at the end of reaction:
amount of compound $=\left(\frac{\text { internal standart amount }}{\text { internal standart area }}\right) \times$ R.F. x compound area

4.5.1.2. Calculation of Reactant Conversion, Product Yield and Recovery

Reactant conversion at any time is calculated using equation 4.4:

$$
\begin{equation*}
(\text { Reactant Conversion })_{t} \%=\frac{\left(\left(\text { Reactant }_{\mathrm{t}}\right)_{\mathrm{i}}-(\text { Reactant })_{\mathrm{t}}\right)}{(\text { Reactant })_{i}} \quad \times 100 \tag{4.4}
\end{equation*}
$$

where $(\text { reactant })_{i}$ is the weight of reactant at the beginning of the reaction and (reactant $)_{t}$ is the weight of reactant at time t.

Product yield of a molecule was calculated according to the following equation 4.5:

$$
\begin{equation*}
\text { Product Yield }=\frac{\text { mole of product }_{t}}{\text { initial mole of aryl halide }} \tag{4.5}
\end{equation*}
$$

4.6. Purification of the Products

In this study, many types of products were purified by using column chromatography.

At the end of reaction, reactor was washed with ethyl acetate and this mixture was then extracted with brine for three times. Organic phase was dried over magnesium sulphate and solvent was removed by using evaporator. And products were purified by column chromatography. The purity of products was determined by GC, NMR and Elemental Analysis techniques.

All products were determined by NMR (Varian VnmrJ 400), FT-IR (PerkinElmer Spectrum 100), GC-MS (GC-Varian star 3400CX, MS-VarianSaturn 2000 Gc-ms-ms) Elemental Analysis and HRMS. The values are represented below and NMR, FT-IR and GC-MS spectrums of furanones are given in Appendix A and Appendix B and Appendix C respectively. NMR and GC-MS spectrums of sonogashira products are also given in Appendix D and Appendix E, respectively.
(1) 3,4,5-triphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.3$ (s, $1 \mathrm{H}), 7.10-7.51(\mathrm{~m}, 15 \mathrm{H},) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 84.0,127.1,127.9(2)$, 128.6(3C), 128.8(2C), 128.9(2C), 129.1, 129.2(2C), 129.6, 129.7(2C), 130.1, 131.4, 135.1; 159.6, 172.7; MS: 312 (M ${ }^{+}$), 207, 179; 105; FTIR (pellet): 1745 (s) cm^{-1}; analytical calculation for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{C}: 84.6 \%, \mathrm{H}: 5.2 \%$; found C: $84.2 \%, \mathrm{H}: 5.3 \%$
(2) 5-(4-methoxyphenyl)-3,4-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 3.68(\mathrm{~s}, 3 \mathrm{H}),, 6.14(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.41(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 55.5,83.7,114.6,127.0,127.2,128.2,128.6(2 \mathrm{C}), 128.8(2 \mathrm{C}), 128.9(2 \mathrm{C}), 129.0$, 129.3(2C), 129.7(2C), 130.1, 130.2, 131.5, 159.5, 160.6, 172.7; MS: 342 (${ }^{+}$), 178, 135; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1748$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C}: 80.7 \%, \mathrm{H}$: 5.3%; found C: 80.04%, H: 5.4%.
(3) 3,4-diphenyl-5-p-tolylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $2.31(\mathrm{~s}, 3 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.50(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 21.5$, 83.6, 127.1, 127.8(2C), 128.6(2C), 128.8(2C), 128.9(2C), 129.0, 129.7(2C), 129.9(2C), 130.0, 130.2, 131.5, 132.0, 139.5, 159.5, 172.7; MS: $326\left(\mathrm{M}^{+}\right), 221,207,179,119$; FTIR (pellet): $1752(\mathrm{~s}) \mathrm{cm}^{-1}$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C}: 84.6 \%$, $\mathrm{H}: 5.6 \%$; found C: 85.4%, H: 5.7\%.
(4) 5-(4-acetylphenyl)-3,4-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 2,25(\mathrm{~s}, 3 \mathrm{H}) ; 6,34(\mathrm{~s}, 1 \mathrm{H}) ; 7,00-7,90(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ §: 26,9; 83,$1 ; 126,7 ; 127,1 ; 127,9$ (2C); 128,5 (2C); 128,7; 128,9 (2C); 129,1 (2C); 129,1 (2C); 129,3; 129,6 (2C); 130,4; 131,0; 137,9; 159,5; 172,6; 197,9; MS: 354 (M+); 281; 207; 179; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1748; HRMS calculated: 354.1256; found: 354.1241
(5) 5-(4-(trifluoromethyl)phenyl)-3,4-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.60(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $82.8,122.6,125.3,126.1$ (tet), 126.8, 127.3, 128.1, 128.4, 128.7, 128.8, 129.2, 129.3, 129.6, 129.7, 129.8, 130.4, 131.0, 131.5,131.8, 139.1, 159.1, 172.3; MS: $380\left(\mathrm{M}^{+}\right), 207$, 179; FTIR (pellet): 1749 (s) cm^{-1}; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{C}: 72.6 \%, \mathrm{H}$: 4.0%; found C: $73 \%, \mathrm{H}: 3.9 \%$.
(6) 3,4-diphenyl-5-m-tolylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 2,21 (s, 3H); 6,13 (s, 1H); 6,98-7,41 (m, 14H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20,3$; 82,7; 123,8; 125,7; 127,1; 127,3 (2C); 127,5 (2C); 127,6 (2C); 127,7; 127,8; 128,4 (2C); 128,$8 ; 128,8 ; 129,1 ; 130,1 ; 133,6 ; 137,7 ; 158,3 ; 171,5 ; \mathrm{MS}: 326\left(\mathrm{M}^{+}\right) ; 207 ; 221 ; 179 ;$ 119 ; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1746$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C}: 84.6 \%$, H: 5.6%; found C: 80.1%, H: 5.8%; HRMS calculated: 326.1327 ; found: 326.1303
(7) 3,4-diphenyl-5-o-tolylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 2,5$ (s, 3H); 6,5 (s, 1H); 7,08-7,5 (m, 14H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 19,5 ; 81,0 ;$ 126,$8 ; 127,8 ; 127,9 ; 128,4$ (2C); 128,8 (2C); 129,0 (2C); 129,1; 129,5; 129,6 (2C); 130,$1 ; 130,3 ; 131,3 ; 131,6 ; 133,1 ; 137,7 ; 159,3 ; 172,7 ;$ MS: $326\left(\mathrm{M}^{+}\right) ; 207 ; 179 ; 119$; 207; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C}: 84.6 \%, \mathrm{H}: 5.6 \%$; found C: $84.1 \%, \mathrm{H}: 5.7 \%$.
(8) 5-phenyl-3,4-dipropylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=0.74 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.61$ (sex, $J=7.4$, $2 \mathrm{H}), 1.92-2.0(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.37(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.40(\mathrm{~m}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.1,14.3,21.5,21.8,25.9,28.8,84.0,127.2(2 \mathrm{C})$, 127.5, 129.1(2C), 129.4, 135.4, 163.4, 174.8; MS: 244 (M^{+}), 215, 201, 139, 129, 115, 105, 91, 77, 69; FTIR (film): 1756 (s) cm^{-1}; analytical calculation for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{C}$: $78.7 \%, \mathrm{H}: 8.2 \%$; found $\mathrm{C}: 78.7 \%, \mathrm{H}: 8.1 \%$, HRMS calculated: 216.1509 ; found: 216.1507
(9a) 4,5-diphenyl-3-propylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0,97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})), 1.61-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.51(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 7.0-7.39$ (m, 10H); MS: $278\left(\mathrm{M}^{+}\right)$; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1748$; analytical calculation for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C}: 82.0 \%$, H: 6.5%; found C: $76.8 \%, \mathrm{H}: 6.9 \%$; HRMS calculated: 278.1301; found: 278.1300 .
(9b) 3,5-diphenyl-4-propylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $0,87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ; 1,29-1,52(\mathrm{~m}, 2 \mathrm{H}) ; 2,08(\mathrm{ddd}, J=14,2 ; 9,5 ; 5,4 \mathrm{~Hz} ; 1 \mathrm{H}) ; 2,58$ (ddd, $J=14,4 ; 9,6 ; 6,8 \mathrm{~Hz} ; 1 \mathrm{H}) ; 5,85(\mathrm{~s}, 1 \mathrm{H}) ;$ FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1749$.
(10a) 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.73(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{td}, J=$ $1.0,7.5,1 \mathrm{H}), 6.94(\mathrm{dd}, J=0.8,8.3,1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 26.5,55.3,83.6,111.4,119.1,121.1,126.5,127.8,128.0$, 128.1, 128.2, 129.1, 129.5, 130.8, 130.9, 135.0, 136.2, 137.4, 157.1, 158.0, 172.1, 198.2; MS: $385\left(\mathrm{M}^{+}\right), 339,251,105$; FTIR (ATR) $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1748$; analytical calculation for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{C}: 78.1 \%, \mathrm{H}: 5.2 \%$; found $\mathrm{C}: 77 \%, \mathrm{H}: 5.4 \%$. HRMS calculated: 384.1356; found: 384.1355 .

(11a) 4-(4-acetylphenyl)-3,5-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$: $7.78(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 9 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~d}$, $J=3.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 26.9,83.8,127.8,128.5,128.8,128.9$, $129,3,129.5,129.6,129.8,158.3,172.3,197.5$; MS: $354\left(\mathrm{M}^{+}\right), 281,249,105$; FTIR
(ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1749$; analytical calculation for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C}: 81.3 \%, \mathrm{H}: 5.1 \%$; found C: 81%, H: 5.3\%; HRMS calculated: 354.1256; found: 354.1241.

(11b) 3-(4-acetylphenyl)-4,5-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: \delta 7.93(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 9 \mathrm{H}), 7.08(\mathrm{dt}, J=1.8,8.6,2 \mathrm{H}), 6.29$ $(\mathrm{s}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=12.9,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 26.9,84.1,126.1,128.8$, 128.7, 129.1, 129.2, 129.7, 129.9, 130.5, 130.9, 134.6, 134.9, 137.2, 161.1, 172.1, 197.9; MS: $354\left(\mathrm{M}^{+}\right)$221, 105; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1751; analytical calculation for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C}: 81.3 \%, \mathrm{H}: 5.1 \%$; found $\mathrm{C}: 80 \%, \mathrm{H}: 5.6 \%$; HRMS calculated: 354.1256; found: 354.1240.
(12a) 3-methyl-4,5-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 7 \mathrm{H}), 6.18(\mathrm{~d}, J=1.7,1 \mathrm{H}), 2.14(\mathrm{t}, J=10.7,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.71,158.60,135.31,131.65,129.88,129.43,129.04,129.02$, $128.25,127.73,124.36,83.93,77.58,77.26,76.94,10.54 . ; \mathrm{MS}: 250\left(\mathrm{M}^{+}\right) 222,145$, 115; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1747; HRMS calculated: 250.0994; found: 250.0995 .
(12b) 4-methyl-3,5-diphenylfuran-2(5H)-one ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.54(\mathrm{~d}, J=7.1,2 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: \delta 172.97,160.61,135.01,130.06,129.66,129.31,129.21$, 129.05, 128.83, 128.77, 127.22, 126.67, 85.09, 77.61, 77.29, 76.97, 13.61; MS: 250 $\left(\mathrm{M}^{+}\right)$207, 145, 117; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1748$; HRMS calculated: 250.0994; found: 250.0983 .
(13a) 4-(4-acetylphenyl)-3-butyl-5-phenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.92(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~m}$, $2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 6 \mathrm{H}), 1.63(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 14,0 ; 22,9 ; 24,5 ; 26,8 ; 31,0 ; 83,9 ; 127,5 ; 128,3 ; 128,9$; 129,2; 129,6; 130,5; 134,8; 136,3; 137,7; 157,9; 173,8; 197,4; MS: 334 (${ }^{+}$) 289, 185, 105; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1747; HRMS calculated: 334.1569; found: 334.1559 .

(13b) 3-(4-acetylphenyl)-4-butyl-5-phenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.03(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{dd}, J=3.0,6.8,1 \mathrm{H}), 7.43(\mathrm{~m}, 4 \mathrm{H})$, $7.29(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 0.80(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 13,8 ; 22,8 ; 26,9 ; 27,2 ; 30,2 ; 84,1 ; 126,1 ; 127,3 ; 128,7$; 128,7; 129,5; 129,9; 134,6; 135.0; 137,1; 166,6; 172,6; 197,9; MS: 334 (${ }^{+}$) 289, 185, 105; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1750; HRMS calculated: 334.1569; found: 334.1559.
(14a) 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0,94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ; 1,42(\mathrm{sext}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 1,54-1,73(\mathrm{~m}, 2 \mathrm{H})$; 2,51-2,56 (m, 2H); 3,77 (s, 3H); 6,12 (s, 1H); 6,85 (d, $J=8,8 \mathrm{~Hz} ; 2 \mathrm{H}) ; 7,17-7,20(\mathrm{~m}$, $4 \mathrm{H}) ; 7,26-7,29(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14,1 ; 23,1 ; 24,6 ; 30,6 ; 55,5$; 83,7; 114,5 (2C); 124,0; 127,4; 127,7 (2C); 129,0 (2C); 129,3; 129,6 (2C); 135,7; 158,3; 160,7; 174,7; MS: $322\left(\mathrm{M}^{+}\right) 255,105$, ; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1726$.

(14b) 4-butyl-3-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0,83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 1,20-1,50(\mathrm{~m}, 4 \mathrm{H}) ; 2,08(\mathrm{ddd}, J=14,0 ; 9,6 ;$ $5,4 \mathrm{~Hz} ; 1 \mathrm{H}) ; 2,61(\mathrm{ddd}, \mathrm{J}=15,2 ; 9,0 ; 6,2 \mathrm{~Hz} ; 1 \mathrm{H}) ; 3,84(\mathrm{~s}, 3 \mathrm{H}) ; 5,83(\mathrm{~s}, 1 \mathrm{H}) ; 6,98(\mathrm{~d}, J$ $=8,8 \mathrm{~Hz} ; 2 \mathrm{H}) ; 7,26-7,30(\mathrm{~m}, 2 \mathrm{H}) ; 7,38-7,42(\mathrm{~m}, 3 \mathrm{H}) ; 7,46(\mathrm{~d}, J=8,8 \mathrm{~Hz} ; 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 13,9 ; 22,9 ; 27,1 ; 30,2 ; 55,6 ; 88,8 ; 114,2$ (2C); 122,4; 126,3; 127,4 (2C); 129,3 (2C); 129,6; 130,5 (2C); 135,2; 160,0; 163,6; 173,5; MS: $322\left(\mathrm{M}^{+}\right)$ 217, 105; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1732; analytical calculation for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{C}$: $78.2 \%, \mathrm{H}: 6.9 \%$; found C: $77.8 \%, \mathrm{H}: 7.0 \%$.
(15a) 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3,68(\mathrm{~s}, 3 \mathrm{H}) ; 6,49(\mathrm{~s}, 1 \mathrm{H}) ; 6,72(\mathrm{t}, J=7,6 ; 1 \mathrm{H}) ; 6,78-6,84(\mathrm{~m}, 2 \mathrm{H}) ;$ 7,18-7,30 (m, 9H); 7,44-7,47 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 55,5 ; 83,9$; 111,$5 ; 120,8 ; 121,0 ; 127,2 ; 127,3$ (2C); 128,4; (2C); 128,7; 128,8 (2C); 129,1; 129,2 (2C); 130,5; 130,5; 131,3; 135,3; 156,8; 159,5; 172,9; MS: 342 (M+) 237, 209, 91; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1744$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C}: 80.7 \%, \mathrm{H}: 5.3 \%$; found C: $80.4 \%, \mathrm{H}: 5.4 \%$.

(15b) 3-(2-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3,61(\mathrm{~s}, 3 \mathrm{H}) ; 6,34(\mathrm{~s}, 1 \mathrm{H}) ; 6,94(\mathrm{~d}, J=8,4 ; 1 \mathrm{H}) ; 7,02(\mathrm{t} ; J=7,6 ; 1 \mathrm{H})$; $7,1-7,4(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 55,6 ; 83,9 ; 111,7 ; 120,0 ; 121,2 ;$ 125,$2 ; 128,1$ (2C); 128,1 (2C); 128,6 (2C); 129,2 (2C); 129,5; 130,0; 130,6; 131,2; 131,$9 ; 135,8 ; 157,5 ; 159,5 ; 172,8 ;$ FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1745$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C}: 80.7 \%$, H: 5.3%; found $\mathrm{C}: 80.0 \%$, H: 5.2%; HRMS calculated: 342.1256; found: 342.1242 .
(16a) 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3,73(\mathrm{~s}, 3 \mathrm{H}) ; 6,24(\mathrm{~s}, 1 \mathrm{H}) ; 6,70(\mathrm{~d} ; J=4,8 ; 2 \mathrm{H}) ; 7,09(\mathrm{~d} ; J=8,8 ; 2 \mathrm{H})$; 7,30-7,51 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 55,4 ; 83,7 ; 114,3$ (2C); 123,4; 125,7; 128, 0 (2C); 128,9 (2C); 128,9; 129,2 (2C); 129,6; 129,7 (2C); 130,3 (2C); 130,7; 135,5; 158,8; 161,0; 172,9; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1741; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C}: 80.7 \%, \mathrm{H}: 5.3 \%$; found C: $72.5 \%, \mathrm{H}: 5.4 \%$. HRMS calculated: 342.1247; found: 342.1250 .

(16b) 3-(4-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3,74(\mathrm{~s}, 3 \mathrm{H}) ; 6,14(\mathrm{~s}, 1 \mathrm{H}) ; 6,80(\mathrm{~d} ; J=8,8 ; 2 \mathrm{H}) ; 7,02-7,05(\mathrm{~m}, 2 \mathrm{H}) ;$ 7,12-7,25 (m, 8H); 7,37 (d, $J=9,2 ; 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 55,5 ; 83,9$; 114,2 (2C); 122,2; 126,5; 127,9 (2C); 128,5 (2C); 128,9 (2C); 129,1 (2C); 129,5; 129,9; 131 (2C); 131,7; 135,1; 158,1; 160,2; 173,0; MS: 342 (M ${ }^{+}$) 237, 165, 105; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1751$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C}: 80.7 \%, \mathrm{H}: 5.3 \%$; found C : 80.0%, H: 5.4\%; HRMS calculated: 342.1256 ; found: 342.1254 .
(17a) 3-butyl-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0,85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 1,29(\mathrm{sext}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 1,45-1,64(\mathrm{~m}, 2 \mathrm{H})$; $2,39(\mathrm{t}, J=7,6 \mathrm{~Hz}, 2 \mathrm{H}) ; 3,81(\mathrm{~s}, 3 \mathrm{H}) ; 6,36(\mathrm{~s}, 1 \mathrm{H}) ; 6,80-7,30(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 13,9 ; 22,8 ; 24,5 ; 30,2 ; 55,6 ; 83,9 ; 111,2 ; 120,8 ; 120,9 ; 126,9(2 \mathrm{C})$; $128,7(2 \mathrm{C}) ; 128,8 ; 129,2 ; 130,1 ; 130,9 ; 135,7 ; 155,6 ; 159,3 ; 174,6 ; \mathrm{MS}: 322\left(\mathrm{M}^{+}\right) 251$, 217, 121; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1746; analytical calculation for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{C}$: $78.2 \%, \mathrm{H}: 6.9 \%$; found C: $76.9 \%, \mathrm{H}: 6.9 \%$. HRMS calculated: 322.1600 ; found: 322.1600 .

(17b) 4-butyl-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0,74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.0-1,4(\mathrm{~m}, 4 \mathrm{H}) ; 1,98(\mathrm{ddd} ; J=14,5 ; 9,1 ; 6$ $\mathrm{Hz} ; 1 \mathrm{H}) ; 2,31$ (ddd; $J=15,6 ; 9,2 ; 6,8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3,85(\mathrm{~s}, 3 \mathrm{H}) ; 5,9(\mathrm{~s}, 1 \mathrm{H}) ; 6,9-7,4(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 13,9 ; 22,7 ; 27,6 ; 30,2 ; 55,8 ; 84,3 ; 111,4 ; 119,4 ;$ 120, $8 ; 125,1 ; 127,6$ (2C); 129,2 (2C); 129,6; 130,4; 131,2; 135,3; 157,5; 164,4; 173,2; MS: $322\left(\mathrm{M}^{+}\right) 265,189,121$; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1750; analytical calculation for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{C}: 78.2 \%$, H: 6.9%; found C: $75.6 \%, \mathrm{H}: 7.2 \%$. HRMS calculated: 322.1563; found: 322.1559 .

(18a) 3,5-diphenyl-4-o-tolylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $7.26(\mathrm{~m}, 15 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $83.9,126.6,128.0,128.5,128.9,129.3(2 \mathrm{C}), 129.7,130.4,130.9,135.6,159.2$, MS: 326 $\left(\mathrm{M}^{+}\right) 282,236,105$; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right)$ CO: 1750; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C}: 84.6 \%$, H: 5.6%; found C: 83.6\%, H: 5.6\%. HRMS calculated: 326.1301; found: 326.1304.
(18b) 4,5-diphenyl-3-o-tolylfuran-2(5H)-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.43 (m, 4H), 7.20 (dddd, $J=2.1,7.5,9.5,16.2,18 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6,1 \mathrm{H}), 6.12(\mathrm{~s}$, 1H), $1.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.62,161.59,135.62,134.38$, $131.45,130.96,130.08,129.78,129.43,129.35,129.28,129.18,129.04,128.81$, 128.66, 128.62, 128.59, 128.52, 128.20, 126.63, 126.49, 126.21, 84.53, 19.56, 0.22.; MS: $326,\left(\mathrm{M}^{+}\right) 194,105$; FTIR (ATR): $v\left(\mathrm{~cm}^{-1}\right) \mathrm{CO}: 1752$; analytical calculation for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C}: 84.6 \%$, H: 5.6%; found C: 83.6\%, H: 6.0\%; HRMS calculated: 326.1307; found: 326.1295.
Table 4.1. Purification of furanones by column chromatography part I

Product	Gradient Elution	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$	M.P. Literature $\left({ }^{\circ} \mathbf{C}\right)$	Appearance
$\mathbf{1}$	Hexane/ethyl acetate (9:1)	$121.1-123.5$	$125-126$	Pale yellow, solid
$\mathbf{2}$	Hexane/ethyl acetate (11:1)		$112-113$	Pale yellow, paste
$\mathbf{3}$	Hexane/ethyl acetate $(9: 1)$	$114.0-114.6$		White, solid
$\mathbf{4}$	Hexane/ethyl acetate $(3: 1)$		Yellow, paste	
$\mathbf{5}$	Hexane/ethyl acetate $(9: 1)$	$132.9-133.5$		White, solid
$\mathbf{6}$	Hexane/ethyl acetate $(11: 1)$		Yellow, paste	
$\mathbf{7}$	Hexane/ethyl acetate $(16: 1)$	$140.7-142.6$		Pale yellow, solid
$\mathbf{8}$	Hexane/ethyl acetate $(100: 6)$		Colorless, oily	
9a	Hexane/ethyl acetate $(10: 1)$		Colorless, oily	
10a	Hexane/ethyl acetate $(3: 1)$			Yellow, paste
11a	Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$	$78.9-80.1$		Pale yellow, solid
11b	Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$	$105.2-108.7$		Palle yellow, solid
12a	Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$			Colorless, oily
12b	Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$			Colorless, oily
13a	Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$			Colorless, paste
13b	Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10)$			Colorless, paste

Table 4.2. Purification of furanones by column chromatography part II

Product \#	Gradient Elution	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$	M.P. Literature $\left({ }^{\circ} \mathbf{C}\right)$	Appearance
$\mathbf{1 4 a}$	Hexane/ethyl acetate (15:1)	$66.7-70.5$		White, solid
14b	Hexane/ethyl acetate (15:1)	$84.1-86.5$		Orange, solid
15a	Hexane/ethyl acetate (4:1)	$67.7-69.1$		Pale yellow, solid
15b	Hexane/ethyl acetate $(4: 1)$	$142.0-145.7$		Pale yellow, solid
16a	Hexane/ethyl acetate (13:1)	$139.3-142.9$	Pale yellow, solid	
16b	Hexane/ethyl acetate (13:1)		Pale yellow, paste	
17a	Hexane/ethyl acetate $(7: 1)$	$141.5-145.2$	Pale yellow, solid	
17b	Hexane/ethyl acetate $(7: 1)$		Yellow, paste	
18a	Hexane/ethyl acetate $(20: 1)$	$138.0-141.9$	Pale yellow, solid	
18b	Hexane/ethyl acetate $(5: 1)$		Orange, paste	

CHAPTER 5

RESULTS AND DISCUSSIONS

In this thesis, different types of furanones were synthesized by Rh-catalyzed carbonylative addition of arylboronic acids with alkynes. These carbonylative addition reactions were carried out with various types of arylboronic acids and alkynes.

5.1. Rh-Catalyzed Carbonylative Addition of Phenylboronic Acid to Diphenyl Acetylene

At the outset of this study, phenylboronic acid and diphenyl acetylene reagents were used as probe molecules to optimize reaction conditions. Carbonylation of diphenyl acetylene (1 mmol) and phenylboronic acid (3 mmol) mixture under 20 atm CO pressure in the presence of $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(3 \% \mathrm{Rh})$ as a catalyst precursor in dioxane solvent at $120{ }^{\circ} \mathrm{C}$ for 16 h yielded 3,4,5-triphenylfuran-2(5H)-one (1) as the major product along with small amounts of other carbonylation products which are 2,3-dihydro-2,3-diphenylinden-1-one ($\mathbf{P}^{\mathbf{3}}$), 2,3-diphenyl-1 H-inden-1-one, product ($\mathbf{P}^{\mathbf{2}}$) and mixture of E - and Z-isomers of an α, β-unsaturated ketone $1,2,3$-triphenylprop-2-en-1one $\left(\mathbf{P}^{4}\right)$ (Table 5.1, entry 1). A direct carbonylation product of phenylboronic acid benzaldehyde and a hydroarylation product, 1,1,2-triphenyl acetylene were also determined in the reaction mixture.

Addition of PPh_{3} ligand or NEt_{3} base to the reaction medium reduced the formation of furanone product, 1. (Table 5.1, entries 2 and 3). The reaction showed less selectivity for the formation of furanone (1) when dioxane: water (9:1) solvent mixture was used (Table 5.1, entry 4). Water addition to the reaction greatly decreased the formation of $\mathbf{1}$, while the formation of $\mathbf{P}^{\mathbf{2}}, \mathbf{P}^{\mathbf{3}}$ and \mathbf{P}^{4} increased with the presence of water.

Table 5.1 The effect of temperature, solvent and additives on $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ catalyzed carbonylative addition reaction of phenylboronic acid to diphenyl acetylene

	$\begin{gathered} +\mathrm{Ph}^{-\mathrm{B}}(\mathrm{C} \\ 3 \mathrm{~mm} \\ \mathbf{R}^{2} \end{gathered}$	$\text { I) } 2 \frac{3 \% \mathrm{Rh},\left[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}_{2}\right.}{20 \mathrm{amm} \mathrm{CO}, 16 \mathrm{~h}} 1$				
			YIELD			
Entry	T $\left({ }^{\circ} \mathrm{C}\right)$	Conversion of \mathbf{R}^{2} $\%^{a}$	$1 \%^{a}$	$\mathbf{P}^{\mathbf{2}} \%^{\text {a }}$	$\mathrm{P}^{\mathbf{3}} \%^{\text {a }}$	$\mathrm{P}^{4} \%^{\text {a }}$
1	120	100	70	5	15	11
$2^{\text {b }}$	120	100	44	15	15	<1
$3^{\text {c }}$	120	100	39	7	7	<1
$4^{\text {d }}$	120	100	39	11	24	20
5^{e}	120	100	74	4	9	<1
$6^{\text {e,f }}$	120	100	43	9	16	<1
$7{ }^{\text {e }}$	100	100	80	2	5	<1
$8{ }^{e}$	80	100	86	2	3	1
$9^{\text {e,g }}$	80	88	63	2	4	1
10^{h}	80	100	38	3	4	31
11^{i}	80	100	33	2	<1	4
12^{j}	80	100	25	2	<1	7
13^{k}	80	100	90	<1	<1	<1

${ }^{a} \mathrm{GC}$ yield, ${ }^{b}$ In the presence of 6% equiv. $\mathrm{PPh}_{3},{ }^{c}$ In the presence of $2 \mathrm{mmol} \mathrm{NEt}_{3},{ }^{d}$ Performed in a dioxane:water solvent mixture (9:1), ${ }^{e}$ Performed in a dried dioxane solvent (dried on molecular sieve $4 \AA$), ${ }^{f}$ In the presence of 1 g molecular sieve $4 \AA,{ }^{g}$ Performed with a $1 \% \mathrm{Rh},{ }^{h}$ Ethanol was used, ${ }^{i}$ Dry methanol:water solvent mixture was used (9:1), ${ }^{j}$ Dry methanol:water solvent mixture was used (9.9:0.1), ${ }^{k}$ Performed in dry-toluene solvent

It was observed that using a pre-dried dioxane solvent decreased the formation of benzaldehyde and the product \mathbf{P}^{4} to trace amount (Table 5.1, entry 5). However direct addition of molecular sieve $4 \AA$ into the reaction medium decreased the formation of $\mathbf{1}$ (Table 5.1 , entry 6). Under this condition, it was observed that decreasing the reaction temperature to $80^{\circ} \mathrm{C}$ increased the formation of 1 up to yield of 86% while formation of by-products greatly reduced at these lower temperatures (Table 5.1, entries 7 and 8). A reaction was also performed at $60^{\circ} \mathrm{C}$, but no activity was observed in dioxane solvent at this temperature. Then optimum reaction temperature was determined as $80^{\circ} \mathrm{C}$. Decreasing the Rhodium amount from 3% to 1% was resulted in a decrease in the formation of $\mathbf{1}$ (Table 5.1, entry 9). The use of ethanol or methanol solvent reduced the formation of $\mathbf{1}$. However higher yield of $\mathbf{1}$ was obtained and the formation of side products were decreased to trace amounts by the use of dry toluene instead of dioxane (Table 5.1, entries 8, 10-13).

Table 5.2 The effect of Rh amount and mole ratio of $\mathbf{R}^{\mathbf{1}}$ and $\mathbf{R}^{\mathbf{2}}$ on $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ catalyzed carbonylative addition reaction of phenylboronic acid with diphenyl acetylene

${ }_{\mathrm{R}^{1}}^{\mathrm{Pl}}$	$\mathrm{Ph}^{-\mathrm{B}(\mathrm{OH})}$ R^{2}	$\frac{[\mathrm{Rl}(\operatorname{cod}) \mathrm{Cl}]_{2}}{20 \mathrm{~atm} \mathrm{CO}, 16 \mathrm{~h}} \underset{10 \mathrm{~mL} \text { dry } \text { toluene }}{ }$		$\mathrm{C}_{\mathrm{Ph}}^{\mathrm{Ph}}$	Ph		P^{4}
						eld ${ }^{\text {a }}$	
Entry	Rh(\%)	Mole Ratio of $\mathbf{R}^{2} / \mathbf{R}^{1}$	Conversion of $\mathbf{R}^{1} \%$	1	\mathbf{P}^{2}	\mathbf{P}^{3}	\mathbf{P}^{4}
1	1	3	100	85	1	<1	<1
2	0.3	3	95	81	2	1	<1
$3^{\text {b }}$	1	3	63	43	<1	<1	<1
4	1	1.2	100	89 (78)	2	1	<1
${ }^{a} \mathrm{GC}$ yield, isolated yiels shown in parantheses, ${ }^{\text {b }}$ Reaction was performed at $60^{\circ} \mathrm{C}$							

Rhodium amount could be decreased up to 0.3% with only little decrease in the yield of 1 from 85% to 81% (Table 5.2 , entries 1 and 2). When compared to dioxane, using dry-toluene as solvent in the reaction at $60^{\circ} \mathrm{C}$, resulted in a moderate yield of $\mathbf{1}$ (Table 5.2, entry 3). The reaction was also effective when 1.2 equivalent of phenylboronic acid was used (Table 5.2, entry 4).

Table 5.3 Effect of Rhodium catalysts on carbonylative addition of phenylboronic acid to diphenyl acetylene

In the optimization study, effect of Rhodium source was also investigated by using various Rhodium complexes (Table 5.3). The reaction was more efficient for the formation of $\mathbf{1}$ when $[\mathrm{Rh}(\mathrm{cod}) \mathrm{OH}]_{2}$ was used as a catalyst precursor (Table 5.3, entry 2).

Table 5.4 Effect of pressure and additives on carbonylative addition reaction of phenylboronic acid to diphenyl acetylene

Entry	$\mathbf{P}, \boldsymbol{a t m}$	Conversion\% $^{\boldsymbol{a}}$	Yield\% $^{\boldsymbol{a}}$
$\mathbf{1}$	20	100	$93(86)$
$\mathbf{2}$	10	100	76
$\mathbf{3}$	5	100	65
$\mathbf{4}^{\boldsymbol{b}}$	20	100	64
$\mathbf{5}^{\boldsymbol{c}}$	20	100	72
$\mathbf{6}^{\boldsymbol{d}}$	20	80	47

${ }^{a}$ GC yield, isolated yield shown in parantheses, ${ }^{b} 2 \mathrm{mmol}$ of water was added, ${ }^{c} 6 \mathrm{mmol}$ of water added and reaction temperature was $88^{\circ} \mathrm{C}^{d} 3 \% \mathrm{Rh}$ and 4.5% R-BINAP ligand were added

Under the defined conditions shown in equation (5.4), it was found that the formation of product 1 decreases with the decrease of CO pressure (Table 5.4, entries 2 and 3). Addition of water into the reaction medium was also detrimental for the formation of $\mathbf{1}$ (Table 5.4, entries 4 and 5). However enantioselectivity of the product 1 could not be ensured by using BINAP ligand in the reaction (Table 5.4, entry 6).

5.2. Rh-catalyzed Carbonylative Reactions of Different Arylboronic Acids with Diphenyl Acetylene

Rh-catalyzed carbonylative reactions of various p-, m - and o-phenylboronic acids with diphenyl acetylene were investigated under the optimal conditions determined (1.2 mmol arylboronic acid, 1 mmol diphenylaceylene with $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ $(1 \% \mathrm{Rh})$ in 10 mL dry-toluene at $80^{\circ} \mathrm{C}$ under 20 atm CO for 16 h) (Table 5.5).

Table 5.5. Reaction of arylboronic acids with diphenyl acetylene under CO

			$-\mathrm{B}_{\mathrm{B}(\mathrm{OH})_{2}} \frac{1 \% \mathrm{Rh},}{20 \mathrm{at}} \begin{aligned} & 20 \mathrm{~mL} \end{aligned}$	
	Entry	Product \#	R	Isolated Yield\%
	1	1	H	86
	2	3	$4-\mathrm{CH}_{3}$	88
	3	6	$3-\mathrm{CH}_{3}$	90
	4^{a}	7	$2-\mathrm{CH}_{3}$	41
	5	2	$4-\mathrm{OCH}_{3}$	90
	6	4	$4-\mathrm{COCH}_{3}$	88
	7^{a}	4	$4-\mathrm{COCH}_{3}$	93
	$8^{\text {b }}$	5	$4-\mathrm{CF}_{3}$	47
	$9^{\text {a }}$	5	$4-\mathrm{CF}_{3}$	82
	${ }^{a} 3 \% \mathrm{Rh}$ is used, ${ }^{\text {b }}[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ was used			

Very high yields of corresponding furanones were isolated with phenylboronic acid and with the phenylboronic acids substituted with electron-donating groups at meta- or para- positions (Table 5.6, entries 1,2,3,5). Reaction of electron-poor arylboronic acid, 4-acetylphenylboronic acid, also proceeded with high efficiency. However the presence of stronger electron-withdrawing group, $-\mathrm{CF}_{3}$, somewhat reduced the activity of the catalyst, and hence relatively higher concentration of catalyst ($3 \% \mathrm{Rh}$) was needed to afford high yield of the furanone correspondingly. When the reaction was performed with ortho-substituted phenylboronic acid the corresponding product formation was found to be moderate (Table 5.5, entry 4).

Corresponding furanone could not be isolated when 2-transphenylvinylboronic acid was used with diphenyl acetylene.

5.3. Rh-catalyzed Carbonylative Reactions of Alkynes with Phenylboronic Acid

We also performed the Rhodium-catalyzed carbonylative reactions of different alkynes with phenyboronic acid under the optimized conditions.

5.3.1. Rh-catalyzed Carbonylative Reaction of 4-Octyne with Phenylboronic Acid

When 4-Octyne was used in the reaction with phenylboronic acid under the optimized conditions, the presence of two isomers were detected in the crude product by GC and GC-MS analyses (Figure 5.1), These two products had same molecular weight.

Nevertheless only one of these isomers could be isolated via column chromatography on silica gel (Figure 5.2). It seems that the isomer eluting first from the GC column transformed to the other more stable isomer during the column separation on silica gel.

Figure 5.1. GC-Chromatogram of the sample after reaction finished

Figure 5.2. GC-Chromatogram of the sample after purification by column chromatography

The structure of the less stable isomer was 5-phenyl-3,4-dipropylfuran-2(3H)one as determined by the NMR analyses of the crude product (1a in Figure 5.3). A triplet which appears at 3.41 ppm of ${ }^{1} \mathrm{H}$ NMR and a resonance peak at 46.92 ppm of ${ }^{13} \mathrm{C}$ NMR spectra (Figures A.16a and A.16b) of the crude product, was found to have cross correlation as determined by HMQC NMR analysis (Figure A.16c) and assigned to be 3 H and 3 C within the ring of the structure 1 a . It should be noted that though the presence of such isomer was not determined in the reactions of diaryl alkynes, it does not mean that it did not form at all.

This difference could be explained by the relative rates of conversion of $2(3 \mathrm{H})$ furanones to the $2(5 \mathrm{H})$-furanone products for the reactions dialkyl acetylene and diaryl acetylene substrates (Figure 5.3). Probably the conversion rate from 1 a to 1 b is much
higher than that for the conversion of 2 a to 2 b due the higher stability of the structure 2 b compared with that of 1 b which is rendered by the extended π electron system for the former structure.

Figure 5.3. Reaction rates of aryl-aryl alkynes and alkyl-alkyl alkynes

5.3.2. Rh-catalyzed Carbonylative Reactions of Asymmetric Alkynes with Phenylboronic Acid

Reactions with the asymmetrical alkynes were resulted in production of two isomers of furanone.

When alkynes having one phenyl and one substituted phenyl groups attached on the each acetylenic carbon atoms were used under the optimum conditions, isomeric ratio of yields showed that aroylation occurs more on the electron deficient acetylenic carbon as compared with electron rich acetylene when aroylrhodium(I) species undergoes 1,2 -addition to the carbon-carbon triple bond in the reaction.

When methoxy group was attached to one of these phenyl rings on the paraposition, ratio of isomer A to isomer B was found as 29:43 (Table 5.6, entries 3,4). Moreover this ratio was found as increasing when methyl group was on the orthoposition (26: 68) (Table 5.6, entry 5).

Table 5.6. Activity of different diaryl-substituted asymmetric alkynes

Entry	Product \#	\mathbf{R}^{1}	\mathbf{R}^{2}	Isolated Yield \% (A:B)
$1{ }^{\text {a }}$	10	$2-\mathrm{OCH}_{3}$	$4-\mathrm{CH}_{3} \mathrm{CO}$	23:63
2	11	H	$4-\mathrm{CH}_{3} \mathrm{CO}$	45:36
$3^{\text {a }}$	15	H	$2-\mathrm{CH}_{3} \mathrm{O}$	26:68
4	16	H	$4-\mathrm{CH}_{3} \mathrm{O}$	29:43
5	18	H	$2-\mathrm{CH}_{3}$	30:42
${ }^{a} 1 \% \mathrm{Rh}$ is used				

When there is an electron-withdrawing group on the para- position, the ratio of isomer A to isomer B was found to be 45:36 (Table 5.6, entry 2).

When reaction was performed with an alkyne which has an electron-donating group on the ortho- position, reaction produced isomers with 26:68 yield ratio. It is probably because of steric hindrance of this phenyl group substituted with a -MeO group on ortho- position and this electron-donating group also makes that part of the acetylene, electron rich (Table 5.6, entry 3).

The presence of electron-withdrawing group at the p-position of one of the phenyl ring and an electron-donating group at the other gave relatively higher A to B isomer ratio (Table 5.6, entry 1).

When an alkyne having aryl group which is substituted by MeO- group on the p position was used isomeric ratio of A to B was found as 29:43 (Table 5.6, entry 4). When a sterically more hindered aryl group attached alkyne was used isomer ratio was relatively higher (Table 5.6 , entry 3).

These results revealed that aroylation step on the side of electron poor acetylenic carbon is higher when compared to the electron rich acetylenic carbon.

Table 5.7. Activity of aryl and alkyl substituted alkynes

The reaction of 1-phenyl-1-propyne with $\mathrm{PhB}(\mathrm{OH})_{2}$ under CO atmosphere yielded two isomeric mixture of furanones almost in a ratio of unity (Table 5.7, entry 1).

When internal alkynes which have both alkyl and aryl substitutents were used, isomers of the corresponding products were able to be isolated separately. Alkyne having alkyl and aryl group which is para-substituted with MeO- gave relatively low isomeric ratio of B to A with $1 \% \mathrm{Rh}$ when compared with the alkyne whose aryl part is sterically more hindered in the presence of $3 \% \mathrm{Rh}$ (Table 5.7, entries 4, 5).

Nevertheless, for other internal alkynes substituted with both aryl and alkyl moieties, the more preferred orientation of aroylation was at the side of acetylenic C attached to an alkyl group (Table 5.7, entries 3, 4, 5).

Reactions were also performed with 1-(3,3-diethoxyprop-1-ynyl)benzene, 4,4-dimethylpent-2-yne, 1-(2-(2-phenylethynyl)phenyl)ethanone, 1,3-dimethyl-2-(2phenylethynyl)benzene, 1,4-dimethoxybut-2-yne, 2-(4-(tetrahydro-2H-pyran-2-
yloxy)but-2-ynyloxy)-tetrahydro-2H-pyran, norbornene, 6-methyl-2-heptyne, 2butynylacetate, methyl-2-heptynoate, phenylacetylene, diphenylpropynone, phenylpropiolaldehyde, 2-butyn-1,4-diol, 2-heptyne-1-ol as alkyne in the rhodium catalyzed carbonylative reactions with phenylboronic acid, but these reactions produced either complex mixture of products or yielded no furanone compounds.

5.4. Proposed Mechanism of Rh-catalyzed Carbonylative Reactions of Arylboronic Acids with Alkynes

In Figure 5.4, proposed mechanism for formation of furanones is shown.

Figure 5.4. Proposed mechanism for the Rh-catalyzed carbonylative reaction of arylboronic acids with alkynes

At first, an arylrhodium(I) species (A) can be formed by the transmetallation of Rh (I) compounds with arylboronic acid. Then this arylrhodium(I) species could insert into CO to form an aroylrhodium(I) species. Then this aroylrhodium(I) undergoes 1,2addition to the carbon-carbon triple bond of alkyne which results in the formation of β aroylalkenylrhodium(I) complex. This complex then could insert into another CO. Later
ring closure of the formed complex gives a σ-furanoyl species. Elimination of Rh from this cyclic complex by protonation gives a 5 -aryl- $2(3 \mathrm{H})$-furanone molecule which is an intermediate. In this part, source of proton should be mainly the arylboronic acid itself and its decomposition product. $2(3 H)$-furanone is less stable compared with $2(5 H)$ furanone as a result of conjugation. So, after $2(3 \mathrm{H})$-furanone is formed then it changes to $2(5 \mathrm{H})$-furanone.

5.5. Identification of Furanone Isomers

When the reaction was performed with 1-(2-o-tolylethynyl)benzene, two different proton signals were obtained in ${ }^{1} \mathrm{H}$ NMR spectrum of isomer A (Table 5.6, entry 5, Figure A.81) which is 3,5-diphenyl-4-o-tolylfuran-2(5H)-one. This situation can be explained by the presence of 18a.

Atropisomers are isomers of same compound and they differ only in configuration resulting from hindered rotation of single bond where steric strain barrier to rotation is high enough to allow for the isolation of the conformers (Bringmann, et al. 2005). They can be isolated as separate chemical species. Likewise, it was found to be as two atropisomers for the isomer 18a (Figure 5.5).

Figure 5.5. Atropisomers of furanone 18a

In order to identify some of the isomers, we compared our results with literature. When furanone ring has aryl group on each 4- and 5- positioned carbon atom on the furanone ring, 5 H signal was found to be as singlet between $6-6.5 \mathrm{ppm}$ on the ${ }^{1} \mathrm{H}$ NMR spectrum. When furanone has an aryl group attached to $5^{\text {th }}$ carbon on the furanone ring
and an alkyl ring on the $4^{\text {th }}$ carbon, it is observed that $5 H$ signal was found to be as singlet between $5.5-6 \mathrm{ppm}$ on the ${ }^{1} \mathrm{H}$ NMR spectrum (Six 2003, Delaunay 1988). We identified some of the isomers in a manner based on these chemical shift values of 5 H signal and NOE experiments.

Isomers $\mathbf{9 a - 9 b}$ could not be isolated separately with column chromatography. A fraction which was rich by $\mathbf{9 a}$ was obtained and analyzed and identified by comparing the $5 H$ signal with the literature (Six 2003). Isomers 12a and 12b were also identified by comparing their $5 H$ signals on ${ }^{1} \mathrm{H}$ NMR spectrum with literature (Delaunay 1988). Likewise, isomer 10b could not be obtained seperately, but isomer 10a was isolated as itself and analyzed with NOE (Figure 5.2, Figure A.21-24).

Isomers 11a (Figure A.29-32), 13a (Figure A.41-44), 14a (Figure A.49-53), 15a (Figure A.58-60), 16a (Figure A.65-68), 17a (Figure A.73-74) and 17b (Figure A.7778) were also analyzed by using the NOE technique, and structure of these isomers were identified by results of these NOE experiments.

CHAPTER 6

CONCLUSION

In this thesis study, rhodium-catalyzed carbonylative additions of phenylboronic acids to various alkynes were investigated.
$[\mathrm{Rh}(\operatorname{cod}) \mathrm{OH}]_{2}$ was found to be the most effective complex in catalyzing the reactions.

The yield of furanones was higher when para- and ortho- substituted phenylboronic acids were used. However, an ortho-substituted phenylboronic acid was found to give moderate yield for the corresponding furanone product probably due to steric hinderance on the arylboronic acid. Electron-rich arylboronic acids were also found to be more reactive with diphenylacetylene. Yield of furanone product decreased with electron deficient arylboronic acids.

For the reactions of internal alkynes substituted with both aryl and alkyl moieties the more preferred orientation of aroylation was at the side of acetylenic carbon attached to an alkyl group. On the other hand, in the reactions of aryl-aryl alkynes, rhodium aroylation occurs more on the electron deficient acetylenic carbon as compared with electron rich acetylene when aroylrhodium(I) species undergoes 1,2addition to the carbon-carbon triple bond in the reaction. In this type of reactions isomeric ratios were also affected by steric hinderance on the phenyl group attached to the alkyne.

REFERENCES

Aksın, Ö., Dege, F.N., Artok, L., Türkmen, H. and Çetinkaya, B. 2006. Rhodiumcatalyzed carbonylative arylation of alkynes with arylboronic acids: an efficient and straightforward method in the synthesis of 5 -aryl-2(5H)-furanones. Chemical Communications 30:3187-3189.

Al-Alzemi, T.F., Kondaveti, L. and Bisht K.S. 2002. Solventless Enantioelective RingOpening Polymerization of Substituted ε-Caprolactones by Enzymatic Catalysis. Macromolecules 35:3380-3386.

Alper. H, Arzoumanian, H., Petrignani, J.F. and Maldonado, M.S. 1985. Phase transfer catalysed double carbonylation of styrene oxides. Journal of Chemical Society, Chemical Communications 6:340-341.

Arcadi, A., Aschi, M., Marinelli, F. and Verdecchia, M. 2008. Pd-catalyzed regioselective hydroarylation of α-(2 -aminoaryl)- α, β-ynones with organoboron derivatives as a tool for the synthesis of quinolines: experimental evidence and quantum-chemical calculations. Tetrahedron 64:5354-5361.

Bjeldanes, L.F. 1977. Phthalide components of celery essential oil. Journal of Organic Chemistry 42:2333-2335.

Blank, I., Lin, J., Fumeaux, R., Welti, D.H. and Fay, L.B. 1996. Formation of 3-Hydroxy-4,5-dimethyl-2(5H)-furanone (Sotolone) from 4-Hydroxy-L-isoleucine and 3-Amino-4,5-dimethyl-3,4-dihydro-2(5H)-furanone. Journal of Agricultural and Food Chemistry 44:1851-1856.

Boiteau, J.-G., Imbos, R., Minnaard, A.J. and Feringa, B.L. 2003. Rhodium-Catalyzed Asymmetric Conjugate Additions of Boronic Acids Using Monodentate Phosphoramidite Ligands. Organic Letters 5:681-684.

Bonnet, M.C., Carmona, N. and Tkatchenko, I. 1999. Carbonylation reactions, Chlorocarbonylation reactions: catalytic formation of chloroacyl chlorides without phosgene and application to the synthesis of 2(5H)-furanone. Journal of Molecular Catalysis A: Chemical 143:181-195.

Bringmann, G., Mortimer, A.J.P., Keller, P.A., Gresser, M.L., Garner, J. and Breuning, M. 2005. Atroposelective Synthesis of Axially Chiral Biaryl Compounds. Angewandte Chemie International Edition 44:5384-5427.

Chen, F.X., Kina, A. and Hayashi, T. 2006. High Performance of a Chiral Diene Rhodium Catalyst for the Asymmetric 1,4-Addition of Arylboroxines to α, β Unsaturated Ketones. Organic Letters 8:341-344.

Chen, J., Zhang, X., Feng, Q. and Luo, M. 2006. Novel hexadentate imidazolium salts in the rhodium-catalyzed addition of arylboronic acids to aldehydes. Journal of Organometallic Chemistry 691:470-474.

Cho, C.S., Motofusa, S., Ohe, K. and Uemura, S. 1995. A New Catalytic Activity of Antimony(II1) Chloride in Palladium(0)-Catalyzed Conjugate Addition of Aromatics to α, β-Unsaturated Ketones and Aldehydes with Sodium Tetraphenylborate and Arylboronic Acids. Journal of Organic Chemistry 60:883888.

Choa, C.S. and Shimb, H.S. 2006. An unusual palladium-catalyzed carbonylative cyclization of β-bromovinyl aldehydes leading to lactones. Tetrahedron Letters 47:3835-3837.

Coogan, M.P., Jenkins, R.L., Nutz, E. 2004. Carbonylative dimerisation of norbornene by cobalt carbonyl: an overlooked by-product of the Pauson-Khand reaction. Journal of Organometallic Chemistry 689:694-697.

Crisp, G.T. and Meyer, A.G. 1992. Palladium-Catalyzed, Carbonylative, Intramolecular Coupling of Hydroxy Vinyl Triflates. Synthesis of Substituted α, β-Butenolides. Journal of Organic Chemistry 57:6972-6975.

Defieber, C., Paquin, J.F., Serna, S. and Carreira, E.M. 2004. Chiral [2.2.2] Dienes as Ligands for $\mathrm{Rh}(\mathrm{I})$ in Conjugate Additions of Boronic Acids to a Wide Range of Acceptors. Organic Letters 6:3873-3876.

Delaunay, J., Orliac-Le Moing, A. and Simonet, J. 1988. Anodic Synthesis of Butenolides From β-Ethylenic Esters Double Cyclization in the Presence of Olefins. Tetrahedron 44:7089-7094.

DeShong, P., Sidlert, D.L., Rybczynski, P.J., Slough, G.A. and Rheingold, A.L. 1988. A General Method for the Preparation of Carbonyl Compounds and Butenolides from Organomanganese Pentacarbonyl Complexes. Journal of American Chemical Society 110:2575-2585.

Duursma, A., Hoen, R., Schuppan, J., Hulst, R., Minnaard, A.J. and Feringa, B.L. 2003. First Examples of Improved Catalytic Asymmetric C C-C Bond Formation Using the Monodentate Ligand Combination Approach. Organic Letters 5:3111-3113.

El Ali, B. and Alper, H. 1991. Lactonization of Unsaturated Alcohols Catalyzed by Palladium Complexes under Neutral Conditions. Journal of Organic Chemistry 56:5357-5360.

Fagnou, K. and Lautens, M. 2003. Rhodium-Catalyzed Carbon-Carbon Bond Forming Reactions of Organometallic Compounds. Chemical Reviews 103:169-196.

Frost, C.G. and Wadsworth, K.J. 2001. Rhodium catalysed addition of boronic acids to anhydrides: a new method for the synthesis of ketones. Chemical Communications 22:2316-2317.

Ganci, G.R. and Chisholm J.D. 2007. Rhodium-catalyzed addition of aryl boronic acids to 1,2-diketones and 1,2-ketoesters. Tetrahedron Letters 48:8266-8269.

Gaudin, J.M. United States Patent, patent number:5465824, date of patent: nov.17,1995.
Genin, E., Michelet, V. and Genet, J.P. 2004. Rh-catalyzed addition of boronic acids to alkynes for the synthesis of trisubstituted alkenes in a biphasic system Mechanistic study and recycling of the $\mathrm{Rh} / \mathrm{m}-\mathrm{TPPTC}$ catalyst. Journal of Organometallic Chemistry 689:3820-3830.

Giordano, G. and Crabtree, R.H. 1979. Inorganic Sytheses 19:218-220.
Guan, J.T., Weng, T.Q., Yu, G.A. and Liu, S.L. 2007. Copper-free $\mathrm{PdCl}_{2} / \mathrm{PPh}_{3}$ catalyzed Sonogashira coupling reaction of aryl bromides with terminal alkynes in water. Tetrahedron Letters 48:7129-7133.

Hayashi, T., Inoue, K., Taniguchi, N. and Ogasawara, M. 2001. Rhodium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids: 1,4-Shift of Rhodium from 2-Aryl-1-alkenylrhodium to 2-Alkenylarylrhodium Intermediate. Journal of American Chemical Society 123:9918-9919.

Hayashi, T., Senda, T. and Ogasawara, M. 2000. Rhodium-Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Nitroalkenes. Journal of American Chemical Society 122:10716-10717.

Hayashi, T., Senda, T., Takaya, Y. and Ogasawara, M. 1999. Rhodium-Catalyzed Asymmetric 1,4-Addition to 1-Alkenylphosphonates Journal of American Chemical Society 121:11591-11592.

Hedrick, D., Mecerreyes, P., Dubois, R., Jerome, H., Ihre, A. Hult, M. and Trollasas, J.L. 1998. Highly Functional Branched and Dendri-Graft Aliphatic Polyesters through Ring Opening Polymerization. Macromolecules 31:2756-2763.

Huang, X. and Zhou, H. 2002. Novel Tunable CuX_{2}-Mediated Cyclization Reaction of Cyclopropylideneacetic Acids and Esters for the Facile Synthesis of 4-halomethyl-2(5H)-furanones and 4-Halo-5,6-dihydro-2H-pyran-2-ones. Organic Letters 4:44194422.

Huang,Y. and Alper, H. 1991. Stereospecific Palladium(II)-Catalyzed Cyclocarbonylation of 3-Aryl-1-propynes and Iodoarenes or Acid Chlorides To Form (E)-3-Arylidenebutenolides. Journal of Organic Chemistry 56:4534-4536.

Iyer, P.S., O’Malley, M.M. and Lucas, M.C. 2007. Microwave-enhanced rhodiumcatalyzed conjugate-addition of aryl boronic acids to unprotected maleimides. Tetrahedron Letters 48:4413-4418.

Joh, T., Doyama, K., OnRsuka, K., Tomoo, S. and Takahashi, S. 1991. RhodiumCatalyzed Carbonylation of Acetylenes under Furanones Water-Gas Shift Reaction Conditions. Organometallics 10:2493-2498.

Jolivet, B., Grossmann, G., Bornand, M. and Séquin, U. 2002. Biologically Active Furanones. http://www.chemie.unibas.ch/~sequin/posters/Falkau2002.pdf (accessed July 01, 2008).

Katritzky, A.R., Feng, D. and Lang, H. 1997. Novel Syntheses of α, β-Unsaturated Esters, α, β-Unsaturated γ-Lactones, and 2-Alkoxypyrroles via 1,2,4-TriazoleStabilized Allenic Anions. Journal of Organic Chemistry 62:715-720.

Kirschner, A., Langerb, P. and Bornscheuera, U.T. 2004. Lipase-catalyzed highly enantioselective kinetic resolution of racemic a-hydroxy butenolides. Tetrahedron: Asymmetry 15:2871-2874.

Kindo, T., Kodoi, K., Mitsudo, T. and Watanabe, Y. 1994. A New Route to 2(5H)Furanones via Ruthenium-catalysed Oxidative Cyclocarbonylation of Allylic Alcohols. Journal of Chemical Society, Chemical Communications 6:755-756.

Konno, T., Tanaka, T., Miyabe, T., Morigaki, A. and Ishihara, T. 2008. A first high enantiocontrol of an asymmetric tertiary carbon center attached with a fluoroalkyl group via $\mathrm{Rh}(\mathrm{I})$-catalyzed conjugate addition reaction. Tetrahedron Letters 49:2106-2110.

Kuhnt, D. and Anke, T. 1990. From basidiomycetes xxxvi1. New inhibitors of cholesterol biosynthesis from cultures of xerula melanotricha dorfelt. The Journal of Antibiotics 63:1413-1420.

Kumar, P. and Pandey, R.K. 2000. An efficient synthesis of 5-hydroxy-2(5H)-furanone using a titanium silicate molecular sieve catalyst. Green Chemistry 2:29-31.

Kuriyama, M. and Tomioka, K. 2001. Chiral amidomonophosphine-rhodium(I) catalyst for asymmetric 1,4 -addition of arylboronic acids to cycloalkenones. Tetrahedron Letters 42:921-923.

Larock, L.C., Riefling, B. and Fellows, C.A. 1978. Mercury in Organic Chemistry. 12. Synthesis of β-Chloro- $\Delta^{\alpha, \beta}$-butenolides via Mercuration-Carbonylation of Propargylic Alcohols Journal of Organic Chemistry 43:131-137.

Lautens, M. and Dockendorff, C. 2003. Palladium(II) Catalyst Systems for the Addition of Boronic Acids to Bicyclic Alkenes: New Scope and Reactivity. Organic Letters 5:3695-3698.

Lautens, M., and Yoshida, M. 2002. Regioselective Rhodium-Catalyzed Addition of Arylboronic Acids to Alkynes with a Pyridine-Substituted Water-Soluble Ligand. Organic Letters 4:123-125.

Lautens, M., Roy, A., Fukuoka, K., Fagnou, K. and Matute, B.M. 2001. RhodiumCatalyzed Coupling Reactions of Arylboronic Acids to Olefins in Aqueous Media. Journal of American Chemical Society 123:5358-5359.

Leonard, J., Lygo, B. and Procter, G., eds.1998. Advanced Practical Organic Chemistry.CRC Press.

Lin, S. and Lu, X. 2006. Palladium-bipyridine catalyzed conjugate addition of arylboronic acids to a,b-unsaturated carbonyl compounds in aqueous media. Tetrahedron Letters 47:7167-7170.
Ma, S. and $\mathrm{Gu}, \mathrm{Z} .2005 . \mathrm{PdCl}_{2}$-Catalyzed Two-Component Cross-Coupling Cyclization of 2,3-Allenoic Acids with 2,3-Allenols. An Efficient Synthesis of 4-(1,3-Dien-2-yl)-2(5H)-furanone Derivatives. Journal of American Chemical Society 127:61826183.

Mann, J. and Thomas, A. J. 1985. Chiral Bicycles From Ribonolactone Chemical Society, Chemical Communications 11:737-738.

Martina, S.L.X., Jagt, R.B.C., de Vries, J.G., Feringa, B.L. and Minnaard, A.J. 2006. Enantioselective rhodium-catalyzed addition of arylboronic acids to trifluoromethyl ketones. Chemical Communications 39:4093-4095.

Mauleon, P., Alonso, I., Rivero, M.R. and Carretero, J.C. 2007. Enantioselective Synthesis of Chiral Sulfones by Rh-Catalyzed Asymmetric Addition of Boronic Acids to α, β-Unsaturated 2-Pyridyl Sulfones. Journal of Organic Chemistry 72:9924-9935.

Mise, T., Hong, P. and Yamazaki, H. 1983. Rhodium Carbonyl Catalyzed Carbonylation of Unsaturated Compounds.Synthesis of 5-Alkoxy-2(5H)-furanones by the Carbonylation of Acetylenes in Alcohol. Journal of Organic Chemistry 48:238-242.

Miura, T., Shimada, M. and Murakami, M. 2007. Rhodium-catalyzed arylative cyclization of alkynones induced by addition of arylboronic acids Tetrahedron 63:6131-6140.

Miura, T., Shimada, M. and Murakami, M.2005. Acyl 1,3-Migration in RhodiumCatalyzed Reactions of Acetylenic β-Ketoesters with Aryl Boronic Acids: Application to Two-Carbon-Atom Ring Expansions. Angewandte Chemie International Edition 44:7598-7600.

Miura, T., Takahashi, Y. and Murakami, M. 2007. Rhodium-catalysed addition reaction of aryl- and alkenylboronic acids to isocyanates. Chemical Communications 34:3577-3579.

Moreau, C., Hague, C., Weller, A.S. and Frost, C.G. 2001. Rhodium-catalysed aryl transfer to aldehydes: counterion effects with nitrogen containing ligands. Tetrahedron Letters Pergamon 42:6957-6960.

Nambo, M., Noyori, R. and Itami, K. 2007. Rh-Catalyzed Arylation and Alkenylation of C60 Using Organoboron Compounds. Journal of American Chemical Society 129:8080-8081.

Negishi, E. and Kotora, M. 1997. Regio- and Stereoselective Synthesis of γ alkylidenebutenolides and Related Compounds. Tetrahedron 53:6707-6738.

Nozaki, K., Sato, N., Ikeda, K. and Takaya, H. 1996. Synthesis of Highly Functionalized γ-Butyrolactones from Activated Carbonyl Compounds and Dimethyl Acetylenedicarboxylate. Journal of Organic Chemistry 61:4516-4519.

Oguma, K., Miura, M., Satoh, T. and Nomura, M. 2000. Merry-Go-Round Multiple Alkylation on Aromatic Rings via Rhodium Catalysis. Journal of Aerican Chemical Society 122:10464-10465.

Oguma, K., Miura, M., Satoh, T. and Nomura, M. 2002. Rhodium-catalyzed coupling of sodium tetraphenylborate with acid anhydrides in the presence or absence of norbornene. Journal of Organometallic Chemistry 648:297-301.

Oh, C.H., Park, S.J., Ryu, J.H. and Gupta, A.K. 2004 . Regioselective Pd-catalyzed alkylative lactonizations of 4-hydroxy-2-alkynecarboxylates with organoboronic acids. Tetrahedron Letters 45:7039-7042.

Ohno, M. 1999. $\mathrm{PhI}(\mathrm{OAc})_{2}$-Promoted Rearrangement of the Hydroxyl Group: Ring Expansion of 4-Hydroxy-2-cyclobutenone to $2(5 \mathrm{H})$-Furanone in Comparison with Ring Cleavage of the α-Hydroxycycloalkanone to the ω-Formyl Ester. Journal of Organic Chemistry 64:8995-9000.

Özdemir, I., Demir, S. and Çetinkaya, B. 2004. Synthesis of novel rhodium-carbene complexes as efficient catalysts for addition of phenylboronic acid to aldehydes. Journal of Molecular Catalysis A: Chemical 215:45-48.

Padwa, A. and Blacklock, T.J. 1977. Solvent Control of Migratory Aptitudes in the Photochemical Rearrangement of $2(5 \mathrm{H})$-Furanones. Journal of the American Chemical Society 99:2347-2348.

Paquin, J.F., Defieber, C., Stephenson, C.R.J. and Carreira, E.M. 2005. Asymmetric Synthesis of 3,3-Diarylpropanals with Chiral Diene-Rhodium Catalysts. Journal of American Chemical Society 127:10850-10851.

Paquin, J.F., Stephenson, C.R.J., Defieber, C. and Carreira, E.M. 2005. Catalytic Asymmetric Synthesis with Rh-Diene Complexes: 1,4-Addition of Arylboronic Acids to Unsaturated Esters. Organic Letters 7:3821-3824.

Pearce, A.N., Chia, E.W., Berridge, M.V., Maas, E.W., Page, M.J., Webb, V.L., Harper, J.L: and Copp, B.R. 2007. E/Z-Rubrolide O, an Anti-inflammatory Halogenated Furanone from the New Zealand Ascidian Synoicum n. Sp. Journal of Natural Products 70:111-113.

Radhakrishnan, U. and Periasamy, M. 1997. Reaction of the $\mathrm{RMgX} / \mathrm{Fe}(\mathrm{CO})_{5} / \mathrm{CuCl}$ System with Alkynes: Novel Double Carbonylation Leading to Butenolides and Cyclobutenedione. Organometallics 16:1800-1802.

Ramnauth, J., Poulin, O., Bratovanov, S.S., Rakhit, S. and Maddaford, S.P. 2001. Stereoselective C-Glycoside Formation by a Rhodium(I)-Catalyzed 1,4-Addition of Arylboronic Acids to Acetylated Enones Derived from Glycals. Organic Letters 3:2571-2573.

Rao, Y.S. 1976. Recent Advances in the Chemistry of Unsaturated Lactones. Chemical Reviews 76:625-694.

Roesch, K.R. and Larock, R.C. 2001. Synthesis of Isoindolo[2,1-a]indoles by the Palladium-Catalyzed Annulation of Internal Acetylenes. Journal of Organic Chemistry 66: 412-420.

Rossi, R., Bellina, F., Biagetti, M. and Mannina, L. 1998. Selective Palladium-Mediated Synthesis of Racemic 4,5-Disubstituted 5H-Furan-2-ones from 3-Ynoic Acids and Organic Halides. Tetrahedron Letters 39:7599-7602.

Rustullet, A., Alibe's, R., March, P.D., Figueredo, M. and Font, J. 2007. Stereoselective Route to Oxetanocin Carbocyclic Analogues Based on a [2 + 2] Photocycloaddition to a Chiral 2(5H)-Furanone. Organic Letters 9:2827-2830.

Sakai, M., Hayashi, H. and Miyaura, N. 1997. Rhodium-Catalyzed Conjugate Addition of Aryl- or 1-Alkenylboronic Acids to Enones. Organometallics 16:4229-4231.

Sakai, M., Ueda, M. and Miyaura, N. 1998. Rhodium-Catalyzed Addition of Organoboronic Acids to Aldehydes. Angewandte Chemie International Edition 37:3279-3281.

Schneider, R., Baumes, R., Bayonove, C. and Razungles, A. 1998. Volatile Compounds Involved in the Aroma of Sweet Fortified Wines (Vins Doux Naturels) from Grenache Noir. Journal of Agricultural and Food Chemistry 46:3230̃-3237.

Shintani, R., Duan, W.L., Nagano, T., Okada, A. and Hayashi, T. 2005. Chiral Phosphine-Olefin Bidentate Ligands in Asymmetric Catalysis: Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl Boronic Acids to Maleimides. Angewandte Chemie International Edition 44:4611-4614.

Shintani, R., Tsurusaki, A., Okamoto, K. and Hayashi, T. 2005. Highly Chemo- and Enantioselective Arylative Cyclization of Alkyne-Tethered Electron- Deficient Olefins Catalyzed by Rhodium Complexes with Chiral Dienes. Angewandte Chemie International Edition 44:3909-3912.

Six, Y. 2003. Titanium mediated carboxylation of alkynes with carbon dioxade. European Journal of Organic Chemistry 1157-1171.

Son, S.U., Kim, S.A., Reingold, J.A., Carpenter, G.B. and Sweigart, D.A. 2005. An Anionic Rhodium $\eta 4$-Quinonoid Complex as a Multifunctional Catalyst for the Arylation of Aldehydes with Arylboronic Acids. Journal of American Chemical Society 127:12238-12239.

Sorgel, S., Tokunaga, N., Sasaki, K., Okamoto, K. And Hayashi, T. 2008. Rhodium/Chiral Diene-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Arylmethylene Cyanoacetates. Organic Letters 10: 589-592.

Sun, K., Chen, Y., Wagerle, T., Linnstaedt, D., Currie,M., Chmura, P., Song, Y. and Xu, M. 2008. Synthesis of butenolides as seed germination stimulants. Tetrahedron Letters 49:2922-2925.

Takaya, Y., Ogasawara, M., Hayashi, T., Sakai, M., Miyaura, N. 1998. Rhodiumcatalyzed asymmetric 1,4 -addition of aryl- or alkenylboronic acids to enones. Journal of American Chemical Society 120:5579-5580.

Tomioka, K., Ishiguro, T. and Koga, K. 1979. Asymmetric Total Synthesis Of The Antileukaemic Lignans (+)-Trans-Burseran And (-)-İsostegane. Journal Of Chemical Society, Chemical Communucations 15:652-653.

Tomioka, K., Ishiguro, T., Iitaka, Y. and Koga, K. 1984. Asymmetric Total Synthesis of Natural (-)-And Unnatural (+)-Steganacin. Determination of The Absolute Configuration of Natural Antitumor Steganacin. Tetrahedron 40:1303-1312.

Tomioka, K., Sato, F., Koga, K. 1982. Synthetic Approaches Toward Verrucarin-A Chiral Synthesis of (-)-Verrucarinolactone. Heterocycles 17:311-316.

Toullec, P.Y., Jagt, R.B.C., de Vries, J.G., Feringa, B.L. and Minnaard, A.J. 2006. Rhodium-Catalyzed Addition of Arylboronic Acids to Isatins: An Entry to Diversity in 3-Aryl-3-Hydroxyoxindoles. Organic Letters 8:2715-2718.

Trenkle, W.C., Barkin, J.L., Son, S.U. and Sweigart, D.A. 2006. Highly Efficient 1,4Additions of Electron-Deficient Aryl Boronic Acids with a Novel Rhodium(I) Quinonoid Catalyst. Organometallics 25:3548-3551.

Urbaneja, L.M. and Krause, N. 2006. Rhodium-catalyzed enantioselective 1,4-additions of arylboronic acids to substituted enones. Tetrahedron: Asymmetry 17:494-496.

Uson, R., Oro, L.A. and Cabeza, J.A. 1985. Dinuclear methoxy, cyclooctadiene, and Barrelene complexes of rhodium(I) and Iridium(I). Inorganic Sytheses 23:126-130.

Van den Hoven, B.G., El Ali, B. and Alper, H. 2000. Chemo- and Regioselective Cyclohydrocarbonylation of α-Keto Alkynes Catalyzed by a Zwitterionic Rhodium Complex and Triphenyl Phosphite. Journal of Organic Chemistry 65: 4131-4137.

Vandyck, K., Matthys, B., Willen, M., Robeyns, K., Meervelt , L.V., aand Van der Eycken, J. 2006. Rhodium-Catalyzed Asymmetric Conjugate Additions of Boronic Acids to Enones Using DIPHONANE: A Novel Chiral Bisphosphine Ligand. Organic Letters 8:363-366.

Vasapollo, G., Mele, G. and Ali, B.E. 2003. Catalytic and selective synthesis of lactones and bis-lactones by palladium acetate/1,4-bis(diphenylphosphino)butane system under syngas conditions. Journal of Molecular Catalysis A: Chemical 204-205.

Vigneron, J. P., Meric, R., Larcheveque, M., Debal, A., Kunesch, G., Zagatti, P. and Gallois, M. 1982. Absolute Configuration of Eldanolide, The Wing Gland Pheromone of The Male African Sugar Cane Borer. Eldana Saccharina (Wlk.). Synthesis of its (+) and (-) Enantiomers. Tetrahedron Letters 23:5051-5054.

Volkmann, R.A., Andrews, G.C., Johnson, W.S. 1975. Photochemical Rearrangement in the 2(5H)-Furanone System. Journal of the American Chemical Society 97:47794781.

Weix, D.J., Shi, Y. and Ellman, J.A. 2005. Diastereoselective and Enantioselective $\mathrm{Rh}(\mathrm{I})$-Catalyzed Additions of Arylboronic Acids to N -tert-Butanesulfinyl and N Diphenylphosphinoyl Aldimines. Journal of American Chemical Society 127:10921093.

Woo, E.P. and Cheng, F.C.W. 1986. Carbonylation of Aldehydes in Strong Acid. A General Synthesis of 3,4-Dialkyl-2(5H)-furanones. Journal of Organic Chemistry 51:3706-3707.

Woo, E.P. and Cheng, F.C.W. 1986. Carbonylation of Aldehydes in Strong Acid. A General Synthesis of 3,4-Dialkyl-2(5H)-furanones. Journal of Organic Chemistry 51:3707-3708.

Wu, X., Mahalingam, A.K., Wan, Y. and Alterman, M. 2004. Fast microwave promoted palladium-catalyzed synthesis of phthalides from bromobenzyl alcohols utilizing DMF and $\mathrm{Mo}(\mathrm{CO})_{6}$ as carbon monoxide sources. Tetrahedron Letters 45:46354638.

Yoneda, E., Kaneko, T., Zhang, S.W., Onitsuka, K. and Takahashi, S. 2000. Ruthenium-Catalyzed Cyclic Carbonylation of Allenyl Alcohols. Selective Synthesis of γ - and δ-Lactones. Organic Letters 2:441-443.

Yoneda, E., Zhang, S.W., Zhou, D.Y., Onitsuka, K. and Takahashi D. 2003. Ruthenium-Catalyzed Cyclocarbonylation of Allenyl Alcohols and Amines: Selective Synthesis of Lactones and Lactams. Journal of Organic Chemistry 68:8571-8576.

Yoneda, E., Zhang, S.W., Zhou, D.Y., Onitsuka, K. and Takahashi, S. 2003.RutheniumCatalyzed Cyclocarbonylation of Allenyl Alcohols and Amines: Selective Synthesis of Lactones and Lactams. Journal of Organic Chemistry 68: 8571-8576.

Yu, W.Y. and Alper, H. 1997. Palladium-Catalyzed Cyclocarbonylation of Terminal and Internal Alkynols to 2(5H)-Furanones. Journal of Organic Chemistry 62:56845687.

Zhang, S.W., Sugioka, T. and Takahashi, S. 1999. Rhodium-catalyzed carbonylation of alkynes having a carbonyl group adjacent to carbon-carbon triple bond under water-gas shift reaction conditions. Journal of Molecular Catalysis A: Chemical 143:211-228.

APPENDIX A

${ }^{13} \mathrm{C}$ AND ${ }^{1} \mathrm{H}$ NMR AND NOE SPECTRUMS OF FURANONES

t29. 6 ST

D80.65I

6SS.091

STぐ22t

wraceaz
13 mpaze

26.69
Figure A.7. ${ }^{1} \mathrm{H}$ NMR of 5-(4-acetylphenyl)-3,4-diphenylfuran-2(5H)-one

$$
\varepsilon z s \cdot z \% \%
$$

Figure A.9. ${ }^{1}$ H NMR of 5-(4-(trifluoromethyl)phenyl)-3,4-diphenylfuran-2(5H)-one

NURCXA
NORCAN
11 PRMECZ 2007
Saxapla Name:
NURCAN-2 $2.59-$ RROX
Archive dizectory:
Smple dixactory:
Fidwile: zroton

Figure A.11. ${ }^{1} \mathrm{H}$ NMR of 3,4-diphenyl-5-m-tolylfuran-2(5 H)-one

Figure A.14. ${ }^{13} \mathrm{C}$ NMR of 3,4-diphenyl-5-o-tolylfuran-2(5H)-one

Figure A.15. ${ }^{1} \mathrm{H}$ NMR of 5-phenyl-3,4-dipropylfuran-2(5H)-one

$T S L^{\circ} \cdot \mathrm{L}<\tau$

Data Collisected on：
now 400 －vninra400
Axchive directory：
dxchive directory：
fhoms／walkupif fumarsys／data
faoma／walkuplifymarsys／data
Sample dinectory：

Fiderila：CARBON 01．
Pulse seckuance：caidon（s2pul）
Solvexut：ccich3
Data collected on：Apr 222008

$$
\begin{aligned}
& \text { wap. } 25.0 \mathrm{C} / 298.2 \mathrm{x} \\
& \text { Goratox: walkup1 }
\end{aligned}
$$

ReLast calay 1.000 sec
TuLse 45.0 degrees
Acq．tirass 1.285 serc
Wideh 25510.2 Fiz
W2 xepetitions
onserve cis， 200
郎
59\％．985
な\＆2． 88
VARIAN 觜

Samele Kณzas:

Dat a coblectack on:

Solvaxut: eckez 3

\% racktitiona

meocmo ck ca3,
Powat 34 d
on cuxting ader
on cuxing accutastion

Nuxccan
sample Arohive dixegtory:
595
065%
679
$\angle O 9^{\circ} \mathrm{Y}$.
$599^{\circ} \mathrm{Y}$
789 ${ }^{\circ}$

886

$$
\begin{aligned}
& 98 y^{\circ} \mathrm{y} \\
& 805^{\circ} \mathrm{F}
\end{aligned}
$$

od2851060807
Saxuple Nama:
ca:381106080

Wrarcak
NuRCKN
29 zzamyz 200%
 Axehive cixectoxy:

Sample cirmectoxy:

?u) semoners

E

selax. delay x

${ }^{68}$ suor 7r7adiox 0

Dinam broackn土ing

rotas. tixum 0 minn
ดิ

Figure A.18. ${ }^{1}$ H NMR of mixture of 4,5-diphenyl-3-propylfuran-2(5H)-one and 3,5-diphenyl-4-propylfuran-2(5H)-one (rich)
Automation directory: /home/walkup1/vnmrsys/data/ali/auto_2007.07.19 File : /home/walkup1/vnmrsys/
Sample id : CD2812-190707_01 Sample : CD28I2-190707
Pu1se Sequence: HSQC Solvent: cdc13 Solvent: cdc13
Temp. 27.0 c /
Operator: walkup1
File: Hsqc_01 File: Hsqc_01
VNMRS-400 "nmr400" Relax. delay 1.200 sec Relax. delay 1.200 sec
Acq. time 0.128 sec
Width 3834.4 Hz $\begin{array}{ll}\text { Width } 3834.4 \mathrm{~Hz} \\ \text { 2D Width } \\ \text { 2 } & 17079.4 \mathrm{~Hz}\end{array}$
4 repetitions
4 repetitions
2×128 increm
$\begin{array}{ll}\text { OBSERVE } & \mathrm{H} 1,399.5219886 \mathrm{MHz} \\ \text { DECOUPLE C13, } & 100.4673944 \mathrm{MHz}\end{array}$
DECOUPLE C13, 100.4673944 MHz
Power 34 dB
on during acquisition
off during delay
W4O_autoX modulate
dATA PROCESSING
Gauss apodization 0.059 sec
F1 DATA PROCESSING
Gauss apodization 0.007 sec
FT size 2048×2048
Total time $24 \mathrm{~min}, 17 \mathrm{sec}$

Figure A.18a. HSQC of mixture of 4,5-diphenyl-3-propylfuran-2(5H)-one and 3,5-diphenyl-4-propylfuran-2(5H)-one (rich)
19 TEMMUZ 2007
Automation directory: /home/walkup1/vnmrsys/data/a1i/auto_2007.07.19 File : /home/wa1kup1/vnmrsys/data/CD28I2-190707_19Ju12007/Hmqc_02 Sample id:CD28I2-190707_03
Sample : CD28I2-190707
Pulse Sequence: $H M Q C$
Temp. $27.0 \mathrm{C} / 300.1 \mathrm{~K}$

Relax. delay 1.000 sec
Acq. time 0.128 sec
Width 3882.0 Hz
$\begin{array}{ll}\text { Width } & 3882.0 \mathrm{~Hz} \\ \text { 2D Width } & 17079.4 \mathrm{~Hz}\end{array}$
4 repetitions
2×128 increments
OBSERVE $\mathrm{H} 1,399.5219886 \mathrm{MHz}$
DECOUPLE C13, 100.4673944 MHz
Power 34 dB
on during acquisition
off during delay
W4O autox modulate
DATA PROCESSING
DATA PROCESSING
Gauss apodization 0.059 sec
F1 DATA PROCESSING
F1 DATA PROCESSING
Gauss apodization 0.007 sec
FT size 2048×2048
Total time $20 \mathrm{~min}, 28 \mathrm{sec}$

Figure A.18b. HMQC, of mixture of 4,5-diphenyl-3-propylfuran-2(5H)-one and 3,5-diphenyl-4-propylfuran-2(5H)-one (rich)

po網
4.73

59
os

NORCAN- - 203 KMXRS
Sataple Nams:

nmest00-vnmrs 400
Arehive directory:
Archive directory:
fhoma/walkuplfvamrsya/dats
sample alivectory:
Sample cinectoxy:
NORCAX-F203Y0xxPS_13Mar2008 Fianila: PRORON Pui)se sequence: RRow(c) (32puli) Solvent: tucicli3
Data coliected Data collected on: Max 132003

Relax. delaygh. 000 sed
Pxi.se 45.0 diagrees
Aesg. tams 2.556 sec
Width 5020.3 Hz
Width $5<10.3 \mathrm{~Hz}$
8 zepetitaoas
CBSRRVW R1. 39
Dsin processsaxi
EM size 32768
Total tame 0 tain 29 sec

$\$ 26.9 L$
780.62
$65 \varepsilon^{\circ} h .4$
\qquad

8ヶす TTと
860.6 K

LZO＇TZT
さ6ず9そう

ら55 して！
cot 8 Z
ムそZ＇8Zち
6LO 6 宩

8s＇9z \qquad

[^0]power 39 dy
contimously on
contumousiy on
baNa processing
Live broadenitog 0.5 Hz
3ocai tiate 19 Man

DECOTPIER B1． $399 . \$ 39862 \mathrm{MHz}$
power 39 dis

T
220
homa/walkupl.fuxmrsys/data
Sample di nectory:
Semple di nectoxy:
Norcan-F203kxpes_13Man2008
FidFila: CARBON
Pulse Secquence: caksos (shmil)
Solvent: etcic
Solvent：etcl3
Data collected
Temp． 25.0 C ； 298.2 K
Relax，delay 2.000 sec
Acq．t．mas 1.285 sec
Widts 25310.2 Hz o
512 repetitions
en
380
852
CSERVE C13．200．K590839 kIzz

Thm
Figure A.21. NOE of 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one Part I

Figure A.22. NOE of 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one Part II

Saxple Nama:
surcan- $2203 \mathrm{Kz1}$

Figure A.23. NOE of 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one Part III

Data coliected on:

inomeiwajkugh ivnowsysicata

Pubsa Secrumocas: Nozsyod
Solvent: oce23
Data col.actec
bata colucevec on: apx 25 200e

Figure A.24. NOE of 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5 H)-one Part IV

Figure A.25. ${ }^{1}$ H NMR of mixture of 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one and 3-(4-acetylphenyl)-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one

ppm
$120 \quad 100 \quad 80$
$120 \quad 100 \quad 80$
N
,
Figure A.26. ${ }^{13} \mathrm{C}$ NMR of mixture of 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one and 3-(4-acetylphenyl)-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one

NURCAN－2世32K2カ1．
Sample Name：
nma 400 －vnmxsco0
Axchive dixectory：
Axchive dixectory：
homefwaikupifvmersy／data
Sample dinectoxy：
NURCAN－2T32K2P1＿21Mar2008
Fitrile：CARBON


```
< <

\section*{を9できを}

0Zん＇ \(9 \varepsilon T\)
LZ9＇LET
\(696^{\circ} \mathrm{Lyy}\)

\author{
\(/ /\)
}





inome imalkuph/vnmesys) Cata



Solvent: obci3
Data colusetac
Data colbectac on: apx 2 200日

\section*{}






Figure A.29. NOE of 4-(4-acetylphenyl)-3,5-diphenylfuran-2(5H)-one Part I
 th: 17.2 \{Zz\}
expl NOESY2D Acoutsxirxow cococrsan Sakyさita nan



\(\begin{array}{lrlr}\text { tof } & 399.5 & \text { çain } & 30 \\ \text { tpwy } & 61 & \text { spin } & 0 \\ \text { pw } & 9.100 & \text { phe9 } & 9.100\end{array}\)
\begin{tabular}{llll} 
& NOESY & \multicolumn{2}{c}{ ELARGS } \\
m 2 KN & 0.300 & sspui. & \(y\)
\end{tabular} \(\begin{array}{lrl}\text { maxN } & 0.300 & \text { sspuis } \\ \text { sweeppers } & 47 & \text { il }\end{array}\) \(\begin{array}{lr}\text { swedryt } & 1500.000 \\ \text { in } \\ \text { sweepshn } & \text { sech180 do }\end{array}\) sweepsmp sechaso
prfess selshapan NURCAN--2~
T32K2P1-NOS NOESYI~ \%elpwaA D_OO4 \(\begin{array}{lrr}\text { *elpwax } & -2 & \text { sp } \\ \text { aelpwa } & 210535.3 & \mathrm{wp}\end{array}\) gaivia \(\quad 742\) vs
 T32K2FI-NOS_WOESY2- bzwa \(\begin{array}{ccc}\text { selpwar } & -2 & \text { ffl } \\ \text { selpws } & 220535.8 & \text { rfip } \\ \text { crivis } & 112 \% 2 \text { th }\end{array}\)

gstabas
GRADIENY
Figure A.30. NOE of 4-(4-acetylphenyl)-3,5-diphenylfuran-2(5H)-one Part II

Sample Name:
Nurcav--2T32K2P1-NOE
Data Collected on:
nmr400-vnaxs 400
nmx400-vraxs 400
Axchive dixactozy:
fhomefralkupl/vnmesys/data
Sample di.rectoxy:
มเロRCAN-2T32K2pI-NO
Fidsile: NOESY1D... 05
Solvent: odeli3
Data coliecteci on: Apx I 200 B Texp. \(25.0 \mathrm{c}, 298.2 \mathrm{~K}\)
Rel.ax. delay 1.000 sec
Pulse 90.0 degrees
\begin{tabular}{l|l|} 
Pulse 90.0 degrees & \(\mid\) \\
Acq. t.ame 2.556 sec & \\
Widith 641.0 .3 Hz & \\
128 repetitions &
\end{tabular}
Width 641.0 .3 Hz
128 regetitions
DATA BROCKSS
Kiz siz 32768
Total tame 10 min



Figure A.32. NOE of 4-(4-acetylphenyl)-3,5-diphenylfuran-2(5H)-one Part IV

Figure A.33. \({ }^{1}\) H NMR of 3-(4-acetylphenyl)-4,5-diphenylfuran-2(5H)-one


โ68．5ス\％
9651 LZT
L9Z＇9そ！
\(09 y^{\circ} 8 \mathrm{I}\)
6．05．82T
530.625

L55．6てT
\(689^{\circ} 62 \mathrm{~T}\)
\(\frac{\tilde{K}_{4}^{2}}{2}\)

\(\circ\)
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{\circ}\)
\(\circ\)
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{\circ}\)

8

80
\(00 \tau\)
－

0 0ะ
OもT
095
087

200
\(0 Z z\)
Figure A．34．\({ }^{13} \mathrm{C}\) NMR of 3－（4－acetylphenyl）－4，5－diphenylfuran－2（5 H ）－one



Figure A.36. \({ }^{13} \mathrm{C}\) NMR of 3-methyl-4,5-diphenylfuran-2(5H)-one

ND-M2C?7天2Kp1
3 mRAd.LK 2007


Figure A.37. \({ }^{1}\) H NMR of 4-methyl-3,5-diphenylfuran-2(5H)-one


Figure A.38. \({ }^{13} \mathrm{C}\) NMR of 4-methyl-3,5-diphenylfuran-2(5H)-one

\footnotetext{
ND-r2c77KP2
ND-22C7?KP2
3 ARRLIK 2007


Ru..se Seçuence: Carhon (szmuL)
Data collected on: Dec 3 200?
Thap. \(25.0 \mathrm{c} ; 298.2 \mathrm{x}\)

Rablax. delay 2.000 sec
एuIse 45.0 ekegrems
Aocq. हiane 1.300 sec
Width 24509.9 ks
Nidthe 24509.9 ks
512 xepetitions

contincuously on
WALEZ-2. 6 moclulat.
DAra pRocsssxne
Line broaciening 0.5 Hz
प्रत्र sixe 55536 .
rotaz time 0 mina 24 sme
}
C2832土
19 सKIM 2007
Saxple Name:
Saxple kime:
cag3PII-192Kina 00
Ambive dixectory.
Sample directoxy:
Puise sequence: proton (s2pux) Solvent: cacis coliseted on: oot 19 200? Wemp. 26.0cf 299.2 K
Oparat:or: walkup1
पwans-400 "גma400
Relax. dexay 1.000 sec punse 45.0 degreas
Act tillo 2.049 sect Acr- trin \(2.04 \%\)
Madth 6410.3 Kz 8 xepetibions 8 xepetitions
Osgerve Hi, 399.3229871 KRzx OAMA PROCESSTKG
ม. ine bxoadening 0.2 fiz
स2 size 65536
Total time 0 man 24 sec

Figure A.39. \({ }^{1} \mathrm{H}\) NMR of 4-(4-acetylphenyl)-3-butyl-5-phenylfuran-2(5H)-one

(28८'घ!


\[
\begin{aligned}
& 669^{\circ} 9 \mathrm{~L} \\
& 6 \pm . \mathrm{CO} \\
& 6 \varepsilon \varepsilon^{\circ} \mathrm{LL}
\end{aligned}
\]
\[
\begin{gathered}
999 \cdot 827 \\
6 \% 6 \cdot 874
\end{gathered}
\]
6Z5＇8 \({ }^{\circ}\)
T98． \(627 . .\).

\(\begin{aligned} & \text { C2838I2 } \\ & \text { C2838I2 } \\ & 29 \text { EKKM } 2\end{aligned}\)
\(\begin{aligned} & \text { C2838x：} \\ & 19 \text { kKrm 2007 } \\ & \text { Sample vame：}\end{aligned}\)
Sample eis rectoxy：
Bicuile：Carbon
\(\begin{aligned} & \text { Pulse Sequence：Carbon（s2mun）} \\ & \text { Solvent：ccled．3 } \\ & \text { pata colrected on cot } 192007\end{aligned}\)
Data colinected on：oot 292007
\(\begin{aligned} & \text { Texpe．} 26.0 \mathrm{C}: 299.2 \mathrm{~K} \\ & \text { Operatox：walkugl }\end{aligned}\)
\(\begin{aligned} & \text { Operatox：＊alkug } \\ & \text { vanks－400＂rmactoo＂}\end{aligned}\)
2make delay 2.000 sec
\(\begin{aligned} & \text { hac. tiane } 2.300 \mathrm{sec} \\ & \text { Wideh } 24509.8 \mathrm{az}\end{aligned}\)
\(\begin{aligned} & \text { Width } 24509.8 \text { az } \\ & 5.2 \text { remetitions }\end{aligned}\)
\[
\begin{aligned}
& \begin{array}{l}
\text { contimuously on } \\
\text { WAL FR-16 mochalated }
\end{array}
\end{aligned}
\]
\(\begin{aligned} & \text { सx size } 65536 \text {. } \\ & \text { Totai tima } 0 \text { min } 24 \text { sec }\end{aligned}\)
1
をさら「ます
ム* 0 •98T
69\%* んど


Tะ



?u.s se sexumace: zmac:

 Kajam. calay 3.000 sec
aco, tixas 0.550 sem





power 34 ct
on curing acquigition
osf duxiney chany


Gunss apocization 0.028 sec

P1otnama: 8980c...01...210t01.
plotnamas: zacc...01...20tot


P1otnams: B8sc...01...310t01
Figure A.40b. HSQC of 4-(4-acetylphenyl)-3-butyl-5-phenylfuran-2(5 H)-one



Sample Name:
NuRCAN-C283pII-NOE
Data Collected on:
Data Collected on:
nmm400-vnmzston
ihomeiwalkupi/vnuncsysidata
Sample dijnectoxy:
(TURCAN-C283PI1-NOE 03xpr2008
FidFile: NOESY2D...06
Pul.se secruance: NOESY20
Data collectec on: Apx 32008

\section*{}
Relax. delay 1.000 sec
Pul.ser 90.0 dagreses
Acq. time 2.556 sec
Width 6610.3 Hz
128 zepetitions
OBSERYE BI, 399.5219865 k ki\%

YTY size 32768
Total time 10 ainin
Figure A.42. NOE of 4-(4-acetylphenyl)-3-butyl-5-phenylfuran-2(5H)-one Part II
NURCAR-cas3n IS.-NOR
Selactive band contor: 7.29 (ppmy; wid
expz NOEsY1D
DECOHPLAR C13
\(\begin{array}{lrl}\text { tof } & 399.5 & \text { grait } \\ \text { tpwr } & 61 & \text { spin } \\ \text { pw } & 9.100 & \text { pw90 }\end{array}\)

\(\begin{array}{lrl}\text { sweeppers } & 0.500 & \text { sspuia } \\ \text { swa } & \text { in } & \text { n }\end{array}\)
\(\begin{array}{lrrr}\text { sweeppre } 1500.000 & \text { in } & \text { n } \\ \text { 3weepsinp sechi } 00 & \text { dp } & y \\ \text { ppyger } & \text { hs } & \text { nn }\end{array}\)
scishapeA nuRCAN-C~ gROCsSSme 283pII-NOE NOESYID~ In
_008 not used
DISPLAY
\begin{tabular}{lrl} 
selpwta & 0 & sp \\
& 159286.5 & -805.6 \\
\hline \(901 p w A\) & 6409.9
\end{tabular}
\(\begin{array}{lrlr}\text { selpwA } & 159286.5 & \mathrm{wP} & 6809.9 \\ \text { gelvia } & 742 & \text { ws } & 48164\end{array}\)
gta \(0.001000=0 \quad 0\)
265
24.19


\(100.000^{210}\)
cde ph
\(\begin{array}{lrr}\text { a6.1pwzR } & 0 & \text { x£l } \\ \text { selpws } & 259286.5 & x f p\end{array}\)
\(\begin{array}{ll}\text { gzivis } & \text { i112 } 2 \text { th } \\ \text { gti } & 0.001000 \text { ins }\end{array}\)
ppm
Figure A.43. NOE of 4-(4-acetylphenyl)-3-butyl-5-phenylfuran-2(5H)-one Part III

Saxple Nama:
wurcan - C283
Data Collected on:
ner. \(400-\mathrm{vnmx} 800\)
Axchive dixactoxy:
Thomefvalkupl/vnmesys/data
saxple disectory:
wurcan-c2832土1-NO \(\quad\) 2.3Apr2008
ExCrias: NOEŠ20..09
Pulse Sequance: NORSY2D
Solvent: odcl3
Data coll.ectead
Data colleected on: A0x 32008
 Relax. delay 2.000 sec
pulse 90.0 dagrees
Acq. t.ime 2.556 sec
Width 64.10 .3 kz
228 rapetitions
OBSERVE R1, 399.3219065 kR 2
DALA RROCESSZNG

Tots thme 9 min 40 sec




C293812
C2032I2
19 KKIM 2007
Sample Name:
Sample Name:
c283p12-19EKIn2007
Axchive dixectory:

Axchive dixertory
Sample dinectoxy:
Fiensila: Caxhon
Tuise Seccuence: (ravory (skpai) Sol.vent: ocicl.3

Data collected on: 0ot 192007
Temp. \(26.0 \mathrm{C}, 293.2 \mathrm{~K}\)
cherat or: walkup1
vaxps 400 ?
kelax. delay 1.000 sec
इu2 ง 45.0 ciegrues
W..dth 24509.8 kz

512 xemetitions


इewor 39 dB
wahr2z-16 modulinted
Dama PROCESSXNG
gra size 65536 .
Fotal tine 0 min 24 sect
\(82 \& \cdot 957\)
6ぁむ. 2 L
\$88.927

q६I

等等
等家




Data cobiectad on：wax \＆200


zetax．Culay 2．000 sec





Powary 3A de
on curing accu






Plotnams：suxgc．．．01．．．30t01
Figure A．46a．HMQC of 3－（4－acetylphenyl）－4－butyl－5－phenylfuran－2（5H）－one



\%1 (mym)
Figure A.46b. HSQC of 3-(4-acetylphenyl)-4-butyl-5-phenylfuran-2(5H)-one



\section*{}
Oと＇
8sz＇ん．
受
气
\(\stackrel{i}{i}\)
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\stackrel{\infty}{\stackrel{\infty}{*}}\)


\(-\)

\(\pm\)
\(=\)
ROESY,
cosy,
ocosy
14a


Automation directory: /home/wa1kup1/vnmrsys/data/ali/auto_2007.0
File : /home/walkup1/vnmrsys/data/NURCAN-CD131-13-20B_11Jul2007/ File : /home/walkup1/vnmrsys/data/NURCAN-CD
Sample id: NURCAN-CD131-13-20B_02
Sample : NURCAN-CD131-13-20B

Pulse Sequence: HMQC
Solvent: CDC13 Solvent:
Ambient temperature Operator: walkup
File: Hmqc_01 File: Hmqc_01
VNMRS-400 "nmr400" Relax. delay 1.000 sec Relax. delay 1.000 sec
Acq. time 0.128 sec
Width 3720.2 Hz

2D Width 17079.4 Hz
\(2 \times 128\) increments MHz
\(\begin{array}{lc}\text { OBSERVE H1, } 399.5219886 \mathrm{MHz} \\ \text { DECOUPLE C13, } & 100.4673944 \mathrm{MHz}\end{array}\)
Power 34 dB
off during delay
off during modulate
DATA PROCESSING
Gauss apodization 0.059 sec
F1 DATA PROCESSING
FT size \(2048 \times 2048\)
Total time \(20 \mathrm{~min}, 28 \mathrm{sec}\)
F1 (ppm)
Figure A.48a. HMQC of 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one
OAL1318 in COC13 NOE
date: 12.0 Ct . 2007
Archive directory: /export/home/vnmr3/Jnmrsys/data
Sample directery: OAL131B_120ct2007 Fi1e: NOESY10_6_85p
Pulse Sequence: NOESY10
Pulse Sequence:
Solvent: coct
Temp. 25.0 C
INOVA- 600 "eden" 298.1 K

Pu1se 90.0 degree
Mixing .880 sec
Acg time 1.892 sec


FT size 32768 .
Total time \(4 \mathrm{~min}, 38 \mathrm{sec}\)
Total time \(4 \mathrm{~min}, 38 \mathrm{sec}\)

Figure A.49. NOE of 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one Part I
Archive directory: /export/home/vnmr3/vnmrsys/data
Archive directory: 0
Simple
File: NOESY10_6_11p
Pulse Sequence: NOESY1D
Solvent: \(20 \mathrm{C}, 298.1 \mathrm{~K}\)
Temp. 25.0 C
INOVA-600 "eden"
Relax. delay 1.000 sec
Mixing 0.800 sec
Acq. time 1.892 sec
64 repetitions
OBSERVE H1, 599.8311656 MH
DATA PROCESSING
Line broadening 0.7 Hz
FT size 32768
Total time \(5 \mathrm{~min}, 18 \mathrm{sec}\)

Figure A.50. NOE of 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one Part II
OAL 131B in CDC13 NOE
date: 12.0 ct .2007
Archive directory: /export/home/vnmr3/vnmrsys/data
Sample directory: OAL131B_120ct2007
File: NOESY1D_3_77p
Pulse Sequence: NOESYID
Solvent: CDC13
sec
Relax. delay
Pulse 90.0 degrees
Mixing 0.800 sec
sec
Width 5998.4 Hz
64 repetitions
OBSERVE H1, 599.8311656 MHZ
Line broadening 0.7 Hz
Trize 32768
Total time \(5 \mathrm{~min}, 32 \mathrm{sec}\)

817110
0 ppm
Figure A.51. NOE of 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one Part III
OAL. 318 in CDC13 NOE
date: 12.0 Ct .2007
Archive directory: /export/home/vnmr3/vnmrsys/data
Sample directory: OALI31B_120ct2007
File: NOESY10_2_53p
File: NOESY Sequence: NOESY1D
Solvent: CDC13
Temp. \(25 \cdot 0 \mathrm{C} / 298.1 \mathrm{~K}\)
INOVA-600 "eden"
Relax, delay 1.000 sec
Pulse
Mixing 0.800 sec
Acq. time 1.892 sec
64 repetitions
OBSERVE H1, 599.8311656 MHz
OATA PROCESSING
Line broadening 0.7 Hz
FT size 32768
Total time \(4 \mathrm{~min}, 34 \mathrm{sec}\)

Figure A.52. NOE of 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one Part IV
AL 131B in CDC 13 NOE
date: 12.0 ct .2007
Archive directory: /export/home/unmr3/unmrsys/data
Sample directory: OAL \(131 \mathrm{~B} \_120 \mathrm{ct} 2007\)
Pulse Sequence: NOESYID
Solvent: CDC 13
Temp. \(25.0 \underset{\mathrm{C}}{\mathrm{C}} 298.1 \mathrm{~K}\)
INOVA-600 "eden"
Relax. delay 1.000 sec
Pulse go. 0 degrees
Mixing 0.800 sec
Act. time 1.892 sec
Width 5998.4 Hz
64 repetitions
OBSERVE HI, 599.8311656 MHz

FT size \(32768 \mathrm{~min}, 34 \mathrm{sec}\)
\(\rightarrow\)
\}

Figure A.53. NOE of 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one Part V


Figure A.54. \({ }^{1} \mathrm{H}\) NMR of 4-butyl-3-(4-methoxyphenyl)-5-phenylfuran-2(5 H )-one
\(=\)
NuRCAK
12 whank 2007

Samphe Name：
CDI32－10－13\％
Archive directox
mxchive timactoxy．
Saman atimectory：
\％idixixk：Caxbon
pulse Secruman：Caxbon（s2oul） Solvant：Chel3
Data collectere on：wul \(22200 \%\)




\％ulse 45.0 ciegrees
\(9 \% L 6 S\)
\(L \tau \% \cdot 89 \%\)
50ع． \(8 \angle \%\) \(\qquad\)
\[
\begin{aligned}
& \text { asz ock }
\end{aligned}
\]

860 多に 69\％．ダ5
○なとともと－．．．．
50．9Z：
\＆． 6.92
\(850^{\circ} \mathrm{L}\)
そとを・5

と．．．．．．．．．．．．．．．．．．

To9•8


Figure A．55．\({ }^{13} \mathrm{C}\) NMR of 4－butyl－3－（4－methoxyphenyl）－5－phenylfuran－2（5H）－one
NURCAN
NURCAN
12 TEMMUZ 2007 , DEPT, COSY, GCOSY, NOESY, ROESY, HMQC,
\(13 \mathrm{C}, \mathrm{DEE}\)
GHMQC

Figure A.55a. gHMQC of 4-butyl-3-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one

\[
\stackrel{\mathscr{N}}{\mathscr{n}}
\]
\(\rangle\)

Figure A.56. \({ }^{1} \mathrm{H}\) NMR of 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one

(
Figure A.57. \({ }^{13} \mathrm{C}\) NMR of 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one


Figure A.58. NOE of 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one Part I

Figure A.59. NOE of 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one Part II


Figure A.60. NOE of 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one Part III

(a)





NyRCAK
（185天2－2

\(|\)\begin{tabular}{c}
\(\mid\) \\
\hline
\end{tabular}

29s \(\qquad\)
\[
\therefore
\]


\(*\)
\(\cdots\)
（5）
Solvent：cdic13
Datia conkectwe on：
Temp．27．0 c 1300






DAKA PROCESSLNG

स゙ size 65536
rotal tume 0 man
．

4．6？\(\quad 16.00 \quad 5\)
Figure A．63．\({ }^{1} \mathrm{H}\) NMR of 4－（4－methoxyphenyl）－3，5－diphenylfuran－2（5H）－one
\(=\)
\(5899^{\circ} 9 \ldots\)
\(900^{\circ} \mathrm{L} . \mathrm{c.c}\) \(\qquad\)
\(8 y^{\circ} 88\)


5\% 88

95 を多

OAL185B in CDC13 NOE 1 D
date: 12.0 ct .2007
Archive directory: /export/home/vnmr3/vnmrsys/data
Sample directory: 0AL185B_120ct2007
Sample directory: oAL185B_120ct2007
File: NOESY1D_7_02p
Pulse Sequence: NOESY10
Solvent: cdc13
Temp. 25.0 C 298.1 K
INOVA-600 "eden"
Sample directory: oAL185B_120ct2007
File: NOESY1D_7_02p
Pulse Sequence: NOESY10
Solvent: cdc13
Temp. 25.0 C 298.1 K
INOVA-600 "eden"
1
\[
\begin{aligned}
& \text { Relax. delay } 1.000 \mathrm{sec} \\
& \text { Pulse } 90.0 \text { degrees } \\
& \text { Mixing } 0.800 \text { sec } \\
& \text { ACq. time } 1.892 \mathrm{sec} \\
& \text { Widih } 5998.4 \mathrm{~Hz} \\
& 64 \text { repetitions } \\
& \text { OBSERVE H1, } 599.8312066 \mathrm{MHz} \\
& \text { DATA PROCESSING } \\
& \text { Line broadening } 0.5 \mathrm{~Hz} \\
& \text { FT size } 32768 \\
& \text { Total time } 4 \mathrm{~min}, 32 \mathrm{sec}
\end{aligned}
\]
Conturn

Figure A.65. NOE of 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one Part I
OAL 1858 in CDC13 NOE 10
date: 12.0 Ct .2007
Sample directory:
File: NOESY10_6_63p
Pulse Sequence: NOESYID
Solvent: cdcl3
1.000 se
Mulse 90.000 sec
Mixing 0.800
Relax.
Pulse 90
Mixing
Acq. time
Width 58
64 repetitions
OBERVE H1, 59.8312066 MHz
OATA PROCESSING
DATA PROCESSING
Line broadening 0.5 Hz
FT size 32768
FT size 32768
Total time \(4 \mathrm{~min}, 32 \mathrm{sec}\)


Figure A.66. NOE of 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one Part II
OAL 185 B in CDC13 NOE 10
Archive directory: /export/home/vnmr3/vnmrsys/data
Sample directory: OAL_185B_120ct2007
Pulse Sequence: NOESYID
Solvent: cdcla
Temp. \(25.0 \mathrm{C} / 298.1 \mathrm{~K}\)
00000 sec
Pulse 90.0 degrees
Mixing 0.800 sec
ACq. time 1.892 sec
64 repetitions
OBSERVE H1, 599.8312066 MHz
DATA PROCESSING
Line broadening size 32768
FT

Figure A.67. NOE of 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one Part III
OAL 185 B in COC13 NOE 10
date: 12.0 Ct .2007
Archive directory: /export/home/vnmr3/vnmrsys/data
Sample directory: 0
F11e: NOESY10_3_66p
Pulse Sequence: NOESY1D
Relax. delay 1.000 sec
Pulse go. 0 degrees
Pulse 90.0 degrec
Mixing 0.800 sec
Aca, time 1.892 sec
64 repetitions
OBSERVE H1, 599.8312066 MHz
DATA PROCESSING
DATA PROCESSING
Line broadening 0.5 Hz
FT size 32768
Total time \(5 \mathrm{~min}, 37 \mathrm{sec}\)

Figure A.68. NOE of 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one Part IV

Figure A.69. \({ }^{1} \mathrm{H}\) NMR of 3-(4-methoxyphenyl)-4,5-diphenylfuran-2(5 H )-one
c13
c13
exp2

date
solven
file /
vnmrsys
2007.04
\(\quad\) ACQu
sw
at
np
fb
bs
d1
nt
ct
\(\quad\) TRA
tn
sfrq
tof
tpwr
pw
dn
dof
Figure A.70. \({ }^{13} \mathrm{C}\) NMR of 3-(4-methoxyphenyl)-4,5-diphenylfuran-2(5 H )-one

Figure A.71. \({ }^{1} \mathrm{H}\) NMR of 3-butyl-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one
09e'ss

Figure A.72. \({ }^{13}\) C NMR of 3-butyl-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one
NURCAN
NURCAN
T194I1B2
T1941182070807

\({ }_{07}^{\text {OAL194A }}\) in CDC13, date: 08.0 Ct .20
Archive directory: /export/home/vnmr3/vnmrsys/data
Sample directory: 0AL194A_080ct2007
Samp 1e directo
File:
NOESY10_2_3p
Pulse Sequence: NOESYID
Solvent: COC13
Temp. \(25.0 \mathrm{C} / 298.1 \mathrm{~K}\)
Relax. de lay 1.000 sec
Pulse 90.0 degrees
Relax.
Pulse 90.0 degrees
Mixing 0.800 sec
time 1.892 sec Width 7198.1 Hz
128 repetitions
OBSERVE H1, 599.8311656 MHz
DATA PROCESSING
Line broadening 0.5 Hz
FT size 131072

Figure A.73. NOE of 3-butyl-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one Part I
OAL194A in COC13, date: 08.0 ct. 20

Archive directory: lexport/home/vnmr3
Sample directory: 0AL194A_080ct2007
F11e: NOESY10_3_81p




 Arohive cixectory:

耳uise Sazuenoes: ps




nelat 45.0 degreas
Cox
oxamettrions

2xyssmoxa wixc
Tat size 65536

(5)
\(3 \stackrel{y}{6}\)
J.
m
\({ }^{m}\)

Figure A.75. \({ }^{1}\) H NMR of 4-butyl-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one


syser …
\(09 \varepsilon\)

\[
\begin{array}{r}
\geqslant \uparrow L \cdot 9 \\
980 \%
\end{array}
\]
865.55 \(\qquad\)
\[
9 \mathrm{Tx} \operatorname{sez}
\]

\(\angle Z E \cdot L S \Sigma\) \(\qquad\)
565．99\％
\(16 \cdot \% / 7\)
Figure A．76．\({ }^{13}\) C NMR of 4－butyl－3－（2－methoxyphenyl）－5－phenylfuran－2（5H）－one
\[
\begin{aligned}
& \begin{array}{l}
\text { NuRCA } \\
\text { Nurcan }
\end{array}
\end{aligned}
\]

> Sample ciswoctoxy:
> Data combectad on: rud 20 200\%
\(\square\)
Kocq. tima 1.300 sec
256 xepotitions
OBskrve C13, 100.4598839 3EL
Dowax 39 c वB
綮A
\(\begin{gathered}\text { buta zaccossxne } \\ \text { june broademinc }\end{gathered}\)
\[
\begin{aligned}
& \text { Total timo } 0 \text { mixa } 24 \text { secs }
\end{aligned}
\]
NURCAN
NURCAN
T1942KT2-200707
Automation directory: /home/walkup1/vnmrsys/data/ali/auto_2007.07.20 File : /home/walkup1/vnmrsys/data/T1942KT2-200707_20Ju12007/Noesy_01 Sample id : T1942KT2-200707_01
Sample : T1942KT2-200707
Pulse Sequence: NOESY
Solvent: odcl3
Terp. \(27.0 \mathrm{C} / 300.1 \mathrm{~K}\)
Operator: walkup1
Operator: walkup1
File: Noesy_01
VNMRS-400 "nmr400"

urda)
Zज
Figure A.76a. NOESY of 4-butyl-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one
OAL194B in COC13, date: 08.0 ct. 20
Archive directory: /export/home/vnmr3/vnmrsys/data
Sample directory: oALIS4B_080ct2007
File: NOESY10 3 83p
File: NOESY1D_3_83p
Pulse Sequence: NOESY1


Figure A.77. NOE of 4-butyl-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one Part I
OAL. 194B in CDC13, date: 08.0 ct .20

File: NOESY10_2_31p
Solvent: CDC 13
Temp \(25.0 \mathrm{C}, 298.1 \mathrm{~K}\)
INOVA-600 "eden"
Relax, delay 1.000 sec
Pulse 90.0 degrees
Mixilng
Rese 90.0 degrees
Pulse
Mixing 0.800 sec
Aca. time 1.892 sec
128 repetitions
OBSERVE H1, 599.8311656 MHz
DATA PROCESSING
Line broadening 0.8 Hz
FT size 131072
FT size 131072
Total time \(8 \mathrm{~min}, 30 \mathrm{sec}\)

至
\(\qquad\)
Figure A.78. NOE of 4-butyl-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one Part II


\(\begin{array}{ll}6 & 5 \\ 5.54 & 4\end{array}\)
s.

Figure A.79. \({ }^{1}\) H NMR of 3,5-diphenyl-4-o-tolylfuran-2(5H)-one
granmak ta onsenve－profile
Saxaple Name：



puise sequences：Caxion（s2pul） Solvent：cdel3
Data coinected on：way 25200 ？


Relax．delay 4.000 sec
Puilsen 45．0 cuagranes ace．tame 2.300 sec
Widith 24509.8 Hz
522 rupetitionas Acg．tame 2.300 gec
Wicth 24509.8 kz
522 xapetationas

OBSERV C1．3， 200.4393839 kस：

power 39 cis
continurosix on
continucusiy on
whmaz－3．6 mocalated
Dax procksgaxG
dine bxoadening 0.5 Kz
sy size 63536
rotal．thmas 0 tain 24 sec
\(669.9 L\)
\(620 . h\)
\(68 \varepsilon^{\circ} h L\)

05サ・6てさ…
4．\(\%\)＇OE：
夕99 0हT
\(470.65 \%\)
\(65 x\)

\section*{をど 9 ZI}


Arohive dixact Arohive dixectoxy：
Samgle dixectoxy：

Fidei．2e：Caxbo Operator：malkup （xas continurosix on

シ
Figure A．80．\({ }^{13} \mathrm{C}\) NMR of 3，5－diphenyl－4－o－tolylfuran－2（5H）－one
\(\begin{array}{lll}26 & \text { Temmuz } 2007 \\ 26 & \text { Temmuz } 2007\end{array}\)
Nurcan
2F197KP-260707

Figure A.80a. HMQC of 3,5-diphenyl-4-o-tolylfuran-2(5H)-one
Nurcean
19 Temal



Figure A.81. \({ }^{1} \mathrm{H}\) NMR of 4,5-diphenyl-3-o-tolylfuran-2(5H)-one
Nurcan

\[
\begin{aligned}
& \text { はE. } 6 \text { \% }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 교 }
\end{aligned}
\]
\％
8
269．94．
夕とを＇にく…
\(808 \cdot 98\) \(\qquad\)


Figure A.82a. HMQC of 4,5-diphenyl-3-o-tolylfuran-2(5H)-one

\section*{APPENDIX B}

\section*{MASS SPECTRUMS OF FURANONES}

Figure B.1. Mass spectrum of 3,4,5-triphenylfuran-2(5H)-one



Figure B.3. Mass spectrum of 3,4-diphenyl-5-p-tolylfuran-2(5H)-one

Figure B.4. Mass spectrum of 5-(4-acetylphenyl)-3,4-diphenylfuran-2(5H)-one



Figure B.7. Mass spectrum of 3,4-diphenyl-5-o-tolylfuran-2(5H)-one

Scan 1205 from c:ls atumwslorg researchlyeldalcd28i1mx-0409071.sms
soo\%
Figure B.9. Mass spectrum of 4,5-diphenyl-3-propylfuran-2(5H)-one
Scan 3090 ( 21.740 min): N110.D
Figure B.10. Mass spectrum of 3,5-diphenyl-4-propylfuran-2(5H)-one
Scan 1814 from c:lwindowsidesktoplinstrumental analysis lablfzo3d1.sms

Figure B.11. Mass spectrum of 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one
Scan 1852 from c:lvindowsidesktoplinstrumental analysis lablfzo3d1.sms
(900\%
Figure B.12. Mass spectrum of 3-(4-acetylphenyl)-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one

Figure B.13. Mass spectrum of 4-(4-acetylphenyl)-3,5-diphenylfuran-2(5H)-one

Figure B.14. Mass spectrum of 3-(4-acetylphenyl)-4,5-diphenylfuran-2(5H)-one

Figure B.15. Mass spectrum of 3-methyl-4,5-diphenylfuran-2(5H)-one
Scan 1403 from c:lsaturnwslorg researchlozgelcd77php 1 01.10.2006.sms
Spect 1
Figure B.16. Mass spectrum of 4-methyl-3,5-diphenylfuran-2(5H)-one
Figure B.17. Mass spectrum of 4-(4-acetylphenyl)-3-butyl-5-phenylfuran-2(5H)-one

Figure B.18. Mass spectrum of 3-(4-acetylphenyl)-4-butyl-5-phenylfuran-2(5H)-one
Scan 1639 fiom c:l... lorg researchlozgelfuranonelod131mh118.11.2006.sms

Figure B.19. Mass spectrum of 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one

Figure B.20. Mass spectrum of 4-butyl-3-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one
उcan \(170 \equiv\) form o: 7 ... Vorg researohlozgelfuranonelcd1392a 1 25.11.2005.sms

Figure B.21. Mass spectrum of 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one


Figure B.22. Mass spectrum of 3-(2-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one


Figure B.23. Mass spectrum of 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one
Scan 1675 from c:\saturnwslorg research\nurcan\f185kpi11.SMS

Figure B.24. Mass spectrum of 3-(4-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one


Figure B.25. Mass spectrum of 3-butyl-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one
Figure B.26. Mass spectrum of 4-butyl-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one
Scan 13364 form c: issaturivusiong reisearohigulsahif197da 1 17.0.4.2007.sms

Figure B.27. Mass spectrum of 3,5-diphenyl-4-o-tolylfuran-2(5H)-one

On
Figure B.28. Mass spectrum of 4,5-diphenyl-3-o-tolylfuran-2(5H)-one

\section*{APPENDIX C}

\section*{FT-IR SPECTRUMS OF FURANONES}


Figure C.1. FT-IR spectrum of 3,4,5-triphenylfuran-2(5H)-one

Figure C.2. FT-IR spectrum of 5-(4-methoxyphenyl)-3,4-diphenylfuran-2(5H)-one


Figure C.3. FT-IR spectrum of 3,4-diphenyl-5-p-tolylfuran-2(5H)-one

Figure C.4. FT-IR spectrum of 5-(4-acetylphenyl)-3,4-diphenylfuran-2(5H)-one


Figure C.5. FT-IR spectrum of 5-(4-(trifluoromethyl)phenyl)-3,4-diphenylfuran-2(5H)-one


Figure C.6. FT-IR spectrum of 3,4-diphenyl-5-m-tolylfuran-2(5H)-one

Figure C.8. FT-IR spectrum of 5-phenyl-3,4-dipropylfuran-2(5H)-one

Figure C.9. FT-IR spectrum of 4,5-diphenyl-3-propylfuran-2(5H)-one

Figure C.12. FT-IR spectrum of 3-(4-acetylphenyl)-4,5-diphenylfuran-2(5H)-one

Figure C.13. FT-IR spectrum of 3-methyl-4,5-diphenylfuran-2(5H)-one

Figure C.14. FT-IR spectrum of 4-methyl-3,5-diphenylfuran-2(5H)-one

Figure C.16. FT-IR spectrum of 3-(4-acetylphenyl)-4-butyl-5-phenylfuran-2(5H)-one

Figure C.18. FT-IR spectrum of 4-butyl-3-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one
97.7
96
94
92
90
90
88
86
84
84
82
80
78
76
74
74
72
70.0.
4000.0


1248.00

Figure C.20. FT-IR spectrum of 3-(2-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one


Figure C.21. FT-IR spectrum of 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one


Figure C.22. FT-IR spectrum of 3-(4-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one

Figure C.23. FT-IR spectrum of 3-butyl-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one


Figure C.25. FT-IR spectrum of 3,5-diphenyl-4-o-tolylfuran-2(5H)-one

\section*{APPENDIX D}

\section*{\({ }^{13} \mathrm{C}\) NMR AND \({ }^{1} \mathrm{H}\) NMR OF SONOGASHIRA PRPRODUCTS}


Figure D.1. \({ }^{1} \mathrm{H}\) NMR spectrum of 1-methoxy-2-(2-phenylethynyl)benzene


-
I) \(\begin{gathered}\hat{\omega} \\ \dot{N}\end{gathered}\)

N
3
7
\(\vdots\)
\(\vdots\)
\(m\)
\(\cdots\) (2)
in

6
6
0

6
m

\(\infty\)
an

NJRCAR-saloph
Sample Name:
Data Collenenteck on:
max400-vamxs 800
Axchive dixectery:
fhema, waikupl, /vamrsysfouts Sample dinectoxy:
NHRCAN-tOAS2_26Max2008


ata conlected on
Temp. 25.0 c 둥 238

Relax. delay 2.000 sta
2ul.se 45.0 degxees
Acq. tima 2.556 sec
Width 6620.3 Hz
8 repetistions
DNEA prockssinc
斯 size 32768
EY size 32768
potan t.jmss 0 main 29 sec
.










Figure D.9. \({ }^{1} \mathrm{H}\) NMR spectrum of 1-methyl-2-(2-phenylethynyl)benzene



LL.E. 86

\(160 \quad 140\)
160
Figure D.10. \({ }^{13} \mathrm{C}\) NMR spectrum of 1-methyl-2-(2-phenylethynyl)benzene

Sample kame:
Norcan-SAhpa
Data Collected on:
nurd 400 -vmara 800
Axchive dixectory:
/homefwaxkuphivnmersys/iat:
Sample divectoxy:

Fidwilat Carkow

Solvant: ctici3
Data colisectect on: Mar 252008120
Werap. \(25.0 \mathrm{c}, 299.2 \mathrm{k}\)
operatox: walxupl
Relak. daday 2.000 sec
2u!.se 45.0 degxees
Acg. tima 2. 285 sace
Widen 25520.2 Hz
512 xepetititons
casema 200

Power 39 di
continnocusix on
wajuzi-16 nochuiated

Live bronckuming
सx sime 65536
Totah time 19 min


NORCAN-SAD SPHPRORI
39
0.54

40
\(m \underset{m}{m}\)
14.24 .328 .30

9

NURCAK－SAI SPRPROBA
Sample Name ： NORCAN－SA13PHMROB．
Data CO1．2ected OA：

Data Conscted od
Axchive directory：
fhomefwalkuplifvmarsys fdat
Sample di rectoxy：


Pul．se Secquance：Cxiden（shpux）
Solvent：cdel．3
Deta collectecd on：Feb 212008
Temp． \(25.0 \mathrm{c} / 239.3 \mathrm{~K}\)
operatox：kaikup1
Relax．delay 2.000 sac
Pui．se 45.0 degrees
Acq．tima 1． 205 sec
wideh 2t5 50.2 Hz
width 25520 ． 52 ne
522 xepetititions
OBSERVE C13，200． \(55903.39 \mathrm{Nsy} \mathrm{\%}\)


Power 39 tak on by
wamaz -16 moctulated
DAHK EROCESSTNG
Linom bxoakexsing
ET \(s i z e 65536\)
ET size 65536
motsi tima 19 min


30 L．0と\％ \(\qquad\)
\(260^{\circ} 092\)

8． 215 eล̀200日
جemp．25．0 c f 238.1 x

.60
1.40

180
120
80

96「8を
59.025

そら乌゙8をฐ

1．＇TE

\(\qquad\)


\section*{APPENDIX E}

\section*{MASS SPECTRUMS OF SONOGASHIRA PRODUCTS}


Figure E.1. GC-MS spectrum of 1-methoxy-2-(2-phenylethynyl)benzene


Figure E.2. Mass spectrum of 1-(4-(hex-1-ynyl)phenyl)ethanone


Figure E.3. GC-MS spectrum of 1-methoxy-4-(2-phenylethynyl)benzene

Figure E.4. GC-MS spectrum of 1-(hex-1-ynyl)-2-methoxybenzene

Figure E.5. GC-MS spectrum of 1-methyl-2-(2-phenylethynyl)benzene
\begin{tabular}{l|l} 
Fixed & Spect 1 \\
Range & BP \(250(3952777=100 \%)\) sa13pht11.sms
\end{tabular}
22.383 min. Soan: 1344 Chan: 1 Ion: 27 us RIC: 13267523

Figure E.6. GC-MS spectrum of 1-(4-(2-(2-methoxyphenyl)ethynyl)phenyl)ethanone```


[^0]:    FT size 65536
    Total time 19 min

