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ABSTRACT 

 
THE SYNTHESIS OF FURANONES VIA RHODIUM-CATALYZED 
CARBONYLATIVE ADDITION REACTIONS OF ARYLBORONIC 

ACIDS TO ALKYNES  
 

     This study reveals that 5-Aryl-2(5H)-furanones can be synthesized by rhodium-

catalyzed reaction of arylboronic acids with internal alkynes under a CO atmosphere. 

In this thesis, relatively mild and simple method for synthesis of 2(5H)-

furanones was developed. Our method was found to be applicable for various 

arylboronic acids and alkynes. 

The methodology of this study is well applicable for ortho-, para- and meta- 

substituted phenylboronic acids. But slightly higher yields were obtained with para- 

substituted phenylboronic acids than ortho- or meta- substituted ones. 

It was found that when an asymmetric alkyne is used under the optimized 

conditions, aroylation occurs more on the electron deficient acetylenic carbon as 

compared with electron rich acetylene when aroylrhodium(I) species undergoes 1,2-

addition to the carbon-carbon triple bond in the reaction. That affects the ratio of 

isomeric yields of furanones which were produced in the reactions of asymmetric 

alkynes with phenylboronic acid.  

2(5H)-Furanones that we synthesized can be used in many areas such as food 

manufacturing, perfume and medicinal industries. 
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ÖZET 

 
ARİLBORONİK ASİTLERİN ALKİNLERE RODYUM KATALİZLİ 
KARBONİLATİF OLARAK EKLENMESİ YOLUYLA FURANON 

SENTEZİ 
 

     Bu çalışma 2-Aril-2(5H)-furanonların arilboronik asitlerin alkinler ile rodyum 

katalizli olarak CO gazı altında sentezlenebileceklerini göstermektedir. 

 Bu tezde 2(5H)-furanon sentezi için nispeten daha ılımlı ve basit bir metod 

geliştirilmiştir. Yöntem, farklı arilboronik asit ve alkin yapıları için uygulanabilirdir. 

Çeşitli orto- meta- ve para- sübstütiye fenilboronik asitler tepkimelerde 

kullanılabilmektedir. Ancak para- sübstütiye fenilboronik asitlerle orto- veya meta- 

sübstütiye boronik asitlere oranla daha yüksek verim elde edilmiştir. 

Reaksiyon optimum koşullarda bir asimetrik alkinle gerçekleştirildiğinde, 

aroyilrodyum(I) kompleksinin alkinin üçlü bağına 1,2-katılması sırasında 

aroyillenmenin daha ziyade elektronca fakir olan asetilenik karbon üzerinde olduğu 

tespit edilmiştir. Bu durum, fenilboronik asitle asimetrik alkinlerin reaksiyonu sonucu 

oluşan furanon izomerlerinin ürün oranlarını etkilemektedir.  

Sentezlenen 2(5H)-Furanonlar, gıda üretimi, parfüm ve ilaç endüstrisi gibi bir 

çok alanda kullanılabilirler. 
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CHAPTER 1 

 

INTRODUCTION 
 

After Sakai et al. (1997) reported the first example of the Rh-catalyzed addition 

reactions of organoborones to enones (Sakai, et al. 1997), Rhodium-catalyzed addition 

reactions to various unsaturated systems have been more popular method for 

construction of C-C bonds.  

Organoboron reagents readily undergo transmetallation to form arylrhodium(I) 

species which have capacity to react with many electrophilic sides (Sakai, et al. 1997, 

Fagnou and Lautens 2003). Organoborons can undergo addition reaction to 

heterobicyclic alkynes (Lautens and Duckendorrf 2003) and cyclic or acyclic α,β-

unsaturated carbonyl compounds (Lin and Lu 2006) in the presence of water and ynones 

(Pearce, et al. 2007) with also palladium catalysts. 

In the literature, there are various methods for Rh-catalyzed reactions of 

organoboronic reagents with unsaturated systems (Duursuma, et al.2003, Boiteau, et al. 

2002, Frost anf Wadsworth 2001, Oguma, et al. 2002, Sébastien, et al. 2006, Shintani, et 

al. 2005, Iyer, et al. 2007). 

2(5H)-furanones which are one of the most stable form of lactones can be 

produced by various catalytic systems (DeShong, et al.1988, Nozaki, et al. 1995, Ohno 

1999, Huang and Zhou 2002, Rossi, et al. 1998, Ma and Gu 2005). 

But in the literature there are only a few examples of carbonylative synthesis of 

furanones. Furanones have an important role in industrial processes which can be used 

in synthesis of (+)- and (-)-eldanolide (Vigneron, et al. 1982), the antileukaemic lignans 

(+)-transburseran (Tomioka et al. 1979), (-)-isostegane (Tomioka, et al. 1979), (+)- and 

(-)-steganacin (Tomioka, et al. 1984), (-)-verrucarinolactone (Tomioka, et al. 1982) and 

chrysanthemic acid analogues (Mann and Thomas 1985), for construction of some 

biologically active compounds (Bjeldanes 1977), for the synthesis of polyesters since 

they possess the ability to undergo ring opening (Alzemi, et al. 2002, Trollasas et al. 

1998), in medicinal industry (Pearce, et al. 2007, Rustullet, et al. 2007), in food 

manufacturing and perfume industry (Blank, et al. 1996, Kuhnt, et al. 1990, Gaudin 

1995). 
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In this thesis we have developed a mild and relatively simple method for Rh-

catalyzed carbonylative synthesis of 2(5H)-furanones by using various alkynes and 

arylboronic acids. 
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CHAPTER 2 

 

TRANSITION METAL CATALYZED REACTIONS OF 

ORGANOBORONS 

 
2.1. Organoborons 

 
Organoborons are chemical compounds having aryl or alkyl functional groups 

on the boron atom. The term organoboron refers to a compound which has at least one 

C-B bond. Trialkoxyboranes are also classified as organoboron, although they do not 

have any C-B bonds. 

Some of the important organoborons are: trialkyl and arylboranes (R3B), 

alkoxydialkylboranes (R2BOR), dialkoxyalkylboranes (RB(OR)2), chlorodialkylboranes 

(R2BCl), dichloro(alkyl)borane (RBCl2), hydroxydialkylborane (R2BOH), 

dihydroxy(alkyl)borane and aryl or alkylboronic acids (RB(OH)2 or ArB(OH)2). 

Boronic acids are used extensively in the synthesis of organic compounds as building 

blocks or intermediates, especially in Suzuki cross-coupling reactions. 

 

2.1.1. Properties of Boron 

  
 Boron, B, atomic weight of 10.811 is the fifth element in the periodic table. It is 

composed of two stable isotopes with mass numbers of 10 and 11. Although widespread 

in nature, it has been estimated to consititute only 0.001% of the earth’s crust. It occurs 

naturally only in combined form, usually as alkali or alkaline earth borates or as boric 

acid. 

 Boron exists in amorphous form and in at least three crystalline forms. Melting 

point of boron is not known accurately but it is considered to be near 2100 oC, and its 

boling point is about 2600 oC. Amorphous boron ranges from yellow to brown in color. 

Crystalline forms of the element are usually shiny, black, and completely opaque. 
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2.2. Transition Metal Catalyzed Addition Reactions of Organoborons 
  

Transition metals have an important role in the sythesis of organic compounds. 

Transition metals can catalyze multistep reactions and this is the one of the most 

significant aspects of them (Oguma, et al. 2000). The interesting thing about transition 

metals is that their valence electrons, or the electrons they use to combine with other 

elements, are present in more than one shell. This is the reason why they often exhibit 

several common oxidation states. 

In the past twenty-five years, using transition metals in the sythesis of organic 

compounds has dramatically increased. 

Transition metal catalyzed conjugate addition of organoborons to the unsaturated 

systems have recently been developed. Cho et al. (1995) reported the Pd(OAc)2 

catalyzed addition reactions of organoboron compounds to enones in the presence of 

NaOAc or SbCl3.  First key step of this reaction is oxidative addition of the C-B bond to 

Pd(0) which results in the formation of arylpalladium species and the second one is the 

formation of antimony enolate derived from the initial coordination of SbCl3 to the 

carbonyl oxygen of organopalladium species. 

In the literature there are many studies about the palladium-catalyzed addition 

reactions of organoborons to unsaturated compounds. In here, some examples of them 

will be given. 

Lautens and Duckendorrf (2003) reported palladium-catalyzed ring-opening 

addition of various arylboronic acids to heterobicyclic alkenes such as aza- and 

oxabicyclic alkenes resulted in the formation of the corresponding products in excellent 

yields. 

In 2006, a study about the palladium/bipyridine catalyzed addition of 

arylboronic acid to cyclic and acyclic α,β-unsaturated carbonyl compounds in aqueous 

media was reported. In this study moderate to excellent yields were obtained even for 

α,β-unsaturated esters (Lin and Lu 2006). 

And recently, Arcadi et al. (2008) demonstrated the higly regioselective 

hydroarylation of readily available ynones with organoboron derivatives. The reaction 

was catalyzed by both Pd(II) and Pd(0) precatalysts, and can be carried out even under 

neutral conditions. 
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2.2.1. Rhodium-Catalyzed Addition Reactions of Organoborons 

 
Rhodium is a transition metal which is also a member of the platinium metal 

group with a symbol Rh and atomic number 45 and was discovered by William Hyde 

Wollaston in 1803. Rhodium’s primary use is an alloying agent which is used to harder 

Pd and Pt. These  alloys can be used for thermocoupling elements, furnace windings, 

bushings for glass fiber production, electrodes for aircraft spark plugs, and laboratory 

crucibles. Rhodium is also used for jewellery, for decoration, and as a catalyst. 

In the past twenty-five years, using transition metals in the synthesis of organic 

compounds has dramatically increased. Recently rhodium catalysts have been given 

much more attention by researchers in the C-C bond forming reactions. Rh-catalyzed 

reactions are milder and more benign, because these reactions can be performed in the 

presence of water or even in water and show promises from environmental perspective. 

 Rhodium shows an interesting and new catalytic properties when catalytic 

cycles were compared with other commonly used metals such as palladium, nickel and 

platinium (Figure 2.1). In its catalytic reactions with organometallics, rhodium plies 

between the two oxidation states: Rh (I) and Rh (III), and it means that transmetallation 

can occur at two point of catalytic cycle. 

 

 
 

Figure 2.1. Possible catalytic cycles with Rh-catalysts 

(Source: Fagnou and Lautens 2003) 

 

Alternatively, the organorhodium species can also be coupled with an 

unsaturated compounds as illustrated in cycle 2 (Figure 2.1) and the outcome of cycle 2 

is a net R,H-addition across the unsaturated unit (Fagnou and Lautens 2003). 

 

CYCLE 
1 

CYCLE 
2 

http://en.wikipedia.org/wiki/William_Hyde_Wollaston
http://en.wikipedia.org/wiki/William_Hyde_Wollaston
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2.2.1.1. Rhodium-Catalyzed Addition Reactions of Organoborons to 

Cyclic and Acyclic Enones 

 
Firstly, in 1997, Sakai et al. (1997) reported that Rh (I) complexes catalyze the 

addition reactions of aryl and alkenyl boronic acids to enones in an aqueous solvent to 

give excellent yield (Figure 2.2). They used various ligands in their reactions and bis-

phosphine ligands having large bite angles were found to give best results (Sakai, et al. 

1997). 

 

R1

O

R2
+   R3B(OH)2

R3: aryl, 1-alkenyl

Rh(acac)(CO)2 / dppb (3 mol%)

aq. solvent / 50 oC / 16 h R1

O

R2

R3

 

Figure 2.2. Rh-catalyzed addition of aryl and alkenyl boronic acids to enones 

(Source: Sakai, et al. 1997) 

 

 Takaya et al. (1998) reported the first enantioselective variant of this 

transformation by changing the solvent, rhodium complex and temperature. Good 

results have also been obtained with the chiral amidomonophosphine ligand (Kuriyama 

and Tomioka 2001).  

 Monodentate phosphoramidites firstly used as chiral ligands in the Rh-catalyzed 

enantioselective conjugate addition of arylboronic acids to some unsaturated systems 

such as unsaturated esters, lactones, enones and nitro alkenes. Reactions resulted in high 

enantioselectivity (Boiteau, et al. 2002).  

Duursma et al. (2003) reported that more efficient catalysts can be obtained by 

combining chiral monodentate phosphoramidite for the Rh-catalyzed conjugate 

additions of boronic acids to three different substances: cyclohexenone, benzylidene 

acetone and 4-methyl-nitrostyrene (Duursuma, et al. 2003). Chiral catalysts based on 

hetero-combinations of ligands are found to be more effective than the homo-

combinations (Figure 2.3). 
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Figure 2.3. Rh complexes with two monodentate ligands using the ligand combination                

approach (Source: Duursuma, et al.2003) 

 

 Another examples of Rh-catalyzed addition reactions of boronic acids to cyclic 

and acylic enones which were resulted in high to excellent enantioselectivity in the 

presence of a chiral [2.2.2] dienes as ligands (Figure 2.4) (Defieber, et al. 2004), or by 

using a coordinated Rh-complex (Figure 2.5) (Chen, et al. 2006), or by using the 

DIPHONANE which is a novel chiral biphosphine ligand (Figure 2.6) (Vandyck, et al. 

2005) were reported. 

 

OMe

R1

R2

1  R1= i-Pr ,R2= allyl
2  R1= Ph ,R2= Bn 
3  R1= Ph ,R2= allyl
4  R1= Ph ,R2= n-Pr
5  R1= Ph ,R2= 3-butenyl

 
 

Figure 2.4. Structures of  chiral [2.2.2] diene ligands 

(Source: Defieber, et al. 2004) 

 

Rh

Cl 2

[RhCl((S,S)-Bn-bod*)]2  
 

Figure 2.5. Chiral Rh-complex  

(Source: Chen, et al. 2006) 
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H

H

Ph2P

PPh2

(2S,5S)-DIPHONANE

 
 

Figure 2.6. Structure of (2S-5S)-DIPHONANE 

(Source: Vandyck, et al. 2005) 

 

Recently, Rh-catalyzed enantioselective and regioselective 1,4-addition 

reactions of arylboronic acids to substituted enones such as biofunctional Michael 

acceptors (Figure 2.7) was reported. Reactivity was high when reaction was performed 

under bacis conditions and in the presence of monodentate phosphoroamidites 

(Mediavilla, et al 2006). 

 
O O O

 
 

Figure 2.7. Structures of biofunctional Michael acceptors 

(Source: Mediavilla, et al 2006) 

 

Trenkle et al. (2006) demonstrated an efficient method for the conjugate addition 

of electron-deficient arylboronic acids to 2-cyclohexen-1-one by using low levels of 

catalyst and boronic acids in an aqueous solution and in the presence of LiOH . 

 
2.2.1.2. Rhodium-Catalyzed Addition Reactions of Organoborons to 

Aldeyhdes 

 
 Sakai et al. (1998) developed a Rh-catalyzed addition reaction of organoboronic 

acids to aldehydes (Figure 2.8). Reaction was found to be spesific for aldehydes. 
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RB(OH)2   +   R'CHO
[Rh(acac)Ln]

DME/H2O or dioxane/H2O
R

R'

OH  
 

Figure 2.8. Rh-catalyzed addition of boronic acids to aldehydes 

(Source: Sakai, et al. 1998) 

 

Excellent catalytic activity was reported in the additon of arylboronic acids to 

aldehydes with cationic rhodium complexes of certain nitrogen-containing ligands 

(Moreau, et al. 2001). High yields were also obtained in the additon of arylboronic acids 

to aldehydes with novel Rh-carbene complexes (Özdemir, et al. 2004) and by a catalyst 

system generated in situ from novel hexadentate imidazolium salts, [Rh(cod)Cl]2 and in 

the presence of a base (Chen, et al. 2005) and by using an anionic rhodium η4-quinonoid 

complex as a multifunctional catalyst (Son, et al. 2005). 

 
2.2.1.3. Rhodium-Catalyzed Addition Reactions of Organoborons to 

Other Unsaturated Carbonyl Substrates 
 

Ketones can be synthesized in high yields by a new method which is defined as 

Rh-catayzed addition  reactions of various of boronic acids to anhydrides (Figure 2.9) 

(Frost anf Wadsworth 2001).  

 

B(OH)2
Me O Me

O O

Me

O

Rh catalyst, solvent, temperature
R R  

 
Figure 2.9. Rh-catalyzed acylation of arylboronic acids with anhydrides 

(Source: Frost anf Wadsworth 2001) 

 

After they Oguma et al. (2002) reported a similar reaction with Frost and 

Wadswoth’s study in 2002. The used tetraphenylborates instead of arylboronic acids 

and added ligands to the reaction medium such as dppf and dppb. Norbornene 

compound  was also used in the reaction medium as a promoter (Figure 2.10) (Oguma, 

et al. 2002). 
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BNa
O

O O

O

[Rh(cod)Cl]2/dppp
toluene, 100 oC, 2h4

(3 equiv.)

(3 equiv.)

+

60%

68%

O

Ph  
 

Figure 2.10. Rh-catalyzed acylation of arylboronic acids with anhydrides in the 

presence of norbornene (Source: Oguma, et al. 2002) 

 

First example of catalytic asymmetric synthesis of  trifluoromethyl substituted 

tertiary alcohols was developed in high isolated yields (up to 96%) with good 

enantioselectivities (up to 83%) by Rh/phosphoramidite catalyzed addition of 

arylboronic acids to trifluoromethyl ketones (Sébastien, et al. 2006). 

Shintani et al. (2005) developed a novel chiral phosphine-olefin ligands which 

act as bidentate ligands with some transition metals and were found to be effective in 

the Rh-catalyzed 1,4-addition of arylboronic acids to maleimides. Another study was 

performed by using various electron-rich and electron-poor boronic acids. These 

reactions were also performed in microwave, which resulted in shorter reaction times 

and improved efficiencies (Figure 2.11) (Iyer, et al. 2007). 

 

H
N

R

B(OH)2
OO

+
[Rh(cod)Cl]2

KOH, dioxane/H2O

H
N

O O

R  
 

Figure 2.11. Rh-catalyzed addition of arylboronic acids to maleimides 

(Source: Iyer, et al. 2007) 
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Toullec et.al. (2006) developed the 1,2-addition reactions of arylboronic acids 

with isatin substrates (Figure 2.12) in the presence of a Rh(I) precursor and 2 equiv of 

PPh3. An enantioselective version of this reaction was also reported (Toullec, et al. 

2006).  

 

N
H

O

O

R
[Rh(acac)(C2H4)2] 3 mol%
P(OPh)3 7 mol%
2 equiv. of  R2B(OH)2

acetone, reflux, 4h
N
H

OH

O

R R2

 
 

Figure 2.12. Rh-catalyzed addition of arylboronic acids to isatin 

(Source: Toullec, et al. 2006) 

 

Aryl- and alkenylboronic acids can also be used in the addition reaction to 

isocyanates (Figure 2.13) which resulted in the formation of secondary amines under 

mild reaction conditions (Miura, et al. 2007). 

 

N C OPh

+

PhB(OH)2 1.5/3.0 equiv.

1.0 equiv.
2.5 mol%
[Rh(cod)OH]2

THF, rt, 12h

Ph

H
N Ph

O
49%/82%

 
 

Figure 2.13. Rh-catalyzed addition of arylboronic acids to isocyanates  

(Source:  Miura, et al. 2007) 

 

Recently, asymmetric addition of boronic acids to α,β-Unsaturated 2-Pyridyl 

Sulfones (Mauleon, et al. 2007), and unsaturated esters in the presence of Rh-diene 

complexes as catalysts (Paquin, et al. 2005), arylmethylene cyanoacetates in the 

presence of Rh/chiral diene (Sorgel, et al. 2007) and substituted cinnamaldehydes 

(Paquin, et al. 2005) were also reported. Additions of arylboronic acids to diketones and 

ketoesters were also performed (Figure 2.14) (Ganci and Chilshom 2007). 
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B(OH)2

R1

R2

O

O

3 mol%  Rh(acac)(CO)2/ 6 mol PPh(Cy)2 (diketones)
or 5 mol%  Rh(acac)(CO)2/ 5 mol PPh(Cy)2 (ketoesters)

DME/H2O
80 oC

4 equiv.

+

R1

OH
R2

O

 

Figure 2.14. Rh-catalyzed addition of arylboronic acids to 1,2-diketones and substituted 

α-ketoesters (Source: Ganci and Chilshom 2007) 

  

C-glycoside has been synthesized by a method which is based on cationic Rh(I)-

catalyzed 1,4-addition of arylboronic acids to enones derived from glycals. Reaction 

was found to be depended on the Rh-catalyst’s nature and to be stereoselective 

(Ramnauth, et al. 2001). 

Reactions of arylboronic acids with alkynones in the presence of Rh(I) catalyst 

results in the arylative cyclization of alkynones which produces a four- and five- 

membered-ring cyclic alcohols equipped with a tetrasubstituted exocyclic olefin (Figure 

2.1). The presence of the carbonyl group as the secondary acceptor functionality greatly 

contributes to the high reactivity (Miura, et al. 2007). 

 

Ph

Me

O

O

O

O

O

Me

Me

PhB(OH)2

5 equiv.
1.5 equiv.

+

2.5% mol [Rh(OH)(cod)]2

dioxane/H2O
(100/1)
rt, 5h O

OMe

O

O

Me

Ph

OH

Me
Ph

78 %
82%

 
 

Figure 2.15. Rh-catalyzed arylative cyclization of alkynones induced by addition of 

boronic acids (Source: Miura, et al. 2007) 

 

In another study, a new Rh(I)-catalyzed acyl 1,3-migration reaction of acetylenic 

β–ketoesters with arylboronic acids was developed (Miura, et al. 2005). In this reactions 

an intermediate organorhodium(I) species undergoes intramolecular nucleophilic 

addition to a ketone carbonyl group in 4-exo following cyclobutane cleavage through a 

retro-aldol reaction (Figure 2.16). 
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Figure 2.16. Rh-catalyzed 1,3-migration reaction of acetylenic β–ketoesters with 

arylboronic acids (Source: Miura, et al. 2005) 

 
2.2.1.4. Rhodium-Catalyzed Addition of Organoborons to Alkenes, 

Alkynes and Their Derivatives 

 
 

Norbornene can undergo a Rh-catalyzed multistep arylation reactions with 

arylboronic acids which is called as “merry-go-round multiple alkylation” (Figure 2.17). 

This sequence results in the formation of a unique class of sterically encumbered 

aromatic molecules (Oguma, et al. 2000). 

 

B(OH)2

+
[Rh(cod)Cl]2 / dppp

CsF/toluene
R: 2-exo-norbornyl

R

R

R

RR

R

RR

R

+

 
 

Figure 2.17. Rh-catalyzed multiple alkylation on aromatic ring 

(Source: Oguma, et al. 2000) 

 

Lautens et al. (2001) demonstrated the Rh-catalyzed addition of arylboronic 

acids to vinyl heteroaromatic compounds (Figure 2.18). 
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Ar'
[Rh(cod)Cl]2 (2 mol&) / TPPDS (8 mol%)

ArB(OH)2 / Na2CO3 / SDS / H2O / 80 oC
Ar'

Ar

 
 

Figure 2.18. Rh-catalyzed addition of arylboronic acids to olefins 

(Source: Lautens, et al. 2001) 

 

Recently, Rh-catalyzed addition of various organoboronic acids to the 

fluoroalkylated electron-deficient olefins in the presence of (S)-BINAP in toluene/water 

solvent system resulted in the formation of corresponding addition products with high 

yields and enantioselectivity (Figure 2.19) (Konno, et al. 2008). 

 

R2 R1

[Rh(C8H12)2]BF4/S-BINAP
RB(OH)2 (1.2 equiv)

toluene:H2O (4:1) / reflux/ 3 h R R1

R2

 
 

Figure 2.19. Rh-catalyzed addition of boronic acids to the fluoroalkylated electron-

deficient olefins (Source: Konno, et al. 2008) 

 
Arylboronic acids also undergo addition reaction with alkynes. Hayashi and his 

co-workers demonstrated the Rh-catalyzed addition reaction of arylboronic acids and 

arylboroxanes which produces tri-substituted alkenes (Figure 2.20). This study also 

reported that the reaction showed 1,4-shift of Rh from 2-aryl-1-alkenylrhodium to 2-

alkenylarylrhodium intermediate in the proposed mechanism of the reaction (Figure 

2.21) (Hayashi, et al. 2001). 

 
R2

R1

+
ArB(OH)2

or
(ArBO)3

Rh(acac)(C2H4)2/L (3 mol%)

dioxane:H2O (10:1)
100oC, 3 h

Ar H

R2R1

 
 

Figure 2.20. Rh-catalyzed addition reactions of arylboronic acids or arylboroxanes to 

alkynes (Source: Hayashi, et al. 2001) 
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Figure 2.21. Proposed mechanism for the Rh-catalyzed addition reactions of arylboronic 

acids or arylboroxanes to alkynes (Source: Hayashi, et al. 2001) 

 
A variant of this study was reported by Genin et al. in 2004. They studied on 

recycling of Rh/m-TPPTC catalyst and reactions were performed in toluene. Reactions 

with various boronic acids were resulted in regioselective formation of the 

corresponding functionalized alkenyl derivatives with high yields. 

 Addition reactions of arylboronic acids to alkynyl heteroatomic compounds in 

the presence of [Rh(cod)Cl]2 and a water-soluble pyridine-substituted ligand were found 

to give tri-substituted alkenes with high regioselectivity (Figure 2.22) (Lautens and 

Yoshida 2002). 

 

N

R

+         ArB(OH)2

[Rh(cod)Cl]2  2 mol%
ligand %

SDS, Na2CO3, H2O
80 oC, 1-3 h N

R

Ar

 
 

Figure 2.22. Rh-catalyzed addition reactions of arylboronic acids to  alkynes alkynyl 

heteroatomic compounds in the presence of water-soluble pyridine-

substituted ligand (Source: Lautens and Yoshida 2002) 

 

Shintani et al. (2005) reported an arylative cyclization of alkyne-tethered 

electron-deficient olefins with high chemoselectivity and enantioselectivity by using a 

chiral diene ligands (Figure 2.23). Reactions were performed in the presence of Rh-

diene catalyst instead of Rh-biphosphine catalyst in order to obtain more efficient 

results (Lautens and Yoshida 2002). 
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R

ArB(OH)2

3.5 equiv.
+

R

Ar

EWG EWG

n
n

EWG

n [Rh]

R

Ar

[RhCl(C2H4)2]2  6 mol% Rh
(S,S)-Bn-bod 6.5 mol%

KOH (0.3 equiv.)
dioxane/H2O (10/1)
60 oC, 4 h

R

Ar

[Rh]

n

EWG

[Rh]-Ar

H2O

[Rh]-OH

*
high yield
90-99% ee

 
 

Figure 2.23. Rh-catalyzed addition of arylboronic acids to the alkyne-tethered electron-

deficient olefins (Source: Lautens and Yoshida 2002) 

 

2.2.1.5. Rhodium-Catalyzed Addition of Organoborons to Other 

Unsaturated Systems 

 

Rh-catalyzed asymmetric 1,4-addition of arylboroxines to 1-

alkenylphosphonates produced 2-arylakylphosphonates in high yields with high 

enantioselectivity in the presence of new catalytic system having a chiral phosphine-

rhodium (Hayashi, et al. 1999). 

Hayashi et al. (2000) demonstrated the Rh-catalyzed asymmetric conjugate 

addition of organoboronic acids to nitroalkenes (Hayashi, et al. 2000). 

A new and practical method for diastereoselective and enantioselective Rh-

catalyzed addition of arylboronic acids to N-tert-butanesulfinyl and N-

diphenylphosphinoyl aldimines have been developed (Weix, et al. 2004). 

Recently, Nambo et al. (2007) reported the rhodium-catalyzed arylation and 

alkenylation of C60 by using organoboron compounds (Figure 2.24). 
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Figure 2.24. Rh-catalyzed addition of arylboronic acids to the C60 

(Source: Nambo, et al. 2007) 
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CHAPTER 3 

 

FURANONES 

 
3.1. Nomenclature of Furanones 

 
5H-furan-2-ones, also 2-furanone, are heterocyclic organic compounds 

classified as lactones.  

A lactone is a cyclic ester. Most stable structures of lactones are 5-membered 

lactones (called gamma-lactone) and 6-membered lactones (called delta-lactone) since 

angle strain in these structures is minimalized. Lactones are named by labelling the 

carbon atoms. First carbon atom after carbonyl-carbon atom is labelled as alpha and 

second is labelled as beta and so forth. Prefixes (beta-, gamma-, delta-) also show the 

ring size. Beta-lactones have 4-membered ring, gamma-lactones have 5-membered ring 

and delta-lactones have 6-membered ring.  

 

3.2. Furanones in Use 

 
Furanones, which can also be classified as butenolides are important building 

blocks for the synthesis of natural products. They have been used in synthesis of (+)- 

and (-)-eldanolide (Vigneron, et al. 1982), the antileukaemic lignans (+)-transburseran 

(Tomioka, et al. 1979), (-)-isostegane (Tomioka, et al. 1979), (+)- and (-)-steganacin 

(Tomioka, et al. 1984), (-)-verrucarinolactone (Tomioka, et al. 1982) and chrysanthemic 

acid analogues (Mann and Thomas 1985). 

Lactones containing both saturated and unsaturated five and larger rings are of 

interest since they are used for construction of some biologically active compounds 

(Bjeldanes 1977). Lactones can also be used for the synthesis of polyesters since they 

possess the ability to undergo ring opening (Alzemi, et al. 2002, Trollasas, et al. 1998). 

Furanone and its derivatives are important compounds for medicinal industry. 

Pearce et al. reported first anti-inflammatory rubrolide (Figure 3.1) which is new and 

exists as a mixture of E- and Z- isomers (Pearce, et al. 2007). 
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O O

O O

Cl Cl

Br

OH

Br

HO

Br

Br

HO

Br

BrHO
Z-Rubrolide O E-Rubrolide O  

 

Figure 3.1. E- and Z- isomers of Rubrolide O 

(Source: Pearce, et al. 2007) 

 

Jolivet, et al. (2002) demonstrated the activity of some furanones about 

inhibiting the formation of biofilms which are complicated accumulation of the 

microorganisms which grow on a firm substrate. They used three diffrent furanones in 

their experiments and reported that furanones can inhibit the formation of biofilms by 

interfering with the quorum-sensing system of bacteria. (Figure 3.2). 

 

O O O

Br

Br

HO
OOO

OH

OH OH

68% inhibition 58% inhibition80% inhibition
extracted from

D. pulchra
commercially available from

Givaudan
synthesized by

Jolivet  
 

Figure 3.2. Quorum-sensing system of bacteria inhibition results of some biologically 

active furanones (Source: Jolivet, et al. 2002 ) 
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In another study, it was reported that carboxylic analogues of oxetanocin can be 

stereoselectively synthesized via [2+2] photocycloaddition to a chiral 2(5H)-furanone 

(Rustullet, et al. 2007). This study also has great importance since oxetanocin-A 

(Figure 3.3) is one of naturally occuring oxetane adenine nucleoside which was 

reported as exhibiting some antiviral activity towards some viruses such as herpes 

simplex virus 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human 

cytomegalovirus (HCMV), and human immunodeficiency virus (HIV). 

 

O

OH

BHO

Oxetanocin-A
B: adenine  
 

Figure 3.3. Structure of oxetanocin-A 

(Source: Rustullet, et al. 2007) 

 

Furanones are also used in food manufacturing and perfume industry because of 

their flavor property (Gaudin 1995). In 1996, formation of sotolon (Figure 3.4) from 4-

hydroxy-L-isoleucine and 3-Amino-4,5-dimethyl-3,4-dihydro-2(5H)-furanone was 

reported. Sotolon is used in sugar manufacturing as powerful flavor compound and it 

can also be found in various food and spices (Blank, et al. 1996).  

 
O

O

OH  
 

Figure 3.4. Structure of sotolon 

(Source: Blank, et al. 1996) 

 

In 1998, Schnider and his co-workers reported the odor property of volatile 

compounds which include sotolon, involved in the aroma of sweet fortifies wines. 
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Regio- and stereospecifically identified γ-alkylidenebutenolides are used in 

medicinal and biological area because of their biological activities (Negishi and Kotora 

1997), such as xerulin, xerulinic acid and dihydroxerulin which inhibit the cholesterol 

biosynthesis (Kuhnt, et al. 1990) and rubrolides which shows antibiotic activity 

(Pearce, et al. 2007).  

 

O
O

O
O

n-Bu

XHO

X

Y

HO Y

rubrolides

bovolide

O
O

protoanemonin

O
O

Ph Ph

HO HO

OH OH

O
O

goniobutenolide A goniobutenolide B

 
 

Figure 3.5. Some examples for biologically active γ-alkylidenebutenolides 

(Source: Pearce, et al. 2007) 

 

3.3. Synthesis of 2(5H)-Furanones 

 
Furanones can be synthesized in various ways. In the literature there have been 

many ways to synthesize 2(5H)-furanones: from their cycloalkane derivatives, from 

epoxides; cyanohydrins, acetylenic compounds, allenic acids, dienoic acids, vinylacetic 

acids, miscalleneous acids, other heterocyclic compounds, 3(2H)-furanones, from β-

keto sulfoxides or by using some methods such as electrolytic methods, photolysis of 
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sultones, reformatsky-elderfield reaction, stobbe condensation, condensation of pyruvic 

acid derivatives with carbonyl compounds (Rao 1976).  

 

3.3.1. Synthesis of Furanones from Carbonyl Compounds, 

Carboxylates and Miscellaneous Acids and from their 

Derivatives 
 

A common way to synthesize furanones is using a carbonyl compound or 

derivatives in the reaction.  

Highly functionalized furanones were sythesized in high yields from activated 

carbonyl compounds and dimethyl acetylenedicarboxylate (Figure 3.6) (Nozaki, et al. 

1995). 

 

R1 R2

COOCH3

H3COOC
+

phosphine
(20 mol%)

toluene, 70 oC
O

R2

R1

O

OCH3

COOCH3

 
Figure 3.6. Synthesis of furanone from activated carbonyl compound and dimethyl 

acetylenedicarboxylate (Source: Nozaki, et al. 1995) 

 

Kumar and Pandey reported an efficient and high-yielding synthesis of 5-

hydroxy-2(5H)-furanone by using a titanium silicate molecular sieve catalyst. In this 

study they developed an environmentally friendly and practically alternative method to 

synthesize corresponding hydroxylactone by oxidation of furan over a titanium silicate-

1/H2O2 system (Kumar and Pandey 1999). 

2(5H)-furanones were also synthesized by the ring expansion of 4-hydroxy-2-

cyclobutenone with the reaction of PhI(OAc)2 in methanol (Figure 3.7) which was used 

as both solvent and nucleophile gave good yields for furanones (Ohno 1999). 

 



 

 23

O

OCH3

O
EtO

EtO

O

R

OH

PhI(OAc)2

MeOH
reflux

EtO

EtO

R

R: Me, 79%
     Bu, 78%
     Ph, 88%
     CH2COPh, 79%
     CH2CO2CH2Ph, 55%
     HC          CPh, 52%

 
 

Figure 3.7. Synthesis of furanone from 4-hydroxy-2-cyclobutenone 

(Source: Ohno 1999) 

 

Tanabe et al. (2002) reported an efficient method to synthesize tri-substituted 

2(5H)-furanones in a one-pot manner by the TiCl4-Bu3N-mediated condensation of 

ketones with α,α-dimethoxyketones (Figure 3.8) and obtained good yields for those 

furanones. They also demonstrated application of these furanones to straightforward 

synthesis of (R)-mintlactone and (R)-menthofuran which are natural mint perfumes. 

 

R1

O

R2
R3

O

OCH3

OCH3

ketone α,α−dimethoxyketone

+ O

O

R1 R2

R3

tri-substituted furanone

TiCl4 (1.5 equiv)
-Bu3N (2.0 equiv)

iCH2Cl2 -78 oC ~rt

 

Figure 3.8. Synthesis of tri-substituted furanone by condensation of ketone with α,α-

dimethoxyketone with TiCl4-Bu3N system (Source: Tanabe, et al. 2002) 

 

Huang and Zhou exhibited a CuX2-mediated cyclization reaction of 

cyclopropylideneacetic acids and esters to synthesize 4-halomethyl-2(5H)-furanones, 

which are important pivotal skeleton molecules in the sythesis of many natural 

products, in a mild way with moderate to good yields (Figure 3.9). However when the 

reaction was performed with CuBr2 at 85 ºC for 10 h, furanone yield increased up to 

78% (Huang and Zhou 2002).  
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O

O

COOEt

CuX2, 60oC, 14h

CH3CN/H2O (4:1)

CH2X

X: Br, 54%
X: I, 68%

 
 

Figure 3.9. Synthesis of 4-halomethyl-2(5H)-furanones 

(Source: Huang and Zhou 2002) 

 

Rossi and co-workers developed a simple method for the synthesis of racemic 

4,5-disubstituted 5H-furan-2-ones  with the reaction of 3-ynoic acids and organic 

halides such as (hetero)aryl bromides or iodides, alkenyl bromides or 1-alkynyl 

bromides (Figure 3.10). They reported that method is unfortunately not usable for the 

sythhesis of 4-substituted 5H-furan-2-ones (Rossi, et al. 1998). 

 

COOH

R : aryl, alkyl

R

+
R1-X

R1 : aryl, alkenyl,
1-alkynyl
X: I,Br

t-BuOK, DMSO

Pd(OAc)2, P(2-furyl)3 or AsPh3
20-50 oC

O

R1

R O

R : aryl, alkyl
R1 : aryl, alkenyl,
1-alkynyl  

 

Figure 3.10. Synthesis of disubstituted 2(5H)-furanone 

(Source: Rossi, et al. 1998) 

 

Pd-catalyzed alkylative lactonization of 4-hydroxy-2-alkynecarboxylates with 

organoboronic acid resulted in regioselective formation of butenolides (Oh, et al. 

2004). They demonstated lactonization in situ with excellent stereoselectivity and 

regioselectivity.   

When the reaction was performed under condition B at 60 oC for 4 hours, they 

found the selectivity to increase. For example reaction of 12b and 13b (Figure 3.11) in 

1,4-dioxane gave only 15bb with 94% yield, reaction of 12c and 13b in again 1,4-
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dioxane gave only 15cb with 96% yield, reaction of  12d and 13b in 1,4-dioxane gave 

only 15db with 96% yield, reaction of 12f and 13b in THF gave only 15fb with 96 

yield, reaction of 12g and 13a in THF gave only 15ga with 97% yield, and reaction of 

12g and 13b in THF gave only 15gb with 98% yield.  

When reaction was performed in under condition B in THF at 70 oC for 10 

hours 12c and 12b gave only 15cb with 98% yield. 

 

COOEt

HO

R1

R2

A B
O

OR1

R

R2

O
OR1

R2

R
condition A : RB(OH)2, 3 mol% Pd(OAc)2, 3 mol% dppe, 10 mol% AcOH
condition B : RB(OH)2, 3 mol% Pd(OAc)2, 6 mol% (t-Bu)3P, 10 mol% AcOH

14 12 15

R1, R2 = -H, -H                        12a
                -H, -CH3                   12b
                -H, -CH2CH2CH3    12c
                -H, -CH(CH3)2         12d
                -H, -C(CH3)3            12e
                -H, Ph                        12f
                -CH3, -CH3               12g

R = n-BuCH=CH      13a
       4-CH3OC6H4

-     13b
       4-CH3C6H4

-        13c

 
 

Figure 3.11. Reactions of 4-hydroxy-2-alkynecarboxylate 12 with organoboronic acids 

13 a–b under conditions A and B (Source: Oh, et al. 2004) 

 

3.3.2. Synthesis of Furanones from Alkynes, Allenes 
 

Radhakrishan and Periasamy found a novel method for double carbonylation 

leading formation 1,2-diketones with the RMgX/Fe(CO)2/CuCl combination gave 

moderate yields (Figure 3.12) and system resulted in the formation of the corresponding 

furanone when reaction was performed in the presence of alkyne. They also reported 

that when phenylacetylene was used as alkyne, reaction gave only one isomer which is 

furanone in low yield (Radhakrishan and Periasamy 1996). 
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Figure 3.12. Formation of furanone with the reaction of alkynes in the 

RMgX/Fe(CO)2/CuCl combination (Source: Radhakrishan and 

Periasamy 1996) 

 

Allene derivatives are suitable compounds for sythesis of furanones. Katritzky 

et al. (1996) reported a novel synthesis of γ-lactones via 1,2,4-triazole-stabilized allenic 

anions. Recently Ma and Gu developed an efficient route to synthesize 2(5H)-furanone 

derivatives by PdCl2-catalyzed two-component cross-coupling cyclization of 2,3-

allenoic acids with 2,3-allenols (Ma and Gu 2005). This is the first report about 

coupling cyclization of two different allenes leading formation of 4-(1’,3’-dien-2’yl)-2-

furanone derivatives in good yields. 

Regio- and stereospecifically identified γ-Alkylidenebutenolides are also of a 

great interest in medicinal and biological area since many of them have been exhibited 

some biological activities (Negishi and Kotora 1997). 

 

3.3.3. Carbonylative Synthesis of Furanones 

 
In the literature there have been a few examples for the carbonylative synthesis 

of 2(5H)-furanones.  

Alper and his research group developed a novel methodology which includes 

the double carbonylation of styrene oxides by Co-catalysis (NaCo(CO)4) in the 

presence of iodomethane, NaOH and a phase transfer agent to form 2(5H)-furanone 

(Alper, et al. 1985). 

Woo and Cheng showed a simple general method for the synthesis of 3,4-

dialkyl-2(5H)-furanones by the carbonylation of  aldehydes in strong acid (Woo and 

Cheng 1985).  

Some examples of Rh-catalyzed carbonylation of acetylenes were reported in 

the literature. Joh et al. (1990) reported Rh4(CO)12 catalyzed carbonylation reactions of 
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acetylenes under water-gas shift reaction conditions. But this method is restricted and it 

is applicable only for internal acetylenes having alkyl, aryl, and alkenyl substituents. 

They reported that method was not succesful for the monosubstituted acetylenes such 

as phenylacetylene. In these cases the catalyst was found to decompose to the metal 

and no definite compounds were isolated. 

Migratory insertion of alkylmanganese pentacarbonyl complexes is a usable 

method to sythesize butenolides. DeShong et al. (1998) reported a general method to 

prepare butenolides from organomanganese pentacarbonyl complexes. In this study 

butenolides were sythesized by the enolization, cyclization and alkene isomerization of 

the ketene which was generated by the insertion of carbon monoxide into the cationic 

manganese carbene complex (Figure 3.13). 

 

H3C

Mn(CO)4O
+

CO insertion
H3C

O

O
O

H3C
H+

O
O

H3C

O

.

 
 

Figure 3.13. Synthesis of furanone from cationic manganese carbene complex 

(Source: DeShong, et al.1988) 

 

In another method, a new catalytic system was improved for such a double 

functionalisation reaction which follows the formation of chloroacyl or dichloroacyl 

chlorides which was synthesized with Pd-catalyzed chlorocarbonylation of allyl 

chlorides (Figure 3.14). Then these intermediates were used for sythesis of 2(5H)-

furanones resulted in good yields (Bonnet, et al. 1998).  
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Figure 3.14. Synthesis of furanone from dichloroacyl chloride 

(Source: Bonnet, et al. 1998) 

 

Cobalt catalyzed carbonylative reactions of alkyl halides such as methyl 

bromoacetate and a nucleophilic base such as tertiary amine leaded to formation of 2,4-

pentadieno-4-lactone (Figure 3.15). Yields were around 60% for various substituted 

alkynes and alkyl halides (Heck 1964). 

 

R1CH2Br    +    NaCo(CO)4                             R1CH2COCo(CO)4

R2C             CR3CO
O

O

R1

R2
R3

 

Figure 3.15. Synthesis of γ-alkylidenebutenolide Co-catalyzed carbonylative reaction 

of alkyl halide (Source: Heck 1964) 

 

Another study was done under water-gas shift conditions. Zhang et al.  (1999) 

developed Rh6(CO)16 catalyzed carbonylation reaction of 2-phenylethynylbenzaldehyde 

under water-gas shift reaction conditions to produce a tricyclic lactone, indeno [2,1-b] 

furan. On the other hand, a similar reaction of 2-phenylethynylbenzoate gave an 

isomeric mixture of furanone derivatives. Increasing the reaction temperature resulted 

in the formation of tetracyclic lactone and indeno [2,1-c]isocoumarin. 
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In a report, the syntheses of 5-alkoxy-2(5H)-furanones were performed by 

rhodium-catalyzed carbonylation of acetylenes in alcohos (Figure 3.16) (Mise, et al. 

1981). 
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Figure 3.16. Synthesis of regioisomers of furanones by the Rh-catalyzed carbonylative 

reaction of asymmetric acetylene in alcohol (Source: Mise, et al. 1981) 

 

Kondo et al. (1994) developed a new route to 2(5H)-furanones via Ru-catalyzed 

oxidative cyclocarbonylation of allylic alcohols (Figure 3.17). In this study many 

furanones were directly synthesized in moderate to good yields as the first example of 

ruthenium-catalyzed cyclocarbonylation of allylic alcohols. 

 

+  CO

R2

R1

OH

RuCl2(PPh3)3-K2CO3
THF, 200 oC, 10 kg/cm2 CO 15 h

OAc O
R2

R1

O

 

Figure 3.17. Synthesis of furanones via Ru-catalyzed oxidative cyclocarbonylation of 

allylic alcohols (Source: Kondo, et al. 1994) 

 

Palladium catalyzed carbonylative reactions of arylhalides with acetylenes in 

the presence of triethyl amine and triphenylphosphine in benzene afforded 3-

arylidenebutenolides in moderate to good yield (Figure 3.18) (Huang and Alper 1991). 
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HC CCH2 RArI + + CO
Pd(OAc)2, PPh3

(C2H5)3N, C6H6
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O
Ar O
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H H

 

Figure 3.18. Synthesis of furanones via Pd-catalyzed carbonylative reactions of 

arylhalides with acetylenes (Huang and Alper 1991) 

 

Recently, Cho and Shim demonstrated a method to synthesize lactones by using 

a base and palladium as catalyst in such an unusual carbonylative cycliation of β-

bromovinyl aldehydes (Cho and Shim 2006). 

Yu and Alper reported a method about direct synthesis of butenolide from 

propargyl alcohol using Pd(dba)2/dppb system as catalyst, but this method was not 

usable for internal alkynols (Ali and Alper 1991). Later they also developed a new 

method by which internal alkynols with alkyl, phenyl and vinyl units attached to one 

acetylenic carbon atom could be reacted to result in high to excellent corresponding 

furanone yields (Figure 3.19) (Yu and Alper 1991). 
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Figure 3.19. Synthesis of furanones via Pd-catalyzed cyclocarbonylations of alkynols 

(Source: Yu and Alper 1991) 
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Propargylic alcohols also undergo to mercuration-carbonylation which leads to 

the formation of butenolides. In 1977, Larock et al. (1977) reported a method to produce 

β-chloro-Δα,β-butenolides in high yields via carbonylation of propargyl alcohol in the 

presence of catalytic amount of palladium (Figure 3.20). 

 

O
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HOH2CC CH
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Figure 3.20. Synthesis of β-chloro-Δα,β-butenolides via Pd-catalyzed mercuration-

carbonylations of propargyl alcohols (Source: Larock, et al. 1977) 

 

α,β-Butenolides can also be generated in good yields via Pd-catalyzed 

carbonylative coupling of vinyl triflates (trifluoromethanesulfonate) (Figure 3.21) 

(Crisp and Meyer 1992).   
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Figure 3.21. Synthesis of α,β-butenolides via Pd-catalyzed carbonylative couplings of  

vinyl triflates (Source: Crisp and Meyer 1992) 

 

Yoneda and his co-workers developed ruthenium-catalyzed cyclocarbonylation 

of allenyl alcohols for selective sythesis of lactones (Yoneda, et al. 1999, Yoneda, et al. 

2003). 
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3.4. Photochemical Rearrangement in Furanones 
 

In the literature observed photochemical processes can be given as 

decarbonylation, aryl group migration, fragmentation, electron-transfer-mediated bond 

cleavage, and rearrangement upon [1,3]-sigmatropic shift. 

Volkmann et al. (1975) investigated the photochemical rearrangement in 2(5H)-

furanone system. They studied on photochemical behaviour of 3,5-diphenylfuran-

2(5H)-one by using tert-butyl alcohol as solvent. Cis-3,4-diphenyl-trans-5-tert-butoxy-

γ-lactone was the only isolated product of the reaction. However, photochemical 

reaction of 3,5-diphenylfuran-2(5H)-one in benzene under argon atmosphere gave only 

3,4-diphenyl-2(5H)-furanone in quantitative yield. If molecular oxygen is present in the 

reaction medium, 2 the well-known stilbene-phenanthrene cyclization route to produce 

phenanthro[9,10-c]furanone (Figure 3.22). 
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Figure 3.22. Photochemical rearrangement of 3,5-diphenylfuran-2(5H)-one 

(Source: Volkmann, et al. 1975) 
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In another study solvent controlled photochemical reactions of furanones la-e in 

methanol gave lactones 4 and 5. Then these lactones were treated with stannous chloride 

in refluxing acetic acid to establish their structures upon identification of the respective 

secondary products 2 and 3 (Figure 3.23). Compounds 2a-e and 3a-e were identified by 

comparison with authentic samples prepared by independent syntheses. Photochemical 

rearrangement scheme of 1a is shown in Figure 3.24. Results of this study offers an 

underline for the importance of electron distribution in photochemical migratory 

processes (Padwa and Blacklock  1976). 
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Figure 3.23. Photochemical rearrangement of a furanone derivatives 

(Source: Padwa and Blacklock  1976) 
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Figure 3.24. Proposed rearrangement scheme of  p-anysyl and phenyl groups in MeOH 

and benzene solvents (Source: Padwa and Blacklock 1976) 
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CHAPTER 4 

 

EXPERIMENTAL STUDY 

 

4.1. General Procedures for Synthesis of Alkynes by Sonogashira C-C 

Coupling Reactions  
 
      Two types of procedures were used to synthesize alkynes by Sonogashira 

reaction.  

   In the one of the procedures (Procedure I), to a solution of aryl halide (bromo or 

iodo, 10 mmol) and alkyne (12 mmol) in 40 mL Et3N was added 2 mol % Pd(PPh3)Cl2 

with respect to the aryl halide (Figure 4.1). The mixture was stirred at room temperature 

for five minutes, after that 1 mol % CuI was added to the mixture. Then reaction flask 

was placed in a preheated oil bath at 50 oC and vigorously stirred under an argon 

atmosphere. Small amounts of samples were periodically taken by the help of a syringe 

during the reaction, diluted in ethyl acetate and analyzed by GC to check whether all 

alkyne was consumed in the reaction. The course of the reaction was followed until no 

further increase in the formation of coupling product was observed. Then the solution 

was allowed to cool to the room temperature, and the ammonium salts were taken by 

the filtration and the solvent was removed by evaporation. Then the residue was 

purified by column chromatography on silica gel to give the pure product. Alkynes: A1, 

A2, A3, A4 and A5 were sythesized with this procedure (Procedure I) (See appendices 

D and E) (Roesch and Larock 2001). 

 In the other procedure (Procedure II), a mixture of aryl bromide (0.5 mmol), 

alkyne (0.6 mmol), pyrrolidine (1.0 mmol), PdCl2 (0.01 mmol), PPh3 (0.02 mmol) and 

degassed water (1.0 mL) introduced in a two-neck rounded-bottomed flask under 

nitrogen or argon and flask was placed in a preheated oil bath at 120 oC. Small amounts 

of samples were periodically taken during the reaction, diluted in ethyl acetate and 

analyzed by GC to establish completion. The course of the reaction was followed until 

no further increase in the formation of coupling product was observed. It was then 

cooled and extracted with 5 mL diethyl ether for four times. After evaporation under 

reduced pressure, the residue was purified by column chromatography to give the pure 
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product. Alkyne A6 was sythesized with this procedure (Procedure I) (See appendices D 

and E) (Guan, et al. 2007). 

 

 

 

 

Figure 4.1. The experimental set-up for sonogashira coupling reactions 

 

4.2. General Prodecure for Drying of Solvents 

  

Toluene was dried by using CaH. Toluene and CaH was put into a solvent-

drying system’s flask and it was refluxed overnight under nitrogen atmosphere. Dried 

toluene was collected and put onto 4A sieve neads under nitrogen (Leonard, Lygo and 

Procter 1998).  

 For 200 mL MeOH, 1.00 mg Mg-turnings, 100 mg iodine and 10 mL methanol 

was put into a 250 mL round-bottom flask. This mixture was heated under inert 

atmosphere until iodine disappears. If stream of bubbles is not observed, more iodine 

was added (100 mg). Heating was continued until no Mg-turnings were observed. Then 

the remainder MeOH was added and it was refluxed for 3 hours and it was distilled onto 

3A sieve beads (10% w/v). Dried solvent was not used for at least 1 day after drying 

(Leonard, Lygo and Procter 1998). 

ARGON IN ARGON OUT
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4.3. General Prodecure for the Synthesis of Rh Complexes 

 
    [Rh(cod)OH]2 was synthesized in our laboratory by the reaction shown in  

equation (4.1) (Uson, et al. 1985).  

To a 50-mL round-bottomed flask containing a magnetic stirring bar and 

charged with a solution of potassium hydroxide (1.337 mmol) in water (4 mL), 

[Rh(cod)Cl]2 (0.65 mmol) in acetone (35 mL) was added. Mixture was stirred for two 

hours at room temperature, then yellow suspension was concentrated to ~10 mL with 

evaporation Then 15 mL of water was added. And solid part was taken by filtration 

which was done with a fine sintered-glass filter. Then it was washed with water (ten 

times 5-mL portions) and vacuum-dried over phosphorus(V) oxide  

 

               (4.1) 

 

 [Rh(cod)Cl]2 was also synthesized in our laboratory. To a 100-mL round-

bottomed flask containing a magnetic stirring bar 7.3 mmol RhCl3.3H2O (Precious 

Metal) , 3 mL H2O, 35 mL EtOH and 6 mL 1,5-cyclooctadiene (cod) were added. 

Mixture was overnight refluxed under inert atmosphere. After refluxing, solution was 

cooled and recrystallized from dichloromethane DCM/ Hexane ( 82% yield) (Giordano 

and Crabtree 1979). 

 

4.4. General Procedure for Rh-Catalyzed Carbonylative Addition 

Reactions of Arylboronic Acids to Alkynes 
 

    4-acetylbenzeneboronic acid, 2-methylbenzeneboronic acid, 4-

fluorobenzeneboronic acid, 1-phenyl-1-propyne, bis(1,5-cyclooctadiene)rhodium(I) 

tetrafluoroborate and (acetylacetonate)bis(ethylene)rhodium(I) were supplied from Alfa 

Aesar. Diphenylacetylene, phenylboronic acid, phenylacetylene, 

bis(ethylene)rhodium(I) chloride dimer (53% Rh), 1-hexyne and hexadecane were 

supplied from Merck. Rhodium(III)chloride hydrate was supplied from Precious Metal;. 

3-tolylboronic acid from Acros, 4-Octyne from ABCR and 1-phenyl-1-pentyne from 

Avocado.4-methoxyphenylboronic acid was supplied from Aldrich. Another 

phenylboronic was supplied from Fluka. 

[Rh(cod)Cl]2  + 2 KOH                     [Rh(cod)OH]2 + 2 KCl



 

 38

 A mixture of arylboronic acid (1.2 mmol), alkyne (1 mmol) hexadecane (as an 

internal standard, 0,56 mmol), [Rh(cod)OH]2 (1 mol% Rh) and 10 mL toluene (pre-

dried and degassed before used) was added into glass insert which was then placed into 

a stainless-steel reactor. Reactor was evacuated and purged with 10 atm CO two times. 

Then reactor was pressurized to 20 atm with CO and the mixture was stirred 

magnetically in a pre-heated oil bath. After cooling reactor, reaction mixture was 

recovered with ethyl acetate. After that, a sample was taken from reaction mixture and 

diluted with ethyl acetate, then analyzed by GC (Aksın, et al. 2006). 

 

4.5. Characterization of Products  

4.5.1. GC Method 

 

    The samples were analyzed by GC/MS (HP GC/MS 6890/5973N on a HP-5MS, 

30m, 0.25 mm capillary column, 5% phenylmethoxysiloxane with 0.25μm film 

thickness) and GC (19091J-413 HP-5 6890N on a 30m, 0.25 mm capillary column (5% 

dimetylsiloxane, 95% phenyldimethylsiloxane with a 0.25 μm film thickness and FID 

detector). 

    The GC program applied throughout the analysis is as follows: the column 

temperature was 40 °C at the beginning of the program and it was heated with a rate of 

10 °C/min up to 300 °C, then it was kept at this temperature for 15 min. Throughout the 

analysis the injector and detector temperatures were kept constant at 280 °C and 300 °C, 

respectively. The analysis was performed on a split mode with a split ratio of 1/50.  

4.5.1.1. Calculation of Reactant and Product Amount on GC 

 

    For the calculation of amount of reactants and products, response factor of each 

reactant and product for the set temperature program of GC was determined. As internal 

standard, hexadecane was used. The amount of internal standard does not change 

throughout the reaction, so the response factor of each compound was determined 

according to the amounts and areas under the peaks of internal standard and standard 

compound of interest. For the determination of response factor of a compound, a known 

amount of standard compound together with a known amount of internal standard 

dissolved in the reaction solvent and diluted with ethyl acetate, and then was injected to 
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GC. After the analysis was complete according to the set temperature program, the 

equation (4.2) was used for the determination of response factor of that compound: 

 

R.F. =
internal standart area

compound area
compound amount

internal standart amount
x  (4.2)

 

In order to calculate the amount of both reactant and products at the end of 

reaction, aliquots of reaction sample taken from the glass-reactor and diluted samples 

were injected to GC. At the end of GC analysis, taking the amount of hexadecane and 

the area under the hexadecane peak into account, equation (4.3) was used in order to 

calculate the amount of reactant and products at the end of reaction: 

 

R.F.
internal standart area

compound areaamount of compound
internal standart amount x= x (4.3)

 

 

4.5.1.2. Calculation of Reactant Conversion, Product Yield and 

Recovery 

 

Reactant conversion at any time is calculated using equation 4.4: 

 

(Reactant Conversion)t % =
(Reactant)i - (Reactant)t

(Reactant)i

x 100 (4.4)

 
 

where (reactant)i is the weight of reactant at the beginning of the reaction and (reactant)t 

is the weight of reactant at time t. 

Product yield of a molecule was calculated according to the following equation 

4.5: 
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Product Yield =
mole of product t

initial mole of aryl halide
(4.5)

 

 

4.6. Purification of the Products 

 

    In this study, many types of products were purified by using column 

chromatography. 

    At the end of reaction, reactor was washed with ethyl acetate and this mixture 

was then extracted with brine for three times. Organic phase was dried over magnesium 

sulphate and solvent was removed by using evaporator. And products were purified by 

column chromatography. The purity of products was determined by GC, NMR and 

Elemental Analysis techniques. 

  All products were determined by NMR (Varian VnmrJ 400), FT-IR (Perkin-

Elmer Spectrum 100), GC-MS ( GC-Varian star 3400CX, MS-VarianSaturn 2000 Gc-

ms-ms) Elemental Analysis and HRMS. The values are represented below and NMR, 

FT-IR and GC-MS spectrums of furanones are given in Appendix A and Appendix B 

and Appendix C respectively. NMR and GC-MS spectrums of sonogashira products are 

also given in Appendix D and Appendix E, respectively. 

 

(1) 3,4,5-triphenylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 6.3 (s, 

1H), 7.10-7.51 (m, 15H,); 13C NMR (100 MHz, CDCl3) δ: 84.0, 127.1, 127.9(2), 

128.6(3C), 128.8(2C), 128.9(2C), 129.1, 129.2(2C), 129.6, 129.7(2C), 130.1, 131.4, 

135.1; 159.6, 172.7; MS: 312 (M+), 207, 179; 105; FTIR (pellet): 1745 (s) cm-1; 

analytical calculation for C22H16O2 C: 84.6%, H: 5.2%; found C: 84.2%, H: 5.3% 

  (2) 5-(4-methoxyphenyl)-3,4-diphenylfuran-2(5H)-one : 1H NMR (400 MHz, 

CDCl3) δ: 3.68 (s, 3H,), 6.14 (s,1H), 7.77-7.41 (m, 14H); 13C NMR (100 MHz, CDCl3) 

δ: 55.5, 83.7, 114.6, 127.0, 127.2, 128.2, 128.6(2C), 128.8(2C), 128.9(2C), 129.0, 

129.3(2C), 129.7(2C), 130.1, 130.2, 131.5, 159.5, 160.6, 172.7; MS: 342 (M+), 178, 

135; FTIR (ATR): ν (cm-1) CO: 1748; analytical calculation for C23H18O3 C: 80.7%, H: 

5.3%; found C: 80.04%, H: 5.4%. 
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  (3) 3,4-diphenyl-5-p-tolylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 

2.31 (s, 3H), 6.23 (s, 1H), 7.10-7.50 (m, 14H); 13C NMR (100 MHz, CDCl3) δ: 21.5, 

83.6, 127.1, 127.8(2C), 128.6(2C), 128.8(2C), 128.9(2C), 129.0, 129.7(2C), 129.9(2C), 

130.0, 130.2, 131.5, 132.0, 139.5, 159.5, 172.7; MS: 326 (M+), 221, 207, 179, 119; 

FTIR (pellet): 1752 (s) cm-1; analytical calculation for C23H18O2 C: 84.6%, H: 5.6%; 

found C: 85.4%, H: 5.7%. 

(4) 5-(4-acetylphenyl)-3,4-diphenylfuran-2(5H)-one : 1H NMR (400 MHz, 

CDCl3) δ: 2,25 (s, 3H); 6,34 (s, 1H); 7,00-7,90 (m, 14H); 13C NMR (100 MHz, CDCl3) 

δ: 26,9; 83,1; 126,7; 127,1; 127,9 (2C); 128,5 (2C); 128,7; 128,9 (2C); 129,1 (2C); 

129,1 (2C); 129,3; 129,6 (2C); 130,4; 131,0; 137,9; 159,5; 172,6; 197,9; MS: 354 (M+); 

281; 207; 179; FTIR (ATR): ν (cm-1) CO: 1748; HRMS calculated: 354.1256; found: 

354.1241 

(5) 5-(4-(trifluoromethyl)phenyl)-3,4-diphenylfuran-2(5H)-one : 1H NMR 

(400 MHz, CDCl3) δ: 6.32(s, 1H), 7.10-7.60 (m, 14H); 13C NMR (100 MHz, CDCl3) δ: 

82.8, 122.6, 125.3, 126.1(tet), 126.8, 127.3, 128.1, 128.4, 128.7, 128.8, 129.2, 129.3, 

129.6, 129.7, 129.8, 130.4, 131.0, 131.5,131.8, 139.1, 159.1, 172.3; MS: 380 (M+), 207, 

179; FTIR (pellet): 1749 (s) cm-1; analytical calculation for C23H15F3O2 C: 72.6%, H: 

4.0%; found C: 73%, H: 3.9%. 

(6) 3,4-diphenyl-5-m-tolylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 

2,21 (s, 3H); 6,13 (s, 1H); 6,98-7,41 (m, 14H); 13C NMR (100 MHz, CDCl3) δ: 20,3; 

82,7; 123,8; 125,7; 127,1; 127,3 (2C); 127,5 (2C); 127,6 (2C); 127,7; 127,8; 128,4 (2C); 

128,8; 128,8; 129,1; 130,1; 133,6; 137,7; 158,3; 171,5; MS: 326 (M+); 207; 221; 179; 

119 ; FTIR (ATR): ν (cm-1) CO: 1746 ; analytical calculation for C23H18O2 C: 84.6%, 

H: 5.6% ; found C: 80.1%, H: 5.8 %; HRMS calculated: 326.1327; found: 326.1303 

(7) 3,4-diphenyl-5-o-tolylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 2,5 

(s, 3H); 6,5 (s, 1H); 7,08-7,5 (m, 14H); 13C NMR (100 MHz, CDCl3) δ: 19,5; 81,0; 

126,8; 127,8; 127,9; 128,4 (2C); 128,8 (2C); 129,0 (2C); 129,1; 129,5; 129,6 (2C); 

130,1; 130,3; 131,3; 131,6; 133,1; 137,7; 159,3; 172,7; MS: 326 (M+); 207; 179; 119; 

207; FTIR (ATR): ν (cm-1) CO: ; analytical calculation for C23H18O2 C: 84.6%, H: 5.6% 

; found C: 84.1 %, H: 5.7 %.  

(8) 5-phenyl-3,4-dipropylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 

0.89 (t, J=7.4 Hz, 3H), 0.96 (t, J=0.74 Hz, 3H), 1.26-1.51 (m, 2H), 1.61 (sex, J=7.4, 

2H), 1.92-2.0 (m, 1H), 2.28-2.37 (m, 3H), 5.67 (s, 1H), 7.16-7.2 (m, 2H), 7.34-7.40 (m, 
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3H); 13C NMR (100 MHz, CDCl3) δ: 14.1, 14.3, 21.5, 21.8, 25.9, 28.8, 84.0, 127.2(2C), 

127.5, 129.1(2C), 129.4, 135.4, 163.4, 174.8; MS: 244 (M+), 215, 201, 139, 129, 115, 

105, 91, 77, 69; FTIR (film): 1756 (s) cm-1; analytical calculation for C16H20O2 C: 

78.7%, H: 8.2%; found C: 78.7%, H: 8.1%, HRMS calculated: 216.1509; found: 

216.1507 

(9a) 4,5-diphenyl-3-propylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 

0,97 (t, J = 7.4 Hz, 3H) ), 1.61-1.75 (m, 2H), 2.44-2.51 (m, 2H), 6.13 (s, 1H), 7.0-7.39 

(m, 10H); MS: 278 (M+); FTIR (ATR): ν (cm-1) CO: 1748; analytical calculation for 

C19H18O2 C: 82.0%, H: 6.5% ; found C: 76.8%, H: 6.9%; HRMS calculated: 278.1301; 

found: 278.1300. 

(9b) 3,5-diphenyl-4-propylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 

0,87 (t, J = 7.4 Hz, 3H); 1,29-1,52 (m, 2H); 2,08 (ddd, J = 14,2; 9,5; 5,4 Hz; 1H); 2,58 

(ddd, J = 14,4; 9,6; 6,8 Hz; 1H); 5,85 (s, 1H); FTIR (ATR): ν (cm-1) CO: 1749.  

(10a) 4-(4-acetylphenyl)-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one :  
1H NMR (400 MHz, CDCl3) δ: 7.73 (m, 2H), 7.36 (m, 7H), 7.23 (m, 3H), 7.03 (td, J = 

1.0, 7.5, 1H), 6.94 (dd, J = 0.8, 8.3, 1H), 6.36 (s, 1H), 3.60 (s, 3H), 2.48 (m, 3H); 13C 

NMR (100 MHz, CDCl3) δ: 26.5, 55.3, 83.6, 111.4, 119.1, 121.1, 126.5, 127.8, 128.0, 

128.1, 128.2, 129.1, 129.5, 130.8, 130.9, 135.0, 136.2, 137.4, 157.1, 158.0, 172.1, 

198.2; MS: 385 (M+), 339, 251, 105; FTIR (ATR) ν (cm-1) CO: 1748; analytical 

calculation for C25H20O4 C: 78.1%, H: 5.2% ; found C: 77%, H: 5.4%. HRMS 

calculated: 384.1356; found: 384.1355. 
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(11a) 4-(4-acetylphenyl)-3,5-diphenylfuran-2(5H)-one : 1H NMR (400 MHz, 

CDCl3) δ: 7.78 (m, 2H), 7.45 (m, 2H), 7.32 (m, 9H), 7.20 (m, 2H), 6.28 (s, 1H), 2.51 (d, 

J = 3.0, 3H); 13C NMR (100 MHz, CDCl3) δ: 26.9, 83.8, 127.8, 128.5, 128.8, 128.9, 

129,3, 129.5, 129.6, 129.8, 158.3, 172.3, 197.5 ; MS: 354 (M+), 281, 249, 105; FTIR 
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(ATR): ν (cm-1) CO: 1749; analytical calculation for C24H18O3 C: 81.3%, H: 5.1% ; 

found C: 81%, H: 5.3%; HRMS calculated: 354.1256; found: 354.1241. 
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(11b) 3-(4-acetylphenyl)-4,5-diphenylfuran-2(5H)-one : 1H NMR (400 MHz, 

CDCl3) δ: δ 7.93 (m, 2H), 7.59 (m, 2H), 7.28 (m, 9H), 7.08 (dt, J = 1.8, 8.6, 2H), 6.29 

(s, 1H), 2.59 (d, J = 12.9, 3H) 13C NMR (100 MHz, CDCl3) δ: 26.9, 84.1, 126.1, 128.8, 

128.7, 129.1, 129.2, 129.7, 129.9, 130.5, 130.9, 134.6, 134.9, 137.2, 161.1, 172.1, 

197.9; MS: 354 (M+) 221, 105; FTIR (ATR): ν (cm-1) CO: 1751; analytical calculation 

for C24H18O3 C: 81.3%, H: 5.1% ; found C: 80%, H: 5.6%; HRMS calculated: 

354.1256; found: 354.1240. 

(12a) 3-methyl-4,5-diphenylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) 

δ:7.35 (m, 3H), 7.25 (m, 7H), 6.18 (d, J = 1.7, 1H), 2.14 (t, J = 10.7, 3H)  13C NMR 

(100 MHz, CDCl3) δ: 174.71, 158.60, 135.31, 131.65, 129.88, 129.43, 129.04, 129.02, 

128.25, 127.73, 124.36, 83.93, 77.58, 77.26, 76.94, 10.54.; MS: 250 (M+) 222, 145, 

115; FTIR (ATR): ν (cm-1) CO: 1747; HRMS calculated: 250.0994; found: 250.0995. 

(12b) 4-methyl-3,5-diphenylfuran-2(5H)-one 1H NMR (400 MHz, CDCl3) 

δ:7.54 (d, J = 7.1, 2H), 7.41 (m, 6H), 7.28 (m, 2H), 5.74 (s, 1H), 2.00 (s, 3H);  13C 

NMR (100 MHz, CDCl3) δ: δ 172.97, 160.61, 135.01, 130.06, 129.66, 129.31, 129.21, 

129.05, 128.83, 128.77, 127.22, 126.67, 85.09, 77.61, 77.29, 76.97, 13.61; MS: 250 

(M+) 207, 145, 117; FTIR (ATR): ν (cm-1) CO: 1748; HRMS calculated: 250.0994; 

found: 250.0983. 

(13a) 4-(4-acetylphenyl)-3-butyl-5-phenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 1H NMR (400 MHz, CDCl3) δ 7.92 (m, 2H), 7.28 (m, 5H), 7.17 (m, 

2H), 6.15 (s, 1H), 2.51 (m, 6H), 1.63 (m, 3H), 1.35 (m, 3H), 0.91 (t, J = 7.3, 3H);13C 

NMR (100 MHz, CDCl3) δ: 14,0; 22,9; 24,5; 26,8; 31,0; 83,9; 127,5; 128,3; 128,9; 

129,2; 129,6; 130,5; 134,8; 136,3; 137,7; 157,9; 173,8; 197,4; MS: 334 (M+) 289, 185, 

105; FTIR (ATR): ν (cm-1) CO: 1747; HRMS calculated: 334.1569; found: 334.1559. 
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(13b) 3-(4-acetylphenyl)-4-butyl-5-phenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ:8.03 (m, 3H), 7.61 (m, 3H), 7.52 (dd, J = 3.0, 6.8, 1H), 7.43 (m, 4H), 

7.29 (m, 3H), 5.89 (s, 1H), 2.56 (m, 6H), 2.13 (m, 1H), 1.31 (m, 6H), 0.80 (m, 4H); 13C 

NMR (100 MHz, CDCl3) δ: 13,8; 22,8; 26,9; 27,2; 30,2; 84,1; 126,1; 127,3; 128,7; 

128,7; 129,5; 129,9; 134,6; 135.0; 137,1; 166,6; 172,6; 197,9; MS: 334 (M+) 289, 185, 

105; FTIR (ATR): ν (cm-1) CO: 1750; HRMS calculated: 334.1569; found: 334.1559. 

(14a) 3-butyl-4-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 0,94 (t, J = 7.4 Hz, 3H); 1,42 (sext, J = 7.4 Hz, 2H); 1,54-1,73 (m, 2H); 

2,51-2,56 (m, 2H); 3,77 (s, 3H); 6,12 (s, 1H); 6,85 (d, J = 8,8 Hz; 2H); 7,17-7,20 (m, 

4H); 7,26-7,29 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 14,1; 23,1; 24,6; 30,6; 55,5; 

83,7; 114,5 (2C); 124,0; 127,4; 127,7 (2C); 129,0 (2C); 129,3; 129,6 (2C); 135,7; 158,3; 

160,7; 174,7; MS: 322 (M+) 255, 105, ; FTIR (ATR): ν (cm-1) CO: 1726. 
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(14b) 4-butyl-3-(4-methoxyphenyl)-5-phenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 0,83 (t, J = 7.2 Hz, 3H); 1,20-1,50 (m, 4H); 2,08 (ddd, J = 14,0; 9,6; 

5,4 Hz; 1H); 2,61 (ddd, J = 15,2; 9,0; 6,2 Hz; 1H); 3,84 (s, 3H); 5,83 (s, 1H); 6,98 (d, J 

= 8,8 Hz; 2H); 7,26-7,30 (m, 2H); 7,38-7,42 (m, 3H); 7,46 (d, J = 8,8 Hz; 2H); 13C 

NMR (100 MHz, CDCl3) δ: 13,9; 22,9; 27,1; 30,2; 55,6; 88,8; 114,2 (2C); 122,4; 126,3; 

127,4 (2C); 129,3 (2C); 129,6; 130,5 (2C); 135,2; 160,0; 163,6; 173,5; MS: 322 (M+) 

217, 105; FTIR (ATR): ν (cm-1) CO: 1732; analytical calculation for C21H22O3 C: 

78.2%, H: 6.9% ; found C: 77.8 %, H: 7.0 %. 
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(15a) 4-(2-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 3,68 (s, 3H); 6,49 (s, 1H); 6,72 (t, J = 7,6; 1H); 6,78-6,84 (m, 2H); 

7,18-7,30 (m, 9H); 7,44-7,47 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 55,5; 83,9; 

111,5; 120,8; 121,0; 127,2; 127,3 (2C); 128,4; (2C); 128,7; 128,8 (2C); 129,1; 129,2 

(2C); 130,5; 130,5; 131,3; 135,3; 156,8; 159,5; 172,9; MS: 342 (M+) 237, 209, 91; FTIR 

(ATR): ν (cm-1) CO: 1744 ; analytical calculation for C23H18O3 C: 80.7%, H: 5.3% ; 

found C: 80.4 %, H: 5.4%. 
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(15b) 3-(2-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 3,61 (s, 3H); 6,34 (s, 1H); 6,94 (d, J = 8,4; 1H); 7,02 (t; J = 7,6; 1H); 

7,1-7,4 (m, 12H); 13C NMR (100 MHz, CDCl3) δ: 55,6; 83,9; 111,7; 120,0; 121,2; 

125,2; 128,1 (2C); 128,1 (2C); 128,6 (2C); 129,2 (2C); 129,5; 130,0; 130,6; 131,2; 

131,9; 135,8; 157,5; 159,5; 172,8; FTIR (ATR): ν (cm-1) CO: 1745; analytical 

calculation for C23H18O3 C: 80.7%, H: 5.3% ; found C: 80.0%, H: 5.2%; HRMS 

calculated: 342.1256; found: 342.1242. 

 (16a) 4-(4-methoxyphenyl)-3,5-diphenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 3,73 (s, 3H); 6,24 (s, 1H); 6,70 (d; J = 4,8; 2H); 7,09 (d; J = 8,8; 2H); 

7,30-7,51 (m, 10H); 13C NMR (100 MHz, CDCl3) δ: 55,4; 83,7; 114,3 (2C); 123,4; 

125,7; 128,0 (2C); 128,9 (2C); 128,9; 129,2 (2C); 129,6; 129,7 (2C); 130,3 (2C); 130,7; 

135,5; 158,8; 161,0; 172,9; FTIR (ATR): ν (cm-1) CO: 1741; analytical calculation for 

C23H18O3 C: 80.7%, H: 5.3% ; found C: 72.5%, H: 5.4%. HRMS calculated: 342.1247; 

found: 342.1250. 
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(16b) 3-(4-methoxyphenyl)-4,5-diphenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 3,74 (s, 3H); 6,14 (s, 1H); 6,80 (d; J = 8,8; 2H); 7,02-7,05 (m, 2H); 

7,12-7,25 (m, 8H); 7,37 (d, J = 9,2; 2H); 13C NMR (100 MHz, CDCl3) δ: 55,5; 83,9; 

114,2 (2C); 122,2; 126,5; 127,9 (2C); 128,5 (2C); 128,9 (2C); 129,1 (2C); 129,5; 129,9; 

131 (2C); 131,7; 135,1; 158,1; 160,2; 173,0; MS: 342 (M+) 237, 165, 105; FTIR (ATR): 

ν (cm-1) CO: 1751; analytical calculation for C23H18O3 C: 80.7%, H: 5.3% ; found C: 

80.0%, H: 5.4%; HRMS calculated: 342.1256; found: 342.1254. 

(17a) 3-butyl-4-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 0,85 (t, J = 7.2 Hz, 3H); 1,29 (sext, J = 7.6 Hz, 2H); 1,45-1,64 (m, 2H); 

2,39 (t, J = 7,6 Hz, 2H); 3,81 (s, 3H); 6,36 (s, 1H); 6,80-7,30 (m, 9H); 13C NMR (100 

MHz, CDCl3) δ: 13,9; 22,8; 24,5; 30,2; 55,6; 83,9; 111,2; 120,8; 120,9; 126,9(2C); 

128,7(2C); 128,8; 129,2; 130,1; 130,9; 135,7; 155,6; 159,3; 174,6; MS: 322 (M+) 251, 

217, 121; FTIR (ATR): ν (cm-1) CO: 1746; analytical calculation for C21H22O3 C: 

78.2%, H: 6.9% ; found C: 76.9%, H: 6.9%. HRMS calculated: 322.1600; found: 

322.1600. 
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(17b) 4-butyl-3-(2-methoxyphenyl)-5-phenylfuran-2(5H)-one : 1H NMR (400 

MHz, CDCl3) δ: 0,74 (t, J = 7.2 Hz, 3H); 1.0-1,4 (m, 4H); 1,98 (ddd; J = 14,5; 9,1; 6 

Hz; 1H); 2,31 (ddd; J = 15,6; 9,2; 6,8 Hz, 1H); 3,85 (s, 3H); 5,9 (s, 1H); 6,9-7,4 (m, 

9H); 13C NMR (100 MHz, CDCl3) δ: 13,9; 22,7; 27,6; 30,2; 55,8; 84,3; 111,4; 119,4; 

120, 8; 125,1; 127,6 (2C); 129,2 (2C); 129,6; 130,4; 131,2; 135,3; 157,5; 164,4; 173,2; 

MS: 322 (M+) 265, 189, 121; FTIR (ATR): ν (cm-1) CO: 1750; analytical calculation for 

C21H22O3 C: 78.2%, H: 6.9% ; found C: 75.6%, H: 7.2%. HRMS calculated: 322.1563; 

found: 322.1559. 
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(18a) 3,5-diphenyl-4-o-tolylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 

7.26 (m, 15H), 6.41 (s, 1H), 2.39 (s, 2H), 2.02 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 

83.9, 126.6, 128.0, 128.5, 128.9, 129.3(2C), 129.7, 130.4, 130.9, 135.6, 159.2; MS: 326 

(M+) 282, 236, 105; FTIR (ATR): ν (cm-1) CO: 1750; analytical calculation for 

C23H18O2 C: 84.6%, H: 5.6% ; found C: 83.6%, H: 5.6%. HRMS calculated: 326.1301; 

found: 326.1304. 

(18b) 4,5-diphenyl-3-o-tolylfuran-2(5H)-one : 1H NMR (400 MHz, CDCl3) δ: 

7.43 (m, 4H), 7.20 (dddd, J = 2.1, 7.5, 9.5, 16.2, 18H), 7.06 (d, J = 7.6, 1H), 6.12 (s, 

1H), 1.70 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 172.62, 161.59, 135.62, 134.38, 

131.45, 130.96, 130.08, 129.78, 129.43, 129.35, 129.28, 129.18, 129.04, 128.81, 

128.66, 128.62, 128.59, 128.52, 128.20, 126.63, 126.49, 126.21, 84.53, 19.56, 0.22.;  

MS: 326, (M+) 194, 105; FTIR (ATR): ν (cm-1) CO: 1752; analytical calculation for 

C23H18O2 C: 84.6%, H: 5.6% ; found C: 83.6%, H: 6.0%; HRMS calculated: 326.1307; 

found: 326.1295. 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

         In this thesis, different types of furanones were synthesized by Rh-catalyzed 

carbonylative addition of arylboronic acids with alkynes. These carbonylative addition 

reactions were carried out with various types of arylboronic acids and alkynes.  

 

5.1. Rh-Catalyzed Carbonylative Addition of Phenylboronic Acid to 

Diphenyl Acetylene 
  

At the outset of this study, phenylboronic acid and diphenyl acetylene reagents 

were used as probe molecules to optimize reaction conditions. Carbonylation of 

diphenyl acetylene (1 mmol) and phenylboronic acid (3 mmol) mixture under 20 atm 

CO pressure in the presence of [Rh(cod)Cl]2 (3% Rh) as a catalyst precursor in dioxane 

solvent at 120 oC for 16 h yielded 3,4,5-triphenylfuran-2(5H)-one (1) as the major 

product along with small amounts of other carbonylation products which are 2,3-

dihydro-2,3-diphenylinden-1-one (P3), 2,3-diphenyl-1H-inden-1-one, product (P2) and 

mixture of E- and Z-isomers of an α,β-unsaturated ketone 1,2,3-triphenylprop-2-en-1-

one (P4) (Table 5.1, entry 1). A direct carbonylation product of phenylboronic acid 

benzaldehyde and a hydroarylation product, 1,1,2-triphenyl acetylene were also 

determined in the reaction mixture.  

Addition of PPh3 ligand or NEt3 base to the reaction medium reduced the 

formation of furanone product, 1. (Table 5.1, entries 2 and 3). The reaction showed less 

selectivity for the formation of furanone (1) when dioxane: water (9:1) solvent mixture 

was used (Table 5.1, entry 4). Water addition to the reaction greatly decreased the 

formation of 1, while the formation of P2, P3 and P4 increased with the presence of 

water. 

 

 

 



 

 51

Table 5.1 The effect of temperature, solvent and additives on [Rh(cod)Cl]2 catalyzed 

carbonylative addition reaction of phenylboronic acid to diphenyl acetylene 

 

Ph

Ph
+

Ph
B(OH)2

Ph
Ph

PhO
+

O
O

Ph

Ph
Ph

+

O

Ph

Ph

+

Z-,E-

 20 atm CO, 16 h
10 mL dioxane

3% Rh, [Rh(cod)Cl]2

1 mmol 
R1

3 mmol
R2

1 P2 P3 P4

(5.1)

O

Ph

Ph

 

                YIELD 

Entry T 

(°C) 

Conversion of R2 

%a 
1 %a P2 %a P3 %a P4 %a 

1 120 100 70 5 15 11 

2b 120 100 44 15 15 <1 

3c 120 100 39 7 7 <1 

4d 120 100 39 11 24 20 

5e 120 100 74 4 9 <1 

6e,f 120 100 43 9 16 <1 

7e 100 100 80 2 5 <1 

8e 80 100 86 2 3 1 

9e,g 80 88 63 2 4 1 

10h 80 100 38 3 4 31 

11i 80 100 33 2 <1 4 

12j 80 100 25 2 <1 7 

13k 80 100 90 <1 <1 <1 

 
a GC yield, b In the presence of 6% equiv. PPh3, c In the presence of 2 mmol NEt3, d Performed 

in a dioxane:water solvent mixture (9:1), e Performed in a dried dioxane solvent (dried on 

molecular sieve 4Å), f In the presence of 1 g molecular sieve 4Å, g Performed with a 1% Rh, h 

Ethanol was used, i Dry methanol:water solvent mixture was used (9:1), j  Dry methanol:water 

solvent mixture was used (9.9:0.1), k  Performed in dry-toluene solvent 
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 It was observed that using a pre-dried dioxane solvent decreased the formation 

of benzaldehyde and the product P4 to trace amount (Table 5.1, entry 5). However 

direct addition of molecular sieve 4Å into the reaction medium decreased the formation 

of 1 (Table 5.1, entry 6). Under this condition, it was observed that decreasing the 

reaction temperature to 80 oC increased the formation of 1 up to yield of 86% while 

formation of by-products greatly reduced at these lower temperatures (Table 5.1, entries 

7 and 8). A reaction was also performed at 60 oC, but no activity was observed in 

dioxane solvent at this temperature. Then optimum reaction temperature was 

determined as 80 oC. Decreasing the Rhodium amount from 3% to 1% was resulted in a 

decrease in the formation of 1 (Table 5.1, entry 9). The use of ethanol or methanol 

solvent reduced the formation of 1. However higher yield of 1 was obtained and the 

formation of side products were decreased to trace amounts by the use of dry toluene 

instead of dioxane (Table 5.1, entries 8, 10-13). 

 

Table 5.2 The effect of Rh amount and mole ratio of R1 and R2 on [Rh(cod)Cl]2 

catalyzed carbonylative addition reaction of phenylboronic acid with 

diphenyl acetylene 

 

Ph

Ph
+

Ph
B(OH)2

Ph
Ph

PhO
+

O
O

Ph

Ph
Ph

+

O

Ph

Ph

+

Z-,E-

 20 atm CO, 16 h
10 mL dry-toluene

 [Rl(cod)Cl]2

 
R1 R2

1 P2 P3 P4

(5.2)

O

Ph

Ph

 

    Yielda % 

Entry Rh(%) 
Mole Ratio of 

R2 / R1 

Conversion of   

R1 % 
1 P2 P3 P4 

1 1 3 100 85 1 <1 <1 

2 0.3 3 95 81 2 1 <1 

3b 1 3 63 43 <1 <1 <1 

4 1 1.2 100 89 (78) 2 1 <1 
 

a GC yield, isolated yiels shown in parantheses, bReaction was performed at 60oC 
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Rhodium amount could be decreased up to 0.3% with only little decrease in the 

yield of 1 from 85% to 81% (Table 5.2, entries 1 and 2). When compared to dioxane, 

using dry-toluene as solvent in the reaction at 60 oC, resulted in a moderate yield of 1 

(Table 5.2, entry 3). The reaction was also effective when 1.2 equivalent of 

phenylboronic acid was used (Table 5.2, entry 4). 

 

Table 5.3 Effect of Rhodium catalysts on carbonylative addition of phenylboronic acid 

to diphenyl acetylene 

Ph

Ph
+

Ph
B(OH)2

O
O

Ph

Ph
Ph

 20 atm CO, 16 h
80 oC

10 mL dry-toluene

1 % Rh

1 mmol 
R1

1.2 mmol
R2 1

(5.3)

 
 

Entry Catalyst Conversion%a Yield%a 

1 [Rh(cod)Cl]2 100 89 (78) 

2 [Rh(cod)OH]2 100 93 (86) 

3 [Rh(C2H4)2Cl]2 100 35 

4 [Rh(C2H4)2acac]2 63 87 

5 [Rh(cod)2BF4] 100 84 

6 [Rh(CO)2Cl]2 100 88 
 

a  GC yield, isolated yield shown in parantheses 

 
In the optimization study, effect of Rhodium source was also investigated by 

using various Rhodium complexes (Table 5.3). The reaction was more efficient for the 

formation of 1 when [Rh(cod)OH]2 was used as a catalyst precursor (Table 5.3, entry 

2).  

 

 

 

 



 

 54

Table 5.4 Effect of pressure and additives on carbonylative addition reaction of 

phenylboronic acid to diphenyl acetylene 

 

Ph

Ph
+

Ph
B(OH)2

O
O

Ph

Ph
Ph

CO, 16 h, 80 oC
dry-toluene

1 %Rh, [Rh(cod)OH]2

1 mmol 
R1

1.2 mmol
R2 1

(5.4)*

 
 

Entry P, atm Conversion%a Yield%a 

1 20 100 93 (86) 

2 10 100 76 

3 5 100 65 

4b 20 100 64 

5c 20 100 72 

6d 20 80 47 

 
a GC yield, isolated yield shown in parantheses, b 2 mmol of water was added, c 6 mmol of 

water added and reaction temperature was 88 oC d 3 % Rh and 4.5 % R-BINAP ligand were 

added 

 

     Under the defined conditions shown in equation (5.4), it was found that the 

formation of product 1 decreases with the decrease of CO pressure (Table 5.4, entries 2 

and 3). Addition of water into the reaction medium was also detrimental for the 

formation of 1 (Table 5.4, entries 4 and 5). However enantioselectivity of the product 1 

could not  be ensured by using BINAP ligand in the reaction (Table 5.4, entry 6). 
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5.2. Rh-catalyzed Carbonylative Reactions of Different Arylboronic 

Acids with Diphenyl Acetylene 

 

Rh-catalyzed carbonylative reactions of various p-, m- and o-phenylboronic 

acids with diphenyl acetylene were investigated under the optimal conditions 

determined (1.2 mmol arylboronic acid, 1 mmol diphenylaceylene with [Rh(cod)Cl]2 

(1% Rh)  in 10 mL dry-toluene at 80 oC under 20 atm CO for 16 h) (Table 5.5). 

 

Table 5.5. Reaction of arylboronic acids with diphenyl acetylene under CO 

 

(5.5)+

1 mmol

B(OH)2
 20 atm CO, 16 h

10 mL dry-toluene

1%Rh,  [Rh(cod)OH]2

O
O

R

R

1.2 mmol
 

 

Entry Product # R Isolated Yield% 

1 1 H 86 

2 3 4-CH3 88 

3 6 3-CH3 90 

4a 7 2-CH3 41 

5 2 4-OCH3 90 

6 4 4-COCH3 88 

7a 4 4-COCH3 93 

8b 5 4-CF3 47 

9a 5 4-CF3 82 

 

a 3% Rh is used, b [Rh(cod)Cl]2 was used 
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Very high yields of corresponding furanones were isolated with phenylboronic 

acid and with the phenylboronic acids substituted with electron-donating groups at 

meta- or para- positions (Table 5.6, entries 1,2,3,5). Reaction of electron-poor 

arylboronic acid, 4-acetylphenylboronic acid, also proceeded with high efficiency. 

However the presence of stronger electron-withdrawing group, -CF3, somewhat reduced 

the activity of the catalyst, and hence relatively higher concentration of catalyst (3% Rh) 

was needed to afford high yield of the furanone correspondingly. When the reaction was 

performed with ortho-substituted phenylboronic acid the corresponding product 

formation was found to be moderate (Table 5.5, entry 4). 

 Corresponding furanone could not be isolated when 2-transphenylvinylboronic 

acid was used with diphenyl acetylene. 

 

5.3. Rh-catalyzed Carbonylative Reactions of Alkynes with 

Phenylboronic Acid 
 

 We also performed the Rhodium-catalyzed carbonylative reactions of different 

alkynes with phenyboronic acid under the optimized conditions. 

 

5.3.1. Rh-catalyzed Carbonylative Reaction of 4-Octyne with 

Phenylboronic Acid 

 
When 4-Octyne was used in the reaction with phenylboronic acid under the 

optimized conditions, the presence of two isomers were detected in the crude product by 

GC and GC-MS analyses (Figure 5.1), These two products had same molecular weight.  

Nevertheless only one of these isomers could be isolated via column 

chromatography on silica gel (Figure 5.2). It seems that the isomer eluting first from the 

GC column transformed to the other more stable isomer during the column separation 

on silica gel. 
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Figure 5.1. GC-Chromatogram of the sample after reaction finished 

 

 
 

Figure 5.2. GC-Chromatogram of the sample after purification by column 

chromatography 

 

The structure of the less stable isomer was 5-phenyl-3,4-dipropylfuran-2(3H)-

one as determined by the NMR analyses of the crude product (1a in Figure 5.3). A 

triplet which appears at 3.41 ppm of 1H NMR and a resonance peak at 46.92 ppm of 13C 

NMR spectra (Figures A.16a and A.16b) of the crude product, was found to have cross 

correlation as determined by HMQC NMR analysis (Figure A.16c) and assigned to be 

3H and 3C within the ring of the structure 1a. It should be noted that though the 

presence of such isomer was not determined in the reactions of diaryl alkynes, it does 

not mean that it did not form at all. 

This difference could be explained by the relative rates of conversion of 2(3H)-

furanones to the 2(5H)-furanone products for the reactions dialkyl acetylene and diaryl 

acetylene substrates (Figure 5.3). Probably the conversion rate from 1a to 1b is much 

Rh %    Isolated Yield% 
 0.88         60 
   3                76 
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higher than that for the conversion of 2a to 2b due the higher stability of the structure 2b 

compared with that of 1b which is rendered by the extended π electron system for the 

former structure. 

 

O O O O

5-phenyl-3,4-dipropylfuran-2(3H)-one 5-phenyl-3,4-dipropylfuran-2(5H)-one

O O

Ar Ar

O O

Ar Ar

k1

k2

1a 1b

2a 2b  
Figure 5.3. Reaction rates of aryl-aryl alkynes and alkyl-alkyl alkynes 

 

5.3.2. Rh-catalyzed Carbonylative Reactions of Asymmetric Alkynes 

with Phenylboronic Acid 
 

Reactions with the asymmetrical alkynes were resulted in production of two 

isomers of furanone.  

When alkynes having one phenyl and one substituted phenyl groups attached on 

the each acetylenic carbon atoms were used under the optimum conditions, isomeric 

ratio of yields showed that aroylation occurs more on the electron deficient acetylenic 

carbon as compared with electron rich acetylene when aroylrhodium(I) species 

undergoes 1,2-addition to the carbon-carbon triple bond in the reaction. 

When methoxy group was attached to one of these phenyl rings on the para- 

position, ratio of isomer A to isomer B was found as 29:43 (Table 5.6, entries 3,4). 

Moreover this ratio was found as increasing when methyl group was on the ortho- 

position (26: 68) (Table 5.6, entry 5).  
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Table 5.6. Activity of different diaryl-substituted asymmetric alkynes 

 

PhB(OH)2

 [Rh(cod)OH]2 0.88%Rh
10 mL dry toluene

20 atm CO, 80oC
16 h

O
Ph OR2

R2

O
Ph O

1 mmol 1.2 mmol

A B

++

R1

R2R1R1

 
 

Entry Product # R1 R2 Isolated Yield % (A:B) 

1a 10 2-OCH3 4-CH3CO 23:63 

2 11 H 4-CH3CO 45:36 

3a 15 H 2-CH3O 26:68 

4 16 H 4-CH3O 29:43 

5 18 H 2-CH3 30:42 

 

a 1% Rh is used  

 

When there is an electron-withdrawing group on the para- position, the ratio of 

isomer A to isomer B was found to be 45:36 (Table 5.6, entry 2).  

When reaction was performed with an alkyne which has an electron-donating 

group on the ortho- position, reaction produced isomers with 26:68 yield ratio. It is 

probably because of steric hindrance of this phenyl group substituted with a –MeO 

group on ortho- position and this electron-donating group also makes that part of the 

acetylene, electron rich (Table 5.6, entry 3). 

The presence of electron-withdrawing group at the p-position of one of the 

phenyl ring and an electron-donating group at the other gave relatively higher A to B 

isomer ratio (Table 5.6, entry 1).  

When an alkyne having aryl group which is substituted by MeO- group on the p-

position was used isomeric ratio of A to B was found as 29:43 (Table 5.6, entry 4). 

When a sterically more hindered aryl group attached alkyne was used isomer ratio was 

relatively higher (Table 5.6, entry 3). 



 

 60

These results revealed that aroylation step on the side of electron poor acetylenic 

carbon is higher when compared to the electron rich acetylenic carbon.  

 

Table 5.7. Activity of aryl and alkyl substituted alkynes 

 

R2 PhB(OH)2

 [Rh(cod)OH]2
10 mL dry toluene

20 atm CO, 80oC
16 h

O
Ph O

R2

R1

R1

O
Ph O

R2

R1

1 mmol 1.2 mmol

A B

++

 
Entry Product # R1 R2 % Rh Isolated Yield% (A:B) 

1 12 H CH3 2.63 34:34 

2 9 H n-C3H7 2.63 35:47 

3 13 4-CH3CO n-C4H9 0.88 24:42 

4 14 4-CH3O n-C4H9 1 36:44 

5 17 2-CH3O n-C4H9 3 11:48 

 

The reaction of 1-phenyl-1-propyne with PhB(OH)2 under CO atmosphere 

yielded two isomeric mixture of furanones almost in a ratio of unity (Table 5.7, entry 1). 

When internal alkynes which have both alkyl and aryl substitutents were used, 

isomers of the corresponding products were able to be isolated separately. Alkyne 

having alkyl and aryl group which is para-substituted with MeO- gave relatively low 

isomeric ratio of B to A with 1% Rh when compared with the alkyne whose aryl part is 

sterically more hindered in the presence of 3% Rh (Table 5.7, entries 4, 5). 

Nevertheless, for other internal alkynes substituted with both aryl and alkyl 

moieties, the more preferred orientation of aroylation was at the side of acetylenic C 

attached to an alkyl group (Table 5.7, entries 3, 4, 5). 

Reactions were also performed with 1-(3,3-diethoxyprop-1-ynyl)benzene, 4,4-

dimethylpent-2-yne, 1-(2-(2-phenylethynyl)phenyl)ethanone, 1,3-dimethyl-2-(2-

phenylethynyl)benzene, 1,4-dimethoxybut-2-yne, 2-(4-(tetrahydro-2H-pyran-2-
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yloxy)but-2-ynyloxy)-tetrahydro-2H-pyran, norbornene, 6-methyl-2-heptyne, 2-

butynylacetate, methyl-2-heptynoate, phenylacetylene, diphenylpropynone, 

phenylpropiolaldehyde, 2-butyn-1,4-diol, 2-heptyne-1-ol as alkyne in the rhodium 

catalyzed carbonylative reactions with phenylboronic acid, but these reactions produced 

either complex mixture of products or yielded no furanone compounds. 

 

5.4. Proposed Mechanism of Rh-catalyzed Carbonylative Reactions of 

Arylboronic Acids with Alkynes 

  
In Figure 5.4, proposed mechanism for formation of furanones is shown.  

 

[Rh]

[Rh] Ar

O

Ar

[Rh]

CO

R

R

[Rh]

R R

Ar
O

R R

Ar
O

[Rh]
O

O O[Rh]

R R
Ar

O O

R R

Ar

ArB(OH)2

CO

H+

transmetallation

insertion of CO

1,2-addition

insertion of CO

ring closure

O O

R R

Ar

 
 

Figure 5.4. Proposed mechanism for the Rh-catalyzed carbonylative reaction of 

arylboronic acids with alkynes 

  

At first, an arylrhodium(I) species (A) can be formed by the transmetallation of 

Rh (I) compounds with arylboronic acid. Then this arylrhodium(I) species could insert 

into CO to form an aroylrhodium(I) species. Then this aroylrhodium(I) undergoes 1,2-

addition to the carbon-carbon triple bond of alkyne which results in the formation of β-

aroylalkenylrhodium(I) complex. This complex then could insert into another CO. Later 
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ring closure of the formed complex gives a σ-furanoyl species. Elimination of Rh from 

this cyclic complex by protonation gives a 5-aryl-2(3H)-furanone molecule which is an 

intermediate. In this part, source of proton should be mainly the arylboronic acid itself 

and its decomposition product. 2(3H)-furanone is less stable compared with 2(5H)-

furanone as a result of conjugation. So, after 2(3H)-furanone is formed then it changes 

to 2(5H)-furanone. 

 

5.5. Identification of Furanone Isomers 

 
When the reaction was performed with 1-(2-o-tolylethynyl)benzene, two 

different proton signals were obtained in 1H NMR spectrum of isomer A (Table 5.6, 

entry 5, Figure A.81) which is 3,5-diphenyl-4-o-tolylfuran-2(5H)-one. This situation 

can be explained by the presence of 18a.  

Atropisomers are isomers of same compound and they differ only in 

configuration resulting from hindered rotation of single bond where steric strain barrier 

to rotation is high enough to allow for the isolation of the conformers (Bringmann, et al. 

2005). They can be isolated as separate chemical species. Likewise, it was found to be 

as two atropisomers for the isomer 18a (Figure 5.5). 

 

O
O O

O

H3C
H3C

 
 

Figure 5.5. Atropisomers of furanone 18a 

 

In order to identify some of the isomers, we compared our results with literature. 

When furanone ring has aryl group on each 4- and 5- positioned carbon atom on the 

furanone ring, 5H signal was found to be as singlet between 6-6.5 ppm on the 1H NMR 

spectrum. When furanone has an aryl group attached to 5th carbon on the furanone ring 

http://en.wikipedia.org/wiki/Steric_strain
http://en.wikipedia.org/wiki/Conformer
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and an alkyl ring on the 4th carbon, it is observed that 5H signal was found to be as 

singlet between 5.5-6 ppm on the 1H NMR spectrum (Six 2003, Delaunay 1988). We 

identified some of the isomers in a manner based on these chemical shift values of 5H 

signal and NOE experiments. 

Isomers 9a-9b could not be isolated separately with column chromatography. A 

fraction which was rich by 9a was obtained and analyzed and identified by comparing 

the 5H signal with the literature (Six 2003). Isomers 12a and 12b were also identified 

by comparing their 5H signals on 1H NMR spectrum with literature (Delaunay 1988). 

Likewise, isomer 10b could not be obtained seperately, but isomer 10a was isolated as 

itself and analyzed with NOE (Figure 5.2, Figure A.21-24). 

Isomers 11a (Figure A.29-32), 13a (Figure A.41-44), 14a (Figure A.49-53), 15a 

(Figure A.58-60), 16a (Figure A.65-68), 17a (Figure A.73-74) and 17b (Figure A.77-

78) were also analyzed by using the NOE technique, and structure of these isomers were 

identified by results of these NOE experiments.  
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CHAPTER 6 
 

CONCLUSION 

   

     In this thesis study, rhodium-catalyzed carbonylative additions of phenylboronic 

acids to various alkynes were investigated.  

[Rh(cod)OH]2 was found to be the most effective complex in catalyzing the 

reactions.  

The yield of furanones was higher when para- and ortho- substituted 

phenylboronic acids were used. However, an ortho-substituted phenylboronic acid was 

found to give moderate yield for the corresponding furanone product probably due to 

steric hinderance on the arylboronic acid. Electron-rich arylboronic acids were also 

found to be more reactive with diphenylacetylene. Yield of furanone product decreased 

with electron deficient arylboronic acids.  

 For the reactions of internal alkynes substituted with both aryl and alkyl 

moieties the more preferred orientation of aroylation was at the side of acetylenic 

carbon attached to an alkyl group. On the other hand, in the reactions of aryl-aryl 

alkynes, rhodium aroylation occurs more on the electron deficient acetylenic carbon as 

compared with electron rich acetylene when aroylrhodium(I) species undergoes 1,2-

addition to the carbon-carbon triple bond in the reaction. In this type of reactions 

isomeric ratios were also affected by steric hinderance on the phenyl group attached to 

the alkyne. 
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APPENDIX A 

13C AND 1H NMR AND NOE SPECTRUMS OF 

FURANONES 
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FT-IR SPECTRUMS OF FURANONES 
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APPENDIX D 

13C NMR AND 1H NMR OF SONOGASHIRA 
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APPENDIX E  

MASS SPECTRUMS OF SONOGASHIRA PRODUCTS 
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A3

Figure E.3. GC-MS spectrum of 1-methoxy-4-(2-phenylethynyl)benzene 
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