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ABSTRACT 
 
 

This study is concerned with the fracture of an axisymmetric thick-walled 

cylinder. The cylinder is under the action of axisymmetric tensile loads at infinity. A 

ring-shaped crack with surface free tractions is located at the symmetry plane. Material 

of the cylinder is assumed to be linearly elastic and isotropic. Solution for this problem 

can be obtained by superposing the solutions for (i) an infinite cylinder subjected to 

uniformly distributed tensile load at infinity, and (ii) an infinite cylinder having a crack 

(the perturbation problem). The Hankel and Fourier transform techniques are used for 

the solution of the field equations. Applying the boundary conditions, the singular 

integral equation in terms of crack surface displacement derivative is derived. By using 

an appropriate quadrature formula the integral equation is reduced to a linear algebraic 

equation system. Numerical solution is used to develop results for the stress intensity 

factors at the tips of the crack. Results are presented in graphical and tabular forms. 
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ÖZET 

 
Bu çalışmada eksenel simetrik ve sonsuzda eksenel çekmeye maruz  bir 

silindirik tüpün kırılması problemi ele alınmıştır. Halka şeklindeki çatlak z=0 simetri 

düzleminde bulunmaktadır. Silindir malzemesinin lineer elastik ve izotropik olduğu 

varsayılmıştır. Problemin çözümü (i) sonsuzda  düzgün yayılı çekmeye maruz tüp ve  

(ii) çatlak içeren tüp (pertürbasyon problemi), çözümlerinin süperpozisyonu ile elde 

edilebilir. İlk problemin çözümü ikinciye nazaran daha temel ve çalışmanın asıl amacı 

olan gerilme şiddeti katsayılarının hesaplanmasıyla ilgili olmadığından yapılmamış,  

ikinci problem (pertürbasyon problemi) ise detaylı olarak incelenip çözümü yapılmıştır. 

Elastisite denklemlerinin çözümünde Fourier ve Hankel integral dönüşümleri  

kullanılmış, sınır şartları uygulanarak çatlak yüzeyi yer değiştirmesinin türevi cinsinden 

bir tekil integral denklem elde edilmiştir. Bu tekil integral denklem de uygun bir 

integrasyon formülü kullanılarak bir cebirsel denklem sistemine dönüştürülmüştür. 

Çatlak uçlarındaki gerilme şiddeti katsayıları farklı çatlak durumları için nümerik olarak 

hesaplanmış, sonuçlar grafik ve tablolar halinde sunularak değerlendirilmiştir. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 . Theoretical Background 
 

Fracture mechanics was introduced in the 1950s under the leadership of G.R. 

Irwin. The concept of fracture mechanics were further developed and refined throughout 

the 1960s by a collaboration of researchers in some universities and research centers 

(Sanford 2002). 

Consider a structure in which a crack develops. This crack will grow with     

time because of the application of repeated loads or a combination of loads and 

environmental attack. The longer the crack, the higher the stress concentration induced 

by it. Many structures are designed to carry service loads that are high enough to initiate 

cracks, particularly when pre-existing flaws or stress concentrations are present. The 

designer must anticipate this possibility of cracking and consequently he has to accept a 

certain risk that the structure will fail. In order to ensure this safety it must  be  predicted 

how fast cracks will grow and how fast residual strength will decrease. Making these 

predictions and developing   prediction methods are the objects of  fracture mechanics. 

Because of that, the process region do not treat as a continuum, crack and fracture 

problems can not be solved simply by calculating stresses and strains in the body. On 

the other hand knowledge of stresses and strains in the continuum outside the process 

region is essential for understanding the process of fracture. In fracture mechanics 

problems both analytical and numerical methods are widely used scientific tools. 

Analytical methods usually are based on partial differential or integral equations while 

the finite element methods dominate in numerical solution of the problems  

Fracture mechanics should be able to answer the following  five questions 

1)What is the residual strength as  a function of crack size ? 

2)What size of crack can be tolerated at the expected service load ? 

3)How long does it take for a crack to grow from a certain initial size to the critical 

size?  

4)What size of  pre–existing flaw can be permitted at the moment the structure starts its 

service life? 
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5)How often should be structure be inspected for cracks? 

 

Fracture mechanics provide satisfactory  answers to some of above questions and useful 

answers to the others. In order to make a successful use of fracture mechanics in 

engineering application it is essential to have some knowledge about the broad field of 

fracture mechanics. This is schematically  explained in (Figure 1.1.). 

 
 
 

Fracture Fracture 
processes and 

criteria 

Plasticity Testing Applications 

 
 
                          Material Science                   Engineering 
 

                             Applied Mechanics 
 
 Fracture Mechanics 
 
 

Figure 1.1. The broad field of fracture mechanics. 
 

 
 

 

 
 
                    mode I                          mode II                   mode III 
 

Figure 1.2. The three modes of loading 
 
 
A crack in a solid can be stressed in three different modes as illustrated in (Figure 1.2.). 

These modes were introduced by Irwin (1960). Based on the Figure 1.3, the problem 

subjected to one of the three modes of loadings can be explained as 
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Figure1.3. Crack and coordinate system.(the z- axis toward the reader). 
 
 

1. Opening Mode (Mode I): A body, under this type of loading, is exhibited two 

different displacements and stresses  behaviors. (i)Horizontal displacements u(x,y,z) are 

symmetric, (ii) vertical displacements v(x,y,z) are anti-symmetric. Also if the material is 

isotropic then , (i) normal stresses ),,(),,,(),,,( zyxzyxzyx zyx σσσ  are symetric, (ii) 

shear stresses ),,(),,,(),,,( zyxzyxzyx yzxzxy τττ are anti-symetric. These important 

symmety relations  can be described by the following mathematical notation: 

 
 
 
 
 
 
 
If  the material of the body is isotropic, then the stresses given below are  valid  
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For in-plane problems there is no dependence on the antiplane coordinate z except for w 

in mode II. Thus, 

 

 
 
 
 
 
 
Then, normal stresses are anti-symmetric, shear stresses are symmetric 
 
 
 
 
 
 
 
 
 
 
 

3. The anti-plane shearing mode(Mode III):The only non-vanishing displacement w is 

anti-symetric. The only non-vanishing stresses are xzτ   anti-symetric and  yzτ  

symmetric. 
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The fracture mechanics approach has three important variables: applied stress, 

flaw size and  fracture toughness. There are two alternative approaches to fracture 

analysis: the energy criterion and the stress intensity approach. In the present study 

stress intensity approach is used to analyze the problem. Stress intensity factor is a 

quantity determined analytically and varies as a function of the crack configuration and 

the manner in which the external loads are applied. Hence, the analytical expression of  

k  changes from one system to another. It is known that the maximum stress becomes 

unbounded when the notch root radius tends to zero in the elasticity solutions of 

problems involving  stress concentrations. In this case, it is said that the stress state at 

the notch root is singular and the asymptotic examination would show that the 

magnitude of the stresses are of the form ασ rkij /a , 10 << α  where r is the distance 

from notch root and k is a constant. Here  α   and k describe the nature of the stress 

singularity at the notch root .When the notch becomes a crack, the strength of the stress 

singularity k is known as the Stress Intensity Factor (SIF). This concept provides a 

universal description of the fracture process. In other words, no matter what the history 

or the external conditions in a given system, if the stress intensity factor in any two 

systems has the same value, the crack tip that they describe will behave in the same 

way. The universal form of the stress intensity factor allows a complete description of 

the behavior of the tip of a crack where one need only carry out the analysis of a given 

problem within the universal elastic region.  

 
 

1.2. Mathematical Background  
 
 

1.2.1. Boundary Conditions in Crack Problems: 
 

 
Conditions on boundaries of the continua may be divided into the following 

three categories: 

 
1. Conditions on the outer boundaries of the body, including the crack faces:  These 

conditions usually consist of specification of  traction or displacements. 
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2. Continuity conditions on the interfaces between different regions in the continuum 

such as the elastic region, plastic region and its some regions occupied by different 

materials. 

 
3. Conditions on the boundary to the process region: These conditions depend on the 

response of the process region model to loads or displacement. 

 
 

1.2.2. Methods of Solution 
 
 

Experiences show that analytical methods often lead to better understanding 

general properties of the phenomena and also numerical methods can be properly 

exploited only with a thorough knowledge of analytical methods and results. Analytical 

techniques are frequently used for controlling the accuracy of numerical methods, 

therefore this part focus  on analytical methods only . 

Complex potential, integral transform and singular integral equations are three 

important methods for the solution of crack problems leading to the calculation of the 

stress intensity factors. Now, some significant points of these techniques and 

comparison of   them  will  be given. 

 
 
1.2.2.1. Complex Potential Method 
 
 

This method is applicable to only two dimensional problems and  provides  the 

simplest analyzing the singular behavior of the solution. Complex potential method can 

be investigated under  the  following three important solution techniques (Erdogan 

1983): 

   1. The Method of Conformal Mapping 

   2. Laurent Series Expansion  

   3. Boundary Collocation Method 

 
 
1.2.2.2. Integral Transforms 
 

If the problem is a mixed boundary value problem, then  integral  transform  is 

the most widely used method(Erdogan 1983). Especially, the crack problems for an 
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elastic plane or an infinite strip containing a line crack, elastic cylinder with an infinite 

or finite radius containing an axisymetric crack can easily be reduced to dual integral 

equations by using Fourier, Mellin and Hankel transforms depending on the geometry 

of the problem. 

 
 
1.2.2.3. Singular Integral Equations 
 
 

Dual integral equations arising from the formulation of the crack problems may 

be reduced to a singular integral equation. The crack problems can also be formulated in 

terms of a system of singular integral equations by using the related Green’s functions 

(e.g., dislocation and concentrated load solutions). This method has clear advantages in 

problems involving unusual stress singularities (Erdogan 1983). 

 

1.3. Literature Overview 
 

Hollow cylinders have extensively practical application in engineering. The 

fracture problem in pressure vessels, pipes and other cylindrical containers has 

developed rapidly because of various technical applications. 

Here, some important examples of previous analytical studies related with  the   

solution of the crack problems leading to the calculation of the stress intensity factors  

(SIFs) will be given . 

(Gupta 1973) analyzed a semi-infinite strip held rigidly on its short end. Stress 

singularity at the strip corner is obtained from the singular integral equation. Stress 

along the rigid end is determined and the effect of the material properties on the stress 

intensity factor is presented. (Sneddon and Welch 1963) considered a long circular 

cylinder of elastic material containing a penny-shaped crack at the center of the cylinder 

and analyzed the distribution of stress in the problem. (Erdogan and Erdol 1978) studied 

an elastostatic axisymmetric problem for a long thick walled cylinder containing a ring 

shaped internal or edge crack .The problem is formulated in terms of a singular integral 

equation which has a simple Cauchy kernel for the internal crack and a generalized 

Cauchy kernel for the edge crack as the dominant part. In the paper by (Gupta 1974) the 

axisymmetric semi-infinite cylinder with fixed short end  is considered. In the study 

applied loads are far away from the fixed end of the cylinder . In order to formulate the 
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problem, integral transform method is used and a singular integral equation is obtained. 

(Delale and Erdogan 1982) analyzed a hollow cylinder problem . The cylinder contains 

an arbitrarily oriented  radial crack and it is subjected to arbitrary normal tractions on 

the crack surfaces. The problem is formulated in terms of a singular integral equation by 

using the basic dislocation solutions as the Green’s functions. A different solution 

technique has been given by (Benthem and Minderhood 1972) .The problem of a finite 

strip  compressed between two rigid stamps is solved by using eigenfunction technique. 

There exist also recent papers related with hollow cylinder and stress intensity factor 

calculation with different boundary conditions. (Uyaner 2004) is considered a problem 

of ring shaped crack contained in an infinitely thick walled cylinder. The material of the 

cylinder is  assumed to be transversely isotropic (transtropic) and the cylinder is under 

the action of uniform loading. The stress function is expressed in terms of governing 

equations. Hankel and Fourier Transform is used and  the problem  is reduced to a 

singular integral equation. The singular integral equation is solved by using the 

Gaussian Quadrature and the stress intensity factors are calculated.(Birinci 2002) 

analyzed the elastostatic axisymmetric problem for a long thick-walled cylinder 

containing an axisymmetric  circumferential internal or edge crack with cladding at the 

inner surface of the cylinder. Integral transform techniques are used and the problem is 

formulated in terms of  a singular integral equation. The integral equation is solved 

numerically by using the quadrature formulas. The stress intensity factors are calculated 

and influence of the geometrical configuration and the cladding  on the SIFs is 

discussed. (Artem and Gecit 2002) considered the fracture of an axisymmetric hollow 

cylindrical  bar containing rigid inclusions. The cylinder contains  a ring shaped crack 

located  at the z = 0 plane whose surfaces are free of tractions . The material of the 

hollow cylinder is to be linearly elastic and isotropic and the cylinder is under the action 

of uniform loading. Fourier and Hankel transform techniques are used  and  because of 

the mixed boundary condition of the problem, a system of three singular integral 

equation is analyzed and solved numerically. Finally, the normalized stress intensity 

factors are calculated for  crack and two rigid inclusions 

The  main purpose of the present study is to investigate the stress intensity 

factors at the tips of the crack. The infinite hollow cylinder containing a ring-shaped 

crack at z = 0 plane (symmetry plane) is considered. The axisymmetric cylinder is under 

the action of tensile load at infinity and material of the cylinder is assumed to be 

linearly elastic and isotropic. Solution for the  problem is obtained by means of the 
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superposition of two subproblems: (i) an infinite  hollow cylinder subjected to 

uniformly distributed tensile load at infinity, and (ii) an infinite hollow cylinder having 

a ring shaped crack (perturbation problem). The only load in problem (ii) is the negative 

of the stresses obtained in the problem (i) at location of the crack. Solution of the 

problem (i) is relatively simple and straightforward  and also not related with the 

calculation of stress intensity factors. Therefore, in the present study  only the 

perturbation problem will be solved. By using the Fourier and Hankel transform 

techniques, the  general expressions for the displacement and stress components for the  

perturbation problem are obtained. Applying the boundary conditions on the rigid outer 

surface  and stress free inner surface of the cylinder, a singular integral equation in 

terms of crack surface displacement derivative is derived. The singular integral equation 

is  reduced to a system of  linear algebraic equation by using Gauss-Lobatto quadrature 

formula. After that the linear algebraic equation system including improper integral is 

solved numerically  by using Gauss-Laguerre integration formula. Finally, variations of  

normalized mode I stress intensity factors at the  tips of the crack are calculated. 

Validation of the problem, comparison of the results are presented  in tabular and 

graphical forms. 
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CHAPTER 2 

 
 

PROBLEM DEFINITION AND FORMULATION 

 
2.1. The Infinite Hollow Cylinder Problem 
 
 

An Infinite hollow cylinder containing a ring-shaped crack of width (b-a) at the 

symmetry plane z = 0, is considered. The crack surfaces are free of tractions. The 

hollow cylinder is subjected to an axial tensile loads of uniform intensity p0 at infinity. 

The outer wall of the cylinder is rigid while the inner wall is free of traction. Material of 

the cylinder is assumed to be linearly elastic and isotropic (See Figure 2.1). 

 

r

z

P0

P0

2 b
2 a

2 A

2 B

  
Figure 2.1. Geometry of the problem 
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Solution for the infinite cylinder having a crack of traction free surfaces and 

loaded at infinity can be obtained by superposition of the following two sub-problems 

as illustrated in Figure 2.2: (1) an infinite cylinder subjected to uniformly distributed 

tensile load of intensity p0 at infinity with no crack and (2) an infinite cylinder having a 

ring-shaped crack. The only load in problem (2) is the negative of the stresses in 

problem (1) at locations of the crack (the perturbation problem). From the viewpoint of 

fracture mechanics, the relevant problem is the latter. Therefore, the perturbation 

problem in which the crack surface is  subjected  to  prescribed  tractions only is solved.  

 

 

2 A

2 b
2 a

z

r

0

P0

2 B

 

 

 

 

 

 

 

=

P0

P0

r

(1) 
 

 

 

 

 

 

 

+

2 A

2 B

2 b
2 a

r

z

P0

P0

P0

P0

               
              (2) 

Figure 2.2. Superposition of uniform and crack solutions 

 
 
For linearly elastic, isotropic and axisymmetric problems, the equilibrium equations can 
be written in the following form: 
 

 

0=
−

+
∂
∂

+
∂
∂

rzr
rrzr θσστσ ,                  (2.1) 

 01
=+

∂
∂

+
∂
∂

rz
zrz

rzr
τ

στ ,                                                (2.2) 
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in which σ  and τ  denote the normal and the shearing stresses, respectively. The 

relation between stress and strain (Generalized Hooke’s Law) in the body in tensor 

notation is 
 
 
 

ijkkijij δλµσ ∈+∈= 2                         (2.3) 

 
 
Equation (2.3) can be written for the normal and shearing stress components as  

 
 

rrzzrrrrrrr δλµσσ θθ )(2 ∈+∈+∈+∈=≡ ,                        (2.4a)  

rzzzrrrzrzrz δλµστ θθ )(2 ∈+∈+∈+∈=≡ ,    (2.4b)  

zzzzrrzzzzz δλµσσ θθ )(2 ∈+∈+∈+∈=≡ ,    (2.4c)  

θθθθθθθθθ δλµσσ )(2 zzrr ∈+∈+∈+∈=≡ .               (2.4d) 
       
 

where 




≠
=

=
jifor
jifor

ij 0
1

δ ,  zzrrkk ∈+∈+=∈∈ θθ  , 
ν

νµλ
21

2
−

=  and µ is the shear 

modulus, ν  being the Poisson’s ratio.      

Rearranging the equation (2.4), the following stress – strain relations can be 

obtained 

 
)(2 zzrrrrrrr ∈+∈+∈+∈=≡ θθλµσσ ,                           (2.5a)

 rzrzrz ∈=≡ µστ 2 ,                                                              (2.5b)  
)(2 zzrrzzzzz ∈+∈+∈+∈=≡ θθλµσσ ,                           (2.5c) 

)(2 zzrr ∈+∈+∈+∈=≡ θθθθθθθ λµσσ .                (2.5d)
  

 
 
For the axisymmetric (θ  independent) problem, the strain–displacement relations are as 

follows :  

 

                                       

 
r
u

rr ∂
∂

=∈ ,       
θθθ ∂
∂

+=∈
v

rr
u 1

 (2.6a,b)  

                                            
z
w

zz ∂
∂

=∈ ,       
r
w

z
u

rz ∂
∂

+
∂
∂

=∈ ,              (2.6c,d) 
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where u and w  are displacements  in  r and z directions in cylindrical coordinate 

system, respectively.  

Substituting expressions given in equations (2.6) into equations (2.5) stress- 

displacement relations for the axisymmetric cylindrical problem is obtained as 
     

 

       ( ) ( ) 















∂
∂

+−+
∂
∂

+
−

=
z
w

r
u

r
u

r κκ
κ
µσ 31

1
,                       (2.7a) 

                            ( ) ( ) 















∂
∂

+
∂
∂

−++
−

=
z
w

r
u

r
u κκ

κ
µσθ 31

1
,                      (2.7b)                        

                            ( ) ( ) 















+

∂
∂

−+
∂
∂

+
−

=
r
u

r
u

z
w

z κκ
κ
µσ 31

1
,    (2.7c) 

                            







∂
∂

+
∂
∂

=
r
w

z
u

zr µτ ,                             (2.7d) 

 
 

where, κ ν= −3 4  for plain strain. 

Substituting equations (2.7) into equations (2.1), the following second order 

partial differential equation system, named  the Navier Equations can be obtained  

 
 

             ( ) ( ) 02111
2

2

2

22

2

=
∂∂

∂
+

∂
∂

−+







−

∂
∂

+
∂
∂

+
zr

w
z
u

r
u

r
u

rr
u κκ ,                  (2.8a) 

      ( ) ( ) 011112 2

2

2

22

=







∂
∂

++







∂
∂

+
∂
∂

−+







∂
∂

+
∂∂

∂
z
w

r
w

rr
w

z
u

rzr
u κκ .            (2.8b) 

 

          
These equations must be solved subjected to the following boundary conditions 
 

 

                       ( ) ,, 0prz =±∞σ                            ( )BrA 〈〈 ,                        (2.9a,b)                        

                                   ( ) 00, =rw ,                   ( )BrbarA 〈〈〈〈 , ,         (2.9c)                         

                        ( ) 00, =rzσ ,                  ( ),bra 〈〈                          (2.9d)                         

                        ( ) 0, =zArσ ,        ( ),∞〈〈∞− z                       (2.9e)                        

                        ( ) 0, =zArzτ ,                               ( ),∞〈〈∞− z                       (2.9f)                       
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                         ( ) 0, =zBu ,   ( ),∞〈〈∞− z                           (2.9g)                        

                        ( ) 0, =zBw ,   ( )∞〈〈∞− z .                           (2.9h) 

 
 
2.1.1. The Perturbation Problem 
 

 
Solution for the infinite cylinder containing a ring-shaped crack may be obtained 

conveniently by the superposition of the solutions for the following two sub problems: 

(i) problem of an infinite elastic medium containing a ring shaped crack of width (b-a) 

at the symmetry plane and (ii) problem of an infinite medium without crack subjected to 

arbitrary symmetric loads. This superposition scheme is illustrated in Figure 2.3. 

 
 

2.1.1.1. An Infinite Elastic Medium Having a Crack 
 
 

Consider an infinite medium having a crack at z = 0 plane, z being the axis of the 

medium, whose surfaces are subjected to the opposite of the stresses at the locations of 

the crack obtained from the first problem. Clearly, it is sufficient to consider one half 

)0( ≥z  of the medium only.  

Using the Hankel transform definition  

 
 

                             )0(,)()(});({
0

>= ∫
∞

adxxJaxqxaxqH nn ζζ                        (2.10) 

 
 
where n = 0 for even and n = 1 for odd functions, and now considering the properties of  

odd and even functions, noticing that ),( zru  is an odd and  ),( zrw  is an even functions 

in r, Hankel transform of the displacement components can be written in the following 

form 

 

                               { } drrJrzruzruH )(),();,( 101 αα ∫
∞

=  = ),( zU α                    (2.11a) 

                              { } drrJrzrwzrwH )(),();,( 000 αα ∫
∞

=  = ),( zW α       (2.11b) 
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Figure 2.3. The informal superposition scheme (Perturbation problem) 
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where J0  and  J1  are the Bessel functions of the first kind of order zero and one, 

respectively. Applying Hankel transform to equations (2.8) in r-direction  

 
 

            0}{2}{)1(}1{)1(
2

12

2

122

2

1 =
∂∂

∂
Η+

∂
∂

Η−+−
∂
∂

+
∂
∂

Η+
zr

w
z
u

r
u

r
u

rr
u κκ ,            (2.12a) 

 

         0}{)1(}1{)1(}1{2 2

2

02

2

0

2

0 =
∂
∂

Η++
∂
∂

+
∂
∂

Η−+
∂
∂

+
∂∂
∂

Η
z
w

r
w

rr
w

z
u

rzr
u κκ ,  (2.12b) 

 
 
 
and now by using the partial derivative properties of Hankel transform, one obtains 

  

 

                                0)1()1(2 2

2
2 =++−−

dz
WdW

dz
dU κκαα ,                            (2.13a) 

                              02)1())(1( 2

2
2 =−−+−+

dz
dW

dz
UdU ακακ .              (2.13b) 

 
 
 
After some routine manipulations, the equation system (2.13) can be reduced to the 

following fourth order ordinary differential equation 

  
 

                                                      02 4
2

2
2

4

4

=+− U
dz

Ud
dz

Ud αα .     (2.14) 

 
 
 
The general solution of equation (2.14) is obtained as 
 
 
                                              
                                         zz ezccezcczU ααα )()(),( 4321 +++= −                           (2.15) 
 
 
 
where c1, c2, c3 and c4 are arbitrary unknown constants and 0>α . 

To have the finite displacements at infinity, constants c3 and c4 must be equal to 

zero for the upper half - space , moreover constants c1 and c2 must be equal to zero for 
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the lower half space. Therefore, considering the subscript 1 and 2, indicate the upper 

and the lower half-spaces, respectively, equation (2.15) can be written as in the 

following forms 

 

 
          zezcczU αα −+= )(),( 211 ,                                )0( ≥z ,          (2.16a)                         
                                                 

                                 zezcczU αα )(),( 432 += ,                                 )0( ≤z .        (2.16b)                         
 

 

Using the similar procedure for W(α,z), the solutions are  obtained as follows 
 
 
 

                          ( ) zec
z

zcczW ακα −




 ++= 2211 ),( ,                       )0( ≥z ,            (2.17a) 

                                          

                         ( ) zec
z

zcczW ακα 



 ++−= 4432 ),( ,                       )0( ≤z .           (2.17b) 

 
                                        

 
Taking the inverse transforms of (2.16) and (2.17), displacement components are found 

to be  

 
 

                            ,)()(),( 1
0

211 αααα drJezcczru z∫
∞

−+=                       )0( ≥z , (2.18a) 

                            ( ) ( ) ,),( 1
0

432 αααα drJezcczru z∫
∞

+=                        )0( ≤z , (2.18b) 

                           ( ) ααακ
α

α drJeczcczrw z )(1),( 0
0

2211
−

∞

∫ 







++= ,   )0( ≥z , (2.18c) 

                           ( ) ααα
α
κ α drJeczcczrw z )(),( 0

0
4432 ∫

∞









++−= ,   )0( ≤z .  (2.18d)     

                          
 
 
Substituting equations (2.18) into the expressions given in equations (2.7), one obtains 

the following expressions for the stress components 
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    )0( ≤z ,    (2.19a)                 
 
 
 

 
)0( ≤z ,     (2.19b) 

               ( ) ( )[ ] ,)(12),( 0
0

2211 ααακαµσ α drJeczcczr z
z

−
∞

∫ +−+−=   )0( ≥z , (2.19c) 

               ( ) ( )[ ] ,)(12),( 0
0

4432 ααακαµσ α drJeczcczr z
z ∫

∞

+++−=     )0( ≤z , (2.19d) 

               ( ) ( )[ ] ,)(12),( 1
0

2211 ααακαµτ α drJeczcczr z
rz

−
∞

∫ −−+−=     )0( ≥z , (2.19e) 

   ( ) ( )[ ] ( ) .12),( 1
0

4432 ααακαµτ α drJeczcczr z
rz ∫

∞

−−+=         )0( ≤z ,   (2.19f)   

                                                                                                                    
 
 
These expressions can be matched on the z=0 plane by the following continuity and 

symmetry conditions 

 

 
 )0(),0,()0,(

21
∞≤≤= rrr zz σσ ,        (2.20a) 

 )0(),0,()0,(
21

∞≤≤= rrr rzrz ττ , (2.20b) 
 )0(),0,()0,( 21 ∞≤≤= rruru , (2.20c) 
 ),0(),0,()0,( 21 ∞<≤<≤= rbarrwrw .     (2.20d)                    

  
  

 
Conditions (2.20c) and (2.20d) may be replaced by 

 
 

( ) ( )[ ] 00,0, 21 =− ruru
r∂
∂ ,                           ( ∞〈≤ r0 ), (2.21a) 

)(2)]0,()0,([ 21 rfrwrw
r

=−
∂
∂ ,      ( ∞〈≤ r0 ),       (2.21b) 

 
 

( ) ( )

( ) ( )[ ] ( ) ,32

2),(

0
0

443

1
0

432

ααακαµ

αααµσ α

drJeccc

drJ
r

ezcczr

az

z
r

∫

∫
∞

∞

−+++

+−=

( )

( )[ ] ,)()3(2

)(2),(

0
0

221

1
0

211

ααακαµ

αααµσ

α

α

drJeczcc

drJ
r

ezcczr

z

z
r

−
∞

−
∞

∫

∫

−−++

+−=
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in order to have the conditions of the same type (stress type). Here f(r) is the unknown 

crack surface displacement derivative such that f(r)=0 when ),0( ∞<≤<≤ rbar . 

Now using the conditions (2.20a, 2.20b) and  (2.21), the unknown constants c1-c4  

expressed     in terms of )(αF   become  

 

 

                                     
ακ
ακ

)1(
)()1(

31 +
−

==
Fcc ,  (2.22a) 

                     

                                     
)1(
)(2

42 +
−=−=

κ
αFcc , (2.22b) 

 
 

where ∫=
b

a
drrJrrfF )()()( 1 αα . 

 

 
Because of that, the hollow cylinder having a ring shaped crack only, is symmetric 

about z axis, it is sufficient to consider the solution of the axisymmetric problem in the 

upper or lower half of the space. Therefore, in this study , the general expressions for 

the displacements and stress components in the upper half space as in terms of F(α) are 

considered in the form  
 
 

                        ( ) ( )[ ] ( ) ( ) ααακα
κ

α drJeFzzru z
Hankel 1

0

12
1

1, −
∞

∫ −+−
+

= , (2.23a) 

                       ( ) ( )[ ] ( ) ( ) ααακα
κ

α drJeFzzrw z
Hankel 0

0

12
1

1, −
∞

∫ +−−
+

= , (2.23b) 

                        ( ) ( )[ ] ( ) ( ) ααακα
κ
µσ α drJ

r
eFzzr z

rHankel 1
0

112
1

2, −
∞

∫ −
+

=                  (2.23c) 

                                                ( ) ( ) ( ) ααααα
κ
µ α drJeFz z

0
0

12
1

2 −
∞

∫ −
+

+ ,  

                         ( ) ( ) ααααα
κ
µσ α drJeFzzr z

zHankel )()1(
1

4, 0
0

−
∞

∫ +
+

= , (2.23d) 

  . ( ) ( ) ααααα
κ
µτ α drJeFzzr z

Hankelrz )(
1

4, 1
0

−
∞

∫+
=     (2.23e) 
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2.1.1.2. An Infinite Elastic Medium with no Crack  
 
 

It is considered an infinite medium without crack which is loaded 

symmetrically. The infinite medium is symmetric about both z-axis and z = 0 plane. 

Using the Fourier sine and cosine transform definitions Fourier transforms of the 

displacement components can be written in the following form 

 
 

                       ∫
∞

=
0

)cos(),(2});,({ drrzruzruFc λ
π

λ ),( λrU c= , (2.24a) 

                                  ∫
∞

=
0

)sin(),(2});,({ drrzrwzrwFs λ
π

λ  ),( λrWs= ,   (2.24b)                   

 
 
where Uc  and  Ws  are Fourier cosine and sine transform functions of u and w , the 

subscript s and c implies the sine and cosine  transform respectively, λ  is the Fourier 

transform variable. Then applying Fourier sine and cosine transforms in z direction to 

equation (2.8), noticing that ),( zru  is even and ),( zrw  is an odd function in z,  the 

following system of second order ordinary differential equation is obtained as : 

 
 

                 ( ) ( ) 02111 2
22

2
=+−−












−++

dr
dWU

r
U

rd
dU

rrd
Ud s

c
ccc λλκκ , (2.25a) 

 

              0)1(1)1(22 2
2

2

=+−







+−+−− s

ss
c

c W
rd

dW
rrd

Wd
U

rdr
dU

λκκλλ .   (2.25b)           

 

 

In order to obtain relatively easier problem, after some algebraic manipulations, 

equation (2.25) can be reduced to  a single equation as  

 

 

dr
dU

rr
rd
Ud

rr
rd
Ud

r
dr

Ud
r cccc )32()32(2 32

2

2
242

3

3
3

4

4
4 −−+−+ λλ                           (2.26) 

                                                                        0)32( 2244 =−++ cUrr λλ         
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Let xr =λ , then the equation (2.26) becomes 

 
 
 
 
 
             (2.27) 
 
 
 
Solution of the equation (2.27) is explained below: 

equation (2.27) firstly is considered as the product of two  general second order ordinary 

differential operators in  the following form 

 

 

              0)()()()()( 542

2

3212

2
2 =








++








++ cUxp

dx
dxp

dx
dxpxp

dx
dxp

dx
dx     (2.28) 

 
 
 
When equation (2.28) is written in fourth-order form and compared to the equation 

(2.27), the equation system given below can be obtained  

 
 

        4
3

2 )( xxpx = , (2.29a) 

        3
314

232 22 xpppx
dx
dp

x =++ , (2.29b) 

        24
32411

3
5

242
2

3
2

2 322 xxppppp
dx
dp

px
dx

dpx
dx

pd
x −−=+++++ ,(2.29c) 

        xxppppp
dx

dp
dx
dp

x
dx

pdx 322 3
42151

454
2

4
2

2 +−=++++ , (2.29d) 

                    32 24
521

5
2

5
2

2 −+=++ xxppp
dx
dp

dx
pd

x ,                                      (2.29e) 

 
 

then solving the equation system (2.29), the functions  )()( 51 xpxp − can be found in 

simple polynomial forms. Therefore, equation (2.28) with these polynomials becomes 

 

 

0)32()32()32(2 243
2

2
24

3

3
3

4

4
4 =−++−−+−+ c

cccc Uxx
dx

dUxx
dx

Udxx
dx

Udx
dx

Udx
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           (2.30) 

 

 

and hence the  general solution of equation (2.30) is found to be (Mclachlan 1955) 

 
 

          )()()(
2
1)(

2
1),( 04031211 rrKcrIrcrKcrIcrU C λλλλλλλ +++−=      (2.31) 

 
 

where 100 ,, IKI and 1K  are the modified Bessel functions of the first and the second  

kinds of order zero and one, respectively and c1, c2, c3 and c4 are arbitrary constants. In 

this case, it is possible to get ),( λrWs , substituting equation (2.31) into the equation 

(2.25), in the following form 

 
 

           [ ])()()1()(
2
1)(

2
1),( 1030201 rrIrIcrKcrIcrWS λλλκλλλ ++−+=        (2.32) 

                 [ ])()()1( 104 rrKrKc λλλκ −+−    
 

 

Taking the inverse Fourier sine and cosine transforms of equations (2.31) and (2.32), 

expressions for the displacement components are found to be 

 

 

( ) ( ) ( ) ( ) ( ) ,cos
2
1

2
12,

0
04031211 λλλλλλλλ

π
zdrrKcrrIcrKcrIczru Fourier ∫

∞





 +++−=

    (2.33a)  

( ) ( ) ( ) ( ) ( ) ( )[ ]rrIrIcrKcrIczrw Fourier λλλκλλ
π 1030201

0

1
2
1

2
12, ++−+



= ∫

∞

      (2.33b) 

                                                 ( ) ( ) ( )[ ] }+ + −c K r rK r zd4 0 11κ λ λ λ λ λsin .  
 
 

Therefore , in order to obtain  the stress components one can use stress-displacement 

relations given by equation (2.7). These are  as follows: 

 

0)1)(33( 2
2

2
22

2

2
2 =−−++−− cUx

dx
dx

dx
dxx

dx
dx

dx
dx
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( ) ( ) ( ) ( ) ( )



 −−+









 +−= ∫

∞

rK
r

rKcrI
r

rIczr Fourierr λλλλλλ
π
µσ 102

0
101

112,        (2.34a) 

                                          
( ) ( ) ( )[ ]
( ) ( ) ( )[ ] } ,cos21

21

1
2

04

1
2

03

λλλλλλκ

λλλλκ

zdrrKrKc

rrIrIc

−−+

+−+
    

( ) { ( ) ( ) ( ) ( ) ( )[ ]rrIrIcrKcrIczr Fourierz λλλλκλλλλ
π
µσ 1

2
03020

0
1 252, ++−+= ∫

∞

 (2.34b)        

    ( ) ( ) ( )[ ] }− + −c K r rK r zd4 0
2

15 2κ λ λ λ λ λ λcos ,    

( ) { ( ) ( ) ( ) ( ) ( )[ ]rIrrIcrKcrIczr Fourierrz λλκλλλλλλ
π
µτ 10

2
3121

0
1 122, ++−−= ∫

∞

     (2.34c) 

   ( ) ( ) ( )[ ] } .sin12 10
2

4 λλλλκλλ zdrKrrKc +−−      
       

 
 
2.1.2. General Solution  
 
 

The expressions for displacement and stress components obtained in Hankel and 

Fourier solutions of the problem (Sections 2.1.1.1. and 2.1.1.2.), will be added together 

for the solution of the perturbation problem. Therefore the general solutions become 

 

 
 ( ) FourierHankel uuzru +=, , (2.35a) 

 ( ) FourierHankel wwzrw +=, , (2.35b) 

   ( ) zFourierzHankelz zr σσσ +=, , (2.35c) 

 ( ) rFourierrHankelr zr σσσ +=, , (2.35d) 

                                  ( ) rzFourierrzHankelrz zr τττ +=, .               (2.35e) 

 

      
Now the arbitrary unknown constants c1-c4 appearing in Fourier solution of the problem 

can be written in terms of unknown function )(αF  using the conditions given below at 

inner and outer lateral surfaces of the cylinder, 

 
              0),( =zBu  ,          (2.36a)        
             0),( =zBw , (2.36b) 
             0),( =zArσ , (2.36c) 
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               0),( =zArzτ . (2.36d) 
 
.  
 
Therefore, substituting equations (2.23), (2.33) and (2.34) into the boundary conditions 

of the problem at inner and outer lateral surfaces, one can obtain the following system 

of equation 

 

 

    )()()(
2
1)(

2
1

04031211 BBKcBBIcBKcBIc λλλλλλ +++−   (2.37a) 

        [{ ] } zdzdBJeFz z λααακα
κ

α cos)()()1(2
1

1
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−= ∫ ∫ , 
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1)(
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1
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1030201
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−+−

++++−
                     (2.37b) 

          [{ ] } zdzdBJeFz z λααακα
κ

α sin)()()1(2
1

1
00 0

−∞ ∞
−−−

+
−= ∫ ∫ , 
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AIAAIcAKcAIc

λλλλκ

λλλλκλλλλ
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14

0
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131211
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  (2.37c) 

       ( ) ( )= −
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2
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00κ
α α α α λαF J A d ze zdzz sin , 

  

      ( ) ( ) ( ) ( )
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AKcAI
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AIc λλλλλλ 102101

11                                  (2.37d) 

      ( ) ( ) ( )[ ] [ ])(2)()1(21 1
2

041
2

03 AAKAKcAAIAIc λλλλκλλλλκ −−++−+                                           

         ( )[ ] ( ) ( ) ( ) ( )= −
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− − + −
















−

∞∞

∫∫
2

1
2 1

1
2 11 0

00κ
α κ α α α α α α λαz

A
J A z J A e F d zdzz cos  

          
  
 
After some manupulations, double integral form in system of equation (2.37) can be 

reduced to a single integration by using the integral formulas given in Appendix A, as 

 

 

   )()()(
2
1)(

2
1

04031211 BBKcBBIcBKcBIc λλλλλλ +++−    (2.38a) 



25 

      ααα
αλ

αλακλαα
κ

dBJF∫
∞









+

+−+−−
+

−=
0 1222

2222

)()(
)(

)()1()(2
1

1
,  

 

         [ ])()()1()(
2
1)(

2
1

1030201 BBIBIcBKcBIc λλλκλλ ++++−     (2.38b)               
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Equation (2.38) can now be rewritten in the form  
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where S1-S4 are given in Appendix B, 41 cc −  are unknown constants. These linear 

algebraic system of equation are solvable  and c1-c4 can be obtained in terms of S1-S4 in 

the following forms 

 

 
 [ ] DScScScScc /1142134123111 +++= , (2.40a) 

 
 [ ] DScScScScc /1242234223212 +++= , (2.40b) 

 
 [ ] DScScScScc /1342334323313 +++= , (2.40c) 

 
                                     [ ] DScScScScc /1442434423414 +++=  ,                 (2.40d) 

    
 
where c11-c44 and D are given in Appendix C. 

The boundary conditions on the lateral surfaces of the cylinder have already 

been used in finding expressions for c1-c4. Now, the unknown function F(α) can be 

determined by using the remaining  boundary condition, 0)0,( prz −=σ , on the crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

CHAPTER 3 
 
 

INTEGRAL EQUATIONS 
 

 
3.1. Derivation of Integral Equation 
 

 

Substituting equations (2.34b) and (2.23d) into the equation (2.35c) one obtains  
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By using the remaining boundary condition 0)0,( prz −=σ   to the equation (3.1), the 

following integral form for the normal stress zσ  at z = 0 can be obtained 
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Now substituting equation (2.40) in equation (3.2), the equation can be written in the 

form 
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Changing the order of integration in Fourier part of the equation (3.3) and rearranging 

the terms, equation (3.3) becomes: 
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                  (3.4) 
 

where 4411 ββ −  are  given in Appendix C. 

After some lengthy but straightforward  algebraic manipulations, equation (3.4) gives 

the following singular integral equation with kernel having Cauchy-type singularity 

(Muskhelishvili 1953).  
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in which K and  E are the complete elliptic integrals of the first and the second kinds, 

respectively. Equation (3.5) must be solved under single-valuedness condition for the 

displacement around the crack given below : 
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     ( )∫ =
b

a

dttf 0          (3.8) 

 
 

The integral equation (equation (3.5)) has three types of singularities : 

1) A simple Cauchy-type singularity at  t = r, 

2) Logarithmic singularity in the kernel M1, 

3) N11 has singular terms when t=A, B and BAr ±±= , due to the behavior of the 

integrand of  the integral N11 as ∞→λ . 

In this case, N11(r,t) can be written in the following form 
 
 

( ) ( ) λλ dtrLtrN ,,,
0

1111 ∫
∞

=                     (3.9) 

 
 

Then the singular part of the kernel may be separated as 
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1111 ∫
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∞=                  (3.10) 

 
where 
 
 

       ( ) ( )λλ λ ,,lim,, 1111 trLtrL ∞→∞ =       (3.11) 
 
 

Integrand of integral given by Equation (3.5) contains modified Bessel functions 

100 ,, IKI and 1K . By using asymptotic expansions for modified Bessel functions, given 

in Appendix D, and after some manipulations, ( )λ,,11 trL ∞  can  be obtained in the 

following form 
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The singular part of the kernel can be obtained by integrating ( )λ,,11 trL ∞  with the 

formulae given in Appendix E as 
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therefore, the bounded part of the kernel will be   
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111111 ,,,,,                  (3.14) 

 
 

Then, the kernel N11(r,t) may be written in the following form 

    
 
 N11 (r,t) = N11s (r,t) + N11b (r,t) .                                (3.15) 
 

 

Now, Equation (3.5) can be written as  
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where B1(r) contains all the bounded terms in Equation (3.5). 

Singular behavior of the unknown function f(t) may be determined by writing 

 
 

                                            ( ) ( ) ( )( )[ ] γ−−−= tbattGtf   ( )( )1Re0 〈〈 γ        (3.17) 

 
 
where G(t) is Hölder-continuous function in the interval [a, b] and γ  is an unknown  
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constant. G(t) has an integrable singularity at the edges of the crack. Evaluating the 

integral containing singular  term 
rt −

1  using the technique given in (Muskhelishvili 

1953) 
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where G*(r) is bounded everywhere except at the end points ba, and substituting  

equation (3.18) in equation (3.16) following complex function technique outlined in 

(Muskhelishvili 1953) and using the procedure described in (Cook and Erdogan 1972), 

one may obtain the following characteristic equation for γ   

 

 
0cot =πγ          (3.19) 

      
 
 
Therefore 2/1=γ  is obtained as the power of stress singularity at the tips of the crack 

( )bar ,→  and also satisfy the equation (3.18). 

 
 
3.2. Solution of Integral Equation 
 
 

Having determined the singular behavior of the unknown function, the integral 

appearing in equation (3.5) may be non-dimensionalized by introducing the following 

dimensionless variables ξτ ,  for  the crack  
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and the singular integral equation (Equation (3.5)) becomes 
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After some manipulations the singular integral equation given by (3.21), may be 

obtained in the form: 
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Substituting singular behavior of the dimensionless unknown function 
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in equation (3.22), one can obtain the following integral equation 
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By using the Gauss-Lobatto integration formula  given in Appendix F, equation (3.28) 

can be reduced to an algebraic system given below: 
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where  
 
 
                                 ( ) ( )[ ]1/1cos −−= nii πτ , ( )i n= 1 2, ,........, ,  (3.30a) 
 
                                ( ) ( )[ ]12/12cos −−= njj πξ , ( ).1.,,.........2,1 −= nj         (3.30b) 
 
 

are the roots and the weighting constants of related Lobatto polynomials are  
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Ci , ( )i n= −2 3 1, ,...., .       (3.31a-c) 

 

 

Now, as it can be seen easily, the algebraic system given in equation (3.29) has n 

unknowns, ( )iG τ  and  (n-1) equation. Since the number of unknowns is larger than the 

number of equations, the single valuedness condition, equation (3.8), must be taken into 

consideration to have n-equations for n-unknowns. Hence, equation (3.8) become  
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               ( ) ,0
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i GC τ                     ( )11 〈〈− τ .          (3.32) 

 

 

Infinite integral appearing in equation (3.29) can be calculated numerically by using 

Laguerre (see Appendix F)  integration method for each ji ξτ ,  value. After determining 

unknowns ( )iG τ    at discrete collocation points the field quantities can be computed  

numerically. Behavior of the unknown function at the tips of the crack,  τ = ±1, is 

characterized by the so-called “stress intensity factor” which is  particularly important  

from the viewpoint of fracture mechanics. 

 
 
3.3. Stress Intensity Factors 
 
 

In crack problems stresses become infinite  at the tips of the crack. Therefore, 

the stress state at close vicinity of these points wil be presented by means of  the stress 

intensity factor. 

 
 
3.3.1.  Stress Intensity Factors at the Tips of the Crack 
 
 

Because of the nature of the problem, it is only focused on  Mode I stress 

intensity factor calculations and investigation in this study. Mode I stress intensity 

factor at the tips of the crack has been defined in the following form (Erdol and Erdogan 

1978 )  

 

 
( ) ( ),0,2lim)(1 rraak zar σ−= →  (3.33a) 

 
( ) ( )0,2lim)(1 rbrbk zbr σ−= → ,        (3.33b) 

 

 

in which ( )0,rzσ  can be expressed by means of equation (3.5) in the form 
 



35 

( ) ( )
( ) ( ),0,

1
40, rdt

rt
tfr zb

b

a
z σ

κπ
µσ +

−+
= ∫         (3.34) 

 

 

where zbσ  is the bounded part of the cleavage stress 
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the integral of the sectionally holomorphic function in equation (3.34) can be evaluated 

by the method given in (Muskhelishvili 1953) 
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where G*( r ) is bounded function for  .bra 〈〈  When r approaches a,  second part of 

equation (3.37) will be bounded and therefore equation (3.37) becomes 
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where G**( r) contains all the bounded terms. Now, the stress intensity factor given by 

(3.33) can be expressed in terms of the unknown function f*( r )  with equations (3.34) 

and (3.38) in the following form.  
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Comparing (3.26) and (3.36) it can be related  f*(t) and ( )τG  by 
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Now substituting (3.40) into (3.39), the normalized stress intensity factors )(1 ak and 

)(1 bk  becomes  
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CHAPTER 4 

 

NUMERICAL RESULTS AND DISCUSSION 
 

The axisymmetric crack problem is defined by the dimensionless parameters 

a/B, b/B, (b-a)/B and Poisson’s ratio v. Distances are normalized with B, the outer 

radius of the cylinder. 

The system of algebraic equation is solved numerically for unknowns )( iG τ ,  

(i = 1,2,…..,n) at discrete collocation points. n = 30 points is used in calculations. In 

computing the kernels, because of exponentially decaying behavior of the integrand,  

the improper integral is evaluated  by using Laguerre quadrature formula. Some lengthy  

algebraic manipulations, hard integrations which can not be found in integration tables, 

asymptotic analyses of the some expressions including Bessel functions   in analytic 

solution parts, numerical difficulty in the problem,  computation of weight and discrete 

function values,  are achieved by using  Mathematica 4.2 software program and 

programming language.  

Normalized stress intensity factors at the tips of the crack are calculated for 

various geometric configurations. Numerical results are given in tabular and graphical 

forms in Tables 4.1-4.10 and Figures 4.1- 4.10, respectively. 

 The first result which is important for validation of the problem is that, as the 

crack size becomes very small in comparison with the other dimensions of the cylinder, 

it is observed that the normalized stress intensity factors at the tips of the crack, 

)(1 ak and )(1 bk , approach unity. This is an expected result since the problem turns out 

to be a finite crack in an infinite medium. First case is verified by substituting (b-a)/B = 

10-5.  The second validation of the problem is realized with the following case: If  the 

outer radius of the cylinder “B” goes to infinity, inner radius of the crack “a” and  the 

inner radius of the cylinder “A” are very small, the problem turns into a penny-shaped 

crack in a uniformly loaded infinite medium. In this case the results obtained from the 

present study and literature (Sneddon and Welch 1963) are in good agreement as they 

are shown in Table 4.1. 
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  Table 4.1. Comparison of  the results obtained in  the present study with  (Sneddon                
and Welch 1963) 

 

 

Present Study 

 

Sneddon and Welch 

2
)()( 011

bpbkbk =  bpbk 01
2)(
π

=  

bp0638882.0  bp06366197.0  

 

 

Table 4.2 shows the mode I  normalized  stress intensity factors at the tips of the central 

crack (case 3) which means the thickness of the net ligaments (a-A and B-b) are equal. 

As the thickness of the net ligaments are decreased, in other words, as  the crack size is 

increased, the normalized stress intensity factor at the inner tip of the crack )(1 ak  

increases while )(1 bk  decreases.  

 

 
Table 4.2. Variation of normalized SIFs, )(1 ak  and )(1 bk , for the central crack 
                  in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= ,    

2/)(/)()( 011 abpbkbk −= , A/B=0.25, 3.0=ν ) 
  

B
ab −  )(1 ak  )(1 bk  

→0 →1.0 →1.0 
0.05 1.00999 0.990367 
0.10 1.02038 0.980565 
0.15 1.03145 0.970255 
0.20 1.04367 0.959180 
0.25 1.05775 0.947087 
0.30 1.07464 0.933708 
0.35 1.09547 0.918781 
0.40 1.12141 0.902146 
0.45 1.15331 0.883965 
0.50 1.19078 0.865168 
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When the inner tip of the crack approaches the free lateral surface (case 4), in other 

words, when the inner radius of the crack gets smaller, it is observed that )(1 ak  

increases as it is expected. This is shown in Table 4.3.  Similarly, this increase is 

observed in Table  4.4 as well. Comparing  Table 4.3 and Table 4.4, when the other 

parameters are kept fixed, A/B  is changed from 0.25 to 0.2, which means that the inner 

radius of the crack is taken away from the free lateral surface of the cylinder, it is seen 

that )(1 ak  in Table 4.3 is always greater than the )(1 ak  in Table  4.4. And this is 

achieved as it can be seen from the Figure 4.2. 

 

 

 Table 4.3. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack  
             in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= , 

2/)(/)()( 011 abpbkbk −= , A/B=0.25,b/B=0.8 3.0=ν ) 
 

B
a  )(1 ak  )(1 bk  

0.75 1.00717 0.991426 
0.7 1.01376 0.980922 
0.65 1.02091 0.968933 
0.6 1.02991 0.956022 
0.55 1.04272 0.942872 
0.5 1.06278 0.930148 
0.45 1.09547 0.918781 
0.4 1.14621 0.909830 
0.35 1.20728 0.903917 
0.3 1.20466 0.898660 

 
 
In Table 4.3 with decreasing a/B, )(1 ak  increases. Only when a/B decreased from 0.35 

to 0.30, one can see that there is a slight decrease in )(1 ak . In this case, it can be seen 

that, the inner radius of the crack is very close to the inner wall of the cylinder. This 

results in another problem with the edge crack. In this special case, the kernel used in 

this study is no longer bounded in the corresponding closed interval and, of course, the 

single- valuedness condition is no longer valid (Erdol and Erdogan 1978). Therefore, 

the solution of the problem with edge crack is the subject of another study. However, 

from Table 4.4, the same result is not observed because the crack does not show edge-

crack behavior, that is, it is not close enough to the inner surface of the cylinder. 
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       Table 4.4. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack  
                   in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= ,          

2/)(/)()( 011 abpbkbk −= , A/B=0.20,b/B=0.8 3.0=ν ) 
                 

B
a  )(1 ak  )(1 bk  

0.75 1.00706 0.991245 
0.7 1.01355 0.980538 
0.65 1.02007 0.968332 
0.6 1.02689 0.954928 
0.55 1.03468 0.940581 
0.5 1.04513 0.925610 
0.45 1.06219 0.910506 
0.4 1.09415 0.896074 
0.35 1.15603 0.883593 
0.3 1.26285 0.874804 

                

 

The results for normalized stress intensity factors for a different geometric configuration 

are tabulated in Tables 4.5 and Table 4.6. The related data is obtained  when the outer 

 

Table 4.5. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack 
                   in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= ,  

2/)(/)()( 011 abpbkbk −=  ,A/B=0.25,a/B=0.4, 3.0=ν ) 
 

a
b  )(1 ak  )(1 bk  

1.000 →1.0 →1.0 
1.125 1.01544 0.986885 
1.250 1.03306 0.978172 
1.375 1.05320 0.971415 
1.500 1.07471 0.964286 
1.625 1.09613 0.955522 
1.750 1.11606 0.944342 
1.875 1.13322 0.929678 
2.000 1.14621 0.909830 
2.125 1.15331 0.883965 

 
 
radius of the crack is increased towards the rigid lateral surface while the inner radius is 

kept in the same location (case 5).  
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Table 4.6. Variation of normalized SIFs, )(1 ak  and )(1 bk , for an internal crack  
                  in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= , 

2/)(/)()( 011 abpbkbk −= , A/B=0.20,a/B=0.32, 3.0=ν ) 
  

a
b  )(1 ak  )(1 bk  

1.000 →1.0 →1.0 
1.125 1.01544 0.986953 
1.250 1.03352 0.978876 
1.375 1.05493 0.973350 
1.500 1.07854 0.967873 
1.625 1.10284 0.961168 
1.750 1.12644 0.952896 
1.875 1.14827 0.943210 
2.000 1.16763 0.932427 
2.125 1.18412 0.920813 

 

 

Here, what is expected in both situations is that )(1 bk  decreases as b/a increases. It can 

be observed from the tables that this expectation is realized. It is mentioned in literature 

(Erdol and Erdogan 1978) that the stress intensity factors always increase at the tips of 

the crack on the traction free surfaces of the cylinder. However, in this thesis study, the 

stress intensity factor on the outer surface of the cylinder decreases since the outer 

surface is rigid.  

Another case is studied and the results are shown in Tables 4.7 and 4.8. The 

crack size is kept fixed and a/B is increased, that is, the crack approached the rigid 

surface (case 6). Here, as it is expected, both )(1 ak  and )(1 bk  decreases. Since the inner 

wall free of tractions, the crack can not withstand opening while approaching to the free 

end. 
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Table 4.7. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack  
                   in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= , 

2/)(/)()( 011 abpbkbk −= , A/B=0.25,(b-a)/B=0.3, 3.0=ν ) 
 

B
a  )(1 ak  )(1 bk  

0.350 1.12730 0.950203 
0.375 1.12667 0.947743 
0.400 1.11606 0.944332 
0.425 1.10206 0.940768 
0.450 1.08783 0.937234 
0.475 1.07464 0.933708 
0.500 1.06278 0.930148 
0.525 1.05208 0.926749 
0.550 1.04226 0.924292 

 

 

Table 4.8. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack  
                   in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= , 

2/)(/)()( 011 abpbkbk −= , A/B=0.25,(b-a)/B=0.2, 3.0=ν ) 
 

B
a  )(1 ak  )(1 bk  

0.350 1.06774 0.961947 
0.375 1.07598 0.964289 
0.400 1.07471 0.964286 
0.425 1.06926 0.963357 
0.450 1.06243 0.962202 
0.475 1.05558 0.961030 
0.500 1.04928 0.960115 
0.525 1.04367 0.959180 
0.550 1.03868 0.958205 

 

 

The variation of normalized stress intensity factors, )(1 ak and )(1 bk , are 

calculated for different values of Poisson’s ratio for case 6. Poisson’s ratio is taken as 

0.25 and 0.35 in addition to 0.3. These results are given in Tables 4.9, 4.10 and in 

Figures 4.9, 4.10. 
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     Table 4.9. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack  
               in the   thick walled cylinder ( 2/)(/)()( 011 abpakak −= ,     

2/)(/)()( 011 abpbkbk −= , A/B=0.25, (b-a)/B=0.2, 35.0=ν ) 
 

B
a  )(1 ak  )(1 bk  

0.350 1.18417 0.938140 
0.375 1.13562 0.926330 
0.400 1.09927 0.917394 
0.425 1.07199 0.909989 
0.450 1.05113 0.902946 
0.475 1.03453 0.895165 
0.500 1.02044 0.885513 
0.525 1.00740 0.872753 
0.550 0.99411 0.855534 

 
 

 

  Table 4.10. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack 
                    in the thick walled cylinder ( 2/)(/)()( 011 abpakak −= ,                           

2/)(/)()( 011 abpbkbk −= , A/B=0.25,(b-a)/B=0.2, 25.0=ν ) 
 

B
a  )(1 ak  )(1 bk  

0.350 1.213340 0.930970 
0.375 1.132510 0.916000 
0.400 1.083380 0.906173 
0.425 1.052380 0.898591 
0.450 1.031680 0.891445 
0.475 1.016560 0.883364 
0.500 1.004070 0.873016 
0.525 0.992241 0.858807 
0.550 0.979615 0.838616 

 
 
 

Some of the results given in Tables 4.2-4.10 are also shown graphically  in Figures 4.1-

4.10 in order to observe and/or understand the behavior of the normalized stress 

intensity factors at the tips of the crack. 
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Figure 4.1. Variation of normalized SIFs, )(1 ak  and )(1 bk , for the central crack in the thick walled cylinder      

( 2/)(/)()( 011 abpakak −= , 2/)(/)()( 011 abpbkbk −= , A/B=0.25, 3.0=ν ) 
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                    Figure 4.2. Comparison of the results for )(1 ak  given in Tables 4.3 and 4.4 
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Figure 4.3. Comparison of the results for )(1 ak  given in Tables 4.5 and 4.6 
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Figure 4.4. Comparison of the results for )(1 bk  given in Tables 4.5 and 4.6 
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Figure 4.5. Comparison of the results for )(1 ak  given in Tables 4.7 and 4.8 
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                 Figure 4.6. Comparison of the results for )(1 bk  given in Tables 4.7 and 4.8 
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Figure 4.7. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack in the thick walled cylinder   

                   ( 2/)(/)()( 011 abpakak −= , 2/)(/)()( 011 abpbkbk −= , A/B=0.25,(b-a)/B=0.3, 3.0=ν ) 
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                                 Figure 4.8. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack in the thick walled cylinder                  

( 2/)(/)()( 011 abpakak −= , 2/)(/)()( 011 abpbkbk −= , A/B=0.25,(b-a)/B=0.2, 3.0=ν ) 
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                                          Figure 4.9.Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack in the thick walled cylinder        

( 2/)(/)()( 011 abpakak −= , 2/)(/)()( 011 abpbkbk −= , A/B=0.25, (b-a)/B=0.2) 
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Figure 4.10. Variation of normalized SIFs, )(1 ak and )(1 bk , for an internal crack in the thick walled cylinder  
       ( 2/)(/)()( 011 abpakak −= , 2/)(/)()( 011 abpbkbk −= , A/B=0.25, (b-a)/B=0.2) 
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CHAPTER 5 

 

CONCLUSION 

 
In this thesis, the stress intensity factors for an infinite hollow cylinder 

containing a ring-shaped crack is investigated. By using the procedures in literature the 

problem is defined and modeled in terms of a  linear second order partial differential 

equation system with mixed boundary conditions. The integral transform techniques are 

used to solve this governing equations which are reduced to  a singular integral 

equation. Solving the singular integral equation numerically, the normalized stress 

intensity factors at the tips of the crack, )(1 ak and )(1 bk , are calculated for various 

geometric configurations and for different Poisson’s ratio which is used as the material 

parameter. Numerical results are presented in tabular and graphical forms. 

As the crack approaches the stress-free surface, )(1 ak  increases. This is because 

the free lateral surface lets the crack open (Erdol and Erdogan 1978). 

In the same way, as the crack approaches the rigid surface, )(1 bk  decreases. 

This is because this rigid wall prevents the crack from opening. In other words, the 

strength of stress singularity decreases. 

The results obtained in this study for the two special problems , a finite crack in 

an infinite medium and a penny-shaped crack in a uniformly loaded infinite medium,  

were in good agreement with those in the literature (discussed in Chapter 4). 

As it can be seen from tables and figures given in Chapter 4, the  values of 

)(1 ak are always greater than the values of )(1 bk . 

As a further study,  the edge crack solution can be adapted to the present study 

by using different kernel and condition mentioned in Chapter 4. 
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APPENDIX A 

 

INTEGRATION FORMULAS  

 
By using the integration formulas given below,  equation (2.37) can be reduced 

to equation (2.38) 
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APPENDIX B 

 

INTEGRAL FORMS 
 

S1- S4 appearing in equation (2.39) are given as: 
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where 

 

a1 = -4 Ht I0HA lL K0Ht lL - A I1HA lL K1Ht lLL l2 +
4 Ht I1HA lL K0Ht lL - A I0HA lL K1Ht lLL l

A

+
2 Hk + 1L I1HA lL K1Ht lL

A  
b1 = -2tlI0HtlL K0HBlL -Hk + 1L I1HtlL K0HBlL + 2 BlI1HtlL K1HBlL  

d1 =
1
2

l2 HA I0HA lL K1Ht lL - t I1HA lL K0Ht lLL
 

g1 = Hk + 1L I1Ht lL K1HB lL - 2 l Ht I0Ht lL K1HB lL - B I1Ht lL K0HB lLL  
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APPENDIX C 

 

COEFFICIENTS  

 

4411 ββ −  appearing in equation (3.4) are given as follows: 

 

b11 = c11 - c31Hk + 5L, b12 = c12 - c32Hk + 5L, b13 = c13 - c33Hk + 5L , 

b14 = c14 - c34Hk +5L, b21 = c21 - c41Hk + 5L, b22 = c22 - c42Hk + 5L , 

b23 = c23 - c43Hk +5L, b24 = c24 - c44Hk + 5L, b31 = c31, b32 = c32,  
b33 = c33, b34 = c34, b41 = c41, b42 = c42, b43 = c43, b44 = c44  

 
 
where the expressions for the coefficients c11-c44  are 
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2
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+ ik B K1HA lL
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1
2
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y{ l2

+
1
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2 AK1HBlL
l

y{ l4 -
BHk + 1L K0 HBlL l2

A

+
ik H1- k 2L K1 HBlL

2 Al
-

BH10 Hk + 1L K1 HAlL
A

y{ l2

 
 

c14 =
ik2 ABHH01 K0HAlL - H11 K1 HAlLL -

2 AK0HBlL
l

y{ l4

+
ik2 AHk + 1L HH00 K0 HAlL - H10 K1HAlLL +

BHk + 1L K1 HBlL
Al

y{ l3

+
ik-

Hk + 1L Hk + 3L K0HBlL
2 Al

-
BH11 Hk + 1L K1 HAlL

A
y{ l2 -

H10 Hk + 1L2 K1 HAlL l

A  
 



        61 

c21 =
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+
1
4

Hk + 1L HH11 K0HB lL - H10 K1HB lLL l
 

 

c32 = ik 1
2

B H00 K0HB lL -
A K1HA lL

2 B l
+

1
2

B H01 K1HB lLy{ l2

+ik-
K0HA lL

4 B l
-

1
2

H01 K0HB lL +
B H10 K0HB lL

2 A
-

1
4

H01 k K0HB lL
+

B H11 K1HB lL
2 A

+
1
4

H00 k K1HB lLy{ l -
H11 Hk + 1L K0HB lL

2 A  
 

c33 = ikA H01 K0HA lL -
B K0HB lL

A l
- A H11 K1HA lLy{ l3 -

H11 Hk +1L K1HA lL l

2 A

-
Hk + 1L K1HB lL l

2 A  
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c34 = ikA H00 K0HA lL - A H10 K1HA lL +
B K1HB lL

A l
y{ l3 -

Hk + 1L K0HB lL l

2 A

-
H10 Hk + 1L K1HA lL l

2 A  
 

c41 = ik-
A I0HA lL

2 B l
+

1
2

B H10 I0HB lL -
1
2

B H11 I1HB lLy{ l2

+
1
4

H- k - 1L HH11 I0HB lL + H10 I1HB lLL l
 

 
c42 = ik-

1
2

B H00 I0HB lL -
A I1HA lL

2 B l
+

1
2

B H01 I1HB lLy{ l2

+ik I0HA lL
4 B l

+
1
2

H01 I0HB lL -
B H10 I0HB lL

2 A
+

1
4

H01 k I0HB lL
+

B H11 I1HB lL
2 A

+
1
4

H00 k I1HB lLy{ l +
H11 Hk + 1L I0HB lL

2 A  
 

c43 = ik-A H01 I0HA lL +
B I0HB lL

A l
- A H11 I1HA lLy{ l3

-
H11 Hk + 1L I1HA lL l

2 A
-

I1HB lL l

2 A  
 

c44 = ik-A H00 I0HA lL - A H10 I1HA lL +
B I1HB lL

A l
y{ l3 -

Hk +1L I0HB lL l

2 A

-
H10 Hk + 1L I1HA lL l

2 A  
  

D= ABI0HBlL2 K0HAlL2 l4 - ABI1HBlL2 K0HAlL2 l4 + ABI0HAlL2 K0HBlL2 l4

-ABI1HAlL2 K0HBlL2 l4 - ABI0HBlL2 K1HAlL2 l4 + ABI1HBlL2 K1HAlL2 l4

- ABI0HAlL2 K1HBlL2 l4 + ABI1HAlL2 K1HBlL2 l4 - 2 ABI0HAlL I0HBlL K0HAlL K0HBlL l4

-2 ABI0HBlL I1HAlL K0HBlL K1HAlL l4 - 2 ABI0HAlL I1HBlL K0HAlL K1HBlL l4

-2 ABI1HAlL I1HBlL K1HAlL K1HBlL l4 - AI0HBlL I1HBlL K0HAlL2 l3

-AkI0HBlL I1HBlL K0HAlL2 l3 + AkI0HBlL I1HBlL K1HAlL2 l3

+AI0HAlL I1HBlL K0HAlL K0HBlL l3 + AkI0HAlL I1HBlL K0HAlL K0HBlL l3

-AI1HAlL I1HBlL K0HAlL K0HBlL l3 - AI0HBlL I1HBlL K0HAlL K1HAlL l3  
 

+Ak I1HAlL I1HBlL K0HBlL K1HAlL l3 + AI0HAlL I0HBlL K0HAlL K1HBlL l3

-Ak I0HAlL I0HBlL K0HAlL K1HBlL l3 - AI0HAlL2 K0HBlL K1HBlL l3
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+AkI0HAlL2 K0HBlL K1HBlL l3 - AI0HAlL I0HBlL K0HAlL K1HBlL l3

+AkI1HAlL2 K0HBlL K1HBlL l3 + AI0HAlL I1HAlL K0HBlL K1HBlL l3

 
+AI0HAlL I0HBlL K1HAlL K1HBlL l3 - AkI0HBlL I1HAlL K1HAlL K1HBlL l3

-
BI1HAlL2 K0HBlL2 l2

2 A
-

BkI1HAlL2K0HBlL2 l2

2 A
-

BI0HBlL2 K1HAlL2 l2

2 A  
 

-
BkI0HBlL2 K1HAlL2 l2

2 A
+

BI1HBlL2 K1HAlL2 l2

2 A
+

BkI1HBlL2 K1HAlL2 l2

2 A

+
BI1HAlL2 K1HBlL2 l2

2 A
+

BkI1HAlL2 K1HBlL2 l2

2 A
+

Bl2

A
-

BI0HBlL I1HAlL K0HBlL K1HAlL l2

A  
 

-
B k I0HB lL I1HA lL K0HB lL K1HA lL l2

A
-

B I1HA lL I1HB lL K1HA lL K1HB lL l2

A

-
B k I1HA lL I1HB lL K1HA lL K1HB lL l2

A
+

A l2

B
+

k2 I0HB lL I1HB lL K1HA lL2 l

2 A  
 

+
k I0HB lL I1HB lL K1HA lL2 l

A
+

I0HB lL I1HB lL K1HA lL2 l

2 A
+

k2 I1HA lL I1HB lL K0HB lL K1HA lL l

2 A

+
k I1HA lL I1HB lL K0HB lL K1HA lL l

A
+

I1HA lL I1HB lL K0HB lL K1HA lL l

2 A  
 

-
k2 I1HAlL2K0HBlL K1HBlL l

2 A
-

kI1HAlL2 K0HBlL K1HBlL l

A
-

I1HAlL2 K0HBlL K1HBlL l

2 A

-
k2 I0HBlL I1HAlL K1HAlL K1HBlL l

2 A
-

kI0HBlL I1HAlL K1HAlL K1HBlL l

A
-

I0HBlL I1HAlL K1HAlL K1HBlL l

2 A

+
k2

4 AB
+

k

AB
+

3
4 AB

 
 
where  
 
 

( ) ( ) ( ) ( ) ( ) ( ).1, 1 BKAIBIAKBAH ji
ji

jiij λλλλλλ ++−+=                              (i,j=0,1) 
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APPENDIX D 

 

ASYMPTOTIC EXPANSIONS 

 
Asymptotic expansions  for modified Bessel functions, 100 ,, IKI and 1K  for 

∞→λ  (Abramowitz and Stegun 1965):       
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è
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I1Hr lL ~
‰lrè2 plr

 J1 -
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8 lr
-
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128 l2 r2 N
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+

9
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8 lA
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9
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8 lB
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‰ltè2 plt

 J1 +
1
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+

9
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APPENDIX E 

 

ALGEBRAIC EQUALITIES 

 
Some formulae used to obtain N11S given in equation (3.13): 
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APPENDIX F 

 

GAUSS QUADRATURE 
 

 
Gauss-Lobatto integration formula: 
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where  
 
 
                       ( ) ( )[ ]1/1cos −−= niti π , ( )i n= 1 2, ,........, ,   
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Gauss-Laguerre integration formula: 
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where it  are abscissas and )( itw  are weights of Laguerre integration. 
 
 
 
 
 
 
 

 


