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ABSTRACT 

 

 
 The aim of this study is modeling and control of bioprocesses by using neural 

networks and hybrid model techniques. To investigate the modeling techniques, ethanol 

fermentation with Saccharomyces Cerevisiae and recombinant Zymomonas mobilis and 

finally gluconic acid fermentation with Pseudomonas ovalis processes are chosen. 

Model equations of these applications are obtained from literature. Numeric solutions 

are done in Matlab by using ODE solver.  For neural network modeling a part of the 

numerical data is used for training of the network. 

 In hybrid modeling technique, model equations which are obtained from 

literature are first linearized then to constitute the hybrid model linearized solution 

results are subtracted from numerical results and obtained values are taken as nonlinear 

part of the process. This nonlinear part is then solved by neural networks and the results 

of the neural networks are summed with the linearized solution results. This summation 

results constitute the hybrid model of the process. Hybrid and neural network models 

are compared. In some of the applications hybrid model gives slightly better results than 

the neural network model. But in all of the applications, required training time is much 

more less for hybrid model techniques. Also, it is observed that hybrid model obeys the 

physical constraints but neural network model solutions sometimes give meaningless 

outputs.  

 In control application, a method is demonstrated for optimization of a bioprocess 

by using hybrid model with neural network structure. To demonstrate the optimization 

technique, a well known fermentation process is chosen from the literature. 
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ÖZET 
 

 

 Bu çalı�manın amacı biyoproseslerin yapay sinir a�ları ve hibrit model teknikleri 

ile modellenmesi ve kontrolüdür. Modeleme tekniklerinin incelenmesi için ethanolün 

Saccharomyces Cerevisiae ve Zymomonas mobilis organizmaları ile glukonik asidin 

Pseudomonas ovalis  organizması ile  fermentasyonunu içeren  prosesler seçilmi�tir. 

Seçilen bu proseslerin model denklemleri literatürden elde edilmi� ve bu denklemlerin 

nümerik cözümleri Matlab’in ODE fonksiyonu kullanılarak hesaplanm�tır. Nümerik 

sonuçların bir kısmı yapay sinir a�larının ö�renme kısmında kullanılmı�tır. 

 Hibrit modelleme tekni�inde, literatürden elde edilen model denklemler lineer 

hale getirilmi� ve hidrit modeli olu�turmak için bu lineer denklemlerin çözümleri 

nümerik sonuçlardan çıkarılmı�tır. Elde edilen bu sonuçlar sistemin lineer olmayan 

kısmı olarak ele alınmı� ve bu kısım yapay sinir a�ları ile modellenmi�tir. Sinir a�ları 

kullanılarak elde edilen bu sonuçlar lineer sonuçlarla birle�tirilmi� ve prosesin hibrit 

modeli elde edilmi�tir. Daha sonra hibrit model sonuçları ve sinir a�ları ile yapılan 

modellemenin sonuçları kar�ıla�tırılmı�tır. Bazı uygulamalarda hibrit model, yapay sinir 

a� modeline kıyasla daha  iyi sonuçlar vermi�tir. Ancak bütün uygulamalarda 

görülmü�tür ki, hibrit model için gerekli olan ö�renme zamanı tüm sistemin sinir a�ı ile 

modellenmesi için gerekli olandan çok daha azdır. Ayrıca, hibrit modelin fiziksel 

ko�ullara uygun davrandı�ı öte yandan da yapay sinir a� modellerin bazen anlamsız 

sonuçlar verdi�i görülmü�tür. 

 Kontrol uygulamaları kısmında, bioproseslerin optimizasyonu gerçekle�tirmek 

üzere kullanılacak bir hibrit model algoritması geli�tirilmi�tir. Bu optimizasyon 

algoritmasının gösterilmesi için bir fermentasyon prosesi seçilmi� ve modelin 

uygulanma �ekli anlatılmı�tır.  
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CHAPTER 1 

 

INTRODUCTION 

 
 Strongly nonlinear behavior found in chemical engineering and bio-engineering 

processes such as highly exothermic reactors and pH processes. On the other hand, 

chemical and bio processes are time variant because of their nature. This characteristic 

property makes them hard to control. 

 To control these processes by using the conventional methods is time-consuming 

and very expensive. As it is known there are lots of parameters and variables in 

chemical and bioprocesses. For modeling and controlling these processes all of the 

dependencies and changes in the parameters and variables should be known. Obtaining 

this dependencies and changes can not be easy every time and in some situations it is 

impossible. Thus, modeling and controlling of such processes is very difficult. 

 At this point artificial neural networks attract the attention. Especially in past 

two decades, they are widely used in many fields of science and engineering. They are 

one of the fastest growing areas of artificial intelligence. Neural networks are the 

computers programs that simulate the learning process of human brain. As known 

human brain learns from the past experience and this situation is same for the neural 

networks. There are several types of network structure and training algorithms. As 

mentioned above, neural networks learn from the experience means that for using neural 

networks data are needed. These data are obtained from the past experiments or input-

output values of the processes. There is lots of modeling and control studies in the 

literature (Wang et al., 1998, Ramirez and Jackson, 1999, Zorzetto et al., 2000, Molga, 

2003, Olivera 2004) and these studies show us the efficiency of neural networks. But in 

some situations neural networks fails. Sometimes meaningless outputs are obtained. The 

reason is, in using neural networks, knowledge about the processes is not needed. The 

results are obtained from the past experiences. 

 To avoid these kinds of situations, grey-box modeling can be used. In hybrid 

model structure the known parts of the process is modeled by mechanistic model and 

neural networks used for modeling the unknown parts of the processes. By this way 

more correct and more accurate results can be obtained. 
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 The aim of this study is modeling and control of bioprocesses by using artificial 

neural networks and hybrid structure. In modeling with artificial neural network, data 

which are obtained from the processes are used in neural network training section and 

according to these trained networks process is modeled. In hybrid structure section, the 

linearized model is obtained and the results will be checked with the nonlinear model. 

After that, the nonlinear part of the process is solved by neural networks and finally the 

results are compared. 
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CHAPTER 2 

 

NEURAL NETWORKS 

 
2.1 General Information on Neural Networks 

 
2.1.1 Neural Networks 

 
 Neural Networks are the computer programs that simulate the learning process 

of the human brain. Like brain, the network structure composed of several processing 

elements called as neurons or nodes. These neurons which are located in the structure 

are highly interconnected with each other according to the type of the neural network.  

Connections can be done in several ways. Training algorithm and the structure of the 

network, changes with the changing of connection types. The first artificial neuron was 

produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter 

Pits. But the technology available at that time did not allow them to do too much. An 

artificial neuron consists of six main part and these are, inputs, bias, synaptic weights, 

net information, activation functions and outputs. It may have several inputs but it has 

got only one output. The neuron has two modes of operation; the training mode and the 

using mode. In the training mode the neurons are used for training algorithm and 

adjusting the weights. When the weights are adjusted then it can be used in the using 

mode. Here the weights are the values of the connection links. Bias node is generally 

used to account for the uncertainty effects. In the system there may be some parameters 

that affects the process but not considered. So by the bias node these effects are taken 

into consideration. 

Schematic view of typical neuron is shown in Figure 2.1. 
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Figure 2.1. A single neuron, receiving a weighted summation from neurons in a 

    previous layer. 

(Source: Aguiar and Filho 2001) 

 

 Many functions can be used as a transfer function in the neurons but especially 

in feed forward structure the most chosen ones are sigmoid, pure line and hyperbolic 

tangent function. 

 

2.1.2 Training Algorithm 

 
 There are two major types of training algorithms. These are supervised training 

and unsupervised training. In supervised training, both the inputs and the outputs are 

provided. The network then processes the inputs and compares its resulting outputs 

against the desired outputs. Errors are then propagated back through the system, causing 

the system to adjust the weights which control the network. This process occurs over 

and over as the weights are continually tweaked. The set of data which enables the 

training is called the "training set" If there is not enough training data, the network 

cannot be learn and so it cannot converge to the desired outputs. On the other hand, if 

there is enough data and again the network cannot converge then the input -output 

patterns and the structure of the network should be reviewed. By changing the number 

of hidden layers and changing the transfer functions network can converge. Also here, 

the training algorithms gain importance. As it mentioned, generally a feed forward 

algorithm can converge any nonlinear function. By changing the transfer functions, 

number of layers and the training algorithms, time necessary for convergence can be 

decreased. When desired outputs are obtained, the weights are frozen and networks 
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become ready for simulation. The other type of training is called unsupervised training. 

In unsupervised training, the network is provided with inputs but not with desired 

outputs. The system itself must then decide what features it will use to group the input 

data. This is often referred to as self-organization or adaption. At the present time, 

unsupervised learning is not well understood. This adaptation to the environment is the 

promise which would enable science fiction types of robots to continually learn on their 

own as they encounter new situations and new environments. Life is filled with 

situations where exact training sets do not exist. Some of these situations involve 

military action where new combat techniques and new weapons might be encountered. 

Especially in supervised training the most chosen training algorithm is feed forward 

back propagation.  

 

2.1.3 Structure of Neural Networks  
 

 There are several types of neural networks such as, feed forward back 

propagation, recurrent neural networks, Cascade Correlation Neural networks and 

Radial basis neural networks. The most chosen one is the feed forward back 

propagation neural networks. In these types of structure there must be at least one input, 

one hidden and one output layer. The first layer called as input layer and the last layer 

called as output layer. The layers between the input and output layer is called as hidden 

layers. The number of the hidden layer can be change according to the nonlinearity of 

the process. Each process variable value is given to the one neuron in the input layer. In 

feed forward back propagation type nets information is always transmitted forward from 

each node in a layer to all nodes in the following layer. Each process variable value is 

given to one node in the input layer. The neurons on the first hidden layer receive a 

weighted summation of signals from input nodes, added to the bias term. The weights 

are specific for each connection and the bias terms are specific for each receiving node, 

allowing each node to receive a distinct value. The summed values are altered by a 

transfer function, which transforms the signal to a value. The transformed value will be 

the output of the node and will be transmitted to the next layer in the same manner and 

from one layer to the other layer until the output layer releases the net output. A 

schematic view of feed forward artificial neural network is shown in Figure 2.2. 
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Figure 2.2. A feed forward artificial neural network configuration  

(Source: Karım et al. 1997) 

 

 In detail, back propagation algorithm can be divided into two passes, forward 

and backward pass. In the forward pass, flow direction of the information is from input 

layer to hidden layer and hidden layer to the output layer. In this pass, pairs are selected 

and fed into the input neurons after that these fed inputs are multiplied by the weights 

and then summed to form net information. The obtained net information is then 

squashed by the activation function and produce output. These produced outputs are 

then passed each neuron in the successive layer and finally at the end net output is 

obtained from the output neuron. Up to now, the forward pass is completed then 

backward pass starts. Here the transmission flow direction is form output layer to 

hidden layer and hidden layer to the input layer. Obtained outputs are checked with the 

desired ones and then errors are calculated. According to these errors all of the weights 

are adjusted generally by using the generalized delta rule. Here the connection weights 

are calculated as follows;  
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µ        (2.1) 

 

where W, µ and E represents weight, learning rate and error respectively. Errors can be 

calculated as; 
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and here p is the number of training patterns, q is the number of output nodes, ti and y 

represents the target output and model output respectively. 

 

2.1.4 The Usage of Neural Networks in Bioprocesses 
 

 Chemical and bioprocesses are strongly nonlinear processes, and because of 

their nature they are time variant. Thus, biological processes can be called as non-

deterministic systems. The models of such processes are very complex and on the other 

hand modeling these processes is very difficult. There are lots of parameters change 

dependently or independently such as, microbiological growth rate and reaction 

kinetics. Also there are several parameters that cannot be measured directly from the 

systems and because of these uncertain parameters models could not describe the 

systems exactly. Thus on-line monitoring and controlling of such processes become 

nearly impossible. To overcome this situation, neural networks and some other 

computer programs are used. Neural networks have ability to learn from experience 

(collected data) instead of deep theoretical knowledge and networks can recognize the 

cause effect relationships ,furthermore they can filter the noise in the system and all 

these features makes them different from the other programs. In the literature there are 

several studies with neural networks on bioprocesses. Ramirez and Jackson (1999) used 

neural networks in modeling and controlling of erythromycin acetate salts pH and they 

conducted at the facilities of Abbott Chemical Plant with the purpose of studying the 

disturbance and compensation effects in the extraction process. Then they determine the 

time delay between the perturbation variable and the pH. Karım et al.(1997) studied on 

microbiological systems and they report that neural networks are suitable for modeling 

biological systems and emphasize the importance of the training data selection. As a 

case study they deal with Z.mobilis fermentation producing ethanol. They used neural 

network as state estimator. Aguiar and Filho (2001) investigated the modeling 

techniques to predict the pulping degree in paper industry and obtained mill values in 

desired accuracy and modeled the system. Nascimento et al. (2000) study on 
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optimization of nylon 6-6 polymerization in a twin extruder reactor and acetic 

anhydride plant. As a result they obtained % 20-30 increase in the polymer production 

with choosing the better operation conditions, on the other hand, in acetic anhydride 

plant they decrease the residual gas and natural gas on the raw anhydride process.  Like 

these, there are several studies can be found in literature about modeling and control of 

fermentation and other biotechnological processes. 

 The common points of all these studies is, in all the researchers consume less 

time in modeling the system and obtained successful results. 

 

2.2 General Information on Grey-box model 

 

2.2.1 Definition of Hybrid Model 
 

 Hybrid model is a computational structure consisting of a neural network of 

computational nodes, which represents process knowledge at different levels of 

sophistication. In hybrid structure the known parts of the process are modeled by the 

mechanistic model known as the first principle model. The unknown parts of the system 

are modeled by neural networks. Thus, the network structure becomes smaller so the 

consumed time in adaptation will be smaller. On the other hand, obtaining meaningless 

outputs will be prevented by modeling the system with hybrid structure. But in this 

case, the controller must have knowledge about the process. As mentioned above in 

modeling the process with ANN the controller knowledge is not required. 

 In chemical and bioprocesses there are several parameters which are changing 

with time or with the interaction of variables in the process. Also obtaining the values of 

these parameters can not easy or possible in every process. Thus, they become unknown 

parameters in the system. So that these parameters are modeled by neural networks and 

then combined with the mechanistic model. 

 

2.2.2 Types of Hybrid Models 

 
 The choice of how to combine both parts depends on the amount of knowledge 

about the process and quality and quantity of the available data. General view of hybrid 
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structure is shown in Figure 2.3 (Aguiar, Filho 2001). Especially, there are two types of 

connection and hybrid model; Parallel and Serial type of hybrid models. 

 

 
 

Figure 2.3. Hybrid model Scheme, 

(Source: Aguiar H. and Filho R. 2001) 

 

 In parallel structure, can be seen in Figure 2.4 (Xiong , Jutan  2002), the output 

of the grey-box model is the sum of two separate  model outputs  which  are  the outputs 

of approximate model and outputs of neural network. The neural network is placed in 

parallel and captures both model mismatch and process disturbances. In this architecture 

the load on the neural network is much lower when compared with a black box neural 

model which tries to model the entire process. This occurs because the approximate 

model captures most of the main process dynamics and leaving the remainder for the 

neural network. Thus, the size of the neural network can be substantially reduced. 
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Figure 2.4. Parallel structure of grey-box model with neural network, 

 (Source: Xiong and Jutan 2002). 

 

 In serial type of hybrid structure which is shown in Figure 2.5, (Xiong, Jutan 

2002), the unknown parameters in the mechanistic model are approximated by neural 

networks and the neural network outputs are fed to the mechanistic model. Here, the 

first principle model specifies process variable interactions from the physical 

considerations. Because of this, hybrid model can be more easily trained and updated. 

 

 
Figure 2.5. Serial structure of a grey box model with neural network,  

(Source: Xiong, Jutan 2002) 

 

2.2.3 The Usage of Hybrid Models 
 

 In the situations where all of the parameters can not be measured or if there are 

some parts that can not be understood in the process, then hybrid structure becomes an 

alternative way of modeling. However, modeling the process with mechanistic model is 

the best way of modeling but  developing rigorous models especially ,  for bioprocess is 

time consuming and very difficult. Moreover, when the final aim is either simulate, 
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monitor or control of the system, such a detailed understanding of the system is not 

necessary (Zorzetto et al. 2000). In bioprocesses fully mechanistic models involve three 

types of equations; mass and energy balances, rate equations and the equations that 

relate the parameters found in the rate equation. 

 In literature, there are lots of applications with hybrid structure on bioprocesses. 

Zorzetto et al. (2000) examined the batch beer production with ANN and hybrid 

models. They obtained good performance with black box technique in the range of 

process conditions but when they used the hybrid structure they increased the 

extrapolative capability. Azevedo S.,et al. (1997) investigated the baker’s yeast 

production in a fed-batch fermenter. As a result of their investigation they obtained that 

hybrid modeling approach reveals clear advantages when compared both the 

conventional and pure ANN approaches. In Figure 2.6 the results of their study is 

shown. 

 

 
 

Figure 2.6. ANN and Hybrid model predictions of process behavior. 

(Source: Azevedo et al. 1997) 

 

 As it is seen from the Figure 2.6 Azevedo et al. obtained better results with the 

hybrid structure. Neural network also has a good accuracy with the test data but when 
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the time goes the neural network results differ from the test data. On the other hand 

hybrid model results are totally in good accuracy with the test data. 

 Thibault et al. (2000) examined the complex fermentation systems. According to 

their results they emphasize that using hybrid structure has several advantages such as; 

hybrid structure offer a phenomenological description of the process and simulating the 

variation of unmeasured variables is possible. Aguiar and Filho (2001) investigated the 

neural network model and hybrid modeling structure to predict the pulping degree in the 

paper industry. They obtained that the neural network model was able to reproduce mill 

values with satisfactory accuracy. With the introduction of the theoretical knowledge in 

the network structure, the hybrid model results demonstrated better prediction efficiency 

and reduced training time. In Figure 2.7, the comparison between hybrid model 

structure and neural network prediction can be seen. According to their study, they 

emphasized that, obtaining deterministic model can be very expensive and it cannot be 

generalized because the process and wood characteristics vary so much. 

 

 
 

Figure 2.7. Comparison between hybrid model and neural network model predictions 

        (dimensionless values), 

(Source: Aguiar and Filho 2001) 
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CHAPTER 3 

 

PROCESS CONTROL BY ANN AND HYBRID MODEL 
 

3.1 Batch Process Control 

 
 A successful control application requires good knowledge of the process 

dynamics and their mathematical representations. But especially in bioprocesses, 

obtaining the mechanistic model of the system is nearly impossible because of the 

complexity of the biosystems. The unknown parameters in the bioprocesses especially 

the kinetic rates are the main problem when modeling the processes. At this point ANN 

gain a great interest especially in modeling. Especially in bioprocesses, batch or semi-

batch processes are chosen because of their advantages in bioengineering. First of all, 

bio-products are expensive and the manufacturers want to change the product types 

easily. Changing the product type is not very easy in continuous systems and it also 

requires much time. At this point batch and semi batch process have a great advantages 

over continuous processes. 

 Temperature is the main control parameter in bioprocesses. As it is known 

temperature affects the kinetic rates, cell morphology and product quality. To control 

the temperature changes in batch reactors generally reactors with jackets are used. Here, 

the flow rate can be taken as the manipulated variable because it directly affects the heat 

transfer coefficient of the heating /cooling system. Generally, bio-products are produced 

under isothermal conditions to avoid the temperature effects.  

 The aim in controlling a process is to maximize the product amount and quality. 

Optimization of the batch and semi-batch reactors requires the determination of the best 

time profiles for the temperature, feeding rates and concentrations (Bonvin D., 1998). 

There might be several competing reactions occur simultaneously and their reaction 

kinetics are generally described in model equations. The reactor temperature and feed 

rate of a key reactant can be taken as manipulated variables hence optimizing these 

variables gives the best production rates and quality that can be achieved. 
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3.2 ANN‘s in Process Control 
 

 Lackness of knowledge in bioprocess systems makes them difficult to control 

and model. At this point ANN’s are the most chosen modeling algorithm because of 

their capability form learning from past knowledge. In the literature there are lots of 

applications where ANNs are used in process control. Mohamed Azlan Hussain (1998), 

used neural network models in predictive control algorithm. It is most commonly found 

control technique, which uses neural network. It is defined as a control scheme in which 

the controller determines a manipulated variable profile that optimizes some open-loop 

performance objective on a time interval, from the current time up to a prediction 

horizon. Predictive control algorithm basically involves minimizing future output 

deviations from the set point whilst taking suitable account of the control sequence 

necessary to achieve the objective and the usual constraints imposed upon it. Figure 3.1 

shows the predictive control application which was used by Mohamed Azlan Hussain. 

 Briefly, in predictive control application, the system outputs and optimized 

inputs are fed to the neural network structure and according to these inputs neural 

network predict the future set points of the system. 

 

 
 

Figure 3.1. Neural networks in general model predictive control strategy  

(Source: Hussain, 1998). 

 

 Another application of neural networks in control technique is inverse model 

based techniques. There are two approaches in using neural networks in inverse model 

based techniques these are; direct inverse control and the internal-model control (IMC) 

techniques. In the direct inverse control technique, the inverse model acts as the 
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controller in cascade with the system under control, without any feedback. In this case 

the neural network, acting as the controller, has to learn to supply at its output the 

appropriate control parameters for the desired targets at its input. Here ,the desired set 

point acts as the desired output which is fed to the network together with the past plant 

inputs and outputs to predict the desired current plant input. 

 The IMC approach is similar to the direct inverse approach. There are two main 

differences between direct inverse control and IMC. First of all, the addition of the 

forward model placed in parallel with the plant, to cater for plant or model mismatches 

and the other important difference is that, the error between the plant output and the 

neural net forward model is subtracted from the set point before being fed into the 

inverse model. 

 Another study on neural networks control application is done by Gadkar and 

colleagues. Gadkar and colleagues (2005) investigates the ethanol fermentation control 

by using neural networks. Figure 3.2 shows their results of online control 

implementation of neural networks for controlling the cell concentration. 

 
 

Figure 3.2. On-line control implementation of neural network for controlling the cell 

concentration along the profile x = 0.2×time when the network was trained 

for a profile of x = 0.15×time. • Experimental value; _ prediction with 

online adaptation of weights; prediction without adaptation of weights 

(Source: Gadkar et.al. 2005). 
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 The profile predicted by the neural network with and without the adaptation of 

weights along with the actual experimental data is shown. They observe that predictions 

of the network with online update of weights follow the experimental data more closely. 

 A. Mészáros and colleagues (2003) examined a fermentation process by using 

hybrid model with neural network structure. The hybrid model structured is shown in 

Figure 3.3 

 

 
 

Figure 3.3. Hybrid model structure for the fermentation process 

(Source: A. Mészáros et.al. 2003). 

 

 Here the unknown parameter, biomass growth rate,�, in the mechanistic model 

was  determined by the neural network  structured and the results of the network  

combined with the mechanistic model. Biomass and substrate concentrations are the 

inputs of the network and represented as X and S in Figure 3.3. Finally in the control 

section of their study they use neural networks as the controller. Figure 3.4 shows the 

block diagram of control structure. 
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Figure 3.4. Proposed control system’s block diagram 

(Source: A. Mészáros et.al. 2003). 

 

 The results of their study shown in Figure 3.5; 

 

 

Figure 3.5. Performance of adaptive neural PID control-deterministic case 

(Source: A. Mészáros et.al.2003). 
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 As it is seen form the Figure 3.5 adaptive neural PID controller results matches 

the deterministic although there are parametric uncertainties and disturbances. 
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CHAPTER 4 

 

BIOPROCESSES AND BIOREACTORS 
 

4.1 What is Bioprocess and Biotechnology? 
 

 Biotechnology is a branch of science that deals with the manipulation of living 

organisms (such as bacteria) by using the basic technologies. It is also defined as the 

integrated used of biochemistry, microbiology, and engineering sciences in order to 

achieve technological application of capabilities of microorganisms, cultured tissue and 

parts thereof (Scrag,A.,1988) 

 On the other hand ,bioprocess are the  processes that uses complete living cells 

or their components (e.g. enzymes, chloroplasts) to effect desired physical or chemical 

changes. Bioprocesses are non-deterministic systems. In general, models dealing with 

microbial pathways and microbial physiology are exceedingly complex, and as it is 

almost impossible to measure intracellular concentrations on-line, they normally have 

too many uncertain parameters that are difficult to evaluate (Karım et. al., 1996). 

 

4.2 General Information on Bioprocesses 

 

 Biological processes are both time variant and nonlinear in nature. It is time 

variant because microbial species are slowly but continuously undergoing physiological 

and morphological changes. Their nonlinear nature may result from the many factors 

such as kinetics of cellular growth and product formation, thermodynamic limitations, 

heat and mass transfer effects etc... ( Karım et. al., 1997). 

 For modeling purposes, some simplifications are done in explaining the growth 

kinetics and cellular representations. Models can be divided into two main subgroups; 

structured and unstructured models. 

 Bio-systems include two interacting systems. These are, biological phase 

consisting of a cell population and the environmental phase. Cells consume nutrients 

and convert substrates from the environment into products. The cells generate heat and 

so that the medium temperature sets the temperature of the cells. Mechanical 
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interactions occur through the hydrostatic pressure and the flow effects from the 

medium to the cells and from changes in medium viscosity due to the accumulation of 

cells and of cellular metabolic products. 

 Each individual cell is a complicated multi component system which is 

frequently not spatially homogeneous even at the single cell level. Many independent 

chemical reactions occur simultaneously in each cell, subject to the complex set of 

internal controls. 

 On the other hand, the cellular environment is often a multiphase system. This 

also increases the complexity of the processes. There are lots of parameters that affect 

the environmental structure. These variables and parameters can influence the cell 

kinetics. 

 Thus to formulate a kinetic model that includes all of the parameters and 

variables is nearly impossible. To overcome it, some assumptions and simplifications 

must be done. 

 Kinetic models enable to the bioengineer to design and control microbial 

processes. In predicting the behavior of these processes, mathematical models, together 

with the carefully designed experiments, make it possible to evaluate the behavior of 

systems more rapidly that with solely laboratory experiments. Thus structured and 

unstructured models can be obtained. Structure models take into account some basic 

aspects of cell structure, function and compositions. In unstructured models, only cell 

mass is employed to describe the biological system (Znad et. al., 2003). 

 In situations in which the cell population composition changes significantly and 

in which these composition changes influence kinetics, structured models should be 

used. We can divide structural model into two subgroups. These are compartmental 

models and metabolic models. 

 

4.2.1 Compartmental Models 

 

 In the simplest structured models, the biomass is compartmentalized into small 

number of components. Sometimes these components have an approximate biochemical 

definition, as in a synthetic component (RNA and precursors), and a structural 

component (DNA and proteins). Alternatively, the compartments may be defined as an 

assimilatory component and a synthetic component. 
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 Small compartmental models are relatively uncomplicated mathematically and 

contain relatively few kinetic parameters with respect to the other models. To use this 

model cell representations are required (Bailey, J.E., Ollis, D.F., 1986) 

 

4.2.2 Metabolic Models 
 

 In this model more biological detail is added to the model. Thus model becomes 

more specific to a particular organism or process. The key metabolic features of the 

particular system which is going to be modeled can be found in the biological sciences 

or biotechnology literature. So more detail models can be obtained. But unless the 

knowledge about organism, there will be lots of freedom in the model and these 

parameters can not be determined. 

 

4.2.3 Growth Kinetics 
 

 Growth process begins when a small number of cells are inoculated into the 

batch reactor containing the nutrients. Cell growth mechanism in a batch reactor can be 

seen in Figure 4.1. As it is seen this mechanism can be divided into four stages. The 

names of these phases are lag phase, exponential growth phase, stationary phase and 

final phase respectively. In lag phase there is a little increase in cell concentration. At 

this stages cells are adjust themselves to the new environment and synthesis enzymes 

and finally become ready to reproduce. The duration of the lag phase depends on the 

growth medium. If the inoculum is similar to the medium of the batch reactor, the lag 

phase will be almost nonexistent. In exponential growth phase, the cell growth rate is 

proportional to the cell concentration. Here, cells are divided at their maximum rate 

because all of the enzyme’s pathways for metabolizing the media are in place and the 

cells are able to use the nutrients most efficiently. In the stationary phase, cells reach 

their maximum biological space. Here the lack ness of the nutrients limits the cell 

growth. During this stage the growth rate is zero. Many of the important fermentation 

products are produced at this stage. Finally the last stage is called as death phase 

because in this phase the living cell concentrations decrease. The toxic products and the 

depletion of the nutrients are the reasons of this decrease. 
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Figure 4.1. Time versus log cell concentration graph of growth mechanism  

(Source: WEB2_2005) 

 

 There are two types of medium according to their makeup. These are called as 

synthetic medium and complex medium. A synthetic medium is one in which chemical 

composition is well defined. On the other hand complex media contains materials of 

undefined compositions. The general goal in making a medium is to support good 

growth or high rates of product synthesis. But this does not mean that all the nutrients 

should be supplied in great excess. In some situations excessive concentration of 

nutrients can inhibit or even poison cell growth. Moreover if the cells grow too 

extensively, their accumulated metabolic end products will often disrupt the normal 

biochemical processes of the cells. A functional relationship between the specific 

growth rate and an essential compound concentration was developed by Monod in 1942. 

There are also other related forms of growth rate dependence have been proposed  

which in particular instances give better fits the experimental data. Teissier, Moser and 

Contois growth kinetics are the mostly known ones. Monod equation states that; 

 

SK
S

S +
×= max

 ; as   expressed becan     

µµ

µ

        (4.1) 
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)dm / (gconstant  monod The 

)(s rategrowth  specific maximum
3

-1
max

=

=

SK

µ
 

 

Growth rate constant,µ, is a function of the substrate concentration, S. Two constants 

are used to describe the growth rate  

� µm (mg/L) is the maximum growth rate constant (the rate at which the substrate 

concentration is not limiting)  

� Ks is the half-saturation constant (d-1)  

 

 Other growth rate kinects can be desribes as ; 

  Tessier equation; 

)1( /
max

Ksse−−×= µµ          (4.2) 

 Moser equation;  

)1(max
λµµ −×+×= sK s          (4.3) 

 The Contois kinetics can be desribed as  

sBx
s
×

×= maxµµ           (4.4) 

 The first two of the equation has more complex analytic solutions with respect to 

the Monod form (Bailey,J.E., Ollis,D.F.,1986). 

 

4. 3 Bioreactors 

 

 Enzymatic reactions are involved of microorganisms. Bioreactors are not 

homogenous of the presence of living cells. To decide the reactor type, first of all cell 

growth should be taken into consideration. The choice of reactor and the operating 

strategy determines product concentration, number and types of impurities, degree of 

substrate conversion and yields. 

 Most bioprocesses are based on the batch reactors. Continuous systems are used 

to make single cell protein, and modified forms of continuous culture are used in waste 
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water treatment and for some other large volume, growth associated products (Shuler 

M.,Kargı F.,2002) 

 

4.3.1 Rate Laws 

 
 Generally rate laws can be expressed as  

 

Cells + Substrate More cells + Product  

 
     * cg Cr µ=           (4.6) 
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r

+
×
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 In many systems product inhibits the growth rate. There are number of equations 

to account for inhibition;  

 



 25 

SS

CS
obsg CK

CC
kr

+
××

×= maxµ
      (4.10) 

 

n

p

p
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C

C
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p  

 

4.3.2 Stoichiometry  
 

 The stoichiometry for cell growth is very complex and varies with 

microorganism / nutrient system and environmental conditions such as pH, temperature 

and redox potential. 

 
Cells + Substrate More cells + Product  
 

S PYCY SPSC ×+× //  
 

  
 cells new produce  toconsumed substrate of mass

formed cells of mass
/ =SCY                 (4.12) 

 

    
CS

SC Y
Y

/
/

1=                                 (4.13) 

 

  
product  form  toconsumed substrate of mass

formedproduct  of mass
/ =SPY                          (4.14) 

 
 In addition to consuming substrate to produce cells, part of the substrate must be 

used to maintain a cell’s daily activities. The corresponding maintenance utilization 

term is; 

 

  
 time* cells of mass

 emaintenancfor  consumed substrate of mass=m                            (4.15) 

 

 emaintanencfor n consumptio substratefor  accounts Yt coefficien yield The /
'

SC  
 

cells 
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consumed substrate of mass

 formed cells new of mass
Y /

' =SC       (4.16) 

 

4.3.3 Substrate Accounting; 

 

 The mass balance of the substrate can be written as  
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4.3.4 Mass Balances  
 

 A mass balance on the microorganism in a CSTR of constant volume is;  
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the corresponding substrate balance is ; 
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4.3.5 Design Equations  
 

 New parameter which is commonly used in bioreactors can be defined as; 

 

              
V
v

D o=         (4.20) 

 
τ  timespace of reciprocal simply the is which ratedilution  : D  

 
According to these and the general equation; 
 

Accumulation = in – out + generation  
 

For Cells; 
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; operations statesteady for  

 

                        CD C dg rr −=×      (4.24) 
 

    SS rC =−× )(CD So         (4.25) 
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CHAPTER 5 

 

PROPOSED WORK 

 
 Biological products are generally high value products so batch reactors are 

widely used in bioprocesses. They are usually produced in small amounts. Thus in these 

systems optimal operation conditions are extremely important.  

 Hybrid model and pure neural network models are used for unstructured kinetic 

models. Generally, for bioprocess, the process data could not be easily obtained. 

Especially, in kinetic models with several parameters which can not be obtained easily. 

Some of them affects the kinetic model of the system and could not be measured. At 

this point, neural network modeling technique becomes an alternative way of obtaining 

these unknown data. By knowing the parameters affect on the system, designer should 

obtain more correct models. 

 In the study, for unstructured model, firstly solution of the known process with 

analytical equation was obtained. Then these equations were solved numerically. 

Solution of these equations was taken as the data of the process and a part of these data 

was used in neural network for training. After the network has been trained, predictions 

were done. Finally the neural network solution of the system was gained. Then a 

comparison can be done between the neural network solution and the numerical results. 

For hybrid solution of the process, analytical equations of the process were linearized. 

Then linearized solution was compared with the numerical solution. The difference 

between the numerical solution and the linearized solution represents the nonlinear part 

of the system, and this nonlinear part was solved in neural network. Then the results of 

the neural network and the linearized solution were summed and finally a comparison 

was done between the numerical results and pure neural network solution. 

 The schematic view of the steps, which was followed in the study is shown in 

the Figure 3.6 and Figure 3.7 for neural network and hybrid model solutions 

respectively. 
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Figure 5.6. Schematic view of neural network model 
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Figure 5.7. Schematic view of hybrid model 
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CHAPTER 6 

 

APPLICATION OF HYBRID AND NEURAL NETWORK 

MODELS ON BIOPROCESSES 
 

6.1 Case study I: Ethanol fermentation with Saccharomyces Cerevisiae 
 
 The essence of bioconversion of sugar containing materials by the use of 

screened microbial source is the significant need of today. Saccharomyces cerevisiae is 

one of the common and the cheapest source of bioconversion of substrate to the higher 

yield of bio-ethanol under the controlled optimization parameters (WEB_4, 2005). 

 Yeast is single-celled, most domesticated group of microorganisms belong to the 

kingdom Ascomycotina. They are widely exist in the natural world and their preferred 

niches in nature are on the surface of fruits and tree exudates and in dead and decaying 

vegetation, where they thrive on sugar material. They are of multiple economic, social 

and health significance and have been exploited unwittingly, since ancient times for the 

provision of food (leaved breed) e.g. Saccharomyces cerevisiae. This yeast is one of the 

oldest, exploited and best studied microorganism in both old and new biotechnologies 

and is known to be the world’s premier industrial microorganisms which readily convert 

sugars into alcohol and CO2  in metabolic process  called fermentation for example of 

alcoholic beverages viz. Beer, mead, cider, sake and distilled sprits (WEB_4,2005) 

 In case study I, glucose to ethanol fermentation was to be carried out in a batch 

reactor using an organism Saccharomyces Cerevisiae was investigated. Initial cell 

concentration and substrate concentration was 1g/dm3 and 250g/dm3 (Fogler H.S 1999). 

Additional data for the system was given in Table 6.1. 
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Table 6.1. Additional data for process. 

(Source: Fogler, H.S, 1999) 

 

C*
p 93g/dm3 

n 0.52 
µmax 0.33h-1 
Ks 1.7g/dm3 
YC/S 0.08g/g 
YP/S 0.45g/g 
YP/C 5.6 g/g 
kd 0.01h-1 
m 0.03(g substrate) / (g cells*h) 

 

Mass Balance : 

 

For cells:           

    Vrr
dt

dC
V dg

c ×−=× )(         (6.1) 

 

For substrate:    

 

    VrVrY
dt

dC
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s ×−×−=× )(/        (6.2) 

 

For product:      
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     csm Cmr ×=          (6.6) 

 

Stoichiometry: 

 

     gcpp rYr ×= /           (6.7) 

 

 The combination all of these equations gave; 
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 Linearization was done at point xlin, ylin and zlin. Here; 

 

x = Cc  

 

y = Cs 

 

z = Cp 
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 For taking the laplace transforms of the equations their deviation forms are 

needed.  

 

    '
3

'
2

'
1

'

zayaxa
dt
dx ×+×+×=      (6.11) 

 

    '
3

'
2

'
1

'

zbybxb
dt
dy ×+×+×=       (6.12) 

 

    '3
'

2
'

1

'

zcycxc
dt
dz ×+×+×=       (6.13) 
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 Laplace transforms of these equations gives; 

s ×  x’(s)-x’ (0) = a1×  x’(s) + a2×y’ (s) +a3 ×z’ (s) 

s ×  y’(s)-y’ (0) = b1 ×  x’(s) + b2 ×  y’ (s) +b3 ×  z’ (s) 

s ×z’(s)-z’ (0) = c1×  x’(s) + c2 ×  y’ (s) +c3 ×  z’ (s) 

 The constants are given in Appendix A. 

 Finally taking the inverse Laplace of these equations and substitute the values; 

the linearized solution of the process could be obtained. 

 The steady state points of the cell, substrate and product concentrations were 

found as  

 

xS =3.4724 

 

yS = 0.0043 

 

zS = 93.0008 respectively at  t =169second. 

 

 At steady state points the solution of equations 6.11, 6.12 and 6.13 yield;  

 

    )0000582184.0exp()0968264.0()0102907.0exp()56923.2()( tttx ×−×+×−×−=  

xst +××−××− −− )1047665.5exp()1029421.2(                 1820      (6.14) 

 

)0000582184.0exp()579.256()0102907.0exp()58286.6()( ttty ×−×+×−×−=  

 yst +××−×− − )1047665.5exp()000740304.0(      18      (6.15)  

 

)0000582184.0exp()5947.92()0102907.0exp()406387.0()( tttz ×−×−×−×−=  

zst +××−×+ − )1047665.5exp()0007257142.0(                18       (6.16) 

 

 Numeric solutions were done by using Matlab ODE solvers. The numeric and 

linearized solution of cell concentration was shown at Figure 6.1. As seen form Figure 

6.1 cell concentration’s linearized solution did not match with the numeric results. So 

that, one can say that linearized solution for cell concentration did not represent the 

system.  
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Figure 6.1. Linearized and exact solution of cell concentration vs time 

 
 The numeric and linearized solution results of the glucose concentration were 

shown at Figure 6.2. Like in the cell concentration results, linearized solution results did 

not represent the glucose concentration in suitable manner. 

 In Figure 6.3 product concentration versus time graph was shown. As it was seen 

form the Figure 6.3, linearized solution of the product concentration result did not 

match the result of numeric solution of the product concentration. It was clear that 

linearized solution of the product concentration did not represent the process output. 
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Figure 6.2. Linearized and exact solution of glucose concentration vs time 

 

 
 

Figure 6.3. Linearized and exact solution of product concentration vs time 
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 As it was seen from the linearized and exact solution graphs, linear solution did 

not represent the system in accurate. 

 In neural network solution of the cell concentration, the network structure 

selected as one input, one hidden and one output layer with three, three and one neurons 

in layers respectively. Transfer functions were chosen as logsig, logsig and purelin in 

the layers. There were 645 data for each of the variables. 33 of the each 645 data were 

used for training application. Inputs of the network were chosen as time, glucose and 

product data. Cell concentration was the output of the neural network solution. 

 In Figure 6.4 the neural network and numeric solution results of the cell 

concentration was shown. As it was seen form Figure 6.4, neural network solution could 

not captures the cell concentration numeric results up to t= 10,but after that time results 

of the network structure perfectly matched the numeric solution results. 

 

 
Figure 6.4. Neural network and exact solution of cell concentration vs. time 

 

 In Figure 6.5 glucose concentrations’ linearized and neural network results were 

shown. The network structure was same with the cell concentration model. But here; 
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inputs of the networks were taken as time, cell and product concentrations. The output 

of the network structure was taken as glucose concentration. As it was seen from the 

Figure 6.5 neural networks results for glucose concentration were good in match with 

the numeric results. Obviously, neural network results for glucose concentration 

represent the system in acceptable manner. 

 

 
 

Figure 6.5. Neural network and exact solution of glucose concentration vs. time 

 

 In Figure 6.6 numeric and neural network solution results of the product 

concentration was shown. Network structure was same with the cell and glucose 

concentration models. Inputs of the network were taken as time, cell and glucose 

concentrations. Output of the network structure was product concentration. It was 

observed that, up to t=10 there were some divergence between the numeric and neural 

network results but after that time network captured the numeric solution perfectly. 
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Figure 6.6. Neural network and exact solution of product concentration vs. time 

 

 Neural network solution graphs of the cell, glucose and product concentration 

were shown in Figure between 6.4 and 6.6. It was seen that neural network solutions 

represent the process in acceptable manner. 

 In hybrid solution of the cell concentration, the network structure selected as one 

input, one hidden and one output layer with two, three and one neurons in layers 

respectively. Transfer functions were chosen as tansig, logsig and purelin in the layers. 

Network training data was chosen from the difference of the exact and linear solutions 

result of the cell, glucose and product concentrations. Inputs of the networks were 

glucose and product concentrations. The output of the network was cell concentration. 

Number of the training data was same with the neural network model. After training the 

whole system difference values between exact and linear solution was predicted and 

finally these values were summed with the linear solution results. The summation gives 

the hybrid solution.  
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 In Figure 6.7 numeric, hybrid and linearized solution of the cell concentration 

was shown. It was clear that hybrid model represents the cell concentration slightly 

better than the neural network solution.  

 

 
 

Figure 6.7. Hybrid, linearized and exact solution of cell concentration vs. time 

 

 Numeric, hybrid and linearized solution results of the glucose concentration was 

shown at Figure 6.8. In glucose concentration model, the network structure was 

different from the cell concentration model. The network structure selected as one input, 

one hidden and one output layer with two, five and one neurons in layers respectively. 

Transfer functions were chosen as purelin, tansig and purelin in the layers. Hybrid 

model results were good in match with the numeric solution values. And again like in 

the cell concentration, hybrid model represents the glucose concentration slightly better 

than the neural network. 
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Figure 6.8. Hybrid, linearized and exact solution of glucose concentration vs. time 

 

 In Figure 6.9 numeric, hybrid and linearized solution of the product 

concentration was shown. In product concentration model, the network structure was 

different from the cell and glucose concentration models. The network structure 

selected as one input, one hidden and one output layer with two, three and one neurons 

in layers respectively. Transfer functions were chosen as logsig, logsig and purelin in 

the layers. As it was seen from Figure 6.9 hybrid model results were slightly better than 

the neural network model. 
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Figure 6.9. Hybrid, linearized and exact solution of product concentration vs. time 

 

 In Figure 6.9, hybrid model solution captured the numeric solution slightly better 

than the neural network solution. 

 As seen from the Figures between Figure 6.7 and Figure 6.9 the hybrid solution 

represents the system slightly better than the neural network. Figure 6.9, the product 

concentration divergence of the hybrid solution from the exact solution was slightly 

smaller than the neural network ones. This was an expected result, because in hybrid 

solution the divergence between the exact and linear solution was solved by ANN and 

so ANN could captured the system much better with respect to the whole system 

capturing. On the other hand, hybrid system gave a chance to capture the systems 

physical behaviors. At ANN model physical constraints were not taken into 

considerations. 
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6.2  Case Study II: Ethanol production with recombinant  Zymomonas 

mobilis  

 
 Mathematical model of ethanol production from glucose/xylose mixtures by 

recombinant Zymomonas mobilis was investigated. 

 The equations assume Monod kinetics for substrate limitation and ethanol 

inhibition (Leksawasdi N., Rogers P. 2001). These relationships were represented as;  

 

For glucose; 

 

  �
�

	




�
�

�



+
×��
	




�
�

�



−
−

−×��
	




�
�

�



+
×=

11,

1,

1,1,

1,

11,

1
1max,1, 1

sK

K

PP

Pp

sK
s

r
ix

ix

ixmx

ix

sx
x µ      (6.17) 

 
For xylose; 
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and according to these equations the biomass formation was calculated as; 
 

    [ ] xrr
dt
dx

xx ××−+×= 2,1, )1( αα       (6.19) 

 

 For sugar uptake in the process, the glucose and xylose were considered in 

separate rate equations. Here the glucose and xylose update could be represented as 

follows; 
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and  

 

 x
sK

K

PP

Pp

sK
s

q
dt
ds

is

is

isms

is

ssx
s ×��

	



�
�

�



+
×��
	



�
�

�



−
−

−×��
	



�
�

�



+
××−−=

22,

2,

2,2,

2,

22,

2
2max,,

2 1)1( α    (6.21) 

 

 On the other side ethanol production could be represented as; 
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    [ ] xrr
dt
dp

pp ××−+×= 2,1, )1( αα       (6.22) 

  

For glucose; 
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And for xylose ; 
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Table 6.2. Initial values for the batch fermentation with �=0.65;  

(Source: Leksawasdi N., Rogers P. 2001) 

 

 
 

Table 6.3. Optimal kinetic parameters for biomass production model (all data sets with  
                   �=0.65) 

(Source:Leksawasdi N., Rogers P. 2001) 

 

 
 

 

        Glucose          Xylose
      Biomass production model
�max,1 0,31 �max,2 0,1

Ksx,1 1,45 Ksx,2 4,91

Pmx,1 57,2 Pmx,2 56,3

Kix,1 200 Kix,2 600

Pix,1 28,9 Pix,2 26,6

Glucose / xylose (g/l) 25 / 25 50 / 50 65 / 65
Xo 0,0028 0,017 0,003

So1 25,08 51,08 59,3

So2 27,65 51 63,24

Po 1,41 2,84 3,83
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Table 6.4. Optimal kinetic parameters for glucose/xylose consumption model (all  
                        datasets with �=0.65)  

(Source: Leksawasdi N., Rogers P. 2001) 

 

 
 

Table 6.5: Optimal kinetic parameters for ethanol production (all data sets with �=0.65) 

(Source: Leksawasdi N. , Rogers P. 2001) 

 

 
 

 Model equations were linearized and linearization points were taken as xlin, 

s1lin, s2lin and plin; 

 

 )(4)22(3)11(2)(1
'

pspasssasssaxsxa
dt
dx −×+−×+−×+−×=  (6.25) 

 

 )(4)22(3)11(2)(1
1'

pspbsssbsssbxsxb
dt

ds −×+−×+−×+−×=  (6.26) 

 

 )(4)22(3)11(2)(1
2'

pspcssscssscxsxc
dt

ds −×+−×+−×+−×=  (6.27) 

 

        Ethanol Production model
qp,max,1 5,12 qp,max,2 1,59

Ksp,1 6,32 Ksp,2 0,03

Pmp,1 75,4 Pmp,2 81,2

Kip,1 186 Kip,2 600

Pip,1 42,6 Pip,2 53,1

 Glucose and xylose consumption model
qs,max,1 10,9 qs,max,2 3,27

Kss,1 6,32 Kss,2 0,03

Pms,1 75,4 Pms,2 81,2

Kis,1 186 Kis,2 600

Pis,1 42,6 Pis,2 53,1
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 )(4)22(3)11(2)(1
'

pspdsssdsssdxsxd
dt
dp −×+−×+−×+−×=  (6.28) 

 

 The constants were given in Appendix B. 

 Linearization was done at steady state points and finally linearized equations 

were obtained. Numeric calculations were done by using Matlab ODE solvers. 

 

   )1626.95exp(00265747.000453.1)( ttx ×−×−=  
   xst +×−×− )14103.2exp(25847.2                (6.29) 
 

  )1626.95exp(1066116.41086259.4)(1 1519 tts ×−××+×−= −−  
  
   sst 1)14103.2exp(08.25 +×−×+       (6.30) 
 

)1626.95exp(65.271079233.4)(2 8 tts ×−×+×−= −  

 sst 2)14103.2exp(1066894.9                      8 +×−××+ −      (6.31) 
 

)1626.95exp(4445.131031615.7)( 6 ttp ×−×−×−= −  
   pst +×−×− )14103.2exp(7807.11         (6.32) 

 

 In Figure 6.10 linearized and numeric solution of the biomass concentration was 

shown. As it was seen form the Figure 6.10, linearized solution results did not capture 

the numeric solution results 
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Figure 6.10. Exact and linearized solutions of biomass vs. time 

 

 In Figure 6.11 numeric and linearized solution results of the glucose uptake was 

shown shown. Numeric and linearized solution results did not match up to t = 12.5. 

After that time numeric and linearized results were good in match. 
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Figure 6.11. Exact and linearized solutions of glucose uptake vs. time 

 

 In Figure 6.12 numeric and linearized solution results of the xylose uptake was 

shown. Linearized solution of the xylose did not capture the numeric solution results till 

t = 17.4. After that point linearized and exact solution results of the xylose uptake was 

good in match. 
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Figure 6.12. Exact and linearized solutions of xylose uptake vs. time 

 

 In Figure 6.13 ethanol productions’ linearized and numerical solution results 

were shown. As it was seen from the Figure 6.13 linearized solution results of the 

ethanol production did not represent the process till t = 17. After that point linearized 

solution and the numeric solution of the ethanol production was good in match  



 53 

 
 

Figure 6.13. Exact and linearized solutions of ethanol production vs. time 

 

 Neural Network solutions of the system were shown in Figures between Figure 

6.14 and Figure 6.17. The neural network structure was same for biomass, glucose 

uptake, xylose uptake and product concentration models. There were four neurons in the 

input layer, 9 neurons in the hidden layer and 1 neuron in the output layer. The transfer 

functions were logsig-logsig-purelin respectively. There were 1645 data for each 

variable and 55 of the each 1645 data was used for training purpose. 

 In Figure 6.14, neural network solution and exact solution results of the biomass 

concentration were shown. For biomass neural network model, inputs of the network 

were glucose uptake, xylose uptake and product concentration and time. Output of the 

network was biomass concentrations. As it was seen from Figure 6.14, neural network 

solution captured the numeric results in acceptable manner. 
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Figure 6.14. Neural network solution of biomass vs. time 

 

 In Figure 6.15 neural network and exact solution results of the glucose uptake 

was shown. The network structure was same as the biomass concentration model. But in 

modeling the glucose with neural network, inputs were time, biomass, xylose uptake 

and product concentration. Output of the neural network was glucose uptake. As it was 

seen network could not captured the numeric values up to t=10. But after that time it 

captured the numeric values perfectly. 

 Numeric and neural network solution results of the xylose uptake were shown at 

Figure 6.16. In modeling the xylose uptake with neural network, inputs were time, 

biomass, and glucose uptake and product concentration. Output of the neural network 

was xylose uptake. Like in the glucose uptake model, network captured the numeric 

values after t =10.  
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Figure 6.15. Neural network solution of glucose uptake vs. time 

 

 In Figure 6.17 ethanol productions’ numerical and neural network solutions were 

shown. In product concentration model, the inputs of the network were time, biomass, 

and glucose uptake, xylose uptake. Output of the neural network was product 

concentration. Up to t=10 there was a big difference between the neural network and 

numeric solution results. But after t=10 the difference became smaller and finally neural 

network captured the numeric solution perfectly. 
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Figure 6.16. Neural network solution of xylose uptake vs. time 

 

 
 

Figure 6.17. Neural network solution of ethanol production (product) vs. time 
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 Hybrid solutions of the system were shown in Figures between Figure 6.18 and 

Figure 6.21. The networks structure for the biomass hybrid model is 3-9-1 which means 

that there was three neurons in the input, 9 neurons in the hidden and 1 neuron in the 

output layer. The transfer functions were purelin-purelin and purelin with respectively. 

The training data was taken from the difference of the numeric and linearized solution 

results. Inputs of the network structure were glucose uptake, xylose uptake and product 

concentration. The output of the network structure was biomass. 

 In Figure 6.18, hybrid, exact and linerized solution of the biomass concentration 

was shown. As it was seen for the Figure 6.18, hybrid model did not capture the 

numeric solution in good accuracy up to t=10. After that the hybrid solution results were 

good in match with the numeric solution results. 

 

 
 

Figure 6.18. Hybrid model solution of biomass vs. time 

 

 Hybrid, exact and linearized solution of the glucose uptake results were shown 

in Figure 6.19. The networks structure for the glucose uptake hybrid model is 3-9-1 

which means that there were three neurons in the input, 9 neurons in the hidden and 1 
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neuron in the output layer. The transfer functions were logsig-tansig and purelin with 

respectively. The training data was taken from the difference of the numeric and 

linearized solution results. Inputs of the network structure were biomass, xylose uptake 

and product concentration. The output of the network structure was glucose uptake. The 

hybrid model solution did not capture the numeric solution results in good accuracy.  

 In Figure 6.20 hybrid, linearized and exact solution of the xylose uptake was 

shown. The networks structure for the xylose uptake hybrid model was 3-9-1 which 

means that there were three neurons in the input, 9 neurons in the hidden and 1 neuron 

in the output layer. The transfer functions were logsig-tansig and purelin with 

respectively. The training data was taken from the difference of the numeric and 

linearized solution results. Inputs of the network structure were biomass, glucose uptake 

and product concentration. The output of the network structure was xylose uptake. Up 

to t =10 the hybrid model and numeric solution results did not match each other. But 

after t=10 the hybrid solution results became closer to the numeric solution results and 

after t=16 hybrid model captured the numeric solution perfectly. 

 

 
Figure 6.19. Hybrid model solution of glucose uptake vs. time 
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Figure 6.20. Hybrid model solution of xylose uptake vs. time 

 

 In Figure 6.21 ethanol productions’ linearized, hybrid and exact solution results 

were shown. The networks structure for the product concentration hybrid model is 3-9-1 

which means that there were three neurons in the input, 9 neurons in the hidden and 1 

neuron in the output layer. The transfer functions were logsig-tansig and purelin with 

respectively. The training data was taken from the difference of the numeric and 

linearized solution results. Inputs of the network structure were biomass, glucose uptake 

and xylose uptake. Output of the network in the hybrid model was product 

concentration. As it was seen from Figure 6.21, hybrid solution did not capture the 

numeric solution up to t=10, after that the results of the hybrid model solution and 

numeric solution became closer and finally hybrid model captured the numeric solution 

perfectly. 
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Figure 6.21. Hybrid model solution of ethanol production ( product ) vs. time 

 

 If a comparison was done between the neural network models and the hybrid 

models it was clear that especially in glucose uptake and product concentration hybrid 

model was better than the neural network solution. In xylose uptake models hybrid 

model gave slightly better results than neural network. 
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6.3 Case Study 3: Gluconic acid fermentation with organism 

Pseudomonas ovalis 

 
 In case study 3, simulation of the fermentation of glucose to gluconicacid by the 

micro-organism Pseudomonas ovalis in a batch stirred tank reactor was investigated. 

The overall mechanism could be expressed as; 

 

Cells    + Glucose + Oxygen    More cells 

 

Glucose + Oxygen    Gluconolactone 

 

Gluconolactone + Water                   Gluconic Acid 

 

 By using glucose as substrate, microorganism number of Pseudomonas ovalis 

increases. By the combination of glucose and oxygen with cells gluconolactone was 

produced. This Gluconolactone combined with water and produced gluconic acid as the 

main product (Thibault J. et. al, 2000). 

 The concentrations of cells could be described as follows; 

 

   XfX
CSSkCk

CS
dt
dX

os
m 1≡×

×+×+×
××= µ      (6.33) 

 

Concentration of gluconic acid which was represented as p can be described as; 

 

l  represents the gluconolactone  and described as ; 
 

                     lkXflkX
Sk

S
dt
dl

pp
l

l ××−≡××−×
×

×= 91.091.0 2ν   (6.35) 

 
The substrate glucose was represented by S and its equation was as follows; 

 

 X
Sk

S
X

CSSkCk
CS

Ydt
dS

l
l

os
m

s

×
×

××−×
×+×+×

×××−= νµ 011.1
1

   (6.36) 

 

 

Cells 
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Dissolved oxygen concentration was represented with C and its equation was; 
 

   XfXf
Y

CCK
dt
dC

o
L 21

* 09.0
1

)( ×−×−−×= α     (6.37) 

 
 

 The parameters and their values which were used in modeling of gluconic acid 

production was given in Table 6.6. 

 

Table 6.6: Parameters used in the modeling of gluconic acid production  

(Source: Thibault J. et.al. 2000). 

 

 
 

Then model equations were linearized. Linearization points were represented as Xlin,   

Plin , Llin, Slin and Clin. 

 

 )(5)(4)(3)(2)(1
'

cscasssalslapspaxsxa
dt
dx −×+−×+−×+−×+−×=    (6.38) 

 

 )(5)(4)(3)(2)(1
'

cscbsssblslbpspbxsxb
dt
dp −×+−×+−×+−×+−×=    (6.39) 

 

 )(5)(4)(3)(2)(1
'

csccsssclslcpspcxsxc
dt
dl −×+−×+−×+−×+−×=    (6.40) 

 

 )(5)(4)(3)(2)(1
'

cscdsssdlsldpspdxsxd
dt
ds −×+−×+−×+−×+−×=    (6.41) 

 

Parameter Value Unit
�m 0,39 h-1

ks 2,50 g/l

ko 0,00005500 g/l

kp 0,65 h-1

�l 8,30 mg/UOD h

kl 12,8 g/l

KL� 150-200 h-1

Ys 0,375 UOD/mg

Yo 0,89 UOD/mg

C* 0,006850 g/l
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 )(5)(4)(3)(2)(1
'

cscessselslepspexsxe
dt
dc −×+−×+−×+−×+−×=    (6.42) 

 

 The constants are given in Appendix C. 

 According to these constants and linearization points, linearized solution of the 

system could be obtained. When linearization was done at steady state points the 

equations between 6.43 and 6.47 were obtained. Numeric calculations were done by 

using Matlab ODE solvers. 

 

Xstttx +××−+×−×= − ))108158.1exp((*)48602.2()1231.2exp()36742.4()( 35  (6.43) 
 

)1232.2exp()62194.7()150exp()100803.1()8219.15()( 40 tttp ×−×+×−××−−= −  
)58695.0exp()5712.27(               t×−×−  

Pst +××−×+ − ))1081582.1exp(()61603.8(               35        (6.44) 
 

)1232.2exp()0898.25()150exp()1002523.7()( 17 tttL ×−×−×−××= −  
)58695.0exp()0898.25(                        t×−×+  

Lst +××−××− −− ))1081582.1exp(()1042561.2(                        3534     (6.45) 
 

)58695.0exp()1096892.1()1232.2exp()30()( 15 tttS ×−××−+×−×= −  

Sst +××−××− −− ))1081582.1exp(()108262.7(                        3519     (6.46) 
 

)58695.0exp()1059247.6(          

)1232.2exp()093916.0()150exp()093916.0()(
18 t

tttC

×−××+

×−×−×−×=
−  

  Cst +××−××+ −− ))1081582.1exp(()1063469.5(    3527      (6.47) 
 

 In Figure 6.22, numeric and linearized solution results of the cell concentration 

were shown. Obviously, it was clear that linearized solution did not represent the 

numeric solution. 

 For gluconic acid, numeric and linearized solution results were shown in Figure 

6.23. Linearized solution results of the gluconic acid diverged form the numeric results 

at the beginning of the solution. So, linearized solution result did not represent the 

numerical solution in accuracy.  
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Figure 6.22. Linearized and exact solution of cell concentration vs. time 

 

 
 

Figure 6.23. Linearized and exact solution of gluconic acid concentration vs. time 



 65 

 

 In Figure 6.24 numeric and linearized solution results of the gluconolactone 

concentration was shown. Linearized solution results showed same dynamic response 

with the numeric solution but as it was seen, linearized solution results were different 

from the numerical ones. So representing the gluconolactone concentration with 

linearized solution could not be accepted.  

 

 
 

Figure 6.24. Linearized and exact solution of gluconolactone concentration vs. time 

 

 Numeric and linearized solution results of the glucose concentration were shown 

in Figure 6.25. Like in the others, linearized solution results did not represent the 

numeric solution of the glucose concentration. 

 In Figure 6.26, linearized and exact solution results of the dissolved oxygen 

were shown. Linearized dissolved oxygen concentration did not represent the numeric 

solution in accuracy. 
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Figure 6.25. Linearized and exact solution of glucose concentration vs. time 
 

 
 

Figure 6.26. Linearized and exact solution dissolved oxygen concentration vs. time 
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 As it was seen from the Figures 6.22, 6.23, 6.24, 6.25, 6.26, linearized solution 

was not described the process with except able manner. 

 And neural network solution of the system was shown between Figure 6.27 and 

Figure 6.31. In the cell concentration network structure there was one input, one hidden 

and one output layer. There were five input neurons in the input layer, nine neurons in 

the hidden layer and finally one output neuron in the output layer. Time, gluconic acid, 

gluconolactone, glucose and dissolved oxygen concentrations were taken as the input of 

the network structure. Output of the network was cell concentration. Input, hidden and 

output layers training functions were logsig ,logsig  and pureline  with respectively. 

There were 5561 data for each variable and for training section 223 of the data for each 

variable was taken. 

 In Figure 6.27 neural network and numeric solutions of the cell concentration 

results were shown. As it was seen from Figure 6.27 neural network results were good 

in match with the numeric solution. Thus, it could be said that cell concentration could 

be represented by neural network solution.  

 

 
 

Figure 6.27. Neural network and exact solution cell concentration vs. time 
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 Neural network and numeric solution results of the gluconic acid was shown in 

Figure 6.28. The network structure was same as in cell concentration network. Here, 

inputs of the network were time, cell, gluconolactone, glucose and dissolved oxygen 

concentrations. Output of the network structure was gluconic acid concentration. As it 

was seen form Figure 6.28 neural network results were good in accuracy with the 

numeric results. At t=9 there was a small divergence but it could be acceptable. 

 

 
 

Figure 6.28. Neural network and exact solution gluconic acid concentration vs. time 

 

 In Figure 6.29, glucolactone concentrations’ numeric and neural network 

solution results were shown. The network structure was same as in cell concentration 

and gluconic acid network. Here, inputs of the network were time, cell, gluconic acid, 

glucose and dissolved oxygen concentrations. Output of the network was 

gluconolactone concentration. It was observed that neural network solution captured the 

gluconolactone concentration perfectly. 

 Neural network and numeric solution results of the glucose concentration was 

shown in Figure 6.30. The network structure was same as in cell and gluconic acid 
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network. Here, inputs of the network were time, cell, gluconic acid, gluconolcatone and 

dissolved oxygen concentrations. Output of the network was glucose concentration. As 

it was seen from Figure 6.30, neural network solution captured the numeric solution 

with good accuracy. 

 

 
 

Figure 6.29.Neural network and exact solution gluconolactone concentration vs. time 
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Figure 6.30. Neural network and exact solution glucose concentration vs. time 

 

 In Figure 6.31, numeric and neural network solution results of the dissolved 

oxygen concentration were shown.  

Same network structure was used. Here, inputs of the network were time, cell, gluconic 

acid, gluconolcatone and glucose concentrations. Output of the network was dissolved 

oxygen concentration. Neural network solution slightly diverged form the numeric 

solution. 
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Figure 6.31. Neural network and exact solution dissolved oxygen concentration vs. time 

 

 As it is seen form the Figure 6.27, Figure 6.28, Figure 6.30 cell, gluconic acid 

and glucose concentrations were good in match with the neural network solutions.  

 Finally hybrid model solutions of the system were shown between Figure 6.32 

and Figure 6.36. In Hybrid model structure, the difference between the exact and 

linearized solution was trained and predicted by neural network. In this hybrid structure 

models, all of the neural network structures were same. In the network structure one 

input, one hidden and one output layer was used. There were four input neurons in the 

input layer, nine neurons in the hidden layer and finally one output neuron in the output 

layer. The transfer functions were purelin,purelin and purelin respectively. 

 In Figure 6.32, hybrid, linearized and numeric solution results of the cell 

concentration was shown. Here the inputs of the neural network were gluconic acid, 

gluconolactone, glucose and dissolved oxygen concentrations. The output of the 

network was cell concentration. As it was seen form the Figure 6.32 the hybrid solution 

captured the numeric solution perfectly. 
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Figure 6.32. Hybrid, linearized and exact solution of cell concentration vs. time 

 

 In Figure 6.33, hybrid, numeric and linearized solution results of the gluconic 

acid concentration was shown. In gluconic acid concentrations’ hybrid model, the inputs 

of the neural network were cell, gluconolactone, glucose and dissolved oxyen 

concentrations. It was clear that hybrid model of the gluconic acid captured the numeric 

solution perfectly. 
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Figure 6.33. Hybrid, linearized and exact solution of gluconic acid concentration 

                           vs.time 

 

 For gluconolactone concentration, numeric, hybrid and linearized solution 

results were shown in Figure 6.34. In gluconolactone concentrations’ hybrid model, the 

inputs of the neural network were cell, gluconic acid, glucose and dissolved oxyen 

concentrations. Output of the network was gluconolactone concentration. It was clear 

that hybrid model of the gluconolactone concentration captured the numeric solution 

perfectly. 

 In Figure 6.35, numeric, hybrid and linearized solution results of the glucose 

concentration was shown. In glucose concentrations’ hybrid model, the inputs of the 

neural network were cell, gluconic acid, gluconolactone and dissolved oxygen 

concentrations. Output of the network was glucose concentration. It was clear that 

hybrid model of the glucose concentration captured the numeric solution slightly better 

than the neural network model. 
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Figure 6.34. Hybrid, linearized and exact solution of gluconolactone concentration 

                         vs.time 

 

 
 

Figure 6.35. Hybrid, linearized and exact solution of glucose concentration vs. time 
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Figure 6.36. Hybrid, linearized and exact solution of dissolved oxygen concentration vs.  

                     time 

 

 Hybrid, linearized and numeric solution results of the dissolved oxygen 

concentration was shown in Figure 6.36. In dissolvedoxygen concentrations’ hybrid 

model, the inputs of the neural network were cell, gluconic acid, gluconolactone and 

glucose concentrations. Output of the network was dissolved oxygen concentration. It 

was clear that hybrid model of the dissolved oxygen concentration captured the numeric 

solution slightly better than the neural network model. 
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CHAPTER 7 

 

CONTROL STUDY 
 

7.1 Control Implications 

 
 To demonstrate how to control a bioprocess with hybrid model a fed-batch 

ethanol fermentation process was chosen. Model equations of the fermentation process 

can easily be found in the literature (Xiong Z.,Zhang J.,(2005)). 

 The aim of the controlling the process is maximizing the product rate by suitable 

feeding rate of the glucose. The model equations are; 
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 Here x1, x2, x3 and x4 represents cell mass, glucose, product concentrations and 

level of the tank respectively. Limitations are; 

 

     200)(4 ≤ftx          (7.7) 

 

     0)0(3 =x           (7.8) 

 

     10)0(4 =x          (7.9) 

 

     120 ≤≤ u        (7.10) 

 

 To demonstrate the hybrid model, these equations were linearized and then feed 

rate (u)’s optimum value was found by taking the derivative of the dx3/du. 

 There were totally five variables, four of them were state variables and one input 

variable. 

 In deviation form the general statement of the system could be represented as;  

 

   '
5

'
44

'
33

'
22

'
11

'
1 uaxaxaxaxa

dt
dx

×+×+×+×+×=     (7.11) 

 

   '
5

'
44

'
33

'
22

'
11

'
2 ubxbxbxbxb

dt
dx ×+×+×+×+×=     (7.12) 

 

   '
5

'
44

'
33

'
22

'
11

'
3 ucxcxcxcxc

dt
dx

×+×+×+×+×=     (7.13) 

 



 78 

   
'

5
'

44
'

33
'

22
'

11

'
4 udxdxdxdxd

dt
dx ×+×+×+×+×=     (7.14) 

 

u

d

c

b

a

x

x

x

x

d

c

b

a

dt
dx

dt
dx

dt
dx

dt
dx

×

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

×

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

5

5

5

5

4

3

2

1

43   21

4321

4321

4321

4

3

2

1

d     d  d   

c    c     c    

b   b    b    

   a   a    a    

 

                             

Or  

 

     )(' tubxAx ×+×=       (7.15) 

 

 To solve these linearized equations Laplace transform was used. The important 

equation was the product rate which was linearized around point x3lin .Finally obtained 

equation was; 

 

      value3
3 some

dt
dx

linx =      (7.16) 

 

 To find the feed rate which gave the maximum yield derivative of equation 7.16 

was taken with respect to the feed rate (u) and this derivative was equalized to the zero 

thus umax value could be found; 

 

    calculated becan  u      0 max  
3 �=

du
dx

    (7.17) 

 

 Then by substituting the umax value, linearized and exact solutions of the system 

was obtained. After that, the linearized and exact solutions difference could be 

A b 
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calculated hence neural network model could be used by taking some part of these data 

as training data and finally prediction could be done. So optimization results of neural 

network could be check with the exact solution.  Schematic view of the steps is shown 

in Figure 7.1.  
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Figure 7.1. Schematic view of steps in control implication 
 
 

Obtaining Model Equations 

Linearize Model Equations 

Optimizing the Feed Rate 
 

max
3 0 u

du
dx

�=  

Substitute the umax value into the linearized and exact model 

Subtract the linearized model solution from the exact model solution 

Use a part of data for training network and predict the remaining 

Sum the network outputs with linearized solution results 
Thus obtain hybrid solution 

Compare hybrid solution with exact solution 
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CHAPTER 8 

 

CONCLUSIONS 
 

 In this study hybrid and neural network models are investigated on bioprocesses. 

In case study I, glucose to ethanol fermentation is to be carried out in a batch reactor 

using an organism Saccharomyces Cerevisiae is investigated. Neural network and 

hybrid models of the process are demonstrated. In neural network modeling there are 

645data for each process variable which are obtained from numeric solution. 33 of the 

each 645 data are used for training section. For cell concentration network solution, the 

time, glucose and product data are used as input of the network and cell concentration is 

considered as the output of the neural network. For glucose concentration neural 

network solution, time, cell and product concentrations are used in training section. 

Here, the output of the network is taken as glucose concentration. Same procedure is 

applied for product concentration neural network solution, here time, cell and glucose 

concentrations are used as inputs of the network and data of the product concentration is 

taken as output of the neural network.  

 For hybrid model of the case study 1, model equations are linearized around 

steady state points.  Obtained linearized solutions are compared with the numeric model 

solutions. It is seen that linearized models can not represent the process. To constitute 

the hybrid model, linearized solutions subtracted from the numeric solutions. The 

results of this subtraction are thought as the nonlinear part of the process. Neural 

network is used for modeling this nonlinear part of the process and the results of the 

neural structure added with the linearized solution and formed hybrid model. Results of 

the hybrid model are compared with the pure neural network model. It is observed that 

hybrid model results of the cell, glucose and product concentrations are slightly better 

than the neural network model.  These are expected results because hybrid model 

structure based on linearized solution that means it depends on process dynamics. But in 

neural network model, physical restrictions and process dynamics have no meaning. 

 In case study 2, mathematical model of ethanol production from glucose/xylose 

mixtures by recombinant Zymomonas mobilis is investigated. Like in case study 1, 

hybrid and neural network models are demonstrated. Here, there are 1645 data for each 
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variable. For training purpose only 55 data for each variable is used. Linearized and 

numeric model solutions are compared. As expected for bioprocesses, it is observed that 

linearized solution does not represent the process. The pure neural network solution 

results of the system are obtained.  

 It is observed that, neural network model for biomass, glucose and xylose uptake 

has better results than the hybrid model. This is an unexpected result. On the other hand 

still as expected training time is less for hybrid model. In product concentration hybrid 

model results are slightly better than the neural network model.  

 In case study 3, simulation of the fermentation of glucose to gluconicacid by the 

micro-organism Pseudomonas ovalis in a batch stirred tank reactor is investigated. 

Same procedures are applied to obtain the neural network and hybrid models. Neural 

network and hybrid model results are compared. There are 5561 data for each variable. 

For training purpose only 223 data for each variable is used. For cell concentration 

hybrid model results are slightly better than the neural network model. For gluconoic 

acid neural network model gives nearly perfect results but at t=9 there is a small 

divergence from the numeric solution. On the other hand, hybrid model results are more 

accurate than the neural network model. Gluconolactone and glucose concentration 

results for hybrid model and neural network are good in match with the numeric 

solution results. For dissolved oxygen concentration, hybrid model results are slightly 

better than the neural network model results. 

 In hybrid model structure, neural network used for representing the unknown 

parts of the system and the known parts are represented with the model equations. 

On the other hand it is observed that, modeling whole process with neural network 

requires much more training time with respect to the hybrid model. The reason is that , 

when the network structures becomes larger training time increases and in hybrid model 

only the unknown part of the system represented by neural networks so the load on the 

network structure decreases thus training time decreases.  
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APPENDIX A 
 

THE CONSTANTS OF CASE STUDY 1 
 

The constants of the case study 1 can be shown as; 

 

a1 = 
�
�

�

�

�
�

�

�
−

+�
�

	




�
�

�


− d

s
x

p

k
ylinK

ylin

C

zlin
*1*

52.0

maxµ  

a2 = 
�
�

�

�

�
�

�

�

+�
�

	




�
�

�


−−

+�
�

	




�
�

�


− 2

52.0

max

52.0

max )(
*

*1**1*
ylinK
ylinxlin

C

zlin
ylinK

xlin

C

zlin

s
x

pz
x

p

µµ  

a3 = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+
�
�

	




�
�

�


−

−
x

psx
p

Cylink
C

zlin

ylinxlin

*)(*1

*
**52.0 48.0maxµ  

 

b1 = 
�
�

�

�

�
�

�

�
−

+�
�

	




�
�

�


−− m

ylinK
ylin

C

zlin
Y

s
x

p

cs *1**

52.0

max/ µ  

 

b2 = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

+

�
�

�

�

�
�

�

�

�
�

	




�
�

�


−

+
+

�
�

�

�

�
�

�

�

�
�

	




�
�

�


−−

2

52.0

max/

52.0

max/

)(

**1***1**

ylink

ylinxlin
C

zlin
Y

ylink

xlin
C

zlin
Y

s

x
p

cs

s

x
p

cs µµ

 

 

b3 = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+
�
�

	




�
�

�


− x

psx
p

cs

Cylink
C

zlin

ylinxlinY

*)(*1

****52.0
48.0

max/ µ
 

 



 87 

c1 = 
�
�

�

�

�
�

�

�

+�
�

	




�
�

�


−−

ylinK
ylin

C

zlin
Y

s
x

p
cp *1**

52.0

max/ µ  

 

c2 = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

+

�
�

�

�

�
�

�

�

�
�

	




�
�

�


−

−
+

�
�

�

�

�
�

�

�

�
�

	




�
�

�


−

2

52.0

max/

52.0

max/

)(

**1***1**

ylink

ylinxlin
C

zlin
Y

ylink

xlin
C

zlin
Y

s

x
p

cp

s

x
p

cp µµ

 

 

c3 = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+
�
�

	




�
�

�


−

−

x
psx

p

cp

Cylink
C

zlin

ylinxlinY

*)(*1

****52.0
48.0

max/ µ
 

 
 
 
 
 
 
 
 
 
 



 88 

APPENDIX B 
 

THE CONSTANTS OF CASE STUDY 2 
 

The constants of case study 2 can be shown as; 
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APPENDIX C 

 

THE CONSTANTS OF CASE STUDY 3 
 

The constants of the case study 3 can be shown as; 
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