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ABSTRACT 
 

 

Matching aerial images with map data is an important task in remote sensing 

applications such as georeferencing, cartography and autonomous navigation of aerial 

vehicles. The most distinctive image features that can be used to accomplish this task 

are due to the unique structures of different coastline segments. In recent years several 

studies are conducted for detecting coastlines and matching them to map data. The 

results reported by these studies are far from being a complete solution, having weak 

points such as poor noise sensitivity, need for user interaction, dependence to a fixed 

scale and orientation. 

In this thesis, a two-step procedure involving automatic multiresolution coastline 

extraction and coastline matching using dynamic programming have been proposed. In 

the proposed coastline extraction method, sea and land textures are segmented by using 

cooccurrence and histogram features of the wavelet image representation. The 

coastlines are identified as the boundaries of the sea regions. For the coastline matching, 

shape descriptors are investigated and a shape matching method using dynamic 

programming is adapted. Proposed automatic coastline extraction and coastline 

matching methods are tested using a vector map of the Aegean coast of Turkey. 
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ÖZET 
 

 

Havadan alınan görüntülerinin harita verileri ile çakı�tırılması  haritacılık ve 

hava araçlarının insansız seyri gibi uzaktan algılama uygulamalarında önemli bir yer 

alır.  Bu i�in gerçekle�tirilebilmesi için gerekli olan en ayırt edici görüntü öznitelikleri, 

farklı kıyı bölütlerinin özgün yapılarıdır. Son yıllarda, kıyı görüntülerinden kıyıları 

belirleme ve harita verileri ile çakı�tırma konusunda çe�itli ara�tırmalar yapılmı�tır. Bu 

ara�tırmalardan çıkarılan sonuçların, gürültü hassasiyeti, kullanıcı gereklili�i, de�i�mez 

ölçek ve yönelime ba�lılı�ı gibi zayıf tarafları nedeniyle �u ana kadar tam bir çözüme 

ula�ılmadı�ı görülebilir. 

 Bu tezde, otomatik çoklu çözünürlüklü kıyı çıkarma ve dinamik programlamayı 

kullanan kıyı çakı�tırma yöntemlerini içeren iki basamaklı bir yordam önerilmektedir. 

Önerilen kıyı çıkarma yönteminde, deniz ve kara dokuları dalgacık görüntü 

gösteriminin birliktelik matrisi ve histogram öznitelikleri kullanılarak bölütlenmektedir. 

Kıyılar, deniz bölgelerinin sınırları olarak belirlenir. Kıyı çakı�tırma için, �ekil 

tanımlayıcılar ara�tırılmı� ve dinamik programlamayı kullanan bir �ekil çakı�tırma 

yöntemi uyarlanmı�tır. Önerilen otomatik kıyı belirleme ve kıyı çakı�tırma yöntemleri 

Türkiye’nin Ege kıyısının vektör haritası üzerinde denenmi�tir. 
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CHAPTER 1  

INTRODUCTION 

Coastline extraction and coastline matching with map data are important issues 

in several applications and coastal studies such as autonomous navigation of aerial 

vehicles, cartography, georeferencing satellite images and coastal geomorphology 

monitoring. Although there are previous studies on coastline extraction and matching 

the techniques developed by these studies are known to be non-automatic, time-

consuming and not suitable for autonomous navigation. In (Bo et al. 2000) and (Bo et 

al. 2001) fuzzy rules and textural features are used in a semiautomatic scheme to extract 

coastlines. In (Zhang et al. 1997), (Loos et al. 2002) and (Jishuang et al. 2002) edge 

based extraction is done in high contrast aerial images. (Jianbin et al. 2003) uses 

Hausdorff distance to match coastal features found by edge detection. (Eugenio et al. 

2002) employs a contour based matching to register aerial images. (Bijaoui and 

Cauneau. 1994) uses spectral and textural features to extract coastlines in SAR images. 

Using an automatic coastline matching method as a part of contour matching 

system can be useful for the autonomous navigation of an unmanned air vehicle (UAV) 

when no GPS data and no communication are available. A passive navigation system is 

also very important in military UAV applications  

In cartography, updating coastline maps and charts by using recent aerial 

coastline images requires extracting and matching coastlines in the images with old map 

data. Cataloging satellite images and monitoring coastal geomorphology, both use 

multitemporal, multisatellite and multisensor coastline images. In order to index and 

analyze these images, the images should be georeferenced by automatically matching 

images with map data. 

In this thesis, problem of matching of aerial coastline images with map data has 

been studied because of the needs described above. The problem has been studied in 

two main parts: Automatic multiresolution coastline extraction and matching of 

extracted coastlines with map data. 

For proposed automatic coastline extraction method, first we implemented the 

wavelet decomposition of the coastline image to extract multiresolution information and 
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to highlight textural content. The wavelet image has been segmented into sea and land 

regions by using texture segmentation. Multiscale segmentation of the wavelet image 

has been achieved by means of coarse to fine segmentation which employs coocurrence 

features and histogram features of textures. Cooccurrence features have been selected 

by using a feature selection scheme based on Fisher’s linear discriminant analysis 

(FLDA). Sea and land textures have been classified by using the maximum likelihood 

classifier. After classification of sea region, boundary of sea region has been extracted 

as the coastline. 

In the matching of extracted coastlines with map data, shape descriptors have 

been studied to select a matching algorithm which is suitable for coastline matching. 

Some contour-based shape descriptors such as chain code representation, Fourier 

descriptors, and curvature scale space descriptor have been analyzed in the aspects of 

invariance to image transformations and convenience to open curve matching. 

Proposed coastline matching method in this thesis has been adapted from 

Petrakis, Diplaros and Millios’ shape retrieval algorithm (Petrakis et al. 2002). In the 

proposed method, extracted coastlines are segmented into convex and concave segments 

by finding inflection points of the coastlines. Segment features called as turning angle, 

length, and area of the segments are extracted from the coastline segments. By use of 

Dynamic Programming table, extracted coastlines are matched with map data. 

Automatic coastline extraction and matching methods are tested on a vector map of 

Aegean coast of Turkey.  

Main contributions of this thesis can be given as follows 

1. Discriminating power of statistical texture features such as coocurrence 

  and histogram features have been tested for sea and land textures by 

  using the wavelet representation of the image. 

2. Most promising window resolutions for coocurrence and histogram 

  features have been found. 

3. The performance of the maximum likelihood classifier has been tested on 

  natural textures. 

4. An automatic coastline extraction method has been developed. 

5. Shape descriptors have been investigated and discussed their matching

  performance due to the open curve matching. 

6. A shape matching method has been adapted for coastline matching 

The first chapter of this thesis introduces motivation, thesis scope, and main 
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contributions. Chapter 2 presents the proposed automatic multiresolution coastline 

extraction method. In this chapter, the wavelet representation, statistical texture 

features, feature selection scheme, Maximum likelihood classifier have been described. 

Chapter 3 discusses shape descriptors. Chapter 4 presents the proposed coastline 

matching algorithm using dynamic programming and includes matching results. 

Chapter 5 is the conclusion of the thesis. 
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CHAPTER 2  

AUTOMATIC COASTLINE EXTRACTION FROM 
AERIAL IMAGES 

Accurate coastline information is necessary for updating coastal maps from 

recent remote sensing images, for detecting changes in coastlines in coastal 

geomorphology and for matching coastlines to map data for autonomous navigation. 

In this thesis we have developed an automatic coastline extraction method to 

acquire coastline information from aerial coastline images. The acquired data is used for 

automatic matching to map data. 

Since coastlines are basically the boundary of sea, we can consider coastline 

extraction problem as object boundary detection problem. So some methods, such as 

edge detection and texture analysis, which are usually used to extract object boundaries, 

can be employed in coastline extraction. Edge detection methods require user 

interaction for defining background and they find spurious edges. Since detection of sea 

texture in the image is sufficient for coastline extraction, texture analysis seems more 

convenient for automatic extraction of coastline extraction.  

Aerial coastline images which may be taken from different altitudes contain 

different kinds of sea textures. Thus textures should be analyzed at different scales by 

using multiscale representation of texture.  

In this thesis, we utilize statistical wavelet texture features which are 

coocurrence features, wavelet histogram features (Mallat 1989), energy features in order 

to classify sea textures in the images. 

By using coarse to fine detection of sea texture, an image is inspected starting 

with large blocks which look for second order statistics (coocurrence features) of sea 

texture and then smaller blocks that look for first order statistics (histogram features). 

Finally very small blocks which look for energy signatures are used. 

Examining of the sea texture by large blocks involves Haralick’s textural 

features (Haralick et al. 1973) which are extracted from coocurence statistics of wavelet 

coefficients of multiscale wavelet image. Since higher dimensionality of feature causes 

higher computational complexity and classification performance does not increase with 

the increasing number of feature set, an appropriate feature selection method is 
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employed in order to select an optimal feature set for a particular classification problem. 

In this thesis, Fisher’s Linear Discriminant Analysis (FLDA) is adopted to obtain an 

optimal feature set from all textural features.  

As the second step of texture inspection, smaller blocks are used. Haralick’s 

textural features are observed to give misleading results to small window size. In this 

step histogram signatures that found experimentally by Mallat (Mallat 1989) for 

modeling the detail histograms of natural textured wavelet images by a family of 

histograms, are employed as the texture features. 

Since texture is characterized by high-frequency components of the image, only 

detail images of wavelet image are used for examining sea texture. 

2.1. The Wavelet Representation 

In image processing, it is difficult to analyze the content of an image directly 

from gray-level intensity of the pixels in the image. Gray values of the pixels depend on 

the lighting conditions. Local variations of the image intensity are more important. The 

size of window in which we analyze the image determines the size of the structures that 

we want to analyze. The size of the window defines a resolution for computing the local 

variations of the image. The scale of the image varies with the distance between the 

scene and the sensor. Thus the structures we want to detect have different sizes. For this 

reason, the image information should be represented at different resolutions. This 

representation is called the multiresolution representation of the image.  

The wavelet representation is a powerful multiresolution decomposition method 

that represents details with different spatial orientations (such as edges with horizontal, 

vertical, and diagonal orientations). In image processing, the wavelet representation of 

an image is obtained by applying two-dimensional wavelet transform to the image. In 

this section, the wavelet transform is first described for one-dimensional continuous and 

discrete signals and then extended to two-dimensions for the images. 
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2.1.1. The Continuous Wavelet Transform (CWT) 

In Fourier theory, a signal can be expressed as the sum of an infinite series of 

sines and cosines. This sum is also called to as a Fourier transform. The big 

disadvantage of a Fourier transform is that it has only frequency resolution and no time 

resolution. In order to overcome this problem, in wavelet analysis the use of a scalable 

modulated window is shifted along the signal and for every position the spectrum is 

computed. This process is repeated with a different size of windows for every 

resolution. At the end of the process, a set of time-frequency representations of the 

signal at different resolutions is obtained as a wavelet transform of a signal. For a 

continuous signal f(t), the continuous wavelet transform (CWT) of f(t) can be formally 

represented by: 

 *
s,W(s, ) f (t) (t)dtττ ψ==== ����  (2.1) 

where “ * “ denotes complex conjugation and the variables s and � are scale and 

translation factors, respectively . In (2.1), f(t) is decomposed into a set of basis functions 

�s,�(t), called the wavelets. The wavelets are generated from a single basic wavelet �(t), 

called mother wavelet, by scaling and translation: 

 s,

1 t
(t) .

ssτ
τψ ψ −−−−� �� �� �� �==== � �� �� �� �

� �� �� �� �
 (2.2) 

2.1.2. The Discrete Wavelet Transform (DWT) 

The main idea of the discrete wavelet transform is the same as that of the CWT. 

A time-frequency representation of a discrete signal is obtained using discrete filtering 

techniques. The continuous wavelet transform is computed by changing the scale of the 
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window, translating the window in time, multiplying by the signal, and integrating over 

all times. In the discrete case, filters of different cutoff frequencies are used to analyze 

the signal at different scales. The signal is passed through a series of high pass filters to 

analyze the high frequencies, and it is passed through a series of low pass filters to 

analyze the low frequencies. The resolution of the signal, which is a measure of the 

amount of detail information in the signal, is changed by the filtering operations, and 

the scale is changed by upsampling and downsampling. The DWT analyzes the signal at 

different frequency bands with different resolutions by decomposing the signal into a 

coarse approximation and detail information. The DWT employs two sets of functions, 

called scaling functions, “	”, and wavelet functions, “�”, which are associated with 

lowpass and highpass filters, respectively (Mallat 1989): 

 j j 1
j,k

n

(t) (2 t k) h(n 2k) 2 (2 t n)ϕ ϕ ϕ ++++= − = − −= − = − −= − = − −= − = − −����  (2.3) 

 j j 1
j,k

n

(t) (2 t k) g(n 2k) 2 (2 t n)ψ ψ ϕ ++++= − = − −= − = − −= − = − −= − = − −����  (2.4) 

where j and k denote scale and translation, respectively. Scaling function represents 

coarse approximation of the signal while wavelet function represents the detail 

information of the signal. The signal, f(t), can be expressed in terms of scaling and 

wavelet functions : 

 0 0

0

0

j / 2 j j j
j j 1

k k j j
f (t) c (k) 2 (2 t k) d (k) 2 (2 t k)ϕ ψ−−−−

∞∞∞∞

====
= − + −= − + −= − + −= − + −� ��� ��� ��� ��  (2.5) 

where cj(k) and dj(k) are the scaling and wavelet coefficients, respectively. If the scaling 

functions 	j,k(t) and the wavelets �j,k(t) are orthonormal, then the coefficients cj(k) and 

dj (k) are computed by , 
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 j j 1
n

c (k) h(n 2k)c (n)++++= −= −= −= −����  (2.6) 

 j j 1
n

d (k) g(n 2k)c (n).++++= −= −= −= −����  (2.7) 

 

 

 

 

 

  

 

 

Figure 2.1. Filterbank implementation of two-level DWT. 

2.1.3. Two-Dimensional Discrete Wavelet Transform 

The concepts for the wavelet representation of one-dimensional signals can be 

easily extended to two dimensional wavelet representations of the images. The 

associated two-dimensional scaling function can be expressed as a separable function by 

(x, y) (x) (y)ϕ ϕ ϕ====  where 	(x) and 	(y) is the one-dimensional scaling functions 

(Mallat 1989). Then, three two-dimensional wavelet functions can be expressed as: 

 1 2 3(x, y) (x) (y) (x, y) (x) (y) (x, y) (x) (y).ψ ϕ ψ ψ ψ ϕ ψ ψ ψ= = == = == = == = =  (2.8) 

Two-dimensional DWT can be implemented by using the FIR filters similar to 

the one-dimensional DWT described in previous section. The implementation of two-

dimensional DWT for one level is shown in Figure 2.2. The rows of the image, I(x,y), 

are first convolved with one-dimensional filters which H and G are low and bandpass 

quadrature mirror FIR filters, respectively, then the columns of the resulting images are 

cj+1(k) h(k) 

 

g(k) 

 

cj-1(k) 

dj(k) 

   2 

 

   2 

 

g(k) 

 

h(k) 

 
   2 

 

   2 

 

cj(k) 

dj-1(k) 
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convolved with one-dimensional filters, H and G, again. Thus we obtain one-level two-

dimensional DWT of the image, I(x,y), as one coarse image, L(x,y), and three detail 

images, D1(x,y), D2(x,y), D3(x,y).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2. One-level two-dimensional discrete wavelet decomposition. 

 

 

 

 

 

    

Figure.2.3. Multiresolution wavelet representation of the image k=1,2,…..,d. 

In order to obtain multiresolution wavelet representation of the image, one-level 

two-dimensional DWT procedure is repeated n times by taking the coarse image, 

L(x,y), of the previous level as the input of the procedure where n is the number of the 

levels of the wavelet representation. This process is described in Figure.2.3. 

Multiresolution wavelet representation of the image can be formally described as: 

I(x,y) 

 

L0 L2 L1 Lk-1 Lk 

Ld 

Ld-1 

D11      D21      D31 

DWT 

D12      D22      D33 D1k      D2k      D3k D1d      D2d      D3d 

DWT DWT DWT 

I(x,y) Hx(x,y) 

 

Gx(x,y) 

L(x,y) 

D1(x,y) 

Hy(x,y) 

Gy(x,y) 

D2(x,y) 

D3(x,y) 

Rows Columns 

  2 

 

  2 

 

Hy(x,y) 

 
  2 

 

  2 

 

  2 

 

  2 

 

Gy(x,y) 



 10 

  k x y k 1 2,1 1,2
L (x, y) H [H L (x, y)]−

	 
= ∗ ∗� �  (2.9) 

 k1 x y k 1 2,1 1,2
D (x, y) H [G L (x, y)]−

	 
= ∗ ∗� �  (2.10) 

 k2 x y k 1 2,1 1,2
D (x, y) G [H L (x, y)]−

	 
= ∗ ∗� �  (2.11) 

 k3 x y k 1 2,1 1,2
D (x, y) G [G L (x, y)]−

	 
= ∗ ∗� �  (2.12) 

where “ * ” denotes the convolution operator and “ a, b ” is the decimation by (a,b) 

along (rows,columns); H and G are low and bandpass quadrature mirror FIR filters, 

respectively. L0 is the original image and Lk is the low resolution image at scale k. The 

detail images Dki (i=1,2,3) have detail information of the original image in horizontal, 

vertical and combined directions, respectively at scale k. The wavelet decomposition of 

the original image at d scales is called a multiscale representation of the original image 

at depth d. 

 

 

 
(a) (b) 

Figure 2.4. Daubechies 4-tap (a) scaling and (b) mother wavelet functions 

In this work, an overcomplete wavelet representation has been used to avoid 

losing texture information at higher scales. This increases the accuracy of texture 

segmentation. Also, the wavelet transform is not translation invariant. The lack of 

translation invariance and the loss of the texture information can be avoided by omitting 

the decimations at the output of the filterbanks. The well-known wavelet filter of four-
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tap Daubechies (Daubechies 1992), whose scaling and mother wavelet functions are 

shown in Figure 2.4, has been used as quadrature mirror FIR filters since these filters 

are used widely because of their orthogonal properties. The coefficients of the filter are 

shown in Table 2.1. High pass filters are modulated versions of low pass filters so such 

filters are called as quadrature mirror filters. 

 -nG(n)=(-1) H(k-n) where k is an integer delay.  (2.13) 

Table 2.1. Daubechies 4-tap filter coefficients. 

Tap Low Pass Filter High Pass Filter 

0 0.4830 0.1294 

1 0.8365 0.2241 

2 0.2241 -0.8365 

3 -0.1294 0.4829 

2.2. Feature Extraction for Texture Segmentation  

Texture analysis plays an important role in image processing and remote sensing 

tasks. Correct classification of textural segments is highly dependent of a good set of 

features. In recent years, several methods have been proposed for texture feature 

extraction. A major group of texture feature extraction methods depends on the 

assumption that texture can be defined by local statistical features of pixel values. In 

most cases features are derived from first order (histogram) and higher order 

(cooccurrence) statistics.  

2.2.1. Cooccurrence Features 

Homogeneous regions can be effectively represented by first order statistics. 
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However in practice a spatial arrangement of pixels require the use of higher order 

statistics. Cooccurrence features efficiently reflect second order statistics of texture. 

They describe periodic structure of the texture when the size of texture increases. 

Cooccurrence features are computed from cooccurrence matrix to define texture 

properties.  

2.2.1.1. Cooccurrence Matrix and Haralick’s Textural Features 

Cooccurrence matrix (CM), first introduced by Haralick (Haralick et al.73), is an 

effective representation for the second order statistics of textures. CM is a square matrix 

whose elements represent the occurrence frequency of values (gray levels) of pixel pairs 

separated by a fixed distance in a fixed orientation in a sample of texture. At 00, 450, 

900, 1350 directions and at d pixel distance CM can be represented by: 

[ ]{ }0
d
0

CM (a,b) # (k, l), (m,n) (k m 0, l n d), f (k, l) a, f (m, n) b= − = − = = =  (2.14) 

[ ]0
d
45

CM (a, b) #{ (k, l), (m,n) (k m d, l n d)OR (k m d, I n d) ,
f (k, l) a, f (m,n) b}

= − = − = − − = − − =
= =

 (2.15) 

[ ]0
d
90

CM (a, b) #{ (k, l), (m,n) ( k m d, l n 0) , f (k, l) a, f (m,n) b}= − = − = = =  (2.16) 

[ ]0
d

135
CM (a, b) #{ (k, l), (m, n) (k m d, l n d)OR(k m d, I n d) ,

f (k, l) a, f (m,n) b}
= − = − = − = − − = −

= =
 (2.17) 

 

 

 

 

 

 

 

 

Figure 2.5. Cooccurrence Matrix (a) Gray level image and (b) its coocurrence matrix at one 

pixel distance and at 00  orientation. 
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(a) (b) 
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where (k,l) and (m,n) are pixel locations, which are separated by a distance d and whose 

values are a and b, respectively. 

In Figure 2.5, as an example, CM of a 4-gray level image is shown at one pixel 

distance and at 00 orientation. CM can be defined as joint probability distribution of 

pixel values, when CM is normalized by the total number of possible pairs of pixels 

with fixed distance and orientation.  

 

 

Table 2.2. Abbreviations for Haralick’s features presented in Table 2.3. 

N = Number of gray(wavelet) levels of  the image  d

P(a,b)= CM (a,b)  

 
N N

x y
b=1 a=1

p (a)= p(a,b), p (b)= p(a,b),� �  

 
N N

x x y y
a=1 a=1

= p (a), = p (a),µ µ� �  

 
N N

s
a=1 b=1

p (c)= p(a,b), c=a+b=2,3....2N��  

 
N N

d
a=1 b=1

p (c)= p(a,b), c=a-b=0,1....N-1��  

 
N N

2 2
x x x y y y

a=1 a=1

� = p (a)(a-� ) , � = p (a)(a-� )� �  

 
N N

a=1 b=1

HXY= - p(a,b)log(p(a,b))��  

 
N N

X y
a=1 b=1

HXY1= - p(a,b)log p (a)p (b)	 
� ���  

 
N N

X y X y
a=1 b=1

HXY2= - p (a)p (b)log p (a)p (b)	 
� ���  

 
N N

x x
a=1 b=1

HX= - p (a)log p (a)��  

 
N N

y y
a=1 b=1

HY= - p (a)log p (a)��  

 [ ]
N

NXN
c=1 x y

p(a,c)p(b,c)
Q(a,b)= Q Q(a,b)

p (a)p (b)
=�  

 



 14 

Table 2.3. Haralick’s Textural Features. 

Feature Definition 

Angular second momentum N N
2

a=1 b=1

ASM= (p(a,b))��  

Contrast N N
2

a=1 b=1

CON (a-b) p(a,b)=��  

Correlation N N

x y
a=1 b=1x y

1
COR= ((ab)p(a,b)-� � )

� � ��
 

Sum of squares: Variance N N
2

a=1 b=1

SSV= (a-�) p(a,b)��  

Inverse difference moment 

(Homogeneity) 

N N

2
a=1 b=1

1
IDM= p(a,b)

1+(a-b)��  

Sum average 2N

s
=2a

SAv= ap (a)�  

Sum variance 2N

s
=2a

SVa= (a-SAv)p (a)�  

Sum entropy 2N

s s
=2a

SEn= - p (a)log(p (a))�  

Entropy N N

a=1 b=1

ENT= - p(a,b)log(p(a,b))��  

Difference variance N-1 N-1
2

d d
a=0 b=o

DVA= p (a) a- b(p (b))
	 

 �
� �

� �  

Difference entropy N-1

d d
=0a

DEn= - p (a)log(p (a))�  

Information measure of 

correlation(1) { }
HXY-HXY1

IC1=
max HX,HY

 

Information measure of 

correlation(2) 
( )1/ 2

IC2= 1-exp 2.0 HXY2-HXY	− 
� �  

Max. correlation coefficient 1/2MCC=(second largest eigenvalue of Q)  

 

 

Since CM is a square matrix whose dimension equals to the number of the gray 

levels, the number of the gray levels is proportional to the computational complexity. 
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Hence it is necessary to requantize the gray levels of the discrete wavelet images to 

decrease computational complexity. In this work, as the sea texture is more 

homogeneous than other natural textures, detail images are requantized to 16 gray levels 

(0-15) by a linear transformation. All CMs which are computed at 00, 450, 900, 1350 

directions are averaged so as to ensure the rotation invariance. 

Haralick suggests 14 features describing textures using CM (Haralick et al.73). 

These features are shown in Table 2.3. 

2.2.2. Feature Selection for Cooccurrence Features 

Feature selection is a crucial task to reduce the dimensionality of feature vector 

because it is well known in pattern recognition that classification performance does not 

usually increases and the computational complexity of classification increases as the 

dimensionality of feature vector increases. If all appropriate features which are extracted 

for a classification problem and a finite number of training samples are given, there 

exists an optimal set of features that gives optimal classification performance and 

computational complexity for the task. Therefore, discrimination capacity of all features 

which are candidates for the optimal feature subset should be investigated. The problem 

in the feature selection algorithms is how to deal with large number of possible 

combinations of the feature subsets. Given a feature set Xk,  k=1,….,M , in order to find 

the best subset of m<M features that satisfies the selection criteria, the search is the 

combination problem that needs a selection from N possible solutions for a particular 

subset of m features. Instead of dealing with N combinations, a simpler approach based 

on determining an importance measure for each individual feature and ranking the 

features based on their importance is adopted here. 

Fisher’s linear discriminant analysis (FLDA) is a fundamental and widely used 

technique for determining discriminating power of the features. FLDA looks for 

directions in feature space that are efficient for discriminating samples in different 

classes. In FLDA, it is supposed that d-dimensional data is projected onto a line. Even if 

training samples are well-separated, projection onto an arbitrary line will generally 

produce poor clustering performance. However, by turning the line around, an 

orientation on which the samples are well-separated may be found. Two examples of 
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projection lines showing different orientations and different discrimination 

performances are seen in Figure 2.6. This is the main goal of linear discriminant 

analysis. 

 

 

 

Figure 2.6. Projection of the same set of samples onto two lines in different directions. Figure 

on the right shows better separation of black and white points. 

It is supposed that there is a set of n training samples, which have d-dimensional 

feature vectors, x1,……, xn, n1 in the subset c1 and n2 in the subset c2.for the two-class 

case. This can be represented in the form of a linear combination of the components of 

x and by obtaining the scalar dot product 

 ty w x.=  (2.18) 

The corresponding set of n samples y1,..., yn are separated into the subsetsY1 and 

Y2. Each yi is the projection of the corresponding xi onto a line in the direction of w. 

In order to find the best projection vector w, a measure of the separation 

between the projections could be the difference of sample means. The sample means 

and the means for the projected points are given by: 
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i

i
x Di

1
x

n
µ

∈∈∈∈
==== ����  (2.19) 

 
i i

t t
i i

y Y x Di i

1 1
m y w x w

n n
µ

∈ ∈∈ ∈∈ ∈∈ ∈
= = == = == = == = =� �� �� �� �  (2.20) 

where mi is the projection of �i and the distance between the projected means can be the 

criterion function: 

 t
1 2 1 2J(w) m m w ( ) .µ µ= − = −= − = −= − = −= − = −  (2.21) 

 

 

Figure 2.7. Axis x2 yields better separation although axis x1 has larger distance of projected 

means. 

However, the distance between projected means is not a very good measure as 

shown in Figure 2.7 since it does not take into account the standard deviation within the 

classes. So Fisher’s linear discriminant analysis is defined as the linear function tw x  

�1 

�2 

x1 

J(x2) 

J(x1) 

x2 
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that maximizes the criterion function, 

 
i

2 n
1 2 2 2

i i2 2
y Y1 2

m m
J(w) : where s : (y m )

s s ∈

−
= = −

+ ��
� �

 (2.22) 

2
is�  is defined as within-class scatter and an estimate of the variance the pooled samples. 

FLDA looks for a projection where samples from the same class are projected very 

close to each other and, at the same time, the distance between the projected means are 

as large as possible as in Figure 2.8.  

 

 

 

 

Figure 2.8. Vector w maximizing J(w)  obtains the best separation between the two sets of 

projected samples. 

It is necessary that J(w)  is expressed as an explicit function of w. For this 

reason the scatter matrix iS  is defined by, 

 
i

n
t

i i i
x D

S : (x )(x )
∈

= − µ − µ�  (2.23) 

�1 

�2 

x2 

x1 

w 



 19 

and then scatter by: 

 

( ) ( )
i

i

n n 222 t t
i i i

y Y x D

n
t t t

i i i
x D

s : y m w x w

w (x )(x ) w w S w.

∈ ∈

∈

= − = − µ

= − µ − µ =

� �

�

�

 (2.24) 

For the two-class case 

 2 2 t
1 2 w w 1 2s s w S w where S S S .+ = = +� �  (2.25) 

wS  is called as the within-class scatter matrix. Similarly,  

 
2 t t t t

1 2 1 2 1 2 1 2

t t
B B 1 2 1 2

(m m ) (w w ) w ( )( ) w

w S w where S ( )( ) .

− = µ − µ = µ − µ µ − µ

= = µ − µ µ − µ
 (2.26) 

BS  is called as the between-class scatter matrix and the criterion function can be 

defined as 

 
t

B
t

w

w S w
J(w) : .

w S w
=  (2.27) 

In order to find vector w  which maximize the criterion function, derivative of 

J(w)  must be equated to zero and one can derive following equation by taking 

derivation of  J(w) : 
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( )

( ) ( )
( )

t t t t
B W W B

2t
W

t t
B W W B

2t
W

d d
w S w w S w w S w w S w

dw dwd(J(w))
dw w S w

2S w w S w 2S w w S wd(J(w))
0

dw w S w

� � � �−� � � �
� � � �=

−
= =

 

 ( ) ( )t t
B W W BS w w S w S w w S w 0− =  (2.28) 

and by dividing (2.28) by t
ww S w , 

 

( )( )
( ) ( )

( ) ( )

t t
B W B

W tt
WW

t
B

B W t
W

S w w S w w S w
S w 0

w S ww S w

w S w1
S w S w where .

J(w) w S w

− =

= λ λ = =

 

If inverse of wS exists we can convert the problem to a standard eigenvalue problem by 

multiplying both sides by 1
wS− , 

 1
W BS S w w .− = λ   (2.29) 

But BS x  for any vector x  is in same direction as 1 2µ − µ such that: 

 
t

B 1 2 1 2 1 2

t
1 2

S x ( )( ) x ( )

where ( ) x .

= µ − µ µ − µ = α µ − µ

α = µ − µ
 (2.30) 
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Thus we can solve the eigenvalue problem immediately, vector w can be found by the 

equation, 

 ( ) 1
w 1 2

w
w arg max J(w) S ( ).−= = µ − µ  (2.31) 

Coefficients of vector w correlate with the importance of features in 

discriminating samples into two classes. For this reason these coefficients can be used 

in feature selection. For the selection of the best feature subset from the whole feature 

set, importance of the features is calculated by: 

 ( )k k k1 k2I w x x= −  (2.32) 

where Ik is the importance of the kth feature; wk is the coefficient of kth feature and xkm 

is the mean of kth feature for the mth class (m=1,2). And then relative importance of the 

feature is calculated by normalizing the importance of the features, 

 k
k n

k
k 1

I
R

I
=

=
�

 (2.33) 

and they are ranked to discard the features whose relative importance is below a certain 

threshold. Thus selected features form a minimal feature set that provides best 

discrimination of the training samples for a particular classification task. 

In this work, Haralick’s textural features for the sea and land texture samples 

which are formed as 32X32, 16X16, 8X8, 4X4 and 2X2 square blocks have been 

computed. Then, relative importance of the each feature has been calculated from 

samples by using FLDA and ranked due to their values. Features with small relative 

importance value (RIV) (i.e. <0.1), have been discarded.  
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Table 2.4  Results for feature selection of the coocurrence features. 

 32X32 16X16 8X8 4X4 2X2 

 

Total number of sample blocks 
4308 10110 14062 16302 16488 

Difference variance(DVA) 
0,88 0,87 0,82 0,72 0,82 

Sum variance(SVa) 
0,11 0,12 0,16 0,27 0,17 

Angular second momentum(ASM) 
0,0006 0,0005 0,001 0,00078 0,0015 

Sum of squares: Variance(SSV) 
0,0003 0,0008 0,003 0,0012 0,0037 

Difference entropy(DEn) 
0,0002 0,00022 0,001 0,00077 0,0012 

Inverse difference moment : 

Homogeneity (IDM) 

0,00016 0,00076 0,004 0,0036 0,0039 

Sum entropy(SEn) 
0,00004 0,00010 0,00019 0,0017 0,00019 

Correlation(COR) 
0,000035 0,000022 0,00004 0,00019 0,00004 

Sum average(SAv) 
0,000016 0,00003 0,00011 0,00023 0,00011 

Entropy(ENT) 
0,0000052 0,000004 0,000012 0,00001 0,00001 

Contrast(CON) 
0,0000013 0,000003 0,000007 0,00002 0,00001 

Max. correlation coefficient(MCC) 
0,0000009 0,0000002 0,000001 0,0000013 0,000001 

Information measure of 

correlation(2)(IC2) 

0,0000008 0,0000004 0,000005 0,0000081 0,000005 

Information measure of 

correlation(1(IC1) 

0,0000007 0,000001 0,000003 0,0000085 0,000003 

  

 

The results of the feature selection of the coocurrence features are given in Table 

2.4 . Here difference variance and sum variance have been selected as cooccurrence 

features. 

Several coastline images were segmented by means of selected features by 

dividing them to 32X32, 16X16, 8X8, 4X4 and 2X2 square blocks. Although selected 

features show good segmentation performance for 32X32 and 16X16 blocks, they give 

poorer performance for smaller blocks. An example of coastline image segmentation 

with selected CM features is shown in Figure 2.9. 
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(a)    (b)    (c) 

     
(d)   - (e)    (f) 

Figure 2.9. Segmentation by CM features. (a) Coastline image (b) 32X32 (c) 16X16 (d) 8X8 

(e) 4x4 (f) 2X2 block segmentations. 

2.2.3. Histogram Features 

By means of CM features, segmentation of a coastline image which is divided 

into large blocks give good results because they describe the periodicity of the textures. 

However, accuracy of the segmentation decreases and computational cost increases 

since the periodicity of the texture vanishes as the block size get smaller since second 

order statistics cannot capture periodicity. Another problem is the increased 

computational complexity as the number of blocks is increased. For segmentation of a 

coastline image by smaller blocks, it is convenient to employ histogram features since 

the histogram of texture describes the frequency of gray values rather than spatial 

dependence of the gray values. 

Using image histogram directly for feature extraction is important since it yields 

translation invariant features. However in order to get more stable texture 

characterization higher order moments of image histograms should be computed. 

Instead Mallat (Mallat 1989) found experimentally that detail histograms of natural 
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textured wavelet images can be modeled with the family of exponentials: 

 ( )u /h(u) : Ke .
β− α=  (2.34) 

The parameter � modifies the decreasing rate of the peak and � models the variance. 

The constant K is selected such that h(u)du 1=� . The model parameters �, � and K are 

calculated by  

 
2

1 2m u h(u)du m u h(u)du .= =� �  (2.35) 

Substituting (2.34) and changing the variables in two integrals (2.35) parameters are 

obtained by 

 u x 1

0

K where (x) e u du
2 (1/ )

∞
− −β= Γ =

αΓ β �  (2.36) 

 1

(1/ )
m

(2 / )
Γ βα =
Γ β

 (2.37) 

 
2 2

1 1

2

m (2 / x)
F where F(x)

m (1/ x) (3 / x)
− � � Γβ = =� � Γ Γ� �

. (2.38) 

Since model parameter K is a constant and �, � have independent characteristics 

of detail image, � and � can be selected as the histogram features of detail image. the 

function F-1(x) is given in Figure 2.10.  
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Figure 2.10. Graph of the function F-1(x) characterized by (2.38). (Source: (Mallat 1989)) 

The typical examples of detail image histograms obtained from the wavelet 

representation of the real images and the graphs of the model obtained from (2.34) are 

shown in Figure 2.11. 
 In this work, several coastline images were segmented by means of selected 

features (� and �) by dividing them to 32X32, 16X16, 8X8, 4X4 and 2X2 square 

blocks. Selected features show good segmentation performance for 8X8, 4X4 and 2X2 

blocks. 

 
     (a)          (b) 

Figure 2.11. Examples of the model. The dotted line is the observed detail histogram; the solid 

line is the fitted model. (a) �=20.8 and �=2.0. (b) �=1.27 and �=0.566. (Source: 

(Mallat 1989)) 

An example of coastline image segmentation with histogram features is shown 

in Figure 2.12. 
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 (a)      (b)    (c)  

 

     
 (d)     (e)    (f) 

 

Figure 2.12. Segmentation by histogram features (a) Coastline image (b) 32X32 (c) 16X16 (d) 

8X8 (e) 4X4 (f) 2X2 block segmentations 

2.3. Maximum Likelihood Classifier 

The maximum likelihood (ML) classifier is one of the most widely used 

classifiers in pattern recognition. ML classifier has several advantages over the other 

supervised classifiers. ML parameters converges as the number of training samples 

increases and it is often simpler and more accurate than other classifiers. It is 

conjectured that the features which have been extracted for describing natural textures 

extracted from aerial images are jointly Gaussian distributed (Thyagarajan et al. 1994). 

For those reasons, a maximum likelihood classifier can be employed for classification 

of sea texture. As it is supposed that each class contains N samples { }1 ND= x ,...,x  and 

samples from different classes (sea or land) are statistically independent, the joint pdf 

can be written as: 
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N

k k
k 1

p(D x ) p(x D).
=

= ∏  (2.39) 

The maximum likelihood estimate of 
  is, by definition, the value that maximizes 

( )p D 
 . For the simplicity it is convenient to use the loglikelihood: 

 kl( ) : log[p(D x )]θ =  (2.40) 

 
N

k
k 1

l( ) : log[p(x D)] .
=

θ =�  (2.41) 

since 
  maximizes the loglikelihood, by taking derivative of loglikelihood function 

with respect to 
 , 

 
N

k
k 1

l log[p(x )]θ θ
=

∇ = ∇ θ�  (2.42) 

and by setting 
 l=0∇ , ML estimate of 
  can be found. In this particular case where the 

feature vectors are jointly Gaussian distributed, the parameter vectors are the mean �  

and covariance Σ  of the pdf of the feature vectors and these parameters are estimated 

from samples: 

 
N

k
k 1

1
x

N =
µ = �  (2.43) 

 
N

t
n n

n 1

1
(x )(x ) .

N =
Σ = − µ − µ�  (2.44) 

After the parameters are estimated, the loglikelihood function for each class of textures 
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can be given by (Duda et al. 2001): 

 
k k k

d t 1
k k k k

log{p(x , )}

1 1
log{(2 ) } (x ) (x )

2 2
−

Λ = µ Σ

= − π Σ − − µ Σ − µ
 (2.45) 

where x  is the feature vector and d is the feature vector dimension. 

If loglikelihood of sea texture is greater than that of land texture, then unknown 

texture is classified as sea otherwise it is classified as land.  

2.4. Multiscale Segmentation 

In texture segmentation, the size of classification window is very important. In 

general, employing a large window increases the accuracy of the classification since it 

has rich statistical information but at the same time, it may contain pixels from different 

classes. A large window increases the accuracy of the segmentation in large and 

homogeneous regions such as sea region but it results in bad segmentations near the 

boundaries between the different textures. A small window contains fewer pixels from 

different classes but it decreases the accuracy of the classification because of less 

statistical information. So it is reasonable to employ large windows at the beginning for 

acquiring the coarse segmentation and then to employ smaller windows for refining the 

large blocks near the boundary between different classes. 

In this thesis, a quad-tree approach has been employed for implementing the 

refinement process by using different window sizes for segmentation. In quad-tree 

approach, the image is considered as an initial 2J X 2J square image, the windows are 

obtained by dividing the image into four square images which are same size as in Figure 

2.13. 

In this work, the image is initially divided into nonoverlapping regions of 32X32 

size in order to start to classification with 32X32 windows. Firstly, the image is 

classified by using CM features as sea and land regions and then sea regions 
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neighboring land regions or land regions neighboring sea regions are marked as 

boundary regions between sea and land regions as shown Figure 2.14. For the next step, 

all regions are divided into four “child“ 16X16 subregions and they are classified due to 

the class of their parent regions. If the class of the parent region is sea or land, the class 

of the subregion is initially same as the class of the parent region. If the parent region is 

boundary region, the subregions are classified by using CM features.  

 

 

 

Figure 2.13. Image divided into windows at different scales. 

 

 
 

Figure 2.14. Quad-tree structure of the windows. White, black and gray circles represent sea, 

land and boundary regions respectively. 
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After classification of the all subregions, initial boundary subregions are 

selected. Some of the boundary subregions may contain a parent region which is not a 

boundary region. In other words these subregions may be incorrectly classified by using 

CM features and they should be iteratively reclassified by using CM features. New 

boundary subregions should be selected until all boundary subregions are classified by 

using CM features. 

 

 

     
(a)    (b)    (c) 

 

     
(d)    (e)    (f) 

 

 
(g) 

Figure 2.15. Multiscale Segmentation (a) Coastline image (b) 32X32 (c) 16X16 (d) 8X8 (e) 4x4 

(f) 2X2 (g) Pixel Level segmentation. 
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For the 8X8, 4X4 and 2X2 window levels, same procedure is recursively applied 

but instead of CM features; histogram features are used and for the pixel level 

segmentation, energy and mean deviation features are used. An example of proposed 

multiscale coastline image segmentation is shown in Figure 2.15. 

2.5. Postprocessing of Segmented Image 

After the segmentation of  the coastline image into sea and land textures, it is 

necessary to apply postprocessing operations in order to remove very small islands, 

lakes and noisy pixels from the image, to detect sea boundary pixels and to thin the 

boundary for getting one-pixel wide coastline and finally to store coordinates of 

coastline points. 

In this thesis, median filter and morphological operators (dilation and erosion) 

are used to remove very small islands, lakes and noisy pixels from the image.  

2.5.1.  Median Filter 

Median filtering is a non-linear image enhancement method for smoothing of 

signals by suppression of impulsive noise while preserving of edges. It replaces each 

pixel value with the median of the gray values in the local neighborhood.  

Median filters are very robust in removing salt and pepper type of noise since 

they completely discard the values which are extremely different from the values in the 

neighborhood. Firstly, pixel values in NxN neighborhood are sorted into ascending 

order by their gray values. Then, the value of the middle pixel is selected to replace with 

the value of the pixel under consideration. An odd-size neighborhood is used for 

computing the median. However, if the number of pixels is even, the median is taken as 

the average of the middle two pixels after sorting. 
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2.5.2. Dilation and Erosion 

Mathematical morphology contributes a wide range of operators to image 

processing, all based on a fundamental concepts from set theory. Translation of a binary 

image A by a pixel p shifts the origin of A to p. The translation of A by pixel p is an 

image defined by, 

 : { }.= + ∈pA a p a A  (2.46) 

If Ab1, Ab2… Abn are translations of the binary image A by the 1 pixels of the 

binary image B= {b1, b2… bn}, then the union of the translations of A by the 1 pixels of 

B is called the dilation of A by B and is defined by 

 : .
∈

⊕ = � i

i

b
b B

A B A  (2.47) 

B is called structuring element. The size and shape of the structuring element 

determines the effect of the dilation on the input image A.  

The dual of dilation is erosion. The erosion of a binary image A by a binary 

image B is at a pixel p if every 1 pixel in the translation of B to p is also 1 in A. Erosion 

is defined by  

 : { }.Θ = ⊆pA B p B A  (2.48) 

Erosion and dilation are usually used in order to filter images. If noise type is 

known, then suitable structuring element can be used and a sequence of erosion and 

dilation operations can be employed for removing the noise. 
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2.5.2.1. Thinning Algorithm 

After the boundaries are detected, these boundaries are needed to be thinned in 

order to extract the shape information. The algorithm used here for thinning binary 

images is due to (Zhang and Suen 1984). Object points are assumed to have value 1 and 

background points to have value 0. This method involves successive passes of two basic 

steps applied to the contour points of the given region, where a contour point is any 

pixel with value 1 and having at least one 8-neighbor valued 0. With reference to the 8-

neighborhood definition shown in Figure 2.16, step 1 flags a contour point p for 

deletion if the following conditions are satisfied: 

 

1

1

2 4 6

4 6 8

( ) 2 ( ) 6;

( ) ( ) 1;

( ) . . 0;

( ) . . 0;

≤ ≤
=

=
=

a N p

b S p

c p p p

d p p p

 (2.49) 

where N(p1) is the number of nonzero neighbors of p1; 

 1 2 3 8 9( ) ............N p p p p p= + + + +  (2.50) 

and S(p1) is the number of 0-1 transitions in the ordered sequence of p2, p3,…,p8 ,p9 ,p2 . 

 

 

 

 
 
 

Figure 2.16. Neighborhood representation used by the thinning algorithm. p2, p3,... ,p9 are the 8-

neighbors of p1. 

9p  2p  3p  

8p  1p  4p  

7p  6p  5p  
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In step 2, conditions (a) and (b) remain same, conditions (c) and (d) are changed 

to  

 2 4 8

2 6 8

( ) . . 0;

( ) . . 0;

=
=

c p p p

d p p p
 (2.51) 

Step1 is applied to every border pixel in the binary object under consideration. If 

one or more conditions are violated, the value of the point in question is not changed. If 

all conditions are satisfied the point is flagged for deletion. But, the point is not deleted 

until all border points have been inspected. After step 1 has been applied to all border 

points, those that were flagged are deleted (changed to 0). Then, step 2 is applied to the 

resulting image in exactly the same manner as step 1. 

One iteration of the thinning algorithm consists of (1) applying step 1 to flag 

border points for deletion; (2) deleting the flagged points (3) applying step 2 to flag the 

remaining border points for deletion; (4) deleting the flagged points. This procedure is 

applied iteratively until no further points are deleted. At that time the algorithm 

terminates, resulting in the skeleton of the boundary. 

2.5.3. Extraction of Coastlines 

In the implementation of proposed automatic coastline extraction method, 

following steps are applied: 

1. Aerial coastline image is transformed into wavelet image by using four-tap 

Daubechies FIR filters. 

2. Wavelet image is first divided into 32X32 nonoverlapping bins. For each 

bin, the selected cooccurrence features: sum variance and difference 

variance, are computed. All bins are classified as sea bins or land bins by 

ML classifier. ML classifier is trained by employing the training samples of 

sea texture and land texture which are captured from 15 different coastline 

images. 
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3. Sea bins neighboring land bins and land bins neighboring the sea bins are 

marked for reclassification. 

4. Wavelet image is divided into 16X16 nonoverlapping bins by dividing 

32x32 bins into four 16X16 bins. If parent bin of 16X16 bin are the selected 

bin for reclassification, then cooccurrence features of the bin are computed 

and it is reclassified by ML classifier, else class of 16X16 bin remain same 

as that of the parent bin . 

5. Sea bins neighboring land bins and land bins neighboring the sea bins are 

marked for reclassification. 

6. Wavelet image is divided into 8X8 nonoverlapping bins by dividing 16x16 

bins into four 8X8 bins. If parent bin of an 8X8 bin are the selected bin for 

reclassification, then histogram features, � and �, of the bin are computed 

and it is reclassified by ML classifier, else class of 8X8 bin remain same as 

that of the parent bin. 

7. Sea bins neighboring land bins and land bins neighboring the sea bins are 

marked for reclassification. 

8. Step 6 and 7 are repeated for 4X4 and 2X2 bins. 

9. Wavelet image is divided into pixels by dividing 2x2 bins into four pixels. If 

parent bin of the pixel are the selected bin for reclassification, then energy 

and mean deviation features of the bin are computed in 3X3 pixel 

neighborhood and it is reclassified by ML classifier, else class of the pixel 

remain same as that of the parent bin. Thus, coastline image is segmented 

into sea and land regions. 

10. A binary image is obtained by replacing values of sea pixels with 255 and 

values of land pixels with 0. 

11. In order to remove very small islands, lakes and noisy pixels from the image, 

5X5 median filter is first applied to the binary image two times. Then, 3X3 

opening (erosion followed by dilation) operators are applied, sequentially. 

12. Boundary of sea region is simply detected as coastline by selecting land 

pixels which are neighbor to sea pixels or by selecting sea pixels 

neighboring land pixels. 
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13. Detected boundaries are thinned in order to get one-pixel-wide coastline by 

means of the thinning algorithm which is described in 2.5.2.1. 

14. Coordinates of the longest coastline in the image is stored. 

 

 

     
(a)            (b)          (c) 

 

   
(d)         (e)          (f) 

 
(g) 

Figure 2.17. An example of results of postprocessing of segmented coastline image. 

(a)Segmented image (b) 5X5 Median filter (c) Erosion (d) Dilation (e) Boundary 

detection (f) Thinning (g) the longest coastline in the image 
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An example of results of postprocessing of segmented coastline image is shown 

in Figure 2.17. 

Proposed coastline extraction method has been tested with more than thirty 

aerial coastline images. It extracted coastlines with a maximum four-pixel error except 

for the images that contains very noisy sea regions and very smooth land regions.  
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CHAPTER 3  

SHAPE DESCRIPTORS 

In the previous chapter, coastline extraction problem has been considered the 

same way as an object boundary detection problem. Similarly, we can consider 

coastline matching problem as an object boundary (shape) matching problem. For this 

reason, in this thesis research, we have studied various shape matching algorithms to 

develop a coastline matching algorithm. We have especially focused on the matching 

algorithms which are employed in content-based image retrieval (CBIR) applications, 

since CBIR is similar to the automatic coastline matching with map data in that CBIR 

looks for the query object in image database where the automatic coastline matching 

looks for query coastline in map database.  

 In shape matching, a key issue is to extract the effective and perceptually 

important shape features depending on object boundary information. These features are 

derived from a choice of a shape representation (shape descriptors) and they are used 

for computing similarities between the objects. For good retrieval accuracy, an 

algorithm based on a shape descriptor must be able to find perceptually similar shapes 

from databases, even if they undergo geometric transformations, this means that the 

shape descriptor must be invariant for translated, rotated, and scaled shapes. The 

descriptors must be robust to noise, distortion and deformations which are tolerated by 

human beings. It must be compact for indexing the database and computationally 

efficient for real-time applications.  

Shape representation and matching techniques (Zhang and Lu 2004) in the 

literature can be generally classified into two class which are contour-based and region-

based methods. Contour-based techniques only use object boundary information 

whereas region based techniques use all pixels within the object to obtain the shape 

descriptors. In coastline matching, extracted coastlines from aerial images are mostly 

open-curved and whole object information about sea and land regions cannot be 

captured. For these reasons, region-based techniques which need whole information 

about the object are not suitable for coastline matching.  

Among contour-based methods, simple global descriptors such as area, 
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circularity, eccentricity, and major axis orientation usually can only discriminate 

shapes with the large differences and ignore local deviations of the boundary which are 

important in coastline matching. Hausdorff distance is a correspondence-based shape 

descriptor using point-to-point matching. Hausdorff distance is not rotation and scale 

invariant and it is sensitive to noise. Chain code representations, Fourier descriptors, 

and curvature scale space descriptors are very robust shape matching methods in 

contour-based techniques. In this chapter, these methods will be explained and 

advantages, disadvantages for coastline matching will be discussed. 

3.1. Chain Code Representations 

Chain codes are used to represent an object boundary by a connected sequence 

of straight-line segments with specified length and orientation. Chain code 

representations are mostly used in handwritten character recognition applications 

(Gyeonghwan and Govindaraju 1997). The method was introduced by Freeman 

(Freeman 1961) who described a method permitting the encoding of arbitrary geometric 

configurations. Chain code representation is based on the 4-directional and 8-directional 

segments as shown in Figure 3.1. 

                                     
 

 

 

 

 

 

     (a)              (b) 

Figure 3.1. Directions for (a) 4-directional chain code and (b) 8-directional chain code 
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If the chain code is used for matching, it must be invariant to transformations 

such as translation, rotation and scaling. Invariance property can be achieved by 

representing the differences in chain code in the successive directions. This can be 

implemented by subtracting each element of the chain code from the previous one and 

taking the result modulo N, where N is the connectivity (i.e. 8 or 4). Resulting 

representation is called differential chain code representation which is translation and 

rotation invariant. However, this modified chain code representation is not scale 

invariant. 

Iivarinen and Visa (Iivarinen and Visa 1996) introduced a chain code histogram 

(CCH) for object recognition. CCH is computed as p(k)=nk/n, where nk is the number of 

chain code having k value in a chain code and n is the total number of chain code 

elements. The CCH reflects the probabilities of different directions in a boundary. The 

CCH is translation and scale invariant, but it is not rotation invariant. To achieve 

rotation invariance, the normalized CCH is proposed. It is defined as p(k)=lknk/l, where 

nk is the same as in CCH, lk is the length of the direction k and l is the length of the 

contour. Thus, the normalized CCH is translation, rotation and scale invariant. 

Chain code representation is sensitive to noise and variations on the object 

boundary. Matching of deformed object boundaries is almost impossible. CCH is 

invariant to transformations but it loses spatial locations of the object boundary which is 

important for open curve matching. For these reasons, chain code representation is not 

suitable for coastline matching. 

3.2. Curvature Scale Space (CSS) Descriptors 

CSS descriptors are widely used in shape representation. CSSD describes main 

local shape features. By representing shape boundary in scale space, not only the 

locations of convex (or concave) segments, but also the degree of convexity (or 

concavity) of the segments on the shape boundary are detected (Mokhtarian et al. 1996). 

In the development of MPEG-7 standardization (Jeannin 2000), CSS descriptor (CSSD) 

has been selected as the standard contour shape descriptor. It is used in various 

applications such as leaf classification (Mokhtarian and Abbasi 2004), multiview 3-D 

object recognition (Mokhtarian and Abbasi 2001), sketch-based image retrieval 
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(Matusiak et al. 1998), corner tracking (Mohanna and Mokhtarian 2002), hand pose 

recognition (Chin-Chen et al 2002), terrain-aided navigation (Madhavan et al 2002), and 

analysis of ECG waveform (Jager et al. 1990). 

In this section, construction of the CSSD, matching algorithm and invariance to 

transformations of CSSD will be explained. 

3.2.1. Construction of the CSSD 

The curvature  along a curve is defined by (Mokhtarian and Mackhworth 

1992): 

 
s 0

(s) : lim
s∆

∆θκ
∆→→→→

====  (2.52) 

where �
 is the change in tangent angle produced by a change �s of the arclength. From 
this definition it follows that the curvature  at [x(u),y(u)] is computed by: 

 2 2 3/ 2
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where ( )�x u , ( )�y u  are first derivatives of x(u),y(u) and ( )��x u , ( )��y u  are second 

derivatives of x(u),y(u). Let g(u,�), a 1-D Gaussian kernel of width �, be convolved 

with each component of the curve, then let X(u,�) and Y(u,�) represent the components 

of the resulting curve, C�: 
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where “ * ” denotes convolution operator. Due to properties of the convolution, the 

derivatives of each component can be computed easily by: 
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and, 
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where g(u,�)� and g(u,�)��  are the first and second derivatives of the gaussian kernel, 

g(u,�) with respect to u, respectively. Then, curvature of the curve can be computed as: 
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The implicit function defined by (u, �) = 0 is the CSS image of the curve, C(u). 

If the curvature zero crossings of evolved curve C�(u) are computed during evolution, 

the resulting points can be displayed in the (u, �) plane. CSS image of coastline of 

Africa is shown in Figure 3.2 as an example of CSS image. Here u is an approximation 

of normalized arclength and � is the width of the Gaussian kernel. As � increases, C�(u) 

becomes smoother and number of zero crossings decreases. When � becomes 

sufficiently large, C�(u) will be a convex curve with no zero crossing and the process of 

evolution is stopped. The result of this process is represented by the binary CSS image 

of the curve. The small contours of CSS image represent the minor deviations on the 

boundary which may be noise and can be ignored. Each boundary can be effectively 

represented by the locations of the maxima of its CSS image contours. After extracting 
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the maxima of CSS image contours, they are normalized so that horizontal coordinate u 

varies in the range [0,1]. The normalized CSS maxima values are used as the feature 

vector of the CSS contour in the image. 

 

 
       (a)          (b) 

Figure 3.2. (a) Coastline of Africa, (b) CSS image of coastline of Africa. (Source: (Mokhtarian 

and Mackhworth 1992)) 

3.2.2. CSS Matching Algorithm 

The complete CSS matching algorithm given in (Mokhtarian et al 2000) 

comparing the two sets of CSSDs, one from the image and the other from the model 

image in the image database is as following: 

1. Create a node consisting of the largest scale CSSD of the image and the 

  largest scale CSSD of the model. Initialize the cost of this node to 

  absolute difference of �-coordinates of the image and the model. 

  Compute a CSS shift parameter � = Um-Ui for a each node where U is the 

  horizontal coordinate of a maximum of CSSDs, i and m refers to image 

  and model, respectively. This parameter is used to compensate the 

  effect of the different starting points and change in orientation. 

2. If there are more than one maximum in the model having a �-coordinate 
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  close (within 80%) to the largest scale CSSD of the image, create extra 

  nodes consisting of the largest scale CSSD of the image and respective 

  additional CSSD of the model. Also create the same nodes for the second 

  largest scale CSSD of the image and the respective CSSD of the model. 

  Initialize the cost and compute the CSS shift parameter for each node 

  accordingly. 

3. Create two lists for each node obtained in step 1 and 2. The first list will 

  contain the image curve CSSDs, and the second list will contain the 

  model curve CSSDs matched in that node at any point of the matching 

  procedure. Initialize the first and second lists of each node by the CSSDs 

  determined in the first two steps. 

4. Expand each node created in step 1 and 2 using the procedure described 

  in step5. 

5. To expand a node, select the largest scale CSSD of the image which is 

  not in the first list and apply that node’s shift parameter � to map that 

  CSSD to the model. Locate the nearest CSSD of the model which is not 

  in the second list. If the two CSSDs are separated by a reasonable  

  horizontal distance (0.2 of the maximum possible distance) define the 

  cost of the match as the straight line distance between the two CSSDs. 

  Otherwise, define the height of the CSSD as the cost of the match. If 

  there are no more remaining CSSDs of the image, define the cost of the 

  match as the height of the highest CSSD of the model not in the node’s 

  second list. Likewise, if there are no more remaining CSSDs of the 

  model, define the cost of the match as the height of the selected CSSD of 

  the image. Add the match cost to the node cost. Update the two lists with 

  the node. 

6. Select the lowest cost node. If there are no more CSSD of the model or 

  the image that remain unmatched within that node, then return that node 

  as the lowest cost node. Otherwise, go to step 5 and expand the lowest 

  cost node. 

7. Reverse the place of the image and the model and the repeat the steps 1-6 

  to find the lowest cost in this case. 

8. Consider the lowest node as final matching cost between the image and 

  the model. 
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The algorithm should be repeated once more for the mirror image of the image. 

The final matching cost is selected as the lower value of the matching costs of the image 

and the mirror image. 

3.2.3. Invariance Properties of CSSDs with respect to Transformations 

The core of the CSSDs is the curvature zero crossing points. These points are 

translation invariant. Scale invariance is achieved by normalizing CSSDs so that 

horizontal coordinate u varies in the range [0, 1]. Rotation invariance is achieved by 

mapping the CSSDs of the image to those of the model using � shift parameter 

described in 3.2.2. 

For closed boundaries, CSSD has several attractive properties. It is perceptually 

meaningful and it captures convexities (concavities) on the shape boundary. It is robust 

to boundary noise and irregularities. It is compact and it has low computational 

complexity. 

For open curved boundaries, CSSD is not suitable because circular shifting for 

rotation invariance and CSSD normalization for scale invariance is not possible. For 

these reasons, CSSD is not suitable for coastline matching. 

3.3. Fourier Descriptors 

One of the most widely used shape descriptors in shape recognition is Fourier 

descriptor (FD). It is used in applications such as image retrieval (Zhang and Lu 2002), 

medical imaging, (Liang et al 1994 and Rangayyan et al 1997), hand pose recognition 

(Harding and Ellis 2004). Fourier descriptors are usually derived from spectral 

transform on the shape signatures. Global shape features are captured by the first few 

low frequency terms, while finer features of the shape are captured by higher frequency 

terms.  

Many types of FD methods are used in the shape recognition literature (Zhang 

and Lu 2005). In these methods, different shape signatures have been employed to 
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extract FD. In this section FDs which are derived from shape signatures such as 

complex coordinates, centroid distance, curvature, and cumulative angular function will 

be discussed. 

3.3.1. Complex Coordinates 

The boundary of a shape can be represented as a sequence of coordinates 

C(k) [x(k), y(k)],=  for k= 0, 1, 2…N-1 where N is the number of boundary pixels. 

Each coordinate pair can be considered as a complex number such that: 

 C(k) x(k) jy(k).= +  (3.6) 

This representation reduces a 2-D problem to a 1-D problem. The discrete 

Fourier transform (DFT) of C(k) is  

 
N 1

( j )

k 0

2 uk / N1
FD(u) C(k) e for u 0,1, 2,..., N 1.

N

−
−

=

π= = −�  (3.7) 

The complex coefficients FD(u) are called the complex coordinates Fourier 

descriptors (CCFD). 

3.3.2. Centroid Distance 

Centroid distance is expressed by the distance of the boundary pixels to the 

centroid. 
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 2 2
c cr(k) {[x(k) x ] [y(k) y ] } for k 0,1, 2,..., N 1.= − + − = −  (3.8) 

where (xc, yc) is the centroid of the shape. Centroid distance function represents the 
deviation of the shape from a circle having a radius which equals to the mean of the 
centroid distance function. Figure 3.3 shows the centroid distance function of three 
apples. 
 
 

 

Figure 3.3. Three apple shapes on the top and their respective centroid distance signatures at 

the bottom. (Source: (Zhang and Lu 2005)) 

Centroid distance function also reduces a 2-D problem to a 1-D problem. The 

discrete Fourier transform (DFT) of r(k) is  

 
N 1

( )

k 0

j2 uk / N1
FD(u) r(k)e for u 0,1, 2,..., N 1.

N

−

=

− π= = −�  (3.9) 

The coefficients FD(u) are called the centroid distance Fourier descriptors 

(CDFD). 

 

3.3.3. Cumulative Angular Function 

The change of angular directions is important to human perception. With this 

insight shape can be represented by its boundary tangent angles: 



 48 

 
y(k) y(k w)

(k) arctan
x(k) x(k w)

− −θ =
− −

 (3.10) 

where an integer w is a jump step used in practice.
 
However, the tangent angle function 


(k) can only assume values in a range of length 2�, in the interval of [-�, �] or [0, 2�]. 

Therefore, 
(k) in general contains discontinuities at intervals of 2�. Because of this, a 

cumulative angular function is introduced to overcome this problem. The cumulative 

angular function 	(k) is the net amount of angular bend between the starting position 

C(0) and position C(k) on the shape boundary: 

 (k) [ (k) (0)]mod(2 ) k [0, L]ϕ = θ − θ π ∈  (3.11) 

where L is the shape perimeter. The normalized variant of �(t) is defined by Zahn and 

Roskies [Zahn and Roskies 72] using normalized arclength (assuming boundary is 

traced counter clock-wise). 

 
L 2 k

(t) ( t) t where t .
2 L

πψ = ϕ − =
π

 (3.12) 

�(t) is invariant under translation, rotation and scaling. Figure 3.4
 
shows the 

cumulative angle function, �(t), of three apples. 

 

 

Figure 3.4. Three apple shapes on the top and their respective �(t) at the bottom. (Source: 

(Zhang and Lu 2005)) 
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The cumulative angle function also reduces the 2-D problem to a 1-D problem. 

The discrete Fourier transform (DFT) of �(k) is  

 
N 1

k 0

( j2 uk / N)1
FD(u) (k)e for u 0,1, 2,..., N 1.

N

−

=

− π= ψ = −�  (3.13) 

The coefficients FD(u) are called the cumulative angular function Fourier 

descriptors (CAFD). 

3.3.4. Curvature Signature 

Curvature represents the second derivative of the boundary and the first 

derivative of the boundary tangent. Curvature function is given by 

 (k) : (k) (k 1)κ = θ − θ −  (3.14) 

where is 
 defined in (3.10). But this curvature function has discontinuities at size of 2� 

in the boundary, it is convenient to use curvature function given as: 

 (k) : (k) (k 1)κ = ϕ − ϕ −  (3.15) 

where is 	 defined in (3.11).Curvature is invariant under translation and rotation. The 

cumulative angular function reduces a 2-D problem to a 1-D problem. The discrete 

Fourier transform (DFT) of (k) is  

 
N 1

( )

k 0

j2 uk / N1
FD(u) (k) e for u 0,1, 2,..., N 1.

N

−

=

− π= κ = −�  (3.16) 
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The coefficients FD(u) are called the Curvature Fourier descriptors (CFD). 

3.3.5. Invariance of Fourier Descriptors to Transformations 

In order to achieve shape invariance, Fourier descriptors exploit invariant 

properties of shape signatures and properties of Fourier transform shown in Table 3.1. 

Three of shape signatures discussed so far (CDFDs, CAFDs, CFDs) are translation 

invariant. Rotation invariance of FDs is achieved by taking only magnitude values of 

the FDs. 

 

Table 3.1 Some Basic Properties of Fourier Descriptors (Source: (Gonzalez and 
Woods 1992)) 

 
Transformation Boundary Fourier Descriptor 

Identity C(k) FD(u) 

Rotation Cr(k)=C(k)ej
 FDr(u)= FD(u) ej
 

Translation Ct(k)=C(k)+�xy FDt(u)= FD(u)+�xy �(u) 

Scaling Cs(k)=� C(k) FDs(u)= � FD(u)  

Starting Point Cp(k)=C(k-p) FDr(u)= FD(u) ej2�up/N 

 

 

For complex coordinates signature, all of the components except for the first 

(DC) component are necessary for the invariant feature vector of the shape, since the 

DC component only gives the information on the position of the shape which is not 

useful in describing shape. Thus, translation invariance is achieved, because translation 

affects only first component as shown in Table 3.1. Scale and rotation invariance is 

achieved by dividing the magnitude of all components by the magnitude of the second 

component. The invariant feature vector for complex coordinates signature is then given 

by: 
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 2 3 N 1

1 1 1

FD FD FD
f [ , ,..., ].

FD FD FD
−=  (3.17) 

For centroid distance and curvature signatures, only half of the descriptors are 

necessary for the invariant feature vector of the shape, since the functions of them are 

real-valued and then there are only N/2 different frequencies in the Fourier transform. 

Scale invariance is achieved by dividing the magnitude of first half components by the 

magnitude of the DC component. 

The invariant feature vector for centroid distance and curvature signatures is 

then given by: 

 1 2 N / 2

0 0 0

FD FD FD
f [ , ,..., ].

FD FD FD
=  (3.18) 

Cumulative angular function is itself translation, rotation and scale invariant. 

Due to its real value, only first half of the components is necessary for the invariant 

feature vector of the shape. The feature vector for cumulative angular function is then 

given by: 

 0 1 N / 2f [ FD , FD ,..., FD ].=  (3.19) 

All of the four FD descriptors (complex coordinates, centroid distance, curvature 

and cumulative angular function) are starting point invariant, because the magnitude of 

Fourier transform is used as FD descriptor for all of the four signatures. 

In order to compute cost of matching a model shape having a feature vector fm= 

[|fm1|, |fm2|,…, |fmNC|] and a query shape having a feature vector fq=[|fq1|, |fq2|,…, |fqNC|], 

Euclidean distance between the two feature vectors can be used as similarity 

measurement: 
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mi qi

NC 2
1/ 2

i 0

Cost ( f f )
=

= −�  (3.20) 

where NC is the reduced number of Fourier components needed for the feature vector. 

The model shape giving minimum matching cost is selected as the best match. 

3.3.6. Properties of Fourier Descriptors 

For closed boundaries, FDs have properties similar to CSSD. They are usually 

meaningful and they capture structural features of the shape boundary. They are robust 

to boundary noise and irregularities. They can be calculated with low computational 

complexity. 

For open curved boundaries, FDs are not suitable because while they it capture 

structural features of the shape boundary, they need whole boundary information. 

During this process spatial locations of the object boundary are lost. For these reasons, 

FDs are not suitable for coastline matching. 

3.4. Discussion 

Extracted coastlines from aerial coastline images usually match a part of the 

coastlines in the map data. This means that most of the extracted coastlines are open 

curves. For this reason, a coastline matching method must be suitable for open curve 

matching. Also, a coastline matching method must be invariant to geometric 

transformations and must be robust to noise and deformations. 

Chain code representation is sensitive to noise and deformations and it is not 

suitable for open curve matching. Although FD and CSSD are invariant and robust to 

noise, they are not suitable for open curve matching. 

Shape matching and retrieval using dynamic programming is a shape matching 

method which was reported in (Petrakis et al. 2002). This method is robust for the case, 

where an open curve matches the whole or only a part of another open or closed curve, 



 53 

which mostly takes place in coastline matching. It is invariant to geometric 

transformations and robust to noise and deformations. For this reason, we developed a 

coastline matching procedure using dynamic programming. Details of our approach are 

given in Chapter 4. 
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CHAPTER 4  

AUTOMATIC MATCHING OF COASTLINES USING 
DYNAMIC PROGRAMMING 

The coastline matching algorithm using dynamic programming is adapted from 

Petrakis, Diplaros and Millios’ algorithm (Petrakis et al. 2002) which was originally 

described for object recognition. The algorithm is applicable to distorted and noisy 

coastlines by allowing matching of merged sequences consecutive segments in a 

coastline with the segments of another coastline. The algorithm is also invariant to 

translation, scale, rotation and starting point selection. The main idea of this 

methodology is to represent each coastline by a sequence of concave and convex 

segments and allow the matching of merged sequences of small segments in a deformed 

or noisy coastline with larger segments in the other coastline. Merging shows similar 

effect to that of smoothing several small segments in a coastline to form a single larger 

segment without performing the costly smoothing operation. The algorithm selects most 

promising merges based on local information. The algorithm can handle occlusion if 

occlusion boundaries such as boundary of clouds are identified. 

4.1. Methodology 

The coastline matching algorithm takes in two coastlines, determines whether 

coastlines are open or closed, and calculates: 

1. The distance between the coastlines (dissimilarity); the more similar the 

  coastlines are the lower the value of dissimilarity cost. 

2. The correspondences between similar parts of the two coastlines. 

In matching of two coastlines, A and B, the algorithm builds a dynamic 

Programming (DP) table (Figure 4.1), where rows and columns correspond to inflection 

points of A and B, respectively. By starting at any cell at the bottom row and going 

upwards and to the right, the table is filled with the cost of the partial match including 

the segments between the inflection points (rows and columns) passed so far. Only 
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about half of the cells are assigned cost values, in DP table, as convex segments cannot 

match concave ones. Merges can take place when a segment sequence of one coastline 

matches a single segment or a group of segments of the other coastline. Merges produce 

“jumps” in the traversal of the DP table. Reaching the top row (termination area) 

implies a complete match, when all inflection points of coastline A have been passed. 

Additional information is stored in each cell to allow the backtracking of a path. The 

backtracking of a path shows segment associations between the two coastlines. 

Dynamic Programming is used to find the minimum cost path from a cell in the 

initialization area to one in the termination area. 

 

 

Figure 4.1. Example of a DP table with R=5 (coastline A) and L=7 (coastline B). S, X, and T 

represent cells in the initialization, computation, and termination areas, respectively. 

(Source: (Petrakis et al. 2002))  

4.1.1. Segment Representation of Coastlines 

In the first chapter of this thesis, we extracted the coastlines as parametric 

curves. Here, we use the parametric curve representation to extract dominant and robust 

features. First, coastlines are partitioned into segments from which visually meaningful 

features can be extracted. Concave (V) and convex (C) segments of a parametric curve 

(coastline) which are the parts of the curve between the consecutive inflection points 

can describe visually prominent parts of the curve. In order to extract the segments of 
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the curve, all inflection points of the curve are detected by computing curvature of 

points. Curvature of the curve can be computed from (3.1), (3.2), and (3.3) as: 

 
( )3/ 22 2

( , ). ( , ) ( , ). ( , )
( , ) .

( , ) ( , )

−=
+

� �� �� �

� �

X u Y u X u Y u
u

X u Y u

σ σ σ σκ σ
σ σ

 (4.1) 

As the parameter � increases, the shape of curve, C� is smoothed due to gaussian 

smoothing. Curve smoothing prior to curvature computation reduces the effect of noise. 

After computation of curvature values for all curve points, points which have neighbors 

that have curvature values with opposite sign are firstly selected as the candidates of 

inflection points. For the next step, one of the pairs of candidate neighbor points which 

has low absolute curvature value is selected as the inflection point, since zero curvature 

produces two neighbor zero-crossing points. In this thesis, smoothing parameter � is 

selected as �=4, because experiments showed that �=4 produced the most stable 

inflection points, removing the noise on the curve effectively. 

After finding inflection points of the coastlines (curves), the coastlines are 

segmented into concave and convex segments according to the signs of the segment 

curvatures. The part of the coastlines between the consecutive inflection points are 

selected as coastline segments.  

Let A and B be the two coastlines to be matched. Segments of A and B are 

indexed by i and j, respectively; inflection points are represented by pi and pj. A= a1, 

a2,……, aM and B=b1, b2,…, bN denote the sequences of M and N concave and convex 

segments of the two coastlines. ai is the segment between inflection points pi and pi+1 

and bj is the segment between inflection points qj and qj+1. a(i-m�i), m�0, denotes the 

sequences of segments ai-m, ai-m+1… ai ; similarly b(j-n�j), n�0 are defined. If coastline 

(A or B) is closed, then p1= pM+1 (or q1= qN+1) since the number of inflection points in 

closed curves equals the number of segments. If coastline (A or B) is open, then p1� 

pM+1 (or q1� qN+1) the number of inflection points equals M+1 (or N+1). 
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4.1.2. Matching Types and Cases 

Let A and B be the two coastlines to be matched. The two types of matching can 

be defined as: 

1. Global. The algorithm finds the best mapping between segments in A 

  and segments in B so that all segments are matched in each coastline. 

2. Local. The algorithm finds the best mapping association of all segments 

  of A to all or to a partial sequence of segments of B ( i.e. some parts of B 

  may remain unmatched) or vice versa. Calculating a suitable scale for 

  matching and looking for which part of a coastline matches the other 

  coastline are the key issues for this type of matching. 

Coastlines A and B can be either open or closed. Depending on types of 

coastlines, the following matching cases should be taken into consideration: 

1. Both coastlines are open. Matching type is local. It cannot be known in 

  advance which coastline included within the other one, the algorithm 

  should run twice (once for each possibility) and the matching with the 

  minimum cost should be taken. Local matching also considers the case 

  where all segments from both coastlines are matched (global matching). 

2. Coastline A is open and coastline B is closed. Matching is local. 

  Coastline A may be contained in Coastline B, but not true for reverse 

  case (part of B may be left unmatched). Again, this case contains the case 

  where all segments of coastline A matches all segments of coastline 

  B (global matching). 

3. Both coastlines are closed. Matching type is global. This case reduces to 

  the previous case by assuming that A is open and B is closed, repeating 

  the algorithm for global open and closed coastline matching for each 

  possible starting point of coastline A, and by choosing the least cost 

  match as the cost of matching. 
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4.1.3. Dynamic Programming (DP) Table 

The algorithm builds up a dynamic programming (DP) table of partial matches 

and a matching between A and B is searched in the form of a path in the DP table that 

minimizes the total cost. The DP table has R rows and L columns, where R and L are 

depend on the number of segments of the two coastlines as follows. 

1. Both coastlines are open: R=M+1 and L=N+1. 

2. Coastline A is open and coastline B is closed. R=M+1 and L=2N. 

  Coastline B is repeated twice to force the algorithm to consider all 

  starting points on B. If A is closed and B is open, the roles of A and B are 

  exchanged. 

3. Both coastlines are closed. This case is same as the previous case. 

The rows of a DP table are indexed by i, 1 � i � R and its columns are indexed 

by j, 1 � j � L where, i, j are indices to inflection points of A and B respectively. If 

coastline B is closed, its indices are found by modulo N. 

The cell at the position of row i and column j is denoted by cell (i,j). A link 

between cells (iw-1,jw-1) and (iw,jw) denotes the matching of the merged sequence of 

segments a(iw-1+1�iw) with b(jw-1+1�jw). A path is a linked sequence of cells ((i0,j0), 

(i1,j1), ... (it,jt)), not necessarily adjacent , indicating a partial match, where i0 � i1�....� it 

and j0 � j1�....� jt. This path begins at inflection point pi0 of coastline A and at inflection 

point qj0 of coastline B and tries to match sequences of segments a(iw-1+1�iw) of A with 

the sequences b(jw-1+1�jw) of B for w = 1,2,…,t. The previous cell of cell(iw,jw) is 

represented by cell(iw-1,jw-1) and is called parent of cell(iw,jw). 

Each cell(iw,jw) contains the following values: g(iw,jw), uw, vw, mw, nw,and �w 

where g(iw,jw) is the partially accumulated match coast up to the current cell, uw and vw 

denote the number of unmatched segments of A and B respectively, mw and nw are the 

indices of the parent cell of cell(iw,jw) which means , mw = iw-1 and nw = jw-1 and are used 

to backtrack a path. �w denotes the scale factor corresponding to the parts of A and B 

which have been matched up to cell(iw,jw). Figure 4.2 shows an example of a DP table. 

The DP table consists of following three areas: 

  1. Initialization area: The first row of the DP table is initialization area. 

  All paths start from the cells in this area. Matching begins always from 
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  the first segment a1 of A (i0=1). Matching may start with any segment bj0 

  of B, where 1 � j0 � L. If a1 and bj0 have same curvature polarity, then,

  g(1,j0), mw, nw, uw, vw, and �w are0, 0, 0, R, L, 1, respectively;
   Otherwise g(1,j0) = �. 

  2. Computation area. The area between the first and last row of the DP 

  table is computation area. Cells in this area correspond to incomplete 

  paths. 

  3. Termination area. The last row of the DP table is termination area. 

  All complete paths end at the cells in this area. The best match  

  corresponds to the cell with the least cost. 

 

 

Figure 4.2. Example of a DP table with R=5 (coastline A) and L=7 (coastline B). S, C, and V 

represent cells in the initialization, computation, and complete match areas, 

respectively. (Source: (Petrakis et al. 2002)) 

About half of the cells of DP table are empty, because matching between 

opposite type segments (i.e., C and V) are not allowed. So, the cost of matching is set to 

infinitive to avoid matching of opposite type segments. The first column of DP table is 

also empty except the cell in the first row, since matching whole of coastline A with 

whole or a part of coastline B is allowed but reverse condition is not allowed. Matching 

always begins from the first inflection point of A while any point of B is a candidate 

starting point. Figure 4.2 implies that the first segments of A and B have the same 
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polarity; otherwise matching starts from the second segment of B. 

4.1.4. Cost Function 

A complete match is a correspondence between the sequences of segments in 

order, so that no segments are left unmatched in coastline A and there are no crossovers. 

A complete match is characterized by a complete path ((i0,j0), (i1,j1), ...,(iT,jT)), which a 

path that starts from the initialization area and ends at the termination area. The cost 

(distance) D(A,B) of matching coastline A with coastline B can be defined as; 

 ( , ) min{ ( , )}T TT
D A B g i j=  (4.2) 

where g(iT,jT) is the cost of the complete match. g(iT,jT) is defined by: 

 1 1,
1

( , ) min ( ( 1 ) , ( 1 ).− −
=

= + +�
w w

T

T T w w w wi j
w

g i j a i i b j jψ  (4.3) 

Function �(a(iw-1+1�iw), b(jw-1+1�jw)) represents the similarity cost of two 

arguments and contains three additive components: 

 1 1 1 1

1 1

( ( 1 ) , ( 1 )) .( ( ( 1 )) ( ( 1 ))

( ( 1 ) , ( 1 ))
− − − −

− −

+ + = + + +

+ + +
w w w w C w w C w w

C w w w w

a i i b j j M a i i M b j j

D a i i b j j

ψ λ
 (4.4) 

where MC is merging cost and DC is dissimilarity cost. The first two term in (4.4) 

represent  the  cost  of  merging  segments a(iw-1+1�iw)  in  coastline A  and  segments  

b(jw-1+1�jw) in coastline B respectively while last term is the cost of matching the 

merged sequence a(iw-1+1�iw) with the merged sequence b(jw-1+1�jw). Constant � 
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denotes the relative importance of the merging costs. Low values of � encourage 

merging and high values of � inhibit merging. Low values of � should be used while 

matching of the coastlines with high amount of detail. 

Merging should the follow the grammar rules such that each allowable merging 

should be a recursive application of the grammar rules CVC�C and VCV�V.  

4.1.5. Segment Features 

Merging a “visually prominent” segment (a large segment with high curvature) 

into merged segment of opposite type (convex or concave) should produce higher cost. 

To specify this cost requirement, “visually prominence” should be defined as the 

segment features in geometric terms. 

The partial cost components calculated from different features of the coastline 

segments should be associated to a total cost in a visually meaningful way. 

In the specification of visual prominence of a segment, three segment features 

shown in Figure 4.3 are defined as: 

1. Rotation Angle 
i is the angle traversed by the tangent to the segment 

  from first inflection point pi of the segment ai to the other inflection point 

  pi+1 of the segment ai . Rotation angle shows how strongly a segment is 

  curved. 

2. Length li is the length of the segment ai. 

3. Area Ai is the area enclosed by the chord and the line between the 

  inflection point pi and pi+1 of the segment ai. 

 

Figure 4.3. Segment features for defining the importance of a segment. (Source: (Petrakis et al. 

2002)) 
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4.1.6. Scale Factor 

The length of one of two coastlines has to be multiplied by an appropriate scale 

factor, in case one of two coastlines with one scaled with respect to the other. Scale 

factor can be computed as the ratio of the lengths of the matched parts of coastlines A 

and B respectively. Scale factor is computed due to matching types. 

Global matching: Coastline A matches all segments of coastline B. In other words, the 

algorithm matches all segments from both coastlines. The scale factor is a constant and 

is calculated by, 

 
( )
( )

= l A
l B

ρ  (4.5) 

where l(A) and l(B) are the lengths of coastline A and B respectively  

 

Local Matching: Coastline A may match either the whole or a part of coastline B. This 
case is the generalized form of the global matching case. The length of the matched part 
of coastline B is unknown until the DP table is completely filled, although the matched 
part of coastline A is the whole coastline A. To solve this problem, a scale factor �t is 
computed for each partial path ((i0,j0), (i1,j1)...(it,jt)), corresponding to the matched parts: 
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where 2� t � T and li(A) and lj(B) are the lengths of ai and bj, respectively. This value is 

an approximation of the actual scale factor of a complete match. �1 is not included in 

computation, since the total matched length is 0 for two coastlines. It is convenient to 

set �1 to 1. 
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4.1.7. Dissimilarity Cost 

The dissimilarity cost of matching a group of the segments from coastline A 

with a group of the segments from coastline B is computed by: 

 C ff
D = U.max{ d }.  (4.7) 

The intuition behind the use of maximum argument is to emphasize large 

differences on any feature. The term df is the cost associated with the distance in feature 

f (i.e., length, area or angle). df may be negative when f is angle. 
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= �  and Sw(f) is a parameter depending on the 

feature f. Sw(f)=�w-1 for  f  being length and (�w-1 )2 
 for  f  being area. For f  being 

rotation angle, Sw(f) =1 because angle does not depend on the scale. �w-1 is computed 

according to (4.5) and (4.6) for global and local matching respectively. 

U is a weight term associated with the dissimilarity of the partial match such 

that: U emphasizes the importance of matching large parts from both coastlines, in a 

similar way that human pay more attention on large coastline parts when judging the 

quality of matching. Without U, the matching of very small coastline parts contributes 

to the cost of matching equally with the matching of large parts. U is defined as the 

maximum of two proportions of the matched coastline length with respect to the total 

length: 
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4.1.8. Merging Cost 

Let the types of the segments being merged be CVC � C, Segments are merged 

to a single merged convex segment C by absorbing the concave segments between 

convex segments. The opposite case is obtained by exchanging C and V in the formulas. 

The merging cost can be defined by: 

 C f ff
M = max{U C }  (4.10) 

where f represents a feature (length, area or rotation angle). 

For all features: 

 f
V segs of group

all segs of group

f
C

f
=
�
�

 (4.11) 

where the sum in the numerator is for the absorbed concave segments, while the sum in 

the denominator is for all merged segments of the group. The intuition behind this 

formula is to measure the importance of the absorbed segments relative to all merged 

segments of the group. 

The weight term of merging cost is defined as: 



 65 

 f
V segs of group

V segs of coastline

f
U
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 (4.12) 

where the sum in the numerator is for the absorbed concave segments, while the sum in 

the denominator is for all concave segments of the coastline. The intuition behind 

weight term is to measure the importance of the absorbed segments within the whole 

coastline. 

4.2.  DP Algorithm for Matching Coastlines 

In previous section of this chapter, methodology and definitions of DP algorithm 

have been discussed. In this section, The DP algorithm will be outlined and issues about 

optimality and complexity will be discussed.  

4.2.1. Outline of DP Algorithm 

Let A and B be the two coastlines to be matched. A is assumed to be open; B 

may be either open or closed. If both coastlines are closed, A is assumed to be open and 

it is attempted to match the open A on closed B. Each point of A is a candidate starting 

point for matching. Matching starts with segments which have same polarity (C or V). 

There are M/2 such segments (potential starting points) on A and the algorithm is 

repeated M/2 times where M is the number of the segments of coastline A. It’s assumed 

that the first segment of B has the same polarity with the first segment of A; otherwise, 

matching starts with the second segment of B. The last matched segments of A and B 

must also have same polarity. 

A summary about the above discussion according to Figure 4.2 follows as: 

1. Global matching. The algorithm consumes all segments from both coastlines. 

 The algorithm starts at the left-most cell (marked as “S”, i.e. initialization area) 

 of the DP table, proceeds upwards and to right through cells of computation area 
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 (marked as “X”), and terminates at the at the right-most cell (marked as “T”, i.e.

 termination area) of the DP table corresponding to same polarity segments of 

 A and B. This cell contains the overall cost of matching. The scale factor is 

 computed according to (4.5). 

2. Local matching. Any segment on coastline B is a candidate starting segment 

 for matching, if it has the same polarity with the first segment of coastline A. 

 Only half of cells (marked as “S”) in the initialization area are candidate cells for 

 starting of a path. The algorithm consumes some or all segments of B and may 

 end at any segment of B having the same polarity with the last segment of A. 

 Half of the cells (marked as “T”) in the termination area are candidate 

 termination cells of a complete match path. All candidate termination cells 

 should be searched for the least cost match (best match). The scale factor is 

 computed due to (4.6). 

Outline of the matching algorithm is shown in Figure 4.4. The algorithm 

computes the cost D(A,B) of two input coastlines. The for loop for jw does not run for 

all values of jw, since convex to concave matches are not allowed. At each cell, the 

algorithm computes the optimum cost of incomplete path ending at this cell. That is  

 w w w 1 w 1 w 1 w w 1 wg(i , j ) min{g(i , j ) (a(i 1 i ) , b( j 1 j )}.− − − −= + ψ + +  (4.13) 

Equation (4.13) determines the minimum cost transition from cell (iw-1, jw-1) to 

(iw, jw) for all possible values of iw-1 and jw-1. Merging always contains an odd number 

of segments; 

 w-1 w 1 w W w W(i , j ) (i 2m 1, j 2n 1)− = − − − −  (4.14) 

where mw � 0 and nw � 0. Then Equation (4.13) can be written as: 
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g(i , j ) min{g(i 2m 1, j 2n 1)

(a(i 2m i ) ,b( j 2n j )}

= − − − − +
ψ − −

 (4.15) 

where 0 � mw � (iw-1)/2 and 0 � nw � (jw-1)/2. Indices (mw, nw) characterize this 

transition and stored at cell (iw, jw) and can be used to backtrack the path from cell (iw, 

jw) back to its starting point. 

 

 
 

Figure 4.4. Outline of the DP algorithm. (Source: (Petrakis et al. 2002)) 

Matching always starts at the first inflection point of A (i0=1) while any point of 

B is a candidate starting point. DP table is initialized by filling its first row: When a1 

and bj have same polarities, then g(1,j), m1, n1, u1, v1 are 0, 0, 0, M, N respectively, 

implying that each of these cells can be a starting point. If a1 and bj have different 

Input: Coastlines A=a1, a2,...,aR, B=b1, b2,...,bL: 
Output: Cost D(A,B) and correspondences between segments. 

// Initialization: Fill the first row 
for j0=1 ,2,   , L do 

if a1 and bjo are both C or V then cell(1, j0)=(0, 0, 0, M, N, 1); 

otherwise cell(1, j0)=(�, 0, 0, M, N, 1); 

end for 
 

// Fill from the second to the R-th row 
for iw=2, 3,…, R do 
for jw=2, 3,…, L do 

if a1 and bjo are both C or V then fill cell(iw, jw) using (4.13); 
compute �w using (4.5) or (4.6); 

end for 
 

// Select the least cost complete path 
select the least cost path from the R-th row; 
backtrack path using mw and nw cell values; 
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polarity, g(1,j) is set to be infinite since the matching of opposite type segments (C or 

V) is not allowed. If B is closed, then for N<j � L, g(1,j) is set to be infinite since cell 

indices j are modulo N (i.e., bj=bj-N) and a starting point is not needed to be calculated 

twice. 

Equation (4.13) implies that the algorithm computes the minimum cost transition 

from each allowable cell (iw-1, jw-1) to cell (iw, jw). The algorithm may become very slow 

especially on large DP tables. Transitions on the DP table correspond to merges of 

segments. The algorithm examines all merges, even the less rational ones, such as 

merges involving all segments. It is reasonable to restrict the maximum number of 

segments which are allowed to merge by a constant K (i.e., iw-iw-1=K or jw-jw-1=K ) 

depending on the type of coastline matching problem. For global matching, K � M / N 

where M � N. The algorithm may miss the least cost match if matched coastlines 

actually contain merging of more than K segments. 

4.2.2. Invariance to symmetric coastlines and different starting points 

The matching algorithm must be capable of handling symmetric shapes and 

alternative starting point cases. Figure 4.5 shows all these cases for an open curve A: A1 

is the original curve, A2 is its mirror image, A3 corresponds to opposite curve traversal 

of A1 (i.e., selection of the starting point), and A4 corresponds to the combination of A2 

and A3. A complete representation of A consists of the representations of A1, A2, A3,  

 

 

Figure 4.5. Curve representation cases. A1is the original curve, A2 is its mirror image, A3 shows 

curve traversal in the opposite direction and A4 is the mirror image of A3 with the 

opposite traversal (Source: (Petrakis et al. 2002)) 
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4.2.3. Optimality of DP Algorithm 

In this section, it is proved that the coastline matching algorithm is optimal, in 

other words it always finds the path with the least cost. The proof (Rao et al. 1999) uses 

the DP table of Figure 4.6 which shows two alternative complete match paths. 

 

 

Figure 4.6. Example of DP table showing two alternative complete match paths. 

Lemma 1 The DP algorithm described in section 4.2 is optimal. 

Proof: Let P=((i0,j0), (i1,j1),..., (iw,jw)) be the best (least cost) complete path which has 

been found by DP algorithm. If this path is not the least cost path then, let the other path 

be P’=((i0
’,j0

’)... (iw,jw)). The second path ends at (iw,jw) too, since (iw,jw) is always 

selected as the end point of the path with the least cost. The two paths should meet at 

some cell (is, js) either before or at (iw,jw); the algorithm should have selected path P’ 
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instead of path P since has less cost. If they meet at a cell (iw,jw), then the algorithm 

should have selected path P’ instead of path P. If they meet at cell (is,js) before (iw,jw) , 

then the cost of P’ at (is,js) should be less than the the cost of P up to that cell. But then 

the cost of P’ at (iw,jw) should be less than the cost of P which leads to a contradiction. 

4.2.4. Complexity of DP Algorithm 

The computational complexity of the DP algorithm depends on the time of 

computing �, the cost of matching two sequences of segments. � is the basic operation 

of the DP algorithm. In Equation (4.13), the cost computation at each cell (i,j) takes i.j/2 

time. The computational complexity for filling a DP table of size M x N is �(M2N2) if at 

least one of the coastlines is open. If both coastlines are closed, the algorithm repeated 

M times so the computational complexity of the algorithm becomes �(M3N2). By 

restricting merging to K segments (for K<<M,N) , the complexity becomes �(K2M N) 

for open coastlines and �(K2M2 N) for closed coastlines. 

4.2.5. Results 

In order to test the proposed coastline matching method, an 1/250000 vector 

map of Aegean coast of Turkey has been used. It has been taken as reference image and 

segmented as described in section 4.1.1. 20 Aerial coastline images which are taken at 

13-14 miles altitudes have been acquired from an internet search site for aerial images 

(http://earth.google.com). Coastlines of the images have been extracted by using 

proposed coastline extraction method described in Chapter 2. The longest coastline in 

the coastline image has been selected to match map data and segmented as described in 

section 4.1.1. Segment features for the images and the map have been calculated. By 

proposed DP coastline matching method, 9 of 20 images have been matched with map 

data correctly. Some examples of correct match of coastline images and the map are 

shown in Figure 4.7 and in Figure 4.8. 
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(a)      (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 4.7. (a) Aerial image of Çe�me (b) Extracted coastline (c) Match of the coastline 

(coastline segment is highlighted in black). 
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(a)       (b) 

 

 

 

 

 

 

 

 

 

(c) 

Figure 4.8. (a) Aerial image of �nciraltı (b) Extracted coastline (c) Match of the coastline 

(coastline segment is highlighted in black). 
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CHAPTER 5  

CONCLUSIONS 

In this thesis, problem of matching aerial coastline images with map data has 

been studied. The procedure developed here is based on texture segmentation on 

wavelet images in order to extract coastlines and matching coastline segments with map 

data using dynamic programming. Some important observations can be summarized as 

follows: 

1. Both coocurrence and histogram features can be used for discriminating sea 

and land textures in the wavelet image. They showed stable segmentation 

performance by using wavelet representation of the coastline images except 

very homogeneous or smooth parts of the land region and very noisy parts of 

the sea region.  

2. Coocurrence features showed better segmentation performance for 32X32 

and 16X16 pixel window resolutions while histogram features showed better 

segmentation performance for 8X8, 4X4 and 2X2 pixel window resolutions. 

3. The performance of the maximum likelihood classifier has been tested on 

natural textures. 

4. Proposed automatic coastline extraction method extracted coastlines from 

aerial coastline images with a maximum four-pixel extraction error. 

5. Chain code representation, Fourier descriptors (FD) and curvature scale 

space descriptor (CSSD) are not suitable for coastline (open curve) 

matching. Shape matching using dynamic programming is suitable for open 

curve (coastline) and closed curve matching. 

6. A shape matching method using dynamic programming has been adapted for 

coastline matching. 9 (45 %) of 20 aerial coastline images have been 

correctly matched to vector map data  

The study presented here is a novel attempt to develop an automatic procedure 

solving an image understanding problem which may lead to many interesting 

applications such as cartography and autonomous aerial navigation. Although the results 

achieved here demonstrate how the problem can be successfully solved, the 
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performance of the solution can be further improved. For the future work, firstly we can 

consider improving the accuracy and speed of proposed the coastline extraction and the 

coastline matching method. By using of parallel processing algorithms, computation 

time of both methods may be decreased. In this thesis we focused on sea and land 

segmentation to extract coastline for the coastline images that does not contain clouds. 

For the coastline images with clouds, detection of clouds should be a primary focus of 

interest. 
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APPENDIX A 

COMPUTER SOFTWARE  

In this thesis, proposed coastline extraction and matching methods are 

implemented by using several computer programs written in C and Matlab. These 

computer programs and a text file, README, describing the computer programs are 

given in a CD. A brief description of the computer programs are given as follows: 

MAIN_CSMATCH.C: It is the main source code file that accepts an aerial 

coastline image in PGM or PPM image format and a map database which contains 

the feature vectors of segments of the vector map as the inputs. It outputs segments 

of the map database corresponding to those of the aerial coastline image. 

MAP_SEG_FEATURE.C: It is the source code file that accepts an ASCII text file 

which contains the coordinates of the vector map as the input. It outputs an ASCII 

text file which contains the feature vectors of segments of the map in a specified 

scale. 

MAP_SEGMENT.C: It is the source code file that accepts an ASCII text file which 

contains the coordinates of the vector map and starting and ending segments of the 

matched segments as the inputs. It outputs the coordinates of matched segments in 

the vector map in a specified scale. 

TRAINING.C: It is the source code file that accepts training image samples of sea 

or land textures in PGM image format as the inputs. It outputs an ASCII text file 

which contains the mean and the covariance matrix of the feature vector for training 

sea or land texture samples in a specified window size. 

FEATURE_SELECTION.C: It is the source code file that accepts training image 

samples of sea or land textures in PGM image format as the inputs. It outputs an 

ASCII text file which contains the feature vectors for training sea or land texture 

samples in a specified window size. 

FEATURE_SELECTION.M: It is the source code file that accepts the ASCII text 

files which contains the feature vectors for training sea and land texture samples in a 

specified window size as the inputs. It outputs the ranked importance values of the 

Haralick’s CM features in the specified window size. 
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CSMATCHLIB.C: It is the library file that contains the C functions which are used 

in the implementation of feature extraction, the multiscale image segmentation, 

training, ML classifier and DP algorithms described in this thesis. 

IMG_PRO.C: It is the library file that contains the C functions which are used in 

the wavelet decomposition and image processing procedures used in this thesis. 

CSMATCHLIB.H: Header file of CSMATCHLIB.C. 

IMG_PRO.H: Header file of IMG_PRO.C. 

 


