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ABSTRACT 

 

 
Dams are structures that are used especially for water storage, energy 

production, and irrigation. Dams are mainly divided into four parts on the basis of the 

type and materials of construction as gravity dams, buttress dams, arch dams, and 

embankment dams. There are two types of embankment dams: earthfill dams and 

rockfill dams. 

In this study, seepage through an earthfill dam’s body is investigated using an 

artificial neural network model. Seepage is investigated since seepage both in the dam’s 

body and under the foundation adversely affects dam’s stability. This study specifically 

investigated seepage in dam’s body. The seepage in the dam’s body follows a phreatic 

line. In order to understand the degree of seepage, it is necessary to measure the level of 

phreatic line. This measurement is called as piezometric measurement.  

Piezometric data sets which are collected from Jeziorsko earthfill dam in Poland 

were used for training and testing the developed ANN model. Jeziorsko dam is a non-

homogeneous earthfill dam built on the impervious foundation.  

Artificial Neural Networks are one of the artificial intelligence related 

technologies and have many properties. In this study the water levels on the upstream 

and downstream sides of the dam were input variables and the water levels in the 

piezometers were the target outputs in the artificial neural network model.  

In the line of the purpose of this research, the locus of the seepage path in an 

earthfill dam is estimated by artificial neural networks. MATLAB 6 neural network 

toolbox is used for this study. 
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ÖZ 
 

 
Barajlar, özellikle suyu biriktirmek, enerji üretmek ve sulama yapmak için 

kullanılan yapılardır. Barajlar ba�lıca dört gruba ayrılır. Bunlar; A�ırlık barajları, 

payandalı barajlar, kemer barajlar ve dolgu barajlardır. Dolgu barajlar ekonomiklikleri 

açısından daha çok tercih edilir. Dolgu barajlar iki gruba ayrılır. Bunlar toprak dolgu 

barajlar ve kaya dolgu barajlardır. 

Bu çalı�mada, bir toprak dolgu baraj gövdesindeki sızma, yapay sinir a�ları 

(YSA) metodu kullanılarak yapılan modelleme aracılı�ıyla incelenmi�tir. Sızmanın 

incelenme amacı, sızmanın hem baraj gövdesinde hem de temelin altında do�rudan 

baraj stabilitesine kar�ı bir tehdit olu�turmasıdır.Bu çalı�mada spesifik olarak baraj 

gövdesindeki sızma incelenmi�tir. Baraj gövdesindeki sızma, freatik çizgi denilen bir 

hattı takip eder. Sızmanın derecesini anlayabilmek için, freatik çizginin seviyesini 

ölçmek gereklidir. Bu ölçüm piyezometrik ölçüm olarak adlandırılır. 

Modellemede kullanılacak, piyezometrik ölçümlerin olu�turdu�u veri grubu, 

Polonya’da bulunan Jeziorsko toprak dolgu barajından elde edilmi� olup, yapay sinir 

a�ları modellemesinde e�itim ve sınama için kullanılmı�tır. Bu veri grubu, 

piyezometrelerdeki su seviyeleriyle, baraj menba ve mansabındaki su seviyelerini 

kapsamaktadır. Jeziorskobarajı, geçirimsiz zemin üzerine oturmu�, homojen olmayan 

bir toprak dolgu barajdır.Piyezometrik ölçümler, Var�ova’da bulunan, meteoroloji ve su 

yönetim enstitüsü baraj gözlem merkezince yapılmı�tır.  

Yapay sinir a�ları yapay zeka ile ilgili teknolojilerden biridir ve birçok özelli�i 

vardır.Yapay sinir a�ları, örneklerden ö�renir ve veriler arasında fonksiyonel bir ili�ki 

yakalarlar. Bu çalı�mada barajın menba ve mansabına ait olan su seviyeleri, giri� 

de�i�kenleri olarak kullanılmı�tır; piyezometrelerdeki su seviyeleri ise yapay sinir a�ları 

modellemesinde hedef çıktı verisi olarak kullanılmı�tır. 

 Bu çalı�manın amacı, bir toprak dolgu barajdaki sızmanın geometrik yerini 

yapay sinir a�ları metodunu kullanarak hesaplamaktır.  
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CHAPTER 1 

 

INTRODUCTION 
 

A dam is an artificial barrier usually constructed across a stream channel to 

capture water. Dams must have spillway systems to convey normal stream and flood 

flows over, around, or through the dam. Spillways are commonly constructed of non- 

erosive materials such as concrete. Dams should also have a drain or other water- 

withdrawal facility for control the water level and to lower or drain the lake for normal 

maintenance and emergency purposes. Dams are constructed especially for water 

supply, flood control, irrigation, energy production, recreation, and fishing. Dams are 

mainly divided into four parts on the basis of their structure types. These are gravity 

dams, buttress dams, arch dams, and embankment dams. Embankment dams are more 

preferable due to being more economical. Embankment dams are two types- Earthfill 

dams and rockfill dams. This study is an investigation about earthfill dams, especially 

about seepage through the earthfill dam’s body. 

An earthfill dam is an embankment dam, constructed primarily of compacted 

earth, either homogeneous or zoned, and containing more than 50% of earth. The 

materials are usually excavated or quarried from nearby sites, preferably within the 

reservoir basin. If the remaining materials consist of coarse particles, there is gradation 

in fineness from the core to the coarse outer materials. According to the materials 

located in the body of dam, there is a seepage through the dam’s body. Seepage can 

occur under the dam foundation, too. In this research, seepage through the dam’s body 

was investigated. 

Seepage is very important, as seepage affects the stability of dam. Because of its 

importance, the determination of the seepage through an earthdam has received a great 

deal of attention. Of primary concern is the location of the surface seepage on the 

downstream toe of the dam. There is seepage in the dam’s body following a phreatic 

line. This seepage must be limited, and phreatic line is important in order to understand 

the degree of seepage. If the surface seepage intersects the face of the dam, erosion may 

result and possible failure of the dam. Thus, it is necessary to measure the level of 

phreatic line and rockfills are used at the downstream toe or gravel blankets to intersect 

the line of seepage before it reaches the downstream toe. 
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Up to now, seepage under the dam foundation is usually investigated. However, 

in this research seepage through the earthfill dam’s body was investigated. An artificial 

neural network (ANN) model was developed for simulating seepage through a non- 

homogeneous porous body of an earthfill dam.The model was calibrated and verified 

using the piezometer data collected on a section of Jeziorsko earthfill dam in Poland. 

The water levels on the upstream and downstream sides of the dam were input variables 

and the water levels in the piezometers were the target outputs in the artificial neural 

network model. Jeziorsko dam is a non-homogeneous earthfill dam built on the 

impervious foundation. Piezometric measurements were made by the Institute of 

Meteorology and Water Management, Dams Monitoring Centre located in Warsaw. 

Artificial Intelligence (AI) is the field of Computer Science that attempts to give 

computers humanlike abilities. The human brain is the ultimate example of a neural 

network. The human brain consists of a network of over a billion interconnected 

neurons. Neurons are individual cells that can process small amounts of information and 

then activate other neurons to continue the process. A computer can be used to simulate 

a biological neural network. This computer simulated network is called an artificial 

neural network (ANN). Artificial Neural Networks have many properties. They are non-

linear structures shown to be highly flexible function approximators for the cases, 

especially where the data relationships are unknown. Artificial Neural Networks are 

data-driven self-adaptive methods. They learn from examples and capture functional 

relationships among the data. This modeling approach with the ability to learn from 

experience is very useful since it is often easier to have data set; Furthermore, artificial 

neural networks are particularly adapt at solving problems that cannot be expressed as a 

series of steps. Artificial neural networks are useful for recognizing patterns, 

classification into groups, series prediction and data mining. Artificial neural network 

training methods fall into the categories of supervised, unsupervised, and various hybrid 

approaches. The most common form of neural network that is used in applications is the 

feedforward back-propagation neural network. 

The purpose of this research is to estimate the locus of the seepage path in an 

earthfill dam using artificial neural network. MATLAB 6 neural network toolbox is 

used for this study. The ANN model was a feedforward three layer neural network 

employing a sigmoid function as activator and a back-propagation algorithm for 

network learning. The water levels on the upstream and downstream sides of the dam 

were input variables and the water levels in the piezometers were the target outputs in 
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the artificial neural networks model. The water levels computed by the models 

compared with the measured levels in the piezometers satisfactorily. The model results 

also revealed that the artificial neural network (ANN) performed as good as did the site 

observation and measured field data. In addition, sensitivity analysis was carried out 

trying different scenarios. 
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CHAPTER 2 
 

DAMS 
 

Dams are barriers built across a river to hold back water. The main function of a 

dam is to store water. It is designed to make the most effective use, at reasonable cost, 

of the available supply of the water in a stream. More than 52% of the world's dams are 

located in China, 16% in the United States, and 6% in Japan ( Bequette, 1997 ). Figure 

2.1. is a sketch showing main components of a dam. 

 

�

 
Figure 2.1. Main components of a Dam. 

(Source:Web_1 2004) 

 

2.1. Main Functions of the Dams 
 

Main functions of dams can be summarized as follows: 

 Water storage; 

 Flood control; 

 Water supply; 
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 Power production; 

 Industrial water supply; 

 Emergency domestic water supply; 

 Irrigation; and 

 Recreation. 

 

Figure 2.2. shows main construction purposes of a dam. 

 

 
 

Figure 2.2. Graphical representation of construction purposes of a Dam. 

(Source: Web_2 2004) 

 

2.2. History of the Dams 
 

The first dam for which there are reliable records was built in Jordan 5,000 years 

ago to supply the city of Jawa with drinking water. During the reign of the Pharaoh 

Amenemhet III, around 1800 B.C., the Egyptians constructed a reservoir with the 

amazing storage capacity of 275 million [m.sup.3] in Al Fayyum Valley, some 90 km 

southwest of Cairo. A large dam was built by an Arabian king called Lokman about 

1700 B.C.; the flood caused by its collapse is recorded in Arabian history. Thousands of 

dams have been built in India from the earliest days to the present time. The oldest 

existing dams in Europe are the Almanza and Alicante dams in Spain; they were built 

some time before 1586. In time, materials and methods of construction have improved, 

making possible the erection of large dams such as the Nurek Dam which is being 
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constructed on the Vaksh River near the border of Afghanistan. This dam is designed 

1017 ft  

( 333 m ) high, of earth and rock fill. The failure of dam may cause serious loss of life 

and property; consequently, the design and maintenance of dams are commonly under 

government surveillance. In the United States over 30000 dams are under the control of 

state authorities(Grolier Incorporated, 1970); (Güney, 2002); (Beuqette, 1997). 

The General Directorate of State Hydraulic Works (DSI in Turkish acronym) 

with a legal entity and supplementary budget is the primary executive state agency of 

Turkey for Nation overall water resources planning, managing, execution, and 

operation. The main objective of DSI is to develop all water and land resources in 

Turkey. It aims at all the wisest use of the principal natural resources. DSI was 

established by Law 6200 in December 18, 1953 as legal entity and brought under the 

aegis of the Ministry of Energy and Natural Resources. It is charged with "single and 

multiple utilization of surface and groundwaters and prevention of soil erosion and 

flood damages". For that reason, DSI is empowered to plan, design, construct, and 

operate dams, hydroelectric power plants, domestic water, and irrigation schemes. DSI's 

purpose "to develop water and land resources in Turkey" covers a wide range of 

interrelated functions. These include irrigation, hydroelectric power generation; 

domestic and industrial water supplies for large cities; recreation and research on water-

related planning, design, and construction materials. Projects, master plan, and 

feasibility reports are prepared for the development of water resources. In this respect, 

required main data are collected by DSI from the river basin surveys which are related 

with flow and meteorological, soil classification, agricultural economy, erosion, maps, 

geological conditions etc. issues ( Web_3, 2004). Table 2.1 shows main embankment 

dams especially earthfill dams in Turkey, with their construction purposes and 

capacities. 
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Table 2.1. Tables about the embankment dams at (a), (b), (c), (d), (e), (f), (g), (h),  (i), 

(j), (k), (l), (m), (n), (o), (p), (q). These dams are constructed by DSI.  Tables 

are given according to the chronological construction year.  
 

(a) GÖLBA�I DAM 
 

Location Bursa 

River Aksu 

Purpose Irrigation, Flood control 

Construction (starting and completion) year 1933-1938 

Embankment type Earthfill 

Dam volume 320 000 m3 

Height (from river bed) 10.70 m 

Reservoir volume at normal water surface elevation 12.75 hm3 

Reservoir area at normal water surface elevation 1.74 km2 

Irrigation Area 2 100 ha 
 

 

(b)DEM�RKÖPRÜ DAM 
 

Location Manisa 

River Gediz 

Purpose Irrigation, Flood control 

Energy 

Construction (starting and completion) year 1954 - 1960 

Embankment type Earthfill 

Dam volume 4 300 000 m3 

Height (from river bed) 74.00 m 

Reservoir volume at normal water surface elevation 1 320.00 hm3 

Reservoir area at normal water surface elevation 47.66 km2 

Irrigation Area 99 220 ha 

Capacity 69 MW 

Annual generation 193 GWh 

 

(Cont. on next page) 
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Table 2.1.(cont.) 

 

(c) KES�KKÖPRÜ DAM 

 
Location Ankara 

River Kızılırmak 

Purpose Irrigation, Energy 

Construction (starting and completion) year 1959 - 1966 

Embankment type Earthfill-Rockfill 

Dam volume 900 000 m3 

Height (from river bed) 49.10 m 

Reservoir volume at normal water surface elevation 95.00 hm3 

Reservoir area at normal water surface elevation 6.50 km2 

Irrigation Area 11 860 ha 

Capacity 76 MW 

Annual generation 250 GWh 

 

 

(d) DAMSA DAM 

 
Location Nevsehir 

River Damsa 

Purpose Irrigation 

Construction (starting and completion) year 1965 -1971 

Embankment type Earthfill 

Dam volume 862 000 m3 

Height (from river bed) 31.50 m 

Reservoir volume at normal water surface elevation 7.12 hm3 

Reservoir area at normal water surface elevation 0.82 km2 

Irrigation Area 1 390 ha 

 

(Cont. on next page) 
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Table 2.1.(cont.) 

(e) ATIKH�SAR DAM 

 
Location Çanakkale 

River Sarıçay 

Purpose Irrigation, Flood control 

Construction (starting and completion) year 1967 -1973 

Embankment type Earthfill 

Dam volume 1 990 000 m3 

Height (from river bed) 37.20 m 

Reservoir volume at normal water surface elevation 40.00 hm3 

Reservoir area at normal water surface elevation 3.30 km2 

Irrigation Area 5 200 ha 

 

(f) KORKUTEL� DAM 

 
Location Antalya 

River Korkuteli 

Purpose Irrigation, Flood control 

Construction (starting and completion) year 1968 -1975 

Embankment type Earthfill+Rockfill 

Dam volume 1 940 000 m3 

Height (from river bed) 47.20 m 

Reservoir volume at normal water surface elevation 47.50 hm3 

Reservoir area at normal water surface elevation 2.20 km2 

Irrigation Area 5 986 ha 

 

 

 

 

 

(Cont. on next page) 



 10 

Table 2.1.(cont.) 

  

(g) AF�AR DAM 

 
Location Manisa 

River Ala�ehir 

Purpose Irrigation, Flood control 

Construction (starting and completion) year 1973 - 1977 

Embankment type Earthfill 

Dam volume 3 166 000 m3 

Height (from river bed) 43.50 m 

Reservoir volume at normal water surface elevation 69.00 hm3 

Reservoir area at normal water surface elevation 5.25 km2 

Irrigation Area 13 500 ha 

 

 

(h) A�CASAR DAM 

 
Location Kayseri 

River Yahyalı 

Purpose Irrigation 

Construction (starting and completion) year 1979-1986 

Embankment type Earthfill 

Dam volume 239 103 m3 

Height (from river bed) 25,00 m 

Reservoir volume at normal water surface elevation 66,06 hm3 

Reservoir area at normal water surface elevation 4,17 km2 

Irrigation Area 15500 ha 

 

 

 

(Cont. on next page) 
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Table 2.1.(cont.) 

  

(i) KAYABO�AZI DAM 

 
Location Kütahya 

River Koca 

Purpose Irrigation, Flood conrtol 

Construction (starting and completion) year 1976 -1987 

Embankment type Earthfill+Rockfill 

Dam volume 628 000 m3 

Height (from river bed) 38.00 m 

Reservoir volume at normal water surface elevation 38.00 hm3 

Reservoir area at normal water surface elevation 3.00 km2 

Irrigation Area 7 080 ha 

 

 

(j) KOVALI DAM 

 

Location Kayseri 

River Dündar 

Purpose Irrigation 

Construction (starting and completion) year 1983 -1988 

Embankment type Earthfill 

Dam volume 3 589 000 m3 

Height (from river bed) 42.00 m 

Reservoir volume at normal water surface elevation 25.10 hm3 

Reservoir area at normal water surface elevation 1.67 km2 

Irrigation Area 3 317 ha 

 

 

 

(Cont. on next page) 
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Table 2.1.(cont.) 

 

(k) UZUNLU DAM 

 
Location Yozgat 

River Kozanözü 

Purpose Irrigation, Flood control 

Construction (starting and completion) year 1979 - 1989 

Embankment type Earthfill 

Dam volume 4 145 000 m3 

Height (from river bed) 50.00 m 

Reservoir volume at normal water surface elevation 49.00 hm3 

Reservoir area at normal water surface elevation 2.75 km2 

Irrigation Area 7 800 ha 

 

 

(l) �K�ZCETEPELER DAM 

 

Location Balıkesir 

River Kocadere 

Purpose Irrigation, Domestic and 

industrial water supply 

Construction (starting and completion) year 1986 – 1990 

Embankment type Earthfill 

Dam volume 1200 000 m3 

Height (from river bed) 47.00 m 

Reservoir volume at normal water surface elevation 164.56 hm3 

Reservoir area at normal water surface elevation 9.60 km2 

Irrigation Area 1 700 ha 

Annual domestic water 72 hm3 

 

(Cont. on next page) 
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Table 2.1.(cont.) 

 

(m) KRALKIZI DAM 

 
Location Batman 

River Dicle 

Purpose Energy 

Construction (starting and completion) year 1985 - 1997 

Embankment type Earthfill + Rockfill 

Dam volume 12 700 000 m3 

Height (from river bed) 113.00 m 

Reservoir volume at normal water surface elevation 1 919.00 hm3 

Reservoir area at normal water surface elevation 57.50 km2 

Irrigation Area 90 MW 

Annual domestic water 146 GWh 

 

 

(n) ÇAMLIGÖZE DAM 

 
Location Sivas 

River Kelkit 

Purpose Energy, Flood control 

Construction (starting and completion) year 1987 - 1997 

Embankment type Earthfill+ Rockfill 

Dam volume 2 086 000 m3 

Height (from river bed) 32.00 m 

Reservoir volume at normal water surface elevation 50.00 hm3 

Reservoir area at normal water surface elevation 4.70 km2 

Irrigation Area 33 MW 

Annual domestic water 88 GWh 

 

(Cont. on next page) 
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Table 2.1.(cont.) 

 

(o) KARAOVA DAM 

 
Location Kır�ehir 

River Manahozu 

Purpose Irrigation 

Construction (starting and completion) year 1991 - 1997 

Embankment type Earthfill 

Dam volume 1 717 000 m3 

Height (from river bed) 53.00 m 

Reservoir volume at normal water surface elevation 65.00 hm3 

Reservoir area at normal water surface elevation 3.50 km2 

Irrigation Area 3 646 ha 

 

 

(p) ERZ�NCAN DAM 

 

Location Erzincan 

River Gönye 

Purpose Irrigation 

Construction (starting and completion) year 1991 - 1997 

Embankment type Earthfill 

Dam volume 3 000 000 m3 

Height (from river bed) 73.00 m 

Reservoir volume at normal water surface elevation 8.39 hm3 

Reservoir area at normal water surface elevation 0.46 km2 

Irrigation Area 4 722 ha 

 

 

 

(Cont. on next page) 
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Table 2.1.(cont.) 

 

(q) GÖKPINAR DAM 
 

Location Denizli 

River Gökpınar 

Purpose Irrigation+domestic water 

supply 

Construction (starting and completion) year 1995-2002 

Embankment type Earthfill 

Dam volume 1 245 000 m3 

Height (from river bed) 43.00 m 

Reservoir volume at normal water surface elevation 23.70 hm3 

Reservoir area at normal water surface elevation 1.98 km2 

Irrigation Area 6 522 ha 

 

2.3. The Types of Dams 

 

The basic types of the dams are classified on the basis of the structure type and 

materials of construction. The dams which are classified on the basis of the structure 

type are gravity dams, arch dams, buttress dams and embankment dams. Embankment 

dams can be divided into two types as embankment earthfill dams and embankment 

rockfill dams. The gravity, arch and buttress dams are usually constructed of concrete. 

Dams that are classified on the basis of materials of construction are masonry dams, 

filling dams, both masonry and filling dams, and framed dams. Masonry dams can be 

divided into four parts as stone and brick dams, concrete dams, reinforced concrete 

dams, and prestressed concrete dams. Filling dams can be divided into two types as 

earthfill dams and rockfill dams. Lastly, framed dams can be divided into two parts as 

steel dams and timber dams. Dams can also be classified according to usage purposes. 

These are drinking water dams, industrial water dams, irrigation water dams, 

hydroelectric power dams, and flood control dams. The most common type of dam is 

embankment earthfill dams. The following summarize structure types of dams. 
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2.3.1. Gravity Dams  

 

A gravity dam depends on its own weight for stability and is usually straight in 

plan although sometimes slightly curved. It looks like a retaining wall, set across a river. 

Keban dam on the Fırat river (Figure 2.3.) is an example of a gravity dam in Turkey. 

 

 

Figure 2.3. Keban Dam. 

(Source:Web_4 2005) 
 

2.3.2. Arch Dams 

 
Arch dams transmit most of the horizontal thrust of the water behind them to the 

abutments by arch action and may have comparable thinner cross-sections than gravity 

dams. Arch dams can be used only in narrow canyons where the walls are capable of 

withstanding the thrust produced by the arch action. Karakaya dam on the Fırat river 

(Figure 2.4.) and Oymapınar dam on the Manavgat river are examples of arch dams in 

Turkey. 
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Figure 2.4. Karakaya Dam. 

(Source: Web_5 2005) 

2.3.3.  Buttress Dams 

 
Buttress dams are dams in which the face is held up by a series of supports. 

Buttress dams can take many forms. The face may be flat or curved. A buttress dam is 

supported by a series of buttress walls, set at right angles to the dam on the downstream 

side. There are several types of buttress dams, the most important ones are flat-slab and 

multiple-arch buttress dams. Flat- slab and buttress dams are particularly adapted to 

wide valleys where a long dam is required and foundation materials are of inferior 

strength. The multiple-arch dam is more rigid than the flat-slab type and consequently 

requires a better foundation. Elmalı dam on the Göksu river is an example of a buttress 

dam in Turkey. Figure 2.5. shows a buttress dam. 
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Figure 2.5. A buttress dam in the USA. 

 
(Source: Web_6 2005) 

 
2.3.4.  Embankment Dams 

 

Embankment dams can be divided into two types as earthfill dams and rockfill 

dams. 

 

2.3.4.1. Earthfill Dams 
 

An earthfill dam is made up partly or entirely of pervious material which consists of 

fine particles usually clay, or a mixture of clay and silt or a mixture of clay, silt and gravel. 

They are principally constructed from available excavation material. The dam is built up 

with rather flat slopes. Fine, impervious material of an earthfill dam occupies a relatively 

small part of the structure, it is known as the core. The core is located either in a central 

position or in a sloping position upstream of the center. If the remaining materials consist of 

coarse particles, there is a gradation in fineness from the core to the coarse outer materials. 

Some earth dams have a large proportion of rock in the outer zones for the purpose of 

stability. In a later section in this thesis, the importance of the stability in an earthfill dam 

especially in the dam’s body, will be given in more detail. Most new earthfill dams are roll 

fill type dams, which can be further classified as homogenous, zoned, or diaphragm (U.S. 

Bureau of Reclamation, 1987). Homogenous earthfill dams are composed of only one kind 

of material, besides the slope protection material. The material used must be impervious 
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enough to provide an adequate water barrier and the slope must be relatively flat for 

stability. It is more common today to build modified homogeneous sections in which 

pervious materials are placed to control steeper slopes. When pervious material is used in 

order to drain the material three methods are used. Rockfill toe, horizontal drainage blanket, 

inclined filter drain with a horizontal drainage blanket. Pipe drains are also used for 

drainage on small dams in conjunction with a horizontal drainage blanket or a pervious 

zone. For diaphragm-type earthfill dams, the embankment is constructed of pervious 

materials( sand, gravel, or rock ). A thin diaphragm of impermeable material is used to form 

a water barrier. The diaphragm may vary from a blanket on the upstream face to a central 

vertical core. Diaphragms may consist of earth, portland cement concrete, bituminous 

concrete, or other materials. In addition, the diaphragm must be tied into bedrock or a very 

impermeable material if excessive underseepage is to be avoided. Zoned embankment-type 

earthfill dams have a central impervious core that is flanked by a zone of materials 

considerably more pervious, called shells. These shells enclose, support, and protect the 

impervious core (Linsley and Franzini, 1964). Demirköprü dam on the Gediz river and 

Aslanta� dam on the Ceyhan river are examples of earthfill dams in Turkey. 
 

 
Figure 2.6. Anita Dam. 

(Source: Web_7 2005) 

 

Figure 2.6. shows the Warm Springs earthfill dam in the USA. 
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2.3.4.2. Rockfill Dams 
 

The main body of a rockfill dam consists of a mass of dumped rock, which is 

allowed to take its own angle of repose. That is to setle naturally. This results in a slope 

of about 36 degrees. A rockfill dam consists of rock of all sizes to provide stability and 

an impervious core membrane. Membranes include an upstream facing of impervious 

soil, a concrete slab, asphaltic concrete paving, steel plates, other impervious soil (U.S. 

Bureau of Reclamation, 1987). Hirfanlı dam on the Kızılırmak river and Hasan U�urlu 

dam on the Ye�ilırmak river (Figure 2.7.) are examples of rockfill dams in Turkey. 
 

 
Figure 2.7. Hasan U�urlu Dam. 

(Source: Web_8 2005) 
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Table 2.2. Classification of the dams. 

 

On the basis of the 

structure 

On the basis of the 

materials of construction 

According to usage 

purpose 

a. Gravity Dams 

b  Arch Dams 

c. Buttress Dams 

d Embankment Dams 

- Earthfill Dams 

- Rockfill Dams 

a. Masonry Dams 

-Stone and Brick Dams 

-Concrete Dams 

-Reinforced Concrete Dams 

-Prestressed Concrete Dams 

b. Filling Dams 

-Earthfill Dams 

-Rockfill Dams 

c. Masonry and Filling Dams 

d. Framed Dams 

-Steel Dams 

-Timber Dams 

a. Dams for drinking water 

b. Dams for Industrial water 

c. Dams for irrigation 

d. Dams for flood control 

e.Dams for Hydroelectric 

Power  

f. Cofferdams 

 

Table 2.2. shows the classification of dams. 

 

2.4. The Forces acting on dams 
 

Main forces which are acting on dams can be summarized as follows. 

 

2.4.1. Water Pressure 

 
Water pressure is the most obvious force that is exerted by the water that presses 

upon the upstream face of structure. In designing a dam, when silt builds up against the 

lower part of the dam, it acts as a liquid that is denser than water. Engineers must take 

this factor also in dam design. 
 

2.4.2. Weight 

 

The weight of the dam itself is another force that acts on dam structures. This 

factor is important mainly in the case of gravity dams and very high arc dams. Concrete 
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can withstand pressure such as the vertical downward pressure. To reduce the stress on 

weak foundations, a limit must be set to the height of the dam, and the upstream face 

must be sloped so as to spread the load. The weight of the water pressing down on the 

slope will act as a satabilizing factor. 
 

2.4.3. Earthquakes 

 
Earthquakes may exert considerable pressure on dams. The action is like that of 

pulling a rug from under a person who is standing on it. The horizontal force exerted by 

an earthquake may be equal to as much as a tenth of the weight of the dam; hence 
earthquake forces are usually taken into account in the design stage of a dam. 
 

2.4.4. Forces like Ice, Rain, Waves 

 
Ice is another factor that must be considered. In cold climates a thick sheet of ice 

may form on the reservoir surface. Such a sheet of ice may be warmed by the sun. The 
tendency to expand may then cause a huge force near the top of the dam. Hence this 
part of the structure must be made thick enough to withstand the pressure. Seasonal and 
daily changes in temperature may cause internal stresses in dams . These changes must 

be carefully analyzed. Waves striking against the face of a gravity or arch dam have 

little effect on the stability of the structure. In the case of an earthfill dam, however, the 

waves would soon erode the surface material if it were not protected by a facing of 

heavy rock laid on a bed of gravel. Such rock is known as riprap. The erosive forces of 

nature – winds, rain, running water etc. – are always at work. To be able to keep these 

forces in check, periodic maintenance work is required on all dams. 
 

2.5. Seepage in Earthfill Dams and the Importance of Seepage in 

Dam’s Body 
 

An earthfill dam’s body prevents the flow of water from dam’s back to 

downstream. However, with the most impermeable materials used in the dam’s body, 

some amount of water seeps into dam’s body and goes out from downstream of body 

slope until it meets an impermeable barrier. So if the water level at the upstream side is 
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rapidly lowered, the water-soaked material may become unstable. This has to be 

considered in the design of earthfill dams. Earthfill dams are usually designed pervious, 

and some seepage flow through the dam body must be expected.  

Seepage flow which occurs in the earthfill dam’s body has a top surface. This 

surface is called as phreatic line or zero pressure curve. However the upper zone of 

phreatic line can be wet or saturated because of capillarity. There is a pore water 

pressure under the phreatic line. According to the� analysises, value of pore water 

pressure depends on the type tightness degree, humidity, and impermeability of soil, and 

load on soil etc. Pore water pressure decreases the shearing resistance of earth mass. If 

the rate of pore water pressure drop resulting from seepage exceeds the resistance of a 

soil particle to motion, that particle will tend to move . This results in piping, the 

removal of the finer particles from the dam’ s body. Piping usually occurs near the 

downstream toe of a dam when seepage is excessive (Linsley and Franzini, 1964). 

According to these reasons for stability of dam the level of seepage flow especially 

phreatic line must be limited. In this thesis, there are measurement results for 

determination of seepage flow using piezometers, in this thesis in a later section there 

are model results which are obtained according to these piezometric measurement 

results.  

In addition, seepage in the dam’s body is important due to two reasons. First one 

is that, phreatic line cuts downstream slab. The higher cutting of the dam slab because 

of phreatic line is the more dangereous condition for the slab, because the soil under 

that point will be saturated, when the soil saturation increases, pore water pressure 

increases too and due to the quantity of saturation, collapse probability increases. That 

makes the body of dam unstable. Second reason is maximum reservoir position that 

contains the body’s maximum saturation degree is the most critical condition for the 

downstream slab’s stability after the construction. The most critical condition for 

upstream slab’s stability is the sudden drop in the water level in the reservoir. That 

makes the body of dam unstable. 

 

2.6. Piezometric Measurement of Seepage in an Earthfill dam’ s Body 
 

Seepage path in an earthfill dam can be monitored through piezometric 

measurements. Piezometer is a device for a measurement of static pressure. Measuring 
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the static pressure in a flowing fluid requires that the measuring device fits the 

streamlines as closely as possible. This is required so that no disturbance in the flow 

will occur. For straight reaches of pipe conduit, the static pressure is usually measured 

by using a piezometer. Measuring the static pressure in a flow field requires the use of a 

static tube. For this device, the pressure is transmitted to a gauge or a manometer 

through piezometric hole that are evenly spaced around the circumference of the tube. 

The device must be perfectly aligned with the flow (Mays, 2001). 
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CHAPTER 3 
 

ARTIFICIAL NEURAL NETWORKS 

 

Artificial neural networks are mathematical modeling tools and computing 

systems that are especially helpful in the field of prediction and forecasting in complex 

settings. (Hamed et al.,2003). These computing systems are made up of a number of 

simple and highly interconnected processing elements that process information by their 

dynamic state response to external inputs (Caudill M.,1987). Mathematically, an 

artificial neural network can be treated as a universal approximator which has an ability 

to learn from examples without the need of explicit physics (ASCE Task Committee, 

2000a, b). It is well known that the artificial neural network can be envisaged as a non-

linear black box model. That is given an input it produces an output, without revealing 

the physics of the process (Rajurkar et al., 2003). ANNs have been recently employed 

for the solution of many hydrologic, hydraulic and water resources problems ranging 

from rainfall and runoff (Rajurkar et al. 2002) to sediment transport (Tayfur, 2002) to 

dispersion (Tayfur and Singh, 2005). 

Artificial neural networks are first developed in the simplest form by Widrow 

and Hoff in the beginning of 1960’s which consist of two layers, input layer and output 

node but only the output node has an activation function, which is a linear function and 

it can only solve linearly separable problems. This simple architecture named 

ADALINE (Adaptive Linear Neuron) Neural Networks. After ADALINE NN, new 

architectures are developed like Multi Layer Perceptrons (MLP). In Multi Layer 

Perceptrons some new activation functions are utilized like sigmoid or Gaussian 

activation functions. Artificial intelligent methods are divided into three main categories 

as supervised, unsupervised and reinforcement algorithms. MLPs are the most popular 

and widely used supervised algorithms. Supervised algorithms need input-output pairs. 

With these pairs, through the error propagation, network approximates a function. Apart 

from supervised algorithms in unsupervised algorithm there is no error to back 

propagate and there is no target to reach, instead, this type of algorithms only works on 

input pairs and tries to arrange inputs according to pre-specified rules. Reinforcement 

learning (RL) attempts to learn from its past experience and it is expected that after each 
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trial it is going to respond more rationally. In this research Backpropagation Neural 

Network is used as MLP. 

 

3.1. Historical Development of Artificial Neural Networks 
 

The history of neural network development has been eventful, and exciting. The 

history of neural networks shows the interplay among biological experimentation, 

modeling, and computer simulation / hardware implementation. Thus, this field is 

strongly interdisciplinary. Back in the 1940’s, first studies about neural networks began. 

Warren McCulloch and Walter Pitts designed what are generally regarded as the first 

neural networks (McCulloch & Pitts, 1943).  

At the end of 1940’s, Donald Hebb, a psychologist at McGill University, 

designed the first learning law for artificial neural networks (Hebb, 1949). He thougt 

that if two neurons were active, then the strength of the connection between them 

should be increased. This idea is closely related to the correlation matrix learning 

developed by Kohonen (1972) and Anderson (1972) among others.  

Frank Rosenblatt (1958, 1959, 1962) introduced and developed a large class of 

artificial neural networks called perceptrons, together with several other researchers 

(Block, 1962; Minsky & Papert, 1988). The most typical perceptron consisted of an 

input layer connected by paths with fixed weights to associator neurons. In the 

beginning of 1960’s, Bernard Widrow and his student, Marcian Ted Hoff (Widrow & 

Hoff, 1960) developed a learning rule that is closely related to the perceptron learning 

rule. The Widrow – Hoff learning rule for a single – layer network is a precursor of the 

backpropagation rule for multilayer nets. Despite Minsky and Papert’s demonstration of 

the limitations of perceptrons ( i.e.,single – layer nets ), research on neural networks 

continued. In 1970’s, the early work of Teuvo Kohonen (1972), of Helsinki University 

of Technology, dealt with associative memory neural nets.His more recent work 

(Kohonen, 1982) has been the development of self – organizing feature maps. James 

Anderson, of Brown University, also started his research in neural Networks with 

associative memory nets (Anderson, 1968, 1972). In 1980’s, Gail Carpenter has 

developed a theory of self – organizing neural networks called adaptive resonance 

theory (Carpenter & Grossberg, 1985, 1987a, 1987b, 1990). Nobel prize winner John 

Hopfield has developed a number of neural networks based on fixed weights and 
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adaptive activations together with a researcher, David Tank ( Hopfield & Tank, 1985, 

1986 ). In 1980’s, Kunihiko Fukushima and his colleagues have also developed a series 

of specialized neural nets for character recognition (Fukushima et al., 1983). 

Table 3.1 shows a brief summary about the development of the artificial neural 

networks. 

 

Table 3.1. A brief history of neural networks (Nelson & Illingworth, 1991) 

Conception 1890 James, Psychology ( Briefer Course ) 

Gestation 1936 

 

1943 

 

1949 

Turing uses brain as computing paradigm 

 

McCulloch & Pitts paper on neurons 

 

Hebb, The Organization of Behaviour 

Birth 1956 Darmouth Summer Research Project 

Early 

Infancy 

Late 50’s, 

60’s 

Research efforts expand 

Stunted 

Growth 

1969 Some research continues 

 

Minsky & Papert ’ s critique, Perceptrons 

Late 

Infancy 

1982 Hopfield at National Academy of Sciences 

Present Late 80’s 

to now 

Interest explodes with conferences, simulations, 

new companies, government funded research . 

 

3.2. Fundamentals of Neural Networks 
 

Neural networks are one of the few Artificial Intelligence – related technologies 

that have a mathematical foundation. An artificial neural network is a flexible 

mathematical structure which motivates from the operation of human nervous system. It 

has many advantages and treats the arbitrary complex non – linear relationship between 

the input and the output of any system (Rajurkar et al., 2003). Artificial neural networks 

can be considered as non – linear function approximating tools (i.e.,linear combinations 

of non – linear basis functions) having an ability to learn from examples, where the 
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parameters of the networks should be found by applying optimisation methods. The 

optimisation is done with respect to the approximation error measure.  

Neural networks are noted for mathematical basis, parallelism, distributed 

associative memory, fault tolerance, adaptability, pattern recognition, intuition, and 

statistical pattern recognition (Nelson & Illingworth, 1991). Neural networks are 

particularly adept at solving problems that can not be expressed as a series of steps and 

useful for recognizing patterns, classification into groups, series prediction, and data 

mining. 

Artificial Neural Networks can be divided particularly in two parts. 

1) Architecture ( it defines the structure of the network ) 

2) Neurodynamics ( it includes properties as to how the network learns, recalls, 

associates, and continously compares new information with existing knowledge.) 

 

3.3. Artificial Neuron and the Basic Components of Artificial Neuron 

 

Artificial neural networks are inspired by the learning processes that take place 

in biological systems. To understand what is placed behind this inspiration, biological 

neurons will be briefly discussed. Artificial neural Networks are made up of individual 

models of the biological neuron (Figure 3.1.) that are connected together to form a 

network. The neuron models used are much simplified versions of the actions of a real 

neuron (Page et al., 1993). The human brain is very complex capable of thinking, 

remembering, and solving. Fundamental unit of the brain’s nervous system is “neuron”. 

This “neuron” is a simple processing element that receives and combines signals from 

other neurons through input paths called “dendrites”. An artificial neuron (Figure 3.2.) 

is a model whose components have direct analogies to components of biological neuron. 

Due to two main reasons, artificial neural network is like human brain: 

1) It stores knowledge through synaptic weights. 

2) It learns from experiments and / or experience. 

The most commonly used neuron model is based on the model proposed by 

McCulloch and Pitts in 1943. 
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Biological Neuron 

 
Figure 3.1. A biological neuron and its components. 

 

 

Artificial Neuron 

 

 
 

Figure 3.2. An artificial neuron and its structure. 

 

An artificial neuron receives input, process it and then produce an output. It can 

be called a processing element. It consists of mainly five parts. 

1) Inputs and Outputs 

There are many inputs (stimulation levels) to a neuron, there should be many 

input signals to processing element. There may be many inputs to the neuron, but there 

is only one output from the neuron. Just as real neurons are affected by things other than 

inputs, some networks provide a mechanism for other influences. Sometimes this extra 

input called a bias term (Nelson and Illingworth, 1994). There is bias node in the input 

and hidden layers but not in the output layer. This one output is disributed by the 

synaptic weights to each neuron in the next layer . 

2) Weighting Factors 
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Each input will be given a relative weighting, which will affect the impact of 

that input. Weights are adaptive coefficients within the network that determine the 

intensity of the input signal (Nelson and Illingworth, 1994). The product of the inputs 

and synaptic weights obtains every information carried to neuron ( i.e. �
�
W

�J ). In a 

way each input is weighted before reaching the neuron . 

3) Transfer ( Activation ) Functions 

Transfer functions are functions that transform the net input to a neuron into its 

activation. Also they are known as a transfer, or output function (Fausett, 1994). They 

are usually non-linear. If the problem is non-linear, then non-linear is employed. 

Commonly used non-linear functions are as follows: 

 

• Linear Function 

 
Figure 3.3. Linear transfer function. 

 

The linear transfer function calculates (Figure 3.3.) the neuron’s output by 

simple equation, where α is a constant. 

 

                                                   a(n) = α x  (3.1)   

 

This neuron can be trained to find a linear approximation to a nonlinear function. 

 

• Step ( Hard Limiter) Function 

 
Figure 3.4. Step transfer function. 
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The hard limiter transfer function (Figure 3.4.) forces a neuron to output a β if 

its net input reaches a threshold, otherwise it outputs α. This allows a neuron to make a 

decision or classification (Tsoukalas and Uhrig, 1997). It can say yes or no. This kind of 

neuron is often trained with the perceptron learning rule, and generally parameters are 

chosen as β = 1 and α = 0 or 1 in the literature. 

 

• Ramping or Rampage Function 

For inputs less than -1 ramping function produces -1. For inputs in the range -1 to 

+1 it simply returns to the linear function. For inputs greater than +1 it produces +1, but 

this function is not a continuous function at the intersection points (Tsoukalas and 

Uhrig, 1997). This network can be tested with one or more input vectors which are 

presented as initial conditions to the network. After the initial conditions are given, the 

network produces an output which is then fed back to become the input. This process is 

repeated over and over until the output stabilizes. 

 

• Gauss Function 

 
Figure 3.5. Gaussian transfer function. 

 

• Sigmoid Function 

 
Figure 3.6. Sigmoid transfer function. 

 

The sigmoid transfer function (Figure 3.6) takes the input, which may have any 

value between plus and minus infinity, and squashes the output into the range 0 to 1. 

This transfer function is commonly used in backpropagation networks, in part because it 
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is differentiable ( Nelson and Illingworth, 1994 ). The mathematical expression of the 

sigmoid function is: 

 

                                               f (x) = 
xe−+1

1
   (3.2)  

 

• Hyperbolic Tangent Function 

 

Alternatively, multi-layer networks may use the hyperbolic tangent transfer 

function. Hyperbolic tangent functions output range is [-1, 1 ] and also its derivative is 

continuous (Fu, 1994). The mathematical expression of the hyperbolic tangent function 

is: 

 

                                           f (x) = 
xe 21

2
−+

 - 1  (3.3) 

 

3.4. Artificial Neural Networks and Their Architecture (Topology) 

 
An artificial neural network can be defined as a data processing system 

consisting of a large number of simple, and highly interconnected processsing elements 

in an architecture inspired by the structure of the human brain (Tsoukalas and Uhrig, 

1997). Network topology is generally defined by the number of hidden layer nodes and 

the number of nodes in each of these layers. It determines the number of model 

parameters that need to be estimated (Maier and Dandy, 2001). Neural networks 

perform two major functions: Learning and Recall. Learning is the process of adapting 

the connection weights in an artificial neural network to produce the desired output in 

response to data presented to the input buffer. Recall is the process of accepting an input 

stimulus and producing an output response in accordance with the network weight 

structure (Corchado and Fyfe, 1999). There are two types of learning: Supervised 

Learning and Unsupervised Learning . In the supervised case, user decides on the 

training set, training type, network architecture, learning rate, and number of iterations. 

In the unsupervised case, the model decides on the things such training set, training type 

etc. 
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3.5. Learning Laws 
 

• Hebbian Learning Rule (Without a Teacher) 

 
The first learning rule was introduced by Hebb (1949 ) as: 

 

                                                         ∆Wij = η . ia .o j   (3.4) 

 

where η is a constant of proportionally representing the learning rate; oj is output from 

unit j, and is connected to the input of unit i through the weight Wij; aj is the state of 

activation and the output oj is a function of the activation state. According to this rule, 

where unit i and j are simultaneously excited, the strength of the connection between 

them increases in proportion to the product of their activations. 

 

• The Delta Rule “ Widrow – Hoff Rule ” (With a Teacher) 

 
This rule is based on the simple idea of continuously modifying the strengths of 

the connections to reduce the difference (the delta) between the desired output and the 

current output. This learning rule is also referred as last mean square (LMS) learning 

rule because it minimizes the mean squared error (Spellman, 1999). 

 

                                                ∆Wij = η[tj – yj] xi  (3.5) 

 

where η is the learning rate, x as training input, t is the target output for the input x. 

 

• The Kohonen Learning Rule (Without a Teacher) 

 
This rule was inspired by learning in biological systems. In this procedure, the 

processing elements compete for the opportunity of learning. The processing element 

with the largest output is declared the winner and has the capability of inhibiting its 

competitors as well as exciting its neighbors; for this reason, sometimes this rule is also 

referred as the competitive learning rule (Bose and Liang, 1996). 
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                                           Wnew = Wold + η( x- Wold )  (3.6) 

 

where x is the input vector, Wnew is the new weight factor and η is the learning rate. 

 

• The Hopfield Minimum Energy Rule 

 
Hopfield’s study concentrates on the units that are symmetrically connected. The 

units are always in one of two states: +1 or -1. The global energy of the system is 

defined as : 

 

                                      E = - ΣWij .si . sj + Σθi .si, i � j  (3.7) 

 

                                              ∆Ek = ΣWki.si - θk  (3.8) 

 

where si is the state of the i th unit ( -1 or 1 ), θi is the threshold, and ∆Ek is the 

difference between the energy of the whole system with the kth hypothesis false and its 

energy with the kth hypothesis true (Bose and Liang, 1996). 

 

• The Boltzmann Learning Rule 

 
The Boltzmann learning algorithm is designed for a machine with symmetrical 

connections. The binary threshold in a perceptron is deterministic, but in a Boltzmann 

machine it is probabilistic (Reich et al., 1999). 

 

• The Back-propagation Learning Rule 

 
The back-propagation of errors technique is the most commonly used 

generalization of the Delta Rule. This procedure involves two phases. The first phase, 

called the “ forward phase”, occurs when the input is presented and propagated forward 

through the network to compute an output value for each processing element (Bose and 

Liang, 1996). In the second phase, called the “backward phase”, the recurrent difference 
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computation (from the first phase) is performed in a backward direction. Only when 

these two phases are completed then new inputs can be presented. 
 

3.6. Back-Propagation Algorithm 
 

This method is simply a gradient descent method to minimize the total squared 

error of the output computed by the net. Back-propagation is a systematic method for 

training multiple (three or more layer) artificial neural systems. Back-error propagation 

is the most widely used of the neural network paradigms and has been applied 

successfully in applications in a broad range of areas. Back – Propagation network is 

usually layered, with each layer fully connected to the layers below and above. When 

the network is given an input, the updating of activation values propagates forward from 

the input layer of processing units, through each internal layer, to the output layer of 

processing units. The output units then provide the networks response. When the 

networks corrects its internal parameters, the correction mechanism starts with the 

output units and back- propagates backward through each internal layer to the input 

layer. Hence, it is named as “back-error propagation”, or “back-propagation”. 

 

3.6.1. Background and Topology of the Backpropagation Algorithm 

 
Back-propagation and its architecture was the first developed multi-layer 

perceptron architecture that can contain more than one output and more than one middle 

layer. BP algorithm is needed because so far only the linear separator was used (Figure 

3.7.) and from the classification point of view, they can only separate the clusters that 

can be divided by a line. However in real life problems there are too many complex 

situations exist that we have to use more intricate lines. MLP structure and algorithm 

gives us that opportunity. 
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Figure 3.7. Linearly separable two clusters.  

(Source: Karakurt 2003) 

 

To train a MLP, Gradient Descent method can be used. This method provides us 

a tool to direct the middle layer nodes to follow the appropriate direction to minimize 

the distance between the target value and the actual output. 

To train the network, input values and target values are used in which represented by 

“x” and “t” symbols respectively. 

In BP algorithm every middle and output layer uses an activation function. 

Mostly sigmoid activation functions are used, hence the output of the network will be 

between 0 and 1. Also Gaussian distribution can be used as an activation function 

because of the formation of the function this structure is named as Radial Basis NN. 

In MLP (Figure 3.8.) every input layer node is connected to the every hidden 

layer node and every hidden layer node is cooperated to the every output layer node. 

Process begins when the input data is presented to the input layer. Consequently, these 

data is multiplied by the corresponding link value which is called weight. This 

multiplication is used to weight the input values. After the multiplication is done, 

summation of this value is presented to the activation function and this process goes on 

to the end of the output layer. After this procedure output value compared with the 

expected output value and the distance between them are taken as an error to back 

propagate. Hence, it is called back propagation. The predetermined error function is: 

 

                                                 � −=
=

J

j
jj ztE

1

2)(   (3.9) 

 

“E” represents the total error term and “z” is the actual output for the input “j”. 
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Figure 3.8. Structures of MLPs. 

(Source: Karakurt 2003) 

 

The BP scheme is in the following form: 

The derivative of the error with respect to the weight connecting i to j is; 

 

                                                      ij
ij

y
W
E δ=

∂
∂

  (3.10) 

 

To change weights from unit i to unit j by; 

 

                                                    ijij yW ηδ−=∆   (3.11) 

 

where; � is the learning rate ( 0>η ); � j  is the error for unit j; y i  is the input from unit i. 

Every  middle layer node employs an activation function. In BP process, a 

sigmoid function can be used because sigmoid function can easily be calculated and 

differentiated. 
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And its derivative is; 
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Every input value is calculated in weighted form; 

 

                                                      )()( xfTwxy =   (3.14) 

 

It is crucial to compute the error term for both output units and the middle units. 

For output unit 

 

(3.15) 

 

For hidden unit 

 

                                                �−=
k

kijjjj Wyy δδ )1(   (3.16) 

 

Gradient descent algorithm physically means that, magnitude of error and the 

direction is calculated so as to minimize the error, new weight values are driven in the 

opposite direction. The learning rate determines the amount of update in the specified 

direction. 

This study employed the BP algorithm as a training tool and sigmoid function as 

a activation function. 

 

)( targetyykk −=δ
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CHAPTER 4 

 

MODEL APPLICATION 

 
Seepage path through the dam’s body is important for planning and 

implementing economically and technically remedial stability measures, since an 

extraordinary seepage may cause a threat to the stability of the dam. That is why, 

seepage in an earthfill dam. is investigated in this study.  

Most of the past studies have involved seepage under the dam foundation 

(Turkmen, 2002; Al-Homoud et al., 2003). However, in embankment dams there is 

seepage in the dam body following a phreatic line. An earthfill dam’s body prevents the 

flow of water from dam’s back to downstream. However, with the most impermeable 

materials used in the dam’s body, some amount of water seeps into dam’s body and 

goes out from downstream of body slope. This movement is called as seepage. Seepage 

flow which occurs in the earthfill dam’s body has a top surface. This surface is called as 

phreatic line or zero pressure curve. In order to understand the degree of seepage, it is 

necessary to measure the level of phreatic line. This measurement is called as 

piezometric measurement. Seepage in the dam’s body is important for dams for two 

reasons: First one is that, phreatic line can cut downstream slab, that is an unwanted 

situation and second one is that amount of seepage water. The excess of seepage water 

can cause erosion. The higher cutting of the dam slab because of phreatic line 

constitutes a more dangerous situation for the slab, because when the soil under that 

point gets saturated the probability of collapse increases. Due to these reasons it is 

necessary to draw phreatic line and to estimate amount of seepage. Figure 4.1. shows 

seepage path through an earthfill dam and Figure 4.2. shows the downstream toe or 

gravel blankets to intersect the line of seepage before it reaches the downstream toe for 

the reason that erosion may take result. 
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Figure 4.1. Example of seepage path through an earthfill dam. 

(Source: Web_9 2005) 

 

 

 
Figure 4.2. Seepage through a dam embankment with rock toe or gravel blanket. 

(Source: Marino and Luthin 1982) 

 

In this study, ANN Model is developed to estimate the locus of a seepage in an 

earthfill dam. For the artificial neural network modeling, measured data sets are used to 
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train and test the developed model. Measured data sets used during modeling include 

water levels in the piezometers and the water levels on the upstream and downstream 

sides of Jeziorsko earthfill dam in Poland where piezometers for monitoring seepage 

have been used since 10-2-1995 and measurements were made by the Institute of 

Meteorology and Water Management, Dams Monitoring Center. Jeziorsko dam is a 

non-homogeneous earthfill dam built on an impervious foundation. Figure 4.3 shows 

the places of the piezometers. The first three piezometers are placed in the dam body 

and P148 is placed in the upper part of the chalk layer. 

 

 
 

Figure 4.3. Detail Cross-Section Sketch of the Jeziorsko Earthfill dam with depicted soil 

layers. 

 

For this study, MATLAB 6 neural network toolbox is used. The water levels on 

the upstream and downstream sides of the dam were input variables and the water levels 

in the piezometers were the target outputs in the artificial neural network model. The 

ANN model was a feedforward neural network employing a sigmoid function as 

activator and a back-propagation algorithm for network learning. Back- propagation 

algorithm belongs to the supervised learning rule. In the supervised learning, there is an 

external trainer who decides the size of training and testing sets, training type. In 

addition to this, different scenarios were modeled by utilizing different layers, activation 

functions and different inputs. Different scenarios were simulated according to 

appropriateness of toolbox. Various parameters can be applied using “nntool” command 
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in Matlab. In this study the ANN model had 3 layers: input layer, hidden layer, and 

output layer. The input layer had 6 neurons and the output layer had one neuron (Table 

4.1). However, number of hidden layers and number of neurons in hidden layers can be 

set. In the toolbox, there are windows including parameters as functions, number of 

layers etc. Thus, the user can decide to modeling procedure. The optimal number of 

neurons in the hidden layer was found by trial and error. Also different activation 

functions were selected randomly. At the dam, four piezometers were placed in order to 

monitor the flow of water through the dam body. The water levels in the piezometers 

have been measured every 2 two weeks since 1995. Upstream and downstream reservoir 

water levels constitute the input data and water levels in piezometers constitute the 

output data (target data). All the input and output data were compressed to the range 0.1 

to 0.9 using Excel. The measured water level data from 4 piezometers were used for 

training the network. First there were a total of 111 sets of data in the training between 

10-02-1995 and 12-20-1999. The training of the model was carried out with the learning 

rate, the 0.02 momentum factor and after 10000 iterations. Later, another set of data as a 

total of 125 sets between 10-2-1995 and 08-14-2000 are used for comparison of 

different scenarios. 

 

Table 4.1. Schematic representation of the model design. 

 

INPUT VARIABLES      OUTPUT VARIABLE 

 

 

 

 

 

 

 6 input variables             1 output variable 

 

[UWL: Upstream water level, DWL: Downstream water level, WLP: Water level in 

piezometers] 

 

UWL DWL P37 P38 P39 P39 

117.49 109.06 1 0 0 0 

117.49 109.06 0 1 0 0 

117.49 109.06 0 0 1 0 

117.49 109.06 0 0 0 1 

WLP 

114.06 

113.83 

113.54 

113.11 
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The correlation coefficient R
2

 is important because it measures if the fit is good. 

If the value of it is close to 1, the slope of the regression line is almost one and the 

intercept is close to zero. Then the training of the network is successfully accomplished. 

The trained ANN model was tested by predicting the measured 59 water level data in 

the piezometers between 12-20-1999 and 5-20-2002. 

 

The general procedure for the network simulation includes: 

1. Representation of input and output matrices; (as it is mentioned earlier data 

are separated into two groups as training set and testing set) 

2. Representation of the transfer functions (in other words activation function); 

sigmoid and hyperbolic tangent function were used. 

3. Selection of the network structure; different hidden layers 

4. Assigning of the random weights; initial random weights are assigned. 

5. Selection of the learning procedure; Back propagation algorithm is used. 

6. Presentation of the test pattern and prediction or validation set of data for 

generalization; training of the network completed after 10000 or 20000 iterations, than 

testing set is represented to the system. 

 

The learning of weights is done using the following procedure: 

1. Selection of random numbers for all weights; 

2. Calculation of output vectors and comparison with the target output (referred 

also as the desired output); 

3. If the network output is approximately equal to the desired output, then 

continue with step 1, and if not, weights are corrected according to the correction rule 

and then continue with step 1. 

Applications: 

Data set is divided into two parts. First 111, then 125 water level values 

constitute the training set used for calibration and first the rest 59 water level values 

between 01-03-2000 and 5-20-2002, then 45 water level values between 8-28-2000 and 

5-20-2002 constitute the testing set used for verification of the methodology. 111 and 

125 values were selected randomly, considering the fact that in the training set, the 

output part must include both maximum and minimum values. An artificial neuron 

receives an input, process it and then produce an output. Inputs to such neuron may 
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come from system casual variables or outputs of other nodes, depending upon the layer 

where the node is located. In a way each input is weighted before reaching the neuron. 

Neural network toolbox assigns weighting factors randomly. Net information is passed 

through an activation function to produce an output. There may be many inputs to the 

neuron, but there is only one output from the neuron. This one output is distributed by 

the synaptic weights to each neuron in the next layer. In toolbox, different parameters 

such as �, the momentum term, and �, the learning rate can be used. Value of � should 

be comparable with that of �. Multiple hidden layers can be used. There are input 

layers, hidden layers, and output layers. Number of neurons in the hidden layers can be 

increased or decreased. Iteration number can be changed. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

The data obtained from the piezometers P37, P38, P39, P148 as shown in Figure 

5.1, where used for the model calibration and verification. 
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Figure 5.1. Temporal Variations of the Water Level at Piezometers and in Upper and  

Lower reservoirs. 

 

Figure 5.2 compares the measured output data with the model prediction output 

data between 10-02-1995 and 12-20-1999. Neuron numbers are 6, 4, and 1 at input, 

hidden and output layers respectively. Learning rate � is 0.01; Momentum term � is 0.1; 

Iteration number is 10000; Logsig activation function is used. Number of training data 

is 111. This stage is called as training stage. 
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Calibration Run 
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Figure 5.2.  Comparison of measured versus ANNs model predicted data. Training 

Stage. 

 

Figure 5.3 shows the measured water level data versus the model predicted 

output data for testing. Neuron numbers are 6, 4, and 1 at input, hidden and output 

layers respectively. Learning rate � is 0.01; Momentum term � is 0.1; Iteration number 

is 10000; Logsig activation function is used. Number of testing data is 59. This stage is 

called as testing stage. 
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 Verification Run 
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Figure 5.3.  Comparison of measured versus ANNs Model Predicted data. Testing  

Stage. 

 

Figure 5.4. presents the calibration runs comparing the predicted model results 

with the measured water level values of each piezometer. The model was calibrated by 

comparing the model results against the measured data of one year duration of 10-02-

1995 to 12-20- 1999. This time period, which corresponds to the construction, included 

the possible variations of water rise in the upper reservoir. 
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Piezometer #39
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Figure 5.4. Calculated and Measured Water Levels at Piezometers (a) P37, (b) P38, (c) 

P39, (d) P148 for the Period 02.10.1995-20.12.1999. CALIBRATION RUN. 
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Figure 5.5. presents the verification runs comparing the predicted model results 

with the measured water level values of each piezometer. The model was validated 

using the measured data from 01-03-2000 to 05-20-2002. 
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Piezometer #39
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Figure 5.5. Calculated and Measured Water Levels at Piezometers (a) P37, 

(d)

 
Figure 5.5. Calculated and Measured Water Levels at Piezometers (a) P37, (b) P38, (c) 

P39, (d) P148 for the Period 03.01.2000-20.05.2002. VALIDATION RUN 
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For each piezometer case, to be able to evaluate the model performance the most 

commonly used error measures were computed as summarized in Table 5.1. and Table 

5.2. These error measures are the mean absolute error (MAE) and the root mean square 

error (RMSE). The RMSE and MAE can be defined as (Dolling, and Varas, 2002): 

 

                                         RMSE = 
N

WW
N

i
ipim� − 2)(

  (5.1) 

 

                                             MAE = 
N

WW
N

i
ipim� −

  (5.2) 

 

where Wm = the measured water level; Wp = the predicted water level; and N = the 

number of observations. 

 

Table 5.1. Calculated Error Measures for the Calibration Run. 

Piezometer 

# 

RMSE 

(m) 

MAE 

(m) 

P37 0.26 0.18 

P38 0.25 0.21 

P39 0.28 0.27 

P148 0.20 0.18 

Average 0.2475 0.21 

 

Table 5.2. Calculated Error Measures for the Validation Run. 

Piezometer 

# 

RMSE 

(m) 

MAE 

(m) 

P37 0.18 0.15 

P38 0.17 0.14 

P39 0.21 0.19 

P148 0.09 0.05 

Average 0.1625 0.1325 
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Figure 5.6. compares the measured output data with the model prediction output 

data between 10-02-1995 and 12-20-1999. Neuron numbers are 6, 4, and 1 at input, 

hidden and output layers respectively. Learning rate � is 0.02; Momentum term � is 0.1; 

Iteration number is 10000; Logsig activation function is used. Number of training data 

is 111. 
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 Figure 5.6. Comparison of Measured versus ANNs Model Predicted Data. Training 

Stage. 

 

Figure 5.7. shows the measured water level data versus the model predicted 

output data for testing. Neuron numbers are 6, 4, and 1 at input, hidden and output 

layers respectively. Learning rate � is 0.02; Momentum term � is 0.1; Iteration number 

is 10000; Logsig activation function is used. Number of testing data is 59. 
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Verification Run 
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 Figure 5.7. Comparison of Measured versus ANNs Model  Predicted Data. Testing 

Stage. 

 

 

Figure 5.8. presents the calibration runs comparing the predicted model results 

with the measured water level values of each piezometer. The model was calibrated by 

comparing the model results against the measured data of one year duration of 10-02-

1995 to 12-20- 1999. 
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Piezometer #39
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Figure 5.8. Calculated and Measured Water Levels at Piezometers (a) P37, (b) P38, (c) 

P39, (d) P148 for the Period 02.10.1995-20.12.1999. CALIBRATION RUN. 
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Figure 5.9. presents the verification runs comparing the predicted model results 

with the measured water level values of each piezometer. The model was validated 

using the measured data from 01-03-2000 to 05-20-2002. 
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Piezometer #39
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Figure 5.4. Calculated and Measured Water Levels at Piezometers (a) P37, (b) P38, (c) 

P39, (d) P148 for the Period 03.01.2000-20.05.2002. VALIDATION RUN. 

 

 



 59 

For each piezometer case, to be able to evaluate the model performance the most 

commonly used error measures were computed as summarized in Table 5.3 and Table 

5.4. These error measures are the mean absolute error (MAE) and the root mean square 

error (RMSE). 

 
Table 5.3. Calculated Error Measures for the Calibration Run. 

Piezometer 

# 

RMSE 

(m) 

MAE 

(m) 

P37 0.18 0.11 

P38 0.14 0.09 

P39 0.16 0.12 

P148 0,10 0,08 

Average 0.145 0.10 

 

 

Table 5.4. Calculated Error Measures for the Validation Run 

Piezometer 

# 

RMSE 

(m) 

MAE 

(m) 

P37 0.18 0.14 

P38 0.16 0.12 

P39 0.18 0.13 

 P148 0.11 0.08 

Average 0.1575 0.1175 

 

Figure 5.10. shows comparison of correlation coefficient, R2, with the results 

which are obtained using different learning rates. Dashed line represents the calibrated 

data, solid line represents the verified data. Different learning rates were used by the 

modeling stage. Neuron numbers are 6, 4, and 1 at input hidden and output layers 

respectively. These neuron numbers were used since they gave best results by modeling 

stage (Table 5.3). Number of training data is 111 and number of testing data which used 

in verification part is 59; Momentum term � is 0.1; Iteration number is 10000; Learning 

rate � is 0.01, 0.02, and 0.03 respectively. Logsig activation function is used. Traingd 
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training function is used. Traingd is a network training function that updates weight and 

bias values according to gradient descent. 
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 Figure 5.10.  Comparison of correlation coefficient, R2, with the results  which are 

obtained using different learning rates.  

 

Dashed line shows calibrated and the solid line shows verified part. R2 is 

correlation coefficient between measured and predicted outputs. Correlation coefficient, 

R2, is good if learning rate � is 0.01 at calibration part; and R2 value is good if learning 

rate � is 0.03 at verification part. It is wanted that R2 value is close to 1. Correlation of 

verified values is more important, � is 0.03 gave better results for these parameters. 

 
Figure 5.11. shows comparison of correlation coefficient, R2, with the results 

which are obtained using different iteration numbers. Dashed line represents the 

calibrated data, solid line represents the verified data. Different iteration numbers were 

used by the modeling stage. Neuron numbers are 6, 4, and 1 at input hidden and output 

layers respectively. These neuron numbers were used since they gave best results by 

modeling stage (Table 5.3). Number of training data is 111 and number of testing data 

which used in verification part is 59; Momentum term � is 0.1; Logsig activation 
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function is used. Traingd training function is used. Iteration numbers are 5000, 10000, 

and 20000 respectively. Learning rate �=0.01. Logsig activation function is used. 
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 Figure 5.11.  Comparison of correlation coefficient, R2, with the results which are 

obtained using different iteration numbers. 

 

Dashed line shows calibrated and the solid line shows verified part. The best 

results are obtained if iteration number is 20000 at calibration part and verification part. 

The value of iteration number affects R2 value directly. If iteration number is large, R2 

value is better usually, more close to 1. 

 

If iteration number is 25000, greater than 20000, results are not so different. At 

calibration part R2 value is 0.941, at verification part 0.934. These values close to the 

values which are obtained using 20000 iteration numbers. Sometimes, large iteration 

numbers affect R2 values not so good.  
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Table 5.5.  Results of R2 values with different topologies (tansig:hyperbolic tangent 

function,logsig:sigmoid function); Number of training data is 111 and 

number of testing data which used in verification part is 59; Learning rate 

� is 0.02; Momentum term � is 0.1; Iteration number is 10000. Logsig or 

tansig activation function is used. 

Number of Hidden Layers 

and Nodes in the Layers 

Activation(Transfer) 

Function 
R2 Value 

1 (6-5-1) tansig 0,85 (Calibrated) 0.83(Verified) 

1 (6-5-1) logsig 0,87 (Calibrated) 0.85(Verified) 

2(6-3-3-1) tansig 0,76 (Calibrated) 0.73(Verified) 

2(6-3-3-1) logsig 0,78(Calibrated) 0.77(Verified) 

1 (6-4-1) tansig 0,88 (Calibrated) 0.86(Verified) 

1 (6-4-1) logsig 0,94 (Calibrated) 0.92(Verified) 

3 (6-3-3-3-1) logsig 0,76 (Calibrated) 0.74(Verified) 

 

According to the results in Table 5.5., using more variables as input leads to the 

better results. However, sometimes increasing the number of hidden layers could make 

the system unstable. Network with sigmoid function and network with one hidden layer 

gave more accurate results than network with two or three hidden layers. 

 

 

Figure 5.12. compares the measured output data with the model prediction 

output data between 10-02-1995 and 08-14-2000. Neuron numbers are 6, 4, and 1 at 

input, hidden and output layers respectively. Learning rate � is 0.01; Momentum term � 

is 0.1; Iteration number is 10000; Logsig activation function is used. Number of training 

data is 125. This stage is called as training stage. 
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Calibration Run 
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 Figure 5.12.  Comparison of measured versus ANNs Model  Predicted data. Training 

Stage. 

 

Figure 5.13 shows the measured water level data versus the model predicted 

output data for testing. Neuron numbers are 6, 4, and 1 at input, hidden and output 

layers respectively. Learning rate � is 0.01; Momentum term � is 0.1; Iteration number 

is 10000; Logsig activation function is used. Number of testing data is 45. This stage is 

called as testing stage. 
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Verification Run 
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 Figure 5.13.  Comparison of measured versus ANNs Model Predicted Data. Testing 

stage. 

 

Figure 5.14. presents the calibration runs comparing the predicted model results 

with the measured water level values of each piezometer. The model was calibrated by 

comparing the model results against the measured data of one year duration of 10-02-

1995 to 08-14 2000. 
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Piezometer #39
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Figure 5.4. Calculated and Measured Water Levels at Piezometers (a) P37, (b) P38, (c) 

P39, (d) P148 for the Period 02.10.1995-14.08.2000. CALIBRATION RUN. 
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Figure 5.15. presents the verification runs comparing the predicted model results 

with the measured water level values of each piezometer. The model was validated 

using the measured data from 08-28-2000 to 5-20-2002. 
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Figure 5.4. Calculated and Measured Water Levels at Piezometers (a) P37, (b) P38, (c) 

P39, (d) P148 for the Period 28.08.2000-20.05.2002. VALIDATION RUN. 

 



 69 

For each piezometer case, to be able to evaluate the model performance the most 

commonly used error measures were computed as summarized in Table 5.6. and Table 

5.7. These error measures are the mean absolute error (MAE) and the root mean square 

error (RMSE). 

 

Table 5.6. Calculated Error Measures for the Calibration Run. 

Piezometer 

# 

RMSE 

(m) 

MAE 

(m) 

P37 0.26 0.20 

P38 0.21 0.19 

P39 0.26 0.24 

P148 0.20 0.19 

Average 0.2325 0.205 

 

Table 5.7. Calculated Error Measures for the Validation Run. 

Piezometer 

# 

RMSE 

(m) 

MAE 

(m) 

P37 0.14 0.12 

P38 0.14 0.11 

P39 0.20 0.18 

P148 0.11 0.09 

Average 0.1475 0.125 
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Table 5.8.  Results of R2 values with different topologies (tansig:hyperbolic tangent  

function, logsig:sigmoid function); Number of training data is 125 and  

number of testing data which used in verification part is 45; Learning  rate 

� is 0.02; Momentum term � is 0.1; Iteration number is 10000.  Logsig or 

tansig activation function is used. 

 

According to the results in Table 5.8., using 125 data as training set gave more 

accurate results. Since the system has trained by extra data set. 

 

 

Number of Hidden Layers 

and Nodes in the Layers 

Activation(Transfer) 

Function 
R2 Value 

1 (6-5-1) tansig 0,86 (Calibrated) 0.84(Verified) 

1 (6-5-1) logsig 0,88 (Calibrated) 0.85(Verified) 

2(6-3-3-1) tansig 0,80 (Calibrated) 0.76(Verified) 

2(6-3-3-1) logsig 0,82(Calibrated) 0.79(Verified) 

1 (6-4-1) tansig 0,92 (Calibrated) 0.88(Verified) 

1 (6-4-1) logsig 0,95 (Calibrated) 0.93(Verified) 

3 (6-3-3-3-1) tansig 0,79 (Calibrated) 0.75(Verified) 

3 (6-3-3-3-1) logsig 0,80 (Calibrated) 0.79(Verified) 
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CHAPTER 6 

 

CONCLUSIONS 

 

In this study, artificial neural networks are used to study seepage through the 

body of an earthfill dam. For this purpose, MATLAB 6.0 Neural Network Toolbox is 

used. The water levels on the upstream and downstream sides of the dam were input 

variables and the water levels in the piezometers were the target outputs in the artificial 

neural network model. The ANN model was a feedforward neural network employing a 

sigmoid function as activator.Results generated from the networks are successfully 

compared with the measured data. 

In this thesis several artificial neural networks models are constructed. The best 

and the most accurate results are found by using six input parameters with one hidden 

layer or two hidden layers and one output neuron and by using 125 training data set and 

sigmoid activation function. Using 125 data as training set gave more accurate results. 

Since the system has trained by extra data set. By using 111 training data set, one 

hidden layer and one output neuron, it was found good results, too. In this thesis as 

input six variables were used and using six input variables gave good results. It was 

found that using more data in the training leads to the better results. Thus, a feedforward 

three layer neural network model employing a sigmoid function as activation function 

and a back-propagation algorithm for network learning with an appropriate iteration 

number as 10000, learning rate as 0.01 is preferable according to the applications. In the 

future, this model can be applied to the different problems.  

In addition, the ANN is a simple and convenient model to recognise the pattern 

between input and output variables if it is provided sufficient measured field data. The 

satisfactory prediction in time and space of the seepage path through the dam by the 

models indicate that these models can be employed to verify the piezometer readings to 

detect the anomalies in the course of seepage. The ANN has an ability to recognise the 

pattern between input and output variables. As presented in this thesis, it was able to 

capture pattern between the water levels in the upper and lower reservoirs and the water 

levels in the piezometers. Thus predicting the locus of the seepage path in the body of 

the earthfill dam is possible. However it is noted that the ANN is a black-box model, 
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thus it does not reveal any explicit relation between the input and output variables. It 

lacks the extrapolation ability for the cases for which it is not trained. 

As future work, when longer period of observation and as well as data physical 

characteristics of the dam become available the performance of the neural network may 

be further improved.  
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