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ABSTRACT 

 
OXIDATION OF ETHANOL AND CARBON MONOXIDE ON 
ALUMINA-SUPPORTED METAL/ METAL OXIDE XEROGEL 

CATALYSTS 
                                                             

The main goal of the study is to investigate the effect of metal type, metal oxide 

type and metal/oxide loading on the conversion as a function of temperature for the 

complete combustion of ethanol and CO in air over single step sol-gel made Al2O3 

supported metal and mixed metal oxides. Two types of catalysts, Pt/Al2O3 (1, 2, and 3 

% Pt loaded) and CuO-Mn2O3/Al2O3, with Cu/Mn molar ratio of 1:1, 5:1 and 12:1, and 

50, 70, and 90% metal loading, were synthesized by impregnation and single step sol-

gel methods, respectively. In addition, by synthesizing CuO/Al2O3, Mn2O3/Al2O3 and 

Pd-Mn2O3/Al2O3, the catalytic activity relationship between metal and metal oxides 

were clarified.   

 Characterization of the samples was performed by XRD, BET, and FT-IR 

techniques and it was observed that among the metal oxide catalysts, CuO-

Mn2O3/Al2O3 (70 wt%; (Cu/Mn)molar=1) showed the highest activity due to the 

formation of Cu1.5Mn1.5O4 phase while 3% Pt loaded alumina was the catalyst 

demonstrated the highest catalytic activity among the noble metal catalysts. Also, Pd 

addition enhanced the activity of metal oxide catalyst by lowering the temperature at 

which ~99% ethanol conversion was obtained. Moreover, deactivation of CuO-

Mn2O3/Al2O3 mixed oxides was observed due to the irreversible adsorption of CO2 on 

catalyst surface at low temperatures. 

Except for Pt containing catalysts, the catalysts that showed high catalytic 

activity in ethanol oxidation was also tested for CO oxidation and CO2 formation was 

detected qualitatively at varying operating temperatures.  

 

 

 

 

 

 



ÖZET 

 
ALUMİNA-DESTEKLİ METAL/METAL OKSİT XEROGEL 

KATALİZÖRLERİ ÜZERİNDE ETANOL VE KARBONMONOKSİT 
OKSİDASYONU 

                                                             
Bu çalışmanın asıl amacı, havadaki etanol ve karbonmonoksit’in tek basamaklı 

sol-gel yöntemiyle yapılan alumina destekli metal ve karışık metal oksit üzerindeki tam 

yanmasında; metal çeşidinin, metal oksit çeşidinin ve metal/oksit yüklemesinin 

sıcaklığa bağlı dönüşüm üzerindeki etkisini incelemektir. İki çeşit katalizör, Pt/ Al2O3 

(%1, %2 ve %3 Pt yüklenmiş) ve Cu/Mn mol oranları 1:1, 5:1 ve 12:1; metal 

yüklemeleri % 50, % 70 ve % 90 olan CuO-Mn2O3/Al2O3, sırasıyla impregnasyon ve 

tek basamaklı sol-gel metodlarıyla sentezlenmiştir. Ayrıca, CuO/Al2O3, Mn2O3/Al2O3 

and Pd-Mn2O3/Al2O3 sentezlenerek, metal ve metal oksitler arasındaki katalitik aktivite 

ilişkisine açıklık getirilmiştir. 

Örneklerin karakterizasyonu XRD,BET ve FT-IR teknikleri kullanılarak 

yapılmıştır ve soy metal katalizörleri arasında % 3 Pt yüklenmiş alumina yüksek 

aktivite gösteren katalizör iken, metal oksit katalizörleri arasında, CuO-Mn2O3/Al2O3 

(%70 ;(Cu/Mn)mol=1:1) katalizörünün Cu1.5Mn1.5O4 faz oluşumu sebebiyle en iyi 

aktivite gösterdiği gözlenmiştir. Ayrıca, Pd ilavesi ~ %99 etanol dönüşümünün olduğu 

sıcaklığı düşürerek metal oksit katalizörünün aktivitesini artırmıştır. Bunun yanı sıra, 

katalizör yüzeyi üzerinde tersinir olmayan CO2 adsorpsiyonundan kaynaklanan CuO-

Mn2O3/Al2O3 deaktivasyonu tespit edilmiştir. 

 Pt içeren katalizör hariç, etanol oksidasyonunda iyi aktivite gösteren katalizörler 

aynı zamanda CO oksidasyonu için de test edilmiş ve değişen sıcaklıklarda CO2 

oluşumu kualitatif olarak tespit edilmiştir. 
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CHAPTER 1 

INTRODUCTION 

Throughout the history, the urbanization and improvements in the living 

conditions along with the increase of the life expectancy of human beings have resulted 

in urgent needs for producing and developing novel products/methods to sustain healthy 

growth of the population. This hence has led a rapid consumption of the natural 

resources and also caused an adverse change on the environment. Due to the 

developments in industry, toxic exhaust gases emitted by the vehicles and the 

production of power have caused a serious change in the natural balance; hence, 

increasing environmental problems. In addition, day by day, these problems together 

with increasing population and high amount of toxic gases in the atmosphere have 

reached to dangerous levels for human beings. In this sense, most of volatile organic 

compounds (VOCs), which include over a thousand of different organic and inorganic 

molecules, contribute to the rise of hazardous pollutants in air. Since almost all of 

industrial products are made up of organic chemicals, VOCs present in the atmosphere 

are mainly due to consumer products, chemical industries, organic solvents and 

combustion sources depending on hydrocarbon fossil fuels. In the developed countries, 

such as USA, fossil fuels, such as coal, oil, and natural gas, which supply the great 

amount of world primary energy needs are major energy sources for transportation 

fuels, electricity, heat, and air-conditioning. However, the combustion of fossil fuels in 

chemical processes leads to the emission of carbon monoxide, nitrogen oxides, and 

organic by-products into air due to incomplete combustion and imperfect air/fuel 

mixing. Emission of fossil fuels combustion products, particularly nitrogen oxides 

(NOx) and VOCs, are much more dangerous for environment since the combination of 

these pollutants (VOC and NOx) in the atmosphere cause acidic rain and photochemical 

smog where nitrogen oxides and VOCs react together to produce ozone and peroxy 

compounds in the presence of sunlight. Therefore, by-products and unused reactants, 

VOCs emitted from fossil fuels, industrial process and motor vehicle exhausts 

accumulate in the atmosphere and being an important challenge for the societies to 

solve. Additionally, in the next decades, without policies, this accumulation is expected 



to reach dangerous levels for living creatures as a result of high volatility, toxicity, 

reactivity and persistence of these organic gases. In light of these characteristics, it is 

vitally important to take precautions for these organic gas emissions either to control the 

air quality or to maintain good human health. 
For the last decades, besides, progressive increase of VOCs emissions, 

information about their effects on human health, accumulations and their role in the 

formation of photochemical smog make governments act together and force them to 

determine stricter regulations as well as efficient and economic methods for the 

reduction of these pollutants’ emission. Since problems related to hazardous organic 

compounds in air are one of the major concerns for the globe as well as local regions, 

control strategies and regulations for improvement of air quality approach the problems 

on an international and regional basis due to long distance travel of some organic 

pollutants from source regions. Despite of applying stricter regulations as well as 

economic and efficient types of methods and techniques to control VOC emission and 

their cross-border, in some part of the world, emissions are still increasing due to 

industrial and commercial processes’ by-products. Thus, it’s expected that Chinese 

VOCs emissions from solvents and paints will be about 5 times higher in 2020, 

compared to 1990 (Klimont et al., 2002).  

As well as the great amount of VOCs emitted from different types of emission 

sources, there are many highly toxic chemical organics (e.g. polycyclic aromatic 

hydrocarbons) released in small (even extremely small) quantities in the atmosphere. 

Apart from damage caused when exposed to high concentrations, even minute amounts 

of them may have strong effect on human health, animals, and vegetation. It’s reported 

that methane, which is the lightest volatile organic, is almost 20 times more effective 

green house gas than its complete oxidation product, carbon dioxide (Bunce, 1991). It’s 

expected that reducing significant amount of methane concentration within a decade 

could give much more quick and significant result than similar reductions in CO2 

emission. Thus, carbon oxides may be released to the environment with minimal 

environmental implications compared to the release of the VOCs themselves. However, 

it’s primarily important and necessary to understand the nature of the gases emitted into 

air and the chemical transformations they undergo before take a necessary action for 

reduction of toxic gas emission. In this regard, it is reported that high concentration of 

organic compounds are generally not removed efficiently (Junge, 1974) and also their 

life time in the atmosphere are important factor as some can continue to be present in 
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the atmosphere for thousand years, while others can be consumed in a minute after they 

have been emitted. For instance, lifetime of carbon dioxide in air is between 50 and 200 

years, while it is 12 years for methane and is about 3,200 years for sulfur hexafluoride 

(UNFCCC). In addition to this, VOCs concentrations in urban and rural sites show 

differences due to atmospheric transportation and regional sources of these hazardous 

gases. Benzene level in the atmosphere, for example, might be exposed to 1000 times 

the levels measured in remote regions (OECD, 1994). However, whether these gases 

have very small amount in the air or not, it should be taking into the account that, these 

gases and their effects, heat-holding potential and addition to global warming will 

continue. In this regard, for the last decades, concerns about increasing amount of 

VOCs in the air have catalyzed several countries including European, Canadian, and 

U.S governments to implement national emission policies either to reduce hazardous 

pollutant levels or to meet air quality standards for clean environment. In 1990, in 

United States of America, the US Clean Air Act called for a 90% reduction by 1998 in 

the emissions of 189 toxic chemicals, 70 % of which were classified as VOCs 

(Parkinson, 1991). For that call, Environmental Protection Agency (EPA), working for 

cleaner environment for many years, has been implementing reduction programs to 

reduce emissions from different type of mobile and stationary sources. In addition to 

applied national action programs, international agreements and plans have also been 

accepted around the world. Therefore, total emissions of VOCs, released from different 

type of emission sources, are decreasing for many years in European countries. 

Although regulations vary considerably from country to country, recent policy 

developments to control the level of hazardous organics in the atmosphere is mainly 

based on economic and regulatory instruments, air quality standards, risk limits of 

compounds for both health and environment, and technological improvements. A series 

of protocols establishing reduction objectives and signatories on international 

agreements show differences between countries policies as a result of application 

sequences and starting point of the regulatory procedure. In this way, national 

legislation is already in place or being drafted in many European countries. For 

instance, in the United Kingdom, in 1990s, it was covered by the Environmental 

Protection Act. In Netherlands, quantitative risk assessment was used primarily, 

whereas a technology driven approach for setting emission standards was used in 

Germany, Sweden, and Switzerland, complemented by environmental standards or 

ambient air quality standards (Wiederkehr, 1994). In addition, currently, many countries 
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including France, Germany, United Kingdom, and Sweden have already reached 

emission levels far below their Kyoto target (EEA Technical Report, 2009).  

Global concerns about the environmental issues and governments restrictive 

regulations have encouraged the development of effective and economic methods in the 

reduction of volatile organic compounds (VOCs). However, as in many industrial 

plants, vest streams show differences in volumes, flow rates, temperatures, 

compositions, physical and chemical properties of VOCs with respect to their emission 

sources. Basically, emission control techniques depending on process and equipment 

modifications, are generally used to minimize the volatilization or formation of VOCs 

or to prevent the escape of these gases in which operation takes place in the process. 

However, it is not always possible to modify the process or process equipments easily. 

On the other hand, to minimize the emission and control the process, emission sources 

can be either identified or modified and organic solvents used in the process can be 

replaced or minimized to the milder levels. However, the efficient removal of volatile 

organic compounds from sources such as waste streams, tank loading/unloading 

operations, sometimes is a challenging problem with some pollution abatement 

technologies due to VOCs containing streams with a wide range of concentrations. 

Therefore, the variation in the nature of existing VOC compounds and their physical 

and chemical properties, have given rise to a corresponding wide range of VOC control 

methods that can be classified into two groups based on two approaches. The first is 

VOCs destruction method that they are generally destroyed to carbon dioxide and water 

and the second one is VOCs recovery methods in that they are captured for reuse and 

subsequent disposal. Common type of VOC control techniques and their operating 

conditions are shown in Table 1.1. However, it should be kept in mind that operating 

conditions may change as a function of the type and concentration of material. In 

addition, due to the potential explosion hazards, inlet concentrations in excess of 25% of 

the LEL (Lower Explosive Limit) should be avoided (AIChE, 1992).    
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Table 1.1. VOCs destruction methods and conditions  
(Khan, 2000) 

 
  VOC Concentration 

(ppm) 

 

Temperature  (oF) 

Removal Efficiency    

(%) 

Catalytic Incineration 
100-1000,but always 

less than 25% of LEL 
300 90-98 

Thermal Incineration 
Greater than 20 but 

less than 25% of LEL 
700 95-99 

D
es

tr
uc

tio
n 

M
et

ho
ds

 

Bio-filtration <5000 50-105 60-95 

Absorption 500-15000 Normal 95-98 

Adsorption 
700-10000 but always 

less than 25 % of LEL 
<130 80-90 

R
ec

ov
er

y 

M
et

ho
ds

 

Condensation 5000-10000 Ambient 70-85 

 

 

In detail, condensation technique for the recovery of VOCs is one of the 

efficient and safe alternatives for VOCs recovery. It requires high concentration of 

volatile organics, of which boiling points above 100 oF, and having low gas flow rates. 

Thus, its commercial applicability is limited.  

Adsorption of VOCs, classified as physical adsorption and chemisorption, is 

based on the interaction between adsorbate and adsorbent to separate dilute organic 

compounds from waste streams. Activated carbons, zeolites, silica gel and alumina are 

mostly used types of adsorbent and among them, activated carbons provide one of the 

best options due to their high surface area. In most cases, adsorption control technique 

is used for recovery of expensive and unreacted raw material treatments. However, 

efficiency reaches 95 % to 98 % when treating waste streams contain single compounds 

or relatively simple mixtures of compounds of which concentrations ranging from 10 

ppm to 10,000 ppm. Therefore, in industrial process adsorption-based methods are 

favorable for removal of low concentration of hydrocarbon vapors from gaseous stream. 

Also, VOCs molecular weights between 50 and 200 are favorable for adsorption since 

lower molecular weight organics do not generally adsorb well and higher molecular 

weight organics are difficult to remove during regeneration (EPA, 1984). In addition to 

adsorption of VOCs, absorption control technique is generally used to remove VOCs 

from gas streams by contacting the contaminated air with a liquid solvent. 

Transformation between gas stream and liquid solvent consists of diffusion of gas 

5 
 



stream to the solvent and dissolution into it. The absorbing liquids are generally chosen 

by their high capability to solve VOCs. Thus, any soluble VOCs will transfer to the 

liquid phase. Absorption systems can treat waste stream gases containing very high 

concentrations of VOCs ranges from 500 to 5000 ppm but it may require to 

pretreatment of VOCs containing solvents. 

Membrane separation in VOC reduction control is based on using a semi-

permeable membrane to separate VOCs from a waste gas stream. In this system, the 

membrane is permeable to VOCs but not air. Therefore, VOCs can pass through the 

membrane as the purified air stream is released to the atmosphere. However, this 

technique is sensitive to flow and concentration changes. In addition, their usage is rare 

and costly. 

Alternatively, the destruction of VOCs is the most common and effective way in 

the control of volatile organic compounds. For instance, biological control system is 

based on the capability of certain microorganisms to transform organic and inorganic 

pollutants to water, carbon dioxide, and bio-mass. The most commonly used form of 

biological degradation is biofilter that is selective and concentration sensitive. In 

biological treatments, solubility and biodegradability of the contaminants are important 

parameters for the process (Kiared et al., 1996). Compounds such as alcohols and 

alkanes generally degrade well, whereas compounds such as chlorinated hydrocarbons 

are difficult to treat in biofilter. In addition, one of the advantages of biological 

treatment methods over physical and chemical techniques is that they can be conducted 

at room temperature and atmospheric pressure. Moreover, biological methods are 

inexpensive and easy to operate, however, due to incomplete oxidation their efficiency 

may be low and may even form by-products more toxic than the original compounds 

(Webster et al., 1996). 

Combustion of VOCs is rapid and exothermic process that may result in either 

complete or incomplete oxidation of VOCs. Since many fuels and organic compounds 

consist of carbon and hydrogen, their complete combustion by oxygen, produce carbon 

dioxide and water. Many odors and VOCs containing streams can be burned or oxidized 

by application of two basic types of competitive combustion technologies; thermal and 

catalytic oxidation. Incineration (thermal oxidation), which is used most often in 

abatement of VOCs, destroys organic compounds by burning them at high temperatures 

between 1,300 and 1,800 oF and usually provides VOCs destruction efficiencies varying 

from 95% to 99 %. Thermal oxidizers have wide applicability and can be used for 
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almost any volatile organic compounds. However, these compounds used in the thermal 

oxidizer may require different operating temperature and show different destruction 

efficiencies as a function of type and concentration of material in the vent stream. 

Thermal oxidizers can also be used for gas streams having VOC concentrations at very 

low concentration range of less than 10 ppm up to the very high concentrations 

approaching 10,000 ppm. However, they are rarely used on gas streams that have VOC 

concentrations exceeding approximately 25% of the lower explosive limit (LEL) due to 

explosion risk. Despite broad applicability of this incineration technique, large amount 

of fuel requirement of thermal oxidizers to heat the gas stream to necessary temperature 

cause additional and expensive operating costs, large and heavy constructions. 

Moreover, at high temperatures, undesirable by-products such as nitrogen oxides, 

dibenzofurans and dioxins can be formed in significant amounts.  

In catalytic combustions, waste gas stream and air are contacted over a catalyst 

in order to allow reaction to occur at sufficiently lower reaction temperature than 

thermal incineration; hence, eliminating the formation NOx and toxic byproducts. The 

operating temperature, of the catalytic combustors, which is between 500 and 1000 oF, 

is lower because of the catalysts. In this catalytic system, VOC destruction efficiency 

changes with respect to catalysts volume per unit volume of gas processed, reaction 

temperature, and VOC concentration and composition in the waste stream. A catalytic 

system is able to be operated at low concentration of VOCs, between 100 to 2,000 ppm 

and gives high destruction efficiencies ranging from 95 % to 99 %. However, this 

system can produce hazardous combustion by-products such as sulphur compounds as 

in the thermal oxidizers and additionally, due to poisoning effect, the catalyst used in 

the process may require to be replaced. Despite of these disadvantages, the benefits, 

such as reduced NOx emission, having high destruction efficiency, lower operating 

temperatures, reducing fuel consumption, smaller units and less expensive operating 

conditions make catalytic combustion more desirable and effective long-term solution 

for reducing emissions of hazardous organic compounds. In particular, catalytic 

combustion is a key process for applications such as industrial air purification, 

automotive emissions control, and CO elimination in flue gases. The catalysts, used for 

catalytic combustion of VOCs, fall into two categories. The first is the supported noble 

metal catalysts and the second one is transition metal oxide catalysts. Noble metal 

catalysts, typically platinum and palladium, show high activity at low temperatures but 

are expensive and their availability is limited. Therefore, it is important to use them at 
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low concentrations in catalyst or ensure well dispersion on support oxides, such as 

Al2O3 and SiO2. In the catalytic combustion, the other types of catalysts are metal oxide 

catalysts that are usually oxide of the transition metals, such as oxides of cobalt, copper, 

nickel, and manganese. They are used in both supported and non-supported forms and 

cheaper but less active than noble metals at low temperatures. In this study, emission of 

organic compound, specifically ethanol released from commercial bakeries, and carbon 

monoxide, which is the common type of hazardous pollutants released from any 

combustion process was reduced on the supported metal and mixed oxide catalysts. The 

presence of low concentration of these compounds in the air is hazardous. In this sense, 

in bakery operations, where equimolar amount of carbon dioxide, ethanol, and small 

amount of by-products are produced and released as a result of anaerobic fermentation 

process are considered to have significant contribution to air pollution. 

 
 
                                   C6H12O6   → 2 CH3CH2OH + 2 CO2                                                            (1.1) 
 
              
 Based on the measurements, the fermentation of 100 lbs sugar produces nearly 49 lbs 

ethanol, 47 lbs carbon dioxide, and 4 lbs of by-products, such as glycerol and organic 

acids (Sanderson et al., 1983). Since a commercial bakery can produce 300,000 pound 

of bread or other bakery products per a day, the great amount of ethanol is released into 

the atmosphere. Since upper and lower explosion limits of ethanol vapor in air are 3.3 

and 19, the emission of produced gases in bakery operations are generally controlled by 

simple local exhaust ventilation in order to keep gas concentration in the bakery below 

the exposure limits. Otherwise, high concentration of ethanol leads to flame or long-

term exposure may cause adverse reproductive and fatal effects, such as visual 

disorders, allergic skin reactions, brain damage and central nervous system depression 

in human. However, local ventilation control system is not sufficient way in the control 

of emission of volatile organics. Therefore, ethanol emission from bakeries must be 

managed and controlled by efficient type of VOCs control and reduction routes. 

Similarly, carbon monoxide, which is produced from generally incomplete combustion 

of any combustion process, furnaces, gas stoves, and automobile exhausts, is also fatally 

dangerous for human due to its ability to inhibit oxygen intake to blood. Addition to 

health effect, the significant contribution to photochemical smog and ozone depletion 

makes carbon monoxide important pollutant that has to be reduced. 
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 In this study, the objective is to investigate the effect of metal type, metal oxide 

type and metal/oxide loading on the ethanol combustion and CO oxidation in air over 

single step sol-gel made alumina supported metal and mixed metal oxides. For this 

purpose, platinum supported on alumina (Pt/Al2O3) with the loadings of 1, 2, 3 wt.% 

and different metal ratios of copper-manganese mixed oxide on alumina (CuO-

Mn2O3/Al2O3) with the loadings of 50, 70, and 90 % were tested as solid catalysts in the 

catalytic combustion. In addition, CuO/Al2O3, Mn2O3/Al2O3, and Pd-Mn2O3/Al2O3 was 

also synthesized to shed light on the catalytic activity relationship between metal and 

mixed oxides. The reason behind choosing Pt/Al2O3 catalyst for ethanol combustion is 

that it shows high activity at low temperatures. In addition, CuO-Mn2O3/Al2O3 mixed 

oxide catalyst was synthesized because it is cheap as compared to noble metal catalysts.    

 This thesis contains five chapters. In chapter one, addition to the general 

introduction for volatile organic compounds an their potential effects on both human 

health and environment, governments VOCs reduction strategies, the emission control 

methods and also the aim of this thesis are introduced. In chapter two, a literature 

survey on the properties of volatile organic compounds and catalytic reduction of them 

on both noble metal and transition metal oxide catalysts are presented. In chapter three, 

the specifications and pretreatment procedures (if any) of the chemicals used in this 

study and also experimental set-up, material preparation methods, such as the single 

step sol-gel and the impregnation method for the catalyst preparation is explained in 

details. In addition, the material characterization methods, such as X-Ray diffraction 

and the surface area measurement using N2 adsorption are given. In chapter four, the 

catalyst activities and the behaviors of ethanol and carbon monoxide combustions are 

presented and discussed in this thesis. Finally, the conclusions and some 

recommendations are listed in chapter five. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 
2.1. Volatile Organic Compounds (VOCs) 

Increasing concern about the environmental issues, especially air pollution, have 

subjected to stricter legislation about air pollutants, particularly volatile organic gas 

emission that is being involve in every part of our life. Besides involving in chemical 

products, they are the major contributors of photochemical smog leading to formation of 

dangerous hazards and pollutants affecting human health, environment, and all living 

things. Therefore, in order to control their emission, it is extremely important to 

determine volatile organic compounds, their properties, and their emission sources. In 

this regard, although there is no general quantitative definition of what VOCs are, any 

compound (excluding carbon monoxide and carbon dioxide) that participates in 

atmospheric photochemical reactions are frequently described as ‘volatile organic 

compounds’ as defined by Environmental Protection Agency (EPA) in the United 

States. In addition, there have been subsequent attempts to give a more quantified 

definition as the term volatile organic compounds refers to those organic compounds 

which are present in the atmosphere as gases, but which under normal conditions of 

temperature and pressure would be liquids or solids. In addition to this, unlike 

traditional major air pollutants (e.g. CO, SOx, NOx) volatile organic compounds contain 

mixtures of numerous organic substances such as alkanes, alkenes, alkynes, aromatics 

found in gaseous and they show different physical and chemical behaviors and emitted 

from a variety of sources. With few exceptions, these organic compounds present in the 

atmosphere originate from anthropogenic processes, related to human activities mainly 

from stationary combustion, petrol storage and distribution, solvent and fuel 

evaporation and vehicular emissions (Singh et al., 1992). More specifically, they can be 

emitted from either household products such as office supplies, inks, cleaning products, 

insulating and painting materials or they can be originated from industrial process and 

automobile exhausts that are mainly responsible for  outdoor VOC pollution. 
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2.1.1. Catalytic Oxidation of VOCs 

In the oxidation of various types of VOCs, a variety of catalysts including either 

supported or unsupported noble metal catalysts (Pt, Pd, Au, Rh) and metal oxide 

catalysts (MnOx, CuOx, CeOx, ZrOx) have been intensively studied in literature. 

Activities of these materials depend on the nature and morphology of the support and 

the type of VOCs to be oxidized in the system and have been generally evaluated in 

terms of active sites, metal loading, electronic, and geometric effects between the 

catalyst components as investigated widely in literature. 

 Toluene oxidation was studied by Verykios et al. (2009) over supported Pt 

catalysts as well as over variety of metal oxide (MxOy) catalysts (M=Cu, Mn, Ce, V, 

Mg, Zr, Cr, Nd, Cs). Result showed that supported metal oxides, especially over 60% 

MnOx, 70-90% CeO2 and 5-10 % CuOx supported on alumina, exhibit high activity as 

compared to single component catalysts. They concluded that reducibility of dispersed 

active phases could enhance the catalytic performance of these catalysts. 

A similar study was carried out for the oxidation of benzene, toluene, and xylene 

over various type of metals (Cu, Mn, Fe, V, Mo, Co, Ni, Zn) on γ-Al2O3 (Kim, 2002). 

Among the catalysts, Cu/ γ-Al2O3 was found to have high catalytic activity and it was 

observed that increasing copper enhanced the catalytic activity. In this regard, they 

observed that Cu/ γ-Al2O3 which include 5 % Cu loading, showed the highest activity. 

By changing the support, activity of 5 % Cu/ γ-Al2O3 catalysts was observed and it was 

concluded that increasing in activity resulted in strongly due to well distribution of 

copper, not because of the surface area of the supports. Marion et al. (1990) showed that 

CuO dispersed on alumina was active for methane combustion. They claimed that low 

Cu loading on alumina led better dispersed ionic CuO while high CuO loading resulted 

in poorly dispersed catalyst. For the oxidation of methane, catalyst with ionic character 

was found to be more active. Catalytic methane oxidation was also investigated over 

Co3O4 catalysts supported on alumina and it was observed that catalysts were 

deactivated due to the reaction of the active phase with the support material (Garbowski 

et al., 1990). 
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2.2. Ethanol Combustion and CO Oxidation 

Ethanol which is a common type of VOC, has a wide application area, such that, 

it is produced in bakeries as a by-product, used as a solvent in a printing process and is a 

great potential fuel for vehicles. With the progressive increased of production and usage 

of ethanol, its emission to the atmosphere should be treated to reduce the concentration 

at levels tolerated by current regulations. Although traditional removal techniques still 

in use such as keeping toxic gas concentration by simple exhaust ventilation, alternative 

control technologies are available and much more effective in the elimination of VOCs. 

In this regard, catalytic combustion is one of the more frequently used types of 

elimination technology (Campesi et al., 2011) especially when the low concentration of 

VOCs in a great volume of gases has to be treated (Morales et al., 2006). In general, low 

temperature catalytic combustion technique show better efficiency, produce no 

secondary pollution, and conserve the energy. For the purpose of the total oxidation of 

ethanol, the optimal catalysts should have good activity at low temperature and high 

selectivity to undesirable by-products, such as acetaldehyde and stability against 

catalyst deactivation (Monceaux et al., 2003). In addition, oxidation catalysts for the 

combustion of carbon monoxide is an important research topic due to wide application 

area in industrial, environmental and domestic fields mainly in automobile or industrial 

emission control applications and proton exchange membrane fuel cells. For these 

application areas, low temperature operation condition is a crucial requirement, thus, 

researchers have studied to develop catalysts, which are active even at room 

temperature. In this sense, Haruta et al. (1989) showed that supported gold catalysts are 

active even at temperatures below 0 ºC. In the study, Haruta and co-workers studied the 

oxidation of 1.0 % CO in air over supported nano gold catalyst, and showed that total 

oxidation of carbon monoxide to CO2 occurred at temperature as low as – 70 ºC. 

However, in catalytic systems, several factors influence the catalytic activity such as 

volatile organic compound structure, concentration, and loading. It is widely known that 

inert support leads better catalytic performance than simple bulk catalyst due to high 

surface area and new species that supports provide. Thus, support characteristics, 

chemical properties, and texture are important parameters for its interaction with active 

phase on reducibility, dispersion and therefore activity and product selectivity of the 

catalyst (Aguero et al., 2008). In addition, space velocity has significant effect on 
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destruction efficiency that increasing the space velocity decreases the conversion of 

VOCs to the desirable products (Vigneron et al., 1993). In this regard, temperature is 

also prominent that at higher temperatures, VOCs destruction is much more efficient 

from the system, but it can also accelerate catalyst deactivation, thus reduce the catalyst 

activity. In catalytic oxidation, selecting type of catalyst for the exact hydrocarbon 

reaction is also very important. In this sense, two main types of catalysts become 

prominent: Noble metal catalysts and metal oxide supported catalysts. 

 

2.3. Catalysts for Ethanol Combustion and CO Oxidation 

2.3.1. Noble Metal Catalysts 

For the combustion of volatile organic compounds, supported noble metals, 

especially Platinum (Pt) and Palladium (Pd), are mostly used and desirable catalysts 

since they have high activity at relatively low temperatures, and show high selectivity 

for the formation of carbon dioxide and water, with lower partial oxidation products. 

Depending on the nature of VOCs and type of catalysts used in the catalytic system, 

activities show differences. Thus, it’s reported that noble metal catalysts are appropriate 

for non-halogenated VOCs destruction (Spivey, 1987). In contrast, usage of other noble 

metals, such as Au and Ag, is rare for high temperature reactions and high space 

velocity applications, as Rh2O3 is known to react with alumina (Ferrandon, 1999). 

Although platinum and palladium are known as active catalysts for VOC degradation, 

they exhibit different catalytic activities that Pd is more active for the oxidation of short 

–chain hydrocarbons, while Pt exhibits higher activity toward long- chain hydrocarbons 

(Abbasi et al., 1996). Cant et al. (2000) studied the oxidation of toluene, benzene, and 1-

hexene alone and in mixtures with carbon monoxide and isooctane over platinum, 

palladium, and rhodium supported on alumina catalysts. Results showed that each metal 

exhibits different activity order for individual reactions that platinum is the most active 

for the oxidation of benzene as palladium with toluene. 

Besides type of metal and VOCs, preparation method is crucial particularly for 

the carbon monoxide oxidation over Au catalyst with small particle size and high 

dispersion on metal oxide supports (Santos et al., 2010). In order to investigate the 

influence of preparation method and metal type effect on the catalytic activity, 
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Figueiredo and coworkers (2010) studied several noble metals (Pt, Pd, Rh, Ir and Au) 

supported on commercial titania prepared by two different preparation method (liquid 

phase reduction deposition-LPRD and incipient wetness impregnation-IMP) for the 

catalytic oxidation of toluene, ethanol and CO. It was observed that for the CO 

oxidation, Au prepared by IMP was the worst catalyst while Au LPRD was the most 

active catalyst indicating that different particle sizes obtained depending on the 

dispersion over different supports. For all types of VOCs, except for CO, it was found 

that LPRD method produced better results, although difference between the two 

methods was not significant. For both preparation methods, the catalyst activity between 

those metals was observed in this manner: Pt/TiO2 > Pd/TiO2>> Rh/TiO2 ≈Ir/TiO2>> 

Au/TiO2. 

Catalytic performance of ethanol (500 ppm) in air also investigated by 

Avgouropoulos and coworkers (2006) over pure alumina, platinum supported alumina, 

and alkali (K+ and Na+) promoted Pt/Al2O3 catalysts. They found that ethanol oxidation 

over pure alumina produced diethyl ether and ethylene as by-product while Pt/Al2O3 

catalyst produced acetaldehyde and acetic acid as partially oxidized compounds. In 

addition, oxidation of ethanol to CO2 occurred at high temperature at about 300 ºC for 

Pt/Al2O3 and higher than 400 ºC for pure Al2O3, respectively. They noticed that at high 

alkali content promoted catalysts were more active than un-promoted Pt/Al2O3 catalysts 

and produce no acetic acid. They also investigated the catalyst stability towards 

deactivation and stated that under the standard reaction conditions stable operation for 

promoted Pt/ Al2O3 catalyst was achieved after a period of 5h, with 91% conversion to 

CO2, 8 % conversion to acetaldehyde. 

In commercial applications of catalysts, catalytic stability is an important factor 

as well as its activity. In this respect, supported Pt and Pd particles can be poisoned and 

sintered that leads to decreasing in the catalyst activity. Tahir and coworkers (1998) 

stated that the presence of halogenated VOCs deteriorate and temporarily poison the 

performance of precious metal catalysts when supported on alumina. Another important 

aspect about the oxidation of VOCs over noble metal catalysts is that the reaction is 

generally recognized to be structure sensitive (Santos et al., 2010). However, it’s 

worthwhile to notice that correlation between catalyst activity, selectivity and metal 

dispersion depends on the type of VOCs. In this regard, study on ethanol selectivity 

over Cu and Pt catalyst was carried out by varying the space velocity through the 

reactor (Ismagilov et al., 1979). By changing space velocity, it was found that 
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acetaldehyde and carbon dioxide different in amount over Cu catalyst. However, they 

observed that selectivity of carbon dioxide, meaning that high conversion of ethanol, 

reached over the Pt catalyst. McCabe and Mitchell (1983) also studied the 0.1 vol. % 

ethanol oxidation over 4 wt % Cu, 2 wt % Cr, 4 wt % Mn and 0.1 wt % Pt supported on 

alumina catalyst. They conclude that all three catalysts produce acetaldehyde, carbon 

monoxide, and carbon dioxide in the oxidation of ethanol. In addition, acetaldehyde 

amount was found to increase as temperature raised over each catalyst. 

In recent years, researchers try to develop catalysts having good activity at lower 

temperatures as well as noble metal have and want to decrease the cost of the catalyst 

by developing new one. For this purpose, supported metal oxide catalysts are known as 

good alternative and highly active catalyst for VOC oxidation reactions. Lahousse et al. 

(1998), for instance, compared the combustion activity of VOCs over γ –MnO2 and 

Pt/TiO2. It was found that for the oxidation of benzene and methanol, γ –MnO2 was 

superior compared with Pt/TiO2 that 90% of 250-300 ppm of mixtures of VOCs is 

removed at 533 K with metal oxides. In addition, they also found that the presence of 

the water vapor shortened the time required to reach stable activity over γ –MnO2 

catalyst.  

 

2.3.2. Metal Oxide Supported Catalysts 

Despite high activity, stability, and susceptibility of supported noble metals to 

deactivation by poisoning, and the high cost of the noble metal component have 

initiated research into other possible catalysts for VOC abatement. Transition metal 

oxides, specifically metal oxide based catalysts can be an alternative way for noble 

metal due to noble metals cannot overcome the problem of carbonaceous deposits, 

including particulate matter (Odenbrand, 1999). An advantage of transition metals is 

that they are much cheaper and thermally more stable alternative as compared to noble 

metals. Another advantage of metal oxides is that they have an unlimited potential for 

modifications. For these reasons, metal oxides are accepted to show a catalytic activity 

as good as noble metals do. 

In the oxidation of organic compounds, Cr, Mn, Co, Ni, Fe, Cu, and V are 

mainly applied oxides of transition metals. In the study carried out by Li et al. (2009), 

complete oxidation of ethanol was evaluated over V2O5/γ-Al2O3-TiO2 catalyst prepared 

15 
 



by the mixing sol-gel and co-impregnation method. They investigated the support 

effect, preparation methods, and vanadium content in the comparison of the catalysts 

performance. For 5% V2O5 catalyst supported on γ-Al2O3-TiO2 prepared by mixing sol-

gel method showed the best performance that ethanol conversion was reached 92% at 

200 ºC while conversion on single  γ-Al2O3 and TiO2 supports were only 47% and 19%, 

respectively. 

Among the transition metals, manganese oxides (MnOx) including bulk MnO2, 

Mn2O3 and Mn3O4 as well as those supported on carriers such as alumina has received 

the attention of many researchers as a cheaper alternative catalysts. Due to the low 

reactivity with Al2O3, Mn is comparatively stable over Al2O3 supports (Strohmeier, 

1984). As a result, their highly stable feature makes supported or unsupported MnOx 

important and to have been extensively studied for VOCs oxidation (Kalantar and 

Linfors, 1998). Ferrandon et al. (1999) studied a series of alumina-supported MnOx 

catalysts for oxidation of CO, CH4, C2H4, and C10H8. It’s known that, as well as the 

nature of the phase of Mn oxide, the activity of alumina-supported catalysts depend on 

the nature of the support. Therefore, they used two alumina supports with different 

surface areas (α- Al2O3 5 m2 g -1 and γ - Al2O3 50–250 m2 g -1). Results showed that 

despite the low surface area, Mn oxide supported on α- Al2O3 showed high activity for 

the carbon monoxide oxidation as a result of available sites on the surface during the 

calcination step (600 ºC). 

In progressive studies, Cadu´s and coworkers (2008) prepared manganese oxide 

catalysts supported on Al2O3 and Mg-Al2O3 composite from two different precursors 

and with two manganese loadings for the catalytic performance of ethanol combustion. 

It was observed that higher manganese loading leads higher catalytic activity and the 

best catalytic performance was obtained when manganese oxide species are highly 

dispersed on the catalytic surface. At the same manganese loading, regarding to support 

and thus; dispersion effect, they found that the catalysts prepared from manganese 

acetate are more active than the catalysts prepared from manganese nitrate that 

oxidation reaction starts below 100 ºC on the catalysts prepared from acetate and 130-

150 ºC for the catalysts prepared from nitrate precursor. In addition, influence of 

support treatment on the catalytic activities in ethanol and toluene combustion studied 

by the same research group. Alumina treated with water and diluted nitric acid was used 

as a support for the preparation of MnOx/Al2O3 catalysts with two different loadings. 

They evaluated that modifying alumina affected interaction between support and active 
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phase, dispersion and reducibility of catalysts due to changes in physicochemical 

properties of alumina in porosity, surface area, and surface acidity. They also detected 

that at high manganese loading, catalyst showed better catalytic activity for the ethanol 

combustion due to high capacity for adsorbing oxygen. In this sense, Chen et al.(2009) 

prepared MnOx/Al2O3/Ce0.45Zr0.45M0.10Oy (M = Mn, Y, La) catalysts by impregnation 

method and investigated that doping of Mn enhance the oxygen storage capacity. 

Hence, oxygen vacancy density and oxygen mobility resulted in the improvement of the 

catalyst activity.  

Another research about complete oxidation of VOCs (formaldehyde and 

methanol oxidation) over MnOx (with and without Pd) supported on alumina was 

showed that synergy between supported manganese and palladium phase improved the 

activity of the bimetallic catalyst that, as Pd was added to Mn/Al2O3, the light off 

temperature decreased from 220 to 90 ºC (Alvarez-Galvan et al., 2004). This is 

associated with the ability of manganese oxide to release oxygen, thereby facilitating 

the formation of PdO phase. Ferrandon and coworkers (1999) indicated that addition of 

small amounts of platinum had favorable synergetic effect on the manganese oxide 

behavior. In addition, they studied effect of calcination temperature on the catalysts 

performances and claimed that different calcination temperature (500 ºC and 800 ºC) 

result in different manganese oxide phases. Formation of Mn2O3 phase at 500 ºC was 

claimed to be active manganese oxide catalyst for the oxidation of CO and naphthalene. 

As reported in literature, Mn2O3 is also a stable phase and it’s widely known that 

catalytic activities of mixed oxides are generally much higher than those of separate 

components. Thus, it is published that catalysts which are consisted of manganese 

oxides and other oxides exhibit good catalytic activity as compared to a single one due 

to interaction between support and with other components. In this sense, the synergy 

between Mn2O3 and Fe2O3 on VOCs studied by Duran and his coworkers (2009). They 

have prepared Mn2O3-Fe2O3 mixtures with different Fe/Mn atomic ratios by means of 

citrate method. They observed that formation of Mn2O3-Fe2O3 solid solution has better 

catalytic performance on ethanol, ethyl acetate and toluene oxidation than on Fe2O3 and 

Mn2O3 pure oxides. In addition to this, Mn-Cu mixed oxides prepared by co-

precipitation were tested on propane and total oxidation of ethanol by Cadus and 

coworkers (2006). They studied different aging time (4,18 and 24 h) for those oxidation 

reactions and results showed that prepared mixed oxides exhibit better catalytic 

performance than Mn2O3 and CuO pure oxides due to the existence of a Cu1.5Mn1.5O4 
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mixed phase and the easier reducibility of the catalysts. In addition, it was observed that 

stated that higher aging time resulted in better catalytic activity. However, the effect of 

ageing time on the activity of the final catalysts also studied by Taylor and coworkers 

(1997). They prepared a series of copper/ manganese oxide catalysts with varying 

ageing times (4, 18, and 24 h) using coprecipitation procedure and calcined them at 500 

ºC for 17 h. They claimed that increasing the ageing time plays important role in the 

formation of the mixed CuMnOx oxides and found that the best catalytic performance 

obtained on the catalyst aged for 12 h. 

It is well known that hopcalite catalysts, which comprise a mixture of copper 

and manganese oxide, show better catalytic performance in carbon monoxide and 

volatile organic compounds combustion. They are known as highly active catalysts even 

at low temperatures, but at above 600-700 ºC, single oxide phases of CuO and Mn2O3 

are not longer available in the catalyst mixture and crystallization of the copper 

manganite spinel starts to appear (Buciuman and Hahn, 1999). Therefore, at this 

temperature range, they lose their activity and stability, irreversibly. Larsson and 

Andersson (2000) studied several catalysts including CuOx/Al2O3, CuOx–CeO2/Al2O3, 

CuMn2O4/Al2O3, and Mn2O3/Al2O3 in the combustion of carbon monoxide, ethanol, and 

ethyl acetate. In order to promote the complete oxidation activity for CO, they modified 

the alumina with ceria prior to the deposition of CuO. The activity increased with CuOx 

loading until formation of crystalline CuO particles. However, it was found that CuO-

CeO2/Al2O3 catalyst was more active compared with hopcalite catalyst for the oxidation 

of CO, on the other hand, CuMn2O4/Al2O3 catalyst was more active for the combustion 

of ethanol and ethyl acetate. The enhancement of activity is attributed to high dispersion 

of CuO and oxygen storage ability of CeO2. Crystalline CuMn2O4 and Mn2O3 phases 

were observed over CuMn2O4/Al2O3 catalyst. 

Although hopcalite catalysts are well known for low temperature carbon 

monoxide oxidation, copper manganese oxide loses activity for CO oxidation at above  

500 ºC due to the possibility of crystallization of CuMn2O4 (Larsson and Andersson, 

2000). However, catalyst calcined at 500 ºC can display high activity because of the 

consequence of the low surface area of the material but not due to a high CO oxidation 

activity (Hutchings et al., 2009). Copper-containing manganese oxides (Cu/Mn molar 

ratio =0-1/1) prepared by sol-gel method was examined for 1 vol. % CO oxidation by 

Miyake et al (2009). As they compared catalysts, they observed that catalysts prepared 

by sol-gel method showed better activity than Meso Mn and commercial hopcalite 
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catalyst. This activity explained by incorporation of copper and electron transfer 

between oxygen and manganese. It is generally accepted that activity of hopcalite 

catalyst result from a quick charge exchange between Mn+3 and Cu+2 cations which are 

regenerate active sites. However, a study carried out by Buciaman et al. showed that 

high activity of hopcalite catalyst arose from synergistic cooperation of CuO and Mn2O3 

phases in physical mixture, but not from the interaction of copper and manganese 

cations within the spinel lattice of CuMn2O4. In the synthesis of the hopcalite precursor, 

drying and calcination steps are recognized to be crucial. Hence, effect of calcination 

temperature on the development of the surface area was investigated by Hutchings et al. 

(2009). They prepared the catalysts by coprecipitation and calcined them at different 

temperatures then tested for the oxidation of carbon monoxide at ambient temperature. 

They examined that as they increased the calcination temperature, loss of crystallinity 

occurred. At 400 ºC, new crystallite phase was observed and considered to be the 

microcrystalline CuMn2O4 hopcalite phase with small amount of copper and manganese 

oxides. They observed that the most active catalyst was that calcined at 410 ºC and also 

surface area of those catalyst calcined between 410-470 ºC were very similar and were 

more active than commercial hopcalite. On the other hand, calcination of unaged 

precursor at 500 ºC for 18 h led to totally inactive material. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. Materials 

In this study, Pt/Al2O3 powder catalysts having Pt loadings of 1, 2 and 3 wt % 

and CuO-Mn2O3/Al2O3 with various metal ratios and weight loadings were synthesized 

via impregnation and single step sol-gel method, respectively. In addition, to figure out 

the synergy between CuO and Mn2O3 species and to compare them with CuO-

Mn2O3/Al2O3 catalyst, CuO/Al2O3 and Mn2O3/Al2O3 with weight loading of 70% was 

synthesized through the same way. Moreover, Pd-Mn2O3/Al2O3 was synthesized in 

order to observe the addition of small amount of noble metal effect on the catalytic 

activity. In the synthesis of Pt/Al2O3 catalysts, dihydrogen hexachloroplatinate (IV) 

hexahydrate was used as a precursor for platinum. In addition, for the synthesis of CuO-

Mn2O3/Al2O3 catalysts, copper (II) nitrate dihydrate (Sigma) was used as a precursor for 

copper oxide; manganese (II) nitrate tetrahydrate (Merck) was used as a precursor for 

manganese oxide, respectively. For all type of catalysts, aluminum isopropoxide (Alfa 

Aesar) was used as a precursor for alumina. Deionised water (DIW) was used as solvent 

and nitric acid (HNO3) was used as a peptizer in the sol-gel method. Used chemicals are 

summarized in the Table 3.1. 

 

Table 3.1. Properties of materials used in catalysts synthesis 

 

Chemicals used in the experiments 
Chemical 

formula 

Molecular 
Weight 
(g/mol) 

 

Purity 
     (%) 

Aluminum isopropoxide Al(OCH(CH3)2)3 204.24 98 

Copper (II) nitrate dehydrate Cu(NO3)2.2H2O 223.56 98 

Manganese (II) nitrate tetrahydrate Mn(NO3)2.4H2O 251.01 96 

Platinic Acid H2PtCl6.6H2O 517.91 99.9 

Nitric Acid HNO3 63.01 65 
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3.2. Methods 

In this study, experiments can be categorized into three groups as seen in Figure3.1; 

-Preparation of catalysts 

-Characterization of catalysts 

-Testing of catalysts in the experimental set-up 

 

 

Preparation of catalysts 

Characterization of catalysts 

Testing of catalysts in the experimental set-up 

 
Figure 3.1. Experimental Procedure 

 

3.2.1. Preparation of Catalysts 

Platinum supported on alumina catalysts were prepared via incipient wetness 

impregnation method. As a starting point, to prepare alumina, necessary amount of 

alumina isopropoxide (AIP) and water were mixed at 85 ºC for 1 h. Then, in order to 

obtain high surface area, a known amount of glycerol (2 % wt) were added to AIP-

water mixture at the same temperature and stirred for 3 hours before the peptization 

step in which HNO3 were added and kept at 85 ºC again for 1 h. The mixture was left 

overnight for ageing and calcined at 500 ºC with a heating rate 10 ºC /min for 6 h. 

Finally, obtained powders were ground and sieved to 60 mesh (250 μm) size. For the 

impregnation step, pore volume of alumina was found by wetting the alumina with 

required amount of water until alumina powders saturated. Therefore, by considering 

the appropriate loading of platinum on alumina, platinic acid was solved in an amount 

of water found earlier. Finally, Pt containing solution was impregnated to alumina 

powders and dried at 120 ºC for 6 h then calcined at 500 ºC for 6 h before any testing. 
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For catalytic combustion of ethanol, three different loading of Pt/Al2O3 were 

synthesized with weight loadings of 1%, 2% and 3%. 

 

 
 

Figure 3.2. Experimental procedure for the preparation of alumina supported Pt catalyst 

 

On the other hand, copper manganese on alumina (CuMn2O4/Al2O3) catalysts   

with the weight loadings of 50, 70, and 90 % were synthesized for each Cu/Mn molar 

ratios of 1,5,12 via single step sol-gel procedure. In Figure 3.3, experimental procedure 

for the synthesis of CuO-Mn2O3/Al2O3 catalyst is shown. First, to prepare alumina 

supported catalysts, a known amount of alumina isopropoxide (AIP) in deionized water 

was stirred for 1 h at 85 ºC, after which 65% HNO3 was added to mixture and stirred 

together at 85 ºC again for 1 h. On the other side, needed amount of copper (II) nitrate 

and manganese (II) nitrate were solved in deionised water, separately and prepared in 

order to add to alumina sol. After that, separate solutions were added to prepared 

alumina sol in one step and mixed together at 85 ºC. Gelation occurred within 3 hour. 

Finally, gels were dried at 120 ºC for 12 h and calcined at 500 ºC with a heating rate 10 

ºC /min for 17 h. Finally, catalysts were ground and sieved to 60 mesh (250 μm) size. 

Moreover, to synthesis CuO/Al2O3, Mn2O3/Al2O3 and Pd-Mn2O3/Al2O3 catalysts, 

alumina sol was prepared by the same procedure then appropriate metal precursor was 

added into sol for each catalyst. For the catalysts mentioned, gels were dried at 120 ºC 
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for 12 h, then calcined at 500 ºC for 17 h, and finally sieved to 250 μm before their 

usage in an experimental reaction. 

 
 

 
 
Figure 3.3. Experimental procedure for the preparation of CuO-Mn2O3/ Al2O3 catalysts 

 

3.2.2. Characterization of the Materials  

In the characterization of the samples, X-ray diffraction (XRD), BET and GC-

FID were used. In order to determine the crystallite phase and the average crystallite 

sizes of samples, XRD pattern of the samples were determined using a Philips Xpert 

XRA-480 Model X-ray diffractometer. BET surface areas of the prepared samples were 

determined by using Micromeritics ASAP2020 analyzer at scan mode 77 K in the 

presence of N2. Inlet and outlet composition of ethanol and by-products released during 

the reaction were detected using a gas chromatography with a flame ionization detector 
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(GC-FID, Shimadzu GC-14A) which has 30 m length, inner diameter of 0.25 cm, HP-5 

capillar column.  

 

3.2.3. Experimental Setup and Catalysts Testing   

3.2.3.1. Experimental Instruments 

The catalytic oxidation of ethanol was performed in a fixed-bed reactor system 

at atmospheric pressure and in the temperature range of 50-350 oC. The tubular quartz 

reactor, with dimensions 30 cm long and an inner diameter of 1 cm, was filled to 0,6 cm 

with catalyst, which was placed in the middle of the reactor and supported by quartz 

wool. The reactor was placed in a high-temperature furnace made up of with a grinded 

zeolite inside to avoid thermal loses and electrical heating system inside the furnace 

controlled by a proportional integral derivative (PID) controller with a K type 

thermocouple positioned on the catalyst bed to get an accurate measurement of the 

reaction temperature. In addition, for accurate and stable controlling of gas flow rates, 

the concentration of air and nitrogen were adjusted by Brooks Instrument (Brooks 

model 5850). 

 

3.2.3.2. Activation Procedure before Catalyst Testing 

After the synthesis process of catalysts, the fresh catalyst powders loaded to 

known catalyst volume in a quartz reactor and treated by 1.5 ml of liquid ethanol at 

room temperature. In the activation procedure, first, necessary amount of nitrogen flow 

was passed through the reactor tube in order to carry the excess ethanol from the reactor 

and then dry air was passed through the tubular reactor in order to oxidize the adsorbed 

ethanol or other species on the catalyst surface. Finally, washed catalysts was kept at 

120 oC for 1 hour in a ventilation stream and then calcined at 500 oC for 2 hour. 
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3.2.3.3. Catalyst Testing 

In the evaluation of prepared catalysts in experimental set-up, first, 

concentration of dry air and nitrogen gases is adjusted by mass flow controllers. Flow of 

gases is controlled by a digital flow meter and in order to have ethanol vapor in the 

stream, nitrogen flow is send to a bubbler filled with liquid ethanol at room temperature. 

Furnace, having an electrical system inside, is set to a temperature point that experiment 

will be carried out. After ensuring that needed amount of ethanol vaporized, and getting 

steady state condition for each step, feed gas (total flow rate:100 cc/min and average 

ethanol concentration is 1500 ppm) is sent to the reactor containing catalysts. After the 

steady state condition reached for the reaction, product gas and reactants are collected 

into quartz gas-holders, separately and their analysis are carried out by a gas 

chromatographer equipped with FID detectors. 

 

 
 

Figure 3.4. Experimental set-up of ethanol combustion 
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Figure 3.4 demonstrate a diagram of ethanol oxidation process. However, in the 

oxidation of carbon monoxide, without any vaporization step, flow of 1 % CO in 

balanced, diluted with dry air to 0.5 % CO and sent to a reactor replaced in furnace. 

Product composition of outlet gas was analyzed by using GC-MS equipment. 
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CHAPTER 4 

RESULTS AND DISCUSSION  

The complete oxidation of ethanol was studied over mixed metal oxide and 

mixed oxide supported noble metal catalysts with various metal ratios and the loadings, 

prepared by using a sol-gel method, which allows one to control the chemical reactions; 

hence, indirectly tailoring the textural and chemical properties of the catalyst. The most 

effective catalysts for the ethanol combustion were selected by considering the lowest 

temperature at which 100% ethanol conversion is obtained. 

All the catalysts were tested in a tubular quartz reactor filled with a catalyst to 

have a catalytic bed length of 0.6 cm (i.e. ~0.3 g of the catalyst). Ethanol was vaporized 

in a bubbler at room temperature (24-27 oC) before being mixed with dry air to obtain 

an inlet ethanol concentration of 1000-2000 ppm and a space velocity of 12000 h-1 and 

the reaction was performed at temperatures ranging from 50 to 350 oC. Prior to the 

catalytic tests, all the catalysts were activated under the dry air flow at 500 oC for 2 h. 

At each reaction temperature, the catalysts were kept under the reaction condition for a 

reasonable time (e.g. 1 h to 2 h) to reach at steady-state. The concentrations of the 

reactants and the products were determined after being at steady-state using a gas 

chromatography equipped with a FID detector. 

 

Table 4.1. Operating conditions for ethanol oxidation 

Operating parameters                                    Operating range 

Reaction temperature                                        50-350 oC 

Inlet ethanol concentration                          1000-2000 ppm             

Total flow rate                                                   100 ml/min 

Space velocity                                                   12000 h-1 

 

In carbon monoxide oxidation, the reaction conditions were kept the same as that of the 

ethanol combustion but CO concentration was 5000 ppm in the inlet. 
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4.1. Blank Test 

 To observe if there is a gas phase ethanol oxidation, ‘Blank test’, which refers to 

the absence of catalyst on the catalytic bed, was tested in a tubular reactor containing 

only glass wools inside. Figure 4.1 shows the total ethanol conversion amount of 

homogeneous reaction of ethanol as a function of different reaction temperature and it 

clearly shows that total ethanol conversion increases with increasing reaction 

temperature. 
 

 
         Figure 4.1. Total Ethanol Conversion of Blank Test 

 

According to the results obtained from gas chromatography-mass spectrometry 

(all products obtained using the catalysts at different operating temperatures were 

showed in Table A.1 in Appendix A), ethanol conversion to carbon dioxide started to be 

observed at 400 oC. However, below this operating temperature ethanol can be 

converted to other products that could not measured quantitatively. Therefore, 

homogeneous reaction of ethanol combustion without catalyst did not appreciably occur 

below 400 oC. 
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4.2. Catalytic Performance of Noble Metal Catalysts in Ethanol    
Combustion  
 
Previous studies in literature show that the noble metal catalysts, in particular Pt 

and Pd catalysts, exhibit a high catalytic activity in the reduction of VOCs. Hence, in 

this study, for the ethanol combustion, platinum was selected and impregnated on sol-

gel made alumina support with various metal loadings. Figure 4.2 shows the total 

ethanol conversion obtained over 1, 2, and 3 % Pt/Al2O3 catalysts as a function of 

reaction temperatures.  

 

  
Figure 4.2. Comparison of varying Pt loadings of Pt/Al2O3 catalysts in ethanol 

combustion 
 

As seen in the figure above, increasing Pt loading from 1% to 3% lowers the 

highest ethanol conversion temperature from 100 o to 75 oC. In fact, at 75 oC, Pt/Al2O3 

showed 96 % ethanol conversion while it was 13 % and 33 % over 1% and 2% Pt/Al2O3 

catalysts, respectively. Each run was repeated 3 times under the same reaction condition 

and the results are tabulated in Table 4.2. It should be noticed that, at lower 

temperatures where the ethanol conversion decreased, the experimental error was high 

due to the tendency of ethanol to adsorb onto the surface at low reaction temperatures; 

hence requiring longer time to reach at the reaction steady state. 
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Table 4.2. Total Ethanol Conversion on Pt/Al2O3 Catalysts with Experimental Errors 

Total Ethanol Conversion (%) Catalysts 
@ 150 oC @ 100 oC @75 oC 

1 % Pt/Al2O3 96.66 (±0.84) 96.87 (± 0.02) 13.55 (±6.14) 

2 % Pt/Al2O3 94.16 (±2.57) 91.86 (±5.75) 33.40 (±17.27) 

3 % Pt/Al2O3 98.20 (±1.38) 98.70 (±3.80) 95.79 (±3.80) 
 
 
To find out the main reason behind the difference in ethanol conversion vs. temperature 

behavior observed among the catalysts with varying Pt loadings, XRD characterization 

method was used.  

 

 
 

Figure 4.3. XRD patterns of different weight loadings of Pt/Al2O3 catalysts 

 

Figure 4.3 shows XRD patterns of the Pt/Al2O3 for all the Pt loadings and pure alumina 

before using them in activity tests. At 37.44, 46.03 and 67.76 of 2Θ angles, alumina 

peaks are seen (other related peaks are shown in Figure A.1-7 in Appendix A). As 

figure demonstrated, Pt loaded Al2O3 and pure alumina show similar XRD pattern, 

which means that Pt crystallite size is less than 5 nm for all the Pt loadings and also, 

there are no diffraction lines associated with Pt metal that located at 39.67 and 46.28 of 

2Θ angles (XRD pattern of Pt is shown in Figure A.1 in Appendix A). This is plausible 

since XRD method is not sensitive to crystallite sizes below 5 nm. In other words, this 
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indicates that on fresh catalysts (i.e. unused) platinum was highly dispersed on alumina 

support regardless of the Pt loading. It is well known that the catalytic activity increases 

with increasing the number of available "active" sites at the surface. In other words, 

increasing Pt loading while keeping the crystallite size as small as possible, such as less 

than 5 nm, seems to provide additional active sites; hence, resulting in an increased 

conversion. Thus, one may expect to obtain increased conversion for all the Pt loadings 

since crystallite size is less than 5 nm for all the catalysts. However, 1% and 2%Pt 

loadings show the same conversion vs. temperature behavior within the experimental 

errors but there is a significant difference between 3%Pt and other Pt loadings. 

Therefore, the three times used   Pt catalysts  were analyzed using XRD to better 

understand the reason why 3%Pt had the highest activity while 1 and 2% Pt catalysts 

showed similar activities. As seen in Figure 4.4, Pt diffraction lines located at 39.67 and 

46.28 of 2Θ angles are clearly seen on the used 1% and 2% Pt catalysts whereas there is 

no diffraction lines corresponding to Pt metal on the used 3% Pt catalyst. This indicates 

that based on XRD, Pt crystallites on 3% Pt catalyst did not sinter during the ethanol 

combustion reaction; hence, staying below than 5 nm but the average crystallite sizes of 

the used 1% and 2% Pt catalysts became ~4.98 and 14.15 nm, respectively. One should 

notice that the occlusion of Pt crystallites inside the pores might have happened during 

the synthesis as well. Therefore, 1% and 2% seem to show similar behavior although 

the average crystallite size of 2%Pt is 2.84 times bigger than that of 1% Pt; hence, 

resulting in the equal number of total available surface sites on both catalysts and this 

seems to give the same conversion vs. temperature plot on both catalysts. 
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Figure 4.4. XRD pattern of Pt/Al2O3 catalysts after reactions 

 

Although precious metals among the highly active catalysts for the oxidation of 

various VOCs, due to their high costs, the studies have focused on supported and 

unsupported metal oxide catalysts.  

 

4.3. Catalytic Behavior of CuO-Mn2O3/Al2O3 on Ethanol Combustion 

 Copper and manganese oxides widely used and economic metal oxides yielding 

comparable activities in the oxidation of VOCs. Moreover, the mixed oxide of copper 

and manganese, known as hopcalite catalyst, shows high activity for ethanol and carbon 

monoxide oxidation as compared to single oxides of CuO/Al2O3 and Mn2O3/Al2O3 due 

to the formation of copper manganese oxide (CuMn2O4) phase (Hutchings et al., 2009). 

In light of these characteristic, in this study, the activity of the sol-gel made CuO-

Mn2O3/Al2O3 catalysts were investigated in the ethanol and CO oxidation. Beside of 

copper manganese oxide catalysts, single phase of CuO and Mn2O3 on alumina were 

synthesized by the same single step sol-gel method to explore the effect of each metal 

oxide on the activity of the catalysts. 
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Table 4.3. Copper manganese oxide catalysts with different ratios and loadings 

Catalysts 
Molar 

metal ratio 
(Cu/Mn) 

Metal 
Loading 
(wt %) 

Cu (wt %) Mn (wt %) 

50 25.096 24.904 

70 35.134 34.866   CuO-Mn2O3/Al2O3 1 

90 45.173 44.827 

50 41.720 8.280 

70 58.408 11.592 CuO-Mn2O3/Al2O3 5 

90 75.095 14.904 

50 46.181 3.819 

70 64.653 5.347 CuO-Mn2O3/Al2O3 12 

90 83.126 6.874 

CuO/Al2O3 0 70 70 0 

Mn2O3/Al2O3 0 70 0 70 
        

All the catalysts, listed in Table 4.3, were tested in ethanol combustion under the 

same operating conditions used in testing Pt catalysts. Keeping the operation conditions 

and metal molar ratio (Cu/Mn) constant, the activity of the mixed oxide catalysts were 

evaluated as a function of total metal oxide loadings. 

 

 
 

Figure 4.5. Effect of different weight loadings of CuO-Mn2O3/Al2O3 (Cu/Mn=1:1) on 
total ethanol conversion at various temperatures (Inlet Conc.=1500 ppm, 
SV=12000 h-1) 
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First, copper manganese oxide catalysts (for Cu/Mn=1:1) with various total 

oxide loadings were tested in a fixed bed reactor with an inlet concentration of ~1500 

ppm ethanol. Figure 4.5 shows the total ethanol conversion as a function of temperature. 

Above 300 oC, all the catalysts show high conversion, ~99%. However, as  the reaction 

temperature decreases, total ethanol conversion decreases in such a way that the total 

ethanol conversion over the catalyst (for Cu/Mn=1:1) with 70 % loading is ~76 % at 

250 oC while other catalysts have lower activities at this temperature as seen in Figure 

4.5.  

 

 
Figure 4.6. Effect of different weight loadings of CuO-Mn2O3/Al2O3 (Cu/Mn=5:1) on 

total ethanol conversion at various temperatures (Inlet Conc.=1500 ppm, 
SV=12000 h-1) 

  
    In addition, the catalytic activities of CuO-Mn2O3/Al2O3 (with Cu/Mn=5) catalysts 

for varying total oxide (Cu and Mn) loadings were shown as a function of the reaction 

temperatures in Figure 4.6. Similar to the catalysts (Cu/Mn=1:1), ethanol was almost 

completely converted to CO2 at the temperatures above 300 oC. However, at 250 oC, the 

catalysts with 50 % and 90 % total oxide loadings exhibited almost the same conversion 

while 70 % loading showed the highest conversion activity.   
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Figure 4.7. Effect of different weight loadings of CuO-Mn2O3/Al2O3 (Cu/Mn=12:1) on 

total ethanol conversion at various temperatures (Inlet Conc.=1500 ppm, 
SV=12000 h-1) 

                                          
Similar to other Cu/Mn molar ratio, 70 % loading showed higher conversion 

activity for Cu/Mn=12:1 catalyst, too. However, as seen in Figure 4.7, when Cu:Mn 

molar ratio increased to 12, 70 % catalysts did not show high conversion as observed 

with Cu/Mn=1:1 and 5:1; in fact, yielding only 22 % of ethanol conversion at 250 oC. 

The low catalytic activity of copper manganese mixed oxide catalysts may be resulted 

from ethanol adsorption at lower temperatures. It is possible that when the surface 

exposed to a mixture of ethanol and oxygen, clean catalyst surface becomes covered 

with ethanol, just because, ethanol requires a single vacant adsorption site while oxygen 

requires two adjacent sites. Therefore, the dissociation of oxygen molecules on the 

surface may probably be harder than ethanol adsorption on the surface. Hence, ethanol 

coverage will result in activity decreasing on the surface. However, in the case of 

various reaction temperatures, catalytic behavior of copper manganese oxides can be 

understood clearly by the analysis of catalysts in terms of phase composition and 

specific surface area of each sample. It is a well known characteristic of manganese 

oxide catalysts that they have a wide range of stoichiometries and crystalline phases 

because Mn atoms are found in various oxidation states at different temperature ranges. 

Therefore, by changing metal molar ratio, phase composition responsible for the high 

catalytic activity, will also show differences at different reaction temperatures. Thus, it 
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would be meaningful if the catalysts were tested in-situ using XPS to detect the exact 

oxidation state of metals during the reaction. 

 

4.3.1. Deactivation of CuO-Mn2O3/Al2O3 Catalysts 

After the catalysts were used, it was observed that activity decrease occurred for 

the catalyst at the same temperature. Figure 4.8 demonstrate ethanol conversion 

differences for the fresh and used 70 wt% CuO-Mn2O3/Al2O3 (Cu/Mn =1:1) catalyst. In 

the first usage of the catalyst, it yielded 76 % conversion at 250 oC, but after a while, 

more than second time usage, the same catalyst showed lower activity, yielding 35 % 

ethanol conversion at the same reaction temperature and conditions.  

 

            
Figure 4.8. Deactivation of 70 wt % CuO-Mn2O3/Al2O3 (Cu/Mn=1:1) catalyst before 

and after reaction 
 

In literature, the activity decrease of hopcalite materials was discussed by many 

researchers. According to Hutchings and coworkers (2009), the activity of hopcalite 

materials is mainly affected by two factors; namely surface area and the phase 

composition. It was observed that change of the oxidation states from Cu+2 to Cu+ and 

from Mn+3 to M+4 resulted in activity decrease in hopcalite catalysts. In addition, 

sintering, which is resulted from crystallization of amorphous hopcalite catalysts, leads 
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to the decrease of the surface area; thus lowering of the catalytic activity (Taylor et al., 

1997). Beside the sintering effect, the rapid deactivation of hopcalite catalysts is favored 

by the presence of moisture (Njagi et al., 2010). Maier et al. (2006) investigated the sol-

gel derived Cu20Mn80Ox and found that it was active for the oxidation of CO at room 

temperature in dry air. However, under humid air, they observed that the catalyst 

deactivation occurred within a few minutes. In addition, Hoflund and co-workers (1995) 

investigated the relation between CO2 and the catalyst decay on gold catalysts and 

discussed the carbon species formed during the reaction and retained on the surface. By 

taking into account this, to figure out the main reasons, which cause the deactivation, 

one of the catalysts used in this study was analyzed with FT-IR. 

 

 
Figure 4.9. FT-IR spectra of used Cu/Mn/Al2O3 (Cu/Mn=1:1) catalysts. 

 

By looking at the peaks, located between1200 and 1800 cm-1 in FT-IR spectra, it can be 

said that carbonaceous species occurred on the Cu/Mn/Al2O3 (Cu/Mn=1:1) catalysts. 

According to literature studies, the peaks located at around 1340-1363, 1418-1421 and 

1484-1488 cm-1 are attributed to monodentate carbonates (Solis, 2010), whereas the 

peaks located at 1550-1565 and 1632-1639 cm-1 are generally attributed to bidentate 

carbonates. However, by considering experimental conditions, carbon dioxide in air 

and/or reaction by-products must be adsorbed on catalysts surface and resulted in the 

activity decrease.    
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 Since the results obtained from the FT-IR spectra confirm the CO2 adsorption on 

catalyst surface, new catalysts were synthesized. Depending on the results obtained 

before, 70 % loading for the various catalysts was selected. The new ‘fresh’ catalysts 

were tested at the same reaction conditions for total ethanol oxidation. Before using 

catalysts in the reaction system, the preparation route to synthesize the catalyst was the 

same as explained in material and methods section. Thus, after the preparation of the 

catalysts, they calcined at 500 oC for 2 h in an air stream and then reaction was carried 

out at the high temperatures and then the reaction temperature was lowered.   

   

 
Figure 4.10. 70 % weight loading of varied molar ratios of CuO-Mn2O3/Al2O3 catalysts 

 
Figure 4.10 demonstrate the catalysts activity of 70 % loading for Cu/Mn =1:1, 5:1 and 

12:1 in the total ethanol conversion with respect to various reaction temperatures. In the 

comparison of the catalysts, Cu/Mn=1:1 catalyst is the most active one that yields 

almost 99 % ethanol conversion at 250 oC while the others convert less than 40 % 

ethanol . The activity of catalysts coincide with the results that observed before, for the 

Cu/Mn =1:1 and 12 (70 %) catalysts within the experimental error. However, Cu/Mn 

=5:1 (70 %) catalyst showed highly different result at 250 oC as compared to one 

conducted before. Although the same preparation method was applied, the decrease in 

the catalyst activity may be due to the increased crystallization of amorphous phase, 

and/or specific surface area lose. In addition, it may result from the formation and/or 
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absence of species that was responsible for the high activity. In the evaluation of 

Cu/Mn=1:1 catalysts, the high activity can be explained by the presence of Cu+2 and 

Mn+3 oxidation states which is reported to be responsible for the high activity for the 

catalysts (Li, 2009). To explain the oxidation states of the working catalysts, it is 

necessary to have additional characterization techniques, such as X-ray photoelectron 

spectroscopy (XPS). In addition to oxidation states of Cu and Mn, the catalytic behavior 

can be related to the existence of a mixed oxide phase in the catalysts.   
 

 
Figure 4.11. XRD pattern of different metal ratio of 70 % CuO-Mn2O3/Al2O3 catalysts 

 
In order to examine the reason behind the activity differences, the phase 

composition of various synthesized oxides was analyzed with XRD measurements. In 

Figure 4.11, the diffraction pattern of each fresh (not used in reaction) catalysts were 

exhibited, but the differences in phase composition can be clearly understood from the 

figures given in the appendix section. According to X-ray patterns of the samples, 

Cu/Mn=1:1 catalyst mainly consists of Cu1.5Mn1.5O4 and CuO phases. This result is in 

accordance with the study, in which catalyst activity was related with the existence of 

Cu1.5Mn1.5O4 phase by Cadus et al. (2006). In addition, Hutchings et al. (2009) 

synthesized a catalyst by co-precipitation with a molar ratio Cu:Mn=1/1, and calcined at 

500 oC. As found in this thesis study, they reported that CuMnxOy mixed phase and 
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CuO was responsible for the high activity. Therefore, at this point, the activity of 70 % 

CuO-Mn2O3/Al2O3 (Cu/Mn=1:1) was due to the presence of the Cu1.5Mn1.5O4 phase 

which is responsible for the high activity of catalysts. 

 To analyze the catalyst activity in terms of surface area, the specific surface 

areas of ‘fresh’ catalysts (before using them at any reaction) were measured using BET 

analysis method. Table 4.4 shows the BET surface areas of various molar ratios of 

(70%) Cu/Mn/Al2O3 catalysts.  

 

Table 4.4. BET surface area of (70 % wt) CuO-Mn2O3/Al2O3 catalyst 

Catalyst Type (70 % wt) Cu:Mn 
molar ratio 

BET Surface 
Area (m2/g) 

Pore 
Volume 
(cm3/g) 

Avarage 
pore 

diameter 
(A) 

CuO-Mn2O3/Al2O3 1:1 92.35  0.0088 54.9384 

CuO-Mn2O3/Al2O3 1:5 78.39  0.0076 45.6538 

CuO-Mn2O3/Al2O3 1:12 79.97  0.1395 52.9843 
 
 

Surface area measurements confirmed the activity behaviors of catalysts that the 

most active catalyst, which is CuO-Mn2O3/Al2O3 Cu/Mn=1:1, has the highest surface 

area while CuO-Mn2O3/Al2O3 Cu/Mn=5:1 and 12:1, have the comparable surface areas. 

This is in agreement with Hutchings et al. who pointed out that the surface area was of 

importance for the catalytic performance of copper manganese oxides. In comparison of 

Cu/Mn=5:1 and Cu/Mn=12:1 catalysts, 70 wt% CuO-Mn2O3/Al2O3 Cu/Mn=12:1 is 

more active than the other one. This may be resulted from existence of small copper 

manganese oxide crystallite phase not detectable by XRD. 

 In conclusion, for the ethanol oxidation reaction, 70 wt% CuO-Mn2O3/Al2O3 

Cu/Mn=1:1 catalysts prepared by the single step sol-gel method showed the highest 

catalytic performance in metal oxide catalysts due to existence of Cu1.5Mn1.5O4 phase. 

In addition, a high catalyst surface area provides better dispersion that enables the 

catalyst to convert ethanol to CO2. For Cu-Mn mixed oxide catalysts (70 wt%), carbon 

dioxide was observed above 250 oC (gas phase products are showed in Table A.1 in 

Appendix A) and also, any formation of partial oxidation products, such as 

acetaldehyde, was not detected. 
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Importance of the presence of the catalyst on the ethanol conversion may illustrated 

easily as seen in Figure 4.12 below. 

 

 
 

                Figure 4.12. Effect of blank and pure alumina catalyst 

                                                             
As seen in Figure 4.12, the gas phase reaction of ethanol was below 10 % 

conversion at 250 oC and reaction over pure alumina exhibited around 30 % at the same 

temperature. However, presence of Cu/Mn (70 wt %) on alumina significantly increased 

the conversion such that ~99 %  ethanol conversion achieved at the same temperature, 

indicating that Cu/Mn catalyst was responsible in obtaining high ethanol combustion. 

Hence, CuO-Mn2O3/Al2O3 (70 wt %) is found to be highly active catalyst in the 

combustion of ethanol.   

 

4.4. Effect of Single Composition of CuO/Al2O3 and Mn2O3/Al2O3 
Catalysts on Ethanol Oxidation 

                                        
It is known that combination of MnOx with other oxides, such as a high surface 

area support, exhibit different catalytic activity as compared to a single component 

catalyst (Cadus et al., 2006). It has a great impact on its bulk and surface structure and 

well dispersion of MnOx on the support surface leads to significant increases in catalytic 
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activity. In addition, the supported manganese oxide could be reduced at a lower 

temperature than bulk Mn2O3. By considering all of these, the synergy between the 

copper manganese mixed oxide catalysts and single oxides of CuO and Mn2O3 were 

investigated in terms of catalyst activity as a function of various temperatures. 

 

 
Figure 4.13. The activities of Mn2O3 and CuO single oxides on alumina  

 

Figure 4.13 indicates that the complete conversion of ethanol over Mn2O3/Al2O3 

occurred at 300 oC, while it was at 350 oC on CuO/Al2O3. However, ethanol oxidation 

on pure alumina has also a reasonable contribution on the catalyst activity because at 

300 oC, nearly 50 % of ethanol was converted by pure alumina. When the activity of 

single oxide of CuO and Mn2O3 on alumina was compared to 70 wt % CuO- 

Mn2O3/Al2O3 (Cu:Mn=1) mixed oxide catalyst, the combination of copper and 

manganese oxide result in a significant increase in the oxidation of ethanol. Although 

single phase of copper and manganese oxides can only convert  20 % of ethanol, copper 

manganese oxide (70 wt %, Cu:Mn=1), is highly active even at 250 oC; yielding almost 

99 % ethanol conversion. Therefore, the results obtained in this study confirm that the 

combination of MnOx with other oxides deposited on high surface area support exhibit a 

high catalytic activity as compared to a single component of the catalysts in the 

oxidation of ethanol.  
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Activity differences observed between CuO/Al2O3 and Mn2O3/Al2O3 catalysts 

could be explained by surface areas. In addition, it is reported that higher catalyst 

surface area leads to increase in catalytic activity of MnOx (Cadus et al., 2006). 

Moreover, Marion et al. (1990) reported that low Cu loading on Al2O3 led to better 

dispersed ionic Cu, while high loading of Cu on alumina result in poorly dispersed CuO 

with more covalent character. They concluded that ionic character of Cu resulted in 

high catalytic activity for methane combustion. Furthermore, Fortunato et al. (2001) 

approved that, the catalysts with lower Cu+ concentration was more active than the 

sample with a high content of univalent copper. Therefore, it is important to determine 

the oxidation states of species and the surface area of the catalysts. Comparison of BET 

surface areas of fresh CuO/Al2O3 and Mn2O3/Al2O3 is shown in Table 4.5. 

 

Table 4.5. BET surface area of CuO/Al2O3 and Mn2O3/Al2O3 catalysts 

Catalyst Type (70 % wt) BET Surface Area 

Mn2O3/Al2O3 83.92 m2/g 

CuO/Al2O3 79.81 m2/g 

Pure Al2O3 350 m2/g 

                                                             

4.5. Effect of Pd-Mn2O3/Al2O3 Bimetallic Catalyst on Ethanol 
Combustion  

 
 It is known that to use noble metal catalysts in industry are costly and show less 

resistant to poisoning. It may be possible to lower the amounts of noble metals and 

improve the catalyst activity by combining noble metals and metal oxides. It was 

reported that in methanol/formaldehyde combustion, addition of 0.1 % Pd to 18.2 wt % 

Mn/Al2O3 catalysts decreased the light off temperature from 220 oC to 90 oC; thus 

increasing the activity (Galvan et al., 2004). In addition, to lower the deactivation of the 

catalysts in the presence of moisture, Maier et al. (2010) investigated the effect of 

platinum and palladium addition to hopcalite catalysts and found that the addition of 

palladium is proved to have positive effect. However, in their study, they observed that 

0.5 wt % Pt did not improve water resistance of active hopcalite catalysts.    
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 In this study, the effect of different loading of palladium metal, prepared by a single 

step sol-gel method, on the manganese oxide catalytic activity was investigated as a 

function of temperature for the  total ethanol conversion. 

  

 
Figure 4.14. Effect of Pd addition on ethanol combustion 

 

 As observed before, ~99% ethanol conversion was obtained over Mn2O3/Al2O3 

catalysts at 300 C. However, as shown in Figure 4.14, palladium addition to 

Mn2O3/Al2O3 improved metal oxide catalytic activity and the best activity was achieved 

over Pd loaded catalysts having Pd/Mn molar ratio of 0.5. To understand why the 

Pd:Mn=0.5 showed significant difference than the catalysts having different molar ratio, 

XRD patterns of samples were taken.    
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Figure 4.15. XRD pattern of used Pd- Mn2O3/Al2O3 catalysts 

 

Figure 4.15 shows different metal loaded Pd-Mn2O3/Al2O3 catalysts. It was 

analyzed that all diffraction lines correspond to Mn2O3 crystallites located at 32.93 and 

55.14 of 2Θ angles. The activity of the bimetallic catalysts was explained by the 

synergy between supported manganese and palladium phases (Galvan et al., 2004). 

They also associated this activity with the ability of manganese oxide to release oxygen. 

They claimed that this released oxygen molecule facilitated the formation of the PdO 

phase and then a fraction of this PdO reduced to Pd and that provided sites for the 

decomposition of organics. However, PdO crystallite formation was only observed at 

34.13 and 55.15 of 2Θ angles over Pd:Mn=1 catalysts (Other related peaks are shown in 

Figure A.11 in Appendix A). Therefore, to explain activity differences clearly, further 

studies must be carried out. It was reported that, the existence of oxygen vacancies may 

improve the catalytic performance of the catalysts. In other words, it is important to 

determine the oxygen vacancies responsible for the improvement of catalyst activity 

using temperature programmed desorption (TPD) and temperature programmed reaction 

(TPR) techniques. In general, two types of desorption peaks, namely surface and bulk 

oxygen, are observed. A combustible molecule may adsorb on the surface oxygen 

vacancies or it may use the oxygen in the catalyst bulk. In conclusion, by determining 

the oxygen vacancies, its contribution to catalyst activity and morphology can be 

understood clearly. Unfortunately, these techniques are not currently available in out 

institute. 
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  4.6. Carbon Monoxide Oxidation  

 In carbon monoxide oxidation, 0.5 vol % CO was tested over 70 wt% 

Cu/Mn/Al2O3 ((Cu/Mn)molar=1, 5, and 12) mixed oxides and 0.5 % Pd loaded alumina 

catalysts. Between 150-450 oC, their product analyses were done by a gas 

chromatograph-mass spectrometry. A small amount of carbon dioxide formation was 

observed. However, the conversion of CO to CO2 was not quantitatively obtained due to 

the difficulties in separation of CO and small amount of CO2 in the GC column.  

 As widely reported in literature, the activity of the hopcalite catalysts in CO 

oxidation is strongly depend on the redox couple of Cu+2+Mn+3=Cu++Mn+4. In addition, 

amorphous CuMn2O4 phase is important parameter to have high activity. By 

considering all of these, it could be said that some CO2 observation on Cu-Mn mixed 

oxides might be resulted from enrichment of Cu+ and Mn+4 on the surface or 

crystallization of the CuMnxOy phase. However, to tell the main the reason, further 

study is needed. 
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CHAPTER 5 

CONCLUSION 

 In this study, ethanol and carbon monoxide oxidation was investigated over 

different types and weight loadings of metal and metal oxide xerogel catalysts. Based 

on the converted amount of ethanol and/or carbon monoxide, each catalysts 

performance was determined at various temperatures. 
 In ethanol oxidation, it was observed that increasing Pt loading resulted in 

increasing conversion of ethanol. Among Pt loading used in this study, 3 wt % Pt 

loading in Pt/Al2O3 showed that highest activity in such a way that it yielded almost 96 

% ethanol conversion at 75 oC. In contrast, for the mixed metal oxide catalysts, 70 % 

loading for CuO-Mn2O3/Al2O3 with Cu/Mn molar ratio of 1 exhibited the high catalytic 

activity due to presence of copper manganese oxide phase. It converted almost 99 % of 

ethanol at 250 oC while this conversion was obtained at higher temperatures for the 

metal oxide catalysts with other loadings and Cu/Mn ratios due to absence of 

Cu1.5Mn1.5O4 phase. Products analyzed by a GC-MS were CO2 for all the catalysts at 

high temperatures while ethanol and small amount of ethyl acetate were measured at 

low temperatures. XRD and BET analyses showed that a small crystallite size and a 

high surface area were important parameters to obtain highly active catalyst most 

probably due to the accessibility to active sites on the catalysts surface. In addition, 

according to FT-IR analyses, it was found that the deactivation which resulted in 

decreasing activity, occurred on CuO-Mn2O3/Al2O3 catalyst surface due to the presence 

of carbonaceous species most probably formed by carbon dioxide. 

  To figure out the effect of adding Cu and/or Mn on catalyst activity, mixed 

oxides and single oxides of copper and manganese were compared. It was observed that 

prepared CuO-Mn2O3/Al2O3 mixed oxide exhibited higher catalytic activity than 

Mn2O3/Al2O3 and CuO/Al2O3 single oxides due to the formation of a Cu1.5Mn1.5O4 

mixed phase. Moreover, palladium addition was investigated over Mn2O3/Al2O3 (70 wt 

%) catalysts to study possible improvement of the catalysts activity in the presence of 

noble metal addition. Results indicated that, addition of Pd ((Pd/Mn)molar=0,5) enhanced 

the activity of metal oxide catalyst. 
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 High conversion catalysts, which were tested in ethanol combustion, were used 

in CO oxidation. However, results were only able to demonstrate the presence of some 

amount of combustion product, such as carbon dioxide, between 150 and 450 oC. 
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APPENDIX A 

XRD PATTERN OF CATALYSTS 

 
Figure A.1. Powder diffraction data of Platinum (Ref.No: 87-0647) 

 

 
Figure A.2. Powder diffraction data of copper oxide (Ref.No: 80-1917) 
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Figure A.3. Powder diffraction data of manganese oxide (Ref.No: 76-0150) 

 

 
Figure A.4. Powder diffracion data of Aluminum Oxide (Ref.No: 47-1308) 
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Figure A.5. Shematic of diffraction pattern of Al2O3 (Ref.No: 04-0875) 

 

 
Figure A.6. Shematic of diffraction pattern of Pt (Ref.No: 01-1190) 

 

 
Figure A.7. Shematic of diffraction pattern of Pt (Ref.No: 87-0636) 
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Figure A.8. 70% CuO-Mn2O3/Al2O3 Cu/Mn=1 peaks in blue: Copper Manganese oxide 

(Ref.No: 70-0262); in green: Copper oxide (Ref.No: 48-1548) 
 

 
 

Figure A.9. 70% CuO-Mn2O3/Al2O3 Cu/Mn=5 peaks in red: Copper oxide  
                    (Ref.No: 72-0629) 

 

 
 

Figure A.10. 70% CuO-Mn2O3/Al2O3 Cu/Mn=12 peaks in red: Copper manganese       
oxide (Ref.No: 70-0261); peaks in blue: Copper oxide (Ref:80-1268)) 
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Figure A.11. Powder diffraction data of Palladium Oxide (Ref.No: 85-0713) 

 

 

Table A.1. Types of Catalyts’ Products at Varying Operating Temperatures 
 

REACTION TEMPERATURES (0C) Catalyst 
Type 450 400 350 300 250 200 150 100 75 50 

1% Pt/Al2O3 � � � � � � � ▲ ▲ ▲ 

2% Pt/Al2O3 � � � � � � �▲ �▲ ▲● ▲● 

3% Pt/Al2O3 � � � � � � � � �▲● �▲● 
70 %  

Cu/Mn/ Al2O3 
Cu/Mn=1 � � � � � ▲● ▲       

70 %  
Cu/Mn/ Al2O3 

Cu/Mn=5 � � � � ▲ ▲● ▲     
70 %  

Cu/Mn/ Al2O3 
Cu/Mn=12 � � � � �▲● ▲ ▲     

Blank �▲ �▲ ▲ ▲ ▲ ▲ ▲     

Pure Alumina � ▲�●� ▲�●� ▲�●             
  

▲ Ethanol � Carbon dioxide ● Ethyl acetate �Ethyl ether 
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