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ABSTRACT 

OPTIMUM DESIGN OF ANTI-BUCKLING BEHAVIOUR OF THE 
LAMINATED COMPOSITES CONSIDERING PUCK FAILURE 

CRITERION BY GENETIC ALGORITHM 
 

In recent years, fiber-reinforced composite materials have been increasingly 

used in engineering applications due to their advantages such as strength and weight 

reduction. Determination of the buckling load capacity of a composite plate under       

in-plane compressive loads is crucial for the design of composite structures. 

Accordingly, in this thesis, optimum designs of anti-buckling behavior of 64-layered 

carbon/epoxy composite plates, which are simply supported on four sides and subject to 

biaxial compressive in-plane loads, are investigated considering Puck failure criterion 

by using genetic algorithm (GA). The plates are taken to be symmetric and balanced 

with continuous fiber angles in the laminate sequences. Critical buckling load factor is 

taken as objective function and fiber orientations are taken as design variables. The 

critical buckling load factor is maximized for various loading cases and plate aspect 

ratios.  The optimum designs obtained are controlled layer by layer using Puck failure 

criterion. A comparison between continuous and discrete plate (laminate in which the 

orientation angles are limited to the conventional orientations) designs is performed in 

order to show the reliability of continuous plates. The optimization of 48-layered 

composite plates has been performed in order to be compared with 64-layered 

composite plates. The optimum designs considering Puck inter-fiber failure mode C has 

also been investigated.  

 Finally, a comparative study between Puck and Tsai-Wu failure criteria is 

performed and the advantage of Puck failure criterion is shown. In conclusion, it is 

found that the optimum designs of laminated composites considering buckling and ply 

failure strength depend on loading, loading ratio and plate aspect ratio. 
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ÖZET 

TABAKALI KOMPOZİTLERİN BURKULMA KARŞITI 
DAVRANIŞLARININ PUCK KIRILMA KRİTERİ ESAS ALINARAK 

GENETİK ALGORİTMA İLE OPTİMUM TASARIMI 
 

Son yıllarda fiber katkılı, tabakalı kompozit malzemeler, dayanıklılık ve ağırlık 

azaltımı gibi avantajlarına bağlı olarak mühendislik uygulamalarında artan bir şekilde 

kullanılmaktadır. Düzlem-içi bası yükleri altındaki bir kompozit plakanın burkulma 

yükü kapasitesinin belirlenmesi kompozit yapıların tasarımı için çok önemlidir. Buna 

göre, bu tezde, çift eksenli düzlem içi bası yüklere maruz ve dört taraftan basit mesnetli 

64 tabakalı karbon/epoksi kompozit plakaların burkulma karşıtı davranışlarının 

optimum tasarımı Puck kırılma kriteri esas alınarak genetik algoritma (GA) ile 

araştırılmıştır. Plakalar, levha dizilimlerinde sürekli fiber açılara sahip olacak şekilde 

simetrik ve balans olarak alınmıştır. Kritik burkulma yükü faktörü amaç fonksiyonu ve 

fiber oryantasyonları tasarım değişkenleri olarak alınmıştır. Kritik burkulma yükü 

faktörü çeşitli yükleme durumları ve plaka en-boy oranları için maksimize edilmiştir. 

Elde edilen optimum tasarımlar Puck kırılma kriterinden yararlanılarak tabaka tabaka 

kontrol edilmiştir. Sürekli ve belirli plaka (oryantasyon açıları geleneksel 

oryantasyonlara sınırlanmış levha) tasarımları arasında bir kıyaslama sürekli 

tasarımların güvenilirliğini göstermek için gerçekleştirilmiştir. 48 tabakalı kompozit 

plakaların optimizasyonu 64 tabakalı kompozit plakalarla kıyaslanması için 

sunulmuştur. Optimum tasarımlar, Puck tabakalar arası kırılma C modu dikkate alınarak 

ayrıca araştırıldı. Son olarak, Puck ve Tsai-Wu kırılma kriterleri arasında bir kıyaslama 

çalışması gerçekleştirilmiş ve Puck kırılma kriterinin avantajı gösterilmiştir. Sonuç 

olarak, tabakalandırılmış kompozitlerin burkulma ve lamina kırılma dayanımı dikkate 

alınarak optimum tasarımlarının yük, yük oranı ve plaka en-boy oranına bağlı olduğu 

bulunmuştur. 
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CHAPTER 1 

 

 INTRODUCTION  

 
1.1.  Literature Survey 

 
Fiber reinforced composites are increasingly used in several modern engineering 

fields such as aircrafts, aerospace, automotive, and marine due to their low weight, high 

strength and/or stiffness and better mechanical properties than other materials. Some 

examples of their applications are lightweight, strong and rigid aircraft frames, 

composite drive shafts and suspension components, sports equipment, pressure vessels 

and high-speed flywheels with developed energy storage capabilities. The anisotropic 

nature of fiber-reinforced composites enables the unique opportunity of tailoring such 

properties as the stacking sequence, fiber orientation and thickness of laminate 

according to design requirements for a given application. Consequently, the design of 

laminated composite materials may be optimized over various objective functions and 

design variables (Pelletier and Vel 2006). 

Many researches have carried out many studies using several optimization 

techniques according to various optimization objectives in the literature for the 

optimization of laminated composite materials. The stochastic optimization methods 

used mostly in the literature are genetic algorithm (GA), simulated annealing algorithm, 

tabu search, pattern search and ant colony optimization. Furthermore, problems are 

considered using single-objective or multi-objective approaches in the optimization of 

laminated composite materials. 

Weight or thickness minimization of the laminated composite plates is one of 

the design objectives used by researchers. The use of a genetic algorithm for the 

minimum thickness design of composite laminated plates is explored by some pioneers. 

A previously developed genetic algorithm for laminate design has been revised and 

improved. Thus, the thinnest symmetric and balanced laminates satisfying the 4-ply 

contiguity constraint which do not fail because of the fact that buckling or excessive 

strains are obtained (Le Riche and Haftka 1995). Minimum weight design of composite 

laminates is presented using genetic algorithm considering the failure mechanism based 
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(FMB), maximum stress and Tsai-Wu failure criteria as design constraints for different 

in-plane loading conditions and different ply orientations, which are defined as the 

design variable (Naik, et al. 2008). 

Some researchers have included the minimum weight design to minimum 

deflection or minimum cost design objectives. The minimum deflection and weight 

designs of laminated composite plates with four layers considering various boundary 

conditions, varying aspect ratios and different loading types are given separately using 

the finite element method based on Mindlin plate theory in conjunction with 

optimization routines (Walker, et al. 1997). A similar study, a technique for combining 

genetic algorithms with the finite element method to minimize both the mass and 

deflection of eight layered symmetric-balanced fiber-reinforced composite plates with 

fiber orientation and laminate thickness design variables is described considering 

implemented design constraint based on the Tsai-Wu failure criterion (Walker and 

Smith 2003). The minimum weight and the minimum material cost of laminated plates 

subjected to in-plane loads are investigated by genetic algorithm. Maximum stress, 

Tsai-Wu (TW) and the Puck failure criterion (PFC) are taken into account by means of 

constraints introduced in the optimization problem. The design variables are the ply 

orientations, the number of layers and the layer material as usual (Lopez, et al. 2009). 

Another optimization method commonly used in composite design is direct 

search simulated annealing (DSA), which is also a reliable global search algorithm. 

Minimum thickness (weight) optimization of laminated composite plates having fiber 

orientation angles and layer thickness as design variables subject to different in-plane 

loadings has been presented by  Akbulut and Sonmez (2008). In their study, the       

Tsai-Wu and the maximum stress criteria have been used in order to check static failure. 

The same research team has recently made a similar study thereby improving a new 

variant of simulated annealing (Akbulut and Sonmez 2011).  

The buckling load capacity of a composite plate under in-plane compressive 

loads is crucial for the design of the composite structures. The buckling could cause a 

premature failure of the structure. Therefore, buckling load maximization is a critical 

issue that many researchers deal with. The stacking sequence design of a composite 

laminate for buckling load maximization considering strain failure has been studied 

using genetic algorithm by Haftka and Le Riche (1993). Optimum stacking sequence 

designs of a composite panel subjected to biaxial in-plane compressive loads have been 

found using genetic algorithm and generalized pattern search algorithm. The critical 
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buckling loads are maximized for several combinations of load case and plate aspect 

ratio, and are compared with published results in their study (Soykasap and Karakaya 

2007; Karakaya and Soykasap 2009). Similarly, another optimization study using a 

genetic algorithm is proposed to determine the optimal stacking sequence of laminated 

composite plates for the maximum buckling load under several different loadings, such 

as uniaxial compression, shear, biaxial compression, and the combination of shear and 

biaxial loadings. Critical buckling load is taken as fitness function and fiber orientations 

are taken as design variables (Kim and Lee 2005).  

Some researchers have revised and improved genetic algorithms for searching 

the optimum designs of composite plates and obtaining more reliable results. Buckling 

load maximization of a simply supported laminated composite plate by applying genetic 

algorithm with generalized elitist selection has been examined to obtain optimal designs 

for symmetric-balanced, simply supported plate assumptions (Soremekun, et al. 2001). 

Permutation genetic algorithms optimizing the stacking sequence of a composite 

laminate for maximum buckling load and a comparison with standard non-permutation 

GA have been  presented by Liu et al. (2000). 

As in weight minimization design problems, buckling load maximization 

designs have also handled with another various optimization methods in the literature. 

An improved version of simulated annealing algorithm, which is direct simulated 

annealing (DSA), has been utilized to maximize the buckling load capacity of laminated 

composites subject to given in-plane static loads for critical buckling failure in order to 

find the optimum fiber orientation by Erdal and Sonmez (2005). Optimum designs of 

the stacking sequence of a composite laminate for buckling response, matrix cracking 

and strength requirements have been conducted using a heuristic search technique 

known as tabu search and compared to the related previous studies done by genetic 

algorithm (Pai, et al. 2003). An application of the ant colony optimization (ACO) 

metaheuristic to the stacking sequence design of laminated composite panels for 

maximization of buckling load with strength constraints is fulfilled and compared to 

other researches previously studied by using genetic algorithms (GA) and tabu search 

(TS) to indicate the computational efficiency and the quality of results provided by 

ACO algorithm (Aymerich and Serra 2008). The Ant Colony Optimization algorithm 

has been also used with strength constraints to find the optimum designs of composite 

plates in the literature. For instance, the problem has been formulated to maximize the 

critical buckling load whereas with the biaxial tension, the formulation is to minimize 
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the failure index in the study of Sebaey et al. (2011). The modified feasible direction 

(MFD) method has been used for optimization of symmetrically angle-ply square 

laminated plates in which the design objective is the maximization of the buckling load 

for weighted sum of the biaxial compressive and thermal loads. The effect of different 

weighting factors, number of layers, aspect ratios, load ratios and boundary conditions 

on the optimal design has been investigated (Topal and Uzman 2010). A Pareto-based 

multi-objective evolutionary algorithm method is applied to the optimal design of a 

composite plate for weight minimization and maximization of the buckling margins 

under three hundred load cases (Irisarri, et al. 2009). Optimal design of composite 

laminates under buckling load uncertainty is studied and the buckling load is maximized 

under worst case in-plane loading using a nested solution method. Results are given for 

both continuous and discrete fiber orientations using a nested solution method (Adali, et 

al. 2003). 

Besides buckling load optimization of composite plates subjected to mechanical 

loading only, thermal buckling optimization of composite laminates subjected to a 

thermal change has been investigated in the literature. Thermal buckling optimization 

problem of laminated composite plates in aerospace structures, which require such 

components that are able to withstand the external environment loads without loss of 

stability, subject to a temperature rise is solved under strain and ply contiguity 

constraints using  evolution strategies, a guided random-search method by (Spallino and 

Thierauf 2000). In another study, thermal buckling optimization of laminated plates 

subjected to uniformly distributed temperature load is investigated in order to obtain 

optimum fiber orientation designs having the maximum critical temperature capacity of 

laminated plates using Modified Feasible Direction (MFD) method (Topal and Uzman 

2008). 
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1.2.  Objectives 

 
Considering the literature survey, it is clearly obvious that design criteria 

includes performance of the panel, material failure, weight, rigidity etc. so that the 

number of plies (thickness) and stacking sequence can be optimized for a better design. 

In the same manner, determination of the buckling load capacity of a laminated 

composite plate under in-plane compressive loads has a critical importance in the design 

of the composite structures. The buckling could yield a premature failure of the 

structure. Accordingly, the aims of the thesis can be listed as follows 

 
1) To find the best stacking sequences (fiber orientations with continuous fiber 

angles) of 64-layered carbon/epoxy laminated composites in different plate 

aspect ratios subjected to various compressive in-plane loads resisting to 

buckling and failure of any layer (the first ply failure). 

2) Determination and comparison of objective function (buckling load factor) 

values of optimized composite plates for each design cases.  

3) Determination and comparison of effective failure values (fE) of optimized 

composite plates for each design case using Puck Failure Criterion. 

4) Determination of some discrete fiber orientation designs transforming from 

continuous and comparison of both discrete and continuous fiber orientations of 

composite plates in order to show the advantages of the designs having 

continuous fiber orientation. 

5) To obtain the best designs of 48-layered carbon/epoxy composite plates 

subjected to specific compressive in-plane loading and comparison with the 

corresponding 64-layered plates in terms of buckling and failure strength. 

6) To check reliability of the designs according to Tsai-Wu failure theory 

commonly used in industry and to show the advantages of Puck failure theory as 

compared with Tsai-Wu. 
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CHAPTER 2 

 

 COMPOSITE MATERIALS 

 
2.1.  Introduction 

 
In general terms, a composite is a structural material that comprises of two or 

more components that are combined at macroscopic level and are not soluble in each 

other. One of the components is called the reinforcement and the other one in which it is 

embedded is called the matrix. The reinforcement material may be in the form of fibers, 

particles, or flakes. The matrix materials are usually in continuous nature. Concrete 

reinforced with steel and epoxy reinforced with glass fibers, etc. are some of the 

examples of composite systems (Kaw 2006). 

The combining of materials to create a new material system with improved 

material properties has been continually practiced in history. For instance, the ancient 

Egyptian workers during the construction of pyramids included chopped straw in bricks 

by means of improving their structural integrity. The Japanese Samurai warriors used 

laminated metals in the forging of their swords to provide desirable material properties. 

More recently, in the 20th century civil engineers put construction iron into cement and 

produced a well-known composite material, i.e., reinforced concrete. It can be said that 

the modern times of composite materials began with fiberglass polymer matrix 

composites during World War II (Vinson and Sierakowski 2004). 

Many fiber-reinforced materials enable a better combination of strength and 

modulus as compared with many traditional metallic materials. Due to their low density, 

high strength-weight and modulus-weight ratios, these composite materials are 

significantly superior to those of metallic materials. Furthermore, fatigue strength as 

well as fatigue damage tolerance of many laminated composites are pretty good. 

Therefore, fiber reinforced materials have come up as a major class of structural 

materials and they are considered for use as substitution for metals in many weight-

critical components in aerospace, automotive, and other industries (Mallick 2007). 
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Figure 2.1 shows the comparison of composites and fibers with the other 

traditional materials in terms of specific strength on yearly basis. 

 

 
 

Figure 2.1. Specific strength as a function of time of use of materials 
(Source: Kaw 2006) 

 
 

Specific modulus and specific strength properties for commonly used composite 

fibers, unidirectional composites, cross-ply and quasi-isotropic laminated composites 

and monolithic metals are given in Table 2.1 (Kaw 2006). 
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Table 2.1. Specific Modulus and Specific Strength of Typical Fibers, Composites, and 
                  Bulk Metals (Source: Kaw 2006) 

 

 
 

2.2.  Classification of Composites 

 
Composites can be classified by the geometry of the reinforcement such as 

particulate, flake, and fibers (Figure 2.2) or by the type of matrix such as polymer, 

metal, ceramic and carbon. 

 

 

Figure 2.2. Types of composites based on reinforcement shape 
(Source: Kaw 2006) 
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Particulate composites include particles embedded in matrices such as alloys and 

ceramics. The use of aluminum particles in rubber; silicon carbide particles in 

aluminum; and gravel, sand and cement to make concrete are common examples of 

particulate composites. Flake composites contain flat reinforcements in matrices. 

Typical flakes are glass, mica, aluminum, and silver. Fiber reinforced composite 

materials consist of matrices reinforced by short (discontinuous) or long (continuous) 

fibers. Fibers are usually anisotropic; carbon, glass and aramids are the most used 

examples of fibers. Matrices include resins such as epoxy, metals such as aluminum, 

and ceramics such as calcium-alumina silicate. Continuous fiber matrix composites 

consist of unidirectional or woven fiber laminas. Laminas are stacked on top of each 

other at various angles to form a multidirectional laminate (Kaw 2006). 

Another type of composite material is the nanocomposites with a big potential of 

becoming an important material in the future. Although nanocomposites are in the early 

stages of development, they now attract considerable attention of academia as much as a 

wide range of industries, including aerospace, automotive, and biomedical industries. 

The reinforcement in nanocomposites is ensured by either nanoparticles, nanofibers, or 

carbon nanotubes (Mallick 2007). 

 

2.2.1. Polymer Matrix Composites 

 
Common advanced composites are polymer matrix composites (PMCs) 

consisting of a polymer such as epoxy, polyester and urethane, reinforced by thin 

diameter fibers such as graphite, aramids and boron. PMCs are mostly preferred due to 

their low cost, high strength, and simple manufacturing principles. Some disadvantages 

of PMCs are low operating temperatures, high coefficients of thermal and moisture 

expansion and low elastic properties in certain directions. 

The most common fibers used are glass, graphite, and Kevlar. Glass is the most 

common fiber used in polymer matrix composites. Its advantages are its high strength, 

low cost, high chemical resistance and good insulating properties. The disadvantages 

are low elastic modulus, poor adhesion to polymers, high specific gravity, sensitivity to 

abrasion (reduces tensile strength) and low fatigue strength. The main types of glass 

fibers are E-glass (fiberglass) and S-glass. The “E” in E-glass corresponds to electrical 

since it was designed for electrical applications. Besides, it is used for many other 



10 
 

purposes now, such as decoration and structural applications. The “S” in S-glass 

corresponds to higher content of silica. S-glass fibers hold their strength at high 

temperatures compared to E-glass and have higher fatigue strength. They are used 

principally for aerospace applications. Other types available commercially are C-glass 

(Corrosion) used in chemical environments, such as storage tanks; R-glass used in 

structural applications such as construction; D-glass (Dielectric) used for applications 

requiring low dielectric constants, such as radomes; and A-glass (Appearance) used to 

improve surface appearance. Some combinational types such as E-CR glass (Electrical 

and Corrosion resistance) and AR glass (Alkali Resistant) also exist. 

Graphite fibers are more often used in high-modulus and high-strength 

applications such as aircraft components, etc. The advantages of graphite fibers are high 

specific strength and modulus, low coefficient of thermal expansion, and high fatigue 

strength. The disadvantages are high cost, low impact resistance, and high electrical 

conductivity. 

An aramid fiber is an aromatic organic compound made of carbon, hydrogen, 

oxygen, and nitrogen. The advantages of using aramid fiber are low density, high tensile 

strength, low cost, and high impact resistance. Its disadvantages are low compressive 

properties and degradation in sunlight. Kevlar 29® and Kevlar 49® are the two main 

types of aramid fibers. Both types of Kevlar fibers have similar specific strengths, but 

Kevlar 49 has a higher specific stiffness. Kevlar 29 is principally used in bulletproof 

vests, ropes, and cables. Kevlar 49 is used in high performance applications by the 

aircraft industry. 

Various polymers are used in advanced polymer composites. These polymers are 

such as epoxy, phenolics, acrylic, urethane, and polyamide and each polymer holds its 

advantages and disadvantages in its use. 

Besides, each of the resin systems has its some advantages and disadvantages. 

The use of a particular resin system depends on the application. These considerations 

involve mechanical strength, cost, smoke emission, temperature excursions, etc. The 

comparison of five common resins based on smoke emission, strength, service 

temperature, and cost is given in Figure 2.3. 
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  Figure 2.3. Comparison of performance of several common matrices used in polymer   
                     matrix composites (Source: Kaw 2006) 
 
 

Epoxy resins are the most preferred resins. They are low molecular weight 

organic liquids containing epoxide groups. Epoxide comprises of three members in its 

molecule ring: one oxygen and two carbon atoms. Epoxy is the most commonly used 

PMC matrix, however it is costlier than other polymer matrices. More than two-thirds of 

the polymer matrices used in aerospace applications is epoxy based. Because of their 

some advantages such as high strength, low viscosity and low flow rates, which allow 

good wetting of fibers and prevent misalignment of fibers during processing, low 

volatility during cure, low shrink rates, which reduce the tendency of gaining large 

shear stresses of the bond between epoxy and its reinforcement, epoxy resins are the 

most widely held PMC matrix and existing in more than 20 grades to meet specific 

property and processing requirements. 

Polymers are categorized as thermosets and thermoplastics. Thermoset polymers 

are insoluble and infusible after cure because its molecular chains are rigidly joined 

with strong covalent bonds; thermoplastics are formable at high pressure and high 
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temperatures because their molecular bonds are weak and of the van der Waals type.      

Typical examples of thermosets are epoxies, polyesters, phenolics, and polyamide; 

typical examples of thermoplastics are polyethylene, polystyrene, polyether–ether–

ketone (PEEK), and polyphenylene sulfide (PPS). The differences between thermosets 

and thermoplastics are indicated in Table 2.2 (Kaw 2006). 

 

Table 2.2. Differences between thermosets and thermoplastics 
(Source: Kaw 2006) 

 

 
 

2.2.2. Metal Matrix Composites 

 
Metal matrix composites (MMCs), as the name refers, have a metal matrix. 

Examples of metal matrices in such composites are aluminum, magnesium, and 

titanium. Typical fibers used in MMCs are carbon and silicon carbide. Metals are 

chiefly reinforced to increase or decrease their properties to provide the needs of design. 

For instance, the stiffness and strength of metals can be increased and large coefficients 

of thermal expansion and thermal and electric conductivities of metals can be reduced, 

by the addition of fibers such as silicon carbide. 

Metal matrix composites are principally used to get more advantageous than 

monolithic metals such as steel and aluminum. The advantages of MMCs can be 

counted as higher specific strength and modulus by reinforcing low-density metals, such 

as aluminum and titanium; lower coefficients of thermal expansion by reinforcing with 

fibers with low coefficients of thermal expansion, such as graphite; and maintaining 

properties such as strength at high temperatures. Metal matric composites have several 

superiorities in comparison to polymer matrix composites. These advantages are better 

elastic properties; higher service temperature; insensitivity to moisture; higher electric 

and thermal conductivities; and better wear, fatigue, and flaw resistances. The 
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disadvantages of MMCs over PMCs are higher processing temperatures and higher 

densities. Typical mechanical properties of MMCs are shown in Table 2.3 (Kaw 2006). 

 

Table 2.3. Typical Mechanical Properties of Metal Matrix Composites 
(Source: Kaw 2006) 

 

 
 

2.2.3. Ceramic Matrix Composites 

 
Ceramic matrix composites (CMCs) contain ceramic matrix such as alumina 

calcium alumina silicate reinforced by fibers such as carbon or silicon carbide. The 

main advantages of CMCs are high strength, hardness, high service temperature limits 

for ceramics, chemical inertness, and low density. On the other hand, ceramics by 

themselves have low fracture toughness. Ceramics fail disastrously under tensile or 

impact loading. The fracture strength of ceramics increases by reinforcing ceramics 

with fibers, such as silicon carbide or carbon thereby the failure of the composite occurs 

gradually. The combination of fiber and ceramic matrix makes CMCs more attractive 

for applications in which high mechanical properties and extreme service temperatures 

are desired. In Table 2.4, typical mechanical properties of ceramic matrix composites 

are presented (Kaw 2006). 
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Table 2.4. Typical Mechanical Properties of Some Ceramic Matrix Composites 
(Source: Kaw 2006) 

 

 
 

2.2.4. Carbon-Carbon Composites 

 
Carbon–carbon composite (C/C) is a material consisting of carbon fiber 

reinforcement in a matrix of graphite. Carbon fibers are used in a carbon matrix such as 

graphite to create carbon-carbon composites. This type of composites can be used in 

very high-temperature environments of up to 3315°C, and are 20 times stronger and 

30% lighter than graphite fibers. Carbon is inherently brittle and flaw sensitive like 

ceramics. Reinforcement of carbon matrix allows the composite to fail gradually and 

also ensures some better properties such as ability to withstand high temperatures, low 

creep at high temperatures, low density, good tensile and compressive strengths, high 

fatigue resistance, high thermal conductivity, and high coefficient of friction. Main 

disadvantages of C/C composites are their high cost, low shear strength, and 

susceptibility to oxidations at high temperatures. Typical properties of carbon–carbon 

composites are given as comparative with some metals in Table 2.5 below (Kaw 2006). 
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Table 2.5. Typical Mechanical Properties of Carbon–Carbon Matrix Composites 
(Source: Kaw 2006) 

 

 
 

2.3.  Applications of Composite Materials 

 
There are so various commercial and industrial applications of fiber-reinforced 

polymer composites so that it is impossible to list them all. In this section, the major 

structural application areas such as aircraft, space, automotive, sporting goods, marine, 

and infrastructure are highlighted. Besides these common application fields, fiber- 

reinforced polymer composites are also used in electronics (e.g., printed circuit boards), 

building construction (e.g., floor beams), furniture (e.g., chair springs), power industry 

(e.g., transformer housing), oil industry (e.g., offshore oil platforms and oil sucker rods 

used in lifting underground oil), medical industry (e.g., bone plates for fracture fixation, 

implants, and prosthetics), and in many industrial products such as step ladders, oxygen 

tanks, and power transmission shafts. Potential use of fiber-reinforced composites can 

be seen in many engineering fields today. A careful design practice and appropriate 

process development based on the understanding of their unique mechanical, physical, 

and thermal characteristics are required to put them to actual use. 

The main structural applications for fiber-reinforced composites are in the field 

of military and commercial aircrafts, for which weight reduction is critical for higher 

speeds and increased loads. The use of fiber-reinforced polymers has experienced a 

steady growth in the aircraft industry since the production application of boron fiber -

reinforced epoxy skins for F-14 horizontal stabilizers in 1969. Carbon fibers are 
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introduced to industry in the 1970s and carbon fiber-reinforced epoxy has become the 

indispensable material in many wing, fuselage, and empennage components. 

For instance, the outer skin of B-2 (Figure 2.4) and other stealth aircrafts is 

almost all made of carbon fiber-reinforced polymers. Figure 2.5 schematically 

illustrates the composite usage in Airbus A380 introduced in 2006. About 25% of its 

weight is made of composites (Mallick 2007). 

 

 
 

Figure 2.4. Stealth aircraft  
(Source: Mallick 2007) 

 

 

 
 

Figure 2.5. Use of fiber-reinforced polymer composites in Airbus 380                 
(Source: Mallick 2007) 
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    CHAPTER 3 

 

 MECHANICS OF COMPOSITE MATERIALS 

 
Many engineers and material scientists have adequate knowledge of the 

behavior and design of isotropic materials, which include the family of most metals and 

pure polymers. The rapidly increasing use of anisotropic materials such as composite 

materials has ended up with a materials revolution and it requires a new knowledge base 

of anisotropic material behavior. 

 The use of fiber-reinforced composite materials is different compared to 

conventional materials in application because the use of long fibers results in a material 

which has a higher strength-to-density ratio and/or stiffness-to-density ratio than any 

other material system at moderate temperature, and there exists the opportunity to 

uniquely tailor the fiber orientations to a given geometry, applied load and environment. 

For short fiber composites, used mainly in mass-production and low cost systems, the 

use of fibers makes the composites competitive and superior to plastic and metal 

alternative materials. For this reason through the use of composite materials, an 

engineer is not only a material selector, but is also a material designer (Vinson 2004). 

On the other hand, fiber-reinforced composites are microscopically inhomogeneous and 

orthotropic. Consequently, the mechanics of fiber-reinforced composites are more 

complicated than that of conventional materials (Mallick 2007). 

 

3.1.  Classical Lamination Theory 

 
Classical lamination theory is based on classical plate theory and only valid for 

thin laminates. It is used to analyze the infinitesimal deformation of laminated 

structures. In this theory, it is assumed that laminate is thin and wide, perfect bounding 

exists between laminas, there exist a linear strain distribution through the thickness, all 

laminas are macroscopically homogeneous and behave in a linearly elastic manner, and 

the through the thickness strains and the transverse shear strains are zero (Kaw 2006). 

Thin laminated composite structure subjected to mechanical in-plane loading (Nx, Ny) 

considered in this thesis is shown in Figure 3.1. Cartesian coordinate system x, y and z 
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defines global coordinates of the layered material. A layer-wise principal material 

coordinate system is denoted by 1, 2, 3 and fiber direction is oriented at angle   to the x 

axis. Representation of laminate convention for the n-layered structure with total 

thickness h is given in Figure 3.2.  

 

 
 

Figure 3.1. A thin fiber-reinforced laminated composite subjected to in plane loading 

 

 

    
 

Figure 3.2. Coordinate locations of plies in a laminate 
(Source: Kaw 2006) 

 

In most structural applications, composite materials are used in the form of thin 

laminates loaded in the plane of the laminate. Consequently, composite laminates can 

be considered to be under a condition of plane stress with all stress components in the 

out-of-plane direction (3-direction) being zero. 

The stress-strain relation for the k-th layer of a composite plate based on the 

classical lamination theory can be written in the following form 
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(3.1) 

 

where [ ijQ ]k are the elements of the transformed reduced stiffness matrix, [ o ] is the 

mid-plane strains, [ ] is curvatures, respectively.  

The elements of transformed reduced stiffness matrix [ ijQ ] given in Equation 

3.1 can be expressed as in the following form 
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Figure 3. 3. Resultant forces and moments on a laminate 
(Source: Kaw 2006) 

 

Applied normal force resultants xN , yN , shear force resultant xyN  (per unit 

width) and moment resultants xM , yM  and xyM  on a laminate (Fig. 3.3) have the 

following relations:  
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The matrices [A], [B] and [D] specified in Equations 3.14, 3.15, 3.16 can be defined as 
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The [A], [B], and [D] matrices are called the extensional, coupling, and bending 

stiffness matrices, respectively. Combining Equation 3.12 and Equation 3.13 gives six 

simultaneous linear equations and six unknowns as: 

 

 

 

                    (3.17)

  

 

 

The extensional stiffness matrix [A] relates the resultant in-plane forces to the 

in-plane strains, and the bending stiffness matrix [D] relates the resultant bending 

moments to the plate curvatures. The coupling stiffness matrix [B] couples the force and 

moment terms to the mid-plane strains and mid-plane curvatures (Kaw 2006). 

Now, stresses and strain expressions based on classical lamination theory can be 

expressed by local coordinate system (1, 2). The relation between the local and global 

stresses in an angled lamina can be written as in the following form: 

  

 

 

































xy

y

x

T








12

2

1

 (3.18) 

 

















































































xy

y

x

xy

y

x

xy

y

x

xy

y

x

DDDBBB
DDDBBB
DDDBBB
BBBAAA
BBBAAA
BBBAAA

M
M
M
N
N
N








0

0

0

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211



22 
 

Similarly, the local and global strains are also related as follows 
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and  T  transform matrix, 
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3.2.  Buckling Theory of Laminated Composite Plates 

 
Assuming that the composite plate under consideration (Figure 3.1) is loaded by

xN , yN  and xyN  in-plane compressive loads, where   is a scalar amplitude 

parameter and simply supported on four sides, the governing differential equation for 

the buckling behavior of the plate, considering the classical plate theory, is 

 

   

(3.22) 

 

where D11, D12, D22, D66 are the terms of bending stiffnesses, w  is the vertical 

displacement given by 
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With the substitution of Equation 3.23 to Equation 3.22, buckling load factor 

expression can be obtained as in the following form 
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A remarkable point is that D16 and D26 do not appear in Equation 3.22 and 3.23, 

because they are zero for a specially orthotropic laminate and they are small compared 

to the other Dij’s for a symmetric laminate with a number of laminas of ±θ ply angles in 

sequence (Karakaya and Soykasap 2009). 

The laminate buckles into m  and n  half-waves in the x  and y  directions, 

respectively, when the magnitude parameter reaches a critical value of b  (Spallino and 

Thierauf 2000). The critical buckling load factor cb  limits the maximum load which 

the laminate can withstand without buckling and it is the smallest value of b  under 

appropriate m and n values. Unless the plate has a very high aspect ratio or extreme 

ratios of ijD ’s, the critical values of m and n are small (Gurdal, et al 1999).  The critical 

buckling load factor cb  varies with the plate aspect ratio, loading ratio and material, 

and should be greater than one to avoid any immediate failure 

 

                                                        nmbcb ,min                                                 (3.25) 

 

The optimization problem which we have considered in the thesis study is to 

find the optimum configurations of composite plates which have the maximum critical 

buckling load factors, cb . The values of m and n are taken to be 1 or 2 in order to result 

in a good estimate of buckling load capacity. Accordingly, the smallest of b (1,1),     

b (1,2), b (2,1), b (2,2) yields cb  in our thesis (Erdal and Sonmez 2005).  

After obtaining the critical buckling load factor once, critical buckling loads can 

be determined by means of xcbcrx NN ,  and ycbcry NN ,  expressions. 



24 
 

  CHAPTER 4 

 

 FAILURE THEORIES IN COMPOSITE PLATES 

 
Weight minimization of composite plates necessarily includes strength 

constraints because decreasing number of load carrying plies ultimately causes failure. 

Composite structures must be able to resist the imposed loads without affecting any 

failure. Consequently, the research field of failure criteria for fiber-reinforced plastic 

composites has attracted attention of many researchers over the last few decades. 

Various types of approaches which clearly prove that failure criteria for fiber-reinforced 

composites have been presented in the literature and this subject is still an important 

research issue in composite structures.  

With respect to failure criteria of composite plates, they can be categorized into 

three classes: limit or non-interactive theories (e.g., Maximum stress or maximum 

strain), interactive theories (e.g., Tsai-Hill, Tsai-Wu or Hoffman) and partially 

interactive or failure mode-based theories (e.g., Hashin, Puck failure criterion (PFC)) 

(Lopez, et al. 2009). 

 

4.1. Traditional Failure Theories 

 
Firstly, it is necessary to be mentioned about commonly used failure criteria for 

polymer-matrix composites. These are the maximum stress and the Tsai-Wu criterion. 

These failure theories assume that failure occurs only in the fiber direction. 

 

4.1.1. Maximum Stress Theory 

 
Failure analysis of laminated composites is generally based on the stresses in 

each lamina in the principal material coordinates. With regard to the maximum normal 

stress theory by Rankine and the maximum shearing stress theory by Tresca, this theory 

is similar to those applied to isotropic materials. The stresses acting on a lamina are 

resolved into the normal and shear stresses in the local axes. According to the maximum 
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stress theory, failure occurs when a maximum stress in the principal material 

coordinates exceeds the respective strength. This is expressed as, 

 

              TX1          or      TY2                 (for tensile stresses)            (4.1) 

                           CX1        or      CY2              (for compressive stresses)   (4.2) 

                           1212 S        or                                   (for shearing stresses)         (4.3) 

 

where 1  and 2  are the normal stresses in the directions 1 and 2, respectively; 12S  is 

the shear stress in the elastic symmetry plane 1-2; TX  and CX  are the tensile and 

compressive strengths parallel to the fiber direction, respectively; TY  and CY  are the 

tensile and compressive strengths normal to the fiber direction, respectively; and 12S  is 

the shear strength. Note that, TX , CX , TY , CY  and 12S  are positive quantities. 

 

4.1.2. Tsai-Wu Failure Criterion 

 
The Tsai–Wu criterion is proposed for use with orthotropic materials. It is 

derived from the von Mises yield criterion and based on the total strain energy failure 

theory of Beltrami. Tsai-Wu applied the failure theory to a lamina in plane stress. A 

lamina is considered to be failed if 
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is violated. Fij are called the strength coefficients and are given by 
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4.2.  Puck Failure Criterion (PFC) 

 
The Puck Failure Theory of composite plates relies on Mohr’s hypothesis which 

fracture is caused exclusively by the stresses acting on the fracture plane. PFC includes 

two main failure modes:  

 Fiber Failure (FF)  

 The Inter-Fiber failure (IFF) 

 

4.2.1. Puck Fiber Failure (FF) 

 
Fiber failure is based on the assumption that failure under multiaxial stresses      

( ,1f 2f ) occurs at the same threshold level at which failure occurs for uniaxial 

stresses. After some improvement, Puck and Schürmann found that failure occurs if one 

of the following conditions is satisfied: 

 
For tensile stresses, 
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For compressive stresses, 
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in which, 
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where T1  and C1  are tensile and compressive failure strains in direction 1, 

respectively; 1  is the normal strain in the direction 1; 12f  is the Poisson’s ratio of the 
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fibers (the ratio of the strain in direction 2 to the strain in direction 1, both of which are 

caused by a stress in direction 1 only); fm  accounts for a stress-magnification effect 

caused by the different moduli of the fibers and matrix (in direction 2), which leads to 

an uneven distribution of the stress 2  from a micromechanical point of view; 1fE  is 

the Young’s modulus of the fiber in direction 1; and 21  is the shear strain in the plane 

1-2, in which  22110  is an empirical shear correction. Note that S ≥ 0 corresponds to tension, 

while S < 0 corresponds to compression. 

 

4.2.2. Puck Inter-Fiber Failure (IFF) 

 
Contrary to dealing with the principal material coordinates (Figure 4.1), Inter-

fiber failure equations are derived based on the axes corresponding to the failure plane. 

These axes are shown in Figure 4.2, where fp  represents the angle at which failure 

occurs.  

 

 
 

Figure 4.1. Principal material coordinates of a typical lamina 
(Source: Lopez, et al. 2009) 
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  Figure 4.2. Three-dimensional stresses on a UD composite element. (x1, x2, x3) 
coordinate system is fixed to fiber direction (x1), laminate mid-surface 
(x2) and thickness direction (x3). The (x1, xn, xt) coordinate system is 
rotated by an angle θfp from the x2 direction to the xn direction which is 
normal to the fracture plane. The inter-fiber fracture is influenced by the 
the three stresses σn, τnt, τn1 only (according to Mohr’s strength theory) 

                       (Source: Puck and Schürmann 1998) 
 

 

The PFC provides not only a failure factor, but also the inclination of the plane 

where failure will possibly occur; consequently it allows a much better assessment of 

the consequences of Inter Fiber Failure in the laminate. IFF is subdivided into three 

failure modes, which are referred to as A, B and C. These are shown in Figure 4.3. 

 

 

 
Figure 4.3. (σ2, τ21) fracture curve for σ1, representing the three different fracture modes       
                  (A, B and C) for the PFC (Source: Lopez, et al. 2009)  
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Mode A occurs when the lamina is subjected to tensile transverse stress; 

however mode B and mode C correspond to compressive transverse stress. The 

classification of modes is based upon the idea that a tensile stress 0n  leads to 

fracture, while a compressive stress 0n  prevents shear fracture. For 0n , the 

shear stresses nt  and 1n  (or just one of them) have to face an additional fracture 

resistance, which increases n , with analogously to an internal friction. The difference 

between mode B and C is based on their failure angles and these angles are 0˚ for mode 

B and a different value for mode C. Additionally, failure mode C is considered more 

serious because it produces inclined cracks and may lead to delamination of layers. 

The Puck Inter-Fiber Failure mode A, B and C are determined as follows: 

 

Mode A (θfp=0°) 

 Failure condition effort (effort fE(FF) or fE(IFF))           Condition for validity 
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Mode B (θfp=0°) 

Failure condition effort (effort fE(FF) or fE(IFF))           Condition for validity 
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Mode C  ቌθfp=arccosඨfwR⊥⊥A
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Failure condition effort (effort fE(IFF))                        Condition for validity 
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where the weakening factor  nFFEw ff )(9.0  is for the degradation effect of σ1 and n 

depends on the matrix of the laminate (for example, 6n  for epoxy). 
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As seen in the equations, there are some new parameters which come from the 

theory. Their definitions and parameter relationships are given as 

 

Definitions 
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Parameter relationships 
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The use of criteria that closely reflect the actual behavior of the laminated 

composites under study is critical. Many studies related to optimal composite design use 

generally failure criteria based on the von Mises or Hill yield criteria, which are more 

suitable for ductile materials. Essentially, as the failure behavior of composite parts is 

similar to brittle materials, it is more appropriate to use criteria conformed to materials 

that include brittle fractures, such as Mohr’s criterion. Therefore, Puck failure criterion 

was taken into account in the thesis. 

 



31 
 

CHAPTER 5 

 

 OPTIMIZATION 

 
5.1.  Introduction 

 
Optimization is commonly used, from engineering design to financial markets, 

from our daily activity to planning our holidays, and computer sciences to industrial 

applications. People always tend to maximize or minimize something. In fact, we are 

continuously searching for the optimal solutions to every problem we face, however we 

are not necessarily able to find such solutions (Xin-SheYang 2010). 

The modern optimization methods have come up as powerful and popular 

methods for solving complex engineering optimization problems in recent years. 

Example of these optimization methods are genetic algorithm, simulated annealing, 

particle swarm optimization, ant colony optimization, neural network-based 

optimization, and fuzzy optimization. 

One of the most used optimization methods, the genetic algorithm is 

computerized search and optimization algorithm based on the mechanics of natural 

genetics and natural selection. The genetic algorithms were initially proposed by John 

Holland in 1975. 

Optimization is the act of obtaining the best result under given conditions. The 

ultimate purpose in design of any engineering system is either to minimize the effort 

required or to maximize the desired benefit. Since the effort required or the benefit 

anticipated in any practical situation can be expressed as a function of certain decision 

variables, optimization can be defined as the process of finding the conditions that give 

the maximum or minimum value of a function. It can be seen from Figure 5.1 that if a 

point x  corresponds to the minimum value of function )(xf , the same point also 

corresponds to the maximum value of the negative of the function, )(xf . 

Consequently, without loss of generality, optimization can be taken to mean 

minimization because the maximum of a function can be found by searching for the 

minimum of the negative of the same function (Rao 2009).  
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Figure 5.1. Minimum and maximum of objective function (f(x)) 
(Source: Rao 2009) 

 
Table 5.1 generally classifies optimization techniques by listing various 

mathematical programming techniques together with other well-defined areas of 

operations research. 

 

Table 5.1. Methods of Operations Research 
(Source: Rao 2009) 
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The optimization techniques are practical in finding the minimum of a function 

of several variables under a described set of constraints. Stochastic search techniques 

can be used to analyze problems defined by a set of random variables having known 

probability distributions. Statistical methods allow one to analyze the experimental data 

and build empirical models to achieve the most accurate representation of the physical 

situation. Genetic Algorithms which we are interested in are in the modern optimization 

techniques category and the most commonly used one (Rao 2009). 

 

5.2.  Definition of Optimization Problem 

 
An optimization or a mathematical programming problem can be defined as follows 

 

                             Find 
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 which minimizes )(xf                (5.1) 

 

subject to the constraints 

 

0)( Xg i ,        i 1, 2, …, m  

 0)( Xli ,        i 1, 2, …, p  

 

where X  is an n-dimensional vector called the design vector, )(Xf  is termed the 

objective function, and )(Xgi  and )(Xli  are known as inequality and equality 

constraints, respectively. The number of variables n and the number of constraints m  

and/or p  are not necessary to be related in any way. The optimization problem stated in 

Equation 5.1 is called a constrained optimization problem. There are not any constraints 

in some optimization problems which are called unconstrained optimization problems   

(Rao 2009). 
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5.3.  Genetic Algorithm (GA) 

 
Evolutionary calculating was introduced in the 1960s by I. Rechenberg in the 

study “Evolution strategies”. Afterwards, this idea was developed by other researches. 

Genetic Algorithm (GA) was discovered by John Holland in 1975 and developed as a 

useful method for search and optimization problems (S.N.Sivanandam and S.N.Deepa 

2008). GA is a class of evolutionary algorithms inspired by evolutionary biology.  

GA is based on a natural selection process which ends up with the evolution of 

organisms best adapted to the environment. Genetic algorithm begins its search with a 

population of random individuals. Each member of the population holds a chromosome 

which encodes certain characteristics of the individual. The algorithm methodically 

analyzes each individual in the population of designs according to set specifications and 

assigns it a fitness rating which represents the designer’s aims. This fitness rating is then 

used to identify the structural designs which perform better than others. Thus, it enables 

the genetic algorithm to determine the designs which are weak and must be eliminated 

using the reproduction operator. After this step, the remaining, more desirable genetic 

material is utilized to create a new population of individuals. This part is carried out by 

applying two more operators similar to natural genetic processes, which called gene 

crossover and gene mutation. The process is iterated over many generations in order to 

obtain optimal designs. A flowchart practically summarizing the process of genetic 

algorithm is shown in Figure 5.2. 

 As the evolutionary algorithm technique, GA provides important benefits over 

traditional gradient based optimization routines, such as nominal insensitivity to 

problem complexity and the ability to discover easily global optimum rather than local 

optima (Pelletier and Vel 2006). 

The ability of the algorithm to explore and exploit simultaneously, a growing 

amount of theoretical validation, and successful application to real-world problems 

strongly support the conclusion that genetic algorithm are a powerful, robust 

optimization technique (Sivanandam and Deepa 2008). 
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Figure 5.2. Flowchart of genetic algorithm 
(Source: Sivanandam and Deepa 2008) 

 

5.3.1. Terminology 

 
The basic terminologies used in Genetic Algorithms to obtain a good enough 

solution for possible terminating conditions need to be defined at this point. The two 

distinct elements in the GA are individuals and populations. An individual is a single 

solution while the population is the set of individuals currently involved in the search 

process. Individual includes two forms of solutions. They are the chromosome, which is 

the raw ‘genetic’ information (genotype) that the GA deals and the phenotype, which 

expresses the chromosome in the terms of the model. A chromosome includes 

subsections of genes. A gene is the GA’s representation of a single factor for a control 

factor. Each factor in the solution set corresponds to gene in the chromosome. 

Chromosomes are encoded by bit strings and an illustration is given below in Figure 

5.3. 
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Figure 5.3. Representation of a chromosome 

 

Genes are the basic “instructions” for building Generic Algorithms. A 

chromosome is a sequence of genes. A gene is a bit string of arbitrary lengths. In a 

chromosome, the genes are represented as in Figure 5.4. 

 

 
 

Figure 5.4. Representation of genes in a chromosome 
 

The fitness of an individual in a genetic algorithm is the value of an objective 

function for its phenotype. For calculating fitness, the chromosome has to be first 

decoded and the objective function has to be evaluated. The fitness not only specifies 

how good the solution is, but also corresponds to how close the chromosome is to the 

optimal one. 

A population consists of a group of individuals. The two important aspects of 

population used in Genetic Algorithms are initial population generation and population 

size. The search process consists of initializing the population and then breeding new 

individuals until the termination condition is satisfied (Sivanandam and Deepa 2008). 

 

5.3.2. Breeding 

 
The breeding process is the basis of the genetic algorithm. In this essential 

process, new and hopefully fitter individuals are created through the search procedure. 

The breeding cycle consists of three steps: 

 
a) Selecting parents. 

b) Crossing the parents to create new individuals (offspring or children). 

c) Replacing old individuals in the population with the new ones. 
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5.3.2.1. Selection 

 
Selection is the process of choosing two parents from the current population for 

crossing. After deciding on an encoding, the next step is to determine how to perform 

selection i.e., how to choose individuals in the population which will create offspring 

for the next generation and how many offspring each will create. The aim of selection is 

to highlight fitter individuals in the population in hopes that their off springs have 

higher fitness. Figure 5.5 shows the basic selection process. There are different selection 

methods such as roulette, random, rank, tournament or stochastic (Sivanandam and 

Deepa 2008). 

 

 
 

Figure 5.5. Selection process 
 

5.3.2.2. Crossover (Recombination) 

 
Crossover is one of the important GA operators which has basic task of creating 

new children in a reproduction process. This GA step performs combining genetic 

information taken from a pair of parents. Crossover is the process of taking two parent 

solutions and producing from them a child. After the selection (reproduction) process, 

the population is enriched with better individuals. Reproduction makes clones of good 

strings, however it does not create new ones. Crossover operator is applied to the 

mating pool with the hope that it creates a better offspring. First, the GA’s crossover 

operator produces a random number to define the crossover point. Then, the gene 

strings of the related chromosomes are split at the same point in the parents. The left 

part of parent 1 and the right part of parent 2 are reorganized to create a child as seen in 

Figure 5.6 (Spall 2003; Sivanandam and Deepa 2008). 
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Figure 5.6. Crossover 

 

5.3.2.3. Mutation 

 
Mutation process is applied to the strings after crossover. Mutation is a genetic 

operator which maintains the genetic diversity from one generation of a population to 

the next generation. In mutation operation, the solution can change completely from the 

previous solution and so better solution can be obtained. The working principle of 

mutation is based on introducing of new genetic structures in the population by 

randomly modifying some of its building blocks. Mutation provides a random search 

capability to GA and this is useful to find areas which are close to the solution in the 

design space. Mutation prevents the algorithm to be trapped in a local minimum. There 

are many different forms of mutation for the different kinds of representation (Gurdal, 

et al. 1999;  Sivanandam and Deepa 2008). 

 

5.3.2.4. Replacement  

 
Replacement is the last step of breeding cycle. In this GA step, two parents are 

drawn from a fixed size population, they breed two children, but not all four can return 

to the population, therefore two must be replaced. In other words, once offsprings are 

produced, a method must determine which of the current members of the population, if 

any, should be replaced by the new solutions. There are a few replacement situations. In 

random replacement, the children replace two randomly chosen individuals in the 

population. In weak parent replacement, a weaker parent is replaced by a strong child. 

In Both parents replacement, the child replaces the parent (Sivanandam and Deepa 

2008). 
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5.4.  MATLAB Optimization Toolbox 

 
MATLAB Genetic Algorithm and Direct Search, Symbolic Math Toolboxes 

have been used in the thesis (The Mathworks, Inc. 2008). MATLAB Genetic Algorithm 

and Direct Search Toolbox includes commonly used algorithms which solves 

constrained and unconstrained continuous and discrete problems for standard and    

large-scale optimization. Some solvers in the toolbox are such as ‘Constrained nonlinear 

minimization (fmincon)’, ‘Genetic Algorithm (ga)’, ‘Multiobjective optimization using 

Genetic Algorithm (gamultiobj)’, ‘Pattern Search (patternsearch)’ or ’Simulated 

annealing algorithm (simulannealbnd)’ and these solvers can be selected as an 

optimization algorithm from Optimization Tool GUI. These methods have also been 

used in design of composite materials by many researchers in the literature (Ozgur and 

Sonmez 2005; Karakaya and Soykasap 2009; Pelletier and Vel 2006). Genetic 

Algorithm solver has been used in this thesis. 

 

5.4.1. Genetic Algorithm Solver (ga) 

 
GA solver of the optimization toolbox consists of two main sections: Problem 

definition and Options. The Problem Setup and Results (problem definition) section 

includes Fitness function, Number of variables, Constraints and Bounds. The Options 

section includes some significant adjustments such as Population, Fitness scaling, 

Selection, Reproduction, Mutation, Crossover, Migration. A genetic algorithm solver 

interface is illustrated in Figure 5.7. 

As seen in the figure, Fitness function and Number of variables should be 

defined firstly. Fitness function is the objective function to be minimized or maximized 

and Number of variables corresponds to the length of the input vector related to the 

fitness function. Constraints and/or a nonlinear constraint function can be entered for 

the problem in the Constraints panel. If the problem is unconstrained, these fields are 

left blank. The Start button is used to run the genetic algorithm. The results of the 

optimization are displayed in the Run solver and view results panel. The options of the 

genetic algorithm can be changed in the Options panel if needed. 
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Figure 5.7. Matlab optimization toolbox ga solver user interface 

 

To improve the reliability and obtain the best results from the genetic algorithm, 

it is necessary to be specified appropriate options for the genetic algorithm.  

Population options enable you to specify the parameters of the population which 

the genetic algorithm uses and this section consists of Population type, Population size, 

Creation function, Initial population, Initial scores and Initial range. Population type 

specifies the type of the input to the fitness function. Creation function specifies the 

function which forms the initial population for genetic algorithm. Population size 

specifies the number of individuals in each generation. With a large population size, 

genetic algorithm searches the solution space more comprehensively, thereby reducing 
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the possibility which the algorithm will return a local minimum that is not global 

optima. However, a large population size also causes the algorithm to run more slowly. 

Initial population specifies an initial population for the genetic algorithm. Initial scores 

specifies initial scores for the initial population. Initial range specifies the range of the 

vectors in the initial population which is generated by a creation function.  

In Fitness scaling section, the raw fitness scores which are returned by the 

fitness function are converted to values in a range which is suitable for the selection 

function. Scaling function specifies the function that performs the scaling. The options 

of Fitness scaling are Rank, Proportional, Top, Shift linear and Custom.  

Selection option includes selection function such as Uniform, Roulette, 

Tournament and Custom. The purpose of using selection function is to determine parents 

for the next generation based on their scaled values from the objective functions. In order 

to achieve an ideal selection strategy, its selective pressure and population diversity 

should be adjusted.  

Reproduction option is related to determination of Genetic Algorithm children 

creation at each new generation. In the toolbox, Crossover fraction is utilized as a sub-

option and it specifies the fraction of the next generation that crossover produces. 

Crossover fraction must be a fraction between 0 and 1.  

Mutation option has four different mutation functions such as Constraint 

dependent, Gaussian, Uniform and Adaptive feasible. If there are no constraints or 

bounds in the specified problem, Gaussian sub-option can be selected, otherwise 

Adaptive feasible should be used.  

In Crossover option, the function which performs the crossover in the sub-option 

Crossover function should be specified. There exist following six different crossover 

functions in the toolbox:  Scattered, Single point, Two point, Intermediate, Heuristic and 

Arithmetic. 

 Stopping criteria options enable you to specify the values of Generations, Time 

limit, Fitness limit, Stall generations, Stall time limit, Function tolerance and Nonlinear 

constraint tolerance. The algorithm stops as soon as any one of these conditions is met. 

Furthermore, Plot functions section enables you to display various plots which provide 

information about the genetic algorithm while it is running. 

In Table 5.2, all genetic algorithm options in the toolbox used in the problems of 

this thesis are presented. 
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Table 5.2. Genetic Algorithm parameters used in optimization 

 
Population Type Double vector 

Population size 40 

Creation function Use constraint dependent 

Initial population [  ] 

Initial scores [  ] 

Initial range [-90;90] 

Scaling function Rank 

Selection function Roulette 

Elite count 2 

Crossover fraction 0.6 

Mutation function Use constraint dependent 

Crossover function Scattered 

Migration direction Both 
Fraction = 0.2, Interval = 20 

Initial penalty 10 

Penalty factor 100 

Hybrid Function fmincon 

 
Stopping criteria 
 

Generations = 1000 
Stall generations = 1000 
Function tolerance = 10-6 
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     CHAPTER 6 

 

 RESULTS AND DISCUSSION 

 
6.1.  Problem Definition 

 
Determination of the buckling load capacity of a composite plate under in-plane 

compressive loads is critical for the design of the composite structures because the 

buckling could yield a premature failure of the structure. Accordingly, the aim of the 

thesis is to obtain the best design of laminated composite plates in different loadings 

and plate dimensions, which could resist to buckling and satisfy the Puck failure 

criterion. The composite plates under consideration are rectangular, simply supported 

on four sides with length of a  and width of b , and subjected to in-plane loads per unit 

length xN  and yN , as shown in Figure 6.1. 

 

 
 

Figure 6.1. Laminated composite subjected to in-plane loads 
(Source: Lopez, et al. 2009) 

 
 

64-layered composite plates made of carbon/epoxy have been considered in the 

thesis. Each layer is 0.25 mm thick and the length of plate a  equals to 0.508 m. xN  has 

been taken as 1000 N/mm, 3000 N/mm, 5000 N/mm and 10000 N/mm in the design 

process. yN  and b  have been calculated from the load ratio ( yx NN / ) and the plate 

aspect ratio ( ba / ) accordingly. The elastic properties of the layers and the failure 
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properties of the lamina have been taken from a previous study (Lopez, et al. 2009) and 

given in Table 6.1 and Table 6.2.  

  
 

Table 6.1. The elastic properties of carbon/epoxy layers 
(Source: Lopez, et al. 2009) 

 
Longitudinal Modulus E1 = 116600 MPa 

Transverse Modulus E2 = 7673 MPa 

In-plane shear modulus G12 = 4173 MPa 

Poisson’s ratio ν12 = 0.27 

Density ρ = 1605 kg/m3 

 

 
Table 6.2. Strength properties of the lamina 

(Source: Lopez, et al. 2009) 
 

XT       2062 MPa             YC       240 MPa              T1      0.0175         fm     1.1 

XC       1701 MPa             S21       105 MPa             C1      0.014           p⊥∥
(-)        0.25 

YT       70 MPa               1fE       230000 MPa        12f     0.23              p⊥∥
(+)        0.3 

 

 

The plate design has been studied under loading ratios; 1/ yx NN , 

2/ yx NN , 4/ yx NN , 2/1/ yx NN  and plate aspect ratios; 1/ ba , 2/ ba , 

4/ ba , 2/1/ ba . Fiber orientation angles of the plate have been taken as design 

variables and considered continuous ( 9090   ) during the optimization process. 

The composite plates considered in the thesis are symmetric and balanced. Therefore, 

the number of design variables decreases from 64 to 16. The representation of stacking 

sequence of 64 layered composite plate can be given as 

 

s]///////////////[ 16151413121110987654321  
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The mathematical representation of the optimization problem for this thesis can 

be stated as 

 

Find:           ,k  90,90k , nk ,...,1  

Maximize:  Critical buckling load factor ( cb ) 

Subject to:  The first ply failure (Puck failure criterion) 

 

Prior to obtaining the optimum designs of composite plates, verification of 

algorithms, buckling load factor and Puck failure criterion has been carried out using 

specific results from previous studies in the literature. The critical buckling load factor  

( cb ) has been used as an objective function in optimization. The objective function for 

each design has been obtained using the MATLAB Symbolic Math Toolbox and the 

algorithm is given in Appendix A. Here, the smallest value within b  (1, 1), b (1, 2), 

b (2, 1) and b (2, 2) has been taken as the critical buckling load factor ( cb ). These 

specific objective functions have been maximized in optimization process. Having 

obtained maximized critical buckling load factor, the convenience of the designs in 

terms of Puck failure criterion has been tested layer by layer. In order to show the 

advantage of using continuous fiber angles in stacking sequence designs, continuous 

designs and discrete designs whose fiber angles are conventional (0, ±45, 90)  for       

a/b = 2 and a/b = 1/2 plate aspect ratios have been compared. Additionally, the optimum 

designs of 48 layered composite plate with the same material and plate dimensions have 

been investigated for Nx = 3000 N/mm and the results have been compared with         

64-layered plate designs. A comparison of Puck and Tsai-Wu failure criteria efforts for 

specific designs has also been performed. Finally, the investigation of optimum designs 

for Nx = 3000 N/mm loading considering Puck inter-fiber failure mode C (IFFC) have 

been studied. 

 

6.2.  Optimization Results and Evaluation  

 
In the thesis study, the laminated composite plates subjected to in-plane loads 

have been analyzed using Genetic Algorithm optimization method in MATLAB Global 

Optimization Toolbox for the given load ratios and plate aspect ratios. The optimum 
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stacking sequence designs have been investigated considering buckling and failure 

criteria. In order to increase efficiency and reliability of GA, i) 50 independent searches 

have been performed for each case, ii) each of them has been stopped after 1000 

function evaluations and iii) GA Toolbox options have been adjusted as in Table 5.1.  

Firstly, in order to indicate that the optimization algorithms are reliable, the 

algorithms related to objective function (critical buckling load factor) and Puck failure 

criterion have been verified using some convenient results from previous studies in the 

literature. The results of buckling load factor algorithm verification for loading cases 

(LC1-LC9) specified in the study of Karakaya and Soykasap (2009) are given in Table 

6.3. Similarly, the results of Puck failure criterion algorithm are given in Table 6.4.  

                                            

 
Table 6.3. Verification of objective function algorithm 

 
Loading 

Cases 
λcb (Karakaya and 

Soykasap 2009) λcb (Present Study) 

LC1 695,781.30 695,663.1 
LC2 242,823.10 242,844.4 
LC3 173,945.30 173,915.8 
LC4 1,057,948.30 1,057,902.7 
LC5 323,764.00 323,792.5 
LC6 206492.9 206,518.0 
LC7 412,985.80 413,036.0 
LC8 161,882.10 161,896.2 
LC9 132,243.50 132,237.8 

 

 

In Table 6.3, it has been found that the critical buckling load factor values are 

close to the values given by Karakaya and Soykasap (2009). This means that the present 

buckling load factor algorithm could yield reliable results. 

Table 6.4 shows the comparison between the study of Lopez et al. (2009) and 

the present work for Puck fiber failure effort obtained for specific plate geometry, 

material properties and loading cases. It can be observed that failure effort values are 

very close to each other. It should be noted in the table that PFC_fw denotes Puck 

failure criterion including weakening factor. It is understood from here that the failure 

program used in the study could also yield reliable results. 
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Table 6.4. Verification of Puck failure criterion algorithm 
 

Nxy 
Failure 
Criteria 

fE (Lopez, et 
al. 2009) 

fE (Present 
Study) 

0 
PFC 0.96 0.9634 
PFC_fw 0.96 0.9634 

100 
PFC 0.98 0.9817 
PFC_fw 0.98 0.9817 

250 
PFC 1.00 1.0095 
PFC_fw 1.00 1.0095 

500 
PFC 1.00 0.9975 
PFC_fw 1.00 0.9975 

1000 
PFC 0.98 0.9798 
PFC_fw 0.98 0.9798 

 

 

The optimum composite plate designs which resist to buckling and ply failure, 

and failed designs (shown in grey color) which are buckled or failed due to Puck failure 

criterion for various plate aspect ratios are given in Tables 6.5 - 6.8. The plate aspect 

ratios considered are a/b = 1, 2, 4 and 1/2. In all the tables, maximized critical buckling 

load factors (λcb), stacking sequences, failure efforts (fE(FF) and fE(IFF)) and critical layer 

numbers (LNcr) have been presented as optimization results. 

Table 6.5 shows the optimum designs of laminated composite plates for the plate 

aspect ratio a/b = 1. It can be observed that all possible fiber orientations consist of 

combinations of +45 or -45 angles which are discrete values. Reliable plate designs in 

terms of buckling and ply failure have been obtained only for Nx = 1000 N/mm load, 

however, they have not been achieved for Nx = 3000 N/mm, 5000 N/mm and 10000 

N/mm loads. Failure effort values of the optimum designs indicate that the optimum 

designs are safe in terms of the first ply failure (fE >1). As seen, buckled (or failed) 

designs of composite plates are also given so as to point out that they are bad designs. 

Therefore, the failure effort values of bad designs have not been calculated. 

 

 

 

 

 

 

 



48 
 

Table 6.5. Optimum designs and corresponding failure efforts for a/b = 1 
 

Nx 
(N/mm) Nx/Ny λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1000 

1 1.63011 
s]45/45/45/45/45

/45/45/45/45/45/45[

222

22








  0.0699 27 5.10-8 27 

2 2.17348 
s]45/45/45/45/45/45

/45/45/45/45/45/45[

222

22







 0.0538 31 0.1329 31 

4 2.60817 
s]45/45/45

/45/45/45/45/45[

34

32








  0.0441 31 0.2096 32 

 1/2 1.08674 
s]45/45

/45/45/45/45/45[

33

3222







  0.1063 31 0.2658 31 

3000 

1 0.54337  
s]45/45/45

/45/45/45/45/45/45[

5

4







 -  -  -  -  

2 0.72449  
s]45/45/45/45/45

/45/45/45/45/45/45[

22

32








 -  -  -  -  

4 0.86939  
s]45/45

/)45/45/()45/45/(45[

5

222







 -  -  -  -  

 1/2 0.36225 
s]45/45

/)45/45/(45/)45/45[(

4

32







  -  -  -  -  

5000 

1 0.32602  
s]45

/)45/45/()45/45/(45/45[

2

223



 
 -  -  -  -  

2 0.4347  
s]4.43/)45/45(

/45/45/45/45/45/45[

2

233








 -  -  -  -  

4 0.52163  
s]45/45

/45/)45/45/(45/45[

42

232







 -  -  -  -  

 1/2 0.21735  
s]45/)45/45(

/45/45/45/45/45[

22

323







 -  -  -  -  

10000 

1 0.16301  
s]45/45

/45/45/45/)45/45[(

5

322







 -  -  -  -  

2 0.21735  s]45[ 16  -  -  -  -  
4 0.26082  s]45/45/45/45/45/45[ 337    -  -  -  -  

 1/2 0.10867 
s]45/45/45

/45/45/45/)45/45[(

22

2222







  -  -  -  -  

 

Table 6.6 shows the optimum designs of laminated composites for the plate 

aspect ratio of 2. It can be seen that all stacking sequences have continuous fiber angles 

in this case. It can be noticed that buckling load capacity increases with loading ratio. 

When the applied load is increased, it is observed that the designs are failed due to 

buckling and/or ply strength. The designs subjected to Nx = 1000 N/mm, 3000 N/mm 

and 5000 N/mm loads usually resulted well but any optimum design could not be 

obtained for 10000 N/mm loading. It can also be seen that in general, the critical layers 



49 
 

according to Puck failure theory are close to mid-plane (e.g., 27, 29, 31). In addition, 

the design for Nx = 5000 N/mm and a/b = 1, which is a bad design, has been controlled 

according to Puck failure criterion in order to show that the first ply failure occurs as 

expected. 

 
 

Table 6.6. Optimum designs and corresponding failure efforts for a/b = 2 
 

Nx 
(N/mm) Nx/Ny λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1000 

1 4.8486 

s]86/9.74/3.50/2.67/1.70
/4.69/5.68/70/6.70/70/5.72

/1.71/5.67/4.70/74/7.71[











  0.188 28 0.079 27 

2 7.5370 

s]9.89/5.55/1.70/9.56/2.60/61
/3.62/3.63/5.62/2.61/5.62
/3.62/8.61/8.62/7.61/7.62[











 0.109 31 0.100 29 

4 10.083  

s]8.79/1.51/8.58/7.52/1.53
/4.53/8.52/3.53/2.53/4.53

/4.53/9.52/1.53/4.53/3.53[

2












 0.192 31 0.145 29 

 1/2 2.7973 

s]6.30/4.60/3.75/5.88/6.69
/83/8.67/2.79/7.78/6.72/9.78

/5.80/7.76/2.78/2.80/8.88[












 0.257 31 0.031 31 

3000 

1 1.6152 

s]28/2.89/5.70/4.58
/5.78/5.89/8.73/7.76/2.66/78
/3.72/2.69/8.69/8.68/72/3.68[












 0.799 31 0.261 31 

2 2.5116  

s]32/5.48/4.57/68/58/8.60
/5.61/1.61/8.60/1.63/6.61
/7.63/3.61/7.62/6.63/5.61[











 0.756 31 0.369 31 

4 3.3598 

s]3.71/2.65/3.52/3.50/55/9.53
/7.51/52/6.50/1.54/6.53

/3.53/6.52/3.53/1.53/2.54[












 0.436 31 0.454 25 

 1/2 0.9322 

s]7.59/5.61/6.82/5.86/2.61
/2.76/6.73/4.82/90/8.77/6.88

/2.79/1.82/3.78/5.72/3.83[

2











 - - - - 

 

(cont. on next page) 
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Table 6.6 (Cont.) 

 

5000 

1 0.9685  

s]6.25/4.39/9.78/5.69/2.89
/9.77/7.67/5.67/9.65/6.70/2.73

/4.71/6.71/3.79/5.66/9.68[











 1.1511 31 1.2308 31 

2 1.5071  

s]7.87/7.69/86/1.64/9.57
/9.60/2.61/5.63/62/7.62/3.61

/8.62/3.61/8.62/9.61/3.62[











 0.4468 31 0.4373 23 

4 2.0155  

s]1.67/3.42/1.47/4.50/4.49
/1.54/6.54/1.53/3.51/1.54

/3.54/2.54/1.53/6.53/5.52[

2












 0.8156 29 0.9954 29 

 1/2 0.5592  

s]4.60/2.77/6.76/71/1.69
/8.79/2.69/9.81/8.89/3.76

/3.72/7.82/1.71/1.78/5.89[ 2












 -  -  -  -  

10000 

1 0.4842  

s]2.3/6.64/7.63/1.58/1.83
/65/9.66/7.83/7.65/5.66

/76/7.68/6.69/1.71/5.75[

2












 -  -  -  -  

2 0.7504  

s]2.60/8.10/1.48/2.46/2.51
/1.52/2.64/8.57/3.58/5.59

/5.62/61/8.66/61/8.66/9.62[










 -  -  -  -  

4 1.0073  

s]6.33/8.38/7.44/2.48
/9.48/4.51/52/2.51/1.51/5.53
/8.52/7.55/53/2.54/5.54/7.52[





 2.082 31 36.036 31 

 1/2 0.2796  

s]2.42/77/7.76/5.69/7.81/1.63
/2.72/5.77/9.77/1.86/4.75
/4.87/8.71/8.89/6.81/8.79[











 -  -  -  -  

 

 

Table 6.7 shows the optimum designs for the plate aspect ratio of 4. As seen in 

the table, all obtained designs are safe for both buckling and the first ply failure. 

Stacking sequences only consist of 90˚ discrete fiber angle. Again, it can be observed 

that buckling load capacity of designs increases when the load ratio increases. The 

critical cases here occurred in the plates subjected to Nx = 10000 N/mm load as 

expected.  
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Table 6.7. Optimum designs and corresponding failure efforts for a/b = 4 
 

Nx 
(N/mm) Nx/Ny λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1000 

1 20.5288  s]90[ 32  0.0329 27 2.10-9 27 
2 34.2147  s]90[ 32  0.0137 27 2.10-9 27 
4 51.3221  s]90[ 32  0.0041 3 1.10-8 3 

 1/2 11.4049  s]90[ 32  0.0711 17 9.10-8 17 

3000 

1 6.8429  s]90[ 32  0.0986 13 1.10-6 13 
2 11.4049  s]90[ 32  0.0412 29 2.10-8 29 
4 17.1073  s]90[ 32  0.0124 31 2.10-9 31 

 1/2 3.8016  s]90[ 32  0.2134 21 6.10-5 21 

5000 

1 4.1058  s]90[ 32  0.1643 31 2.10-5 31 
2 6.8429  s]90[ 32  0.0686 9 4.10-7 9 
4 10.2644  s]90[ 32  0.0207 29 6.10-9 29 

 1/2 2.2810  s]90[ 32  0.3557 11 0.0014 11 

10000 

1 2.0529  s]90[ 32  0.3286 31 0.0014 31 
2 3.4215  s]90[ 32  0.1372 23 2.10-5 23 
4 5.1322  s]90[ 32  0.0414 29 4.10-7 29 

 1/2 1.1405  s]90[ 32  0.7115 31 0.0889 31 
 

 
The optimum designs for the plate aspect ratio of 1/2 are given in Table 6.8. The 

optimum designs could be obtained only for 1000 N/mm loading cases. It can be seen 

from the results in the table that all stacking sequences have continuous fiber angles. It 

is interesting to note that for Nx = 1000 N/mm and Nx/Ny = 1/2 case, the stacking 

sequence of the design consists of 0 discrete angle merely. It can also be noted that the 

critical loads ( crxN , , cryN , ), which the plate could withstand to, are close to the applied 

loads in the obtained designs. Furthermore, in all cases, the critical buckling load factor 

values increase depending on the increase in loading ratios. 
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Table 6.8. Optimum designs and corresponding failure efforts for a/b = 1/2 
 

Nx 
(N/mm) Nx/Ny λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1000 

1 1.2101 

s]4.42/2.7/2.34/1.14/5.3/6.10
/14/7.19/8.17/3.11/5.26

/7.8/5.20/6.18/4.23/3.21[











 0.1961 31 0.0709 31 

2 1.3995 

s]7.7/6.10/3.10/4.10/2.16
/10/3.13/5.16/2.11/8.10

/6.14/1.9/11/3.8/5.8/7.12[












 0.0470 17 0.0093 17 

4 1.5095 s]0[ 32  0.0369 23 1.10-9 23 

1/2 0.9385 

s]2.68/1.57/8.9/8.29/1.5/33
/5.27/9.2/4.32/2.29/1.29

/7.28/4.28/9.28/5.26/8.29[












 - - - - 

3000 

1 0.4032 

s]8.48/3.19/35/7.19/9.21
/20/9.24/4.7/3.19/1.20/5

/1.11/4.19/4.23/7.25/9.17[












 - - - - 

2 0.4662 

s]9.38/2.36/4/5.10/5.28/9.5
/8.6/10/6.8/9.9/5.10

/11/3.11/6.12/9.4/5.14[









 - - - - 

4 0.5032 s]0[ 32  - - - - 

1/2 0.3135 

s]8.65/4.7/2.16/27/2.39
/3.34/2.28/1.25/6.31/8.31

/2.29/2.28/5.24/8.27/9.25[ 2












 - - - - 

5000 

1 0.2420 

s]5.1/7.10/5.6/2.12/8.15/8.14
/7.25/10/9.27/6.9/1.22
/7.11/7.16/19/2.21/3.23[












 - - - - 

2 0.2798 

s]7/2.31/4.1/8/2.4/8.3
/9.2/9.7/1.8/4.2/2.5

/1.8/4.12/12/5.16/4.13[










 - - - - 

4 0.3019 s]0[ 32  - - - - 

1/2 0.1873 

s]89/6.37/1.80/6.7/4.6/31
/2.31/9.27/9.17/2.24/24
/31/8.29/1.26/6.28/9.31[












 - - - - 

10000 

1 0.1211 

s]8.47/9.2/1.3/8.28/1.20
/6.14/19/1.16/4.3/2.24

/1.15/4.21/3.222.17/1.21[

2 










 - - - - 

2 0.1397 

s]5.2/3.0/9.22/7.0/8.0/4.24
/9.4/3.6/7.4/8.1/7.3

/5.3/8.18/7.0/3.9/2.18[











 - - - - 

4 0.1509 s]0[ 32  - - - - 

1/2 0.0937 
s]3.79/6.32/1.27/7.46/3.33/3.41

/4.39/2.25/4.29/7.24/2.27
/3.33/1.22/9.27/1.29/9.23[











 

- - - - 
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Eventually, it can be observed that the stacking sequences include both 

continuous and discrete fiber angles depending on the aspect ratios. As touched briefly 

in the previous discussions, stacking sequences hold continuous fiber angles in plate 

aspect ratios of 2 and 1/2 except a few special cases, and stacking sequences hold 

discrete fiber angles when the plate aspect ratios are 1 and 4. It can be noted from the 

tables that when the applied load is increased, maximized critical buckling load factor 

values decreases. In other words, the number of the optimum designs decreases so long 

as the applied load is increased.  

In Tables 6.9 – 6.12, the effect of various plate aspect ratios on optimum 

laminated composite plate designs has been investigated depending on loading ratios. 

The tables have been generated for Nx = 1000 N/mm, 3000 N/mm, 5000 N/mm and 

10000 N/mm loads. These tables also include optimum designs, maximized critical 

buckling load factors and the first ply failure efforts with corresponding critical layer 

numbers. 

As seen in Table 6.9, an optimum laminated composite design has been found in 

almost all considered cases. The largest critical buckling load factor values have been 

obtained in the plates with aspect ratio of 4, which means that the related designs would 

be able to withstand further loading. In Table 6.10, it can be seen that the reliable 

optimum designs have been decreased depending on load raise, and this situation can be 

observed clearly in the other tables as well. In this loading case, there are seven reliable 

designs which are not buckled or failed. It can also be noted that the critical layers in 

terms of Puck failure criteria are mostly near the mid- plane of the laminates. Table 6.11 

shows the optimum designs for Nx = 5000 N/mm load and only six reliable designs 

exist. It can be observed that the designed plates having 2 and 4 aspect ratios are more 

resistant than the others in terms of buckling and ply failure strength. Table 6.12 shows 

the results for the case of maximum applied loading. It can be seen that only four good 

designs resisting to buckling and the first ply failure could be obtained under this 

loading condition. The critical optimum design is the plate in the case of Nx/Ny = 1/2 and 

a/b = 1 because the critical buckling load factor almost equals to one.  
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Table 6.9. Optimum designs and corresponding failure efforts for Nx = 1000 N/mm 
 

Nx/Ny a/b λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1 

1 1.6301  
s]45/45/45/45/45

/45/)45/45/(45[

222

22








 0.0699 27 5.10-8 27 

2 4.8486 

s]86/9.74/3.50/2.67/1.70
/4.69/5.68/70/6.70/70/5.72

/1.71/5.67/4.70/74/7.71[











  0.188 28 0.0786 27 

4 20.529 s]90[ 32   0.0329 27 2.10-9 27 

 1/2 1.2101  

s]4.42/2.7/2.34/1.14/5.3/6.10
/14/7.19/8.17/3.11/5.26

/7.8/5.20/6.18/4.23/3.21[











 0.1961 31 0.0709 31 

2 

1 2.1735  
s]45/45/45/45/45/45

/45/45/45/45/45/45[

222

22







 0.0538 31 0.1329 31 

2 7.537 

s]9.89/5.55/1.70/9.56/2.60/61
/3.62/3.63/5.62/2.61/5.62
/3.62/8.61/8.62/7.61/7.62[











  0.1092 31 0.1006 29 

4 34.215  s]90[ 32  0.0137 27 2.10-10 27 

 1/2 1.3995 

s]7.7/6.10/3.10/4.10/2.16
/10/3.13/5.16/2.11/8.10

/6.14/1.9/11/3.8/5.8/7.12[












  0.047 17 0.0093 17 

4 

1 2.6082 
s]45/45/45

/45/45/45/45/45[

34

32








  0.0441 31 0.2096 32 

2 10.083  

s]8.79/1.51/8.58/7.52/1.53
/4.53/8.52/3.53/2.53/4.53

/4.53/9.52/1.53/4.53/3.53[

2












 0.1924 31 0.1454 29 

4 51.322 s]90[ 32   0.0041 3 1.10-8 3 
 1/2 1.5095 s]0[ 32   0.0369 23 1.10-9 23 

 1/2 

1 1.0867  
s]45/45

/45/45/45/45/45[

33

3222







 0.1063 31 0.2658 31 

2 2.7972  

s]6.30/4.60/3.75/5.88/6.69
/83/8.67/2.79/7.78/6.72/9.78

/5.80/7.76/2.78/2.80/8.88[












 0.257 31 0.0311 31 

4 11.405  s]90[ 32  0.0711 17 9.10-8 17 

 1/2 0.9385  

s]2.68/1.57/8.9/8.29/1.5/33
/5.27/9.2/4.32/2.29/1.29

/7.28/4.28/9.28/5.26/8.29[












 -  -  -  -  

 

 

 

 

 

 

 



55 
 

Table 6.10. Optimum designs and corresponding failure efforts for Nx = 3000 N/mm 
 

Nx/Ny a/b λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1 

1 0.5434  
s]45/45/45

/45/45/45/45/45/45[

5

4







 -  -  -  -  

2 1.6152 

s]28/2.89/5.70/4.58
/5.78/5.89/8.73/7.76/2.66/78
/3.72/2.69/8.69/8.68/72/3.68[












  0.7986 31 0.2609 31 

4 6.8429  s]90[ 32  0.0986 13 1.10-6 13 

 1/2 0.4032  

s]8.48/3.19/35/7.19/9.21
/20/9.24/4.7/3.19/1.20/5

/1.11/4.19/4.23/7.25/9.17[












 -  -  -  -  

2 

1 0.7245 
s]45/45

/45/)45/45/(45/45[

2

2332








  -  -  -  -  

2 2.5116  

s]32/5.48/4.57/68/58/8.60
/5.61/1.61/8.60/1.63/6.61
/7.63/3.61/7.62/6.63/5.61[











 0.7559 31 0.3693 31 

4 11.405 s]90[ 32   0.0412 29 2.10-8 29 

 1/2 0.4662  

s]9.38/2.36/4/5.10/5.28/9.5
/8.6/10/6.8/9.9/5.10

/11/3.11/6.12/9.4/5.14[









 -  -  -  -  

4 

1 0.8694  
s]45/45

/)45/45/()45/45/(45[

5

222







 -  -  -  -  

2 3.3598  

s]3.71/2.65/3.52/3.50/55/9.53
/7.51/52/6.50/1.54/6.53

/3.53/6.52/3.53/1.53/2.54[












 0.4359 31 0.4543 25 

4 17.107  s]90[ 32  0.0124 31 2.10-9 31 
 1/2 0.5032  s]0[ 32  -  -  -  -  

 1/2 

1 0.3622  
s]45/45

/)45/45/(45/)45/45[(

4

32







 -  -  -  -  

2 0.9322  

s]7.59/5.61/6.82/5.86/2.61
/2.76/6.73/4.82/90/8.77/6.88

/2.79/1.82/3.78/5.72/3.83[

2











 - - - - 

4 3.8016  s]90[ 32  0.2134 21 6.10-5 21 

 1/2 0.3135  

s]8.65/4.7/2.16/27/2.39
/3.34/2.28/1.25/6.31/8.31

/2.29/2.28/5.24/8.27/9.25[ 2












 -  -  -  -  
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Table 6.11. Optimum designs and corresponding failure efforts for Nx = 5000 N/mm 
 

Nx/Ny a/b λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1 

1 0.326  
s]45

/)45/45/()45/45/(45/45[

2

223



 
 -  -  -  -  

2 0.9685  

s]6.25/4.39/9.78/5.69/2.89
/9.77/7.67/5.67/9.65/6.70/2.73

/4.71/6.71/3.79/5.66/9.68[











 1.1511 31 1.2308 31 

4 4.1058  s]90[ 32  0.1643 31 2.10-5 31 

 1/2 0.242  

s]5.1/7.10/5.6/2.12/8.15/8.14
/7.25/10/9.27/6.9/1.22
/7.11/7.16/19/2.21/3.23[












 -  -  -  -  

2 

1 0.4347  
s]4.43/)45/45(

/45/45/45/45/45/45[

2

233








 -  -  -  -  

2 1.5071  

s]7.87/7.69/86/1.64/9.57
/9.60/2.61/5.63/62/7.62/3.61

/8.62/3.61/8.62/9.61/3.62[











 0.4468 31 0.4373 23 

4 6.8429  s]90[ 32  0.0686 9 4.10-7 9 

 1/2 0.2798 

s]7/2.31/4.1/8/2.4/8.3
/9.2/9.7/1.8/4.2/2.5

/1.8/4.12/12/5.16/4.13[










  -  -  -  -  

4 

1 0.5216  
s]45/45

/45/)45/45/(45/45[

42

232







 -  -  -  -  

2 2.0155  

s]1.67/3.42/1.47/4.50/4.49
/1.54/6.54/1.53/3.51/1.54

/3.54/2.54/1.53/6.53/5.52[

2












 0.8156 29 0.9954 29 

4 10.264 s]90[ 32   0.0207 29 6.10-9 29 
 1/2 0.3019 s]0[ 32   -  -  -  -  

 1/2 

1 0.2173  
s]45/)45/45(

/45/45/45/45/45[

22

323







 -  -  -  -  

2 0.5592  

s]4.60/2.77/6.76/71/1.69
/8.79/2.69/9.81/8.89/3.76

/3.72/7.82/1.71/1.78/5.89[ 2












 -  -  -  -  

4 2.281  s]90[ 32  0.3557 11 0.0014 11 

 1/2 0.1873  

s]89/6.37/1.80/6.7/4.6/31
/2.31/9.27/9.17/2.24/24
/31/8.29/1.26/6.28/9.31[












 -  -  -  -  
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Table 6.12. Optimum designs and corresponding failure efforts for Nx = 10000 N/mm 
 

Nx/Ny a/b λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1 

1 0.163  
s]45/45

/45/45/45/)45/45[(

5

322







 -  -  -  -  

2 0.4842  

s]2.3/6.64/7.63/1.58/1.83
/65/9.66/7.83/7.65/5.66

/76/7.68/6.69/1.71/5.75[

2












 -  -  -  -  

4 2.0529 s]90[ 32   0.3286 31 0.0014 31 

 1/2 0.1211  

s]8.47/9.2/1.3/8.28/1.20
/6.14/19/1.16/4.3/2.24

/1.15/4.21/3.222.17/1.21[

2 










 -  -  -  -  

2 

1 0.2173  
s])45/45(

/45/45/45/45/45/45[

22

42







 -  -  -  -  

2 0.7504  

s]2.60/8.10/1.48/2.46/2.51
/1.52/2.64/8.57/3.58/5.59

/5.62/61/8.66/61/8.66/9.62[










 -  -  -  -  

4 3.4215  s]90[ 32  0.1372 23 2.10-5 23 

 1/2 0.1397  

s]5.2/3.0/9.22/7.0/8.0/4.24
/9.4/3.6/7.4/8.1/7.3

/5.3/8.18/7.0/3.9/2.18[











 -  -  -  -  

4 

1 0.2608 s]45/45/45/45/45/45[ 337     -  -  -  -  

2 1.0073  

s]6.33/8.38/7.44/2.48
/9.48/4.51/52/2.51/1.51/5.53
/8.52/7.55/53/2.54/5.54/7.52[





 2.082 31 36.036 31 

4 5.1322 s]90[ 32  0.0414 29 4.10-7 29 
 1/2 0.1509 s]0[ 32  -  -  -  -  

 1/2 

1 0.1087  
s]45/45/45

/45/45/45/)45/45[(

22

2222







 -  -  -  -  

2 0.2796  

s]2.42/77/7.76/5.69/7.81/1.63
/2.72/5.77/9.77/1.86/4.75
/4.87/8.71/8.89/6.81/8.79[











 -  -  -  -  

4 1.1405  s]90[ 32  0.7115 31 0.0889 31 

 1/2 0.0937 

 

s]3.79/6.32/1.27/7.46/3.33/3.41
/4.39/2.25/4.29/7.24/2.27
/3.33/1.22/9.27/1.29/9.23[











 

-  -  -  -  

 

 

In the thesis, fiber angles in the stacking sequences of the laminated composites 

have been assumed continuous and the optimization has been carried out considering 

this assumption. However, discrete ply orientations are used by industry in design of 

laminated composite materials due to their economic production methods. In order to 



58 
 

indicate that the advantages of studying with continuous design variables (fiber angles), 

the stacking sequences (continuous case) of some optimum designs have been converted 

to designs including discrete fiber orientations and they have been presented together in 

Table 6.13 and 6.14. These fiber angles have been converted into discrete variables by 

dividing the range into equal interval and specifying them to discrete values. 0˚, ±45˚ 

and 90˚ have been considered as three discrete angles. A continuous value between -90 

and -30 has been specified as a discrete value of 0, a value between -30 and 30 has been 

specified as a discrete value of 45 and a value between 30 and 90 has been specified as 

a discrete value of 90 in conversion process. It should be noted that since the plies are 

considered as ± stacks in order to provide the balance of the laminate; so 0, 45 and 90 

fiber angles are used as 02, ±45, 902 respectively in the stacking sequences. 

Table 6.13 represents the comparison of the optimum continuous stacking 

sequence designs and their converted ones for the plate aspect ratio a/b = 2. Loadings, 

loading ratios, type of ply orientations, critical buckling load factors, stacking 

sequences, Puck fiber and inter-fiber failure efforts and their critical layer numbers are 

given in the table. The bad designs which failed due to buckling have not been 

converted. It can be seen from the table that all the converted designs for 1000 N/mm, 

3000 N/mm and 5000 N/mm loads are also reliable according to buckling and the first 

ply failure. The optimum continuous designs for 10000 N/mm load have not been 

considered since there is not any reliable design in this case. It is obvious that in all 

cases, critical buckling load factor values show a decrease and converted stacking 

sequence designs therefore become weaker than the continuous ones. In other words, 

they are less resistant to withstand buckling. 

Table 6.14 shows the comparison of optimum continuous stacking sequences at 

the plate aspect ratio of 1/2 for 1000 N/mm load considering Table 6.8 and their 

converted ones. The designs for the loads 3000 N/mm, 5000 N/mm and 10000 N/mm 

have not been considered since they did not give optimum results for the cases given in 

Table 6.8. It can clearly be seen from the table that the critical buckling load factor 

values decrease in all cases. There is only one reliable case which is the load ratio of 4 

after the conversion. 

As a conclusion, the comparison between the results obtained for both 

continuous and discrete (conventional) fiber orientations indicates that optimum critical 

buckling load factor value is higher when continuous orientations are used. 
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Table 6.13. Comparison of continuous (Cont) and discrete (Disc) optimum designs for a/b = 2 
 

Nx Nx/Ny Type λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1000 

1 
Cont 4.849 

s]86
/9.74/3.50/2.67/1.70/4.69

/5.68/70/6.70/70/5.72
/1.71/5.67/4.70/74/7.71[














 0.188 28 0.079 27 

Disc 1.799 s]0/90/0/90/0/90/0[ 26821022  0.105 3 6.10-7 3 

2 
Cont 7.537 

s]9.89
/5.55/1.70/9.56/2.60/61

/3.62/3.63/5.62/2.61/5.62
/3.62/8.61/8.62/7.61/7.62[














 0.109 31 0.101 29 

Disc 5.073 
s]0/90/0

/90/0/90/0/90/0/90[

222

4662422  0.079 3 1.10-7 3 

4 
Cont 10.083 

s]8.79/1.51/8.58/7.52/1.53
/4.53/8.52/3.53/2.53/4.53

/4.53/9.52/1.53/4.53/3.53[

2












 0.192 31 0.145 29 

Disc 5.442 s]90/0/)90/0/()90/0/(0[ 223242222  0.058 1 2.10-8 1 

1/2 
Cont 2.797 

s]6.30
/4.60/3.75/5.88/6.69/83

/8.67/2.79/7.78/6.72/9.78
/5.80/7.76/2.78/2.80/8.88[













 0.257 31 0.031 31 

Disc 1.450 s])90/0/(90/0/90[ 2244124  0.181 1 2.10-5 1 

3000 

1 
Cont 1.615 

s]28
/2.89/5.70/4.58/5.78/5.89

/8.73/7.76/2.66/78/3.72
/2.69/8.69/8.68/72/3.68[













 0.799 31 0.261 31 

Disc 1.116 s]45/90/0/90/0/)90/0[( 2622342   0.223 1 4.10-4 32 

2 
Cont 2.512 

s]32/5.48/4.57/68/58/8.60
/5.61/1.61/8.60/1.63/6.61
/7.63/3.61/7.62/6.63/5.61[











 0.756 31 0.369 31 

Disc 1.644 s]90/)90/0/(0/90/0/90[ 44222442  0.238 3 8.10-5 3 

4 
Cont 3.359 

s]3.71
/2.65/3.52/3.50/55/9.53
/7.51/52/6.50/1.54/6.53

/3.53/6.52/3.53/1.53/2.54[













 0.436 31 0.454 25 

Disc 2.029 s]90/)0/90/(90/)0/90[( 42424322  0.240 3 9.10-5 3 

1/2 
Cont 0.932 

s]7.59
/5.61/6.82/5.86/2.61/2.76

/6.73/4.82/90/8.77/6.88
/2.79/1.82/3.78/5.72/3.83[

2











 0.466 32 0.126 31 

Disc - - - - - - 
 

(cont. on next page) 
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Table 6.13 (Cont.) 

 

5000 

1 
Cont 0.968 

s]6.25/4.39/9.78/5.69/2.89
/9.77/7.67/5.67/9.65/6.70/2.73

/4.71/6.71/3.79/5.66/9.68[











 1.151 31 1.231 31   

Disc -  -  -  -  -  -  

2 
Con. 1.507  

s]7.87/7.69/86/1.64/9.57
/9.60/2.61/5.63/62/7.62/3.61

/8.62/3.61/8.62/9.61/3.62[











 0.447 31 0.437 23 

Disc 1.015  s])0/90/(0/90/0/90/0/90[ 222462264   0.354  5  9.10-4 5  

4 
Cont 2.015  

s]1.67/3.42/1.47/4.50/4.49
/1.54/6.54/1.53/3.51/1.54

/3.54/2.54/1.53/6.53/5.52[

2












 0.816 29 0.995 29 

Disc 1.217  s]90/0/)90/0/(0/90/0[ 22242286   0.400  1  0.002  1  

 1/2 
Cont 0.559  

s]4.60/2.77/6.76/71/1.69
/8.79/2.69/9.81/8.89/3.76

/3.72/7.82/1.71/1.78/5.89[ 2












 -  -  -  -  

Disc -  -  -  -  -  -  

10000 

1 
Cont 0.484  

s]2.3/6.64/7.63/1.58/1.83
/65/9.66/7.83/7.65/5.66

/76/7.68/6.69/1.71/5.75[

2












 -  -  -  -  

Disc -  -  -  -  -  -  

2 
Cont. 0.750  

s]2.60/8.10/1.48/2.46/2.51
/1.52/2.64/8.57/3.58/5.59

/5.62/61/8.66/61/8.66/9.62[










 -  -  -  -  

Disc -  -  -  -  -  -  

4 
Cont 1.007  

s]6.33/8.38/7.44/2.48
/9.48/4.51/52/2.51/1.51/5.53
/8.52/7.55/53/2.54/5.54/7.52[





 2.082 31 36.04 31 

Disc 0.609  s]90[ 32   -  -  -  -  

 1/2 
Cont 0.279  

s]2.42/77/7.76/5.69/7.81/1.63
/2.72/5.77/9.77/1.86/4.75
/4.87/8.71/8.89/6.81/8.79[











 -  -  -  -  

Disc -  -  -  -  -  -  
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Table 6.14. Comparison of continuous and discrete optimum designs for a/b = 1/2 
 

Nx 
(N/mm) Nx/Ny Type λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1000 

1 
Cont 1.2101 

s]4.42
/2.7/2.34/1.14/5.3/6.10
/14/7.19/8.17/3.11/5.26

/7.8/5.20/6.18/4.23/3.21[














 0.196 31 0.071 31 

Disc 0.8631  s]0/45/90/45[ 2226    -  -  -  -  

2 
Cont 1.3995 

s]7.7
/6.10/3.10/4.10/2.16/10

/3.13/5.16/2.11/8.10/6.14
/1.9/11/3.8/5.8/7.12[













  0.047 17 0.009 17 

Disc 0.9623  s]45[ 32   - -  -  -  

4 
Cont 1.5095 s]0[ 32   0.037 23 1.10-9 23 
Disc 1.0189  s]45[ 32   0.047  1  0.201  1  

 1/2 
Cont 0.9385 

s]2.68
/1.57/8.9/8.29/1.5/33

/5.27/9.2/4.32/2.29/1.29
/7.28/4.28/9.28/5.26/8.29[












 

-  -  -  -  

Disc -  -  -  -  -  -  
 

 

In addition to the investigation for optimum designs of 64-layered composite 

plates given in Tables 6.5 -6.12, 48-layered composite plates have also been considered. 

In Table 6.15, the optimum designs of 48-layered composite plates for 3000 

N/mm load are given. It can be observed that the number of reliable designs in terms of 

buckling and the first ply failure, and the values of critical buckling load factor decrease 

as compared to 64-layered design cases as expected. On the other hand, the obtained 

optimum designs of 48-layered composite plates could resist to the same loading 

conditions and they are lighter, which meets the requirements of industry. 
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Table 6.15. Optimum designs of 48-layered plates for Nx = 3000 N/mm  
 

Nx/Ny a/b λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr 

1 

1 0.2292 s])45/45[( 42   -  -  -  -  

2 0.6816 
s]4.56/83/8.89/2.65/6.71/4.62
/7.68/4.74/71/8.72/9.68/1.72[







 -  -  -  -  

4 2.8869  s]90[ 24  0.1314 15 6.10-6 15 

 
1/2 0.1704 

s]4.26/2.26/2.21/2.15/7.16/4.21
/2.24/1.18/5.23/3.22/5.15/16[








  -  -  -  -  

2 

1 0.3056 s]45/45/45/45/45[ 424     -  -  -  -  

2 1.0588 
s]5.61/6.59/4.78/1.64/7.60/6.62
/9.65/9.63/7.61/1.62/7.58/9.62[








  0.3372 19 0.3746 3 

4 4.8114 s]90[ 24   0.0549 7 9.10-8 7 

 
1/2 0.1968 

s]1.5/3.3/9.4/7.6/1.7/6.6
/8.10/5.11/3.10/1.11/2.13/1.12[


 

  -  -  -  -  

4 

1 0.3668 s])45/45/(45/45/45/45/45[ 232     -  -  -  -  

2 1.417 
s]4.48/8.52/4.45/2.56/1.56/1.54

/6.53/9.54/4.53/3.52/6.53/52[






  0.5431 19 0.7875 19 

4 7.2172  s]90[ 24  0.0166 23 1.10-9 23 
 

1/2 0.2123  s]0[ 24  -  -  -  -  

 1/2 

1 0.1528 s]45/45/)45/45[( 423     -  -  -  -  

2 0.3935 
s]7.72/5.78/1.82/6.85/5.73/4.84
/7.80/9.74/8.77/6.78/4.74/9.87[








  -  -  -  -  

4 1.6038 s]90[ 24   0.2846 1 0.0004 1 

 
1/2 0.1323 

s]2.39/45/7.43/7.32/6.23/5.25
/32/7.26/2.29/2.26/1.27/6.27[








  -  -  -  -  

 

 

As another effort in the thesis, a comparative study of Puck and Tsai-Wu failure 

criteria has been performed so as to search for the reliability of the optimum designs in 

terms of Tsai-Wu failure criterion, and  show the advantages of Puck failure criteria if 

exists. The results of the study are given in Table 6.16. As seen from the table, the 

critical optimum designs in terms of buckling have been considered. The load in the x 

direction, load ratio, plate aspect ratio, buckling load factor, stacking sequence; Puck 

fiber failure effort, Puck inter-fiber failure effort, Tsai-Wu failure effort and their 

critical layer numbers appear in the table. 

 In discussion of results, it has been observed that the half of designs is not 

reliable according to Tsai-Wu failure criterion; however, all the designs except one are 

reliable according to Puck failure criteria. This situation means that the optimum 
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designs resisting to buckling and the first ply failure could exist in fact if Puck failure 

criterion is considered. 

 
Table 6.16. Comparison of Puck and Tsai-Wu failure theories for specific designs 

 
Nx Nx/Ny a/b λcb Stacking Sequence fE(FF) LNcr fE(IFF) LNcr fE(TW) LNcr 

1000 

1 1/2 1.210 

s]4.42
/2.7/2.34/1.14/5.3/6.10
/14/7.19/8.17/3.11/5.26

/7.8/5.20/6.18/4.23/3.21[














 0.196 31 0.071 31 0.118 31 

2 1/2 1.399 

s]7.7/6.10/3.10/4.10/2.16
/10/3.13/5.16/2.11/8.10

/6.14/1.9/11/3.8/5.8/7.12[












 0.047 17 0.009 17 0.138 17 

4 1/2 1.509 s]0[ 32  0.037 23 1.10-9 23 0.093 23 

1/2 1 1.087 
s]45/45

/45/45/45/45/45[

33

3222







 0.106 31 0.266 31 0.014 31 

3000 

1 2 1.615 

s]28/2.89
/5.70/4.58/5.78/5.89

/8.73/7.76/2.66/78/3.72
/2.69/8.69/8.68/72/3.68[













 0.799 31 0.261 31 0.291 21 

2 2 2.512 

s]32
/5.48/4.57/68/58/8.60

/5.61/1.61/8.60/1.63/6.61
/7.63/3.61/7.62/6.63/5.61[













 0.756 31 0.369 31 0.324 26 

4 2 3.360 

s]3.71
/2.65/3.52/3.50/55/9.53
/7.51/52/6.50/1.54/6.53

/3.53/6.52/3.53/1.53/2.54[













 0.436 31 0.454 25 1.291 31 

1/2 4 3.802 s]90[ 32  0.213 21 6.10-5 21 1.632 3 

5000 

1 4 4.106 s]90[ 32  0.164 31 2.10-5 31 6.471 15 

2 2 1.507 

s]7.87
/7.69/86/1.64/9.57/9.60
/2.61/5.63/62/7.62/3.61

/8.62/3.61/8.62/9.61/3.62[














 0.447 31 0.437 23 5.934 31 

4 2 2.016 

s]1.67/3.42/1.47/4.50/4.49
/1.54/6.54/1.53/3.51/1.54

/3.54/2.54/1.53/6.53/5.52[

2












 0.816 29 0.995 29 3.666 31 

1/2 4 2.281 s]90[ 32  0.356 11 0.001 11 6.078 21 

10000 

1 4 2.053 s]90[ 32  0.329 31 0.001 31 30.58 5 

2 4 3.421 s]90[ 32  0.137 23 2.10-5 23 31.48 1 

4 2 1.007 

s]6.33
/8.38/7.44/2.48/9.48/4.51

/52/2.51/1.51/5.53/8.52
/7.55/53/2.54/5.54/7.52[







 2.082 31 36.04 31 5.568 31 

1/2 4 1.140 s]90[ 32  0.712 31 0.089 31 28.94 19 
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All generated optimum designs of anti-buckling behavior of 64 layered 

composite plates considering Puck failure criterion have been put together and 

presented in Table 6.17. 

 
 

Table 6.17. All optimum designs of anti-buckling behavior 
 

Nx 
(N/mm) Nx/Ny a/b λcb Stacking Sequence 

1000 

 1/2 

1 1.0867  
s]45/45

/45/45/45/45/45[

33

3222







 

2 2.7972 

s]6.30/4.60/3.75/5.88/6.69
/83/8.67/2.79/7.78/6.72/9.78

/5.80/7.76/2.78/2.80/8.88[












  

4 11.4049 s]90[ 32   

1 

 1/2 1.2101 

s]4.42/2.7/2.34/1.14/5.3/6.10
/14/7.19/8.17/3.11/5.26

/7.8/5.20/6.18/4.23/3.21[











  

1 1.6301 
s]45/45/45/45/45

/45/)45/45/(45[

222

22








  

2 4.8486 

s]86/9.74/3.50/2.67/1.70
/4.69/5.68/70/6.70/70/5.72

/1.71/5.67/4.70/74/7.71[











  

4 20.5288 s]90[ 32   

2 

 1/2 1.3995 

s]7.7/6.10/3.10/4.10/2.16
/10/3.13/5.16/2.11/8.10

/6.14/1.9/11/3.8/5.8/7.12[












  

1 2.1735 
s]45/45/45/45/45/45

/45/45/45/45/45/45[

222

22







  

2 7.5370 

s]9.89/5.55/1.70/9.56/2.60/61
/3.62/3.63/5.62/2.61/5.62
/3.62/8.61/8.62/7.61/7.62[











  

4 34.2147 s]90[ 32   

4 

 1/2 1.5095 s]0[ 32   

1 2.6082 
s]45/45/45

/45/45/45/45/45[

34

32








  

2 10.0827 

s]8.79/1.51/8.58/7.52/1.53
/4.53/8.52/3.53/2.53/4.53

/4.53/9.52/1.53/4.53/3.53[

2












  

4 51.3220 s]90[ 32   
 

(Cont. on next page) 
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Table 6.17 (Cont.) 

 

3000 

 1/2 4 3.8016 s]90[ 32   

1 
2 1.6152 

s]28/2.89/5.70/4.58
/5.78/5.89/8.73/7.76/2.66/78
/3.72/2.69/8.69/8.68/72/3.68[












  

4 6.8429 s]90[ 32   

2 
2 2.5116 

s]32/5.48/4.57/68/58/8.60
/5.61/1.61/8.60/1.63/6.61
/7.63/3.61/7.62/6.63/5.61[











  

4 11.4049 s]90[ 32   

4 
2 3.3598 

s]3.71/2.65/3.52/3.50/55/9.53
/7.51/52/6.50/1.54/6.53

/3.53/6.52/3.53/1.53/2.54[












  

4 17.1073 s]90[ 32   

5000 

 1/2 4 2.2810 s]90[ 32   
1 4 4.1058 s]90[ 32   

2 
2 1.5071 

s]7.87/7.69/86/1.64/9.57
/9.60/2.61/5.63/62/7.62/3.61

/8.62/3.61/8.62/9.61/3.62[











  

4 6.8429 s]90[ 32   

4 
2 2.0155 

s]1.67/3.42/1.47/4.50/4.49
/1.54/6.54/1.53/3.51/1.54

/3.54/2.54/1.53/6.53/5.52[

2












  

4 10.2644 s]90[ 32   

10000 

 1/2 4 1.1405 s]90[ 32   
1 4 2.0529 s]90[ 32   
2 4 3.4215 s]90[ 32   
4 4 5.1322 s]90[ 32   

 
 

It can be seen from the table that 32 optimum designs of 64-layered 

carbon/epoxy composite plates have been obtained at the end of the process. Even 

though fiber orientations have been assumed continuous in the optimization study, 

discrete designs have been obtained. When the applied load Nx is increased, the number 

of optimum design withstanding to buckling and ply failure has been decreased at each 

design case. The most resistant plate designs have been obtained at the plate aspect 

ratios of 2 and 4. It can be observed that the critical buckling load factor values increase 

as load ratio and plate aspect ratio increase. It can be inferred from this situation that in-

plane load in y-direction Ny and the width of the plate b are more effective parameters 

on plates in terms of buckling strength.  
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In addition to the investigation of optimum stacking sequence designs of 

composite plates in terms of the first ply failure using Puck fiber failure (FF) and inter-

fiber failure mode B (IFFB), the investigation of optimum designs for only a specific 

loading case considering Puck inter-fiber failure mode C (IFFC) has also been studied. 

 
 

Table 6.18. Inter-fiber failure efforts of optimum designs at Nx = 3000 N/mm loading 
                     for mode B (fE(IFFB)) and mode C (fE(IFFC)) 
 
Nx/Ny a/b λcb Stacking Sequence LNcr fE(IFFB) LNcr fE(IFFC) θfp 

1 

1 0.5434  
s]45/45/45

/45/45/45/45/45/45[

5

4







 - - - - - 

2 1.6152 

s]28/2.89/5.70/4.58
/5.78/5.89/8.73/7.76/2.66/78
/3.72/2.69/8.69/8.68/72/3.68[












  31 0.2609 31 0.4707 46.5 

4 6.8429  s]90[ 32  13 1.10-6 1 1.25 53.9 

 1/2 0.4032  

s]8.48/3.19/35/7.19/9.21
/20/9.24/4.7/3.19/1.20/5

/1.11/4.19/4.23/7.25/9.17[












 - - - - - 

2 

1 0.7245 
s]45/45

/45/)45/45/(45/45[

2

2332








  - - - - - 

2 2.5116  

s]32/5.48/4.57/68/58/8.60
/5.61/1.61/8.60/1.63/6.61
/7.63/3.61/7.62/6.63/5.61[











 31 0.3693 31 0.4222 37.9 

4 11.405 s]90[ 32   29 2.10-8 1 1.25 53.9 

 1/2 0.4662  

s]9.38/2.36/4/5.10/5.28/9.5
/8.6/10/6.8/9.9/5.10

/11/3.11/6.12/9.4/5.14[









 - - - - - 

4 

1 0.8694  
s]45/45

/)45/45/()45/45/(45[

5

222







 - - - - - 

2 3.3598  

s]3.71/2.65/3.52/3.50/55/9.53
/7.51/52/6.50/1.54/6.53

/3.53/6.52/3.53/1.53/2.54[












 25 0.4543 31 0.8987 47.9 

4 17.107  s]90[ 32  31 2.10-9 21 1.25 53.9 
 1/2 0.5032  s]0[ 32  - - - - - 

 1/2 

1 0.3622  
s]45/45

/)45/45/(45/)45/45[(

4

32







 - - - - - 

2 0.9322  

s]7.59/5.61/6.82/5.86/2.61
/2.76/6.73/4.82/90/8.77/6.88

/2.79/1.82/3.78/5.72/3.83[

2











 - - - - - 

4 3.8016  s]90[ 32  21 6.10-5 3 1.2501 53.9 

 1/2 0.3135  

s]8.65/4.7/2.16/27/2.39
/3.34/2.28/1.25/6.31/8.31

/2.29/2.28/5.24/8.27/9.25[ 2












 - - - - - 
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Table 6.18 represents the inter-fiber failure efforts of optimum designs at         

Nx = 3000 N/mm loading for mode B and C. Failure efforts, critical layer numbers and 

angle of fracture planes (θfp) of optimum designs according to IFF Mode C are given in 

the table. It is observed that some of the optimum designs according to IFF Mode B are 

not reliable or valid when IFF Mode C is considered and these cases are shown in grey 

color. The theory of mode C anticipates the fracture angles of inter-fiber planes with a 

good estimation, however mode B assumes that θfp = 0° (Knops 2008). It can be seen 

from the table that in consideration of Puck IFF Mode C, optimum designs of composite 

plates at plate aspect ratio of 4 have failed (because of fE(IFFC) > 1), and the failure efforts 

and fracture plane angles of these design cases are the same, which are 1.25 and 53.9°, 

respectively. However, the optimum composite plate designs at aspect ratio of 2 have 

been found to be safe as in Puck IFF Mode B (due to fE(IFFC) < 1). In these design cases, 

fractures are anticipated to occur at the same layers with angles such as 37.9°, 46.5° and 

47.9° if the composite plates are critically loaded.  

The performance of genetic algorithm for various design cases (Nx = 1000 

N/mm loading, a/b = 1 plate aspect ratio, Nx/Ny = 1/2, 1, 2, 4 load ratios) depending on 

the best fitness values and generations is given in Figure 6.1. 

The best and mean fitness values of objective functions for Nx = 1000 N/mm and 

a/b = 1 design cases at each generation can be seen in the figure. The best fitness value 

corresponds to critical buckling load factor (objective function) value and mean fitness 

value is the average of fitness values at each generation. The number of generations 

specifies the time when GA is to be stopped and is taken as 1000 for each design case. It 

is observed from the figures that the best fitness values improve more slowly in later 

generations and converge to the optimal point. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 6.2. The best and mean values of the objective functions at each generation in 
      GA for (a) Nx/Ny = 1/2, (b) Nx/Ny = 1, (c) Nx/Ny = 2, (d) Nx/Ny = 4 
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        CHAPTER 7 

 

 CONCLUSION 

 
In this thesis, the optimum designs of anti-buckling behavior of 64-layered 

carbon/epoxy composite plates subjected to in-plane compressive loading considering 

Puck failure criteria have been investigated. A stochastic search technique Genetic 

Algorithm (GA) has been considered as an optimization method. MATLAB Global 

Optimization and Symbolic Math Toolboxes have been used in optimization process. 

The critical buckling load factor is taken as objective function and fiber angles of the 

composite plates are taken as continuous design variables. The optimization has been 

performed for various loading cases ( yx NN /  = 1, 2, 4, 1/2) and aspect ratios ( ,1/ ba  

2, 4, 1/2) by maximizing critical buckling load factor for each case. xN  has been taken 

as 1000 N/mm, 3000 N/mm, 5000 N/mm and 10000 N/mm; the length of the plate a  

has been considered as 0.508 m. In order to increase the reliability of the optimization 

and achieve the best results, genetic algorithm has been run 50 times and stopped after 

1000 evaluations at every turn.  

First, verification of optimization algorithms of buckling load factor and Puck 

failure criterion has been performed using specific results given in previous studies in 

the literature. 

Optimization of the composite plates which has specified design conditions has 

been carried out and eventually, at the end of the process, the optimum and bad plate 

designs in terms of buckling have been obtained. Following the optimization process, 

the optimum stacking sequence designs of composite plates have been checked layer by 

layer using Puck failure criteria in order to ensure that the layers are reliable in terms of 

the first ply failure. Then, totally, 32 optimum designs of 64-layered carbon/epoxy 

composite plates have been obtained. The findings of the process have revealed that the 

optimum design of a laminated composite depends on loading, loading ratio and plate 

aspect ratio as well. It has been observed that the critical buckling load factor values 

increase as load ratio and plate aspect ratio increase. It can be inferred from this 

situation that in-plane load in y-direction yN and the width of the plate b are more 

effective parameters than the others on plates in terms of buckling strength. 
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The study was based upon the assumption of continuous fiber angles of stacking 

sequences, however both continuous and discrete stacking sequence designs of 

composite plates have been obtained. Some of the continuous stacking sequence designs 

have been converted into discrete designs and it has been concluded here that the 

continuous stacking sequence designs are more reliable in terms of buckling and ply 

failure resistance. 

The optimization of 48-layered composite plates has been studied in order to be 

compared with 64-layered composite plates. It has been observed that the number of 

reliable composite plate designs and the values of critical buckling load factor decrease 

as compared to 64-layered designs. 

A comparative study of Puck and Tsai-Wu failure criteria has been performed 

for critical optimum designs. The comparison has shown that further optimum designs 

resisting to buckling and the first ply failure have been obtained according to Puck 

failure criterion, however the number of optimum designs has decreased with 

consideration of Tsai-Wu failure criterion. This outcome has made the Puck failure 

criterion, as a design constraint, more advantageous than the other.  
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APPENDIX A 

 

MATLAB COMPUTER PROGRAM 

 
In this section, the computer program generating the objective functions (critical 

buckling load factors) in symbolic form is given. 

 

clear all; 

close all; 

clc; 

format short 

theta_half = [sym('th(1)') -sym('th(1)') sym('th(2)') -sym('th(2)')... 

    sym('th(3)') -sym('th(3)') sym('th(4)') -sym('th(4)')... 

    sym('th(5)') -sym('th(5)') sym('th(6)') -sym('th(6)')... 

    sym('th(7)') -sym('th(7)') sym('th(8)') -sym('th(8)') ... 

    sym('th(9)') -sym('th(9)') sym('th(10)') -sym('th(10)')... 

    sym('th(11)') -sym('th(11)') sym('th(12)') -sym('th(12)')... 

    sym('th(13)') -sym('th(13)') sym('th(14)') -sym('th(14)')... 

    sym('th(15)') -sym('th(15)') sym('th(16)') -sym('th(16)')]; 

theta = [theta_half fliplr(theta_half)]; 

Nplies = length(theta) %--> # plies 

h_ply = 0.25*10^-3 %--> ply thickness[m] 

E1 = 116.6*10^9; %[Pa] 

E2 = 7.673*10^9; %[Pa] 

G12 = 4.173*10^9; %[Pa] 

NU12 = 0.270; 

NU21 = (NU12*E2)/E1; 

Q11 = E1/(1 - NU12*NU21); 

Q12 = (NU21*E1)/(1 - NU12*NU21); 

Q22 = E2/(1 - NU12*NU21); 

Q66 = G12; 

Q = [ Q11 Q12 0; Q12 Q22 0; 0 0 Q66]; 
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%%% Calculation of D matrix %%% 

 

t = Nplies * h_ply ; 

for i = 1:(Nplies+1); 

 h(i) = -(t/2-((i-1)*(t/Nplies))); 

end 

 

D=0; 

 for i=1:Nplies 

  a=theta(1,i); 

  m=cos((a*pi)/180); 

  n=sin((a*pi)/180); 

  T = [ m^2 n^2 2*m*n; n^2 m^2 -2*m*n; -m*n m*n (m^2 - n^2)]; 

  Qbar = inv(T) * Q *(inv(T))' ;   

  D = D + 1/3 * Qbar * (h(1,i+1)^3 - h(1,i)^3); 

 end 

 D; 

  

 % In-Plane Loads % 

  

 Nx = 5000000 %[N/m] 

 Ny = 2500000 %[N/m] 

 Nxy = 0; 

  

 % Plate geometry % 

  

 a=0.508; %[m] 

 b=0.254; %[m] 

 r=a/b % aspect ratio 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 m=1;n=1; 

 Nfbl = (pi^2)*(D(1,1)*(m^4) + 2*(D(1,2) + 2*D(3,3))*((r*m*n)^2)... 

     + D(2,2)*((r*n)^4)); %failure buckling load 

 Nal = ((a*m)^2)*Nx + ((r*a*n)^2)*Ny; %applied load 

 Lamda_buckling11 = Nfbl/Nal; 

  

 m=1;n=2; 

 Nfbl = (pi^2)*(D(1,1)*(m^4) + 2*(D(1,2) + 2*D(3,3))*((r*m*n)^2)... 

     + D(2,2)*((r*n)^4)); %failure buckling load 

 Nal = ((a*m)^2)*Nx + ((r*a*n)^2)*Ny; %applied load 

 Lamda_buckling12 = Nfbl/Nal; 

  

 m=2;n=1; 

 Nfbl = (pi^2)*(D(1,1)*(m^4) + 2*(D(1,2) + 2*D(3,3))*((r*m*n)^2)... 

     + D(2,2)*((r*n)^4)); %failure buckling load 

 Nal = ((a*m)^2)*Nx + ((r*a*n)^2)*Ny; %applied load 

 Lamda_buckling21 = Nfbl/Nal; 

  

 m=2;n=2; 

 Nfbl = (pi^2)*(D(1,1)*(m^4) + 2*(D(1,2) + 2*D(3,3))*((r*m*n)^2)... 

     + D(2,2)*((r*n)^4)); %failure buckling load 

 Nal = ((a*m)^2)*Nx + ((r*a*n)^2)*Ny; %applied load 

 Lamda_buckling22 = Nfbl/Nal; 

  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 fid=fopen('buckling.m','w'); 

 int=('function y = buckling(th)'); 

 fprintf(fid,'%s\n',int); 

 lamdab11=char(Lamda_buckling11); 

 lamdab12=char(Lamda_buckling12); 

 lamdab21=char(Lamda_buckling21); 

 lamdab22=char(Lamda_buckling22); 

 fprintf(fid,'%s','y=-min(['); 
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 fprintf(fid,'%s%f',lamdab11); 

 fprintf(fid,'%s\n',',...'); 

 fprintf(fid,'%s%f',lamdab12); 

 fprintf(fid,'%s\n',',...'); 

 fprintf(fid,'%s%f',lamdab21); 

 fprintf(fid,'%s\n',',...'); 

 fprintf(fid,'%s%f',lamdab22); 

 fprintf(fid,'%s\n',']);'); 

 fclose(fid); 

 

 clear; 
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