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ABSTRACT 
 

DECIPHERING 5-FLUOROURACIL MEDIATED MOLECULAR 
MECHANISMS REQUIRED FOR CELL DEATH 

 
The chemotherapy agent 5-Fluorouracil (5-FU) is an antimetabolite that has 

been in use to treat several cancers for decades. In cells, it is converted into three 

distinct fluoro-based nucleotide analogues which interfere with DNA-synthesis and 

repair leading to impairment of the genome and, eventually apoptotic cell death. Current 

knowledge also state that 5-FU induced damage is signaling through a p53-dependent 

induction of death inducing complex (DISC) formation and further caspase-8 activation 

in certain cell types and members of the TNF-receptor family has been proposes to be 

required for the process. Here, we introduce calcium (Ca2+) as a messenger for p53 

activation in the cellular response triggered by 5-FU. Using a combination of 

pharmacological and genetic approaches, we show that treatment of cultured colon 

carcinoma cells stimulates entry of extracellular Ca2+ through L-type plasma membrane 

channels and that this event direct posttranslational phosphorylation of at least two 

specific p53 serine residues (ser15 and ser33) by means of Calmodulin (CaM) activity. 

Obstructing this pathway by the Ca2+-chelator BAPTA or by two different inhibitors of 

CaM efficiently blocks 5-FU-induced cell death. The fact that a widely used therapeutic 

drug, such as 5-FU, is signaling by these means could provide new therapeutic 

intervention points, or specify new combinatorial treatment regimes. 
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ÖZET 
 

5-FLOROURASİLİN TETİKLEDİĞİ HÜCRESEL ÖLÜMDE                               
MOLEKÜLER MEKANİZMALARIN BELİRLENMESİ         

  
Bir antimetabolit olan 5-Florourasil (5-FU), kanser tedavisinde uzun yıllardır 

yaygın olarak kullanılan bir kemoterapi ajanıdır. 5-FU, hücre içerisinde 3 farklı floro-

temelli nükleotid analoglarına dönüşür ve DNA sentez ve tamir mekanizmasını 

etkileyerek genomun stabil yapısını kaybetmesine ve son olarak apoptotik hücre 

ölümüne neden olur. Belli hücre tiplerinde, 5-FU ile indüklenmiş hücre hasarında p53’e 

bağlı olarak Death Inducing Signaling Complex (DISC)’inin oluşumu, kaspaz-8 

aktivasyonu ve TNF-reseptör ailesi moleküllerinin görev aldığı bilinmektedir.  Bu 

çalışmada, 5-FU ile indüklenmiş hücre ölümünde kalsiyum (Ca2+)’un p53 aktivasyonu 

için gerekli olan bir mesajcı molekül olduğu gösterilmiştir. Farmokolojik ve genetik 

yaklaşımların kombinasyonları kullanılarak, 5-FU, kolon karsinoma hücrelerinde 

ekstraselüler Ca2+’un L-tipi plazma membrane kanalları yolu ile hücre içerisine 

girmesini uyarır ve kalmodulin akitivitesi ile de en az iki spesifik p53 serin artıklarının 

(ser15 ve ser33) postranslasyonel fosforilasyonuna neden olur. Ca2+ şelatlayıcısı 

BAPTA ya da iki farklı kalmodulin inhibitörleri kullanılarak 5-FU ile indüklenmiş 

hücre ölümü etkin bir şekilde önelnmiştir. Yaygın bir şekilde tedavi amaçlı olarak 

kullanılan 5-FU ajanı, bu sinyal ileti yollarının bilinmesi ile yeni tedavi yöntemleri ve 

kombinasyon tedavilerinin ortaya konmasında etkin bir rol oyanayabilir.
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CHAPTER 1                                                           

INTRODUCTION 

1.1. Colorectal Carcinoma 

 
  Colorectal cancer (CRC) is the second most common cancer in Europe with more 

than 400,000 persons diagnosed each year (Jemal et al. 2008). In its early stages (stages 

0-I), CRC is one of the most curable cancers but in more advanced stages (stages II-IV) 

the possibilities for a complete recover are drastically reduced (Markowitz et al. 2002). 

Generally, stage I and II are curable using surgical treatments. Stage III is characterized 

with the spreading to the lymph node and in stage IV the original tumor is metastasizing 

to distance regions of the body (Markowitz et al. 2002). The cause of colorectal cancer 

do not differ from other tumor types and include common factors such as age, diet, 

alcohol, smoking, environment, gender, the immune system and genetics (Harrison and 

Benziger 2011). Colon cancer cells are, also like many other tumor cells, characterized 

by genomic instability that may be a result of tumor-associated mutations, such as in 

tumor suppressor gene p53 and/or genes regulating DNA repair (Markowitz and 

Bertagnolli 2009). In addition, genes maintaining chromosome stability can be 

inactivated leading to a malfunctioned cell replication process and aberrant cell division 

(Peltomaki 2001). In this aspect, oncogenes such as RAS or BRAF and various 

mutation in the PI3K pathway has been proposed to play a role (Wong et al. 2010). Less 

common genetic alterations in the PI3K pathway is loss of the PI3K inhibitor, pTEN, an 

event that may cause an increase in Akt levels in these cell types, thus promoting 

resistance to chemotherapeutic agents (Vivanco and Sawyers 2002). 
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1.1.1. Treatment Strategies for Colorectal Carcinoma 

 

  Generally, surgery represents the only curative treatment and the aims of post-

operative chemotherapy are to terminate microscopic metastases and to minimize the 

risk of recurrence. For stage III CRC patients, chemotherapy has been shown to 

improve overall survival rates and is recommended as standard therapy (Andre et al. 

2004). The value for patients with stage II disease is, however, controversial (Lombardi 

et al. 2010). Thus, improved strategies for screening and more efficient 

chemotherapeutic options are central in order to increase CRC survival. Infusion of the 

antimetabolite 5-fluorouracil (5-FU) and leucovorin (LV) in combination with 

oxaliplatin (OHP) or irinotecan (CPT-11) are the current treatment regimens used for 

advanced CRC (Andre et al. 2004). While LV is an adjuvant with synergistic effects, 

the others are chemotherapeutic agents able to kill cancer cells, primarily through 

induction of DNA damage and initiation of apoptosis (Piedbois et al. 1992). In cells, 5-

FU is metabolized into three main fluoronucleotide analogues causing an unbalanced 

nucleotide pool and, ultimately, irreversible DNA damage (Goyle and Maraveyas 2005; 

Longley et al. 2003). OHP, on the other hand, is a member of the platinum anticancer 

drug family including compounds that induce apoptosis by binding to DNA, forming 

structural adducts and triggering cellular responses, one of which is the inhibition of 

transcription  (Machover et al. 1996; Todd and Lippard 2009). Finally, CPT-11 is a 

topoisomerase 1 inhibitor, which prevents DNA from unwinding (Cunningham et al. 

1998). Engagement of apoptosis occurring in response to severe DNA damage usually 

requires activation of ATM/ATR–Chk1/Chk2–p53 signaling and, accordingly, 

mutations of genes contained in this complex network, which also controls various 

DNA repair systems and regulates cell cycle, can produce multiple drug-resistant 

phenotypes (Bakkenist and Kastan 2003; Maya et al. 2001; Bartek and Lukas 2003; 

Niida and Nakanishi 2006). 
 

1.2. 5-Fluorouracil 

  
  The chemotherapy agent 5-FU (fluorouracil, Adrucil®) is an antimetabolite, 

which has been in use against cancer for about 40 years. Some of its principal uses are 

in colorectal and gastrointestinal cancers but also in treatment of aggressive forms of 
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breast cancer, head and neck cancer and ovarian cancer (Reed et al. 1992; Yoshimoto et 

al. 2003; Ijichi et al. 2008). 5-FU inhibits normal function of DNA and RNA by 

interfering with uracil metabolism and inhibiting nucleotide synthesis. 5-FU is a first 

line therapy; response rates are very low, especially in late stages of the disease 

(Johnston and Kaye 2001). Therefore, 5-FU is applied to patients in combination with 

oxaliplatin and irinocetan to improve treatment outcome (Cavanna et al. 2006). 

Although cancer cells may develop resistance to 5-FU, it is still widely used therapeutic 

option. For this reason, strategies to increase the activity of 5-FU by various 

combinatorial treatment regimens is of outermost importance. 
 

1.2.1. 5-Fluorouracil Metabolism 

 
  In cells, 5-FU is converted into three main fluoronucleotide analogues: 

fluorodeoxyuridine monophosphate (FdUMP), fluorodeoxyuridine triphosphate 

(FdUTP) and fluorouridine triphosphate (FUTP), each able to induce cellular stress by 

distinct mechanisms (Diasio and Harris 1989). FdUMP acts as a covalent thymidylate 

synthase (TS) inhibitor and its activity may result in a thymineless cell-state due to 

reduced deoxyuridine monophosphate (dUMP) methylation (Aherne et al. 1996). The 

lack of dTTP follows by an accumulation of FdUTP and dUTP pools which may 

overwhelm steady state repair systems that normally exclude uracil from DNA. As a 

consequence of a depleted thymine pool, forced incorporation of uracil and subsequent 

impairment of DNA replication and repair may then trigger activation of specific cell 

death pathways (Longley, Harkin, and Johnston 2003). 

 

1.2.2. Chemotherapeutic Effects of 5-FU in Cancer Models 

 
  5-FU acts in several ways but principally as a thymidylate synthase (TS) inhibitor, 

leading to aberrant methylation of deoxyuridine monophosphate (dUMP) into thymidine 

monophosphate (dTMP). Thus, interrupting the action of TS blocks synthesis of the 

pyrimidine thymidine, required for DNA replication and repair, with sequential 

impairment of DNA, resulting in cell death (Longley, Harkin, and Johnston 2003). In 

addition, early works described that loss of carcinogenic properties in colon and breast 

cancer cell lines may be caused by misincorporation of the 5-FU metabolite 
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fluorouridine triphosphate (FUTP) into nuclear RNA (Kufe and Major 1981; Glazer and 

Lloyd 1982). It is generally accepted that cell death, mediated by the hierarchically-

ordered ATM/ATR–Chk1/Chk2–p53 signaling pathway, can occur in response to 

severe DNA damage. In comparison, significantly less has been reported regarding 

death signaling pathways originating from RNA damage, although it has been suggested 

that transcriptional stress can lead to p53 activation (Derheimer et al. 2007). 
 

1.3. The Role of Ca+2 in Cells 

 
  In cells calcium signaling is involved in a multitude of cellular mechanisms. For 

example, movement of the calcium ion Ca2+ into and out of the cytoplasm functions as a 

signal for many cellular processes, such as apoptosis, motility, transcription and 

excitability (Clapham 2007). The positive charge of Ca+2 can also affects the charge of 

proteins which might lead to an altered tertiary structure, and thereby obstruct protein 

function (Westheimer 1987). The main Ca+2 storage organelle within the cell is the 

endoplamic reticulum (ER), which also is capable to release its content in response to 

distinct signaling events. This event occurs by the action of G-coupled receptors which 

mediate 1,4,5-inositol trisphosphate (IP3) formation and binding of IP3 to IP3 receptors 

allowing for release of ER Ca+2 to the cytoplasm (Mikoshiba 2007). In more detail, 

when a ligand binds to a G protein-coupled receptor that is conjugated to a Gq 

heterotrimeric G protein, the α-subunit of Gq can further bind to and induce PLC 

isozyme (PLC-β) activity, which results in the cleavage of PIP2 into IP3 and DAG 

(Clapham 2007). In addition to the ER, the mitochondria can contain elevated levels of 

Ca+2, especially under certain pathological conditions. Ca+2,which play a role 

mitochondria viability and function can pass the mitochondrial outer membrane freely 

by passive diffusion but is unable to pass through the inner membrane without active 

transporters, which in turn requires a proton gradient for their function. Upon 

enhancement in mitochondrial Ca+2 levels, dehydrogenases from Krebs cycle (isocitrate 

dehydrogenase and alpha-ketoglutarate dehydrogenase), which are sensitive to Ca+2, 

stimulate ATP production (McCormack et al. 1990).  
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1.3.1. The Calcium Calmodulin Pathway 

 
Calcium is a ubiquitous second messenger which appears to be involved in many 

cellular processes, including cell death. Calcium fluxes are determined by the activity of 

membrane channels that normally are under tight control. Thus, elevation in 

cytoplasmic Ca2+-concentration can result, either from extracellular influx or from 

organelle release. Voltage-Operated-Calcium- Channels (VOCC), Receptor-Operated-

Calcium-Channels (ROCC) or Store-Operated-Calcium-Channels (SOCC) are channels 

mediating Ca2+-influx from the extracellular space (Lewis 2007). Many of the second 

messenger effects of Ca2+ are mediated through the ubiquitous Ca2+ sensing protein, 

Calmodulin (CaM). Of the many downstream targets of CaM, a family of enzymes 

known as the calmodulin-dependent kinases (CaM-kinases) is one of the best 

characterized (Hoeflich and Ikura 2002). Among them, the Death-associated protein 

kinase (DAPK) is a pro-apoptotic serine/threonine protein kinase that is deregulated in a 

wide variety of cancers (Michie et al. 2010). 
 

1.3.1.1. ATF3 

 
  The activating transcription factor (ATF) family represents a large group of basic-

region leucine zipper (bZIP) transcription factors. ATF/cyclic AMP response element-

binding (CREB) family members include ATF1 (also known as TREB36), CREB, 

CREM, ATF2 (also known as CRE-BP1), ATF3, ATF4, ATF5 (also known as ATFX), 

ATF6, ATF7, and B-ATF. The common feature that these proteins share is the bZIP 

element. The basic region in this domain is responsible for specific DNA binding, while 

the leucine zipper region is responsible for forming homodimers or heterodimers with 

other bZIP-containing proteins such as the AP-1, C/EBP, or Maf families of proteins. 

ATF/CREB proteins were initially identified for their binding to the cyclic AMP 

response element (CRE) in various promoters, which has the consensus sequence 

TGACGTCA (Persengiev and Green 2003). 

  ATF family members normally found low levels in quiescent state cells. ATF3 

can be activated via genotoxic agents, cytokines or physiological stresses. In contrast to 

other ATF family members, ATF3 is involved in ATF3 host defense against invading 

pathogens and in cancer. ATF3 is capable to regulate transcription of pro-inflammatory 
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cytokines negatively. On the other hand, it has been proposed that ATF3 has dual role in 

cancer cells; of which one is oncogenic since has been found to be overexpressed in 

such cancer types that leads to metastasis and also promote cell proliferation. On the 

contrary, ATF3 can also promote tumor suppression, inhibit metastasis and induce 

apoptosis in vivo and in vitro (Thompson et al. 2009). This paradox, however, is still 

unclear.  

  Another ATF family member (ATF4) is the main transcriptional regulator of the 

unfolded protein response and helps to restore ER function. ATF4 is associated with 

resistance to chemotherapeutic agents and result in a decrease in antitumor activity of 

chemotherapeutics. 
 

1.4. Apoptosis 

 
  Evasion of apoptosis is interpreted as a hallmark of cancers. This cell death 

modality is driven by caspases and distinct upstream regulatory factors that have been 

defined as an oncogenes and tumor suppressors, which direct their proteolytic activity, 

(Olsson and Zhivotovsky 2011). Apoptotic pathways can be divided into two main 

routes; the intrinsic mitochondrial and the extrinsic receptor-mediated pathways. In the 

extrinsic pathway, extracellular ligands stimulate oligomerization of members from the 

tumor necrosis factor (TNF) receptor family (Fas/Apo1, TNF, DR4, DR5) leading to 

death inducing signaling complex (DISC) assembly, whereas in the intrinsic pathway, 

proteins from the Bcl-2 family control the release of factors involved in apoptosome 

formation through preservation or disruption of mitochondrial integrity. Both pathways 

lead to activation of effector caspases (caspases-3, -6, and 7) and an initiator caspase 

(caspases-2, -8, -9 and -10) is required for this process. Being active, effector caspases 

target a broad spectrum of cellular proteins, ultimately leading to cell death. The DISC, 

the apoptosome and the PIDDosome are protein assembly activation platforms for 

caspase-8/-10, caspase-9 and caspase-2, respectively. 
 

1.4.1. p53 Signaling and Apoptosis 

 
  p53 is a tumor suppressor phosphoprotein. In the 1990s, it was revealed that p53 is 

a transcriptional factor with a DNA-binding domain. Subsequently, it was shown that 
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p53 levels were increased in response to DNA-damaging agents (Kastan et al. 1991). 

Lees-Miller et al. found that p53 is phosphorylated by a DNA-activated protein kinase 

at Ser15 and Ser37 residues (Lees-Miller et al. 1992). The phosphorylation of the Ser15 

residue is crucial for p53 activity since it facilitates dissociation from MDM2, thus 

preventing p53 from degradation. MDM2 is thereby one of the critical molecules with 

respect to p53 activation. In normally dividing cells, MDM2 sequesters p53 and 

ubiquitylation leads to proteasomal p53 degradation. MDM2 itself is a target for p53 

transactivation during stress conditions. Forced MDM2 silencing by siRNA 

automatically results in increased p53 levels and transactivation of target genes. 

Moreover, p53 is modified by approximately fifty post-translational events, including 

phosphorylations and acetylations which individually or cooperatively regulate 

transcriptional activity and protein-protein interactions. p53 co-activator proteins p300 

and CBP have two different roles with respect to p53 regulation, to promote p53 

degradation via ubiquitylation by MDM2 and  to activate transcriptional properties, 

respectively. They can also inhibit p53 degradation by means of acetylation of certain 

residues in the C-terminus which normally is ubiquitylated.  

  It is obvious that Ser15 phosphorylation is a crucial point for the initiation of other 

p53 modifications, thus determining triggering of discrete signaling pathways in 

response to specific stress conditions. In contrast, it is not clear how acetylation of 

different residues effect the precise protein-protein interactions in signaling. On the 

other hand, amino terminal phosphorylation promotes transcription. The fully 

understand mechanism of p53 post-translational modifications will be beneficial to 

understand DNA damage response and tumor suppressor. 
 

1.4.2. DISC Complex  

 
Radiation therapy and many chemotherapeutic agents used in cancer treatment 

have been reported to trigger apoptosis in cells through the intrinsic pathway as a 

consequence of double-stranded breaks of nuclear DNA. Engagement of this pathway 

usually requires p53 function and mutations within the gene or its signaling pathway 

can produce multiple drug-resistant phenotypes in vitro and in vivo (O'Connor et al. 

1997).  Also members of the TNF superfamily including Fas ligand, TNF and TNF-

related apoptosis-inducing ligand (TRAIL) have been identified as targets for cancer 
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biotherapy. In this respect, TRAIL is certainly of high interest since it preferentially 

induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells 

(Ashkenazi et al. 2008) To date, research has focused on the mechanism of apoptosis 

induced by TRAIL and the processes involved in the development of TRAIL resistance, 

and it has been shown that resistant tumors can be re-sensitized to TRAIL by 

chemotherapeutics or irradiation. Importantly, TRAIL triggers apoptosis in cancers, 

irrespective of the p53 status and appears to have a therapeutic index in preclinical 

studies (Abdulghani and El-Deiry 2010). To signal DISC mediated cell death, TRAIL 

trimerizes and binds to its receptors, DR4 (TRAIL-R1) and DR5 (TRAIL-R2, Killer), 

thereby recruiting Fas-Associated protein with Death Domain (FADD). In turn FADD 

recruits caspase-8 or -10 through its death effector domain (DED). Since dimerization 

of apical caspases is sufficient for their activation, DISC aggregation of caspases -8 or -

10 per se initiates their autocatalytic processing which in turn serve to stabilize the 

proteolytic activity (Boatright et al. 2003). Levels of FADD-like interleukin converting 

enzyme-like inhibitory protein (FLIP), receptor glycosylation and caspase-8 

ubiquitination are examples of regulatory events in TRAIL induced apoptosis (Jin et al. 

2009; Shirley and Micheau 2010; Wagner et al. 2007) . In type I cells, sufficient amount 

of active caspase-8 is generated at the DISC to directly process effector caspase-3, 

ultimately leading to apoptosis. In type II cells, however, the amount of caspase-8 

processed in the DISC is not sufficient to directly activate downstream effector caspases 

and the signal is therefore amplified through the intrinsic mitochondrial pathway by 

means of Bid cleavage and Bax/Bak activity (Barnhart et al. 2003). Despite knowledge 

that treatment of tumor cells with some chemotherapeutic drugs, including 5-FU, can 

induce DR5 mediated cell death (Wang and El-Deiry 2004; Longley et al. 2006), the 

mechanisms underlying the significance of this particular pathway is not well 

established.  
 

1.5. The Aims of the Study 

 
  The aims of the present study was initially to extend the knowledge concerning 5-

FU induced apoptotic signaling by analyzing potential regulatory factors upstream the 

caspase cascade. Once the calcium-calmodulin dependent apoptotic signaling required 
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for specific phosphor-activation of p53 and subsequent DISC formation was identified, 

our preliminary aim has been to characterize this event in further detail. 
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CHAPTER 2                                                            

MATERIALS AND METHODS 

2.1. Chemicals 

 
  Treatment of cells with the antimetabolite 5-FU (Teva Pharmaceutical Industries, 

Petach Tikva, Israel), Thapsigargin, BAPTA (Invitrogen), Verapamil, Pepstatin A 

(Sigma-Aldrich, St. Louis, USA), Calmidazolium chloride, Fluphenazine-N-2-

chloroethane (Santa Cruz Biotechnology, Santa Cruz, USA), PKC412 (Novartis 

International, Basel, Switzerland), ATM inhibitor KU-55933 (Selleck Chemicals LLC, 

Houston, USA), CA-074 Me, Trolox, Necrostatin-1 (Nec-1) and its inactive control 

Nec-1i (Merck, Darmstadt, Germany), were performed as indicated in figures. 
 

2.2. Cell Lines and Culture Conditions 

 
  The HCT116 parental cell line and its variants, deficient in p53 or Chk2 were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) and the A549 cell line in 

RPMI1640 medium, both supplemented with 10% heat-inactivated fetal bovine serum 

and PenStrep (100 U/ml penicillin, 100 mg/ml streptomycin). Cell culture reagents 

were purchased from GIBCO (Invitrogen, San Diego, USA). Cells were grown in a 

humidified 5% CO2 atmosphere at 37°C and maintained in a logarithmic growth phase 

during all experiments. 
 

2.3. Gel Electrophoresis and Immunoblotting 

 
  Cells were treated as indicated, washed in Phosphate Buffer Saline (PBS) and 

lysed for 5min in Complete Lysis-M (Roche Diagnostics, Mannheim, Germany) 

containing 1x Complete Protease Inhibitor Cocktail (Roche Diagnostics) and 1x 

Phosphatase inhibitor Cocktail 2 (Sigma-Aldrich). The BCA Protein assay (Thermo 

Fisher Scientific, Lafayette, USA) was used to determine protein concentration and 



11 
 

subsequent to denaturation, equal quantities from each sample were subjected to SDS–

PAGE at 40mA followed by electro blotting to nitrocellulose membranes (Bio-Rad 

Laboratories, Hercules, USA) for 2h at 100V. Membranes were then blocked for 1h 

with 5% non-fat milk in PBS and probed with the primary antibody of interest at 4°C 

overnight. Finally, membranes were incubated with horseradish-peroxidase-conjugated 

secondary antibodies for 1h at room temperature, revealed by ECL (GE Healthcare 

Biosciences, Uppsala, Sweden) and exposed to SuperRX X-ray films (Fujifilm 

Corporation, Tokyo, Japan). Three successive washes in PBS were performed after 

incubating membranes with primary and secondary antibodies. 
 

2.4. Immunofluorescence 

 
  HCT116 and HCT116 p53-/- cells were seeded on coverslips, treated as indicated 

in figures and then fixed for 30min using 4% formaldehyde in PBS at 4°C. 

Permeabilization and blocking was done in PBS containing 0.3% Triton X-100 and 1% 

BSA for 1h. Incubations with primary antibodies (1:400), previously blocked (1:10) in 

PBS containing 5% BSA for 2h, and secondary antibodies (1:200) were performed at 

4°C overnight in a humid chamber and at room temperature for 60min, respectively. 

Nuclei were counterstained for 10min with Hoechst 33342 (10μg/ml in PBS). Between 

all steps, cells were washed for 3×10min in PBS. Finally, the coverslips were mounted 

using Vectashield H-1000 (Vector Laboratories Inc., Peterborough, UK) and examined 

under a Zeiss LSM 510 META confocal laser scanner microscope (Carl Zeiss 

MicroImaging, Göttingen, Germany). 

 

2.5. Antibodies 

 
  The following primary antibodies were used in western blotting: p53 mAb, clone 

DO1; GADPH pAb, Tom40 pAb, CD95 pAb (Santa Cruz), Phospho-p53 pAb’s (Ser6, 

9, 15, 33, 37, 46 and 382), Cleaved-Caspase-3 pAb, ATM mAb, clone D2E2; Phospho-

H2A.X (Ser139) pAb (Cell Signaling, Danvers, USA), α-Tubulin mAb, clone B-5-1-2; 

DR5 pAb (Sigma-Aldrich), PARP mAb, clone 4C10-5; Bax mAb, clone 6A7; Caspase-

7 mAb, clone B94-1 (BD Biosciences, Franklin Lakes, USA), FADD pAb (Upstate 

Biotechnologies, Lake Placid, USA) and Caspase-8 mAb, clone C15 (kindly provided 
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by Prof. PH Krammer, German Cancer Research Center, Heidelberg, Germany). All 

primary antibodies were diluted in PBS containing 1% BSA and 0.015% NaN3. 

Horseradish peroxidase-conjugated secondary antibodies (Thermo Fisher) were diluted 

in PBS containing 5% non-fat milk. Analysis of DR5 in immunofluorescence (IF) was 

performed using the mAb clone 11/B4 (kindly provided by Prof. L. Anděra, Academy 

of Sciences of the Czech Republic, Prague, Czech Republic). For IF-detection of p53, 

Phospho-p53 (Ser15 and 33), FADD, Phospho-H2A.X and CD95, the antibodies 

described above were used. Fluorescent secondary antibodies directed to mouse rabbit 

(Alexa488 and Alexa594) were purchased from Molecular Probes (Invitrogen). 

 

2.6. RNAi Methodology 

 
  Silencing of protein expression in HCT116 cells was accomplished by 

transfection of 21-nucleotide RNA-duplexes purchased from Dharmacon (Thermo 

Fisher). Transfection of CD95 (L-003776-00), DR5 (L-004448-00) and control (D-

001810-10) ON-TARGET-plus SMARTpool siRNAs was performed using the 

INTERFERin transfection reagent (Polyplus transfection, Illkirch, France) according to 

the instructions of the manufacturer. Briefly, 4×105 cells were transfected in normal 

cell medium using 10μM siRNA and 3,65μl/ml INTERFERin. Levels of target proteins 

were controlled by SDS–PAGE and their downregulation was normally detected as 

early as 24�h post-transfection. 5-FU-treatments of cells were initiated after 36h.  
 

2.7. Calcium Measurements 

 
  Intracellular calcium levels were monitored by using the Fluo-4 AM fluorescent 

indicator (Invitrogen). In brief, 4μM of the calcium probe was added to cells 30min in 

advance of 5-FU treatment. Time-laps analysis of living cells was then performed using 

the Zeiss LSM 510 META confocal laser scanner microscope or the FACSCalibur 

system in combination with the CellQuest v.3.3 software (Becton-Dickinson, San Jose, 

USA). 
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CHAPTER 3                                                            

RESULTS AND DISCUSSION 

3.1. Death Receptors 

 

3.1.1. DR5 and Fas are Activated Death Receptors by 5FU  

 
            Immunostaining of both TNF-receptors DR5 and CD95 accumulates in the 

plasma membrane in response to 5-FU (Figure 3.1), indicating that either one of them 

or both could play a vital role for efficient apoptosis.  

 

 

 

 

 

 

 

 

 

Figure 3.1. Localization of death receptors on plasma membrane after 5-fu treatment 

 

3.1.2. DR5 but Not Fas Receptor is Implicated in 5FU Induced 
Apoptosis 

 
  Since conflicting evidences exists in this matter (Longley et al. 2006; Borralho et 

al. 2007; Longley et al. 2004), we decided to assess the individual contribution of each 

receptor to initiator caspase-8 and effector caspase-3 activation by means of siRNA 

technology. Inconsistent to previous reports (Borralho et al. 2007), siRNA experiments 
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clearly stated that DR5 but not CD95 is the sole receptor required for caspase-8 activity 

and further processing of effector caspases (Figure 3.2).  

 

 

 

 

 

 

 

 

   

Figure 3.2. Role of death receptor on extrinsic pathway triggered caspase cleavages   
(Processed caspase fragments are indicated with asterisks) 

 

3.1.3.  5-FU Induction Leads to DISC Formation 

 
 By isolating membrane proteins from controls and induced cells, an accumulation 

of DR5 but also of DISC components FADD and caspase-8 was detected in membrane 

fractions in response to 5-FU-treatment (Figure 3.3).  
 

 

 

 

 

 

 

 

 

 

 
                                    

Figure 3.3. 5-FU induced DISC formation 
                            (Processed caspase fragments are indicated with asterisks) 
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DISC non-associated caspase-7, on the other hand, remained in the cytosolic 

fractions irrespectively of treatment. Since we used a protocol in which the total 

membrane protein pool where isolated, TOM 40 (Translocase of the Outer 

Mitochondrial membrane) served as a marker for fractionation efficiency. To rule out 

the existence of DISC components in cellular membranes other than the plasma 

membrane, result where confirmed using immunostaining with specific antibodies 

targeting DR5 and FADD (data not shown). 

 

3.2.  Analysis of Potential Regulatory Factors Upstream of DR5-DISC             
Formation 

 
In sharp contrast to classical extrinsic death pathways, 5-FU-induced apoptosis 

most certainly emerge from either DNA or RNA damage. Thereby, the question 

relating to how initial triggering points are transduced to DISC formation and caspase-8 

activity arises. p53 is obviously an important factor for the process but a detailed 

description of signaling events originating from 5-FU-induced cell-stress leading to p53 

activity and subsequent DR5 oligomerization is still lacking (O'Connor et al. 1997; 

Olsson et al. 2009). Therefore, a panel of inhibitors including Ca2+-chelator BAPTA, 

RIP1-kinase inhibitor NEC1, the antioxidant Trolox, pepstatin A, an inhibitor of acid 

proteases and cathepsin B inhibitor CA-074 was added in combination with 5-FU to 

HCT116 cells in order to target potential upstream controlling conduits (Figure 3.4).  
 

 

 

 

 

 
 

 

 

 
 
 

Figure 3.4. Inhibitor screening of 5-FU induced cell death on colon carcinoma 
(Processed caspase fragments are indicated with asterisks) 
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 Of the inhibitors used, three effectively abrogated effector caspase-3 processing. 

Two of these, Pepstatin A and CA-074 are silencing lysosomal protease activity (Figure 

3.4). However, neither of them had any effect on the most apical caspase-8 activity. 

Hence, we concluded that lysosomal proteases indeed play a role in 5-FU-induced 

apoptosis but appear to function as an enhancer of effector caspase activity, 

downstream of DISC formation. This is well in agreement with a recent report showing 

that lysosomal membrane permeability and the cytosolic release of cathepsins B, L and 

D indirectly depends on Bax/Bak and components of the apoptosome (Oberle et al. 

2010). In comparison, BAPTA had a profound effect also on caspase-8 processing 

indicating Ca2+ as a messenger acting upstream of the caspase cascade. Moreover, 

while 5-FU induced p53 levels remained unaffected in presence of BAPTA 

phosphorylation of ser15 was reduced considerably, thus positioning the effect of Ca2+ 

in advance of p53 posttranslational modifications. With prolonged 5-FU treatment it 

has not escaped our notice that also HCT116 p53-/- cells undergo a DR5 and caspase-8-

dependent cell death. In fact, DR5 is also upregulated in these cells but to a lesser 

extent compared to the parental cell line (data not shown). Since neither BAPTA nor 

any of the other inhibitors tested obstructed the weak caspase-3 activity detected in 

HCT116 p53-/- cells after 48 h of 5-FU treatment we concluded that Ca2+ primarily 

exerts its effect on p53 activity as a response to stress induced by 5-FU (Figure 3.5) . 
 
 

 

 

 

 
 

Figure 3.5.  Inhibitor screening of 5-FU induced cell death in p53 deficient colon 
carcinoma cells (HCT116) 
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3.2.1. Chelation of Ca+2 Does not Interfere with 5-FU Induced 
Transactivation or Oligomerization of DR5 

 
 BAPTA interferes with 5-FU induced p53 activation and processing of caspases-3 

and -8 in a concentration dependent manner. HCT116 wt cells were left untreated or 

induced with 5-FU, either alone or in combination with 15 μM of BAPTA or 5 μM 

Calmidazoline. Interestingly, transactivation and dimerization of the DR5, analyzed by 

standard and non-denaturing SDS-PAGE, respectively, occurring in response to 5-FU 

was neither affected by BAPTA nor calmidazolium chloride, indicating that p53 

support caspase-8 processing by mechanisms separated from these events (Figure 3.6) 

 

 

 

 

 

 

 

 

 
Figure 3.6. Neither 5-FU induced DR5 transactivation nor oligamerization events are 

affected by inhibition of the Ca+2 pathway 
 
3.2.2. Influx of Extracellular Ca+2 is Directing 5-FU Induced p53  

Activity 
 

To determine the source of Ca2+ required for apoptotic signaling in 5-FU treated 

HCT116 cells, the following experiments where performed. To begin with, cells where 

cultured and treated in Ca2+-free media and then analyzed with respect to p53 

phosphorylation and apoptotic markers including caspase processing and PARP 

cleavage (Figure 3.7). 
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Figure 3.7. Source of Ca2+ which accumulates in cytoplasm after 5-fu treatment 
(Processed caspase fragments are indicated with asterisks) 

 
Since the lack of environmental Ca2+ had a clear effect on all parameters tested, 

reducing phospho-p53 activation even more efficiently than BAPTA and decreasing 

caspases -3 and -8 processing as well as PARP cleavage to background levels, we 

concluded that extracellular Ca2+ is the original source required for apoptotic 

proceedings in 5-FU treated HCT116 cells. 
 

3.2.3. Timing of Ca+2 Elevation and p53 Serine Phosphorylation 

  
 Changes in intracellular Ca2+ levels as a response to 5-FU treatment in HCT116 

cells were monitored by using the Fluo-4 AM fluorescent indicator. By FACS we 

detected an increase in intracellular Ca2+ at 4 h and a further enhancement at 5 h post-

treatment (Figure  3.9). After 5 h, increased levels of Ca2+ remained up to 13 h which 

is the time point where initiation of caspase processing can be detected by SDS-PAGE 

(Olsson et al. 2009). Examination of cellular Ca2+ by time-laps confocal microscopy 

using a CO2 chamber was then performed and influx commencement noticed as early 

as 1.5 h after addition of 5-FU (Figure 3.8). This is well in advance of p53 ser15 

phosphorylation which could be detected 5 h post induction by means of western 

blotting (Figure 3.10). Thus, these data support our findings indicating Ca2+ as a 

regulatory factor acting upstream of p53 activity in response to 5-FU.  
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                Figure 3.8.  Time lapse (short-term) intra-cellular Ca+2 measurement 
 
 

 

 

 

 

 

 

 

                Figure 3.9. Time lapse (long-term) intra-cellular Ca+2 measurement 
 

 

 

 

 

 

 
 
                 Figure 3.10.  Time lapse analysis of p53 ser15 phosphorylation 
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  There are, however, some parameters that have to be considered in this respect. 

Firstly, western blotting can be a sensitive or insensitive technique depending on the 

antibody used. Thus, activation of p53 by means of ser15 phosphorylation may occur 

earlier than what our results predict. Secondly, most likely a critical threshold 

concentration of Ca2+ must be reached to trigger subsequent p53 activity. By our 

measurements it is impossible to specify this threshold limit but a qualified guess would 

be that it’s reached between 1.5 and 4 h post induction. Still, irrespectively of these 

uncertainties elevation of Ca2+ and p53 activity as determined by ser15 

phosphorylation remains coordinated sequence of events. 

 

3.3. Identification of Downstream Regulatory Pathway of Ca+2 

 

3.3.1. Apoptosis Regulated by Ca+2 Calmodulin Complex After 5-FU  
Treatment 

  
 To maintain normal cellular control and tissue integrity, p53 is regulated at the 

post-translational level by protein-protein interactions and covalent modifications, 

including phosphorylation at over twenty phosphor-acceptor sites (MacLaine and Hupp 

2011). The reports examining the role of kinases able to modulate p53 activity has led 

to much controversy within the field but the general view seems to be that one or 

several kinases may act on the same residue in a cell or stimuli specific manner. Indeed, 

several acceptor sites of p53 are phosphorylated in response to 5-FU and most likely, 

majority of them contribute in one way or the other to treatment outcome. However, our 

focus was to decipher the Ca2+-dependent pathway described, and to analyze its 

importance for DR5 mediated cell death. Of all different pospho-p53 activity pathways 

described, few are controlled by Ca2+ signaling, in fact only two. One them involves 

serine/threonine kinase members included in a subgroup of the protein kinase C (PKC) 

family termed the classical group encompassing PKCs -α, -βI, -βII and –γ (Coutinho et 

al. 2009; Lavin and Gueven 2006; Pospisilova et al. 2004). The other one is facilitated 

by the ubiquitous Ca2+ sensing protein calmodulin (CaM) and occurs through activation 

of at least two downstream targets, Death-Associated Protein kinase 1 (DAPk1) and 

AMP-activated protein kinase (AMPK), enzymes contained the superfamily of CaM-

dependent kinases (Raveh et al. 2001; Craig et al. 2007; Jones et al. 2005). Since a 
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specific inhibitor of PKC (PKC412) not attenuated p53 ser15 phosphorylation in any of 

the concentrations tested, we concluded that this kinase did not contribute to the 5-FU-

induced and Ca2+-dependent events leading to p53 activity described. Interestingly, 

addition of PKC412 to our experimental system inhibited processing of caspases -3 and 

-8, but obviously in a manner independent of the p53 ser15 residue (data not shown). In 

sharp contrast, we observed abrogation of p53 ser15 and ser33 phosphorylations in 

parallel with decreased processing of caspases occurring in a concentration dependent 

manner when two different CaM inhibitors, Calmidazolium chloride or Fluphenazine-

N-2-chloroethane, was added to HCT116 cells in combination with 5-FU (Figure 3.11). 

A decrease in p53 ser46 was also noted but only in cells pretreated with Calmidazolium 

chloride and not Fluphenazine-N-2-chloroethane. Ser37 phosphorylation was indeed 

blocked using both inhibitors but in a pattern dissimilar to reduction of caspase 

processing and phospho-activation of ser15 and 33. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.11. Effects of Calmodulin complex inhibition on p53 signaling 
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3.3.1.1. Calmodulin Dependent Protein Atf3 Might Have Role in p53  
Phosphorylation and Apoptosis 

 
 Activating transcription factor 3 (ATF3), a 181-amino-acid protein, is a member 

of the ATF/CREB family of transcription factors that, like p53, is maintained at a low 

level in quiescent cells. While consequences of ATF3 induction are unclear, it is often 

assumed that ATF3 functions as a transcription factor to regulate gene expression 

thereby contributing to cellular responses to oncogenic stresses. ATF3 binds to p53 via 

this domain, and as a consequence, p53 ubiquitination catalyzed by MDM2, the major 

ubiquitin ligase in HPV-negative cells, is blocked, leading to up-regulation of the p53 

tumor suppressor activity independent of the ATF3 transcriptional activity. It has also 

been reported that the stress response gene ATF3 acts as a transcriptional activator of 

DR5 expression by camptothecin in human colorectal cancer cells, and is an essential 

co-transcription factor for p53 to activate the DR5 gene promoter (Taketani et al. 2011). 

Therefore, we hypothesized that ATF3 might provide a functional link between 

calmodulin and p53 by mechanisms separated from its transcriptional activities. Indeed, 

ATF3 is drastically transactivated in response to 5-FU treatment in HCT116 cells 

(Figure 3.12).  

 

 

 

 

 

 

 

 

 

 

 
    Figure 3.12. ATF3 might have role on Ca+2 triggered p53 ser15 phosphorylation 
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Moreover, BAPTA as well as two inhibitors to calmodulin (Calmidazolium 

chloride and Fluphenazine-N-2-chloroethane) suppressed ATF3, indicating its 

involvement in the calcium-p53 pathway described. In an ongoing study, suppression of 

ATF3 by specific siRNAs aims to determine the role of this protein for activation of 

p53 and DR5 regulation. 
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CHAPTER 4  
 

                           CONCLUSION 

 

In the present report we uncover a new Ca2+ dependent cell death mechanism 

which occur in response to 5-FU and is mediated through CaM and p53 activities.5-FU 

has been the mainstay of colorectal cancer treatment for over 40 years. However, 

response rates for 5-FU in advanced colorectal cancer are modest and although 

combinatorial treatment with the newer chemotherapeutic agents’ such as oxaliplatin 

and irinotecan has improved survival rates, there is a need for new therapeutic 

strategies. By investigating the 5-FU induced Ca2+-CaM–p53 axis and its downstream 

apoptotic triggering points, new molecular mechanism by which tumors become 

resistant to 5-FU can eventually be revealed. In addition, although calcium previously 

has been implicated in various cell death pathways the novelty of our preliminary data 

indicating that Ca2+-CaM signaling is required for apoptosis triggered by 5-FU in 

certain cancer cell lines types must be emphasized. The fact that a widely used 

therapeutic drug is signaling by these means could provide new therapeutic intervention 

points, or specify new combinatorial treatment regimes. The association between 

alterations in intracellular Ca2+ homeostasis and various stages of the apoptotic 

signaling cascade is indisputable (Pinton et al. 2008). Recent findings have also 

indicated that dietary calcium can modulate and inhibit colon carcinogenesis. 

Supporting evidence has been obtained from a wide variety of preclinical experimental 

studies, epidemiological findings and a few human clinical trials (Lamprecht and Lipkin 

2003). Together, these data supported a debate over calcium’s potential to fight colon 

cancer. Maybe more interesting for the present study is the fact that adjuvant 

chemotherapy has been shown to alter the natural history of resected colon cancer. Two 

regimens (5-FU plus calcium folinate and 5-FU plus levamisole) have been found to 

prolong disease-free survival and overall survival in affected patients. Previous 

comparisons of these two regimens indicate that 5-FU plus calcium folinate may offer a 

small disease-free survival and overall survival advantage (Kumar and Goldberg 2001).    

Experiments using verapamil was indicating high-voltage-gated calcium channels 

(HVGCCs) of the L (Long Lasting)-type as the entry point for extracellular Ca2+ influx 
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in response to 5-FU (data not shown). This is well in agreement with the fact that 

elevated Ca2+ levels occurred as an immediate reaction to treatment and then remained 

until initiation of cell death. The α1 subunits which contains the voltage-sensing 

machinery and the drug/toxin-binding sites forms the Ca2+ selective pore and are the 

primary factor operating in HVGCCs. Out of ten α1 subunits described in humans, four 

are specific for L-type channels and current work aims to identify whether one or 

several α1 subunits are required for the process described. We are also interested in 

defining the link between 5-FU and L-type HVGCCs. Here, two possibilities exist. 

Either 5-FU specific DNA or RNA damage induces a still unidentified signaling 

cascade activating one or several L-type pores, alternatively, 5-FU or its metabolites 

acts directly on these pores. In line with our study and supporting that at least the CaM-

directed p53 ser15 phosphorylation is important for 5-FU-induced apoptosis are 

findings coming from expression of p53 mutants at physiological levels in p53 

knockout HCT116 cells. Compared with cells expressing exogenous wild type p53, the 

apoptotic response to 5-FU was >50% reduced in cells expressing S15A or S20A 

mutant p53, and even more reduced by combined mutation of serines 6, 9,15, 20, 33, 

and 37 (N6A) (Kaeser et al. 2004).  

Since TNF-related apoptosis-inducing ligand (TRAIL) can induce apoptotic cell 

death in a variety of tumor cells by engaging specific death receptors, DR4 and DR5, 

while having low toxicity towards normal cells, it has been postulated as a future 

therapeutic option(Abdulghani and El-Deiry 2010). Interestingly, our present data are 

indicating that 5-FU induced cell death also involves DR5. Disclosing 5-FU induced 

death pathways might therefore conform to the highly interesting research field of 

TRAIL in tumor treatment and the processes involved in the development of TRAIL 

resistance. 
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