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ABSTRACT 
 

EVALUATION OF PROTEIN SECONDARY STRUCTURE 
PREDICTION ALGORITHMS ON A NEW ADVANCED 

BENCHMARK DATASET 
 

Starting from 1970s, researchers have been studying secondary structure 

prediction. However the accuracy of state-of art methods reach to approximately 80-

85%. One of the reasons for that is related with the limitations in respect to datasets 

used for training or testing the algorithm. A number of databases with n number of 

experimentally determined proteins, which also contain the knowledge of functionality, 

biochemical properties and location annotation of proteins, will directly show us how 

the algorithms work on certain groups of proteins. This also ensures opportunity to 

users to determine the quality of algorithms on those datasets and to decide on which 

algorithm can be used for which type of proteins.  

In this thesis, the objective is set through the development of a new and 

advanced protein benchmark database which contains functional and biochemical 

information of experimentally defined 64872 proteins in S2C database derived by 

ProteinDataBank (PDB). With this database, the seven available predictors are 

evaluated in respect to their performances on different datasets in terms of functionality 

and subcellular localization of proteins in the benchmark database. According to the 

results obtained on proposed benchmark datasets in compare to results on one of 

existing dataset, RS126, it was shown that grouping proteins into functions in their 

subcellular localizations have a great impact on deciding the accuracies of existing 

algorithms.  
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ÖZET 
 

 PROTEİN İKİNCİL YAPI TAHMİNİ ALGORİTMALARININ YENİ VE 
İLERİ KIYASLAMALI VERİTABANINDA DEĞERLENDİRİLMELERİ  

 
1970’lerden bu yana araştırmacılar protein ikincil yapı tahmini çalışmaktadırlar. 

Fakat günümüzdeki metotların kesinliği yaklaşık olarak %80-85’ e ulaşmaktadır. Bunun 

sebeplerinden biri algoritmanın eğitimi ve testinde kullanılan veri setlerinden kaynaklı 

kısıtlamalardır. N sayıdaki deneysel olarak tanımlanmış proteini ve aynı zamanda 

proteinlerin fonksiyonlarına, biyokimyasal özelliklerine ve lokasyon anotasyonlarına 

dair bilgileri içeren veri setleri bize algoritmalarının belli protein grupları üzerinde nasıl 

çalıştıklarını direk gösterecektir. Bu ayrıca kullanıcılara veri setlerinde algoritmalarının 

kalitelerini belirleme ve hangi algoritmanın hangi tip protein grubu üzerinde 

kullanılabileceğine karar verme konusunda olanak tanıyacaktır. 

Bu tez çalışmasında, çalışma amacı deneysel olarak tanımlanmış 

ProteinVeriBankası (PDB) ‘den elde edilmiş S2C veritabanında yer alan 64872 

proteinin fonksiyonel ve biyokimyasal bilgilerini içeren yeni ve ileri protein veritabanı 

geliştirilmesi olarak belirlenmiştir. Bu veritabanı ile 7 ulaşılabilir tahmin algoritmasının 

performansları proteinlerin fonksiyonları ve lokalizasyonları bakımından farklı standart 

veri setleri üzerinde değerlendirilmiştir. Önerilen standart verisetlerinden elde edilen 

sonuçların var olan RS126 verisetinde elde edilmiş sonuçlarıyla kıyasına göre, 

proteinleri hücresel lokalizasyonlarındaki fonksiyonlarına göre gruplamanın var olan 

algoritmaların objektif değerlendirilmesinde büyük etkisi olduğu gösterilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1.  Introduction to Structural Proteomics 
 

The term “proteome” was defined by Marc R. Wilkins in 1994 to explain the 

complete protein set synthesized by a genome (Liu and Hsu, 2005). With description of 

proteome, a new term “proteomics” was defined to mean qualitative or quantitative state 

changes of the proteome of a cell under different conditions. The overall stages of 

proteomics cover identification and quantification of proteins as well as characterization 

of their structure, functions and interactions by applying experimental techniques 

(Phizicky et al. 2003) . 

Structural proteomics is one of the aspects of proteomics which deals with 

determination of spatial configuration of proteins, and thus structure-function 

relationship. The functionality of protein depends on its proper 3D structure, hence it 

depends on folding. Properly folded proteins play various roles in many biological 

processes including activities on molecular level such as catalysis or regulation, 

complex processes based on protein interactions. Known function and structure also 

provide a foundation to structure-based drug design (Floudas et al. 2006), applications 

on protein engineering in medicine, biotechnology via controlling signaling pathways 

(Petrey et al. 2005).  

Inferring the functionality from the sequence or the structure has been studied 

for many years either by computationally or experimentally. As summarized by 

Whisstock and coworkers, Watson and coworkers, and Lee and coworkers (Lee et al. 

2007; Watson et al. 2005; Whisstock et al. 2003) proteins which have similar sequences 

may have similar structures and function. On the other hand, similar structures are 

found with different sequences (Chothia and Lesk, 1986) . 

Sequence-based methods depend on the observation that similar sequences may 

have similar functions. However, as pointed out by many researchers previously (Bork 

and Koonin, 1998; Karp, 1998) proteins of the same family can have several functions 

either by diverging to a related function or by gaining a complete new function. 



2 

Therefore, particularly in the absence of experimental data, sequence-homology based 

studies on function determination can be misleading. A good example can be given on 

eye lens proteins in duck which have high similarity with lactate dehydrogenase and 

enolase in the other tissues of the same organism (Wistow and Piatigorsky, 1987) . In 

addition to that, non-homologous proteins may possess similar functionalities according 

to the convergent evolution. Well-known enzymes chymotrypsin and subtilisin share the 

same catalytic pattern even though they display entirely different folding patterns i.e. 

tertiary structure. Since there is no significant similarity that can be detected between 

these two sequences, sequence-based methods can fail to assign function. A study on 

MJ0882 is demonstrated that MJ0882 is a methyltransferase even though there is no 

sequence homology with any of structurally known other methyltransferases (Huang et 

al. 2002). After structure determination of the protein via experimental methods, this 

functionality was investigated by biochemical assays. Thus, for such cases structure 

based method applications seem more promising than using sequence-based methods 

themselves (Jung and Lee, 2004). 

Current structure-based methods on function determination aim to find global 

similar structures by determining all folding classes or any structural similarities, 

particularly functional sites (Watson et al. 2005). Furthermore, structure based methods 

utilize information on sequence similarity to detect patterns. The study done by Han and 

Baker (Han et al. 1996) showed the correlation between structure and function by 

searching the sequence patterns. They investigated the recurring sequence patterns and 

their correlation with structure by mapping similar sequences into different proteins 

which adopt similar 3D structure and functionality  

Ultimately, inferring the function by using structure based approaches with the 

support of evolutionary information of sequences may lead us to come closer to the 

goal. Since the structure influences protein functionality, learning about the structure 

will help us to decipher functionality of proteins in many aspects summarized as in 

Figure 1.1.  
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Figure 1.1.   The relationship between protein structure and function is summarized. 
Small hexagons show the subfields of protein structure studies. Arrows 
between hexagons show the applications in respect to function studies by 
utilizing structure studies. 

 
To determine the structure, firstly, experimental techniques should be examined. 

In the next section, major experimental techniques will be introduced. 

 

1.2.  Overview on Experimental Techniques 
 
As mentioned in previous section, structural proteomics aims to determine the 

spatial configuration of proteins. According to the records in PDB, 70861 protein 

structures have been determined. X-ray crystallography, NMR, and electron microscopy 

are the experimental techniques to achieve this goal.  

X-ray crystallography is one of the most powerful techniques because of 

providing atomic coordinates of each amino acid of a protein. Most of the 

experimentally known structures in PDB up to now are determined by X-ray 

crystallography as shown in Figure 1.2. 
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Figure 1.2.   The number searchable PDB entries solved by X-ray are shown in the 
graph. 66847 structures out of 70861 are determined by X-ray 
crystallography up to 2011 (red bar). It is also seen that the technical 
improvement in X-ray crystallography is mostly increased from 1976 to 
2011, even though in 2011 there are less X-ray solved proteins in compare 
to 2010 (blue bar)  

  
 

Basically, the technique depends on obtaining crystals of proteins under certain 

pH, temperature, salt and cofactor conditions. The collected crystals are further 

analyzed by image scanning. In order to reduce error rate and increase the efficiency for 

low-quality protein sample, crystallography has been automated (Norin and Sundström, 

2002). However, the type of the proteins, the crystallization conditions needed to form 

crystals limit the success. Membrane proteins, multi domain proteins and cofactor 

bounded proteins are hard to be crystallized. Also, proteins may lose their functionality 

because of dissimilarity between physiological conditions and solution conditions (Liu 

and Hsu, 2005). 

Another technique to determine tertiary structure is NMR which assigns 

resonance values to each amino acid residue. This technique takes the advantage of 

using aqueous solutions to dissolve proteins which is similar to physiological 

conditions. Thus, they keep their natural structure. However, the first challenge with 

NMR is the time required to measure chemical shifts, to collect the data, and to analyze 

spectrum data (Liu and Hsu, 2005). Also, conventional NMR technique cannot be 
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applied to proteins that their molecular weights are more than approximately 25-30 kDa. 

To overcome this problem TROY-NMR has been developed (Fernandez  and Wider, 

2003). 

In PDB, some of the entries were determined by electron microscopy. This 

technique enables us to determine the structure of bulge proteins and heterogeneous 

proteins especially membrane proteins with high resolution up to 3.5 A ° (Ubarretxena-

Belandia and Stokes, 2010). Nevertheless, the problems with sample preparation and 

image processing of acquired data limit the success of the technique. 

Although these techniques have recent improvements, the gap between known 

protein sequences and known structures is constantly increasing due to the rapidly 

increasing number of known sequences and technical problems mentioned above. In 

order to predict the structures of proteins that might not be verified by experimental 

methods in a short period of time, computational studies have been employed. 

 

1.3.  Computational Studies on Protein Tertiary Structure Prediction 
 
Challenges in experimental techniques to determine tertiary structure of proteins 

have directed researchers to computational prediction techniques. To bridge the gap 

between the number of known sequences and structures, ab initio prediction, homology 

modeling, and fold recognition are the state of the art for computational approaches on 

3D structure prediction even though they are not extremely successful (Baker et al.  

2003; Fiser, 2004; Rost and O Donoghue, 1997). 

The first technique ab initio is able to predict tertiary structure of a protein 

without prior knowledge about structure. ab initio technique is based on direct tertiary 

structure prediction from the amino acid sequence by using physico-chemical 

properties. It has been proposed that to form a native functional protein, the structure 

should satisfy minimum free energy (Van Gunsteren, 1993). Therefore, mean-force 

potentials (Van Gunsteren, 1993) and physical potentials (Brünger and Nilges, 1993) 

such as bonds, angles, Van der Waals, and electrostatic non-bonded measurements must 

be calculated. However, due to the lack of highly accurate experimental results in 

respect to these measurements, inferring basic parameters to calculate minimum free 

energy is complicated. These methods use a scoring function that discriminates the 

possible conformer model among proposed conformations. However, one of the 
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bottlenecks of the technique is related to the size of search space. There are few 

methods proposed to reduce search space by discrete representation. Despite the 

advantage of having small search space, sampling can end up with the loss of accurate 

conformers. Even though ab initio can be applicable to any protein and have a 

significant improvement (Xu et al. 2009), it still remains problematic on its basis. 

Besides the inaccuracy of the obtained parameter values, required computation power is 

enormously high (Allen et al. 2001).  

When the homology can be detected, comparative modeling can be applicable 

and efficient. Comparative modeling or, in other terms, homology modeling is claimed 

to be the most powerful method according to the critical assessment analysis (Mariani et 

al. 2011). The method is simply based on using templates derived from previously 

determined structures with similar sequences to target. Finding the suitable template for 

comparative modeling is directly related to finding a known structure with at least 30% 

(Kopp and Schwede, 2004) sequence similarity to target protein due to the last studies. 

Furthermore, the low resolution X-ray or NMR data can cause errors on template 

selection. Even though the problems on template selection or resolution quality of the 

template are solved, building 3D model can fail since initial problems of alignment are 

hard to correct. To overcome problems of comparative modeling, template-free search 

methods, in other terms, fold recognition methods are developed which computes the 

conformation probabilities of each fold (Xu et al. 2009). 

The last approach is fold recognition. Determination of structural elements by 

certain localization of each amino acid’s side chain and the arrangement of these 

structural elements presents folding pattern which is the part of protein architecture. To 

discover these folding patterns, the sequence is threaded on the sequence profile of a 

given fold by assessing the fitness of fold features (solvent accessibility, secondary 

structure, and environment) and input sequence (Baker et al. 2003). Thus, without 

searching a sequence complement or conformer computations, proteins that have same 

folding patterns can be detected. However, learning the folding pattern of a protein does 

not refer to determination of the structure. By considering that there are many distinct 

mechanisms such as recruitment of chaperones, post translation modification, natural 

disorder of the protein, and environmental conditions which directly affect protein 

folding fold recognition technique may not guarantee to find the most correct folding 

form (Watson et al. 2005). 



7 

Despite the improvements in 3D structure prediction, predicting the structural 

class of proteins, deciding on the architecture and topology, and predicting the 

structures of unknown folding patterns encompass the success of these algorithms. 

Therefore, this has created a research bottleneck to overcome the limitations by 

simplifying the problem into secondary dimension (Zhang, 2008). 

As a result, secondary level (2D) has been popular over last decades. In the rest 

of the Chapter 1, protein structure prediction algorithms and datasets used to train and 

test these algorithms will be discussed in general after giving a brief introduction on 

protein secondary structure. 

 

1.4.  Overview of The Protein Secondary Structure 
 
Protein architecture is composed of the chain of the amino acids. The side chain 

of an amino acid contributes to the general biochemical property and functionality of 

the protein as well as its structure. At the beginning of 50s, Pauling and Corey started 

protein structure studies that can be considered the start of understanding protein 

biology. They examined (Pauling and Corey, 1951a) the chain forms assembled into 

different conformations in globular proteins and synthetic polypeptides (Pauling and 

Corey, 1951a). They observed that the inter-hydrogen bonding between amino acid side 

chains yield two common stable structural elements: α-helix and β-sheet. Besides that, 

the irregular parts between helices and sheets are referred as coil or turn structure. The 

same research group established that in order to form a structural element, there must be 

distinct geometrical features. In Figure 1.3 (a), MHC Class I Protein monomer is given 

as an example of the helix, beta sheet and turn element types with color codes.  

In the studies of Pauling and Corey (Pauling and Corey, 1951b, 1951c), the 

geometrical features of each structural element were examined. It was found out that in 

order to form helix or sheet, turn and bridge structures must be formed. The hydrogen 

bond formation between the CO of residue i and the NH residue of i+n refers “turn” 

where n may vary from 3 to 5. Repeating turns form alpha helix (Figure 1.3 pink parts) 

types including 310 helices, π helices. Also, turns can stay as single or bend. On the 

other hand, the term “bridge” points the hydrogen bond formation between non-adjacent 

amino acid residues. Repeating bridges constitutes beta sheets (Figure 1.3 yellow parts) 
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which later form anti parallel or parallel sheets, extended strands or isolated beta 

bridges.  

 

  
 

Figure 1.3.   In the MHC Class I Protein (PDB ID: 1a1n)  (a) alpha helices (purple and 
pink),   beta sheets (yellow) and turns (gray) are shown. (b) The 
Ramachandran plot shows the geometrical features of the protein by 
indicating the atomic angles Psi and Phi. Alpha helix region (Psi= -47, Phi 
= -57), beta sheet region (Psi = 113, Phi = -119) and turns (distinct region) 
lie on the plot. 

 
The decision on when an alpha helix or beta sheet forms is directly related to 

several parameters such as solvent accessibility, backbone psi-phi angles as shown in 

Figure 1.4, Cα positions, and hydrogen bond patterns. In Figure 1.3(b), psi-phi angles of 

each amino acid in MHC Class I protein are shown in the Ramachandran plot. The 

middle left region shows the amino acids which are found the alpha helices and turns 

that bound each alpha helix. The upper left shows the amino acids that are seen the beta 

sheet formations. The rest of the plot denotes the single turns.  

 
 

Figure 1.4.   Torsion angles of a peptide are shown. Angle between N and alpha-C is 
called Phi, C and alpha C is called Psi, alpha-C and alpha C is called 
omega. Furthermore, in the figure, angle between alpha-C and side chain is 
marked as X.  
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In order to assign a secondary structure to X-ray solved protein, structure 

assignment algorithms to atomic coordinates of psi, phi, omega, and X angles have been 

developed. Currently in PDB, Dictionary of Secondary Structure of Proteins -DSSP 

(Kabsch and Sander, 1983) and STRIDE (Heinig and Frishman, 2004) are used to 

define experimentally solved protein structures. The results obtained by assignment 

algorithms are verified with the number of helical and strand segments measured by 

circular dichroism (CD) or Fourier Transform Infrared Spectroscopy (FTIR) spectra. 

Here, the details of the techniques are not given. However, both these techniques give 

an idea on the approximate percentile of each structural element in spectra without 

given positions of them. The studies show the correlation between structural 

characteristics presented by CD or IR and structure assignment methods (Sreerama et al. 

1999). Therefore, these assignments are used to train or test the algorithms as 

experimental examples. 

 

1.5.  Overview of Existing Algorithms 
 
The general idea behind all secondary structure prediction algorithms is to 

investigate the preferences of segments of amino acids for certain structural element and 

present the structure of the protein. Do all existing algorithms achieve this goal? The 

answer is: “No”. Despite the fact that structure prediction problem is simplified into 

secondary structure, structure prediction problem still remains challenging.  

The existing algorithms are grouped into three generation. (Pirovano and 

Heringa, 2011) The first generation algorithms Chou- Fasman  and GOR (Garnier et. al 

1978) were started to be proposed after studies of Györgyi and coworkers on the 

likelihood of proline existence in alpha helices of keratin, myosin, epidermin and 

fibrinogen (Szent-Gyorgyi and Cohen, 1957). Basically, these earlier methods aimed to 

correlate amino acids and structural elements by calculating the frequency of existence 

of each amino acid in a certain structural element. While Chou and Fasman calculated 

the residue compositions for each structural element and assigned the prediction for the 

structural element with the highest score, GOR tried to predict the structure of each 17 

residue length of amino acid chains. However, due to the lack of sufficient number of 

experimentally verified structures and consideration the impact of long-range 
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interaction on structure formation, the accuracies of these algorithms were limited to 60-

65% (Kabsch and Sander, 1983b) This led the researchers to develop second generation 

algorithms. 

Unlike the first generation algorithms, second generation algorithms incorporate 

the structural state of central amino acid in 11-21 adjacent residues with machine 

learning algorithms such as neural networks networks (Bohr et al. 1988; Qian and 

Sejnowski, 1988) , statistical information (Gibrat et. al 1987) and nearest neighbor 

algorithms (Kabat and Wu, 1973). The performances of first and second generation of 

algorithms are shown in Figure 1.4. Rost and Sander compared the performances (Rost 

and Sander, 2000) of the first and second generation algorithms on K&S 62 dataset. 

(Kabsch and Sander, 1983b) The result shows that there is approximately 10% 

difference between tested first generation algorithms Chou-Fasman, GOR, and Lim and 

second generation algorithms ALB and Scheider. The result does not reflect the reality 

since the used dataset contains only 62 proteins. According to the observation of 

accuracy results of first and second generation algorithms, it has been realized that the 

window length 11-21 is not sufficient to detect long range interactions and beta sheet 

predictions are not local as helix formations. Therefore, to capture the whole picture and 

comprehends the long- range interactions and non-local formations (Cuff and Barton, 

1999), evolutionary information has been incorporated into the third generation 

predictors. 

The third generation predictors use sequence similarity information either by 

implementing multiple sequence alignment (Zheng and Kurgan, 2008) and local 

similarity information as profiles (Cole et al. 2008; Cuff and Barton, 2000). Machine 

learning techniques and artificial intelligence techniques such as support vector 

machines (SVM) (Hua and Sun, 2001; Nguyen and Rajapakse, 2005; Kim and Park, 

2003; Shoyaib et al. 2007; Ward et al. 2003), neural networks (NNs) (Babaei et al. 

2010; Kakumani et al. 2008; Qian et al. 1988), k- nearest neighbors (Madera et al. 2010; 

Qu et al. 2011), hidden markov models (HMM) (Kumar and Raghava, 2009; Malekpour 

et al. 2004)  are improved in respect to their initial architectures. There is also another 

approach in this generation which is called meta predictor. Meta predictors (Cole et al. 

2008; Palopoli et al. 2009) have been developed to merge the few successful algorithms 

on different aspects. Taking the advantage of artificial intelligence and evolutionary 

information, a remarkable success was obtained in compare to first two generation 

algorithms. However, the caps of beta sheets and alpha helices were more poorly 
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predicted than the inner structural elements (Rost and Sander, 1993). Furthermore, some 

long- range interactions were lost even though evolutionary information was used. The 

long range interaction formation is forced by the environmental conditions to become 

stabilized. All these pitfalls of development or evaluation of the algorithms are directly 

correlated with the limitations regarding the data.  

 

1.6.  Overview on Assessment of Existing Algorithms (CASP) and 
Benchmark Datasets 

 
One of the main pitfalls of protein secondary structure prediction is data quality 

and features. During development of an algorithm, system is trained by the data to learn 

potential relations on being a certain structural element. On the other hand, to test the 

accuracy of the algorithm a new set which does not contain any data in training set must 

be generated. It is called test set. Previously proposed data to train and test the 

algorithms and also to evaluate the existing algorithms and newly developed ones are 

limited. Therefore, cross validation or jack-knife test emerged to generate training and 

test sets with n number of times repeating. These techniques could be explained briefly. 

Jack- knife splits the whole data into two groups; n-1 proteins as training, 1 protein for 

test. It repeats splitting for n times. In contrast, cross-validation divides the data equally 

into m groups. (m-1)n/m number of proteins are considered as training, and n/m 

proteins are named as test sets. This process repeats for m times until each protein is in 

the test group once. The competence of these techniques is not the part of the study. 

Thus, the weakness or strength of them will not be discussed.  

Here, starting from the historical ones to recently cited datasets will be given to 

state an issue in respect to data. Notice that there are other datasets which were used 

either to investigate the knowledge by training or assess the performance by testing. 

However, considering the availability and the number of citations, the datasets below 

were worth mentioning. Furthermore, by exploring the general features of the datasets 

here, the reasons for establishing a new benchmark will be become clear. Finally, the 

performances of these datasets on algorithm prediction performances were compared 

with newly proposed benchmark dataset. 
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1.6.1. RS126 

 
This dataset is one of the datasets that has been studied widely. 126 non-

redundant protein chains make up the RS126 dataset (Rost and Sander, 1993). All 

proteins were verified by X- ray crystallography with 2.5 A°. While constructing the 

RS126 training and test sets, proteins that have lower than 25% pairwise similarity for 

chains with more than 80 amino acids were considered. It has to be mentioned here that 

this threshold aims to generalize the methods which incorporate sequence similarity into 

protein secondary structure prediction. To explain it more clearly, it is assumed that the 

prediction performance on highly homologous proteins would be high as in homology 

modeling in 3D structure prediction. Accordingly, the same good performance should 

be taken from non-homologous proteins. Another feature of the dataset is related to the 

creation of training and test sets. In the construction of RS126, the authors tried jack-

knife test which was repeated 130 times until each protein has been used once. 

However, it failed since their algorithm was based on the neural network. Because they 

could not use only one test set with 20 proteins, they finally performed 7 fold cross 

validation. Therefore, they set 7 different test sets with 19 different proteins.  

Although they tried to produce non-homologous protein dataset, there were 11 

proteins which have less similarity but the same folding structure i.e. almost the same 

functionality. For instance, immunoglobin proteins 1fldh and 1mcpl have highly similar 

few blocks but low overall percentage similarity. This can be interpreted as to conserve 

the functionality; final tertiary structure was conserved more than sequence.   

 

1.6.2. CB396 
 
This dataset was proposed by Cuff and Barton (Cuff and Barton, 1999). The 

remarkable feature of this non-redundant dataset is that it does not consider percentage 

similarity. The percentage similarity is changeable according to the length and the 

composition of the sequences (Brenner et al. 1998). This means that even if the 

percentage similarity seems low, this might not reflect the reality. To overcome this 

problem, they first aligned sequences by Needleman-Wunsch algorithm (see Chapter 2). 

Then, sequences are randomized, and re aligned again for more than 100 times. Finally, 

SD or in other terms Z score is computed by using calculated mean and standard 
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deviation of the randomized alignment for the first alignment V. SD score removes the 

bias on the alignment and helps to yield a non-redundant dataset. If the score is lower 

than 5, this means that there is low similarity. Therefore, the total numbers of sequences 

were reduced. Even though these proteins have less sequence similarity, it is understood 

that they share the same folding pattern because of having the same functionality. There 

is some filtering that was performed after reducing the size by alignment. For instance, 

multi domain segments were removed, the resolution was limited to 2.5 A°. Also, 

RS126 proteins were excluded from that dataset. The reason is that if the algorithm 

trained by RS126 would be tested with CB396, there would not be a bias. The proteins 

which are lack of DSSP or other information regarding annotation were also removed. 

Consequently, they produced CB396 non-redundant dataset. 

 

1.6.3. PDB-REPRDB 
 

Unlike previous datasets, PDB-REPDF is an algorithm to generate datasets from 

proteins in PDB. This algorithm considers nine different criteria. They can be listed 

such as resolution, number of chains, R-factor, the ratio of non-standard amino acids, 

ratio of residues with only C-α coordinates, number of residues with only backbone 

coordinates, number of amino acids, which experimental technique would be requested 

by user etc (Noguchi and Akiyama, 2003). The main property of this algorithm is 

selecting membrane proteins.  

 

1.6.4. UniqueProt 

 
UniqueProt (Mika and Rost, 2003) is an algorithm which generates unbiased 

dataset for the user. It uses the information from HSSP (homology derived structures of 

proteins) database to discriminate the proteins with homologous and non-homologous 

structures. It would be necessary to mention about HSSP. HSSP (Schneider and Sander, 

1996) aligns the 3D structures of the proteins in PDB by performing modified Smith-

Waterman local alignment. Therefore, it detects the similarities within the proteins. 

UniqueProt also incorporates the subcellular localization and functionality information 

by calculating the HSSP curve from BLAST output. However, this property has not 
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been clarified in the research paper well. The threshold to determine similar and non-

similar groups is decided due to the HSSP curve. 

 

1.6.5. Critical Assessment of Methods of Protein Structure Prediction 
 
How well can we predict secondary structure of a protein when we develop or 

upgrade an algorithm? How can we assess the performance of predictors and evaluate 

the outcomes for the same, new sequences at the same time? How can we state and 

scale tasks for predictors? How can we adjust the solvability of tasks for the predictors?  

These questions address experts to organize a meeting which is called Critical 

Assessment of Methods of Protein Structure Prediction (CASP) (Moult, 2005). The 

progress of CASP can be summarized as: (1) Experimetalists submit sequences whose 

structures are nearly verified by experimental methods to CASP organization. (2) 

Sequences are distributed to predictor developers. (3) The experimental structures are 

announced and the evaluation results are declined in the meeting Asilomar.  

The help of CASP is to remove the tendency on using already known sequences 

to predict their structures. However, yearly defined targets in CASP are limited number. 

Therefore, it is hard to evaluate predictors’ performances in a statistically significant 

manner. Another issue is there is no option to evaluate algorithms for distinct tasks, for 

instance, proteins whose lengths are smaller than X or proteins which have several 

domains or proteins which have different or same functions. Different tasks with high 

numbers of proteins ensure to observe the changes on performances of predictors. 

 

1.7.  Objective of The Study 

 
In this study, the main hypothesis is stated on “environmental conditions directly 

affect the functionality and therefore structure”. Until now, most of the algorithms 

incorporate the evolutionary information to increase the accuracy. Due to the CASP or 

EVA results, an improvement has been detected with the utilization of sequence 

homology. However, there are other important examples showing low sequence 

similarity but almost similar structures and functions. Few different examples would be 

good to be given. The first example can be given for hexokinases. In the Figure 1.5, 
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cytosolic (left) and mitochondrial (right) hexokinases are shown. The sequence identity 

of these proteins is considerably moderate at 74% according to BLAST. The protein on 

the left is cytosolic hexokinase and the protein on right is mitochondrial hexokinase. As 

seen, even though they are both hexokinase, their functions are specialized for certain 

biochemical reactions which are specific to their sub cellular locations. Locating in 

either cytosol or mitochondria directly affects the tertiary and secondary structures of 

these two proteins pointing that the cell is compartmented to various units to carry 

different functions that are firmly related to the tertiary structures of proteins. 

 

 
 

Figure 1.5.   The left image is cytosolic human hexokinase and the right image is 
mitochondrial hexokinase. The sequence similarity of these proteins is 
73.39%. However, they have different structures. This can be interpreted 
as proteins adopted different cellular conditions for their functions. 

  
 

Another example is of aspartat proteases. 4cms and 5er2 have the same 

functionality and same cellular localization cytosol. In Figure 1.6, the structural 

alignment of these proteins was shown by using Astex visualization tool.  The gray 

helices and sheets belong to 4cms, the blue ones belong to 5er2. The overlapping 

helices and sheets are shown both gray and blue. The E-value of the BLAST is 5e-17 

points a moderate sequence similarity. Even though a significantly high sequence 

similarity is not observed, these proteins have similar structures because of having same 

functionality in the same subcellular location. 
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 Figure 1.6. Secondary structure elements and surrounded water molecules of aspartate 
proteases 4cms (gray) and 5er2 (blue) are shown. Even though they do not 
have similar sequences, they have highly similar tertiary structures and 
catalyze the same reaction in the cytosol 

  
 

During the development of PHD algorithm (Rost and Sander, 1993), some bad 

predictions were obtained. One of them was the prediction of SH3 protein. The 

predictor assigns the sheet formation to a part of chain 4. However, that part forms helix 

in the solution that it is functional. It can be concluded that environment has a great 

impact on the native functional structure.  

Specifically, it has been assumed that two level grouping proteins into their 

subcellular locations, and then functions in that location might result in much precise 

secondary structure prediction under the light of such examples.  

The main hypothesis is to construct an advanced benchmark database not only to 

assess the quality of the algorithms, but also to show the weaknesses of the algorithms 

on which types of proteins and to direct users for the selection of appropriate 

algorithms. Therefore, main objectives of this study can be listed as: 

1. Extraction the sequence and STRIDE secondary structure assignment of 

available experimentally verified 64872 proteins up to 2010 from PDB 

based-S2C database. 

2. Retrieving the annotation on accession numbers, ontology information 

and subcellular localization information of sequence and UniProt 

accession number unique-proteins from UniProt and GeneOntology.  

3. Finding the global pair-wise similarity of proteins by using Needleman-

Wunsch algorithm according to the suitable BLOSUM substitution 
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matrix which is selected due to the identity between sequences, and 

normalizing the alignment scores. 
4. Grouping proteins according to taxas such as eukaryotic, bacterial, viral 

and archaeal. To demonstrate the evaluation of seven algorithms from 

each generation, two sample datasets are generated and compared with 

one of widely used benchmark dataset RS126. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 
2.1. Organization of the Materials and Methods 

 
In the concept of this study, a new and advanced database construction is aimed. 

The main feature of the dataset is to group proteins due to the localization information 

supported with functionalities and biochemical properties of proteins in that cellular 

compartment. Therefore, the data of interest is collected from various sources. To 

evaluate the performances of eight publicly available algorithms in compare to 

experimentally verified structure for each protein, the predictions are gathered and 

parsed.  

Mysql 5.5.8 open source database in WAMP 2.1 web development server was 

used as database platform and programs to retrieve and process the data were written in 

JAVA programming language.  

In following section, the database construction is explained by providing 

information about data sources including protein PDB identifier, chain number, 

sequence and experimental structure assignment STRIDE, alternative names of the 

protein, ontology information, and sequence similarity of each protein pairs.  Moreover, 

the seven algorithms used in this study were briefly explained. To assess the 

performances of these algorithms in each dataset is explained in the last part of the 

chapter. 

 

2.2. Database Construction 

 
The computational design schema of the database including data acquisition 

processes, filtering processes and data storage is shown in Figure 2.1.  The data sources 

and process details are given in next sections. 
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Figure 2.1.   The entire computational process on database construction is shown. The 
rectangles denote data processing done by Java Programming. The 
lozenges show the processes data. All processed data is stored in mysql 
database.  

 

2.2.1. Protein Sources and Biochemical Properties 

 
PDB (http://www.pdb.org/pdb/home/home.do) was used as the central source for 

experimentally verified protein structures.  Because of the complex structure of PDB 

format, were downloaded from S2C database which is available on 

http://dunbrack.fccc.edu/Guoli/s2c/ . 

PDB identifier, protein sequences and STRIDE structures of each chain, 

literature references, additional information such as mutant amino acids or isolation 

environment of the protein, and its UniProt accession number(s) were presented in S2C 

file format. Since the parts of interest are PDB identifier, protein sequence, STRIDE 

structure, and UniProt accession numbers, these parts were extracted for each protein by 

using ProteinParser in Figure 2.1. Each chain of protein was considered as a protein. 

Notice that one chain was selected out of identical chains of a protein while parsing S2C 

data file of the protein in order to prevent redundancy. Thus, in the rest of the paper 



20 

term “protein” would be used as sequence unique chains of a protein. Besides that, 

isoelectric point of each protein was calculated to determine the biochemical properties 

in respect to behavior in the aqueous solutions. All of the information of a protein which 

has unique PDB ID, ChainID and UniProtID was inserted in the table “Proteins” shown 

in Figure 2.2. 
 

 
 

Figure 2.2.   The entire structure of database is shown. 
 
Afterwards, however, it was realized that the same protein sequence had been 

entered into PDB with different PDBIDs. Therefore, a filtering was performed by 

selecting a representative of a sequence which has the highest resolution if it is verified 

by X-ray. Filtering results were inserted into a new table called “UniqueProteins”. 

 

2.2.2. Protein Annotation 

 
After a protein is submitted to databases, a unique identifier is assigned by 

database to enable access to information via that identifier.  That unique identifier is 

called accession number. Each database refers the cross references of corresponding 

protein.  
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In this study, it is aimed to keep all available accession numbers, recommended 

short and full names, alternative names and synonyms. The reason for that was to find 

missing protein localization information. By searching all names of a protein, we can 

collect the accessible literature sources to extract hidden localization information. 

Moreover, users can reach the data by querying alternative names of a protein instead 

just using PDBID.  

The main source of accession numbers was Universal Protein Resource 

(UniProt). UniProt is accepted as one of the most comprehensive protein catalog with 

18.184.507 protein entries in Release 2011 Oct, 19. Since UniProt accession numbers 

were obtained from PDB derived S2C database, alternative names and accession 

number were extracted from UniProtKB fetch by querying these UniProt accession 

numbers. Although several cross references exist in UniProtKB, in this study accession 

numbers of sequence databases were only taken. Sequence database section includes 

EMBL, GenBank and DDBJ accession numbers. Table “NameCatalog” was created, 

although each protein might have entries of different sequence databases.  

Before querying UniProt accession numbers that are recorded in PDB, second 

filtering was performed. The reason for that was different proteins are represented by 

same UniProt accession number as family accession number. Within the family, 

members have 90% intra cluster sequence similarity. This filtering was designed to 

select one of the family members as a representative of the family. This selected entry is 

the protein which has the highest resolution value to increase the confidence of the 

experiment.  Hence, for each protein, its sequence database entries were parsed as 

shown in Figure 2.1, and then the protein id, its UniProt accession number, sequence 

database accession numbers, and the corresponding identifier of that sequence database 

in the “NameCatalog” were inserted into “ProteinCrossNames” table as shown in Figure 

2.2. 

Other information which was extracted from UniProt was subcellular 

localization. It was stored in table “ProteinLocalizations” as Proteins shown in Figure 

2.2. Some of the proteins have several localizations. This turns out be elaborative. 

Therefore, these proteins were eliminated. 
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2.2.3. Protein Structure Sources 

 
As mentioned earlier, this study is based on the evaluation of secondary structure 

prediction algorithms. The algorithms, which were selected to be evaluated, were 

explained in this section. It must be underlined that the selection was performed due to 

the availability of algorithms. It was unfortunate to many of the algorithms that were 

introduced in the Chapter 1 are not accessible now. 

 

2.2.3.1. STRIDE  

 
The prediction models of the algorithms must be compared with experimentally 

defined structure. The experimental structures are obtained by a structure assignment 

algorithm such as DSSP, STRIDE so on. PDB has both STRIDE and DSSP 

assignments. However, in this study STRIDE was preferred because it consideres the 

hydrogen bonding patterns as well as backbone geometry.  

STRIDE information for each protein was parsed from S2C data. The 

information was stored in “ProteinStructures” table.  However, because of the 

experimental errors measurements are not accurate; STRIDE assignment did not work 

well. Dash symbol was assigned to unpredictable amino acids. Furthernore, some of the 

protein sequences were less than 20 amino acids. Since the smallest protein has 20 

amino acids, the entries whose lengths’ are less than 20 were eliminated. Also, proteins 

that have UNP aminoacids such as X were discarded. Consequently, STRIDE structures 

with its related protein identifiers were inserted into “UniqueStructures” table shown in 

Figure 2.2. 

 

2.2.3.2. Secondary Structure Prediction Algorithms in Used 

 
In this study, it would have been aimed to assess algorithms of different 

generations. On the down side, because of the lack of the algorithms and obstacles on 

server connections such as email requirement or operating system requirements, there 
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were only eight algorithms in hand.  The features of algorithms, their generation, and 

developers were given in Table 2.1. 

 

Table 2.1.  List of algorithms used in this study. Generation name, name of the 
algorithm, implementation, and sources are given. 

 
Generation Name Algorithm Citation 

1st 

 

GOR Position dependent structural element propensity 

calculations 

(Garnier et al. 1978) 

GORIV Window based approach which utilizes all possible 

pair frequencies for each structural element 

(Garnier et al. 1996) 

HNN Neural network learning - based on regression 

models for pattern recognition. 

(Guermeur and 

Gallinari, 1997) 

PHD Two layer neural network architecture & multiple 

sequence alignment based  

(Rost and Sander, 1993) 

PREDATOR Database- derieved statistics for non-local interaction 

among structural elements 

(Frishman and Argos, 

1996) 

SIMPA96 Approach is based on short length of sequence 

homology using nearest neighbor 

(Levin et al. 1986) 

3rd 

 

SOPMA Sequence similarity that is on level of structural 

classes and sequence level. 

(Geourjon and Deleage, 

1994) 

 
The first algorithm used was GOR(Garnier et al. 1978).  As namely mention in 

the Chapter 1, this algorithm is a first generation algorithm. It splits the protein into 17 

residue- length windows. The algorithm calculates the structure of the central amino 

acid.  The reason for that is the structure type of the central amino acidwhich influences 

the structure type of the adjacent amino acids. Afterwards, to increase the accuracy of 

the algorithm, hydrophobic triplets were searched. However, including that information 

did not affect the accuracy. GOR is also important to being the first algorithm to 

understand the importance of using evolutionary information. 

The rest belongs to the third generation. The first algoritm is also upgraded 

version of GOR, GORIV (Garnier et al. 1996). In this version, all pair frequencies are 

computed with a 17-window. Also, database size is increased. HNN (Guermeur et al. 

1998) is another algorithm which uses neural network learning technique. Sequence-to- 

structure and structure-to-structure networks incorporates the local statistical 

information. This information is calcuted by regression models. PHD (Rost and Sander, 

1993) is another algorithm which is also based on neural network. It takes multiple 

sequence alignment output as an input to the sequence-to-structure and structure-to 
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structure network. On the other hand, the algorithm PREDATOR (Frishman and Argos, 

1996) calculates the potential of hydrogen bonded amino acids. This algorithm 

examines protein sequence in eight structural classes instead three by looking at also 

non-local interactions. The parameter for it is only the assignment type. Here, STRIDE 

was selected. SOPMA (Geourjon and Deleage, 1994) and SIMPA96 (Levin et al. 1986) 

are the algorithms which uses sequence homology information. Whereas SOPMA uses 

sequence similarity of protein families, SIMPA96 takes into account that 7 length local 

sequence similarity decides the structure of the window. This is automated by the 

nearest neighbor method. For SOPMA, the number of conformational states was set to 

4, helix, sheet, turn, coil; similarity threshold was set to 8; the window length was set to 

17. 

In order to compare prediction results of these algorithms with STRIDE 

assignment results, two different decomposition methods were applied. STRIDE 

assignment provides eight different states of secondary structure elements, however 

secondary structure prediction algorithms perform prediction in three main state of 

elements; helix (H), sheet (E) and coil (C/T). Usage of decomposition methods allow us 

to reduce STRIDE alphabet and predictions into same level. 

Eventhough there are several decomposition techniques are currently available, 

in this study simple reduction technique and CB1999 (Cuff and Barton, 1999) were 

used. Other decomposition techniques (Rost and Sander, 1993) and (Frishman and 

Argos, 1996) were used in training of PHD and PREDATOR. Therefore, using these 

decomposition techniques would create a bias on the evaluation of algorithms. In simple 

decomposition method, E and B characters were converted to E; G, H, I were converted 

to H; and rest were converted to C. On the other hand in CB1999 decomposition 

technique, E and B characters were converted to E; G and H were converted to H; and 

rest were converted to C. 

 

2.2.4. Protein Ontology 

 
In order to discriminate proteins into their sub cellular locations and functions in 

that location, gene ontology information was used. Basically, gene ontology provides a 

unified representation of gene and gene products on their annotations and functions with 

a controlled vocabulary. (http://www.geneontology.org) Mainly, three domains 
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“Molecular function”, “Cellular Component”, and “Biological Process” are covered in 

gene ontology. Molecular function covers the activities which are carried out in the cell 

such as enzymatic activities. Biological function describes the series of molecular 

functions performed connectively in the cell. Finally, cellular component refers two 

meanings. The first one is the cellular unit where gene or product of interest is located. 

Second meaning is that gene or product of interest is part of a cellular unit as a 

structural component.  

While attempts to parse ontology information, it has been realized that some 

proteins do not have some domains of gene ontology. This would cause entries with null 

values in the database. As a caution, “Ontologies” table was created. Each of parsed 

ontology information of protein as in Figure 2.1 was inserted into database 

“ProteinOntologies” table shown in Figure 2.2 with protein identifier, corresponding 

ontology domain id, and the value for that ontology domain. 
 

2.2.5. Protein Homology and Needleman-Wunsch Algorithm 

 
In previously proposed databases, the homology of the proteins was restricted to 

25-30% similarity. However, in this study, to group proteins into their locations with 

their functions was aimed considering the high inter group similarities. Therefore, 

global sequence similarity was computed by using Needleman-Wunsch algorithm. 

(Needleman and Wunsch, 1970) The general basis of the algorithm is to determine 

homology level of two input nucleotide or amino acid sequences by using dynamic 

programming.  The alignment is scored for match, mismatch and gaps. For amino acid 

sequences, the scores for matches and mismatches are assigned through using a suitable 

substitution matrix.  

Here, two step global sequence similarity calculations have been done. In order 

to select suitable substitution matrix type, first of all, global identity was computed by 

using identity matrix. The feature of the matrix is built on 1-0 scores, 1 for identical 

matches, 0 for mismatches. Self- maximum score and global identity were computed for 

the first and second sequences by using identity matrix. Later, similarity percentage was 

calculated by normalizing the global identity of two sequences according to the 

maximum self-score of the first sequence. Similarity percentage is shown in Equation 

2.1.  
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                                                                                                            (2.1) 

 
This computation was conducted to select suitable substitution matrix type 

precisely. Alignment was performed for one sequence against the rest of the proteins in 

the database. This procedure was repeated until all sequences are aligned each other. If 

the similarity varies between 0-30 %, BLOSUM30 would be suitable. If the calculated 

similarity is between 30-62 %, BLOSUM62 matrix can be selected. If the similarity 

between two sequences is higher than 62%, BLOSUM90 can be selected. Aligned 

protein identifiers, the global identity, and similarity, minimum score of the alignment, 

and matrix type were stored in the table “Alignments” shown in Figure 2.2. 

Furthermore, in order to normalize each alignment, these scores were computed for self-

alignment. The similarity between two sequences for corresponding substitution matrix 

was calculated by normalizing the score. Since the global similarity scores for each pair 

of sequences, they need to be normalized according to the maximum and minimum 

scores of self- alignment for certain substitution matrix. The normalization formula was 

given in Equation 2.2 

 

 

(2.2) 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 
3.1. Data Acquistion from PDB  

 
The data was obtained from PDB derived S2C database. The reason has been 

mentioned earlier that parsing PDB file format was fruitless because of the initial format 

design. Each chain in S2C file of a protein was considered as a protein itself with 

PDBID (PDB Identifier) -Chain as name. If the sequence of different chains were 

exactly same, one of them was kept and the rest was discarded while parsing the files. 

Therefore, starting with 64872 files, we collected 80980 proteins with their PDB 

identifiers, chain names, UniProt accession numbers, experimental techniques that were 

used to verify structures, resolutions of the experiments and isoelectric points to 

describe the biochemical properties of each protein. Data distribution according to 

experimental technique was shown in the Figure 3.1. 

 

Experiments

Electron Microscopy

Fiber Diffraction

FTIR

Neutron Diffraction

Powder Diffraction

Solid‐State NMR

Solution‐NMR

X‐Ray

 
 

Figure 3.1.  The data extracted from PDB was verified by Electron microscopy, Fiber 
Diffraction, FTIR, Neutron Diffraction, Powder diffraction, Solid and 
Solution states NMR and X-Ray crystallography. The most of the data was 
verified via X-Ray with 71821 entries, then 7775 solution-NMR and 1263 
electron microscopy. 
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However, some proteins with unique PDBID-Chain-UniProt accession number 

had the same amino acid sequence. When these entries were examined, it was seen that 

same protein could be named with different identifiers when it was analyzed in different 

conditions. Therefore, the first filtering through table Proteins was performed in such a 

way that all amino acids sequences are seen as unique with the highest resolution. 

43179 entries were were inserted into UniqueProteins table. Nevertheless, it was found 

out that there were missing UniProt accession information for 2513 in UniqueProteins 

table. To overcome this problem, the entries with missing UniProt accession numbers 

were collected and it was checked that whether other entries of Proteins table for each 

sequence with missing information has UniProt accession number. Only the 234 entries 

in Proteins table have UniProt accession numbers for the same amino acid sequences. 

Therefore, those 234 rows in UniqueProteins table were updated. The rest missing rows 

were deleted.  

Another issue was related with experimentally verified structures. Due to the 

problems occurred during experiments, some of entries in UniqueProteins had 

unsuitable STRIDE structures in UniqueStructures table. These entries had many X, B, 

and dash characters. Moreover, some of the entries are less than 20 amino acid sequence 

length. All of these entries were collected and removed from UniqueStructures and 

UniqueProteins tables. In the end, UniqueProteins and UniqueStructures table had 

38417 entries.  

Unlike RS126 dataset, in this database, the number of proteins verified by 

different experimental techniques is increased. Whereas RS126 has 126 proteins, we 

collected 38417 proteins. 

 
3.2. Data Acquisition from UniProtKB and GeneOntology 

 
The data acquisition from UniProtKB fetch was quite problematic. Some of the 

proteins are given individual accession numbers while some of them are given family 

accession number. This difference is not mentioned in PDB data. While extracting data 

from UniProt, this issue came to the stage. Therefore, only one protein with highest 

resolution for a certain UniProtID was selected from the same family. Another issue 

was removing redundancy. Since in some of different sequences or proteins, UniProt 

accession numbers are the same, UniqueProteins table was grouped by UniProtIDs. 
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Thus, 20345 unique UniProt accession numbers were queried in the UniProtKB fetch 

and Gene Ontology. Protein sub cellular localizations were defined in 37,083 given 

unique UniProt accession number. Some of the entries had several sub cellular 

localizations. 4469 entries had several different sub cellular locations. However, most of 

these entries had cellular unit and sub cellular unit, for instance, cytoplasm and 

melanosome. These entries were not considered. The distribution of proteins according 

to their sub cellular locations according to twelve main groups as cytoplasm, 

endoplasmic reticulum, nucleus, extracellular space, golgi apparatus, mitochondria, 

peroxisome, vacuole, cytoskeleton, nucleolus, ribosomes, nuclear matrix was shown in 

Figure 3.2. 

 

 
 

Figure 3.2. Sub cellular localizations of proteins are shown. 

 
In addition, 19.774 of proteins in the database were eukaryotic and they were 

grouped in 731 functional groups in general. 14.021 of proteins were bacterial and they 

beloned to 479 functional groups. 2.383 of them were viral proteins and they belonged 

to 147 functional groups. 1.783 proteins were archaeal proteins and they belonged to 

101 functional groups. 456 proteins were not identified with any taxa information. Thus, 

they were removed.  
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3.3. Global Sequence Alignment of Proteins    
 
38417 sequences were aligned with global pairwise alignment. Therefore, 

737.952.153 alignments were performed. In order to prevent the redundancy, sequences 

aligned with sequences that are not aligned previously.  

 

3.4. Construction of Benchmark Datasets and Evaluation of The 
Algorithms 
 
Here, in order to evaluate the performance of seven predictors, two sample 

benchmark datasets derived from benchmark database were introduced. For the 

comparision, RS126 dataset was also analyzed and results were presented.  

When RS126 dataset was further examined in respect to protein function types 

and structural classes, it was seen that 50 different types of proteins were included and 

most of them were eukaryotic proteins with similar average length. 7 proteins were 

verified by NMR and the rest were verified by X-Ray crystallography. The resolution 

was assigned as -1 to NMR solved proteins. The variation in the pI was expected since 

the proteins were localized in different subcellular localizations with different function 

types. The pI and resolution values of proteins were shown in Figure 3.3.  

 

 
 

Figure 3.3. Resolution (x-axis) and pI (y-axis) values of proteins in RS126 dataset are 
shown. Proteins that were verified by NMR are shown as -1 in x-axis. The 
rest of the proteins that were by X-Ray crystallography are shown on the 
right hand side with their resolution values. The distribution in the pI is 
related to the different subcellular localizations and functionalities of 
proteins. 
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When the structural classes of the proteins were analyzed, it was seen that most 

of the proteins belonged to all alpha proteins, all beta proteins and alpha/beta proteins 

with 20%. The rest of the proteins were belonged to groups respectively alpha and beta, 

multi domain small proteins. There were also few membrane proteins and small 

peptides in the dataset. The overall percentages of each structural group were given in 

the Table 3.1.  

 

Table 3.1. Structural classes and percentage of the proteins  

 
Class Definition RS126 set (%) 

Alpha and beta (a/b) 25 proteins (20%) 

Alpha and beta (a+b) 17 proteins (13%) 

All alpha 27 proteins (21%) 

All beta 38 proteins (20%) 

Multi domain 3 proteins (2%) 

Small proteins 18 proteins (14%) 

Membrane 1 protein (< 1) 

Peptides 1 protein (< 1) 

 
The algorithms were run on the proteins in RS126 dataset and the prediction 

results and STRIDE assignments of proteins were converted into three structural 

element classes in order to make them comparable. The accuracies of the algorithms 

were computed according to two different evaluation techniques.  

The first technique is three-state prediction accuracy measurement (Q3). It is a 

measure of the overall percentage of predicted residues to observed residues for each 

structural state. The average in other words Q3-All measurement is the percentage of 

correctly predicted residues to all residues. The formulation of Q3-All measurement is 

given in Equation 3.1.  
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     (3.1)

 

The correctness of a prediction does not rely on the correct prediction of single 

amino acid residues. Therefore, correct prediction of portion of secondary structure 

segments gains importance. The second technique, segment overlap measure (SOV) 

(Venclovas et al. 1999) emerged to calculate the correctness of segment prediction in 

order to assess the quality in sense. Although per-state segment overlap measure could 

be computed,  the overall segment overlap measure could be performed. The 

formulation of overall SOV is given in Equation 3.2. 

 

 

(3.2) 

 

The accuracy results of algorithms on RS126 dataset that were computed 

according to Q3-All and Q3-per state and SOV-All and SOV-per state formulations 

were given in Table 3.2 and Table 3.3.  

 

Table 3.2. Q3 accuracy results for each structural state; helix, sheet and coil are given for GOR, 
GOR4, HNN, PHD, PREDATOR, SOPMA and SIMPA96 in  
Simple and CB1999 decomposition methods on RS126 

 
 Q3 

All 
Q3 

Helix 
Q3 

Sheet 
Q3 

Coil 

 Sim C&B Sim C&B Sim C&B Sim C&B 

GOR 51,3 51,3 66,73 66,80 61,78 61,78 39,27 39,22 

GOR4 64,23 64,23 58,43 58,49 55,70 53,70 75,27 75,21 

HNN 66,82 66,77 65,37 63,35 54,31 54,31 77,66 77,59 

PHD 75,42 75,17 71,27 70,99 64,83 64,20 78,48 78,27 

PREDATOR 78,19 78,14 66,49 66,47 59,11 59,11 91,79 91,70 

SIMPA96 69,65 69,55 65,40 65,12 54,45 53,53 79,78 79,83 

SOPMA 69,05 69,01 73,27 73,27 59,53 59,53 72,95 72,90 

 



33 

According to Q3 results, PREDATOR and PHD showed high accuracy in 

compare to other predictors both in simple decompostion and in CB1999 decompostion 

methods. 

In order to obtain more reliable information on the accuracy, SOV 

measurements were performed for decomposition by simple reduction and CB1999 

reduction of results of each algorithm. 

 

Table 3.3. SOV accuracy results for each structural state; helix, sheet and coil are given for 
GOR, GOR4, HNN, PHD, PREDATOR, SOPMA and SIMPA96 in 
 Simple and CB1999 decomposition methods on RS126 

 
 SOV 

All 
SOV 
Helix 

SOV 
Sheet 

SOV 
Coil 

 Sim C&B Sim C&B Sim C&B Sim C&B 

GOR 47,30 47,32 58,04 58,07 54,20 54,20 39,74 39,75 

GOR4 58,34 58,32 60,44 60,46 57,05 57,05 60,49 60,38 

HNN 59,07 59,02 66,74 66,72 53,78 53,78 61,81 61,61 

PHD 70,26 69,75 71,27 70,73 63,46 64,00 69,6 68,93 

PREDATOR 66,19 66,13 68,99 68,96 59,65 59,65 65,60 65,48 

SIMPA96 63,43 63,67 67,69 67,72 59,11 58,11 64,68 65,09 

SOPMA 64,52 64,48 72,76 72,75 62,11 62,11 63,22 63,06 

 
According to these results, it was seen that PHD and PREDATOR are more 

accurate than other algorithms in all structural states. Notice that PREDATOR and PHD 

have been trained on RS126 dataset. Therefore, the advantage of being trained by 

RS126 dataset, PREDATOR and PHD gave higher accuracy over other algorithms. It 

can be concluded that usage of proteins that are part of training set results a tendency on 

the accuracy results.  

To assess the the impact of clustering proteins according to their sub cellular 

localizations and functions in that cellular location, three different benchmark datasets 

were generated from the new benchmark database.  

The first dataset contains 31 eukaryotic glycoproteins. These proteins are found 

in the cell membrane. The resolution values and pI values are shown in Figure 3.4. 
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Figure 3.4. Resolution (x-axis) and pI (y-axis) values of proteins in Eukaryotic 
Glycoprotein dataset are shown. Proteins that were verified by NMR are 
shown as -1 in x-axis. The rest of the proteins that were by X-Ray 
crystallography are shown on the right hand side with their resolution 
values.  

 
None of the proteins in this group were used to train any of these algorithms in 

order to prevent bias on the accuracy results. As an example cross similarity between 

sequences of this group was shown here as a heatmap in Figure 3.5. 

 

 

 
 

Figure 3.5. The cross similarities of proteins in eukaryotic glycoprotein group are shown as heatmap. 
Green color shows the maximum identity. Yellow tones show the similarity degree up to 
80%. The red colors show the lowest similarities that are close to 50%.  
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According to the heatmap, it could be inferred that the inner group similarity is 

quite high. Since the proteins in this group locate in the same subcellular compartment, 

cell membrane, and play the same role in that location, it was expected to see the high 

sequence similarity within the group.  

The evaluation of the algorithms in this group was computed as done in RS126 

dataset. The results of Q3 measurement is shown in Table 3.4.  

 

Table 3.4. Q3 accuracy results for each structural state; helix, sheet and coil are given for GOR, 
GOR4, HNN, PHD, PREDATOR, SOPMA and SIMPA96 in  
simple and CB1999 decomposition methods on Eukaryotic Membrane 
Glycoproteins 

 

 Q3 All Q3 Helix Q3 
Sheet 

Q3 
Coil 

 Sim C&B Sim C&B Sim C&B Sim C&B 

GOR 50,39 50,39 67,25 67,25 55,06 55,06 42,30 42,34 

GOR4 60,25 60,25 41.41 41,41 47,66 47,66 73,14 74,95 

HNN 63,12 63,12 60.16 60,16 41,15 41,15 75,12 75,16 

PHD 72,44 72,44 48,74 48,74 66,05 66,05 75,06 77,26 

PREDATOR 67,17 67,17 47,71 47,71 38,08 38,08 87,29 87,29 

SIMPA96 63,38 63,38 55,57 55,57 43,61 43,61 77,06 77,06 

SOPMA 67,94 67,94 64,46 64,46 53,18 53,18 78,51 76,5 

 

Table 3.5. SOV accuracy results for each structural state; helix, sheet and coil are given for 
GOR, GOR4, HNN, PHD, PREDATOR, SOPMA and SIMPA96 in simple and 
CB1999 decomposition methods on Eukaryotic Membrane Glycoproteins 

 

 SOV All SOV Helix SOV 
Sheet 

SOV 
Coil 

 Sim C&B Sim C&B Sim C&B Sim C&B 

GOR 47,35 47,35 59,37 59,37 52,25 52,25 42,73 42,73 

GOR4 59,98 52,98 43,78 43,78 50,72 50,72 56,10 56,10 

HNN 48,60 48,60 58,01 58,01 41,71 41,71 55,47 55,47 

PHD 64,02 64,02 47,96 47,96 65,67 65,67 63,83 63,83 

PREDATOR 52,53 52,53 47,46 47,46 41,84 41,84 57,43 57,43 

SIMPA96 54,56 54,56 54,29 54,29 47,27 47,27 58,9 58,92 

SOPMA 58,53 58,53 59,27 59,27 56,16 56,16 61,92 61,92 
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Here, the results showed that PHD worked significantly well in eukaryotic 

membrane glycoproteins. Even though the number of proteins in this dataset was 

limited, the group specifity resulted in a considerable accuracy. Since the structure of 

membrane proteins differ from the other proteins and several algorithms have been 

developed to predict structure of these proteins specifically, it would be acceptable to 

obtain such an accuracy.  

Another example is given for eukaryotic proteins that play role in translation. 

The resolutions and pI values of proteins in this group are shown in the Figure 3.6.  

 

 
 

Figure 3.6. Resolution (x-axis) and pI (y-axis) values of proteins in Eukaryotic Cytolic 
Translation protein dataset are shown. Proteins that were verified by NMR 
are shown as -1 in x-axis. The rest of the proteins that were by X-Ray 
crystallography are shown on the right hand side with their resolution 
values.  

 
 

The Q3 accuracy results of the algorithms in this dataset are given in Table 3.6.  

 



37 

Table 3.6. Q3 accuracy results for each structural state; helix, sheet and coil are given for GOR, 
GOR4, HNN, PHD, PREDATOR, SOPMA and SIMPA96 in simple and CB1999 
decomposition methods on Eukaryotic Cytosolic Translation Proteins 

 
 Q3 All Q3 Helix Q3 

Sheet 
Q3 
Coil 

 Sim C&B Sim C&B Sim C&B Sim C&B 

GOR 48,51 48,51 77,35 77,35 63,09 63,09 28,90 28,90 

GOR4 61,51 61,51 67,35 67,35 49,27 49,27 69,38 69,38 

HNN 66,76 66,78 76,36 76,36 55,38 55,38 70,88 70,88 

PHD 75,68 75,68 86,67 86,68 70,78 70,78 71,46 71,46 

PREDATOR 64,85 64,85 59,86 59,86 47,66 47,66 78,85 78,85 

SIMPA96 65,76 65,43 74,54 75.08 54,40 53.57 70,22 70,18 

SOPMA 70,81 70,81 85,91 85,91 62,28 62,28 69,58 69,58 

 
The accuracy results of the algorithms in this dataset according to SOV are 

given in Table 3.7.  

 

Table 3.7. SOV accuracy results for each structural state; helix, sheet and coil are given for 
GOR, GOR4, HNN, PHD, PREDATOR, SOPMA and SIMPA96 in simple and 
CB1999 decomposition methods on Eukaryotic Cytosolic Translation proteins 

 
 SOV All SOV Helix SOV 

Sheet 
SOV 
Coil 

 Sim C&B Sim C&B Sim C&B Sim C&B 

GOR 46,42 46,42 64,39 64,39 59.2 59.2 32.44 32.44 

GOR4 58,23 58,23 72.85 72.85 57.26 57.26 56.78 58.78 

HNN 64,13 64,13 76.99 76.99 59.99 59.99 63.58 64.05 

PHD 70,71 70,71 84.58 84.58 74.73 74.53 63.05 63.05 

PREDATOR 60,06 60,06 65.83 65.83 56.03 56.03 61.61 61.61 

SIMPA96 64,35 63.36 76.69 77.45 63.80 62.78 61.86 61.97 

SOPMA 70,09 70,08 81.41 81.41 73.78 73.78 65.83 65.83 

 
According to the results, SOPMA and PHD had higher accuracy over other 

algorithms. In compare to RS126 dataset results, it is explicit that SOPMA has a high 

performance as well as PHD. However, PREDATOR, which is seen as an accurate 

algorithm according to results on RS126, did not produce accurate results. 
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CHAPTER 4 

 

CONCLUSION 

 
In this study we report the advantages of grouping proteins into their subcellular 

locations and their functions in that location over evaluating secondary structure 

prediction algorithms. This would put the advantage of seeing the varying behaviours of 

the algorithms in respect to protein function, sequence similarity and the subcellular 

localization. In addition to that increasing the number of experimentally verified 

proteins in the datasets with a certain sequence similarity would lead more precise 

evaluation of the algorithms. 

In the future, it is aimed to include newly verified structures of proteins into 

benchmark database. This would allow us to remove possible tendencies in the accuracy 

results of algorithms over each other. Since newly verified proteins would not be used 

in the training sets of currently available algorithms, it would be easy to assess the 

actual performances of algorithms for different taxas, different subcellular localizations, 

and functions. 

We also aim to increase the number of algorithms to present more informative 

results to users. All benchmark datasets that can be generated from our database and the 

comparision results of algorithms in different states are planned to be published in a 

user-friendly web-interface. 
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