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ABSTRACT

A THEORETICAL STUDY ON ENHANCEMENT OF HEAT
TRANSFER IN A SOLAR AIR HEATER COLLECTOR BY USING
POROUS MEDIA

In this study; a theoretical work is performed on heat and fluid flow in a solar-air
heater collector partially filled with porous medium. The most of the efforts are paid to
understand the characteristics of heat and fluid flow in a duct filled with the porous
media. Various porous—clear media configurations are investigated. The buoyancy
effects are neglected. The air flow in the channel is assumed to be incompressible,
laminar, and hydrodynamically fully developed. For the porous regions, Darcy and
Darcy-Brinkman models are used to obtain the velocity profile. In all chapters,
dimensionless forms of the governing equations for the heat and the fluid flow are used.
In the chapters with asymmetric cases, three different Nusselt numbers are defined; two
individual Nusselt numbers for the upper and the lower wall, and an overall Nusselt
number. The study is mainly focused on heat transfer enhancement by using porous
media and only for a few cases pressure-drop analyses are performed. It is concluded
that the use of a porous medium affects the heat transfer significantly, and the rate of
effect is influenced by the thickness and location of porous media. Finally, a two-
dimensional study including thermally entrance region for an air-solar collector with
partially filled porous medium is performed. It is observed that the outlet and mean
temperature along the channel are significantly affected by upper wall energy loss, and

thickness and conductivity of the porous medium.



OZET

GOZENEKLI ORTAM KULLANILARAK HAVA ISITICILI GUNES
KOLEKTORLERINDE ISI GECISININ ARTIRILMASI UZERINE
TEORIK BIR CALISMA

Bu tezde; kismen go6zenekli ortam doldurulmus bir hava 1siticili giines
kolektoriiniin akiskan ve 1s1 akisi iizerine, teorik bir calisma yapilmistir. G6zenekli yap1
karakteristiginin anlasilmasina agirlik verilmis ve bir kanalda farkli bos - gozenekli
ortam yapilandirmalar1 incelenmistir. Serbest tasinim etkileri ihmal edilmis, dolayisiyla
temel 1s1 transferi bicimi zorlamali tasinim olarak kabul edilmigstir. Hava akisi;
sikigtirllamaz, laminar, ve 1s1l ve hidrodinamik ac¢idan tam gelismis kabul edilmistir.
Gozenekli ortamlardaki hiz dagiliminin eldesi icin Darcy ve Brinkman-Darcy modelleri
kullanilmistir. Nusselt sayisinin ve sicaklik dagiliminin eldeleri i¢cin enerji dengesi
denklemi kullamilmistir. Tezin biitlin bdliimlerinde, 1s1 ve momentum akis1 icin
uygulanan denklemlerin boyutsuz formlar1 kullanilmistir. Asimetrik durumlar iceren
boliimlerde, ii¢ ayr1 Nusselt sayis1 elde edilmistir; alt ve {ist duvar i¢in iki Nusselt sayisi
ve genel Nusselt sayisi. Biitiin bu analizler, agirlikli olarak gozenekli ortam kullanilarak
181 gecisinin artirilmasi iizerine yapilmistir ve sadece birka¢ durum i¢in basing diisiimii
hesaplar1 yapilmistir. Calisma; gdzenekli yapinin 1s1 gecisini 6nemli dl¢iide etkiledigi ve
bu etkilerin; gozenekli yapinin; kalinlig1 ve kanal icindeki yeri ile degistigi sonucuna
varmistir. Son olarak, kismen gozenekli yapiyla dolu bir hava-giines kolektoriindeki 1s1
ve momentum akis1 incelenmistir. Kolektor kanalinin sonunda, akiskan sicakliginin

gozenekli ortam kullanildiginda 6nemli 6l¢iide arttigi gozlenmistir.
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CHAPTER 1

INTRODUCTION

1.1. Solar Energy

The global demand of energy is rapidly growing day by day. Current fossil
reserves have short lifetime (coal: 148 years, petroleum: 43 years, natural gas: 61
years(DOE, 2011)) and their possible extinction in the near future will affect the human
kind in a negative way if any new resources are not found. Furthermore, the effects of
greenhouse gas emission imply the carbon-free energy technologies to be improved.
Therefore, all energy sources must be used to compensate the world’s growing energy
demand in a reducing-carbon-emission path.

Since the Big Bang; the main source of the energy in the universe has been
fusion. Fusion can be defined as the joining of two or more nuclei together and
compound a new nucleus. The mass of the new nucleus is less than the summation of
the masses of the previous nuclei. This lost mass turns into energy. All the stars live by
thermonuclear fusion, so does the sun.

The sun produces 10°° joules of energy in each second and radiates it to the
space. In each second, approximately, /500 joules of solar energy reaches to the one
meter-squared area of the earth. This energy corresponds to 1.5 kW of power per meter-
square. This means that; the solar energy collection in five hours throughout the world
is equal to the total energy obtained by primary energy resources consumed annually by
the humankind (Baede et al., 2007). However, there is still a problem exists about solar
energy. Not all of this power can be captured and used as electrical energy by current
technologies. Therefore, in this area, the studies are mainly focused on enhancement
techniques of the solar energy capturing devices to increase the energy gain.

This study aims the heat transfer enhancement of a solar air heater, which is

defined in Section 1.3, by using porous media.



1.2. Solar Air Heater

A solar air heater is a system that utilizes solar energy to heat air passing
throughout the collector. A schematic demonstration of a simple solar-air heater is

shown in Figure 1.1.
DS
/ \
BN

HIGH-TRANSMISSIVITY MATERIAL

COLD AIR
HOT AIR

X)  — =

FAN ABSORBER PLATE

INSULATED SIDE

Figure 1.1. The schematic view of a simple solar collector

The system can be thought as a parallel plate and the upper plate should be made
by a high-transmissivity material such as glass to transmit all of the solar radiation heat
flux into the absorber plate in the channel. As its name indicates, the absorber plate
should absorb high amount of solar irradiation. Because, the lower plate of the air-solar
collector is well insulated, the absorb heat is conducted directly to the air. Generally a
fan is used to provide flowing of air through the solar collector. In the most of solar air
heaters, the dominant heat transfer mode is the forced convection. Two samples of air-
solar heaters used in the studies of Alvarez et al. (2004) and Sreekumar (2010) are

shown in the Figures 1.2 and 1.3, respectively.



Figure 1.2. A solar air heater collector used in the study of G. Alvarez et al.
(Source: G. Alvarez et al., 2010)

ity .

Figure 1.3. Another solar air heater used by Sreekumar who made the techno-economic analysis of it.
(Source: Sreekumar, 2010)

1.3. Heat Transfer Enhancement

The Newton’s Law of Cooling can be applied for the Figure 1.4 as in Equation
(1.1).

q =hA(Ts — To) (1.1

In this equation, g is the total heat transfer, & is convective heat transfer
coefficient, A is heat transfer area, T and T, are the temperatures of the surface and the
fluid respectively. It is assumed that the surface is hotter than the fluid. As seen in

Equation (1.1), for cooling systems; increasing the heat transfer coefficient, reducing



the fluid temperature, and increasing the heat transfer area, combined or individually,

are different paths to enhance the total heat transfer rate.

T

k' 4

T

Figure 1.4. A surface is getting cooled by a fluid

It is obvious that the enhancement techniques are used for reducing the thermal
resistance, hence increasing the heat transfer rate. These techniques can be categorized
in two groups: Active techniques and passive techniques. Active techniques like surface
vibration, jet impingement, fluid vibration etc. require direct input of external power
whereas passive techniques do not. They perform surface or geometrical modifications
to the flow channel or incorporate an insert, material, or additional device. The most
common passive technique is surface extension. Generally fins are used to increase the
heat transfer area as shown in Figure 1.5. It is clear that the heated or cooled surface
area is increased; hence the total heat transfer is increased by using fins. Left figure
illustrates an external flow on a smooth surface without fins and the right one is

demonstrating the heat transfer area increment by using cylindrical fins.
Air
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Figure 1.5. Heat transfer enhancement by using fins.

Porous media approach is another passive heat transfer technique explained in

Sections 1.4 and 1.5.



1.4. Porous Media

A porous medium is defined as a material consisting of a solid matrix with an
interconnected void as shown in Figure 1.6. Water flowing through the rocks and
stones, blood flowing into the lungs, and Helium gas flows over the fuel pebbles in a

Pebble Bed Modular Reactor (PBMR) are all examples of porous media.
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Figure 1.6. Schematic demonstration of a porous medium

The existence of several application areas of porous media approach is known.
A typical pressurized water reactor (PWR) fuel array (Figure 1.7) is one of the examples
of porous media and its thermal-hydraulic analysis can be made by using porous media
approach. Thermal insulation of buildings, other nuclear energy systems (as PBMR),
geothermal engineering, energy storage and recovery systems, storage of fruits,
vegetables and grain, petroleum reservoirs, and catalytic reactors are some of the other

application areas of this approach.

Spacer Grid
Fuel Rod

Figure 1.7. An example porous medium: A typical fuel array for a PWR. The coolant (water) flows through the
channels with fuel bundles.



1.5. Heat Transfer Enhancement by Using Porous Media

A rigid and permeable solid influences the heat transfer significantly. This truth
inspires the studies of porous media.

Using porous media enhances the heat transfer because of several reasons. First
of all, the heat transfer area is increased by using porous media. Hence, the total heat
transfer will increase as seen in Equation (1.1). Furthermore, porous media provide
mixing of flow and generate fluctuations in the flow. It is well known that, fluctuations
in the flow increase the heat transfer. Finally, high conductive porous medium increases
diffusion in parallel and transverse direction of the flow.

Beyond all these advantages, there is a significant drawback of using porous
media; it increases the pressure drop along the channel. Therefore, the fan (or pump)
that forces the fluid into the channel needs more power to do its job.

To begin thermal-hydraulic analysis of a system that is assisted by porous
media, a basic assumption must be mentioned first. It may not be appropriate to
approach to heat and fluid flow in a porous media microscopically. It is impossible to
follow fluid flows between the particles, and take their velocities into consideration
(Figure 1.8.a) for whole domain. Instead, the volume averaged velocities and pressures
are used to overcome this complexity. This method is named as “macroscopic
approach”. For a flow in a parallel plate channel filled with porous media, flow in
parallel and transverse directions should be considered when a microscopically
approach is taken into account. However, from macroscopic point of view, flow through

the porous channel is unidirectional for the specified direction (Figure 1.8.b).
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Figure 1.8. Microscopic vs. Macroscopic View



1.6. Literature Survey

Several studies on internal flows in parallel plate with clear channels, channels
filled with porous media, channels filled partially with porous media, studies of solar air
heaters with and without porous media are summarized in this section.

Convective heat transfer in porous media has broad technological applications
such as application in oil recovery, water supply management in hydrogeology,
geothermal exploitation, ground heat storage, building thermal insulation, nuclear waste
disposals, radioactive waste management, ground water flow modeling. It is also a
subject of interest in environmental and geophysics sciences. A wide application of the
porous media on many practical applications can be found in the well-known books of
Nield and Bejan (2006), Ingham and Pop (2005), Vafai (2005, 2010), Pop and Ingham
(2001), Bejan et al. (2004) and Vadasz (2008). They provide significant information on
porous media application as well as formulation of heat and fluid flow in porous media.

Literature survey showed that several studies on heat and fluid flow in ducts
filled with porous medium have been performed due to importance of the subject. Most
of the studies have been performed on channels with symmetrical boundary conditions.
For instance, Hooman (2008) analytically investigated fully developed forced
convection in a porous medium bounded by two isoflux parallel plates as shown in
Figure 1.9, on the basis of Darcy-Brinkman-Forchheimer model. The related
momentum and energy equations were solved by an asymptotic technique and they
declared that the value of Nusselt number is sensitive to the magnitude of shaping

factor, and it improves with an increase in shaping factor value.

Impermeable and isoflux
(svrimetrs ical heating)

Porous medium
KE

-l e o —————————————— - 2H

Flow direction

Figure 1.9. The schematic view of the channel in the forced convection, porous media study of Hooman
(Source: Hooman, 2010)



Nield et al. (2004) studied the effects of viscous dissipation and flow work for a
forced convection flow in a channel filled by a saturated porous medium with the walls
either held with uniform temperature or subjected to uniform heat flux. The Darcy-
Brinkman model was used and the governing equations were solved analytically, in
their study. Fully developed flow through the straight porous channels for different flow
mechanisms was considered by Awartani and Hamdan (2005) to study the effects of the
porous matrix and the microscopic inertia on the velocity profiles. They obtained
velocity profiles for the Darcy-Lapwood—Brinkman and the Darcy—Forchheimer—
Brinkman models, and compared the achieved results with the corresponding solutions
of the Navier—Stokes flow for Poiseuille, Couette and Poiseuille—Couette flow regimes.
Further studies on heat and fluid flow in channels under symmetrical boundary
conditions can be found in the literature (Hooman and Ranjbar-Kani, 2003;Tada and
Ichimiya, 2007; Degan et al., 2002;Kaviani, 1985).

A survey of the literature reveals that number of studies on heat and fluid flow in
channels with asymmetric boundary conditions are limited. For the channels with clear
fluid, the well-known book of Shah and London (1978) provides useful information for
scientists concern on asymmetric internal heating or cooling duct problems. They
investigated the effects of asymmetric boundary conditions for parallel plate channel
and circular ducts. Recently, Nield (2004) performed a theoretical study on heat and
fluid flow in a parallel plate channel with asymmetric temperature and asymmetric heat
flux boundary conditions. He declared that the individual wall Nusselt numbers may not
provide sufficient information on heat transfer rate from the walls since the value of
Nusselt number becomes infinite when heat flux ratio takes the value of 26/9. Hence, he
defined an overall Nusselt number based on average heat flux and average wall
temperature. He found that Nusselt number is independent of the heat flux ratio for the
symmetrical flows.He also found that the value of overall Nusselt number is 140/17 for
Poiseuille flow in a parallel plate channel.

There are several studies on partially filled porous channels and ducts
encountered in the literature. Transient forced convection in the developing region of a
channel was investigated numerically by Alkam et al. (2001). They used Forcheimer-
Brinkman extended Darcy model to construct the governing equations for momentum.
After the energy analysis, it was found that the maximum Nusselt number can be
obtained when the channel was fully filled with porous medium. They also stated that,

in the developing region, the Darcy number has more significant effects on the flow
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than that in the fully developed region. Satyamurty and Bhargavi (2010) performed a
numerical study of a flow in a partially porous channel (Figure 1.10). Both walls were
hold symmetrically at constant temperatures. They found an optimum porous medium

fracture of 0.8 for the Nusselt number.

7o -
Ty Wall 2 HP?

Porous material

T, Wall 1

Figure 1.10.Satyamurty and Bhargavi performed a numerical study to find the optimum porous medium fracture for
Nusselt number. (Source: Satyamurty and Bhargavi, 2010)

A study on forced convection in a tube with partially filled porous media was
performed by Yang et al. (2009). A constant heat flux is subjected to the tube’s wall.
The physical demonstration of the domain is illustrated in Figure 1.11. Darcy model
was used for the momentum equations. The optimum porous fractions for the Nusselt

number change between 0.8 and 0.9 for different Darcy numbers.

q,

Figure 1.11.A physical demonstration of the tube that Yang et al. studied.di is the diameter of the porous material,
remaining part is clear medium. (Source: Yang et al., 2009)



Further studies on heat and fluid flow analyses for internal flow through partially
porous filled media can be found in the literature (Kuznetsov and Nield, 2010; Najjari
and Nasrallah, 2008; Ould-Amer et al., 1998; Alkam and Al-Nimr, 1998).

There are several studies on the heat transfer analysis of solar air heaters in the
literature, but reported studies on heat transfer enhancement by using porous media
application for solar-air heater collectors are very limited. An experimental study was
performed by Sopian et al. (1999) to investigate the outlet temperature variation of a
double-pass solar collector when one pass is filled with a porous medium as shown in
Figure 1.12. The study concluded that the presence of porous media in the second
channel increases the outlet temperature and the thermal efficiency of the systems. One
of their results is shown in Figure 1.13. As it can be seen, thermal efficiency of the flow

in the channel with porous medium is greater than it is with clear one.
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Figure 1.12.A double-pass solar collector used in the study of Sopian et al.
(Source: Sopian et al., 2009)
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Figure 1.13.0ne of the results of the experimental study of Sopian et al.
(Source: Sopian et al., 2009)

10



The heat transfer characteristics and performance of the double-pass flat plate
solar air heater with and without porous media were studied numerically by Naphon
(2005). They used constant convective heat transfer coefficients in and out of the
channel. The solar air heater with the porous media provided 25.9% higher thermal
efficiency than that without porous media. There are several further studies performed
on full porous solar-air heaters such as Sopian et al. (2009), Prasad et al. (2009),
Thakura et al. (2003).

The reported studies of solar collectors with partially filled porous media are
limited in literature. Al-Nimr and Alkamm (1998) performed a numerical study on the
heat transfer enhancement of a solar collector partially filled with porous substrate as
shown in Figure 1.14. Darcy-Brinkman-Forchheimer model was used for the
momentum balance in porous region. At the interface of the porous and clear regions,
continuous shear stress approach was applied. They concluded that the insertion of the
porous substrate increases the Nusselt number up to 25 times and the optimum porous

thickness is found to be 0.5.

Upper plate

U2(Y) Porous Domain

- — N Ul(¥)  Non- & Domain
B — . Mon-porou . Lower plate

- _%_ .

Figure 1.14. The physical demonstration of the domain in the study of Al-Nimr and Alkamm (1998)

1.7. Aim of the Present Study

The present study is aimed to theoretically investigate the enhancement of heat
transfer by using porous media in a solar-air collector shown schematically in Figure
1.15. It is clear that the problem is unsteady. However, due to slow variation
temperature during the day, and the complex mechanism of heat and fluid flow in a

porous structure, the steady-state analysis is performed. Both pressure-drop and heat
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transfer effects are investigated to obtain an optimum porous-clear media configuration

in the channel of solar air heater collector.
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Figure 1.15. The schematic view of a solar collector wanted to be investigated. For this system; & takes values from 0
to 1.

Glass is known as a high-transmissivity material and let the thermal radiation
directly pass through it. The radiation heat flux is absorbed at the porous-clear media
interface. Air flows in a channel with a length of 2H. 2¢H of this channel is filled with
porous media. The flow is laminar, incompressible, and the dominant heat transfer
mode is forced convection and the buoyancy effects are neglected (Gr/Re’<<1).

The present study is started with analyzing of heat and fluid flow in a clear
channel that does not contain any porous medium. Then, a theoretical base is presented
by analyzing energy and momentum equations used in porous media. Further studies are
performed to understand the mechanisms of heat and fluid flow in fully and partially
filled porous channels.

In this thesis, all the governing equations are made dimensionless. The Nusselt
number, has a significant importance, on analyzing heat transfer is calculated for all
chapters. The main purpose is to increase Nusselt number and consequently increasing
the heat transfer.

The Nusselt number is defined as the dimensionless convective heat transfer
coefficient or the dimensionless temperature gradient at the surface. It is related to

dimensional convection heat transfer coefficient by the following relation.
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hL Nu k
¢ h=—2 (1.2)

Here, k is the conductivity of the fluid if the channel has no porous medium at
the surface. For the latter case, it will be the effective conductivity of the porous
medium and the fluid (Equation 2.10). L. is the characteristic length and in our case, it is
the channel height, 2H. h is the convective heat transfer coefficient.

In Chapter 2, the mathematical formulations of heat and fluid flow in porous
media are stated and explained.

In this thesis; six different cases are analyzed. In all cases, the velocity profiles
and the Nusselt numbers are derived and the pressure drop effects are investigated.
First, the analyses for flows in a clear channel with two different boundary conditions
are investigated in Chapter 3. The individual Nusselt numbers at the lower and upper
walls are obtained for the case with asymmetric heat fluxes. A fluid flow in a fully filled
porous channel with symmetric heat flux boundary conditions is studied in Chapter 4. In
Chapter 5, the same case as the previous chapter except the boundary conditions is
investigated. In this case, both walls are subjected to heat fluxes, which are different
from each other. As in the asymmetric heating case in Chapter 3, the individual Nusselt
numbers at the lower and upper walls are analyzed. A flow in a channel with partially
and symmetrically located porous medium is investigated in Chapter 6. In Chapter 7,
the flow in a channel with partially and asymmetrically located porous medium with
symmetric heat flux boundary conditions are investigated. The overall and individual
Nusselt numbers found after the calculations are studied. Finally, a solar air heater is
analyzed in Chapter 8. All the results are discussed in Chapter 9 and the thesis is

concluded in Chapter 10.
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CHAPTER 2

HEAT AND FLUID FLOW IN POROUS MEDIA

2.1. Fluid Flow in Porous Media

Mathematical formulation of the fluid flow in a porous medium is presented in
this chapter. A basic law named as “Darcy Law” can be accepted as the starting point of
the porous media approach. By modifying this equation; the governing equations and
their solutions for the fluid flow in porous media for different cases can be obtained.

The macroscopic approach, which is briefly mentioned in Chapter 1, is used in
the derivations of the governing equations for the flow. On this purpose, the local

Darcian velocity is defined as:

1
< u>=—f udV 2.1
vV vy

whereViis the volume space which the fluid occupies. The symbol V shows the total
volume. Darcian velocity vector (superficial velocity or apparent velocity) can also be
defined as follows where Q indicates the volumetric flow rate in m’/s, and A is the

) ) 2
cross-sectional area in m”.

<u>= % 2.2)

Another velocity vector, named ‘“pore velocity vector” is defined as shown in

Equation (2.3) and it is related to Darcian velocity as shown in Equation (2.4).

1
<u>=—| uadv (2.3)
f V¢
F <u>
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In the right hand side of the Equation (2.4), the term ¢ is called “porosity” and it

is defined as the ratio of the volume occupied by the fluid to the total volume.

£=— (2.5)

2.1.1. Darcy’s Law

Darcy stated that the volume-averaged fluid velocity through a column of porous
medium is directly proportional to the pressure gradient established along the column
and the permeability of the space, and inversely proportional to the viscosity of the
fluid. The governing equation for momentum, Equation (2.6), and the velocity profile,

Equation (2.7) are shown below where u stands for the dynamic viscosity.

U _od<pP>/
K% T T (2.6)
_Kk( d<P >f
<u >—; T ax (2.7)

In Equation (2.6), a new variable is introduced, which is called permeability (K).
The permeability is an empirical constant whose dimension is m”. It depends on the
geometric structure of the porous medium. When the permeability increases, the flow
resembles the flow in a clear medium; as water flows in an empty channel. For a
channel with clear flow, the governing equations for fluid flow are the continuity
equation for the mass conservation, and the Navier-Stokes equations for the momentum
balance.

In three-dimensional case, the Darcy Equation turns into the following form:

%<u>=pfg—V<P>f (2.8)
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2.1.2. Brinkman-Extended Darcy’s Law

Darcy equation is not applicable for some cases. As an example; for an internal
flow, the Darcy equation cannot be used, because some additional terms as the one for
the boundary effects must be included in the momentum conservation equation. The
boundary frictional effects cannot be ignored for the flows of small porous media.
Introducing a new variable, “effective dynamic viscosity”, u.s which depends on the
fluid and the structure of the porous medium, Darcy equation can be modified as

follows.

d? <u> d< P>
Beus=2"7 (2.9)

Herr dy? K dx

The effective dynamic viscosity can be written as follows:
Pesr = €ty + (1 — &) (2.10)

In three-dimensional form, this equation becomes into the form as Equation

(2.11). This equation is known as the Brinkman-extended Darcy equation.

u
,ueffV2<u>—E<u>+pfg=V<P>f 2.11)

As the permeability increases, the Equation (2.11) reduces to the momentum
equation for the two-dimensional flow of a fluid in a clear channel, which is written

below.

d?<u> d<P>f_

a0 (2.12)

2.1.3. Forchheimer Extended Darcy’s Law

For flows at high velocities, Darcy’s law may not appropriate. Darcy equation

only depends on the pressure gradient and the viscous force. For high velocity flows,
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the inertial effects should be taken into consideration. Therefore, a modification must be
made to the Darcy equation to overcome this difficulty. Equation (2.13) is the

convenient form of the Equation (2.6) named as Forchheimer-extended Darcy’s law.

C , U d< P>
——Kpf<u> —E<u>=— (213)

VK dx

In the left hand side of the Equation (2.13), the first term indicates the inertial
contribution or form drag (A. Nakayama, 1995), and the second term stands for the
viscous contribution or the frictional drag. The new term, C, is the Forchheimer
constant. In three-dimensional form and with taking the gravitational force into account,

this law can be written as follows:

C
—ﬁ<u>——Kpf|<u>|<u>+pfg=l7<P>f (2.14)

K VK
2.1.4. Brinkman-Forchheimer Extended Darcy’s Law

All the modifications of the Darcy’s law can be generalized as in Equation

(2.15).

d><u> ¢ U d<p>f
,ueffd—yz—\/—ﬁpf<u>2—E<u>=T (215)
Finally, the general modified Darcy’s law can be written as three-dimensional

form with gravitational force as follows.

C
yefsz<u>—ﬁ<u>——pf|<u>|<u>+pfg=l7<P>f (2.16)

K VK
Equation (2.16) is called as the Brinkman-Forchheimer extended Darcy’s Law,

and it is the most general form of the momentum conservation equation for a flow in a

porous medium.
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2.2. Heat Flow in Porous Media

The total energy of the fluid should be conserved as stated in the first law of
thermodynamics. In the case of a two-dimensional fluid flow through a porous medium;
if the fluid and the solid porous material are in thermal equilibrium (7= Ty= T), then the

governing equation for the energy balance can be written in the following form.

I<T> I<T> 0°<T> 0%°<T>

xSV oy a2 a2 ) (2.17)

In this equation, k. is the effective conductivity of the fluid and solid porous
material and, can be written as in Equation (2.18), and it should be noted that the

viscous dissipation effects are neglected.

keff = Skf + (1 — o)k (2.18)

In the studies performed in this thesis, the viscous dissipation term is neglected.
The working fluid is Newtonian and the flow is thermally fully developed. Furthermore,
the temperature gradient in y-direction is much greater than it is in x-direction. Then, in
most of the analysis, the following form of the energy equation is used for a flow in a

porous channel.

I<T> 02 <T>

plp <u>—p—= keffa—yz (2.19)

The above equation is almost the same equation with the energy equation of a
fluid flow in a clear channel except the thermal conductivity in the right hand side is the
effective thermal conductivity of the fluid and the porous structure.

From Chapter 3, the averaging quantities; < 7>, < P >, < u >, and < v >will be
designated without brackets but the reader should keep in mind that these quantities are

the volume average values.
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CHAPTER 3

FULLY DEVELOPED FLOW IN A CHANNEL WITH
CLEAR FLUID: SYMMETRIC AND ASYMMETRIC
HEAT FLUX BOUNDARY CONDITIONS

An incompressible, fully developed flow in a clear channel is investigated in this
chapter. The fluid is assumed to be Newtonian. The flow is laminar, hence Reynolds
number of the flow is assumed to be less than the critical Reynolds number as 2300.
Thermally and hydro-dynamically fully developed flow is explained to start our
analysis. After the fundamental discussion on heat and fluid flow in a fully developed
channel, the considered problem is defined. The following section is presented to
explain the heat and fluid flow governing equations to obtain the velocity and
temperature fields. Although heat and fluid flow for fully developed in a clear channel
are discussed in different references such as Incropera and DeWitt (1996), Shahand
London (1978), continuity, momentum and energy equations are solved for both
symmetric and asymmetric channels by using Nield (2004) to show the accuracy of the

employed method particularly for asymmetric boundary conditions in this study.

3.1. The Concept of Fully Developed Condition

The following two sections are written to explain the fully-developed

phenomena for both hydrodynamic and thermal considerations.

3.1.1. Hydrodynamically Fully Developed Flow

After the fluid enters in a duct or a channel, viscous effects become important
and a boundary layer develops until they meet each other (at the point of xz;), as shown
in Figure 3.1. After this point, the velocity profile is not changed along the channel and

the flow is named as hydrodynamically fully developed flow.
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Figure 3.1. Hydrodynamic entrance and fully developed regions in a channel

This boundary layer in the channel is caused by a phenomenon called as no-slip
condition. This condition can be defined simply as follows: The closest fluid molecule
to the wall sticks to solid molecule. This means that, if the solid is stationary, then this
molecule will be stationary, too. If the solid (in this case it is the wall) moves with a
velocity of V, then the stuck fluid molecule will move with the same velocity, V. -In our
case, the walls of the channel are stationary. Hence, the fluid molecule closest to the
wall is stationary. Furthermore, this molecule tries to stop the closest fluid molecule to
it and slows its neighbors down. Since the fluid flows, all the fluid molecules get forced
to be moved (Figure 3.2). These opposite forces cause a shear stress near the boundaries
and the area that the shear stress occurs enlarges with the x-direction. The cause of the

existence of the boundary layer is this shear stress.

F

Figure 3.2. Shear force acted on a fluid molecule

In hydro-dynamically fully developed region, the condition stated in Equation
(3.1) should be satisfied.

— =0, v=20 (31)
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In Equation (3.1), u is the x-component and v is the y-component of the fluid

velocity.
3.1.2. Thermally Fully Developed Flow

After the fluid enters into a channel, a thermal boundary layer occurs. These
boundary layers meet each other at xz;, as shown in Figure 3.3. After this point the flow
is called thermally fully developed flow.

The no-temperature jump condition is responsible for the development of this
boundary layer. This condition states that the temperature of the closest fluid particle to
the wall is as the same as the temperature of the wall. If the wall temperature is less than
the fluid inlet temperature, then the fluid particles near the surface tend to cool the
neighbour fluid particle. That situation continues towards y-direction of the channel
until the two fluid particles have the same temperature. At some distance, two
boundaries intercept. After this point the dimensionless temperature does not change

with x-direction. This condition can be written as in Equation (3.2).

d[T—T,
2o

Te > Tw.0)

| Tharmal antrance v Fully developad region

Figure 3.3. Thermal entrance and fully developed regions in a channel
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3.2 First Case: Symmetric Heat Fluxes at the Walls

In this case, thermally and hydro-dynamically fully developed, laminar flow in a
channel whose walls are subjected to heat fluxes is investigated. The heat fluxes at the
walls are constant and equal to each other. The schematic demonstration is shown in

Figure 3.4.

Lile

AL

Figure 3.4. Schematic view of the problem

3.2.1. Fluid Flow Analysis

To obtain the velocity profile, the well-known Navier-Stokes equations should

be solved. These equations are shown in Equations (3.3) and (3.4).

ou N ou  10°P N 0%u N 0%u (33)
“ox vc’)y T pox V\ox2 dy? '

6v+ v 1(’)P+ 02v+62v 3.4)
Yox TV dy  pady V\ox2 y? '

Since the flow is hydro-dynamically fully-developed, then the Equation (3.1)

can be applied to x-momentum and y-momentum equations.

0%°u P 3
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10P
- = (3.6)
pay

The above equations show that pressure field is only the function of x, hence it
does not change with y. To solve Equation (3.5), two boundary conditions are needed.

No-slip condition, explained in subsection 3.1.1, is used.

u(zH) =0 3.7

Equation (3.5) can be made dimensionless to reduce the number of parameters
by using the following dimensionless parameters. After some mathematical

manipulation, Equation (3.5) can be made dimensionless as given by Equation (3.9).

y dP Uu
=2 . = 3.8
Y H’ G dx’ v GH? (3-8)
d*u
- = 39
Sz t1=0 (3.9)

Boundary conditions should also be dimensionless,

U+1) =0 (3.10)

The ordinary differential equation given by Equation (3.9) under boundary
conditions presented by Equation (3.10) is solved and the equation of the velocity

profile for the problem demonstrated in Figure 3.4 is found as:

u(y) =%(1—y2) 3.11)

The mean velocity can be defined and found for velocity profile of Equation
(3.11).

_ [l uydy _ [Luydy 1
f—11 dy 2 3

(3.12)

m

23



The normalized velocity is defined as the ratio of the velocity and the mean

velocity and it can be calculated as follows.

v ;0-Y) 3 ,
=l =27 (3.13)
" 3

i =

3.2.2. Heat Flow Analysis

Total energy of the fluid should be conserved as stated in the first law of
thermodynamics and the related energy conservation equation for a flow in a channel

can be written as in Equation (3.14).

or T 0°T 9°T
(pCp)f(Ua'i'U@)— f<ﬁ+a—yz>+[lq) (314)

In this equation, u is the dynamic viscosity of the fluid, @ is the viscous
dissipation term, and kris the conductivity of the fluid.

As stated in previous section, velocity component in y direction, v, is zero in our
case. Furthermore, neglecting viscous dissipation, and assuming that the temperature
gradient in y-direction is much greater than it is in x-direction, the energy equation can

be written as in Equation (3.15).

aT 0%T

Reminding the dimensionless parameters defined in Equation (3.8), and
introducing a new dimensionless parameter named as dimensionless temperature,

Equation (3.16), the energy equation becomes into the form written below:

= Tw 3.16
T — Ty (3.16)
oT,, dT, ” 920
m_Zw Al 3.17
(pC )fu[G( "3 ) (T, — To) —+7 ] k(T — T) 372 (3.17)
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The walls are getting heated by constant heat fluxes. Therefore, the gradient of

wall heat flux with respect to x-direction should be taken zero.

dq" _dlh(@y -T)l _ o __9Tw _0Tw (3.18)
dx dx 0x dx
As mentioned before, it is accepted that the flow in the channel is thermally fully

developed (06/0x=0).Using this condition and the equation Equation (3.18), the energy

equation becomes as:

926

37 (3.19)

aT,
(pCp fua_;n = kf(Tm = Tw)

In Equation (3.19), two dependent variables as the mean temperature and the
wall temperature exist. Both of them are not known. Therefore, further manipulations
are required to obtain dimensionless temperature field. To find a definition for the mean
temperature gradient in x-direction, an energy balance can be applied for a control

volume shown in Figure 3.5.

Figure 3.5. Total energy of the fluid is conserved. h=C,T,, is specific enthalpy and [J=2Hpu,, is the mass flow rate of
the fluid

After performing an energy balance, the following equation is obtained.

0(2Hpup CyTpy) ” (3.20)

2Hpuy CpTy + 2q"dx = 2Hpuy C, Ty, + o
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The final result of the energy balance is that the gradient of mean temperature is
equal to the ratio of the heat flux to the multiplication of fluid density, specific heat,

mean velocity, and characteristic length. This relation can be written as.

dly,  q"
dx pCpumH

(3.21)

After substituting Equation (3.21) into Equation (3.19), the energy equation can
be obtained as:

u q"_k T T )629
Uy H -~ TV ™ W gy2

(3.22)

Equation (3.13) is the definition of the dimensionless normalized velocity and it
can be seen that it exists in the left hand side of Equation (3.22). Furthermore,
convective heat flux from the wall to the fluid can be formulated as written in Equation
(3.23). Using these two relations and applying the dimensionless parameters defined in
Equations (3.8) and (3.16) to the equation (3.22), the energy equation takes the

following form, shown in Equation (3.24).

q" = h(T,, — Ty) (3.23)
70 Ll (3.24)
vz Y T '

Nusselt number can be defined as the dimensionless convective heat transfer
coefficient or the dimensionless temperature gradient at the surface and it can be related
to the channel height, convective heat transfer coefficient and the conductivity of the
fluid as in Equation(3.25). By using this relation, the final form of the dimensionless

energy equation is obtained as in Equation 3.26.

_h2H

Nu = _kf (3.25)
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%0 1

Two boundary conditions are needed to solve this second order ordinary

differential equation. The dimensional forms of these boundary conditions are.
T(xH) =T, (3.27)

It must be mentioned that the wall temperatures are functions of x-direction and
they are not constants. They are also not known. When these boundary values are
inserted into the dimensionless temperature equation defined as in Equation (3.16), the

following dimensionless boundary conditions are obtained.
(1) =0 (3.28)
Now, the energy equation can be solved by using the dimensionless boundary

conditions. After solving Equation (3.26) by using Equation (3.28), the following result

is obtained.

oY) = %Nu(Y“ —6Y2+5) (3.29)

The Nusselt number for the flow in a clear channel should be found to compare
the heat transfer with other channel designs containing porous media. To find the

Nusselt number, the compatibility condition, Equation (3.30) must be applied.
1
f pady = 2 (3.30)
-1

The detailed derivation of the compatibility condition is explained in Appendix

A. Using the compatibility condition, the Nusselt number is found as:

Nu = 4.1176 (3.31)
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3.3. Second Case: Asymmetric Heat Fluxes at the Walls

The only difference of the present case than the previous one is that the wall heat
fluxes are different with each other. The schematic view of the problem is shown in
Figure 3.6. In this case, besides the overall Nusselt number, two individual Nusselt

numbers will also be investigated for the upper and lower walls.

y=

e

Figure 3.6.Schematic demonstration of the considered problem. Both walls are subjected to different heat fluxes.

3.3.1. Fluid Flow Analysis

Since the governing equation and the boundary conditions do not get affected
with any change in heat flux at the walls, then the normalized velocity profile is as the

same as it was in the previous section.

) (3.13)

3.3.2. Heat Flow Analysis

The governing equation for the energy balance in this case, is also as the same as

it was in the case with symmetric heat flux boundary conditions.

aT 0%T

Three new parameters should be introduced at the beginning of the energy

analysis of the problem in this case.
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_ Tywi+Tywy - q"l+q"u _ T_Tw,u

we=" 5 2 ~ Tp—T,,

(3.32)

Inserting the dimensionless temperature stated in Equation (3.32), into the

energy equation, Equation (3.15), the following equation is obtained.

aTm aTW# L aTW#
(pCp) [9 <E " ox ) +(Tn =T 3+ 5
e (3.33)
= k¢ (Tm — Twu)a_yz

Since the wall heat fluxes are constants, they should not be changed with x-
direction. Then, the gradients of the wall heat fluxes with respect to x are zero. These

manipulations are shown in Equation (3.34).

dq"y -0 => d[hl(Twl - Tm)] 0 > dTy, _ dTm

dx " dx dx dx (3.34)
dq u 0=> d[hu(Twu - Tm)] -0 => dTwu _ dTm
dx dx R dx  dx

If the temperature gradients of the upper and lower walls are added to each

other, the following result will be obtained.

dTyy | Ty _ AT+ Td) _ AT _ AT

dx dx dx dx dx
dT,
wi _ AT (3.35)
dx dx

Inserting Equation (3.35) into Equation (3.33), and remembering the thermally
fully developed condition, which states the dimensionless temperature gradient in Xx-

direction is zero, the energy equation turns into the form stated below.

aT, 226
(pCyp fua—;" = k(T — Tw)a—y2 (3.36)
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The next step is performing an energy balance for a differential control volume

shown in Figure 3.7.

FHFL

| _T;_l

Figure 3.7. Total energy of the fluid is conserved. h=C,T,, is specific enthalpy and [/=2Hpu,, is the mass flow rate of
the fluid

The energy entering the control volume shown in Figure 3.7 must be equal to the
energy leaving the boundaries, since there is no heat generation in the control volume.
Equation (3.37) is obtained for the mean temperature gradient in x-direction after the

following manipulations.

d(2Hpu,,,C,T,
2Hpum CpTrm + q"1dx + q"ydx = 2Hpup Gy T, + ( pa;n 2T dx
q"1+q"y dT,,
— Hpu,, C, I
dT, "
m oL (3.37)
dx  HpupnC,

The Nusselt number for the flow in a channel with the length of 2H was defined
in the previous case with symmetric boundary conditions, as in Equation (3.25), and the

average heat flux is written as in Equation (3.38).

h2H
kg
q"y = h(Tywy — Tm) (3.38)
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Inserting Equations (3.37) and (3.38) into Equation (3.36), and applying the
equations for dimensionless parameter Y, the normalized velocity i (Equations (3.4) and
(3.13)), and the Nusselt number, the energy equation becomes into the final form as
written in Equation (3.39).

0%6

1
m+§uNu=0 (339)

To solve the energy equation written in Equation (3.39), two boundary
conditions are needed. Before stating the boundary conditions, one new parameter must

be defined, as shown in Equation (3.40).

Twl - Twu

B = 2(Tm——TW) (3.40)

Now, it can be seen that at the lower wall, the dimensionless temperature is

where as it is -f for the upper wall.
o) =-p  O6(-1)=p8 (3.41)

After solving the energy equation by using the boundary conditions stated

above, the following solution for the dimensionless temperature profile is obtained.
Nu
oY) =—-BY + e (Y*—6Y2+5) (3.42)

The Nusselt number is still an unknown. To find it, the compatibility condition
stated in Equation (3.30) should be used. The derivation of the compatibility condition
is explained in Appendix A.

1
JQ&dY =2 (3.30)
-1

After solving the compatibility condition for the Nusselt number, the following result is
obtained.

Nu = 4.1176 (3.43)
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This result for the overall Nusselt number will be discussed in Chapter 9 (the
results and discussion).

In this section, unlike the previous one with symmetric boundary conditions,
further analysis should be performed for the individual Nusselt numbers at the walls. To
do this, the analysis must be started from a foundation of a new definition for . The

heat fluxes at the walls can be written as follows.

"o (3_T| k(Tm_Twu)a_e
1= ay y=—H - H aY y=—1
(3.44)
L . H  oYly,

Dividing the lower heat flux to the upper one, and solving it for f, the following

result is obtained;

Nu(1+q,)
= RS (3.45)
where, g, is the ratio of the upper and lower wall heat fluxes.

At this point, the individual Nusselt numbers at the lower and upper walls can be
investigated. To do this, the heat fluxes at both walls can be used again. The walls are
assumed to be so thin that the conduction resistance can be neglected. Hence, the wall
heat fluxes directly convected to the fluid and the following equations for the upper and

lower walls can be written as follows.

"= kaT = h(T, T)
q.1= ay . = wl m
(3.46)
"= —ka—T = h(T,, — T)
qu ay et wu m

The dimensionless parameters, defined in Equations (3.4) and (3.14), are used to
continue our analysis of individual Nusselt numbers. For the upper wall, the analysis

can be performed as follows:
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k(T — Ty 06
 H oy

— hH(Tm - Twu)
Y=1 k(Tm - Twu)
h ZH(Tm - Twu) 1 (Tm - Twu)
— =—Nu,

B Zk(Tm - Twﬂ) - 2 (Tm - Tw,u)

1 (Tm_Tvzv_u_Tw_u_|_M_M)

= h(T, Tyn) => 96
y=1 - wu m - aY

— ZNu 2 2 2
2 (Tm - Twu)
1 (Tm _ TW/L + Twl;Twu)
==Nu,
2 (Tm - Twu)

Finally, the dimensionless temperature gradient at the upper surface can be

written as follows.

O _Iyna+p (3.47)
avl,_, =2V +h '

After further mathematical manipulations, Nu, can be written as in Equation
(3.48). Similarly, the dimensionless heat transfer coefficient of the lower wall can be

stated as in Equation (3.49).

70
Nu, = ————— (3.48)
26 +9q,
70
Ny =—"— (3.49)
26+9/q,

As seen above, when the boundaries are subjected to equal heat fluxes, then Nu,
and Nubecomes -70/17 and 70/17, respectively. All these results will be discussed in
Chapter 9.

3.4. Pressure Drop Calculations

Pressure drop calculations are essential in all cases, which are studied in this
thesis, since the power needed by fan (or pump) is directly proportional to pressure

drop. To achieve an opinion about the pressure drop in the channel, the definition of the
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friction factor is used. Friction factor for a channel in which fluid flows with a mean

velocity of u,, can be defined as:

(-5)2H
f= JL (3.50)
gpu%
For a fully developed flow in a channel, the pressure gradient along the x-axis is
constant and this negative gradient is denoted by G, as stated in Equation (3.8). Then

the Equation (3.50) becomes as follows:

4GH
=— (3.51)

- 2
pUR

Using the definition of the dimensionless velocity defined in Equation (3.8), the

following equation is obtained for the friction factor.

_ ok 3.52
f_UmpumH (3.52)
or
Re =3 3.53
fRe = (3.53)

Since the dimensionless mean velocity is found as //3 as shown in Equation
(3.13), then the multiplication of the friction factor and Reynolds number of a fluid
flowing in a clear channel is calculated as 24. This result can be used for comparison of
pressure drops in a clear channel and channels, which are partially or fully filled with

porous media.
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CHAPTER 4

FULLY DEVELOPED HEAT AND FLUID FLOW IN A
POROUS CHANNEL: SYMMETRIC HEAT FLUX
BOUNDARY CONDITIONS

In this section, Brinkman-Darcy equation and energy equation are solved for a
channel filled with porous media under symmetric boundary condition. Nusselt number
and friction coefficient based on Darcy are obtained analytically. The calculation of
Nusselt Number is reported in literature by some researchers such as Nield and
Bejan(2006). However, in this study, the method proposed by Nield is used to solve
energy equation and approve the accuracy of our methods. Moreover, three different
parameters as heat transfer increment ratio, pressure drop increment ratio and overall
performance are defined to find out feasibility of the use of porous media for

enhancement of heat transfer in channels.

4.1. Problem Definition

Thermally and hydrodynamically fully developed, laminar flow in a channel,
which is fully filled with porous material, is investigated in this chapter. The channel

height is 2H as shown in Figure 4.1.

)

21
y=0

Figure 4.1. Schematic view of the channel that the fluid flows
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The walls are subjected to constant heat fluxes, which are equal to each other.
The basic purpose of this chapter is to investigate the effects of the Darcy number on
heat transfer. Darcy number can be defined as the dimensionless permeability and it is

formulated as in Equation (4.1).

Da = — 4.1

In Equation (4.1), K represents the permeability of the porous medium. As its
name indicates; when the permeability of the porous medium is high, then the channel
permits more fluid to flow. When K is small, the fluid flow requires stronger fan or
pump power.

Another characteristic parameter of the porous media is the viscosity ratio,
which is the ratio of the effective viscosity of fluid and the porous structures, and the

dynamic viscosity of the fluid. The viscosity ratio is formulated as in Equation (4.2).

M= Hery

py 4.2)

As expressed above the main reason of writing this chapter is to observe the
effects of Darcy number on heat transfer rate, specifically on Nusselt number.
Momentum equation is also solved to understand the Darcy effects on the velocity
profile. For all analysis in this chapter, M is accepted as 1. There is no doubt that, it is

not the real case.

4.2. Fluid Flow Analysis

The flow in the channel is hydrodynamically fully developed and it is
unidirectional in x-direction. Then, it can be hydrodynamically analysed by using

Brinkman-extended Darcy equation as written below.

d’u pu dP

- gy = 4.3
'ueffdyZ K’U. dx ( )
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As in the previous chapter, in which the heat and fluid flow in a clear channel
was investigated, the governing equation for the velocity field can be made

dimensionless by using the following dimensionless parameters.

y aP 1 uu
71 G =3 S= ’ U=_
H 0x M Da GH?

4.4)

In Equation (4.4), S is called as the porous media shape parameter. H is the half
of the channel height. After applying the dimensionless parameters into the Brinkman
extended Darcy equation, the dimensionless momentum equation for the porous channel

is found as in Equation (4.5).

d?u 1
— —S2U+—= 4.5
7~ S+, =0 (4.5)
At this stage, the boundary conditions must be defined. No-slip condition states
that the velocity of the fluid is zero at the boundaries as indicated in Equation (4.6).
This boundary condition can also be made dimensionless by using the dimensionless
parameters stated in Equations (4.1), (4.2), and (4.4). The dimensionless form of the

boundary condition is stated as in Equation (4.7).

u(zH) =0 (4.6)

U(+1) =0 4.7)

Applying the dimensionless boundary conditions, Equation (4.7), onto the
dimensionless governing equation, Equation (4.5), the following result is obtained for

the velocity profile.

1 — cosh (S§Y)sech (S)

57 (4.8)

uy) =

The mean velocity of the fluid in the channel can be obtained by using the
definition of the mean velocity defined in Equation (4.9), and it can be formulated as in

Equation (4.10).
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1
_ IS uay

m 4.9
[ av 4.9)

_ S —tanh (S)
= (4.10)

The dimensionless velocity, found as in Equation (4.8), can be normalized by

dividing it to the mean velocity shown in Equation (4.10).

o u U  S[1-—cosh (SY)sech (S5)]
f=—=—= 4.11)
U, Un S — tanh (S5)

4.3. Heat Flow Analysis

As in the energy analysis performed in Chapter 3, to begin; an energy balance
must be applied to the channel. Neglecting the viscous dissipation, the energy
conservation equation for a flow in a porous channel fully filled with porous medium

can be written as in Equation (4.12).

oT  OT 0°T  9°T
il )= N T 4.12
('Dcp)f (u ax Y ay) Kers <6x2 * 6y2> (“412)

Reminding that the y-component of the flow velocity is zero, and assuming the
temperature gradient in y-direction is much greater than it is in x-direction, Equation

(4.12) turns into the form as written in Equation (4.13).

oT 0°T
(pCp f’u.a = keffa_yz (413)

To continue our energy analysis, the dimensionless temperature must be defined.

T-T,

6 =
Tm_Tw

(4.14)
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At this point, the energy equation in the form of Equation (4.13) must be made
dimensionless to reduce the number of parameters. For this purpose, the dimensionless
parameters stated in Equations (4.4) and (4.14) are used to obtain further form of the

energy equation as written in Equation (4.15).

oT,, 2

(o) |0 ( aTW)+(T )22 ) ) 45
PEp) et ox  Ox meIWigx T oax | T TeTYm e wlgy2 ’

Since the walls are subjected to constant heat fluxes that are equal to each other,

the gradient of wall heat fluxes with respect to x-direction must be equated to zero.

dq" _dlh(Ty =Tl _ o _ 0Tw _ 9Tm (4.16)
dx dx 0x dx

The flow is accepted to be thermally and hydrodynamically fully developed.

This condition makes the dimensionless temperature gradient in x-direction be
zero.Using the thermally fully developed condition and the equation found as in

Equation (4.16), the energy equation forms as in Equation (4.17).

2

32 4.17)

0T,
(pcp fug = keff(Tm - Tw)

The mean fluid temperature is defined as in Equation (4.18). However, it cannot
be used to solve the Equation (4.17), because the fluid temperature is not known. A new
relation for the mean temperature gradient in x-direction should be found. An energy

balance must be applied for a control volume shown in Figure 4.2.

1
_ J_,pCpuTdy

(4.18)
[2, pCpudy

m
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Figure 4.2. Total energy of the fluid is conserved. h=C,T,, is specific enthalpy and [/=2Hpu,, is the mass flow rate of
the fluid

6(2HpumeTm) s

2Hpuy, CpTyy + 2q"dx = 2Hpuy, C, Ty, + I

After some manipulations, a formulation for the mean temperature gradient in x-

direction is found as follows.

dlym,  q"
dx pCprumH

(4.19)

After inserting Equation (4.19) into Equation (4.17), the following equation is
obtained for the energy balance.
u q" 9%6

— L i (T = To) —

(4.20)

Introducing Equations (4.4) and (4.11) into Equation (4.20), and assuming the
wall is thin enough to neglect the conduction resistance, the energy equation takes the
form of Equation (4.22), remembering the convective heat flux is formulated as in

Equation (4.21).

q" = h(T,, — Ty) 4.21)
70 (4.22)
vz Y T '

In this problem the conductivity term in the Nusselt equation should be taken as
the effective conductivity of the fluid and the porous medium. Because, at the surface,

the fluid flows in the porous media and the conductivity of the porous structures must
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be considered. The definition of Nusselt number in this case and the final form of the

energy equation are written in Equations (4.23) and (4.24), respectively.

h2H
Ny =—— (4.23)
ke
2% 1
— 4+ Z{Nu= 4.24
EVE + 2uNu 0 ( )

At the boundaries, the wall temperatures are functions of x-direction. In the
formulation of the normalized dimensionless temperature, Equation (4.14), it can be
seen that the wall dimensionless temperatures are zero. The dimensionless forms of

these boundary conditions are written in Equation (4.25).

8(+1) =0 (4.25)

We have now sufficient information to solve the dimensionless energy equation,
which is a second order ordinary differential equation. Using the boundary conditions

stated above, the solution of Equation (4.24) is found as follows.

Nu[S%(Y? — 1) + 2 — 2cosh (SY)sech ()]

4S[tanh(S) — S] (4.26)

oY) =

The compatibility condition, Equation (4.27), must be applied to find the

dimensionless convective heat transfer coefficient.

1
f@ﬁdY =2 (4.27)
-1

Using the compatibility condition, the Nusselt number equation is found as

follows.

24S[S cosh(S) — sinh (8)]?

Nu =
Y= 155inh(2S) + (4S° — 24S8)cosh?(S) — 65

(4.28)
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4.4. Pressure Drop Calculations

The use of porous media in an internal flow may increase heat transfer through
the channel, however it also increases pressure drop. As explained in Section 3.4, an
increase in pressure drop in the channel makes fan power increase. That is why, both

heat transfer and pressure drop should be analysed in this kind of problem. Friction

factor for a channel in which fluid flows with u,, is defined as:

(4.29)

For a fully developed flow in a channel, the pressure gradient along the x-axis is
constant and this negative gradient is denoted by G, as stated in Equation (4.4). Then

the Equation (4.29) becomes as follows:

4GH
=— (4.30)

- 2
pUR

Using the definition of the dimensionless velocity defined in Equation (4.4), the

following equation is obtained for the friction factor.

_ 4w 431
f_UmpumH (4.31)
or
Re = — 432
fRe =7 (432)

Equation (4.32) can be used for determination of pressure drop.

4.5. Analysis of Heat Transfer and Pressure Drop

To determine the heat transfer enhancement of full porous channel,

dimensionless heat transfer coefficient of the system must be divided by the Nusselt
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number of a flow in a clear channel, and the result is called heat transfer increment

ratio.

Nu
Eth = Nu

(4.33)

Cc

In this equation, Nu, is the Nusselt number of the clear flow.

It is clear that ¢4, = I for a clear fluid channel. Heat transfer enhancement is
expected for the channel withe;,> 1. The use of porous media will decrease heat transfer
through a clear channel ife,< 1.

Similar definitions are valid for friction coefficient. The friction coefficient can

be normalized by using friction coefficient of a clear channel.

_ fRe
= F Re).

(4.34)

g, 1s called the pressure drop increment ratio in this thesis and for the values
of g,greater than /, the increase of pressure drop in the channel is expected, while for
g,< 1, the use of porous medium decreases the pressure drop in the channel. The value
of friction coefficient (f Re). is determined as 24.

The ratio of ¢, and &4is shown by ¢, and called the overall performance.

&
£=— (4.35)

&p

For the values of € greater than /, heat transfer enhancement is greater than the
increase of pressure drop. However, for the values of & less than I, the increase of
pressure drop in the channel is greater than heat transfer enhancement.

All the results, which are obtained in this chapter will be discussed in Chapter 9.
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CHAPTER 5

FULLY DEVELOPED HEAT AND FLUID FLOW IN A
POROUS CHANNEL: ASYMMETRIC HEAT FLUX
BOUNDARY CONDITIONS

5.1. Problem Definition

A two-dimensional parallel plate channel filled with a porous medium, and
saturated with an incompressible fluid and also in local thermodynamic equilibrium is
considered. The physical domain of interested problem is depicted in Figure 5.1. The
channel has a rectangular cross-section with height of 2H. The uniform heat fluxes of
g 1and g, are subjected to the channel walls. The heat flux of ¢ ; has positive direction
while the direction of ¢ , is negative. That is why the lower and upper heat fluxes are
shown by ¢ ; (+) andg , (-), respectively. In the present study, the ratio of ¢ ; (+) andq ,
(-) is called as heat flux ratio (g, :qnl +)/ q"u(—)). The fluid that flows in the channel is
Newtonian and its thermo-physical properties are assumed to be constant. The porous
medium is isotropic with permeability of K. The flow in the channel is laminar, steady

and hydrodynamically and thermally fully developed.

Ll

Figure 5.1.Schematic view of the channel that the fluid flows through.
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5.2. Fluid Flow Analysis

For a hydrodynamically fully developed and unidirectional flow in a parallel

plate channel, the following assumptions are valid;

ou 0 oP 0 5.1)
ox dy '
wherev represents velocity in the y-direction and it vanishes for a unidirectional flow in

a channel. The Darcy-Brinkman momentum equation for the considered fully-

developed flow in the channel can be written as:

d’u u oP
Herfgyr "R o2 =0 (5.2)

wherey and p represent fluid dynamic viscosity and density, and u.zshows effective
viscosity whose value depends on the structure and geometry of the porous media, and
the strength of the flow.Considering Figure 5.1, the boundary conditions for Equation

(5.2) can be written as follows.

ou

J— = 0’ u iH = 0 5.3
= () 53

and the mean velocity in the channel can be determined by following equation:

H
_pu(y)dy
Uy = IHH—( (5.4)
Jopdy
To obtain the dimensionless form of the Darcy-Brinkman momentum equation,

the following dimensionless parameters can be used.

opP
M= Hery G

] _a’
# (5.5)

K uu

be=mz V=G
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By using dimensionless parameters of Equation (5.5) and substituting them in
Equation (5.2), the dimensionless form of Darcy-Brinkman momentum equation can be

obtained as:

d?u 1
M——-—U+1=0 5.6
dY? Da + (56)
The dimensionless darcy-brinkman equation can be rewritten in the following

form:

d?U 1
—S2U4— = 5.7
7~ S+, =0 5.7

where the coefficient S is called as porous media shaping factor and it is defined as:

S= : (5.8)

The dimensionless form of the boundary conditions for the problem can also be

expressed in the following form.

ou =0 ux1)=0 5.9
a7l =0 vEn= (5.9)

The solution of dimensionless form of the Darcy-Brinkman momentum equation

(5.7) with the given boundary conditions (5.9) can be found analytically.

cosh (5Y)

U(Y) = Da [1 oo &5 (5.10)
The definition of dimensionless mean velocity is:
1 1
Uy, = 2 f uy)dy (5.11)

-1
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The mean dimensionless velocity U,, can be found by using Equations (5.10)

and (5.11) and is given by

(5.12)

3 tan}; (S)]

Um=Da[1

Furthermore, the dimensionless velocity profile can be normalized by the

following relation,

(5.13)

Based on the obtained dimensionless velocity given by Equation (5.10), the

dimensionless normalized velocity can be obtained.

.S cosh(S) — S cosh(SY) 514
Y=-3 cosh(S) — sinh(S) 61

5.3. Heat Flow Analysis

For a thermally and hydrodynamically fully developed laminar flow in a parallel

plate channel, the heat transfer equation can be written as:

oT 92T
(pCp fUa = keffa_yz (515)

Introducing two new variables as the average wall heat flux, q",,, and the average

wall temperature, 7),,, and defining the dimensionless temperature,

Twl+Twu q"l+q"u T_Twu
=, "= _, 0 = .
wu 2 qu 2 Tm_Tw,u (5 16)

and applying the energy balance for a differential volume in the duct yields Equation

(5.17) for the mean temperature gradient.
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ATy, _ dT,,
dx — dx

(5.17)

Based on the relations expressed in Equation (5.16) on the average heat flux at
boundaries and average temperature at boundaries, the overall Nusselt number can be

defined as follows.

2Hqg"
Nu = 4 u
keff (Twu - Tm)

(5.18)

Therefore, instead of two individual Nusselt numbers for the first and second

plates, a unit Nusselt number can be defined.
The dimensionless form of the heat transfer equation can be found by
substituting the dimensionless parameters defined by Equations (5.5) and (5.16) into

Equation (5.15) and is given by

720 1

2 L ANy = 5.19

EVE + > tuNu =0 ( )
The related boundary conditions for the model problem shown in Figure 5.1 can

be written as

o) =-, O6(-1)=p (5.20)
where
_ Twi — Twu
B = —Z(Tm — TW#) (5.21)

The solution of dimensionless heat transfer equation (5.19) under the boundary

conditions (5.20) gives an equation for temperature distribution in the channel.

0(Y) = —BY + (1-Y?)+

Nu-A <cosh ) (5.22)

cosh(SY) — cosh (S)
2 2 )

52
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S
A=
S cosh(S) — sinh (S)

(5.23)

As can be seen from Equation (5.22), the dimensionless temperature distribution
in Y direction is function of overall Nusselt number, shaping factor and f . According to
Equation (5.21), the value of § depends on the surface and mean temperatures which are
not known. In order to find another expression for fin terms of heat fluxes, the

following manipulations can be done. Heat fluxes at the walls can be stated as follows:

6_T| kg (T — Twy) 96
11 L H avl,__,
(5.24)
0_T| _keps (T — Twy) 96
Tu Iy, H avly,_,

The derivative of dimensionless temperature at ¥ = -/ and / can be calculated
from the obtained dimensionless temperature equation (5.22). The ratio of equations in

(5.24) yields a new definition forfin terms of heat flux ratio;

Nu(1+q,)
=— 5.25
2 (1 - qr) ( )
Now, the compatibility condition
1
J pady = 2 (5.26)
-1

can be used to obtain an expression for the overall Nusselt number. The overall Nusselt
number can be obtained by substituting Equations (5.14) and (5.22) into Equation (5.26)

and integration of the expression yields an expression for the overall Nusselt number;

24 S [S cosh(S) — sinh (5)]?

= : (5.27)
15sinh(2S) + (4 $3 — 24 S)cosh?(S)—6 S

Nu
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As it was mentioned before, it is possible to obtain the individual Nusselt
numbers by using the overall Nusselt number expression. The individual Nusselt

numbers for the lower and upper plates are defined as:

N ZHq"l

Uy =———7"=

: keff(Twl - Tm) (5 28)
2anu *

Nu,,

- keff(Twu - Tm)

The conservation of energy can be applied onto each wall and the following

expressions can be obtained:

ey (Tm = Tw) 99
h(Tm - Twl) = H W ye1 (5.20)
Kopr (T — Topp) 06 '
h(Tm — Twu) = eff( 7;[ Wﬂ)ﬁ yet

After determination of dimensionless temperature gradient at the walls by using
Equation (5.22) and performing some mathematical manipulations, the individual

Nusselt numbers can be determined from Equations (5.29).

N 4 Nu
U, =
Nu+2)+ Nu-2
( )+ ( )/qr (5.30)
—4 Nu
Nu,

“(Nu+2)+ (Nu-—-2)q,

The overall Nusselt number can be calculated by Equation (5.27) for a given
porous channel, and by substituting of Nu and heat flux ratio into Equations (5.30), the
individual Nusselt numbers can be found. Figure 5.2 shows the sign of Nusselt number
according to the direction of heat flux between walls and fluid. For instance, the
positive value of lower plate Nusselt number indicates heat transfer from wall to the
porous media, while negative value of Nusselt number at lower plate refers to heat

transfer from fluid to the lower plate.
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Nuu>OT ‘ Ny, <0

Nul>OT lNul<O

Figure 5.2. Signs of the individual Nusselt numbers

The denominators of Equations (5.30) take zero value for the specific values of

heat flux ratio

2—Nu 2+ Nu

Arier = 37 Nu' Arucr =5 _Nu (53D

whereq,; ., and ¢, represent the critical heat flux ratios for lower and upper plates,
respectively. Singularities in individual Nusselt numbers exist at critical heat flux ratios.
The values of the lower and upper plate Nusselt numbers approach to infinity and heat
transfer at the lower or upper plates changes direction at ¢,;., and ¢, .~ The results will

be discussed in Chapter 9.
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CHAPTER 6

FULLY DEVELOPED HEAT AND FLUID FLOW IN A
PARTIALLY POROUS CHANNEL:
SYMMETRIC HEAT FLUX BOUNDARY CONDITIONS

6.1. Problem Definition

In this case; a partially porous channel with width of 2H is heated from both
walls. The heat fluxes at both walls are equal to each other. Porous material is located
symmetrically as shown in Figure 6.1.Velocity and temperature distributions of flows
with various Darcy numbers are analyzed. The Nusselt number variation with Da and

heat flux ratio is also investigated.

l l lq" y=H
L.

y=-H

T T Tq"

Figure 6.1. The schematic view of the channel which is wanted to be investigated

As seen in the figure, another variable, ¢, is introduced which have values
between zero and one. When, ¢ is equal to one, the channel becomes fully porous.

Likewise, when it is zero, the channel is filled with fully clear.
6.2. Fluid Flow Analysis

For upper and lower clear regions, momentum equation can be written as

follows.
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ou ou 19P 0%°u  0%u
= 6.1)

ua+v@— —Ea-}‘v W+€)_}12

The flow in the channel is hydrodynamically fully developed and it is
unidirectional in x direction. Hence, the left hand side of Equation (6.1) becomes zero.
The gradient of u velocity in the direction of x is much greater than it is in the direction
of y. Then, the momentum equation for the clear parts of the channel can be written as

follows.

R 10P
ylUe 290 _ g (6.2)
dy? pox

The subscript, ¢, stands for “clear fluid part of channel” and indicates the flow is
in clear region.
Porous part of the channel can be analyzed by using Brinkman-extended Darcy

equation as written below.

d*u, pu dP
Herf vz "% =~ ax
y K dx

(6.3)
The subscript, p, stands for the word “porous” and it indicates the flow is in

porous region. Boundary conditions for the problem can be written as follows.

2
Tl 0, w(tH)=0
ay 1, (6.4)

Uc(£$H) = up(£8H),  1c(£EH) = 1p(£$H)

To reduce the number of the variables of the governing equations and simplify

the solution, the following dimensionless parameters are used.

y Mefr dapP K
Y:—’ M:—, = -—, D = —
H u ox = e
(6.5)
_uu 1 g = T-T,
GH?’ - VMDa Ton — Ty
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After applying the boundary conditions stated in Equation (6.5), into the
governing equations (Equation (6.2) and Equation (6.3)), dimensionless forms of the
momentum equations for clear regions and for the porous region can be derived,

respectively, as follows.

e +1=0 (6.6)
drz '
d*U, 1
— — = 6.7
vz S Up+3,=0 (6.7)

Dimensionless forms of boundary conditions (Equation (6.4)) can also be
derived by using the dimensionless parameters stated in Equation (6.5) and they can be

obtained as in Equation (6.8).

Uy =0 U.(+1) =0
Y ly—g ()= (6.8)

Uc(£8) = Up(£8),  7c(£8) = 1p(XS)

Applying the dimensionless boundary conditions (Equation 6.8) to the
dimensionless governing equations (Equations (6.6) and (6.7)), the following solutions
for the three regions are obtained.

For the upper clear region that is shown with blue color in Figure 6.2, the
velocity profile can be obtained as in Equation (6.9), whereas it can be written as (6.10)
and (6.11) for lower clear region (Figure 6.3) and the porous region (Figure 6.4),
respectively.

The equation for the velocity profile for upper region is:

Figure 6.2. Upper clear region of the channel

UY) =AY? + A,Y + A (6.9)
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1

A1=_§
2 & +2r-1
27 2@ -1
_E-gr-2v
B=5E-D

The equation for the velocity profile for lower region is:

Figure 6.3. Lower clear part of the channel

U(Y) = A1Y2 +A4Y +A3 (6.10)
1-&2-2v
Ag=——"
EIGEEY

The equation for the velocity profile for the porous region can be expressed as:

Figure 6.4. Porous part of the channel

U(Y) = P;cosh (SY) + P, (6.11)
(VS?M — 1)sech (S5¢§)
17 MS?
P = 1
27 Ms?

V is the dimensionless velocity at the porous — clear region interfaces and can be

calculated as follows.

55



_ (2tanh(5¢§) — SE + S)(E — 1)

= 25[(¢ — 1) MStanh(S¢) — 1] (6.12)

The mean velocity is defined as Equation (6.13), and can be calculated by

Equation (6.14).

1

1
U, = E_fl U(Y)dy (6.13)

Up = % (1-¢8+ % (E2-1+4:0-8+ %sinh(SE) +PE  (6.14)

Finally, the dimensionless normalized velocity must be introduced. It is defined

as the ratio of fluid velocity at any point and the mean velocity. The analysis of this
study is based on the dimensionless normalized velocity because of two reasons. First, it
eases to demonstrate the velocity profiles of porous media with different Darcy
numbers. Low Darcy number means the porous material has a large contribution in the
channel and permits less fluid to flow. Then, its velocity is much lower than the fluid
flowing in high-Darcy number media. The second reason is about the energy equation.
As it is explained in the next section, the normalized velocity has a significant role in

the analysis to find the temperature field.

(6.15)

6.3. Heat Flow Analysis

Energy balance for a flow in a channel shown in Figure 6.1 can be written as
follows:

T oT 9°T  9°T
) (6.16)

d
(pCp)f (LLa-}- U@) = (A(keff — k) + k) (W+W

wherek is the conductivity of the fluid, k. is the effective conductivity of the porous

structures and the fluid, and A is defined below.
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-1<Y<-¢ => A1=0
—E<Y<¢ => =1 (6.17)
&<y <1 = A1=0

The velocity component in y-direction is accepted to be zero, for fully developed
flow. Furthermore, the temperature gradient in y-direction is much greater than it is in

x-direction. Therefore, the energy equation becomes into the form written below.
oT 9°T
—= - — 6.18
(0Cp) g = (Akers —k) +k) 3y (6.18)

Energy equation can be written in dimensionless form by using the
dimensionless parameters defined in Equation (6.5). Since the heat fluxes applied to
both walls are held constant and equal to each other and the porous region is located
into the channel symmetrically, the wall temperatures are equal to each other and it is
designated as T,,. It must be stated that the wall temperature is not a constant; it is a
function of x.

After further manipulations, the energy equation turns into the form as shown in

Equation (6.19).

aT,, aT, 96 aT,
(o) u 0 (G2~ F2) + T = Tu) 5 + 5
(6.19)

2

a-0

As stated above, the applied heat fluxes at both walls are held constant.

Therefore, the x-gradient of the heat fluxes are zero.

dq" _ d[h(T,, — T,;)] _ 0 - aT,, _ aT,,
dx dx B T 9x  ox

(6.20)

Applying the condition stated in Equation (6.20), and using the thermally fully

developed condition (06/0x=0), the energy equation takes the form as follows.
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026
dy?

To find a definition for the mean temperature gradient in x-direction, an energy

a
(pCy) ;5™ = (Akegy — k) + ) (T~ T,) 621)

balance must be applied for a control volume shown in Figure 6.7.

Figure 6.5. Total energy of the fluid is conserved. h=C,T,, is specific enthalpy and [|=2Hpu,, is the mass flow rate of
the fluid

0(2Hpup CyTpy) »
Ox

2Hpuy CpTy + 2q"dx = 2Hpuy, C, Ty, +

Applying the energy balance shown in Figure 6.5, the following condition is

obtained.

dlym,  q"
dx pCrumH

(6.22)

Inserting the Equation (6.22) into Equation (6.21), the following equation is

obtained.

u qn 2

0“6

— 6.23
uy, H dy? ( )

The applied heat fluxes at the walls will be convected to the fluid and will be

equal to convective heat flux that is expressed as in Equation (6.24).

q" = h(T,, — Ty) (6.24)
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Inserting Equations (6.15) and (6.24) into Equation (6.23) and applying the
dimensionless parameters stated in Eq, (6.5), the energy equation turns into the form
stated below.

026 P hH ~o
V2" “(Akers — k) + k)

(6.25)

The dimensionless temperature gradient at the surface, the Nusselt number, is
defined as in Equation (6.26), and the final form of the dimensionless energy equation

can be obtained by using this relation in Equation (6.25).

h2H

Nu = ——
kg

(6.26)

0% 1.
ayz 2%

u(/l(kr DD =0 (6.27)

wherek, is the ratio of the effective conductivity of porous medium and the fluid, and

the conductivity of the fluid, and shown in Equation (6.28).

k, = Kets (6.28)

In another words, the energy equations for the porous and clear regions can be

written as follows, respectively.

(6.29)

Assuming the interface temperatures and conduction heat fluxes to be equal
between the porous and clear media, the boundary conditions can be written as in
Equation (6.30).

T.(+H) =T,
(6.30)
Te(x$H) = Ty (£$H)
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dT, B aT,
dy y=tHE
Using the dimensionless parameters stated in Equations (6.5) and (6.28), the

following dimensionless forms of the boundary conditions are obtained.
0:.(£1) =0

0. (£8) = 0,(£8) (6.31)

do, do,

dy Y=1%& g Y=1¢

After solving the energy equation (6.29) by using boundary conditions (6.31),
the following results are obtained.
In upper clear region, the dimensionless temperature profile is obtained as

follows,

9 = Cl + Czy + C3Y2 + C4Y3 + CSY4

(6.32)
_ 24Un0; + Nug(§ — D[2(4,(§ + 1) +3435) + A, (1 + ¢ +&2)]
' 24U (1~ )
_ 24UmB; + Nu[645(8% — 1) + 24,(&% — 1) + A, (§* — 1)]
2 24U, (& — 1)
c AzNu _ A;Nu _ AiNu
374U, *T 120, * 724U,

In lower clear region, dimensionless temperature distribution is as written in
Equation (6.33).
6 = C6 + C7Y + C3Y2 + C8Y3 + C5Y4 (6.33)

. = Z24Umbi + Nu$[A; (1= §3) = 643(5 — 1) + 24,(§% — 1)

6 24U (§— 1)
. = 24U,,0; + Nu[A1(<$4 -1) - 2A4(€3 -1+ 6,413(62 —-1)]
T 24U,(1-9)
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AyNu
Cg = —
12U,

For porous region, the results are shown below.

6= Cg + Cloyz + C11COSh (SY) (6.34)

452k Up6; + Nu[S?P,&% + 2P;cosh (5§)]

o7 4852k, U,,
Cor o Nu P,
07 4k,U,
Coo e Nu P,
1m0 2k,.U,,S?

In temperature profiles for all regions, there is a term, 6, that designates the
dimensionless interface temperature of porous and clear media and it can be calculated
by the Equation (6.35). This equation was found by using the equal conductive heat
transfer condition at the porous-clear media interfaces, as stated in Equation (6.31).

After equating the heat fluxes, 6; can be obtained.

6, = YNu (6.35)

Y =Z3:¢k
k=1

_ (€= DI[P,S — Pisinh (59)]

1 4U,,S
_6A;(1 -8 +24,(1- &)+ A, (1-¢Y)
Y2 = 24U,
_@a-=% 487 A8
Y3 = 20, Az + 5 + 3

To find the Nusselt number, the compatibility condition (Equation 6.36) must be
applied.
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1
f 9ady = 2 (6.36)
21

The derivation of the compatibility condition is explained in detail in Appendix
A. After applying the compatibility condition; the following equation is obtained for

Nusselt number:

20,

Nu=—m"
ZIi:lNk

(6.37)

YA -8V + (¢ —D?

N, =
12
No = (1—8)3[448V2 + 168V (§ —1)? + 17(8§ — 1)*]
2T 20160U,,

N = sech?(S&)E[[£2 — 3MV(MS?V — 4)1S% — 9 + 6k, MyPS*Uy,|

3 6k, M256U,,
_ sech?(S¢)cosh (258)&%[S?[6M (ke )S?Up, + V) + £%] — 6]
4 3k, M2S5U,,
_ sech?(S&)sinh (2S8)E(MS2V — 1)(MS2V — 5 + 4k, MpS*Uy,)
5 2k, M2S°U,,

6.4. Pressure Drop Calculations

To find an expression that gives information about the pressure drop along the
channel, friction factor is used. Friction factor for a channel in which fluid flows with

u, is defined as:

(6.38)

For a fully developed flow in a channel, the pressure gradient along the x-axis is
constant and this negative gradient is denoted by G, as stated in Equation (6.5). Then

the Equation (6.38) becomes as follows:
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_4GH
 pud

Using the definition of the dimensionless velocity defined in Equation (6.5), the

(6.39)

following equation is obtained for the friction factor.

4 pu

=i (6.40)

or
Re = 6.41
f E—W (6.41)

Equation (6.41) can be used for determination of pressure drop.

6.5. Analysis of Heat Transfer and Pressure Drop

As explained in Chapter 4, to determine the heat transfer enhancement of full
porous channel, the Nusselt number of the porous system must be divided by the
Nusselt number of a flow in a clear channel, and the result is called heat transfer

increment ratio.

Nu
Eth =
Nu,

(6.42)

Thermal efficiency is equal to 1 for a clear channel. Heat transfer enhancement
is expected for the channel withe;,> 1. The use of porous media will decrease heat
transfer through a clear channel ife;,< 1.

Similar definitions are valid for friction coefficient. The friction coefficient can

be normalized by using friction coefficient of a clear channel.

_ fRe
= Re).

(6.43)
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gy 1s called the pressure drop increment ratio in this thesis and for the values
of gygreater than /, the increase of pressure drop in the channel is expected, while for
g,< 1, the use of porous layer decreases the pressure drop in the channel. The value of
friction coefficient (f Re). is determined as 24.

The ratio of ¢, and &4is shown by ¢, and called the overall performance.

&
g=— (6.44)

&p

For the values of & greater than /, heat transfer enhancement is greater than the
increase of pressure drop if a porous layer is used at the core of the channel. However,
for the values of &£ less than /, the increase of pressure drop in the channel is greater
than heat transfer enhancement.

All the results, which are obtained in this chapter, will be discussed in Chapter 9.
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CHAPTER 7

FULLY DEVELOPED HEAT AND FLUID FLOW IN AN
ASYMMETRIC PARTIALLY POROUS CHANNEL:
SYMMETRIC CONSTANT HEAT FLUX BOUNDARY
CONDITIONS

7.1. Problem Definition

In this case; a partially porous channel with width of 2H is heated from both
walls. The heat fluxes at both walls are equal to each other as in the case explained in
Chapter 6. However, porous material is located asymmetrically as shown in Figure 7.1.
The velocity and temperature distributions of flows with various Darcy numbers are

analyzed. The Nusselt number variation with Da and heat flux ratio is also investigated.

1!IIIIII!ITII I|I 'y r lr‘l rr|I IIII]I
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SNy 'Ilillllrl
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Figure 7.1. The schematic view of the channel which is wanted to be investigated (&;# &,)

As seen in the figure, two new variables, &; and &, are introduced and they can
have values between zero and one. Their values are different from each other. The

arrangement of the channel structure can be made by playing with these two variables.
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7.2. First Approach: Brinkman-Extended Darcy Law

7.2.1. Fluid Flow Analysis

For upper and lower clear regions, the momentum equation can be written as

follows.

ou, 7.1
'Max v ( )

Bu du  1apP %u  du
gy g dx k

—_——— — +_.-|
dxs  @y-

The flow in the channel is hydrodynamically fully developed and it is
unidirectional in x-direction. Hence, the left hand side of Equation (7.1) becomes zero.
The gradient of u velocity in the direction of x is much greater than it is in the direction
of y. Then, the momentum equation for the clear parts of the channel can be written as

follows.

oue 198 _, (7.2)
dys  pdx

¥

The subscript, ¢, stands for “clear” and indicates the flow is in clear region. The
porous part of the channel can be analysed hydrodynamically by using Brinkman-

extended Darcy equation as written below.

dluy, p P
Iu'aff I'i_],": - E‘l,[,p = E (73)

The subscript, p, stands for the word “porous” and it indicates the flow is in
porous region. Boundary conditions for the problem can be written as follows. In these
equations; the subscripts cu and ¢/ stand for the upper and lower clear regions,

respectively.
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Uey(H) =0,  ug(-H)=0
U H(E; — 1)] = Uy |H(&; — 1)1
Uy [H(L — &1)] = up [H(1 — £)] (7.4)
T [H (& —1)] =1, [H(E; — 1))
T H(1 - &) = Ta H(1- &)l

To reduce the number of the variables of the governing equations and simplify

the solution, the following dimensionless parameters are used.

7 H ar
}r=ij M=E_ﬁj G=——,
H 7 dx (1.5)
Da=—~ gt g1 .
a=——, = = =
H< GH* M Da

After applying the non-dimensional parameters stated in Equation (7.5), into the
governing equations (7.2 and 7.3), the dimensionless forms of the momentum equations

for clear regions and for the porous region can be derived, respectively, as follows.

a2l
£ = (7.6)
e +1=0
dl 1
P_ 2 ~ _ (7.7)
172 Sﬂ?’-l_M 0

In Equation (7.7), S represents the porous media shape parameter and it is
formulized as in Equation (7.5). Dimensionless forms of boundary conditions (Equation
7.4) can also be derived by using the dimensionless parameters stated in Equation (7.5)

and they can be obtained as in Equation (7.8).

., (1)=0,
Uc!(_j-} =0
Un(E2—1) =U,(& - 1) (7.8)

’Ucu(i - flj = 'U'p(-l - i:lj
T (G- =1"(&—1)
Tcu$(1 = 'fl} = T‘ps(i - 'flj

67



Figure 7.2. The schematic view of the dimensionless channel wanted to be investigated (&;# &)

Applying the dimensionless boundary conditions (Equation 7.8) to the

dimensionless governing equations (Equations 7.6 and 7.7), the following velocity

profiles of three regions shown in Figures (7.3), (7.4), and (7.5) are obtained and shown

in Equations (7.9), (7.10), and (7.11), respectively.

For upper clear region:

Figure 7.3. Upper clear region of the channel

(A -V)R2U, + &V + & — 1))

P 2%,
or
el )

For lower clear region:

(7.9)
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Figure 7.4. Lower clear part of the channel

(1+Y) 20, + & (8, -V —1)]

UEE(Y): Efz
or
1 u u -1
U.,;(Y}=_§FZ+({—;—1 +%)F+({—;+{22 ) (7.10)

For porous region:

Figure 7.5. Porous part of the channel

UP(Y)=P1+P235Y+.P33_SY (7.11)
where
p oL
1~ M52

—SiEg—1d 1 _ 2 — pSE -1 2
P, = e (1 M.? u,)—e (1—M52U,) (7.12)
2M Sisinh[S(5 + & —2)]

e5Ea (1 - M52U)) — 55V (1 - MS?U,)
2M S%sinh[S(&y + &5 — 2)]

P3=
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In equations from (7.9) to (7.12), U; and U, indicate the dimensionless velocities
at porous and clear region interfaces at lower and upper parts, respectively, and

formulated as below.

& letri e ams*2)- et s, 15, —2)-(1+ MSE o+ 55,)
275 E S (MSE, —1)(MSE, —1)—-28(1+ MSE, )1+ MSE, )

U, =

& [Lerera (58— 2)MsE, —1)= (& +2)1+ MSE )+ " 524 —2ms¢.? )

U= 205G (MSE —1)(MSE, —1)—25(1+ MSE, 1+ MSE,)

u

The mean velocity in the channel can be defined as in Equation 7.13 and found

as in Equation 7.14.

1-¢;

fumay IUC,(Y)dY+ j U, (Y)dY + j U (Y)dY
U == = =4 (7.13)
m ; 5
de
) _ 0.0416667 (R +R,) (7.14)
where MS*

R, :MS3(6UM§1 +6U1§2 +§13 +§23)_12S(§1 +§2 _2)

R, =12tanh(0.55(& + &, —2))\2-MS> U, +U,))

A new variable named dimensionless normalized velocity is just the ratio of the

dimensionless velocity and the mean velocity, as shown in Equation 7.15.

Ty (7.15)
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7.2.2. Heat Flow Analysis

In the light of the first law of thermodynamics, energy equation for a flow in a

channel can be written as follows,

or oT 0°T 9°T
pCp(ug+VgJ = (A, —k)+k)( ot ayzj (7.16)

wherek is the conductivity of the fluid, k.4 is the effective conductivity of the porous

structures and the fluid, and A is defined below.

—ISY<§2—1 = A=0 (717)
£ -1<Y<I-¢ = A=1
1-¢ <r<1 = A=0

Since, v=0 in our case, neglecting the viscous dissipation term, and assuming
that the temperature gradient in y-direction is much greater than it is in x-direction, the

energy equation can be written as in Equation (7.18).

oT o°T 7.18
pCua——(/i(k k)+1<)ayz (7.18)

Introducing the dimensionless parameters defined below (Equation 7.19), into

the energy equation (Equation 7.18), Equations (7.20) and (7.21) are obtained.

vy o9 o T7Ty . _T,+T, (7.19)
H’ ox’ T,-T, ™ 2
0
pCpug[(Tm _Twﬂ)e-i_ ””] (ﬂ(k _k)+k)ay [( Tw/l)6+ wﬂ] (720)
or
or, IT,, 26 320
H - ?}(Tm -T, )ax + = = (Atk,, — b+ k)T, - ””)a RS

The applied heat fluxes at both walls are held constant. Hence, the gradient of

wall heat flux with respect to x-direction should be taken zero.
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dg" _d,(T,, -T,)) dr,, _dT,

Forupper wall => = =0 = we . Tm
dx dx dx dx
" dn!\T,-T dT dT
Forlower wall => dq = (i, (7., ”‘)):0 = —w__m
dx dx dx dx
T T T dT, T
Do Al o8l A pp gy 1@y @
dx dx dx dx dx dx
oy _dT, (7.22)

dx dx

Remembering the flow in the channel is thermally fully developed (06/0x=0),
and using the condition of Equation 7.22, our last form of energy equation (Equation

7.21) becomes into the following form.

d>e
dy’ (7.23)

IOCPM d;m = (ﬂ’(keﬂ —k)+ k)(Tm _Tvv'ﬂ)
X

To find a definition for the mean temperature gradient in x-direction, an energy

balance must be applied for a control volume shown in Figure 7.6.

Figure 7.6. Total energy of the fluid is conserved. h=CpTm is specific enthalpy and [J=2Hpum is the mass flow rate
of the fluid

ol2Hpu,C,T,) W (7.24)
ox

2Hpu,C T, +2q"dx=2Hpu,C T, +

After some manipulation, Equation 7.25 is obtained for mean temperature

gradient.

ar,, __ ¢" (7.25)
dx  pC,u,H
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Inserting the Equation 7.25 into Equation 7.23, the following equation is
obtained. . ,

BN

|

u
u,
(7.26)
The ratio of the velocity over the mean velocity is defined as dimensionless
normalized velocity and expressed in Equation 7.15. The wall heat flux will be
convected to the fluid and it will be equal to convective heat flux that is expressed as in
Equation 7.27. Inserting Equation 7.27 into Equation 7.26 and applying the
dimensionless parameters, Equation 7.19, into this equation, the energy equation takes
the following form (Equation 7.28).

q"=h(T,, ~T,) (7.27)

wi m

e . hH
+u
av®  (Ak, —k) +k)

(7.28)

The dimensionless convective heat transfer coefficient, the Nusselt number, is
defined as in Equation 7.29, and the final form of the dimensionless energy equation is

obtained as in Equation 7.30,

Nu="2H (7.29)
k
2
d f+lﬁNu;=0 (7.30)
dy? 2 (Mk, =1)+1)

wherek, is the ratio of the effective conductivity and the conductivity of the fluid, and

shown in Equation 7.31.

"k (7.31)

As in another words, the energy equation for the porous region and for the clear

regions can be written as follows.
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e + e uNu=0 in porous region (7.32)
2
ny + % iNu =0 inclearregions

Boundary conditions can be written as in Equation 7.33. It is assumed that, at the
interfaces of the clear and the porous regions, the temperatures and the conductive heat

fluxes are the same.

T,(H)=T,
(7.33)

Tcl (_H) = Twl

T, H(1-&)=T,(H1-¢)

T,(H(, -1)=T,(H(, -1)

k chu k dT[’
d T d
Y ly=n0-2) Y ly=n-g)
chl dTP
k dy =k off d_y
y=H(&,-1) y=H(&,-1)

Another dimensionless parameter is introduced in Equation 7.34 for helping to

derive the dimensionless boundary conditions stated as in Equation 7.35.

B=3 T; - Tﬂ (7.34)
0.,.)=-p
0,-D)=p
0.,101-5)=6,0-¢) (7.35)
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6., (52 -D= 9,7(52 -1

dgcu — deP
ay |y e "dy yoioe,
decl de[’
vy, "dvi_

After solving the energy equation (Equation 7.32) by using boundary conditions
(Equation 7.35), the following results are obtained.

For upper clear region, the dimensionless temperature profile is found as

follows,
0=CU,+CU,Y +CUY* +CU,Y’ +CUY"* (7.36)
where
CU. = 43 HuUm + (51 B l)lNulé (51 + 512 _1)_ 4Uu (51 B I)J_ 4818UmJ
: 48U, &
3
oy _—480,U, 488U, + Nulau, (& =3)& ~1)- & -6 + &
2 48U, 01 (7.37)
CU3 — Nu[Uu (451 - 6)_ 361 (51 - 1)]
24U &,
CU, = Nu[zUu + 51 (51 - 2)]
24U, &,
cU. = Nu
48U,

For lower clear region, dimensionless temperature distribution is as written in

Equation 7.38,

@=CL, +CL,Y +CL,Y* +CL,Y" + CL.Y"* (7.38)

Where
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_ 480,16, + B(&, ~ 1]+ Nult, + (8, -2)," +4U, (8, - 1)

CL
! 48U, &,

— 48Um (91 - ,5)+ Nul4Ul (622 - 3)+ 52 (fz B 2)(?22 B 2)J
43U, &,

CL,

(7.39)

_ N”[§2(3_2§2)_6U1]
24U, &,

_N”[zUz +§2(§2 _2)]
24U, &,

CL,

CL, =

_ Nu
48U

5

For the porous region; the results for the dimensionless temperature are shown
below.

2 sy —sy (7.40)
oY)=J,+J,Y+J.Y +J,e" +Jse
Ji=d, +
where
P
Jio = 2 AP _ [(fz _1)(PzeS(l_§l) + Pse_S(l_él))"‘ (fl _1)(Pze_8(l_§2) + P3eS(1_§2))]
N (§1+§2 2)
(7.41)
_ NMP1P4 (f —1)(6 _1)+ eu(fz _1)+01(§1 _1)
vt e §+E -2
Jy=Jy, +Jy

where

NuP

J = 4 P es(iz—l) +eS(l—§l) +P eS(l—éfz) +eS(§1—1)
e )2 )1
NMP1P4 0[ _014
=— A (E &)+ L
2b 2 (62 fl) fl + 52 _ 2
7 = NuP, P, J _ NuP, P, Z—NMP23P4
T s °
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1
2% .U,

P 4
The dimensionless temperatures at the lower and upper interfaces are:

9 = §ZlkrWM 51 +l//l(§1 +§2 _kr§1 _2)J

’ 2+ (k, —1)(¢ +&,) (742
9 — fllkrl//z 52 +Wu(§1 +§2 _kr§2 _2)J

' 2+ (k, —1)& +¢,)

¥, and ¥, are two constants which can be calculated as follows.

vV, =y, tV¥, (7.43)

l//u = l//ua + l//ub
where

l/jla = 2kr‘]3 (52 - 1) + Ser4eS(§2_l) - SerSe_S(fz_l) - 2CL3 (62 - 1) - 3C‘l‘4 (62 - 1)2

PP,

Vi :kr(JZa + Nu (fz _§1 )j _4CL5 (fz _1)3 - CLzR

Voo =2k, 0,(1= &)+ Sk [7,e509) — g 09 |- 20U, (1- &) -3¢0, (1- £ )

PP
l//ub :kr(JZa + NMIT4(§2 _é:l )j_4CU5 (1_51 )3 _CUZR

CU.. = - 48,6Um + Nul4Uu (51 B 3)(4:1 B 1) - fl (4 B 651 + 4:13 )J
B 48U, &,

o _—48BU, + Nulau, (£7 -3)+ &, -2)E7 -2)
* 48U, ¢,

Pj, P,, P3, U;, and U,were written in Equation 7.12.
To find the Nusselt number, the compatibility condition (Equation 7.44) must be
applied.

1
j@ﬁdY _9 (7.44)
1

The derivation of the compatibility condition is explained in Appendix A.
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7.3. Second Approach: Darcy Law

Since the analytical solution of the Nusselt number from the Equation 7.44 is too
long and too complex, one extra assumption was made to simplify the governing
equations without losing significant amount of accuracy. As known, for low Darcy
numbers, Darcy Law can be applied to the porous region, instead of the Brinkman-

Extended Darcy Law. With this approach, the shear stress effects are neglected.

7.3.1. Fluid Flow Analysis

In this case, the momentum equations in clear regions are as the same as in the
section 7.2. However, the Brinkman-Extended Darcy Law will not be used in this case.
The Darcy Law shown in the Equation 7.45 is used for the porous region.

ap (7.45)

o _dp
K dx
The non-dimensional parameters written in Equation 7.5 are used and the Equation 7.46

is obtained as the fluid flow equation for the porous region.

U(Y)=Da (7.46)

As a summary, the dimensionless governing equations for fluid flow, and the

related dimensionless boundary conditions are stated below.

2
dY({ +1=0 => For clear regions
UY)=Da => For porous region
(7.47)
umn=0
U-1)=0
4UL v - Da)
dY Y=1-¢
_4au = YU — Da) where y= M
dy |y_c Da
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The last equation in Eqs 7.47 is dimensionless form of Beaver-Joseph boundary
condition and it is compatible to the equal shear stress approximation with low Darcy
numbers.

After solving the governing equations with boundary conditions (both are stated
in Equation 7.47) the following velocity profiles are obtained.

For upper clear region:

(7.48)
. U,Y)=A+AY+AY>
For porous region:
(7.49)
U,(Y)=Da
For lower clear region:
U,Y)=B,+BY+BY’ (7.50)
where:
A = 2ﬂ)a_1+§1[2+ 7(51 _1)]
1
2(y +1)
A :2—271)0—51[2"'7(51_2)] (7.51)
2
2(6,+1)
1
A3 = —5

B = 274)‘1_1"'4:2[2"' 7(52 _1)]
1 2(5, +1)

B = Z}Da_2+§2[2+ 7(4:2 _2)]
2 205, +1)

As in Section 7.2, the mean velocity can be defined as Equation 7.13 and found

as in Equation 7.52.

1 &1 1-¢; 1
Juayay [,y + [u,war + U, dy (7.13)
U =2 = a7l e
m 1
J' dy
S|

2
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U,=R,+R, +R,

where (7.52)
R :§12[67Da+§1(4+7§1)]

' 24(1+ %)
R 24:22[671)a+§2(4+7§2)]

’ 24(1+¢,)

Rp :%Da(z_é _52)

7.3.2. Heat Flow Analysis

Same procedures as in Section 7.2.2 are performed to obtain the following

dimensionless energy equations and the boundary conditions for all regions.

e +2_kruNu =0 in porous region (7.32)
2
ny +%ﬁNu =0 in clear regions
0.,1)==p4
HC/ (_1) = ﬁ
(7.35)

ch(l_é):ep(l_fl)

6, (fz -D= ep (é:z -1

decu _ dep
dY Y=l-¢ ' dY Y=1-¢
decl _ dep
v, ., dr|,_,

After solving the dimensionless energy equation, Equation 7.32, by using the

dimensionless boundary conditions, Equation 7.35, the following dimensionless
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temperature profiles are obtained for the upper clear region, Equation 7.53, the porous

region, Equation 7.54, and the lower clear region, Equation 7.55, respectively.

6,=CU +CU,Y+CUY’+CU,Y’+CUY" (7.53)
where
CU. = 246uUm — 2413Um (fl — 1)+ N”fl (é:l — 1)[6A1 — 2A2 (51 — 2)+ A, [3 + é:l (51 — 3)]]
‘ 24U &,
CU. = — 24Um (IB+ 9u )+ Nué [_ 6A1 (51 — 2)+ 2A2 [3 + 51 (51 — 3)] — A3 (51 — 2)[2 + 51 (51 — 2)]]
’ 24Um§l
cu, = AN
4U ,
cU, - A,Nu
12U,
U, =- A;Nu
24U,
6, =CP, +CP,Y +CP,Y’ (7.54)

where

CP = 4krUm [0/ (51 _1)+ 9,4 (52 _1)]+ Da Nu (51 _1)(52 _1)(51 + 52 B 2)
l 4krUm (fl + fz - 2)

CP, = 4k’U’”[61 _eu]_DaNu(é:l _é:z)(é:l +6, _2)
2 WU, (E+&-2)

_DaNu
4k U

r m

CP, =
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0,=CL +CLY+CLY>+CLY’ +CLY" (7.55)
where

— 2491Um + 24:8Um (52 _1)+ N”fz (52 _1)[631 + 2Bz (52 - 2)+ B3 [3+ 52 (52 _3)]]

L 24U, &,
Cl2 — 24Um(13_01)_N”§2[6Bl (é:z _2)+232[3+‘§2(§2 _3)]+B3(§2 _2)[2"'4:2(‘52 _2)]]
=24U ¢,
CL, = B,Nu
4U ,
_B,Nu
Yo1ou,
CL. =— B,Nu
To24U,

Dimensionless temperatures at the upper and lower interfaces of the porous —
clear media can be calculated by the formulas stated below in Equations 7.56 and 7.57,

respectively.

0,4 :WUUB"‘WuzNu (7:56)

where

v, = fl"'fz _2+kr(é:1 _fz)
v 2_§l_§2+kr(§l+§2)

WUZ = l//u2a + l//u2b + WMZC

W — 512[6(141 +A2 +A3)_4§1 (Az +2A3)+3A3§12k2_§1 +kr§2 _52)
v 24Um[2_5l_52+kr(él+52)]

_ flfzz [6kr (Bl — Bz + B3 )+ 4krfz (Bz — 233 )+ 3krfzzB3]
Vo 24Um [2 - 51 - 52 + kr (51 + 52 )]

v, = 6Dad, (2_51 +2k,6, -6, )(2_51 _52)
. 24U, 2~ & &+, (& + &)
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0, =y,B+y,,Nu (7.57)

where

— fl +§2 _2+kr(é:l _é:z)
2_51 _52 +kr(§l +§2)

l//LZ = I/IIZa +l/112h +l/1120 +W12d +l/1126

Yu

87 [0, + A4, + A)-48 (4, +24,)+ 34,8
- 24U, [2+ (k, —1)¢, +(k, —1)&,]

— §22[6(Bl _BZ +B3)[2+(kr _l)fl]]
224U 24 (k, —1)E + (k, —1)&, ]

2a

_ —2&,°[3B, - 7B, +11B, —2&,(B, —2B,)(kr —1)]
Viee = 24U, [2+ (k, =1)& + (k, —1),]

_=&'[4B, + B,(-14+3¢& -3k &£ )+ 3B,E, |

Vina = 24U [2+ (k, —1)& +(k, — 1)§2]
_ =& l6Da2-& +2k,& - &) +£, - 2)]
e 24U, [2+ (k, = 1)¢, +(k, =1)&,]

At this point, the term £, defined in Equation 7.34, can be redefined in terms of
Nusselt number. To do this, the heat fluxes at the walls which are constants and equal to
each other, are used. Firstly, the dimensional forms of the heat fluxes are written. Then,
they are turned into non-dimensional forms by using the parameters shown in Equation
7.5. Finally, taking the first derivative of the dimensionless temperatures of the upper
and the lower clear regions, and equating two heat fluxes, f can be formulated as in

Equation 7.58.

B=v,Nu (7.58)
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V0.6, VL6
Vi _1)51 - (l//Ul +1)§2

sz(

_ 82864, + A, +4) 26 (4, +24,)+ AE1]
24Um [(l//u - 1)51 - (l//Ul + 1)52]

B2

—_ 51622 [631 +2B, (52 — 3)+ B, [6 + 52 (52 — 4)]]
24Um [(‘//u _1)51 - (l//w + 1)52]

Vs

After forming £ in terms of Nu, the compatibility condition stated below is used

to find an expression for overall Nusselt number.

! (7.44)

The detailed derivation of the compatibility condition is explained in Appendix

A. Using the compatibility condition, the analytical expression of the Nusselt number

can be written as follows.

22U (7.59)

where k=1

1
J, = é:l(Al +A, +A3)[‘//B(’//U1 _1)+l//U2]

2
1
J, :_6512(142 +2A3)[WB(2‘//U1 _1)+2‘//U2]
1 .3 (4 +A +A)
J3:£§1 +2A3[‘/’B(3WU1_1)+3WU2]

m
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(A, +A, +A,)A, +24,)
U

m

1
J, :_5514

_ 1 &7 [9A A + (A, +5A,)4A, +54,)]
360U, U

5
m

1 6A3(A2+2A3)+ 1 ACE

Jo=——
° 7251 U, 224 U,

— D‘l(2 - 51 — 52 )[12kr (WLz ) (l//u +¥u )+ Vs )Um + Da(él + 52 B 2)2]

J7
24k U,

1
Jy :E‘fz(Bl -B, +B3)[l//B TV ‘H//Lz]

1
Jy 26622(32 - 233 )[l//B + ZV/BV/Ll + ZV/Lz]

1 B —B,+B.)
J10:ﬂ§23 ( 1 . 3) +2B3(WB+3WBWL1+3WL2)
:L§4(BI—BZ+B3)(BZ—2B3)
0472 U

m

1 5
Jp, = %%[(32 - 5B, )(4Bz - 5B, )+9BlB3]

(32_233)+ 1 B32§27
U, 224 U,

1 B
Jis :5526 :

Finally, the individual Nusselt numbers at the lower and upper walls are needed
to be investigated. To do this, the heat fluxes at both walls are used. The walls are
assumed to be so thin that the conduction resistance can be neglected. Hence, the wall
heat fluxes directly convected to the fluid and the following equations for the upper and

lower walls can be written.

dT
qu"__k_ :h(Twu _Tm)
&, (7.60)
dT
ql":_k_ :h(Twl_Tm)
dy —n
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The dimensionless parameters, defined in Equation 7.19, are used to continue

our analysis of individual Nusselt numbers. Let’s go on with upper wall first.

kg ) 1) = 48] MHE-T.)_h2H(T,-T,)
H dvl,., avl,,  k(r,-1,) 2, -1,)
T —TW“ _Tﬂ_k&_&
de 1 N (Tm - Twu) 1 Nu " 2 2 2 2
I = u = —
day yot 2 Mm 2 ! (Tm _th)
a6l 1
— ==Nuy,ll+
dY .- 2 uu( ﬁ)

After further manipulations, the dimensionless temperature gradient at the lower

and upper wall can be written as in Equation 7.61 and Equation 7.62.

N = 2(CU, +2CU, +3CU, +4CU.) (7.61)
' (1+5)
N, = 2(CL, —-2CL, +3CL, —4CLy) (7.62)
(1-5)

7.4. Pressure Drop Calculations

To take the pressure drop into consideration, friction factor is used. Friction

factor for a channel in which fluid flows with a mean velocity of u,, is defined as:

e
%pu%

(7.63)

For a fully developed flow in a channel, the pressure gradient along the x-axis is
constant and this negative gradient is denoted by G, as stated in Equation (7.5). Then

the Equation (7.63) becomes as follows:
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f= i6H (7.64)

pul,

Using the definition of the dimensionless velocity defined in Equation (7.5), the

following equation is obtained for the friction factor.

4 u
=— 7.65
f v, ouw,.H ( )
or
3]

Equation (7.66) can be used for determination of pressure drop.

7.5. Analysis of Heat Transfer and Pressure Drop

In Chapter 3, the individual Nusselt numbers of both walls are found as 4.1176
when the subjected heat fluxes are equal to each other and the channel is clear. In this
chapter, to determine the heat transfer enhancement at both walls, the individual Nusselt
numbers of both walls must be divided by the Nusselt number of a flow in a clear

channel (Nu.=4.1176). This division is called heat transfer increment ratio in this

study.
Nu,
- % 7.67
fthu = 31176 (7.67)
N,
;= - 7.68
fthl = 31176 (7.68)

Thermal efficiency is equal to / for a clear channel. Heat transfer enhancement
is expected for the channel withe;> 1. The use of porous media will decrease heat
transfer through a channel ife;,< 1.

Similar definitions are valid for friction coefficient. The friction coefficient can

be normalized by using friction coefficient of a clear channel.

= Re. (7.69)
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g, 1s called the pressure drop increment ratio in this thesis and for the values
of g,greater than /, the increase of pressure drop in the channel is expected, while for
g,< 1, the use of porous layer decreases the pressure drop in the channel. The value of
friction coefficient (f Re). is determined as 24.

The ratio of ¢, and &,is shown by ¢, and called the overall performance.

£, = E:‘*” (7.70)
-l
g = o (7.71)

For the values of € greater than /, heat transfer enhancement is greater than the
increase of pressure drop. However, for the values of & less than I, the increase of
pressure drop in the channel is greater than heat transfer enhancement.

All these results except the pressure drop analysis will be discussed in Chapter
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CHAPTER 8

HEAT AND FLUID FLOW IN A SOLAR AIR HEATER
COLLECTOR PARTIALLY FILLED WITH POROUS
MEDIA

8.1. Problem Definition

Heat transfer enhancement by using porous media approach was investigated for

a solar air heater, in this case. The physical demonstration of the system is shown in

Figure 8.1.
e 1l P
i ks i
: T
,f"‘;/ :| o
HIGH TRANSMISSIVITY MATERIAL
v"H
COLD AIR 4 2H "
CLEAR HOT AIR
q R s s s L q
0 | SOLAR RADIATION
T=To
 v=-H

ELE TSP T LI L ELFE L EETTE

Figure 8.1. Physical demonstration of the solar air heater collector, which is wanted to be investigated

The upper wall has to be made up with a high-transmissivity material to permit
the maximum amount of radiation heat transfer enter into the channel. Hence, the
porous medium absorbs all the radiation heat flux. It is assumed that all the radiation
was absorbed homogeneously by the porous structures. Bottom wall of the channel is
well-insulated. Air enters into the channel with the temperature of 7. The air flow is

assumed to be incompressible, laminar and hydrodynamically fully developed.
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Thermal-hydraulic analyses were performed to investigate the effects of using porous

media on heat flow in a solar air heater collector.

8.2. Fluid Flow Analysis

For an incompressible flow of a Newtonian fluid; the Navier-Stokes equations
are used for the hydrodynamic analyses of the fluid flow in the clear part of the channel.

The governing equations are written below.

du OJv
— —_— 8.1
d0x + dy 0 ®.1)
ou N du  10P N 0%u N 0%u 82)
Yax TV dy  pox V\axz dy? )
6v+ v 1(’)P+ 02v+62v 83)
Yax TV dy  pady V\ox2 y? '

Since the y-component of the velocity, v, is assumed to be zero, then the

following equations are obtained.

= 8.4
=0 (8.4)
0*u 0P
= 8.5
u 32 ox 0 (8.5)
oP
3y 0 (8.6)
For the porous part, the Brinkman-extended Darcy equation is used.
2
du p  dP 8.7)

hert dy2 KM ax

The no-slip condition is used as the boundary conditions at the walls and at the
clear-porous media interface; the continuous shear stresses are applied. These boundary

conditions are shown below.
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u(xH) =0
uc((€ = DH) = u,((€ — DH) (8.8)
(€ = DH) = 7,((¢ — DH)

To ease the solution by reducing the variables in the governing equations, the

following dimensionless parameters are used.

apP

=2 et g O

H u d0x
(8.9)

Da = X y =t g = 1

e ~ GH?’ VM Da

Applying the dimensionless parameters into the governing equations (8.5 and
8.7) and the boundary conditions (Equation 8.8), the following dimensionless forms of
the momentum equations and the boundary conditions are obtained.

Momentum equation for clear region:

d2

Ve 120 (8.10)

Momentum equation for porous region:

d*U, 1

— 52 —= 8.11
Tz~ S Up+ =0 (8.1D)
Boundary conditions:
Ux1)=0
U E-1D=U,¢-1) (8.12)

Tc(f -1)= Tp(f -1

The numerical solution procedure is shown in Section 8.6 and the related results

are discussed in Chapter 9.
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8.3. Heat Flow Analysis

To start the heat flow analyses of the current problem; it should be reminded that

all the radiation heat flux is absorbed homogeneously by the porous medium. Therefore,
a heat generation term can be defined as follows.

q'L = G2HLE
_ 4
0= (8.13)

Then, energy balances should be performed to each differential control volume
in clear and porous media, illustrated in Figures 8.2 and 8.3.

ar
T L (—" raov)
- ay & aw ¥
— |— ek
weh 1 b & dax
dy — ax

Figure 8.2. Energy balance for the clear fluid region

Energy balance for clear medium can be written as follows.

aT
(pCp)fquy — kf—dx

dy
2 ((pCy) utdy) or  0(—k2dx)
— f ey — Oy T
= (pCp)fquy + F dx — ks 3y dx o
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After further manipulations, the following energy equation is obtained.

or _ 0°T
Yox =4 dy?

—Fprr— d
efrf ay + By
. —_— |— dmh
#h 1 b +—— dx
—> gdxdy|——>
I_ i F

Figure 8. 3. Energy balance for the porous region

Energy balance for porous medium can be written as follows.

aT .
(pCp)fquy — kess @dx + gdxdy

X —kf—dx —

= (pCp)fquy + 3y o

ox

After further manipulations, the following energy equation is obtained.

oT 92T
(pCp fua = keffa—yz + q

0 ((pCp) utdy) ] ot 0(—ks5rdx)

(8.14)

(8.15)

Beyond the dimensionless parameters written in Equation 8.9, the following

parameters should also be introduced.
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X T — TO q"H keff

X=—, 6= , AT=—, k=L
Pe AT kf T kf
u U, H a
= — Pe = m ) a, = eff (816)
Um af af

Aerr = €ar + (1 — €)ag

¢ is called the porosity, and explained in Section 2.1.
Using the dimensionless parameters (Equations 8.9 and 8.16), the energy

equations can be written as follows.

.00 _ 9% .
X2 =>for clear region
(8.17)
g2 =, 20 + = =>for porous region
ox ~ Trayz Tag TOTP g

To solve Equation (8.17); boundary conditions are needed. Since the lower wall
is insulated, then the temperature gradient is zero. At the interface of clear — porous

media, the temperatures and the conduction heat fluxes are equal.

26,
oY
20,

"oy

=0
Y=-1

a0,
y=¢-1 0Y

(8.18)

y=¢-1

h, To

Figure 8.4. The energy balance for the upper wall

At the upper wall, the following energy balance should be performed to obtain

the boundary condition.
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L U(T —T,) => kAT 99 _ iare
Toy ~ o= H oy
a6
— — —_ .1
37l = Nuob (8.18)

In Equation (8.19), Nu, stands for the dimensionless temperature gradient at the
upper surface, hence it shows the energy loss from the channel to outside. If Nu, is zero,
then the channel is well-insulated. The governing equations (8.17) can be solved
numerically by using the boundary conditions (Equations 8.18 and 8.19). The numerical

solution procedure is explained in Section 8.6.

8.4. Pressure Drop Calculations

To calculate the pressure drop, the friction factor should be introduced first. It

can be defined as:

(-5)2H
f=—" dx (8.19)
EPU%
In this case, fluid flow is hydrodynamically fully developed, hence the pressure
gradient along the x-axis is constant and this negative gradient is denoted by G. Then

Equation (8.19) becomes as follows:

_4GH

- 2
pUR

f (8.20)

Using the definition of the dimensionless velocity defined in Equation (8.9), the

following equation is obtained for the friction factor.

_ 4w 821
f U pu (8.21)
or
Re = 3 8.22
fRe =7 (8.22)
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Equation (8.22) can be used for determination of pressure drop.
8.5. Analysis of Heat Transfer and Pressure Drop

To compare the total heat transfers, which are subjected to the fluid in both clear

and porous channels; heat transfer equations must be written as follows.
q" =mCy(Trno — Tmy;) (8.23)

In this equation, g” is the total heat transfer subjected to fluid, [] is the mass
flow rate and C, is the heat capacity of the fluid at constant pressure, 7}, , and T,,; are
the mean temperatures at outlet and inlet of the channel, respectively.

In order to evaluate the heat transfer enhancement in the channel by using

porous media, a new parameter named thermal efficiency, ¢, is introduced as follows.

q" mcp (Tm,o - Tm,i)
Eth = —— = — 8.24
" [ Cy (Tmo — Tm.i)]c 829

In this formula, ¢ stands for the full clear channel and the thermal efficiency is
just the ratio of heat transfer in any media and heat transfer in full clear channel. Since
all the equations are constructed dimensionless, then Equation (8.24) should also be

made dimensionless by using Equation (8.16).

_ MCyOm0q"Hks _ O
[mcpem,oq"ka]C (Omo)

(8.25)

Eth
c

It is clear that €, = 1 for a clear fluid channel. Heat transfer enhancement is
expected for the channel with &, > 1. The use of porous media may decrease heat
transfer through a clear channel ife,, < 1.

Similar definitions are valid for friction coefficient. The friction coefficient can

be normalized by using friction coefficient of a clear channel.
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_ fRe
= (F Re).

(8.26)

For the values of £ greater than I, the increase of pressure drop in the channel
is expected, while for £, < I, the use of porous layer decreases the pressure drop in the

channel. The value of friction coefficient (( f Re), is determined as 24 (i.e.

(f Re),=24).

The ratio of £, and &, is shown by ¢, and called the general efficiency.

&
g=-"2 (8.27)

&p

For the values of ¢ greater than 1 (i.e., £>1), heat transfer enhancement is
greater than the increase of pressure drop if a porous layer is used at the core of the
channel. However, for the values of &€ less than 1 (i.e., € < 1), the increase of pressure

drop in the channel is greater than heat transfer enhancement.

8.6. Numerical Solution Procedure

The governing equations for the momentum and energy balances are solved by
using finite difference method. /01 nodes are used for each equation. The following
nodal equations are found for the momentum equations, energy equations and for the
boundary conditions.

Nodal equations for the velocity distribution:

In porous region:

_MuG+1)+u@-1)+dv?

() M(2 + S2dY?)

In clear region:

u(j) = 0.5(u(+ 1) +u(j — 1)) +dv?
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At the interface:

_u(+1)+Mu(G—1)

u(y) 1+M

Nodal equations for the dimensionless temperature distribution:

In porous region:

2dXa &(TG+1,0) + TG —1,0) + dXdY? + 2a(j)EdY?T(j,i — 1)
28(2dXa, + 0i(j)édY?)

T3, =
In clear region:

dX(TG+ 1)+ TG —1,0) +a()dy?T(,i — 1)
2dX + 1(j)dY?

TG, =

At the interface:
TG+1,)+kTG—1,0)

TG, =
1+k,
At the lower boundary:
T(G,))=TG+1,i)
At the upper boundary:
TG-—1,i
TG0y = 4= LD
dY Nu, +1

The directions of i and j, shown in Equations (8.28), are demonstrated in Figure

8.5 and all the results are discussed in Chapter 9.

#1, i1 #1,i
#1, 1
j_l 1 .. j_l i+1
i1, +1 1, #1

Figure 8.5. The nodes used in the numerical solution
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CHAPTER9

RESULTS AND DISCUSSION

In this thesis; six different cases are analysed. In all cases, the velocity profiles
and the Nusselt numbers are derived and the pressure drop effects are investigated.
First, the results for flows in a clear channel with two different boundary conditions,
which are investigated in Chapter 3, are presented. The Nusselt number for this flow
was found as 4.1176 and all the results are discussed in Section. 9.1. A fluid flow in a
fully filled porous channel with symmetric heat flux boundary conditions was studied in
Chapter 4, and it is observed that the Nusselt number decreases with increasing Darcy
and at very large Darcy numbers the flow resembles to that in a clear channel. The
results for his problem are presented in Section 9.2. In Chapter 5, the same case with the
previous chapter except the boundary conditions was investigated. In this case, both
walls were subjected to heat fluxes, which their values are different from each other. As
in the asymmetric heating case in Chapter 2, the individual Nusselt numbers at the
lower and upper walls were analyzed. The results are discussed in Section 9.3. A flow
in a channel with partially and symmetrically located porous medium was investigated
in Chapter 6. For the porous media with large range of Darcy numbers, the Nusselt
numbers have peaks where the heat transfer can be maximum. Velocity profiles and
further analyses are discussed in Section 9.4. In Section 9.5., the flow in a channel with
partially and asymmetrically located porous medium with symmetric heat flux boundary
conditions are investigated. The overall and individual Nusselt numbers found after the
calculations are studied. Finally, a solar air heater is analyzed and all the results were

discussed in Section 9.6.

9.1. Results for Flow in a Clear Channel

In Chapter 3, heat and fluid flow in a clear channel with two different boundary
conditions are investigated. Figure 9.1 shows the dimensionless normalized velocity
profile in the channel. The shear effects near the walls can be clearly seen in this figure.
As mentioned in Section 3.1.1; the no-slip condition causes these effects. The closest

fluid particle to the wall sticks to it and since the walls are stationary, the velocity of
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this fluid particle is zero. The flow has its maximum velocity at the channel centre
where Y=0. This flow is called as poiseuille flow.

Figure 9.2 demonstrates the dimensionless temperature profile of the Poiseuille
flow. The maximum temperature is observed at the centre of the channel, and at the
boundaries, no-temperature- jump condition is observed. The Nusselt number for the

channel with the height of 2H is calculated as 4.1176.
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Figure 9. 1. Normalized velocity distribution of a fluid in a clear channel
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Figure 9. 2. Dimensionless temperature distribution of a fluid in a clear channel

For the asymmetric wall heat flux case, two individual Nusselt numbers are
obtained for the lower and the upper walls. These Nusselt numbers have critical points
on where heat transfer direction is changed. These discontinuities will be discussed in
porous channel case (Chapter 5) in detail but at this stage, the following information

will be sufficient. When the heat fluxes at both walls are equal to each other, then the
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upper and lower wall Nusselt numbers are equal to each other and they are equal to
4.1176.
Finally, it is explained in Section 3.4 that the multiplication of the friction factor

and the Reynolds number is calculated as 24. These results can be summarized as

follows.
Nu, = 41176 9.1)
Nug, = Nugy, = Nu, = 41176  if ¢ ,=q . 9.2)
(f Re). = 24 9.3)

9.2. Results for Flow in a Porous Channel with Symmetrical Heating

A fluid flow in a fully filled porous channel with symmetric heat flux boundary
condition is studied in Chapter 4. Dimensionless velocity profiles of flows through four
different porous media with various Darcy numbers are plotted in Figure 9.3. As seen in
this figure, analyzing the dimensionless velocity profile is extremely hard for flows
through low Darcy number media. Therefore, normalized velocities are used. The most
important point that we understand from this figure is that the velocity decreases by
reducing Darcy number, because the fluid encounters more obstacles in the channels

with low Darcy number.

— T \ \ Da=0.001
\ - | | Da=0.01
N ! T ! Da=0.1
O5FrF------ 2 \T*r*********r****r:ri'”*——r:n:wr* Da=1
\! :
| | |
> ol } 777777777 L R S
| | |
| | |
/o |
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yau ! |
) . I — | |
0 0.1 0.2 0.3 0.4

Figure 9.3. Dimensionless velocity distributions for the flows with four different darcy numbers

The normalized velocity distributions for the same flows (shown in Figure 9.3)

are shown in Figure 9.4. As clearly seen, for the flow through a medium with Da=1, the
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flow is similar to the flow in a clear channel. As Darcy number increases, porous media
effects decreases. With low Darcy-number flows, the velocity profile looks like a

turbulent flow and becomes flattened.

normalized velocity

Figure 9.4. Normalized velocity distribution for fully porous channel for different Darcy number

As seen in Figure 9.5, the dimensionless temperature gradient at the surface for
flows with low values of Darcy-number such as Da = 0.001 is larger than flows with
higher values of Darcy-number. This result is caused by the porous media. Figures 9.6
and 9.7 are the other demonstrations of the same result. When Darcy number increases,
the Nusselt number approaches to 4.1176, which indicates the flow through a clear
channel. For flows with low Darcy numbers, the Nusselt number increases, that means,
more heat transfer is observed. The Nusselt number for Da=0.001 is 5.6591 which is

greater than that of clear fluid.

|
|
|
- I I
0 0.5 1 1.5

Figure 9.5. Dimensionless temperature vs. Y-axis for the flows with four different Darcy numbers
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Figure 9.7. Logarithmic plot of Nu vs. Da

In Figure 9.8, heat transfer increment ratio (Equation 4.33) is plotted against the
Darcy number. It is obvious that, decreasing the dimensionless permeability (Da)
increases the heat transfer. When Darcy number increases, then the heat transfer
increment ratio approaches to 1, which is its value for clear flow. However, the porous
media with low Darcy number have a significant drawback on fluid flow in channel as
clearly seen in Figure 9.9. For the flow with Da=10", the pressure drop increment ratio
(Equation 4.34) reaches about 3.2-1 0?. That means the fan (or pump), which forces the
fluid into the channel, needs /0000 times more energy input. With this Darcy number,
filling the channel fully by porous medium increases the heat transfer by only /.5 times.
When Darcy number increases, the pressure drop increment ratio approaches to 1,
which is for clear flow. The overall performance of the system is plotted against the
Darcy number in Figure 9.10. The flows with Darcy numbers lower than /07, the
overall performance (Equation 4.35) approaches to zero. For higher Darcy number
flows it increases. However, it never becomes greater than /. Therefore, for fully filled
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porous channels, the pressure drop increment ratios are always greater than the heat
transfer enhancement ratios. It means that, it is not feasible to use such systems if a free

energy source is not had.

Eih

Figure 9.9. Logarithmic plot of pressure drop increment ratio vs. Da
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Figure 9.10. Logarithmic plot of overall performance

9.3. Results for Flow in a Porous Channel with Asymmetric Heating

In this case, a full porous channel was being heated by asymmetric heat fluxes at
both walls. The flow is hydro-dynamically and thermally fully developed and laminar.
The fluid is assumed to be incompressible and Newtonian.

The temperature profile, overall and individual Nusselt numbers are calculated
and their changes with Darcy number and heat flux ratio are discussed via graphics and
tables. In order to easily realize the physical meaning of the derived relations,
discussions are performed based on Darcy number which means M = [ in the following
discussion. As it was mentioned before, the energy equation was solved both
numerically and analytically to be ensure from the obtained results. Table 9.1 shows the
overall and individual Nusselt numbers calculated both numerically and analytically for
a channel with Da = 0.01 and for four different values of heat flux ratio as /, 2, 10 and
100. As seen, there is a good agreement between the numerical and analytical solutions.
Table 9.2 was also prepared to indicate the accuracy of the obtained results. In this
table, the overall and individual Nusselt numbers for two channel, one with Da = 1000
and another for a clear fluid flow are presented at different values of heat flux ratios.
Table 9.2 shows that the overall and individual Nusselt numbers are almost identical for
the channel of clear fluid and the Da =1000 channel in which the flow behaves like

clear fluid flow.
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Table 9.1. Comparison of the analytical and numerical results for the Nusselt numbers of a flow in a porous medium

when Da =0.01
Nusselt number from Nusselt number from
Analytical solution numerical solution
Nu, Nu, Nu Nu, Nu, Nu
ql/q2=1 5.1293 | -5.1293 | 5.1293 5.1281 -5.1281 5.1281
ql/q2=2 3.6871 | -23.564 | 5.1293 3.6866 -23.524 5.1281
ql/q2=10 3.0100 0.8491 | 5.1293 3.0097 0.8493 5.1281
ql/q2=100 2.8906 0.0671 | 5.1293 2.8904 0.0671 5.1281

Table 9.2. Comparison of the Nu, Nul and Nu2 variation for a clear fluid and a porous medium for Da=1000

Nusselt number for

Nusselt number for clear fluid

Da=1000
Nu, Nu, Nu Nu, Nu, Nu
ql/q2=1 41177 | -4.1177 | 41177 | 4.1177 -4.1177 4.1177
ql/q2=2 3.2558 | -8.7503 | 4.1177 | 3.2558 -8.7500 4.1177
ql/q2=10 2.7889 1.0937 | 4.1177 | 2.7888 1.0937 4.1177
ql/q2=100 2.7017 0.0801 | 4.1177 | 2.7017 0.0801 4.1177

Figure 9.11 shows the variation of overall Nusselt number with Darcy number
for the analyzed channel. The overall Nusselt number does not depend on heat flux
ratio. For a specified Darcy number, the value of overall Nusselt number is constant. No
singularity is observed in the changes of overall Nusselt with Darcy number. Hence,
heat transfer rate to/from parallel plates for the entire possible values of heat flux ratio
and Darcy number can be calculated. The total heat transfer rate through different
channels can be easily calculated and compared with each other by considering the
definition of overall Nusselt number. As seen from Figure 9.11, the overall Nusselt
number steeply drops with the increase of Darcy number in the region of Da < I. The
value of overall Nusselt number becomes almost constant for high values of Darcy
number (i.e., Da >> ). For high values of Darcy number, when flow behaves like a
clear fluid flow, the overall Nusselt number takes value of 4.7/2 which is identical to the
value of Nusselt number for a fully developed clear flow in a channel with 2H height

(Nield, 2004).
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Figure 9. 11. Nusselt number variation with darcy

The changes in the upper and lower plates Nusselt numbers with heat flux ratio
are shown in Figures 9.12(a) and 9.12(b), respectively. Figure 9.12 was prepared for a
flow in a channel with Da = 100 to firstly discuss heat and fluid flow in an almost clear
fluid flow channel. As seen from Figure 9.12, the value of lower plate Nusselt number
is almost zero at the low values of heat flux ratio such as ¢g,=0.1. For the low values of
qr, the value of lower plate Nusselt number is negative which refers to the heat transfer
from fluid to the lower plate. The lower plate Nusselt number decrease with further
increase in g,. This trend continues up to a heat flux ratio of g, =0.346. The direction of
Nusselt number at the lower plate is changed at ¢,=0.346 and after it, the lower plate
Nusselt number takes positive values. A singularity for the lower plate Nusselt number
is observed at g, = 0.346. As it was mentioned before, in this study, the heat flux ratio at
which the heat flux between wall and fluid changes direction is called as critical heat
flux ratio. In the channels with Da =100, the lower plate Nusselt number takes positive
value in the region of ¢,>¢,;.. The value of Nu; decreases with further increase in heat
flux ratio in the region of ¢,>¢,;.,. The value of Nu; approaches to 2.789 for high values

of heat flux ratio such as ¢,=10.
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Figure 9. 12. Individual Nusselt number variations with darcy for Da=100

The variation of the upper plate Nusselt number with heat flux ratio is shown in
Figure 9.12(b) when Da = 100. For the low values of heat flux ratio such as ¢,=0.1, the
value of upper plate Nusselt number is almost constant as Nu,=-2.789. The value of
upper plate Nusselt number is negative which shows heat transfer from upper plate to
the fluid. The value of upper plate Nusselt number decreases with increase of heat flux
ratio, and at a critical heat flux ratio (i.e.,qn,=2.889), Nu, changes direction and the
upper plate Nusselt number takes positive values. This change of heat flux direction
refers to the heat transfer from saturated porous media to the upper plate. For the
regions with g, .>2.889, further increase in heat flux ratio causes Nu, approaches to
zero and the upper plate behaves like an insulated wall.

Figure 9.12 shows that three different heat flux regions should be considered in
analyzing of heat transfer in a channel with asymmetric boundary conditions. The first
region is the region with ¢,>¢,;.,, for which the lower plate Nusselt number is negative

and heat is transferred from fluid to the lower plate. In this region, the value of upper
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plate Nusselt number is also negative and it refers to the heat transfer from the upper
plate to the porous media. The second region is the region in which g,;<¢,<g,cr In
this region, the lower plate Nusselt number is positive while the upper plate Nusselt
number takes negative values. In this region, heat is transferred from both upper and
lower plates to the porous media. The third region is ¢,>¢, - , for which the values of
lower and upper plate Nusselt numbers are positive. This shows that heat is transferred
from the lower plate to the fluid while the upper plate receives heat from the fluid
flowing through the channel.

Figure 9.13 shows the changes in individual Nusselt numbers with heat flux
ratio for Da = 0.1, 0.01 and 0.001. As seen, the changes in upper and lower plate
Nusselt numbers of different Darcy numbers are very similar to the channel with Da =
100. Figure 9.13 reveals that the value of critical heat flux ratio is not constant and it
varies with Darcy number. By decrease of Darcy number, the lower plate critical heat
flux ratio slightly increases while a little decrease in upper plate critical heat flux ratio is
observed.

Figure 9.14 indicates the variation of critical heat flux ratio of lower and upper
plates with Darcy numbers between 0./ and /0. The values of lower plate critical heat
flux are around 0.4 while the values of upper plate critical heat flux are around 2.5. As
seen from Figure 9.14, the heat transfer between the upper and lower plates with porous
media can be divided into three regions. Once the value of Darcy number is known for a
channel filled with porous media, the critical heat flux of lower and upper plates can be
easily calculated. By comparing the calculated critical heat flux ratio of upper and lower
plates based on the subjected heat flux ratio to the channel, the direction of heat transfer
between the plates and porous media can be easily predicted. It should be mentioned
that critical heat flux ratio is almost constant for very small Darcy number (Da < 0.1) or

large Darcy number (Da > 10) as seen from Figure 9.14.
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9.4. Results for Chapter 6: Flow in a Symmetrically Filled Partial

Porous Channel

In this study, the channel is partially filled with porous medium and the location
of the porous region is symmetric around the centre of the channel. The flow in the
channel is thermally and hydro-dynamically fully developed and laminar. The fluid is
assumed to be Newtonian and incompressible.

As seen in Figure 9.15, dimensionless normalized velocities versus Y-axis are
plotted for four different porous thicknesses and four different Darcy numbers for each
porous thickness. In Figure 9.15(a), the porous thickness in the channel is 0.4. As seen
in this figure, for the lower Darcy numbers such as Da=0.001 and Da=0.01, the porous
effects become important and although the porous region is very small relative to the
channel length, porous region slows down the fluid velocity, significantly. For the flow
of Da=0.001, the fluid velocity in the porous region is almost zero and the velocity
gradient at the surface is relatively higher than the other media with higher Darcy
numbers. When the Darcy number increases, the flow resembles to that in clear channel
and there is no effect of the porous region on fluid velocity. For the flow of Da = 1,
there is no certain difference between the clear and the porous regions. In Figure
9.15(b), the porous thickness is 0.8, and for Da=0.001; a smooth velocity profile is
observed as in a turbulent flow. As seen in Figure 9.15(c), for both flows with
Da=0.001 and Da=0.01, the smooth velocity profiles in porous region can be observed.
When the porous length increases, the velocity gradients at the surface for all the flows
except the flow with Da=1, increases. For the flow with Da=1; the changes of the

porous length do not affect the velocity profile, significantly.
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Table 1 lists the Nusselt numbers for flows with four different Darcy numbers of
107 , 10'4, 107 , and ]0'2, respectively, for a constant conductivity ratio (k,=1). Table
9.1(a) is for the viscosity ratio of /.1 and Table 9.1(b) is for /0. The Nusselt number is
not highly changed with thermal conductivity and viscosity ratios for Da = 107, 1 0,
and 107, On the other hand, for the flow with Da = 107 , the Nusselt number is affected
by the viscosity ratio, particularly for porous layer thickness of 0.2H.It is clearly seen in
the table that the larger porous media in a channel means larger heat transfer to the
fluid. In addition, smaller Darcy number also means higher Nusselt numbers. This fact
can be seen in Figures 3 and 4, too. Among the presented results, the dimensionless
temperature gradient at the surface takes maximum values for Da=10". For ¢=0.8,
which indicates a larger porous medium contribution in the channel, a steeper gradient

is clearly observed.
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Table 9.3. Nusselt numbers for flows in various media (a) M=1.1, (b) M=10

M=1.1 g Da=10" | Da=10" | Da=10" | Da=10"
0.00 4.12 4.12 4.12 4.12
0.05 5.65 5.61 5.46 4.85
0.10 5.96 5.92 5.76 5.19
0.25 7.15 7.08 6.84 6.00

- 0.50 10.70 1052 |9.78 7.27 Nu
0.65 15.23 1476 | 12.46 7.17
0.75 21.19 19.83 [ 13.10 6.40
0.90 46.05 16.89 |7.00 5.29
0.95 2299 |7.63 5.89 5.15
1.00 5.66 5.13 4.43 4.16

(@)

M=10 ¢ |Da=10° | Da=10" | Da=10" | Da=10"
0.00 |4.12 4.12 4.12 4.12
0.05 |5.66 5.64 5.51 4.87
0.10 [598 5.96 5.85 5.24
025 |7.17 7.14 6.98 6.09

- 0.50 | 10.74 10.64 10.01 7.05 .
0.65 |15.31 14.99 12.58 6.63
0.75 |21.35 20.16 12.55 5.99
0.90 |46.33 1560 | 6.69 5.41
095 [2133 7.30 5.87 5.27
1.00 [5.13 4.43 4.16 4.12

(b)

In Figure 9.16, the dimensionless temperatures along the Y-Axis are plotted for
the flows with four different porous thicknesses and four different Darcy numbers for
each porous thickness. The conductivity ratio is /0000. In Figure 9.16(a), the porous
thickness is 0.4 and as seen in the figure, the maximum dimensionless temperature
gradient at the surface (the Nusselt number) is for the flow with Da=0.001. When
Darcy number increases, the Nusselt number decreases and the least heat transfer

between the wall and the fluid is observed for the flow with Da=1. This result can also
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be seen in Figures 3(b,c,d). In these figures, the Nusselt numbers can be seen as
increasing when the porous thickness increases. In Figure 9.16(d), there are constant
dimensionless temperatures are observed in the porous region because of very high

conductivity.

Figure 9.16. Dimensionless temperature profiles for four different Darcy numbers, (a) £=0.2, (a) £&=0.4, (a) &=0.6,
(d) &=0.8 , (k,=10000)

The porosity, ¢, is defined as the ratio of fluid volume and total volume for a selected
control volume in a porous media. The effective conductivity can be calculated by using
porosity (kes=pk~+ (1-¢)k;).These concepts are explained in detail in Chapter 2.In Table 2,
conductivity ratios of different fluid-solid combinations for two different porosities are listed.

This list is written under the assumption that the porosity is uniform through the channel.

Table 9.4. Conductivity ratios for specified fluid-solid combinations (Incropera and DeWitt, 1996)

Fluid-Solid Combination ks

0=0.35 | 0=0.70
water-Al (pure) 251.66 | 116.69
water-Cu (pure) 425.55 196.95

water-Rubber, rigid Foamed 0.38 0.72
water - Polyamide-Nylon 6 0.61 0.82

air-Al (pure) 5858.00 | 2704.10
air-Cu (pure) 9911.00 | 4574.80
air-Rubber, rigid Foamed 1.14 1.07
air - Polyamide-Nylon 6 6.28 3.44
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In Figure 9.17, Nusselt number ratio changes with porous thicknesses are
plotted for four different conductivity ratios. In Figure 9.17(a), the conductivity ratio is
0.1 and clearly seen in the figure, for all flows with Darcy numbers of 10, 10 and 10
7 the Nusselt number ratios have peaks at some point near &=1. At these points, the heat
transfer reaches its maximum. Beyond this point, the Nusselt number decreases with
increasing porous thickness. Therefore, for the sake of enhancing heat transfer in a
parallel plate channel, it is better to fill it by porous media to this specific thickness that
makes the Nusselt maximum, rather than fully fill it.

The flow with Da=/0" has the greatest Nusselt number ratio for all cases. For
the flow with Da=107, the change of Nusselt number with porous thickness is relatively
small, because this flow looks more like to clear one. Increases in conductivity ratio
cause the maximum Nusselt number to increase for the flows with all Darcy numbers,

and these maximum points approach to / much more than the lower conductivity ratio

cases.
15 ;
Da=10"| |
|
|
|
3 3
10 fr=———== R = 10 f=———r=====
F Da=10° | =7 = - B
L Da=10*| L i
10°; - ba=10%_ ¢ - 10°; -
Da=10%| = -
£ [ -_____—_—_—__°C L ___________ZC £ [ -______—_—_—__°C
w ! w

Figure 9.17. The heat transfer increment ratio for four different darcy numbers, (a) k,=0.1, (a) k=1, (a) k=100, (a)
k,=10000
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Although, significant heat transfer enhancement is provided by using porous
media, there is a strong drawback for using it. This drawback is called as pressure drop.
The fan (or pump if the working fluid is in liquid state) needs power which is directly
proportional to pressure drop; more pressure drop implies more power input.

In Figure 9.18, the pressure drop increment ratio is observed for the flows with
all Darcy numbers. The pressure drop for the flow with Da=107 for fully filled porous
channel is almost 40 times that of the clear flow. This ratio is approximately 350, 3500
and 35000 for the flows with Darcy numbers of 107, 10 and 107, respectively. For a
channel with porous thickness of 0.4 ({=0.2), the pressure drop ratio changes between 5

and 8.

Figure 9.18. The pressure drop ratio for four different darcy numbers

In Figure 9.19, ratio of the Nusselt number and pressure drop ratios is plotted
versus the porous length for four different conductivity ratios. Figures 9.19(a), (b), (¢)
and (d) are plotted for the conductivity ratios of 0.1, 1, 100 and 10000, respectively. As
seen in Figure 9.19(a), for the conductivity ratio of 0./, the pressure drop becomes
dominant when the porous thickness increases. The ratio of ¢, and ¢, has its minimum
value at full porous case. This result is not changed in Figure 9.19 (b), which is plotted

for the conductivity ratio of 1. In both these cases, the ratio of the Nusselt number and
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pressure drop ratios have not values greater than one. In Figures 9.19 (c) and 9.19 (d)
(the conductivity ratios are /00 and 10000, respectively), this ratio has greater numbers.
Therefore, it can be said that as the conductivity ratio increases, the ratio of the Nusselt
number and pressure drop ratios decreases. However, between the Figures 9.19 (c) and
9.19 (d) there is no sharp difference. In these two figures, it can be observed that, when

¢>0.99, then &4, / eyhas a value greater than /.

10° ‘ 10° ‘
| \

10 R —— N l B
W= 1 o2 1
= ; = Da=10"° ;
@ 10'47777777777777% 777777777777 @ Da=10"* !
! Da=10"3 !
! Da=10"2 !
10° ‘ 10° ‘

0 0.5 1 0 0.5 1
3 £

€ th/gp

Figure 9.19 Theoverall performances for four different darcy number flows, (a) k,=0.1, (b) k=1, (c) k=100, (d)
k,=10000

In Figure 9.20, the Nusselt number ratio versus the conductivity ratio is plotted.
As seen in the figure; for the flow with Da=1 0’ , the Nusselt ratio is constant after the
point where the conductivity ratio is equal to /0. Hence, there is no need to use another
porous media whose conductivity ratio is larger than /0 for this flow. For the flow with
Da=10"; the critical point for the conductivity ratio is /00 and the critical conductivity

ratio is increasing with increasing Darcy number.

117



Figure 9.20. The heat transfer increment ratio against the conductivity ratio for flows with four different Darcy

numbers

en/ €p) 1s plotted in Figure 9.21. For the flow with

The overall performance (e

500. After
107 , there

30. After that point, r

107, ¢ increases significantly with increasing conductivity ratio till kr

Da=

that point, there is no effect of conductivity ratio on r. For the flow with Da

=

, till &

is a slight increase in r with increasing conductivity ratio

107 , there is no

10* and Da=

k,. For the flows with Da

remains constant with changing

effect of conductivity ratio on ¢, as observed in Figure 9.21.
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different Darcy numbers
In this part, some example normalized velocity distributions, which are obtained

As it is mentioned in Chapter 3, Darcy equation does not include the effects of

Channel
by two methods, namely Darcy-Law, and Brinkman extended Darcy-Law, are shown

Figure 9.21. The nusselt number ratio over pressure drop ratio against the conductivity ratio for flows with four

for comparison. The changes of dimensionless temperature gradients at both walls and
the shear stresses near the boundaries. Assuming the pressure gradient is constant along
the x-axis and the thermo-physical properties of the fluid are uniform, the velocity
distribution in the porous region is constant. In dimensionless form, the value of
dimensionless velocity is equal to the value of Da number. However, addition of the
Brinkman term into the Darcy equation makes the frictional effects at the boundaries be
considered. Since the flow velocity in a porous medium with low Darcy number is

9.5. Results for Flow in an Asymmetrically Filled Partial Porous
the overall Nusselt number with the porous medium location are investigated.



extremely low, then these shear effects inside the porous media can be neglected. These

facts are demonstrated in Figures 9.22 and 9.23.

Normalized Velocity Distribution

Dimensionless Normalized Velocity

(a)

Normalized Velocity Distribution

Dimensionless Normalized Velocity
(b)
Figure 9.22 Normalized velocity distribution for M=1.1, £=0.5 and &=0.5 by (a) first approach: Darcy’s Law
(Beaver-Joseph boundary conditions are used at the interfaces), and (b) second approach: Brinkman
Extended Darcy’s Law (Shear stresses are accepted to be equal at the interfaces)

In our second approach, as expected; the constant velocities are observed in
porous region. Furthermore, sharper velocity distinctions can be seen at the porous
medium — clear medium interfaces. It can be clearly seen that, these approaches are
more similar, when the Darcy numbers are small (when the porous effects are more

significant). Since the Beaver-Joseph condition is used for the porous-clear region
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interface in the second approach, there is a little slip occurs at these interfaces. This
condition is known as slip condition. For high values of Darcy numbers, this interface

condition is not applicable.

Normalized Velocity Distribution

|
|
|
‘ |~ Da=107
|
|

Dimensionless Normalized Velocity

(@)

Normalized Velocity Distribution
1 { { {

T
|
| |
|
|
|
!

|
|
|
) ; ——Da=10"°
05— -~ ----| —Da=10*|t-------t----- -
|
|
|
|
|
|

Dimensionless Normalized Velocity

(b)
Figure 9.23. Normalized velocity distribution for &=0.5 and &,=1 (a) first approach (b) second approach

Table 4 shows the lower wall, upper wall, and overall Nusselt numbers for
different porous layer locations for dimensionless porous length of 1 when Darcy
number is 10'5, viscosity ratio is 1.1, and the conductivity ratio is 1. The overall Nusselt
number is maximum when the porous layer is symmetrically located. However, the

maximum value of individual Nusselt numbers and their locations are not only different
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than overall Nusselt number but also different from each others. As an example; for §; =
0.4084 0 and & = 0.5916, Nusselt number of the lower plate is maximum. It can be seen
that, in this case the dimensionless temperature gradient is the greatest for the flow in
the porous medium with Darcy number of 107

Table 5 demonstrates the same comments, but for the dimensionless porous
thikness of 0.5.

Table 6 shows the overall Nusselt number variation with the conductivity ratio
for £;=0.4 and &=0.6. The Nusselt number increases with the conductivity ratio,
because more energy is transferred by conduction heat transfer between the two sides of

the porous medium, in y-direction.

Table 9.5. Nusselt numbers for various porous medium locations for dimensionless porous length of 1

& & Nu Nu, Nu,
0.1 0.9 2.62 -1.53 9.19
Da=10" | 0.2 0.8 | 266 | -1.51 | 11.21
0.3 0.7 3.13 -1.70 19.70
0.4 0.6 5.37 -2.75 | 109.78
M=1.1 0.5 0.5 10.70 | -10.70 | 10.70
0.6 0.4 537 |-109.78 | 2.75
0.7 0.3 3.13 -19.70 1.70
k=1 0.8 0.2 2.66 -11.21 1.51
0.9 0.1 2.62 -9.19 1.53
Dimensionless Porous Length =1

Table 9.6. Nusselt numbers for various porous medium locations for dimensionless porous length of 0.5

&1 & Nu Nu, Nu,

0.15 1.35 3.08 -2.06 6.10
Da=10" 0.30 1.20 3.02 -1.92 7.07

0.45 1.05 3.35 -2.04 9.30

0.60 0.90 4.84 -2.96 13.27
M=1.1 0.75 0.75 7.15 -7.15 7.15

0.90 0.60 4.84 -13.27 2.96

1.05 0.45 3.35 -9.30 2.04
k=1 1.20 0.30 3.02 -7.07 1.92

1.35 0.15 3.08 -6.10 2.06
Dimensionless Porous Length = 0.5
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Table 9.7. Nusselt numbers for various conductivity ratios for dimensionless porous length of 1

£=04 | Kk, Nu
£=06 | 1.0 5.37
M=1.1 | 15 6.18
2.0 6.68
2.5 7.02
30 | 727
3.5 7.46
40 | 7.60
4.5 772
50 | 7.82

Finally, Figures 9.24, 9.25, and 9.26 show the variations of two individual
Nusselt numbers at the walls and the overall Nusselt number with the porous medium
location. The dimensionless porous thickness of porous medium is /. As seen in the
figures, the maximum value of the overall Nusselt number occurs when the porous
medium is symmetrically located and it increases with the viscosity ratio, M.

The individual Nusselt number of a wall has their maximum value when the
porous part location is ¢=0.4084 far from the other wall as seen in the Figures 9.24,
9.25, and 9.26. The meaning of these results can be embodied in real life. Assume that,
we have two metallic chips to cool and the porous part is located in the channel as &; =
0.4, and the porous length is /. If we submerge one of our chips into the upper part of
the porous media and the other into the lower region, then; the chip at the lower part
will cool faster, because; the Nusselt number at the lower wall is significantly higher
than at the lower one. The main reason of this result seems to be that the high velocities
of the fluid at the lower part of the porous region. Normalized velocity profile for that

case is plotted in Fig. 9.27.
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1.1 and porous

Figure 9.24. Two individual and overall Nusselt number variation with porous location when M

1

length=
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120f -| — Da=10"}- - - -
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5 and porous

Figure 9.25. Two individual and overall Nusselt number variation with porous location when M

1

length=
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Figure 9.26. Two individual and overall Nusselt number variation with porous location when M
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Normalized Velocity Distribution

T
Da=0.00001

Da=0.0001
Da=0.001

Dimensionless Normalized Velocity

Figure 9.27. The velocity distribution in the case of the maximum lower plate Nusselt number

9.6. Results for Flow in a Solar Air Heater

In Chapter 8, the heat transfer enhancement by using porous media is
investigated for a solar air heater.

The velocity distributions for three different Darcy numbers are shown in Figure
9.28(a). This flow has the following properties; ¢=0.5, Nu,=0.01, k,=10, a,=1. The
bottom part of the channel, with a thickness of 0.5, is porous. The remaining part with
the thickness of 7.5 is clear medium. In upper region of the channel, the clear flow
velocity profiles are observed whereas in porous region, the velocities reduce
significantly. Especially, for the flow with Da=0.01; the flow velocity decreases,
significantly. However, as it can be seen in the figure clearly, for Da=1, the porous
media effects are almost negligible. This flows characteristics are similar to a flow in a
clear channel. In other words, the flow does not affected by the porous medium layer.

In Figure 9.28(b), the dimensionless temperature distribution for the flow with
Da=0.01 is shown. Equating Nu,to 0.01, makes the upper wall almost insulated. This
can be seen by observing the isothermal lines at the upper wall, which are almost
perpendicular to the surface. Furthermore, temperatures at the porous layer seem to be
larger than the clear parts of the fluid in the channel.

In Figure 9.28(c), the mean temperature variation with X-axis is shown. In this

case, the Darcy number of the porous region is set to be 0.0/. The mean temperature
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variation along the channel is almost linear as in the insulated case. Since there is a little
energy transfer from the fluid to the outside of the channel, in other words; since there is
a little energy loss, the fluid temperature is increasing linearly.

In Figure 9.28(d), the outlet temperature variation with Y-axis is demonstrated
for Da=0.01. The outlet temperature has its maximum value in porous layer, and in this
layer, there is no significant temperature change along Y-axis because of the high

conductivity. This figure is just the line where X=10, in Figure 9.28(b).

Mormalized Yelacity Distribution Temp. Distribution
1 .......... gy R P R 1
D 5 Da=|:||:|1 ...................... -
Da=0.1
= D Da=1 ............................ a
LG b S e I R L <
1 ; : ; ;
0 05 1 1:5 2 5
Dirmensionless Mormalized Welocity b
(@) (b)
Mean Temperature Outlet Temperature
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Figure 9.28. (a)Velocity distributions for three different darcy numbers, (b) temperature distribution for Da=0.01, (c)
mean temperature along the X-axis for Da=0.01, (d) outlet temperature distribution along the Y-axis for
Da=0.01
In Figure 9.29, outlet temperatures of the flows with three different Nusselt
numbers are shown. In this flow Darcy number is 0.001 and lower half of the channel is
filled with porous medium. The viscosity and conductivities are /./ and I, respectively.
Decreases in the Nusselt numbers increase the outlet temperatures. For small Nusselt

numbers, the upper wall insulation is greater. Hence, the energy losses are minimized.

In Figure 9.30, Nusselt number effects on mean temperatures in the channel are
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demonstrated for the same flow as Figure 9.29. For greater Nusselt number flows, the
mean temperatures have some constant values after specific points. After these points,
the flow becomes thermally fully developed. When Nu=0.01, the flow is held in the

thermally developing region.

Da=0.001, &=1, a =1, M=1.1, kr=1

Figure 9.29. Comparison of outlet temperatures with three Nusselt number flows

Da=0.001, &=1, o =1, M=1.1, k =1
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Figure 9.30. Comparison of mean temperatures with three Nusselt number flows
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In Figure 9.31, the conductivity effects on outlet temperatures are investigated
for the flows with specified porous thickness, Nu, and Da. In this case, the lower half of
the channel is filled with porous media and Nu and Da are 0.01 and 0.001, respectively.
The viscosity ratio is /.. It is obvious that, using porous medium with conductivity
ratio of lower than /, is not appropriate for the solar air heater collector, since the clear
fluid flow provides greater outlet temperatures. However, using porous layer with high
conductivity ratio increases the outlet temperature, significantly. This conclusion is also
applicable for the mean temperature distribution along the X-axis, as shown in Figure

9.32.

Da=0.001, &=1, a=1, M=1.1, Nuo=0.01

1 ! ! !
0.5 oo T b .
; ; clear
! ! _kr=01
S
> op bt o 0| ] ]
0.5 fomneees e Poomooooe .
1 : : :
0 5 10 5 15 25

end
Figure 9.31. Comparison of outlet temperatures with three porous media with different conductivity ratios (Nu=0.01)
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Da=0.001, &=1, o,=1, M=1.1, Nu =0.01

0 2 4 6 8 10
Figure 9.32. Comparison of mean temperatures with three porous media with different conductivity ratios (Nu=0.01)

In Figures 9.33 and 9.34, the effects of the porous thickness on temperature
profiles are shown. The conductivity ratio is set as /0 and the Darcy number is 0.001.
The upper wall is almost perfectly insulated, such as the Nusselt number at the upper
wall is 0.01. It is clear that, for the thicknesses smaller than 0.5, using porous medium is
not applicable. For {=1, the outlet temperatures increase considerably, and further
porous layer addition will increase the temperature, significantly. The outlet
temperature of the fluid flows in a solar air heater collector increases with the thickness

of the porous medium.
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Da=0.001, kr=10’ a=1, M=1.1, Nu0=0.01

Figure 9.33. Comparison of outlet temperatures with three different porous media thicknesses

Da=0.001, kr=10’ a=1, M=1.1, Nuo=0.01

Figure 9.34. Comparison of mean temperatures with three different porous media thicknesses

In Figure 9.35, the heat transfer increment ratio, the pressure-drop increment
ratio and overall performance are plotted against the porous thickness in a solar air
heater collector. In this case, the thermal conductivity ratio is /0000 and the Darcy

number is 0.001. As seen in the Figure 9.35(a), thermal performance of the air solar
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heater collector is investigated by plotting the heat transfer increment ratio versus the
porous layer thickness. For the porous thicknesses from zero to 0.6,& increases almost
linearly and it has its maximum value where the porous thickness is about 0.6. After that
point, it decreases. In Figure 9.35(b), the change of the need in fan power is investigated
by plotting the pressure-drop increment ratio versus the porous layer thickness. Since,
the flow velocity is decreased by using porous media, it is expected that the pressure-
drop will increase if the channel is assisted with porous media. As expected, it can be
clearly seen in Figure 9.35(b) that, if the porous layer thickness increases, so does the
pressure-drop along the channel. Finally, a combined thermal-hydraulic analysis is
performed by plotting the overall performance against the porous layer thickness and it
is found that the overall performance has its maximum value where the porous layer
thickness is about 0.4. After that point, ¢ decreases, and for porous layer thicknesses

larger than about /.3, the pressure-drop effects become dominant.
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Figure 9.35. Performance analysis of the solar air heater collector assisted by a porous medium with kr=10000.
(a)Heat transfer increment ratio against the porous thickness (0 < & < 1.6) (a)Pressure drop increment
ratio against &, (c)Overall performance against &
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CHAPTER 10

CONCLUSION

In this study; heat transfer enhancement by using porous media is investigated
for a solar air heater collector. The study is started with heat and fluid flow analysis for
a flow in a clear fluid channel. The channel walls are subjected to equal heat fluxes. The
dimensionless heat transfer coefficient, the Nusselt number, was found 4.1176. The
friction factor, f Re, is found 24 for clear flow. Then, the channel was fully filled by
porous medium. Fluid and heat flow analyses were performed for four different
dimensionless permeabilities (Darcy numbers). It is found that the increasing Darcy
number makes the flow resemble to clear one. While increasing the Darcy number, the
Nusselt number approaches to 4.1176. For the porous medium with a very high Darcy
number, it becomes exactly 4.1176. When Darcy number decreases, the Nusselt number
increases and more heat transfer will be achieved. Three new parameters are introduced
as heat transfer increment ratio, pressure drop increment ratio and the overall
performance. Both the heat transfer increment and pressure drop increment ratios
increased with decreasing Darcy number. The overall performance remains less than /
for all Darcy number flows in full porous channel.

In Chapter 5, asymmetric heat fluxes were subjected to both walls. It is
concluded that the overall Nusselt number, hence the total heat transfer rate, does not
been affected by the asymmetry of the heating. On the other hand, bottom and top wall
Nusselt numbers are defined to determine heat transfer ratenear the boundaries. They
are found that heat transfer rate from the pale is considerably affected from the heat flux
ratio. There are some critical points in which the heat transfer directions are changed.

A porous medium is located at the centre of the channel symmetrically in
Chapter 6. The porous length is changed and the Nusselt number has a maximum value
for specific thicknesses. For instance, for a channel with Da = 10'5, the maximum heat
transfer can be achieved by locating the porous layer with a thickness of 0.92 at the
centre of the channel. After that point, further porous structure addition to the channel
will decrease the Nusselt number and it falls to 5.13, which is the dimensionless

convective heat transfer coefficient for the full porous case. Therefore, it would be logic
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to fill the 92% of the channel with that porous structure (with Da=10") instead of fully
filling it. The overall performance remains less than / for all porous layer thicknesses.

In Chapter 7, the porous medium was located asymmetrically in the channel.
The channel walls were subjected to equal heat fluxes. As in Chapter 5, two individual
Nusselt numbers for both walls were investigated. For the porous length of 1; for both
walls, Nu has its maximum value, where the porous medium location is 0.6 units far
from the wall whose heat transfer coefficient was investigated.

In Chapter 8, heat and fluid flow in a solar air heater collector is investigated. It
is assumed that all the radiation is absorbed by the porous medium. The effects of the
porous layer thickness, the upper wall Nusselt number (the energy loss), and the ratio of
the effective conductivity and the conductivity of the fluid on outlet and mean
temperatures are investigated. It is concluded that, the temperature increases with
increasing porous layer thickness, decreasing the Nusselt number, and increasing the
conductivity ratio. For relatively high conductivity ratios; the heat transfer increment
ratio becomes dominant to pressure drop increment ratio when porous layer thickness is
between 0.5 and /.3. Furthermore, using a porous medium-fluid pair which has a

conductivity ratio less than / will not help the heat transfer enhancement.
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APPENDIX A

THE COMPATIBILITY CONDITION

The compatibility condition results from the definition of the mean temperature,

which is written in Eq. A.1.

H
[ pe,utdy (A.1)
T, ="

m

H
I pc udy
-H

Since the thermo-physical properties are accepted to be constant, and then the
density and the constant pressure specific heat of the fluid can be taken out of the

integrals. After a little manipulation, Eq. A.1 becomes into the form as follows.

T”T iy (A.2)
r,=%
judy

-H

Another description for the denominator of Eq. A.2 can be derived by using the

definition of the mean velocity written below.

T udy T udy " (A.3)
u, =_HH—="I;H => J-udy=2Hum

for 2

-H

Inserting the Eq. A.3 into the equation A.2, the following result is obtained.

H
J’quy (A4)
T, =2
" 2Hu,

After some manipulations shown in Eq. A.6 and using the definition of the

normalized velocity (Eq. A.5), Eq. A.7 is obtained.
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i=—
. (A.5)
T
uldy "
2HT, === [ - Tdy= [aTdy (A.6)
um -H u -H
“ A7
2HT, = [Tdy (A7)
-H

At this point, the temperature and dy in the integral should be converted to the
dimensionless ones, which are defined as in Eq. A.8 and after further manipulations Eq.

A.9 is obtained.

_T-T7, _y (A.8)
T, -T, H
H
2HT, = [al6(r, —T,)+T,Ja(HY)
-H
1
2HT, = H [al6(r, -T,)+T,Jay
-1
1
o1, = [ale(r, - 1,)+ T, Jay
-1
1 1 (A.9)

o1, =(T, —T,)[aédy +T, [idy
-1

-1

The last term on the right hand side of the Eq. A.9, contains the integration of

the normalized velocity. This integration results as 2, as shown below.

1

[udy  [udy (A.10)
ndyY = ‘1u = =2
- " J-udY
-1 2

After applying this result to Eq. A.9, the equation called the compatibility

condition is obtained as written in Eq. A.11.

1
Jitay =2 (A1)

-1
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APPENDIX B

THE NUMERICAL SOLUTION PROCEDURE

In this study, numerical results are also obtained for the governing equations for
energy and momentum. Finite difference method under the given boundary conditions
is used. However, the following transformation is used for compatibility condition. The

function of [J is defined such that;

0 (B.1)

V= Nu
The overall Nusselt number is constant for fully developed flow in a channel.
Hence, a new form of dimensionless heat transfer equation and boundary conditions

based on y function can be obtained as in Egs. B.2 and B.3, respectively.

v 1. (B.2)
—+—u=0
ay* 2
and
Y(-1)=B/Nu, ¥(1)=-8/Nu (B.3)

These boundary conditions are used for the asymmetric cases. In symmetric
cases, at the boundaries the dimensionless temperatures are zero.

Furthermore, the new form of the compatibility condition is:

1
J’\PﬁdY =2/ Nu (B.4)
-1

The boundary conditions of new form of heat transfer equation (Eq. B.4) depend
on overall Nusselt number, which is unknown. The distribution of [ was found
according to an initial guess value for overall Nusselt number. Then, a new value for
Nusselt number is found by using the compatibility condition (Eq. B.4). The new value
of overall Nusselt number was used to obtain new distribution of [ Jand consequently the

new value for overall Nusselt number was found. The procedure continued until the
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absolute difference between the new and old calculated Nusselt number became less
than 10-9. The number of nodes in Y-direction was 200 in the performed numerical

study.
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