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ABSTRACT 

 

DEVELOPMENT OF CHEMOMETRIC MULTIVARIATE 

CALIBRATION MODELS FOR SPECTROSCOPIC QUALITY 

ANALYSIS OF BIODIESEL BLENDS 
 

The fact that the biodiesel is produced from renewable resources and 

environmentally friendly when compared to the fossil-based petroleum diesel, biodiesel 

has gained an increasing interest. It is mainly produced from a variety of different 

animal fat and vegetable oil combined with an alcohol in the presence of a 

homogeneous catalyst and the determination of the quality of the produced biodiesel is 

as important as its production. Industrial scale biodiesel production plants have been 

adopted the chromatographic analysis protocols some of which are standard reference 

methods proposed by official bodies of the governments and international organizations. 

However, analysis of multi component mixtures by chromatographic procedures can 

become time consuming and may require a lot of chemical consumption. For this 

reason, as an alternative, spectroscopic methods combined with chemometrics offer 

several advantages over classical chromatographic procedures in terms of time and 

chemical consumption. With the immense development of computer technology and 

reliable fast spectrometers, new chemometric methods have been developed and opened 

up a new era for processing of complex spectral data.  

In this study, laboratory scale produced biodiesel was mixed with methanol, 

commercial diesel and several different vegetable oils that are used to prepare biodiesels 

and then several different ternary mixture systems such as diesel-vegetable oil-biodiesel 

and methanol-vegetable oil-biodiesel were prepared and gas chromatographic analysis 

of these samples were performed. Then, near infrared (NIR) and mid infrared (FTIR) 

spectra of the same samples were collected and multivariate calibration models were 

constructed for each component for all the infrared spectroscopic techniques. 

Chemometric multivariate calibration models were proposed as genetic inverse least 

square (GILS) and artificial neural networks (ANN). The results indicate that 

determination of biodiesel blends quality with respect to chemometric modeling gives 

reasonable consequences when combined with infrared spectroscopic techniques. 
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ÖZET 

 

BĠYODĠZEL KARIġIMLARININ SPEKTROSKOPĠK KALĠTE 

ANALĠZĠ ĠÇĠN KEMOMETRĠK ÇOK DEĞĠġKENLĠ KALĠBRASYON 

MODELLERĠ GELĠġTĠRĠLMESĠ 

 

Günümüzde, biyodizel gerek yenilenebilir kaynaklardan üretilmesi gerekse 

çevreci bir yakıt olması bakımından, diğer fosil yakıtlardan daha popüler hale gelmiĢtir. 

ÇeĢitli bitkisel ve hayvansal yağlarla, alkol ve homojen katalizör eĢliğinde yürüyen bir 

tepkimenin ürünü olan biyodizelin kalitesinin tayini de gün geçtikçe önem 

kazanmaktadır. Endüstride bu amaç için yaygın olarak kromatografik yöntemler 

kullanılmaktadır. Ancak çok bileĢenli karıĢımların kromatografik analizleri zaman ve 

kimyasal israfına yol açtığından, spektroskopik yöntemler zaman ve malzeme tasarrufu 

açısından daha avantajlı olmaktadır. Son yıllarda bilgisayar sektöründeki geliĢmeler 

kemometrinin hızla geliĢimini sağlamıĢ ve spektral verilerin değerlendirilmesinde 

üreticiye hem zaman, hem malzeme tasarrufu, hem de kalitenin doğru tayin edilmesi 

bakımından avantajlar sunmuĢtur.  

Bu çalıĢmada, laboratuvar ortamında üretilen biyodizeller, metanol, ticari olarak 

satılan dizel ve çeĢitli bitkisel yağlar kullanılarak dizel-bitkisel yağ-biyodizel ve 

metanol-bitkisel yağ-biyodizel olmak üzere çeĢitli üçlü karıĢımlar hazırlanıp gaz 

kromatografisi (GC) ile örneklerin analizleri yapılmıĢtır. Daha sonra, aynı örneklerin 

yakın infrared (NIR) ve orta infrared (MIR) ölçümleri alınarak çok değiĢkenli 

kemometrik kalibrasyon modelleri oluĢturulmuĢtur. Kemometrik kalibrasyon modelleri 

oluĢturulurken, genetik algoritmalara dayalı çok değiĢkenli kalibrasyon yöntemlerinin 

yanısıra, yapay sinir ağlarına dayalı çok değiĢkenli kalibrasyon yöntemleri de 

kullanılmıĢtır. Deney sonuçlarında elde edilen verilere göre çok değiĢkenli kalibrasyon 

yöntemleri infrared spektroskopik teknikler yardımı ile kullanıldığında biyodizelin 

kalite tayininde kullanılabilir olduğunu göstermektedir. 
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1. CHAPTER 1 

 

1. INTRODUCTION 

 

 Throughout the history, foremost energy demand has been tremendously 

subjected by fossil fuels – with coal, oil and gas currently accounting for 81 percent of 

the total demand in world (Figure 1.1). The total energy demand has increased up to 

11,400 million tones of oil equivalent per year. However, biomass that is including 

agricultural and forest products, organic wastes made use of 10 percent (IEA 2007). In 

recent times, the ratio of the volume and transport demand has increased for liquid 

biofuels. The main reason for this situation was to support the use of biofuels because of 

its protection of the environment and the fuel deliver. Given the rapid rise in crude oil 

and increasingly geopolitical uncertainties, the security of energy supply does not 

govern politics around the world.  

 

 
 

Figure 1.1. World primary energy demand 

(Source: IEA 2007) 
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 Different circumstances have proposed for biofuels, which is obtained from 

biomass sources in the future energy scheme. In the most probable scenario, by 2050 

efficient biomass energy will supply about one-half of the total energy offer in 

developing countries (IPCC 2007). Biofuels are considered to decrease imported 

petroleum addiction with its related political and financial susceptibility, such as 

diminishing greenhouse gas production and other pollutants, and regenerate the 

economy by rising demand for agricultural crop. Presently, biodiesel use is principally 

dominant in Germany whereas it is produced from soybeans in the United States. The 

European Union has preferred biodiesel for renewable liquid fuel (Demirbas 2008). 

 The fact that the biodiesel is produced from renewable resources and 

environmentally friendly when compared to the fossil-based petroleum diesel, biodiesel 

has gained an increasing interest in recent years. Biodiesel is mainly produced from a 

variety of different animal fat and vegetable oil combined with an alcohol in the 

presence of a homogeneous catalyst and the determination of the quality of the 

synthesized biodiesel is as important as its production process.  

 Biodiesel is defined as the mono alkyl esters of long chain fatty acids derived 

from renewable lipid sources. Biodiesel is widely documented among the alternative 

fuels industry by the Department of Energy (DOE), the Environmental Protection 

Agency (EPA) and the American Society of Testing and Materials (ASTM). On the 

other hand, as other materials, which are tree oil derivatives, other woody products, or 

even biological slurries, have occasionally been submitted to as ―biodiesel.‖ Even 

though these other resources are natural, and are an alternate for diesel fuel, they are not 

considered as biodiesel acknowledged by the NBB, DOE, ASTM. 

 Biodiesel is primarily synthesized by the reaction of a vegetable oil or animal fat 

with methanol in the presence of a catalyst in order to yield glycerin and methyl esters. 

The reaction is demonstrated in Figure 1.2 that is given below. 
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Figure 1.2. General mechanism of transesterification process 

 

 Given that this reaction is reversible, excess amount of alcohol is necessary for 

shifting the equilibrium to the right. In the case of excess alcohol, the forward reaction 

is a pseudo-first order reaction and the reverse reaction is a second-order reaction.  

 Biodiesel is an alternative fuel that can be utilized in neat form, or blended with 

petroleum diesel. Its physical and chemical properties as it relates to operation of diesel 

engines are similar to petroleum based diesel fuel. These properties are described in 

Table 1.1. 

 

Table 1.1. Biodiesel ASTM Standards and Properties  

(Source: Tyson et al. 2004) 

 

Property ASTM Value Unit 

Specific Gravity D1298 0.86-0.90 g/g H2O 

Gross Heating Value  D2382 11.4 min kW-hr/kg 

Cloud Point D2500 +3 max 
o
C 

Pour Point D97 -3 max 
o
C 

Flash Point (open cup) D92 149 min 
o
C 

Viscosity @ 40
o
C D445 4.00-5.50 Cst 

Sulfur D129 0.02 max %mass 

Carbon Residue D524 0.1 max %mass 

Cetane number D613 48 min  

Ash D482 0.02 max %mass 

Neutralization D4739 1 max mg OH/g  

Methanol *G.C 0.2 max %mass 

Free Glycerine *G.C 0.03 max %mass 

Total Glycerine *G.C 0.2 max %mass 

Oil Ester *G.C 97.5 min %mass 

 

*G.C: Gas Chromatography 

 

Catalyst

GlycerolEsterAlcoholCarboxylic Acid



4 

These physical and chemical properties make biodiesel quality diesel fuel 

substitute. However, petroleum diesel is a mixture of hydrocarbon molecules which is 

derived from crude oil that is supplied from natural resources (Table 1.2). Unadulterated 

biodiesel restrained up to 10-12 % weight of oxygen, whereas petroleum diesel has 

approximately 0 % oxygen. The presence of oxygen allocates more complete 

combustion, which diminishes hydrocarbons, carbon monoxide, and particulate matter 

emission. However, higher oxygen content increases nitrogen oxides (NOx) emissions. 

 

Table 1.2. Hydrocarbon Contents in Crude Oil  

(Source: ATSDR 1995; OTM 1999) 

 

HYDRO 

CARBONS 

GENERAL 

FORMULA 

CHAIN  

TYPE 

STATE 

(Room temp) 

SAMPLE 

EXAMPLES 

Paraffins 

(Aliphatic) 

CnH2n+2 

(n:1 to 20) 
Linear or Branched 

Gas or 

Liquid 

Methane 

Propane 

Hexane 

Aromatic C6H5-Y 

One or More Benzene 

Rings with Long 

Chains 

Liquid 
Benzene 

Napthalene 

Napthenes 

(Cycloalkanes) 
CnH2n 

One or More 

Cycloalkane 

Rings 

Liquid 

Cyclohexane 

Methyl 

Cyclohexane 

Alkenes 

(Olefin) 
CnH2n 

Liner or Branched 

One or More Double 

Bond 

Gas or 

Liquid 

Ethylene 

Butene 

Isobutene 

Dienes and 

Alkynes 
CnH2n+2 Triple Bond 

Gas or 

Liquid 

Butadiene 

Acetylene 

 

The main reason for biodiesel is an alternative fuel instead of petroleum fuels 

can be seen the cetane number which indicates the ignition quality of a diesel fuel. It 

measures a fuel's ignition delay, which is a period between the start of injection and 

start of combustion of the fuel. Fuels, which have higher cetane number have shorter 

ignition delays, providing more time for the fuel combustion, process to be completed. 
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The cetane number term is considered as a straight chain alkane with 16 carbons 

(C16H34), hexadecane or cetane that is demonstrated in Figure 1.3. 

 

 

 

Figure 1.3. Molecular structure of hexadecane structure 

 

This long unbranched hexadecane is regarded as the high quality about the 

cetane scale and they have called as 100 cetane number. However, highly branched 

alkanes are low quality compounds on the cetane scale and have low cetane numbers. 

Methyl esters which are considered as biodiesel have long chain fatty acids with number 

of carbons varying from 14 to 22 (Figure 1.4). This structure leads to biodiesel as an 

unconventional diesel fuel (Gerpen et al. 2004). 

 

 

 

Figure 1.4. Fatty acid methyl ester structure 

 

Biodiesel can be blended at any level with petroleum diesel to produce biodiesel 

blends, which are proper for compression-ignition engines without any alteration. 

Biodiesel blends are symbolized as "BXX" with the prefix 'B' indicating Biodiesel and 

the "XX" demonstrating the percentage of Biodiesel contained in the blend, for 

example, B20 biodiesel blend contains 20% Biodiesel, 80% petroleum diesel. General 

blends consist of B2 (2% Biodiesel, 98% petroleum diesel), B5, and B20. B2 and B5 

preferred due to their safety in diesel engines also, B20 has established important 

ecological profits. In developing countries, biodiesel blends have been common for the 

applications in agricultural equipment such as generators, ships, heating and lighting, 

etc (ASTM 2010). 
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However, Rudolph Diesel in fact used fuel derived from peanut oil in the first 

compression ignition engines, which is later called as diesels. Thus, the studies have 

been performed on different vegetable oils including soybean oil, sunflower oil, cotton 

seed oil, corn oil, canola oil, in addition to waste vegetable oil for their feasibility as 

diesel fuel (Stavarache et al. 2007). The results of these studies have shown that 

vegetable oils in crude form can be used as a diesel engine fuel with small amounts of 

power loss when compared to diesel fuel (Knothe 2001). However, using vegetable oils 

directly in diesel engines may cause some engine problems due to their high viscosity, 

which is 10–20 times higher than petroleum diesel (Stavarache et al. 2007). There have 

been developed some methods to reduce viscosity by modifiying the engine or blending 

vegetable oils with diesel fuels illegally by which adding unconverted vegetable oils to 

biodiesel feedstock (Wang et al. 2006).  

Minimum flash points of both biodiesel and petrodiesel are essential for fire 

safety requirements. For instance, flash point for petroleum diesel (70 °C) is smaller 

than for pure biodiesel (160 °C). That smaller flash point is acquired by excess 

methanol, which can be detached during the production process, due to the fact that 

methanol leads to diminish the flash point. In addition, existence of methanol in 

biodiesel can also affect the engine parts such as fuel pumps, seals and elastomers, for 

this reason it can outcome in poor combustion properties (ASTM 2010) 

Furthermore, if excess water presents in the fuel, not only cause to corrosion but 

also it can promote the enlargement of microbes and germs. In addition, cetane number 

is used for determination of combustion quality under compression. For this reason, 

sufficient cetane number is essential for fine engine performance. In addition, cloud 

point is significant to make certain better engine performance in cold temperatures and 

carbon residue evaluates the affinity of a fuel to indicate carbon deposits in engine parts. 

Besides this, acid number is known as an indicator of free fatty acids in biodiesel and it 

enlarges in case of oxidative degradation. 
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In the lights of these facts, in order to synthesize biodiesel in a good way, it 

takes more time and financial problems. Thus, in order to compete with diesel fuel and 

survive in the market, lower-cost feedstocks are preferred, including waste cooking oil 

(WCO), grease, soapstocks, since feedstocks costs are more than 85% of the total cost 

of biodiesel production (Wang et al. 2007). In addition, increasing attention has begun 

relating to algae-based biodiesel (Campbell 2008). Nevertheless, biodiesel has many 

rewards against with petroleum diesel; the production cost has turned out to be the 

principal barrier to its commercialization. Biodiesel unit price is 1.5-3.0 times higher 

than that of petroleum derived diesel fuel depending on feedstock at present (Demirbas 

2008).  

In addition to this, the ratio of illegal marketing has been increasing in biodiesel 

industry such as adulteration of unconverted vegetable oils onto biodiesel/diesel blends 

(Divya and Mishra 2007). However, the other important circumstance for qualified 

biodiesel is concerning the monitoring of transesterification reaction for biodiesel 

synthesis. This typically controls long analysis terms and correlations. Working with 

process monitoring, enormous data are obtained from the measurement results. In 

practice, an alternative approach is often needed to use and interpret all the information 

stored in our database. One of them is the use of models based on statistical principles. 

The data processing and modeling can be quickly done at the same time using these 

principles by the help of modern powerful computers.   

Recently, the studies related to biodiesel blends concern the topics of 

chemometric multivariate calibration techniques (Lira et al. 2010; Ferrao et al. 2011; 

Rio et al. 2010; Gaydou et al. 2011). Various multivariate calibration methods were 

used to analyze spectra and to construct calibration models. In some studies, mid-

infrared (MIR) spectroscopy is used for rapid determination of chemical compositions 

biodiesel blend species (Oliveira et al.  2004). Near-infrared (NIR) spectroscopy is 

being used for measuring chemical properties such as cetane number, high combustion 

value, viscosity with artificial neural networks (Ramadhas et al. 2005). Also, there are 

some studies for determination of vegetable oils content for biodiesel/diesel blends with 

partial least squares (PLS), principal component regression (PCR) in literature (Oliveira 

et al. 2004). 

The ultimate goal of this study is to construct multivariate calibration models 

such as based on genetic algorithm inverse least squares (GILS) and artificial neural 

networks (ANN) approach for biodiesel blends by using near-infrared and mid-infrared 
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spectroscopy. Firstly, one of the aims is related to monitor the transesterification 

reaction of biodiesel synthesis to determine the methanol in reaction medium and 

investigate the conversion of vegetable oils to methyl esters (i.e. biodiesels). Secondly, 

the other purpose concerned to find out the illegal marketing of biodiesel/diesel blends 

in such a way that determining the added unconverted vegetable oils to diesel blends 

and exactly agree on the amount of BXX blends in market. Thus, one can save time, 

effort and money by using this type of calibration models for different biodiesel blends.  
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CHAPTER 2  

 

2. GAS CHROMATOGRAPHY 

 

2.1. The principle 

 

Chromatography has been popular in separation science in chemistry, which is 

arisen from adsorption, and partitioning after sample introduction between two phases 

which are stationary phase and mobile phase. If in mobile phase a gas is used, it is 

called as gas chromatography (GC). GC is sorted out into gas-solid chromatography 

(GSC), in which an adsorbent is applied as the stationary phase, and gas-liquid 

chromatography (GLC), where a partitioning mediator is formed by coating a proper 

sustain with a liquid.  

 

2.2. The Instrumentation 

 

Primarily, a gas chromatograph consists of the elements that are flowing mobile 

phase, an injection port (provides to bring in the sample into the flowing mobile phase), 

and a separation column including the stationary phase, a detector, and a data recording 

system (Figure 2.1). The sample which is hold by the mobile phase gases such as 

hydrogen (H2), helium (He), nitrogen (N2) or argon (Ar), is injected and immediately 

vaporized at the column inlet (Schomburg et al. 1990). Then, the vaporized sample is 

carried through the column by the carrier gas. When passing from beginning to end of 

the column, constituents in the sample are adsorbed to the stationary phase due to their 

distinctive concentration fraction. Thus, concentration equilibration achieved 

repetitively between the stationary, solid and mobile phase. Consequently, the level of 

adsorption or partition for each component leads differentiations in the rate of 

association for each component inside the column. The components then elute 

individually from the column outlet. 
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Figure 2.1 Fundamental schematic representation of a gas chromatograph  

(Source: SHU 2011) 

 

2.3. Columns  

 

The column in a GC is controlled in an oven, the temperature of which is 

specifically controlled by machine. The most commonly preferred separation columns 

are the sort of packed columns and capillary columns. Packed columns are 1.5 - 10 m in 

length containing an internal diameter of 2 - 4 mm. The tubing is usually made of 

stainless steel or glass and including a set of finely separated inert, solid support 

material, which is treated with a liquid or solid stationary phase. (Figure 2.2) 

Nowadays, the application of capillary columns, which are made-up from 

stainless steel or quartz and up of fused silica tubing with including an inner diameter of 

about 30-500 µm, and a length of 10, 30, 60 meters, have been improved because of 

their high efficiency which has definition of the number of theoretical plates per unit 

length and temperature constancy.  

The stationary phase which solely coats the inner surface is typically a thin film 

of thermally stable immobilized methylpolysiloxane (OV-1, DB 1, CP-Sil 5, SE-54 etc) 

(Schomburg et.al. 1990).  

  



11 

 

(a) 

 

(b) 

 

Figure 2.2. Column types (a) Capillary columns, (b) Packed columns  

(Source Sigma-Aldrich 2011) 

 

2.4. Detectors 

 

There are numerous diverse types of detectors prevalent to gas chromatography 

instruments. The general class of compounds being analyzed determines the choice of 

detector and the sensitivity required. Flame ionization detectors (FIDs) are the most 

commonly used detectors for organic samples. FIDs use an air/hydrogen flame to 

pyrolyze the effluent sample. The pyrolysis of the compounds in the flame creates ions 

and for that reasons the following on current, depends on the flame conditions and the 

characteristics of the molecule in issue. In other words, the detector demonstrates a 

diverse reply to each compound that is why, distinct calibrations should be utilized for 

each compound being analyzed.  

FID detector is especially susceptible to organic molecules (10
-12

 g/s, linear 

range: 10
6
 –10

7
), however insensible to a few small molecules e.g. N2, NOx, H2S, CO, 

CO2, H2O. when suitable quantity of hydrogen/air are mixed, the combustion does not 

pay for any ions whereas when the other components are introduced which is including 

carbon atoms cations are created in the effluent stream (Figure 2.3). In other words, it is 

mentioned that the more carbon atoms are in the molecule, the more fragments are 

formed and so the more sensitive the detector is for this compound. Besides this, some 

gases are typically needed to activate a FID: hydrogen, oxygen (compressed air), and 

carrier gas. 
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A further commonly used detector is thermal conductivity detector (TCD) 

(Figure 2.3). This detector is less susceptible than the FID which has 10
-5

-10
-6

g/s, linear 

range: 10
3
-10

4
, however is suitable for preparative purposes, since the sample is not 

damaged. This type of detector system has the fundamental principle on the comparison 

of two gas streams, at which one containing only the carrier gas and the carrier gas with 

the compound. Logically, a carrier gas with a high thermal conductivity e.g. helium or 

hydrogen is preferred to increase the temperature difference (and thus the difference in 

resistance) between two thin tungsten wires. 

 

  
 

                         (a) 

 

               (b) 

 

Figure 2.3. Sort of detectors broadly used in Gas Chromatograph (a) Flame Ionization 

Detector (FID), (b) Thermal Conductivity Detector (TCD) (Source: SHU 

2010) 
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2.5. Sample Introduction: Injection Port 

 

A sample port is essential for initiating the sample at the head of the column.  

Current injection methods often taking up the use of heated sample ports through which 

the sample can be injected and vaporized. A calibrated microsyringe is used to deliver a 

sample volume in the range of a few microliters through a rubber septum and into the 

vaporization chamber (Figure 2.4). Mainly separations involve only a small fraction of 

the initial sample volume and a sample splitter is preferred to direct excess sample to 

waste. Profitable gas chromatographs frequently allocate for both split and splitless 

injections when flashing between packed columns and capillary columns. The 

vaporization chamber is usually heated 50 °C above the lowest boiling point of the 

sample and consequently mixed with the carrier gas to transport the sample into the 

column.  

 

Figure 2.4. The diagram of a split/splitless injector  

(Source: SHU 2010) 
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2.6. Temperature Programming 

 

Temperature programming is defined as a technique that is applied principally in 

gas chromatography to speed up the elution rate of late peaks that, or else, would take a 

exceptionally extended time to elute. It is attained by incessantly lift up the column 

temperature, typically as a linear function of time, throughout the elution process. The 

retention time of a solute is relative to the distribution coefficient that, consecutively, 

enlarges as the negative promoter of the standard energy of distribution divided by the 

product of the gas constant and the absolute temperature. The standard energy is equal 

to the sum of the standard enthalpy and the product of the standard entropy and the 

absolute temperature. It is seen that retention is a slightly multifaceted function of 

temperature. The net effect of temperature programming on solute elution is comparable 

to the effect of gradient elution in liquid chromatography. In practice, program limits 

can be as low as 5 
o
C and as high as 250 

o
C and under convinced situation even higher. 

Temperature programming is a critical feature for nearly all gas chromatography 

analyses and so programming services are standard on virtually all gas chromatographs. 
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CHAPTER 3 

 

3. INFRARED SPECTROSCOPY 

 

3.1. Infrared Region 

 

Infrared spectroscopy is defined as the study of interaction of infrared light with 

matter. Infrared radiation extents over electromagnetic spectrum having wavenumbers 

from 13,000 to 10 cm
–1

, or wavelengths from 0.78 to 1000 μm. It is surrounded by the 

red end of the visible region at high frequencies and the microwave region at low 

frequencies where the region is alienated into three sub-regions due to several varying 

purposes and instrumentations as it is seen in the Table 3.1 given below (Skoog 1998). 

 

Table 3.1. Infrared spectral regions  

(Source: Skoog 1998) 

 

Region Wavelength Range, µm Wavenumber, cm
-1

 

Near (NIR) 0.78 – 2.5 12,800 – 4,000 

Middle (MIR) 2.5 – 50 4,000 – 200 

Far (FIR) 50 – 1000 200 – 10 

 

The far IR involves the use of particular optical equipment and resources. It is 

utilized for analysis of organic, inorganic, and organometallic compounds concerning 

heavy atoms such as mass number over 19. It affords constructive information in order 

to structural revisions for instance lattice dynamics of samples (Sherman et.al 1997). 

Near IR spectroscopy is requested nominal sample preparation. It recommends high-

speed quantitative analysis without utilization or demolition of the sample. Hence, near 

IR spectroscopy has expanded its attention, particularly in process control purposes. 

Mid-infrared (MIR) spectroscopy is generally performed for both qualitative and 

quantitative analysis such as frequently functional to recognize organic, inorganic, 

biochemical species, biotechnology (Arnold et al. 2000) and pharmaceutical industry 

(Tran et al. 2004) at which the region around between 900 cm
-1

 and 1300 cm
-1

 described 

as fingerprint region that is specially for individual composites (Griffiths 1978; Koenig 
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1975). For instance, although MIR spectra of 1-propanol and 2-propanol are similar to 

each other, yet, it demonstrates variations in fingerprint region (DeThomas et al. 1994).  

The main sort of molecular vibrations are stretching and bending. The various 

types of vibrations are shown in Figure 3.1. Infrared radiation is absorbed and the 

associated energy is changed into these type of motions. The absorption occupies 

distinct, quantized energy levels. Conversely, other rotational motions frequently is an 

adjunct to the entity vibrational motion. These combinations cause the absorption bands,  

but not the discrete lines, frequently seen in the mid IR region. 

 

 

 

Figure 3.1. Major vibrational modes for a nonlinear group, CH2. (+ indicates motion 

from the plane of page toward reader; – indicates motion from the plane of 

page away from reader.) (Source: Silverstein et al. 1981) 
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Infrared radiation proposes both rotational and vibrational motions to a molecule 

where rotational motion has low energy and rotational spectroscopy displays in FIR 

region. In addition, In MIR region, study fundamental vibrations and rotational- 

vibrational structures observe while, NIR region where radiation with higher energy 

fabrication is generally performed to work overtone and combination vibrations. 

Consequently, in MIR region vibrational quantum number varies in ±1 while in NIR 

region, vibrational quantum number alters in ±2, ±3, ±4, etc. Table 3.2 reviews the 

molecular interactions attached with infrared regions.  

 

Table 3.2. Molecular interactions related to infrared regions 

 

Name of region Featured transitions 

Near IR Both of overtone and fundamental molecular vibrations 

Mid IR Fundamental molecular vibrations and rotations 

Far IR Molecular rotations 

 

The entire number of absorption bands is commonly diverse from the whole 

number of fundamental vibrations. Since some modes are not IR active and a single 

frequency leads more than one mode of motion, it is diminished. On the other hand, 

supplementary bands are created by the form of overtones (integral multiples of the 

essential absorption frequencies), combinations of fundamental frequencies, differences 

of fundamental frequencies, coupling interactions of two fundamental absorption 

frequencies, and coupling interactions between vibrations and overtones or combination 

bands (Fermi resonance). The intensities of overtone, combination, and difference bands 

are less than those of the fundamental bands. The combination and blending of all the 

factors therefore produce a distinctive IR spectrum for each compound (Skoog 1998). 
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3.2. Infrared Instruments 

 

In simple terms, IR spectra are attained by adjusting in transmittance or 

absorption intensity as a function of frequency. Mainly commercial instruments detach 

and evaluate IR radiation by means of dispersive spectrometers or Fourier transform 

spectrometers. 

 

3.3. Dispersive Spectrometers 

 

Dispersive spectrometers pioneered in the mid-1940s and made available for the 

robust instrumentation and widespread applications. Non-dispersive instruments are 

known as filter or non-dispersive photometers that are planned for quantitative analysis 

yet non-complex, easy to use and not expensive (Skoog 1998). 

An IR spectrometer mainly composes of three basic components, which are 

radiation source, monochromator, and detector. A schematic diagram of a typical 

dispersive spectrometer is displayed in Figure 3.2. In a typical dispersive IR 

spectrometer, radiation from a broadband source passes through the sample and is 

dispersed by a monochromator into component frequencies (Figure 3.2). In that case, 

the beams fall on the detector, which generates an electrical signal and results in a 

recorder response. 
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Figure 3.2. Schematic illustration of a commercial dispersive IR instrument 

 

The frequent radiation resource for the IR spectrometer is an inert solid, which is 

heated up to 1000-1800 °C. Three popular kinds of basis are Nernst glower (created of 

rare-earth oxides), Globar (constructed of silicon carbide), and Nichrome coil. The 

entire produce continuous radiations, however with different radiation energy profiles 

(Skoog 1998). 

The monochromator is a device applied to disperse a broad spectrum of 

radiation and makes available a continuous calibrated series of electromagnetic energy 

bands of determinable wavelength or frequency range. Prisms or gratings are the 

dispersive components utilized in cooperation with variable-slit mechanisms, mirrors, 

and filters. Narrower slits facilitate the instrument in order to better distinguish more 

closely spaced frequencies of radiation, resulting in better resolution. However, wider 

slits allocate further light to attain the detector and present enhanced system sensitivity 

(Skoog 1998).   

Dispersive IR spectrometers detectors sorted out into two modules: thermal 

detectors and photon detectors. Thermal detectors contain thermocouples, thermistors, 

and pneumatic devices (Golay detectors). They determine the heating effect produced 

by infrared radiation. A variety of physical property changes is quantitatively 

determined: expansion of a nonabsorbing gas (Golay detector), electrical resistance 

(thermistors), and voltage at junction of dissimilar metals (thermocouple). 
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Nonconducting electrons are excited to a conducting state (Skoog 1998). Therefore, a 

small current or voltage can be generated. Thermal detectors supplies a linear response 

over a wide range of frequencies, on the other hand, they reveal slower response times 

and lower sensitivities rather than photon detectors. 

 

3.3.1. Fourier Transform Spectrometers 

 

Fourier transform spectrometers have preferred instead of dispersive instruments 

owing to their rapid analysis time and enhanced sensitivity. They have been applied to 

many areas, which are tricky or unfeasible to analyze, by dispersive instruments because 

of the fact that Fourier transform infrared (FTIR) spectroscopy scan the entire 

frequencies simultaneously.  

FT system has mainly three basic spectrometer components which are radiation 

source, interferometer, and detector. Optical presentation of a classic FTIR spectrometer 

is demonstrated in Figure 3.3.  

The similar types of radiation sources are applied for both dispersive and Fourier 

transform spectrometers. Yet, the source is generally water-cooled system in FTIR 

instruments in order to supply enhanced stability and power.  
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Figure 3.3. Basic optical illustration of a typical FTIR spectrometer  

(Source: Newport Corporation 2011) 

 

In other words, the detector response for a single-frequency component from the 

IR source is primarily reflected on. This imitates a desired situation at which the source 

is monochromatic, like a laser source. As mentioned before, differences in the optical 

paths among the two split beams are produced by changeable the relation position of 

moving mirror to the fixed mirror. The two beams are entirely in phase with each other; 

accordingly, they obstruct profitably and cause a maximum in the detector response. 

That position of the moving mirror is defined as the point of zero path difference (ZPD). 

While the moving mirror travels in either direction by the distance /4, the optical path 

(beamsplitter–mirror–beamsplitter) is changed by 2 (/4), or /2. The two beams are 

180° out of phase with each other, and so interfere destructively. As the moving mirror 

travels another /4, the optical path difference is now 2 (/2), or . The two beams are 

performed in phase and result in another practical interference. While the mirror is 

moved at a constant velocity, the intensity of radiation of the detector changes in a 

sinusoidal behavior and constructed the interferogram output shown in Figure 3.4  
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However, diverse advance is considered in an FTIR spectrometer to differentiate 

and compute the absorption at component frequencies. The monochromator is altered by 

an interferometer, which divides radiant beams, generates an optical path difference 

between the beams, and then recombines them in order to produce repetitive 

interference signals measured as a function of optical path difference by a detector. As 

its name implies, the interferometer produces interference signals, which contain 

infrared spectral information generated after passing through a sample. 

The most abundant used interferometer is a known as Michelson interferometer 

which includes information for the total IR region where the detector is receptive. 

Furthermore, Fourier transformation that is known as a mathematical operation switches 

the interferogram which is defined as a time domain spectrum displaying intensity 

versus time within the mirror scan, to the final IR spectrum, that is known as the 

familiar frequency domain spectrum showing intensity versus frequency. That makes 

obvious how the term Fourier transform infrared spectrometry is produced. 

 

 
   

Interferogram                                                                                         Spectrum 

 

Figure 3.4. Schematic representation of an interferogram and a spectrum.                 

(Source: ThermoNicolet 2009) 
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The detector signal is utilized at particular intervals throughout the mirror scan. 

An internal reference is used to modulate sampling rate and a controlled monochromatic 

beam obtained from helium neon (HeNe) laser focused on a distinct detector. The two 

mainly trendy detectors for a FTIR spectrometer are deuterated triglycine sulfate 

(DTGS) and mercury cadmium telluride (MCT). The response times of various 

detectors such as thermocouple and thermistors detectors selected in dispersive IR 

instruments are excessively slow for the quick scan times like 1 second or less. Since 

DTGS detector uses the altering in temperature instead of the value of temperature, it 

leads to retort in quickly. In addition, the MCT detector is known as photon detector, 

which uses the quantum nature of radiation and also reveals very fast responses. While 

DTGS detectors work at room temperature, MCT detectors should be controlled at 

liquid nitrogen temperature (77 °K) to be effective. In most cases, the MCT detector is 

considered as rapid and more perceptive rather than the DTGS detector.  

Primarily FTIR spectrometers are obtained as single-beam instruments at which 

does not attain transmittance or absorbance IR spectra in real time. 

A usual working process is mentioned as following steps given below: 

 i. Firstly, background spectrum (Figure 3.5) is gathered with the help of 

an interferogram where the raw data is pursued by dealing out the data by Fourier 

transform conversion. That refers to response curve of the spectrometer and takes 

account of the combined performance of source, interferometer, and detector. The 

background spectrum contain the contribution from any ambient water (two irregular 

groups of lines at about 3600 cm
–1

 and about 1600 cm
–1

) and carbon dioxide (doublet at          

2360 cm
–1

 and sharp spike at 667 cm
–1

) present in the optical working range. 
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Figure 3.5. A single-beam IR spectrum         

background, which is 

showing contribution from 

trace amount of ambient 

water and carbon dioxide 

(Source: Shermann 1997). 

 

Figure 3.6. A single-beam IR spectrum of   

dibutyl phthalate (a liquid 

sample) (Source: Shermann 

1997). 

 

ii. Second, a single-beam sample spectrum is required to be gathered (Figure 

3.6). and absorption bands from the sample and the background which is air or solvent. 

 

 

 

Figure 3.7. The ―double-beam‖ IR spectrum of dibutyl phthalate, produced by ratio of 

the corresponding single-beam sample spectrum against the single-beam 

background spectrum. (Source: Shermann 1997) 
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To diminish effect of background absorption from water and carbon dioxide in 

the environment (Figure 3.7), inert gas or with dry, carbon dioxide–scrubbed air purges 

optical bench. Spectrometer alignment, which includes optimization of the beamsplitter 

angle, is recommended as part of a periodic maintenance or when a sample accessory is 

changed. 

 

3.3.2. FTIR Advantages 

 

Rapid analysis time and enhanced sensitivity (Felgett advantage). Full spectrum 

can be gathered through a single scan of the moving mirror, whereas the detector 

monitors all frequencies at the same time. An FTIR instrument can achieve the same 

signal-to-noise (S/N) ratio of a dispersive spectrometer in a fraction of the time (1 sec or 

less versus 10 to 15 min). Since multiple spectra can be easily obtained in 1 min or less. 

Improved optical throughput (Jaquinot advantage). Most abundantly, circular 

optical slit is preferred in FTIR instruments. The beam area of an FT instrument is 

generally 75 to 100 times larger than the slit width of a dispersive spectrometer. 

Therefore, further radiation energy is made accessible which composes advantage for 

energy-limited samples. 

Internal laser reference (Connes advantage). The use of a helium neon laser as in 

FTIR systems presents routine calibration in an accuracy of better than 0.01 cm
–1

 which 

removes the requirements for external calibrations.  

Prevailing database station. Current FTIR spectrometers are usually equipped 

with a sophisticated data system, which executes broad range of data processing works 

like Fourier transformation, baseline correction, smoothing, integration, and library 

searching (Shermann 1997). 
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3.4. Sample Techniques  

 

It is potential to get an IR spectrum from samples in several forms, such as 

liquid, solid, and gas. Nevertheless, most materials are resistance to IR radiation and 

should lead to be dissolved or diluted in a transparent matrix so as to gain spectra. 

Otherwise, it is achievable to get reflectance or emission spectra from opaque samples. 

Recent popular sampling techniques and accessories are discussed here.  

Liquid cells are used for dilute solutions of solid and liquid samples which are 

dissolved in relatively IR-transparent solvents. The commonly used solvents are carbon 

tetrachloride for the region between 4000 and 1330 cm 
-1

 and carbon disulfide for the 

region between 1330 and 625 cm
-1

. Polar solvents such as water and alcohols are rarely 

used since they absorb strongly in the mid IR range and react with alkali-metal halides, 

such as NaCl, commonly used for cell windows. IR spectra of aqueous samples needed 

to use of special types of liquid cells such as thin cells of BaF2, AgCl, or KRS-5          

(a mixed thallium bromide–thallium iodide). 

Pellets are used for solid samples, which are not easy to melt or dissolve in any 

appropriate IR-transmitting solvents. The sample which has amount about 0.5 to 1.0 mg 

is thinly ground and thoroughly mixed with about 100 mg of dry potassium bromide (or 

any other alkali halides) powder. Grinding can be performed with an agate mortar and 

pestle, or lyophilization. The mixture is then pressed into a transparent disc in an 

evacuable die at sufficiently high pressure. To decrease band distortion because of 

scattering of radiation, the sample should be ground to particles of 2 µm or less in size. 

The IR spectra produced by the pellet technique often exhibit bands at 3450 cm
–1 

and 

1640 cm
–1

 due to absorbed moisture (Skoog 1998). 

Gas cells can be preferred to determined gases or low-boiling liquids. These 

cells including of a glass or metal body, two IR-transparent end windows, and valves 

for filling gas. They supplies vacuum-tight light paths from a few centimeters to 120 m. 

and longer path lengths are used to reflect the IR beam repetitively through the sample 

by using internal mirrors located at the ends of the cell. Sample gas pressure needed to 

obtain reasonable spectra depending on the sample absorbance and the cell‘s path 

length. Classically, a good spectrum can be obtained at a partial pressure of 50 torr in a 

10-cm cell. Analysis of multicomponent gas samples at parts-per-billion levels can be 

effectively achieved. 
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Attenuated total reflectance (ATR) accessories are especially useful for 

obtaining IR spectra of difficult samples that cannot be readily examined by the normal 

transmission method. They are suitable for studying thick or highly absorbing solid and 

liquid materials, including films, coatings, powders, threads, adhesives, polymers, and 

aqueous samples. ATR requires little or no sample preparation for most samples and is 

one of the most versatile sampling techniques. ATR occurs when a beam of radiation 

enters from a more-dense (with a higher refractive index) into a less-dense medium 

(with a lower refractive index). The fraction of the incident beam reflected increases 

when the angle of incidence increases and entire incident radiation is totally reflected at 

the interface at which the angle of incidence is larger rather than the critical angle, 

which is a function of refractive index. The beam infiltrates in small distance further 

than the interface and into the less-dense medium prior to the complete reflection 

occurs. This penetration is defined as the evanescent wave and characteristically is at a 

depth of a few micrometers (µm) whose its intensity is attenuated by the sample in 

regions of the IR spectrum where the sample absorbs. Figure 3.8 demonstrates the basic 

ATR principle (Skoog 1998). 

 

 
 

Figure 3.8. Basic illustration of multiple internal reflection effect in ATR               

(Source: Shermann 1997) 

 

The sample is usually located with high-refractive-index crystal such as zinc 

selenide, thallium bromide–thallium iodide (KRS-5), or germanium. Several types of 

ATR accessories are commercially available, such as 25 to 75° vertical variable-angle 

ATR, horizontal ATR, and Spectra-Tech Cylindrical Internal Reflectance Cell for 

Liquid Evaluation (CIRCLE) cell (Shermann 1997). 

The resulting ATR-IR spectrum is similar to the conventional IR spectrum. Even 

though, the absorption band positions are alike in the two spectra, but the relative 

intensities of analogous bands are different.  

Sample

Sample
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CHAPTER 4 

 

4. MULTIVARIATE DATA ANALYSIS METHODS 

 

The International Union of Pure and Applied Chemistry (IUPAC) states that ―In 

general, calibration is an operation that relates an output quantity to an input quantity 

for a measuring system under given conditions‖ (Danzer et al. 1998) while according to 

the International Vocabulary of Basic and General Terms in Metrology (VIM), 

calibration is an ―operation establishing the relation between quantity values provided 

by measurement standards and the corresponding indications of a measuring system, 

carried out under specified conditions and including evaluation of measurement 

uncertainty‖  

The improvement of the discipline chemometrics is concerned to the usage of 

computers in chemistry. Scientists in the 1970s were previously dealing with statistical 

and mathematical methods, which are defined, recently to chemometric methods. 

The International Chemometrics Society (ICS) is defined the term 

―Chemometrics― as the following words; it is the science of relating measurements 

made on a chemical system or process to the state of the system via application of 

mathematical or statistical methods. The topics of chemometrics are also related to 

problems of the computer-based laboratory, to methods for handling chemical or 

spectroscopic databases and to methods of artificial intelligence. Chemometric 

techniques are arranged for collecting good data e.g. optimization of experimental 

parameters, design of experiments, calibration, signal processing and for getting 

information from these data e.g. statistics, pattern recognition, principal component 

analysis. In addition, chemometricians contribute to the development of all these 

methods. As a rule, these developments are dedicated to particular practical 

requirements, such as the automatic optimization of chromatographic separations or in 

prediction of the biological activity of a chemical compound (Source: IUPAC 2010). 

This chapter is focused on the calibration modeling techniques that are used in this 

study. 
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4.1. Overview 

 

Several chemical applications of chemometrics related to the calibration, which 

is defined as a process model created to obtain a relationship within the output of an 

instrument and properties of samples. In addition to this, prediction is known as a 

process where the constructed model is used to predict the properties of a sample, 

whose instrument output is set. The model is constructed by measuring instrument 

responses and concentration levels of certain chemical contents of the samples. Then, 

this model is used to predict the concentration of an unknown content sample in the 

future (Chemometrics: A Practical Guide 2008). In this study, responses which are 

absorbance values obtained via instruments refer to MIR and NIR spectra, and 

concentration levels refer to biodiesel blends and their individual concentration of 

samples. 

To find patterns in data and to assign samples, materials or in general, objects, to 

those patterns, calibration methods of data analysis are applied. Generally, for not 

sophisticated instruments, merely one response is taken from instrument and this 

response is correlated to the concentration of the chemical component of a sample. This 

technique is entitled as univariate calibration due to number of instrumental response 

for each sample is only one. However, the process requires a calibration or training data 

set, which includes reference values for the properties of interest for prediction, and the 

measured attributes believed to correspond to these properties. For instances, one can 

assemble data from a number of samples, including concentrations for an analyte of 

interest for each reference sample corresponding infrared spectrum. The process that 

relates multiple instrument responses to one or more properties of a sample is known as 

multivariate calibration. The sample can be multi-component and the goal is to predict 

the concentrations of the components from, for example, UV-Vis absorption 

measurements. (Chemometrics: A Practical Guide 2008) 
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4.2. Univariate Calibration 

 

When deploying a univariate method to predict for unknown samples, one 

essentially assumes that the signal is highly selective for the analyte of interest. 

According to the latest IUPAC recommendation, ―selectivity refers to the extent to 

which the method can be used to determine particular analytes in mixtures or matrices 

without interferences from other components of similar behavior‖ (Vessman et.al 2001).  

Generally, in chemical analysis, this kind of calibration modeling has been 

preferred. In establishing the univariate calibration function, defined as the functional 

relation between the expected instrumental responses and analytes concentrations, the 

proper calibration design has to be taken into account. For absorption or 

chromatography studies, absorption at a wavelength or a peak area is communicated 

with the concentration of a sample. If the model is considered as linear, the model could 

be either classical calibration or inverse calibrations, which are based on Beer‘s law. 

According to the Beer‘s law, the absorptivity coefficient is directly proportional to 

absorbance at a wavelength, light path length and concentration. 

 

4.3. Classical Calibration 

 

One of the simplest problems is to determine the concentration of a single 

compound using the response at a single detector, for example a single spectroscopic 

wavelength or a chromatographic peak area. In this type of calibration models, 

absorbance at a spectroscopic wavelength of a chromatographic peak area is related as a 

function of concentration. Mathematically, the general formula of classical calibration is 

 
 s ca  (4.1) 

 

where, in the simplest case, a  is the vector of absorbance at one wavelength for 

a number of samples and c  is the vector of corresponding concentrations. The scalar 

coefficient s  is related with these parameters and can be determined by the following 

equation: 
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   accc 
1

s  (4.2) 

 

where the c  is the transpose of the concentration vector. 

After determining s , the prediction model for an unknown is constructed as, 

 
 sac /ˆˆ   (4.3) 

 

where the hat symbol for scalars a  and c  refer to prediction. 

Eventually, residuals are calculated in order to control whether the prediction 

model is qualified or not. Residuals or errors are considered as the difference between 

the actual and predicted concentration values ( cc ˆ ). It is always useful, however, to 

check the original graph just to be sure, and this percentage appears reasonable. 

Therefore; residuals value should be the least value as much as possible in order to 

construct a better model (Brereton 2003).  

 

 cce ˆ  (4.4) 

 

The less the residuals mean the better the model  

 

4.3.1. Inverse Calibration 

 

Notwithstanding classical calibration is widely used in literature, it is not always 

the most appropriate approach in chemistry, for two main reasons. First, the ultimate 

aim is usually to predict the concentration (or independent variable) from the spectrum 

or chromatogram (response) rather than vice versa. The second relates to error 

distributions. Furthermore, the response errors are arisen from instrumental 

performance, on the other hand the ratio of reliability of instruments have been 

increased due to gravimetrically determination of concentration values, which lead to 

larger than instrumental error. In Figure 4.1 given below demonstrates the difference 

between errors stem from instrument and concentration. 
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Figure 4.1. Difference between errors in (a) classical and (b) inverse calibration 

 

Inverse calibration can be modeled as the following equations, 

 
 b ac  (4.5) 

 

at which b  is a scalar coefficient and inverse of s  due to variation on errors for 

every model. Then, b  is calculated the formula given below, 

 

   caaa 
1

b  (4.6) 

 

and determination of unknown sample can be carried out simply 

 
 bac  ˆˆ  (4.7) 

 

It is also useful to realize that similar methods can be applied to classical 

calibration, the details being omitted for brevity, as it is recommended that inverse 

calibration is performed in normal circumstances (Brereton 2003). 
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4.4. Multivariate Calibration Methods 

 

Multivariate calibration can be seen as a promising mathematical approach to 

the ubiquitous selectivity problem. Chemometricians have fostered multivariate 

calibration methods ever since the foundation of chemometrics as an independent 

branch of chemistry in the early 1970s. The goal is to construct determination of major 

and also minor components of mixtures and for various instrument types. Therefore 

multivariate calibration can give rise to the development of new analytical instruments. 

In addition, it can enhance the analytical capacity and reliability of traditional 

instruments. (Martens et al. 2004) 

Multivariate calibration has some advantages over univariate calibration. 

1) When the aim is to see whether a spectrum of a mixture can be employed 

to determine individual concentrations and may be to replace a slow and 

expensive chromatographic method by a rapid spectroscopic approach, 

multivariate could give better approximations. 

2)  Another different aim might be impurity monitoring: how well the 

concentration of a small impurity can be determined, for example, buried 

within a large chromatographic peak. Simultaneous analysis of multiple 

components in a sample is possible. By univariate method, there has to 

be one measurement for each component. Thus, spent time will be more. 

(Brereton 2003) 

3) Precision in the prediction can be enhanced by repeating a measurement 

and calculating the mean. These are consequence of reduction in the 

standard deviation of the mean, which is called signal averaging. 

(Brereton 2003) 

4) Furthermore, multivariate calibration has fault-detection capabilities. 

That means unknown interferences in the sample can be overcome by 

multivariate calibration. In univariate calibration, the presence of 

interferences may cause wrong prediction of concentration of analyte. To 

avoid this problem, physical separation of analyte from interfering 

material or using selective measurements is needed and this means 

necessity of more effort. Figure 4.2 demonstrates how the calibration 

curve is affected by the interferences. By multivariate calibration, 
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nonlinearities caused by the interferences can be reduced by selecting 

more variables and chance of obtaining better calibration curve can be 

increased. Therefore, time and effort spent to remove interferences 

physically is respectably decreased. So relying on multiple wavelengths 

will result better. (Öztürk 2003) 

 

 

 

Figure 4.2. (a) Spectra of a sample in different concentrations which has no interference 

and its calibration curve (b) by univariate calibration; (c) spectra of a sample 

in different concentrations which has interfering materials and its calibration 

curve (d) by univariate calibration 
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In multivariate calibration modeling technique, the equations can be improved in 

two such cases, likewise in the classical calibration case, absorbance is a function of 

concentration and the other is likewise in the inverse calibration case, concentration is a 

function of absorbance. In addition to this, multivariate calibration applies the 

absorbance full spectral data. Thus, more than one component can be used at which 

concentration vector becomes a matrix.  

In this study, calibration methods based on genetic inverse least squares and 

artificial neural networks are used. Prior to discussing these methods, it is necessary to 

give details about classical least squares and inverse least squares methods as a preface 

of the multivariate calibration methods. 

 

4.4.1. Classical Least Squares (CLS) 

 

This spectroscopic quantitation method, which is also known as K-Matrix, is 

founded in using the Beer Lambert Law to extend the calculation of the absorptivity 

coefficients across a much larger portion of the spectrum than the much simpler Least 

Squares Regression method. For instance, Beer‘s law that is a classical least squares 

method can be modeled as, 

 

 EKCA   (4.8) 

 

where C  is the matrix which consists of concentrations of multi-component 

samples but in case of one component, it is denoted as a vector c . A  is the matrix 

which consists of absorbance values of the samples at different wavelengths and E  is 

the error matrix. Each row C  of A  and correspond to one sample, each column 

represents different component and different absorption values, respectively. K  is the 

matrix of absorptivity coefficients multiplied by path length. Each member of this 

matrix corresponds to absorptivity coefficient of an absorption value at a certain 

wavelength. K  matrix can be determined by the following formula 

 

   ACCCK
1




 (4.9) 

 

So as to carry out prediction, an unknown sample spectrum is measured ( r ). 

Given r  and K , concentration can be predicted by using simple matrix algebra: 



36 

   1
KKKac


 ˆˆ  (4.10) 

 

Noted that, prediction elements are vector not scalar as in the univariate 

calibration since in one unknown sample has more than one component and absorbance 

value as well.  

The difference between the reference and predicted concentration values is 

known as residual and represents as, 

 

 cce ˆ  (4.11) 

 

In briefly, the CLS method can be applied to such simple systems that the whole 

pure-component spectra can be measured. Also, to construct the CLS model, the pure-

component spectra are measured for each analyte in the sample and it leads to figure out 

spectral matrix which helps to predict the concentrations in unknown samples.  

Furthermore, CLS method has advantageous due to modeling on Beer‘s Law, 

relatively fast, proper for moderately complex mixtures and wavelength selection is not 

a requirement. However, It has to be very susceptible to baseline effects since equations 

assume the response at a wavelength is due entirely to the calibrated constituents and 

require knowing the complete composition (concentration of every constituent) of the 

calibration mixtures. 

 

4.4.2. Inverse Least Squares (ILS) 

 

One of the most widely used spectroscopic quantitation methods is Inverse Least 

Squares, also known as Multiple Linear Regression and P-Matrix. In some cases, Most 

methods based on Beer‘s Law assume that there is little or no interference in the 

spectrum between the individual sample constituents or that the concentrations of all the 

constituents in the samples are known ahead of time. In real world samples, it is very 

unusual, if not entirely impossible to know the entire composition of a mixture sample. 

There have been approaches on this purpose and they give some guidance (Haalan et al. 

1988). 
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The relationship between the measurements and concentrations is modeled as in 

CLS but in this case the concentrations are treated as a function of absorbance values, as 

shown in the following equation 

 

 EPAC   (4.12) 

 

whereby C  is the concentration matrix and A  is the absorbance matrix as in 

CLS. The matrix P  contains the model coefficients and can be determined by 

 

   CAAAP
1




 (4.13) 

 

A predicted concentration of a multi-component sample can be obtained by 

 

 Pac  ˆˆ  (4.14) 

 

The residual is, same as in the CLS model, known as the difference between the 

reference and predicted concentration values 

 

 cce ˆ  (4.15) 

 

In ILS, the averaging effect gained by selecting many wavelengths in the CLS 

method is effectively lost. Therefore, wavelength selection is critically important to 

building an accurate ILS model. Ideally, there is a crossover point between selecting 

enough wavelengths to compute an accurate least squares line and selecting few enough 

so that the calibration is not overly affected by the colinearity of the spectral data. 

 

4.4.3. Genetic Inverse Least Squares (GILS) 

 

GILS can be interpreted as a customized method of ILS in which genetic 

algorithms (GA) are used as a tool for wavelength selection. GA‘s are global search and 

optimization methods based on the principles of natural evolution and selection as 

developed (Wang et al. 1991) at which defined as evolution, individuals who fit better 

to the environment are more likely survive and breed, thus are able to pass their genetic 

information to their offspring. However, individuals who do not fit and unable to adapt 

will eventually be eliminated from the population. This process progresses slowly over 

a long period (or may never end) through generations and the species will evolve into 
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better and fit forms. In the last couple of decades, scientists have been trying to take 

advantages of the natural evolutions as an improvement concept in the process of 

solving large-scale optimization problems. In the 1960‘s biologists have begun to 

perform the simulation of genetic systems experiments with computer. The initial work 

in genetic algorithms was done by Holland who developed a GA in his research on 

adaptive systems in the early 1960‘s and is considered the father of the field. (Gilbert et 

al. 1997) Over the years, GA have attracted attention and have been applied to various 

global optimization problems in many areas including chemometrics. (Fontain et al. 

1993; Kateman et al. 1991) In terms of calibration, there have been several applications 

of GA to wavelength selection. (Lucasius et al. 1994; Williams et al. 1996; Paradkar et 

al. 1997; Ozdemir et al: 1998) 

Computationally the implementation of a typical GA is quite simple and consists 

of five basic steps including initialization of gene population, evolution of the 

population, and selection of the parent genes for breeding and mating, crossover and 

mutation, and replacing the parents with their offspring. These steps have taken their 

names from the biological foundation of the algorithm. The implementation of a typical 

GA is shown in Figure 4.3. 

 

 
 

Figure 4.3. Flow chart of genetic algorithm used in GILS. 
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4.4.3.1. Initialization 

 

In the initialization step, an even number of genes are formed from full spectral 

data matrix and each gene are used to form model at which a gene is defined as a 

potential solution to a given problem. The exact form of a gene may vary from 

application to application and depends upon the problem being investigated. The term 

population is used to describe the collection of individual genes in the current 

generation.  

In the initial gene pool, a gene consists of absorbance values at randomly chosen 

wavelengths between 2 and 30. An example of a gene is as the following: 

 598767308420 ,, AAAS 
 

where S  is so-called a gene, A  is the absorbance measured at the indicated 

wavelength. The chosen absorbance value at one wavelength is a vector of samples.       

Figure 4.4 shows the schematic representation of the gene for a biodiesel sample NIR 

spectra. Then, the population is formed according to the number of genes initially 

entered as an input of the software. 

 

 

      Figure 4.4. Schematic representation of the gene for a biodiesel sample NIR spectra. 
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4.4.3.2. Evaluate and Rank the Population 

 

This step involves the evaluation of the genes using fitness function, which is 

the inverse of standard error of calibration (SEC), which is considered from the ILS 

model in which absorbance values from the selected wavelengths are used to construct 

the model. SEC is calculated from: 

 

 
 

2

ˆ
1

2









m

cc

SEC

m

i
ii

 
(4.16) 

 

whereby ic  is the reference and iĉ  are the predicted values of concentration of 

i
th
 sample and m is the number of samples. Noted that, degrees of freedom is considered 

as 2m  due to a linear model in which there are only two parameters to be extracted 

which are the slope of the actual vs. reference concentration plot and the intercept. In 

each step, increase in the fitness value is targeted. 

 

4.4.3.3. Selection of Genes for Breeding 

 

This step involves the selection of the parent genes from the current population 

for breeding according to their fitness value. The goal is to give higher chance to those 

genes with high fitness so that only the best performing members of the population will 

survive in the long run and will be able to pass their information to the next generations. 

Here, it is expected that the genes better suited for the problem will generate even better 

offspring. The genes with the low fitness values will be given lower chance to breed and 

hence most of them will be unable to survive. There are number of selection methods 

that can be used for parent selection (Wang et al. 1991). Top down selection is one of 

the simplest methods for parent selection. After genes are ranked in the current gene 

pool, they are allowed to mate in a way that the first gene mates with the second gene, 

third one with the forth one and so on. All the members of the current gene are given a 

chance to breed. Roulette wheel selection method, which is used in GILS, is the one 

where the chance of selecting gene is directly proportional to its fitness. In this method, 

each slot in the roulette wheel represents a gene. The gene with the highest fitness has 
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the biggest slot and the gene with the lowest fitness has the smallest slot. Therefore, 

when the wheel is rotated, there is a higher chance of being selected for a gene with 

high fitness than for a gene with a low fitness. There will also be the genes, which are 

selected multiple times, and some of the genes will not be selected at all and will be 

thrown out from the gene pool. After all the parent genes are selected, they are allowed 

to mate top-down, whereby the first gene (S1) mates with the second gene (S2), S3 with 

S4 and so on until all the genes mate. Since no ranking is done for the roulette wheel 

selected genes, the genes with low fitness have a chance to mate with better performing 

genes after being selected, thus resulting in an increased possibility of recombination. 

 

4.4.3.4. Crossover and Mutation 

 

The genetic algorithm does most of its work in the breeding/mating step. The 

step involves breaking the genes at random points and cross-coupling them as illustrated 

in the following example: 

Consider S1 and S2 are parent genes which are breeding, S3 and S4 are their 

corresponding off-springs. 

 

 48909237573242551 AAAAS   

 892278329743845751232 AAAAAS   

 8922573242553 AAAS   

 4890923778329743845751234 AAAAAAS   

 

Here the first part of S1 is combined with the second part of the S2 to give the S3, 

likewise the second part of the S2 to give S4. This process is called single point 

crossover and it is the one used in GILS. The symbol   is used to indicate the place 

where crossover takes place. There are also other types of crossover methods such as 

two point crossover and uniform crossover, each having their advantages and 

disadvantages. In the uniform case, each gene is broken at every possible point and 

many possible combinations are possible in the mating step, thus resulting in more 

exploitation. However, it is more likely to destroy good genes. Single point crossover 

will not provide different offspring if both parent genes are identical, which may happen 
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in the roulette wheel selection, and broken at the same point. To avoid this problem, two 

points crossover, where each gene is broken in two points and recombined, can be used. 

Single point crossover generally does not disturb a good gene but it provides as many 

recombinations as other types of crossover schemes. Also mating can increase or 

decrease the number of base pairs in the offspring. 

Mutation, which introduces random deviations into the population, can be also 

introduced into the algorithm during the mating step at a rate of 1% as is typical in 

GA‘s. Replacing one of the wavelengths in an existing gene with a randomly generated 

new wavelength usually does this. However, it is not used in GILS in this study. 

 

4.4.3.5. Replacing the parent genes by their off-springs 

 

After crossover, the parent genes are replaced by their offsprings. The ranking 

process based on their fitness values follows the evolution step. Then the selection for 

breeding/mating starts again. This is repeated until a predefined number of iterations are 

reached.   

At the end, the gene with the lowest SEC (highest fitness) is selected for model 

building. This model is used to predict the concentrations of component being analyzed 

in the validation set. The success of the model in the prediction of the validation set is 

evaluated using standard error of prediction (SEP) which is calculated as: 
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(4.17) 

 

whereby m is now, in this case, the number of validation samples. 

 

4.4.3.6. Termination 

 

The termination of the algorithm is done by setting predefined iteration number 

for the number of breeding/mating cycles. However, no extensive statistical test has 

been done to optimize it, though it can also be optimized. Since the random processes 

are heavily involved in the GILS, the program has been set to run predefined number of 

times for each component in a given multi-component mixture. The best run, i.e. the 
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one generating the lowest SEC for the calibration set and at the same time obtained SEP 

for the validation set that is in the same range with SEC was subsequently selected for 

evaluation and further analysis. 

GILS has some major advantages over the classical univariate and multivariate 

calibration methods. First of all, it is quite simple in terms of the mathematics involved 

in the model building and prediction steps, but at the same time it has the advantages of 

the multivariate calibration methods with a reduced data set since it uses the full 

spectrum to extract genes. By selecting a subset of instrument responses, it is able to 

eliminate nonlinearities that might be present in the full spectral region. 

 

4.4.4. Artificial Neural Networks (ANN) 

 

A neural network is defined as a massively parallel-distributed processor which 

has a natural susceptibility for storing experiential knowledge and making it available 

for use. It is similar to the brain in terms of two purposes (Haykin et al. 1998): 

i. Knowledge is acquired by the network through a learning process. 

ii. Interconnection strengths known as synaptic weights are used to store the 

knowledge. 

 Learning is a process by which the free parameters (i.e., synaptic weights and 

bias levels) of a neural network are adapted through a continuing process of stimulation 

by the environment in which the network is embedded. The type of learning is 

determined by the manner in which the parameter changes take place. In a general 

sense, the learning process may be classified as follows: 

i. Learning with a teacher, also referred to as supervised learning 

ii. Learning without a teacher, also referred to as unsupervised learning 

There are a large number of different types of networks, but they all are 

characterized by the following components: a set of nodes, and connections between 

nodes, computational units, which receive inputs, and process them to obtain an output.  

One type of network sees the nodes as ‗artificial neurons‘. These are called 

artificial neural networks (ANNs). An artificial neuron is a computational model 

inspired in the natural neurons. Natural neurons receive signals through synapses 

located on the dendrites or membrane of the neuron. When the signals received are 

strong enough (surpass a certain threshold), the neuron is activated and emits a signal 
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though the axon. This signal might be sent to another synapse, and might activate other 

neurons. 

 
 

Figure 4.5. An illustration of natural neuron 

 

The complexity of real neurons is highly abstracted when modeling artificial 

neurons. These consist of inputs (like synapses), which are multiplied by weights 

(strength of the respective signals), and then computed by a mathematical function 

which determines the activation of the neuron. Another function (which may be the 

identity) computes the output of the artificial neuron (sometimes in dependence of a 

certain threshold). ANNs combine artificial neurons in order to process information.  

 

 

Figure 4.6. The schematic illustration of artificial neuron 

 

The higher a weight of an artificial neuron is, the stronger the input, which is 

multiplied by it, will be. Weights can also be negative, so that the signal is inhibited by 

the negative weight. Depending on the weights, the computation of the neuron will be 

different. The output is obtained by adjusting the weights of an artificial neuron for 

specific inputs. However, when an ANN of hundreds or thousands of neurons, it would 

be quite complicated to find by hand all the necessary weights. Thus, it should be found 

algorithms which can adjust the weights of the ANN in order to obtain the desired 
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output from the network. This process of adjusting the weights is called learning or 

training. 

 

4.4.4.1. Supervised Learning 

 

This form of learning assumes the availability of a labeled (i.e., ground-truthed) 

set of training data made up of N input – output examples as shown in equations (4.18): 

 

 (4.18) 

 

whereby xi = input vector of ith example, di = desired (target) response of ith 

example, assumed to be scalar for convenience of presentation and N = sample size. 

Given the training sample T, the requirement is to compute the free parameters 

of the neural network so that the actual output yi of the neural network due to xi is close 

enough to di for all i in a statistical sense. For example, we may use the mean-square 

error as the index of performance to be minimized by following equation. 

 

(4.19) 

 

4.4.4.2. Feed-forward networks 

 

The field of neural networks envelops a broad range of diverse network methods 

that is improved for and performed to very different situations. The ―feed-forward‖ 

network structure is especially appropriate for treatment non-linear relationships 

between ―input‖ and ―output‖ variables, when the focus is prediction.  

A feed-forward network is a known as function where the information from the 

input data utilizes through from intermediate variables to the output data. The input data 

(X) is often referred the input layer and the output data (Y) is known to be the output 

layer. Between these two layers are the hidden variables that are gathered in one or 

more hidden layers. The nodes in the hidden layers can be thought of as sets of 

𝑇 = {(𝑥𝑖 , 𝑑𝑖)}  
𝑁

𝑖 = 1
  

𝐸 𝑛 =  
1

𝑁
  𝑑𝑖 − 𝑦𝑖 

2

𝑁

𝑖=1
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intermediate variables similar to the latent variables in bilinear regression methods such 

as PLS and PCR. A representation of a feed-forward network with one output variable 

and one hidden layer is shown in Figure 4.7.  

 

 

 

Figure 4.7. Basic illustration of a simple feed-forward network with one hidden layer 

and one output node. 

 

The information from all input variables pass through to every nodes in the 

hidden layer and entire hidden nodes are linked to the single variable in the output layer 

in each case. The contributions from all nodes or elements are multiplied by constants 

and added prior to probable transformation occurs within the node. The transformation 

is usually a sigmoid function, on the other hand it can theoretically be any function. The 

sigmoid signal processing in a node is mentioned in Figure 4.8. 

 

 
 

Figure 4.8. Representation of the signal processing in a sigmoid function 

  

Input Hidden Output
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The feed-forward neural network in Figure 4.7 obtains a regression equation of the form 

 

  (4.20) 

 

whereby y is the output variable, the x‘s are the input variables, e is a random error term, 

gi and f are functions and bi, wij , af1 and a2 are constants to be determined. 

 

The constants wij are the weights that each input element must be multiplied by 

before their contributions are added in node i in the hidden layer. In this node, the sum 

over j all elements wijxj is used as input to the function gi. Then, each function gi is 

multiplied by a constant bi before summation over i and it is used as input for the 

function f. More than one hidden layer can also be used, resulting in a similar, but more 

complicated function. Note that for both the hidden and the output layer, there are 

constants, ai1 and a2, respectively, that are added to the contribution from the rest of the 

variables before the transformations take place. These constants play the same role as 

the intercept (constant) term in a linear regression model (Barron et al. 1988). 

As can be seen from equation given above, an artificial feed-forward neural 

network is simply a non-linear parametric model for the relationship between y and all 

the x-variables. There are functions gi and f that have to be selected and parameters wij 

and bi that must be estimated from the data. The process by which these parameters are 

determined is, in the terminology of artificial neural computing, called ―learning‖. The 

best choice for gi and f can in practice be found by trial and error, in that several options 

are tested and the functions that result in the best prediction ability are selected. 

(Martens et al. 1989) 

As with linear calibration methods, network models must be constructed with 

consideration of two important effects: underfitting and overfitting. If a model that is 

too simple or too rigid is selected underfitting is the result, and if a model that is too 

complex is used, overfitting can be the consequence. The optimal model complexity is 

usually somewhere between these two extremes. (Barron et al. 1991) 

  

𝑦 = 𝑓   𝑏𝑖

𝐼

𝑓=1

𝑔𝑖   𝑤𝑖𝑓

𝐽

𝑓=1

𝑥𝑓 +  𝑎𝑓1 +  𝑎2 +  𝑒 
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4.4.4.3. The Backpropagation algorithm 

 

The idea of the backpropagation algorithm is to reduce this error, until the ANN 

learns the training data. The training begins with random weights, and the goal is to 

adjust them so that the error will be minimal. The activation function of the artificial 

neurons in ANNs implementing the backpropagation algorithm is ai weighted sum (the 

sum of the inputs xi multiplied by their respective weights wji): 

 

     (4.21) 

 

Noted that the activation depends only on the inputs and the weights. If the 

output function would be the identity (output=activation), then the neuron would be 

called linear. But these have severe limitations. The most common output function is the 

sigmoidal function. 

 

    (4.22) 

 

The sigmoidal function is very close to one for large positive numbers, 0.5 at 

zero, and very close to zero for large negative numbers. This allows a smooth transition 

between the low and high output of the neuron (close to zero or close to one) also; the 

output depends only in the activation, which in turn depends on the values of the inputs 

and their respective weights. 

Now, the goal of the training process is to obtain a desired output when certain 

inputs are given. Since the error is the difference between the actual and the desired 

output, the error depends on the weights, and needs to adjust the weights in order to 

minimize the error function for the output of each neuron: 

 

                  −    
𝟐    (4.23) 

 

Then, the square of the difference between the output and the desired target 

because it will be always positive, and because it will be greater if the difference is big 

and lesser if the difference is small. The error of the network will simply be the sum of 

the errors of all the neurons in the output layer: 

𝐴𝑗  𝑥, 𝑤 =  𝑥𝑖𝑤𝑗𝑖

𝑛

𝑖=0

 

𝑄𝑗  𝑥, 𝑤 =
1

1 + 𝑒𝐴𝑗  𝑥,𝑤 
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   (4.24) 

  
The backpropagation algorithm now calculates how the error depends on the 

output, inputs, and weights. After we find this, we can adjust the weights using the 

method of gradient descendent: 

 

     (4.25) 

 

This formula can be interpreted in the following way:  

the adjustment of each weight (Δwji) will be the negative of a constant eta (η) 

multiplied by the dependence of the previous weight on the error of the network, which 

is the derivative of E in respect to wi. This is, if the weight contributes a lot to the error, 

the adjustment will be greater than if it contributes in a smaller amount (4.25) is used 

until it is  found appropriate weights (the error is minimal).  

After that, first, calculate how much the error depends on the output, which is 

the derivative of E in respect j to O (4.24) and  

 

     (4.26) 

 
Second, how much the output depends on the activation, which in turn depends 

on the weights (4.22) and (4.23)): 

 

   (4.27) 

 

As it is seen in (from equation (4.26) and (4.27)): 

 

  (4.28) 

 

Therefore, the adjustment to each weight will be (from (4.25) and (4.28)): 

  

𝐸𝑗  𝑥, 𝑤, 𝑑 =  (𝑂𝑗  𝑥, 𝑤 − 𝑑𝑗 )2

𝑗

 

△ 𝑤𝑗𝑖 = −
𝜕𝐸

𝜕𝑤𝑗𝑖
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𝜕𝑂𝑗

𝜕𝑤𝑗 𝑖
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𝜕𝐴𝑗

𝜕𝐴𝑗

𝜕𝑤𝑗 𝑖
= 𝑂𝑗  1 − 𝑂𝑗  𝑥𝑖  

𝜕𝐸

𝜕𝑤𝑗 𝑖
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= 2 𝑂𝑗 − 𝑑𝑗  𝑂𝑗  1 − 𝑂𝑗  𝑥𝑖  
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  (4.29) 

 

Equation (4.29) as it is for training an ANN with two layers. Now, for training 

the network with one more layer to make some considerations. First adjust the weights 

(called them vik) of a previous layer, then calculate how the error depending not on the 

weight, but in the input from the previous layer. This is just done by just need to change 

xi with wji in (4.27), (4.28), and (4.29). However, it is needed to see how the error of the 

network depends on the adjustment of vik. Thus, 

 

    (4.30) 

 

whereby, 

 

   (4.31) 

 

Then, assuming that there are inputs uk into the neuron with vik (from (4.27)): 

 

    (4.32) 

 

If it is asked for adding yet another layer, same steps mentioned above would be 

performed, calculating how the error depends on the inputs and weights of the first 

layer. For practical reasons, ANNs implementing the backpropagation algorithm do not 

have too many layers, since the time for training the networks grows exponentially. In 

addition, there are refinements to the backpropagation algorithm, which allow a faster 

learning. (Rojas et al. 1996) 

In principle, ANN can approximate any linear or non-linear dependence between 

the input and output data with an appropriate choice of its architecture (structure) and 

free parameters (weights). Therefore, ANN is one of the most effective techniques for 

non-linear data analysis in almost all fields of chemistry from quantum theory to 

petroleum chemistry (Balabin et al. 2008). The main disadvantage of the ANN approach 

is its computational complexity and stochastic nature (results of ANN training depend 

on initial parameters). It also requires a much larger data set for training. 

△ 𝑤𝑗𝑖 = −2 𝑂𝑗 − 𝑑𝑗  𝑂𝑗  1 − 𝑂𝑗  𝑥𝑖  

△ 𝑣𝑖𝑘 = −𝜂
𝜕𝐸

𝜕𝑣𝑖𝑘
= −𝜂

𝜕𝐸

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑣𝑖𝑘
 

𝜕𝐸

𝜕𝑤𝑗 𝑖
= 2 𝑂𝑗 − 𝑑𝑗  𝑂𝑗  1 − 𝑂𝑗  𝑤𝑗 𝑖  
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4.4.5. Principal Component Analysis (PCA) 

 

Principal component analysis is a full spectral and soft modeling method which 

is based on the decomposition of data matrix into two separate and smaller matrices. 

These two kinds explain the relationships between the variables and the relationships 

between the objects. In addition, this division makes the dimensionality reduction for 

the large data matrix. (Kowalski et al. 1983) For instance, spectral data contain 

hundreds of wavelengths with their corresponding absorbance values and it is hard to 

visualize this data matrix in hundreds of dimensionality. As this, it is not possible for 

dimensions larger than three, generally pictures or graphs that are used to explain the 

distributions of samples or variables should have three or less dimension in a space. 

 

4.4.5.1. Singular Value Decomposition (SVD) 

 

Singular value decomposition (SVD) and nonlinear iterative partial least squares 

(NIPALS) are most commonly used algorithms in PCA analysis. In this study, SVD 

based principal component analysis was used. In this algorithm, the training set A with 

m samples and n variables is decomposed into the principal component scores (U), 

matrix of singular values (S), and V matrix whose rows are eigenvectors of A. Equation 

1 shows the mathematical expression of SVD. As it seen from the equation, the singular 

values matrix of S is a square diagonal matrix that has elements are different from zero 

on diagonal. Eigenvalues of corresponding training set are calculated using the singular 

value matrix. The larger the eigenvalue is the more significant information. Generally, 

the principal components (PC) are calculated according to this significance. 

 

 T

nxnmxnmxmmxn
VSUA   (4.33) 

 

Often the Equation 4.33 is given in only two matrices that is shown in below: 

 

 T

nxnmxnmxn
VTA   (4.34) 

 

where T  (
hxnmxh

SU ) is the score matrix and proportional to the size of the 

training set contains the information about the objects, V
T
 is the loading matrix that has 

the knowledge of variables. Each row of original data matrix is linear combinations of 
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loading vectors. The first PC generally is the best straight line in multidimensional 

space (Brereton 2003). 

As it is mentioned before, multidimensional data contains information of the 

variables of samples or objects. PCA generally uses not only all the wavelengths in the 

spectra but also the variables that extracted from the spectral measurements. When data 

reduction term is used in PCA analysis, it means variable selection is done but, all the 

wavelengths in the spectra are used in the explanation of the relationships of variables. 

For the best selection, one can also need a reduction in the wavelength selection. As a 

result, the data interpretation of objects is done with the most useful wavelengths and 

their corresponding variable and the relationship between the samples can be seen 

clearly. GA are used for wavelength selection in this case as in the calibration part. 
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CHAPTER 5 

 

5. MATERIALS AND METHODS 

 

5.1. Experimentation 

 

In this study, in order to construct calibration models three diverse set consisting 

ternary mixtures of vegetable oils, biodiesel produced from these vegetable oils, 

methanol set and vegetable oils – biodiesels – diesel set besides this, as a quaternary 

mixtures of vegetable oils – biodiesel – methanol – diesel set were prepared. 

Commercially available sunflower, canola (from TansaĢ Inc.), cottonseed oils 

(from Diasa Inc.) were used as the fatty acid feedstock. Homogeneous 

transesterification reaction to produce biodiesel in laboratory was carried out using 

sodium hydroxide (NaOH) and methanol (MeOH). Acetic acid was used to remove the 

unreacted NaOH from the biodiesel (Umdu 2008). 

 

5.1.1. Biodiesel Synthesis 

 

Commercially available sunflower, canola, cottonseed oils were used and 

transesterification was carried out under reflux condenser to avoid methanol loses and 

also the temperature was kept constant by a thermostatic bath during the reactions. The 

biodiesel synthesis includes the steps following: 

i. Sodium hydroxide was added to methanol at room temperature and 

stirred at 1100 rpm for 10 min to form methoxide 

ii. In hot water bath, temperature was increased up to 50
o
C and maintained. 

iii. Vegetable oil were added at 50
o
C and left the reaction medium for 4h 

stirring at same speed and maintaining temperature constant in order to 

get totally conversion of vegetable oils to methyl esters (biodiesel). 

iv. After 4h, two separated phases (bottom phase is yellow and dense, 

glycerol) were observed. These phases were rinsed with 5% (v/v) acetic 

acid whose amount was the 1/3 volume of the medium. 
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v. After acetic acid addition, stirring continues at 50
o
C with 500 rpm. At 

this time aqueous phase is separated from methyl ester phase. Then, its 

pH is measured and rinsing process is continued until the pH of aqueous 

phase is equal to pH of acetic acid.  

vi. Finally, methyl esters solution exposed to centrifuge process at 5000 rpm 

within during 10 min in order to get rid of supernatants. Then, it is left in 

the rotary evaporator instrument at 40
o
C under the 100 mbar vacuum 

pressure to remove all water content in solution.  

All biodiesels were synthesized according to the procedure mentioned above and 

store at +4 
o
C until the analysis time.  

 

5.2. Instrumentation 

 

After the biodiesels were synthesized, gas chromatographic analysis as a 

reference analysis method were performed in order to confirm the conversion of all 

vegetable oils to methyl esters by determining the FAME percentages of biodiesels by 

mass.  

 

5.2.1. Gas Chromatography 

 

The synthesized methyl esters were analyzed using a GC – 2010 (Shimadzu) 

instrument installed with FID detector TRB-WAX capillary column with a 60 m 

column length, 0.25 µm ID x 0.25 µm polyethylene glycol. Instrument parameters are 

optimized after some trials performed. 
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Table 5.1. Specific parameters of gas chromatography instrument. 

 
Inlet temperature 250 

0
C 

Split ratio 1:50 

Volume of injection 1 µL 

Column flow (N2) 1.63 mL/min 

FID temperature 250 
0
C 

H2 flow 40 mL/min 

Dry air flow 400 mL/min 

Make up flow (N2) 30 mL/min 

Oven temperature  

program 

Column temperature: from 150 
0
C to 210 

0
C 

with 10 
0
C/min increment. Maintain at 210 

0
C 

for 5 min. Then, with 5 
0
C/min increment goes 

up to 230 
0
C and maintain at 230 

0
C for 25 min. 

Solvent  Methanol 

 

Optimization process was performed by using a FAME standard (F.A.M.E. Mix 

RM-3, O7256-1AMP, Supelco) solution which includes the fatty acids of C14:0 

(0.996%), C16:0 (0.37%), C18:0 (2.990%), C18:1 (44.853%), C18:2 (14.936%), C18:3 

(3.187%), C20:0 (3.008%), C22:0 (2.986%), C22:1 (19.992%) and C24:0 (3.013%) by 

mass percentages. For each of FAME, from six different points different calibration 

models were constructed. Standard solutions were prepared by diluting the 100mg 

FAME sample to 25 ml methanol and by using this 4000 mg/L feedstock solutions, 100, 

500, 1000, 1500, 2000 and 2500 mg/L solutions for calibration models.  

Approximately 100mg for each biodiesel samples (103.0 mg sunflower oil, 98.0 

mg cottonseed, 104.8 mg canola oil) were diluted to 25 ml methanol. Since each of 

FAME solutions have different fatty acids content by mass percentages. For instance, 

oleic acid methyl ester (C18:1) content in biodiesel produced from canola oil is 

approximately 60% by mass whereas 30% by mass for biodiesel produced by 

cottonseed oil. For this reason, biodiesel solutions were diluted to ratio of 1:2, 1:4 and 

1:8 again to calculate FAME percentages by mass from calibration plots. (Results are 

shown in Chapter 6.) 
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5.2.2. Infrared spectroscopy 

 

In this project, infrared spectra were collected with mid infrared (MIR) and near 

infrared (NIR) spectrometers. Near-infrared spectroscopic analyses were performed 

with FTS-3000 NIR spectrometer (Bio-Rad, Excalibur, Cambridge, MA) and mid-

infrared spectroscopic analyses were performed with Spectrum 100 FTIR spectrometer 

(Perkin Elmer, Waltham, MA). Configurations of the spectrometers are shown in below. 

 

Table 5.2. Instrumental parameters used in the spectrometric analyses. 

 

 NIR spectrometer MIR spectrometer 

source tungsten-halogen lamp nichrome wire 

beam splitter calcium fluoride extended range KBr 

detector lead selenide FR-DTS 

resolution 16 cm
-1

 4 cm
-1

 

# of scans 128 4 

# of data points 780 3601 

range 10,000 – 4,500 cm
-1

 4,000 – 600 cm
-1

 

 

5.3. Data Analysis 

 

The collected spectra were transferred in ASCII file format and were combined 

with Microsoft Excel program. Then, data files for multivariate analyses were prepared 

as text files. Genetic algorithm based calibration methods were written in MATLAB 

programming language Version 7.0 (MathWorks Inc., Natick, MA) and artificial neural 

networks approach calibration modeling data analysis were performed by Neural 

Network Toolbox GPU in Matlab.  

However, prior to ANN analysis, since spectral data have large number of 

values, principal component analysis (PCA) applied with SVD algorithms as it is 

mentioned in Chapter 4. Also in Matlab 10 score matrices vector (PC) at which the 

variances lay upper 90% percentages. Thus, data matrix consists of 10 variables. Due to 

nature of sigmoid function, data have to be lies between 0 1 and 0.9. To do this, 

equation given below is used: 
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  (5.1) 

 

whereby, Xmini and Xmaxi  represents the minimum and maximum values within 

the column, Xi, respectively. 

Data matrices for calibration and validation sets were arranged with feed 

forward back propagation algorithm which is mentioned detail given in Chapter 4. To 

do this, a single hidden layer consisting Log sigmoid (activation function), Traindgm 

(training rule), 10 neurons in a hidden layer and a goal error of 10
-4

 were utilized for 

optimization of the network. The constructed artificial neural network model can be 

seen in the Figure 5.1. 

 

 

Figure 5.1. The schematic illustration of the prepared ANN block diagram. 
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CHAPTER 6 

 

6. RESULTS AND DISCUSSION 

 

In this study, two different supervised calibration methods, which are based on 

genetic algorithm least squares (GILS) and artificial neural networks (ANN) approach, 

were used. Both methods were examined in various spectral data which were obtained 

by near infrared (NIR) spectral and Fourier transform infrared (FTIR) spectral data 

matrices with respect to the measurement of different types of vegetable oil samples, 

biodiesel produced from these vegetable oils, methanol and diesel samples. In this 

chapter, all the calibration results will be discussed in detail for both supervised 

methods and all the sample types. Prior to discuss the infrared spectroscopic results 

along with chemometric methods, GC analysis results are conferred in order to 

investigate the biodiesel synthesis and FAME analysis.  

 

6.1. Gas Chromatograms  

 

GC analysis were performed in order to prepare calibration plots for FAME 

solutions at which 2500 mg/L standard solutions used for this purpose and 

chromatogram of this type of solution is shown in Figure 6.1. As can be seen from 

chromatogram, 10 peaks, which can be characterized and measurable, observed. The 

retention times that belong these peaks displayed at Table 6.1.  
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Figure 6.1. FAME standard solution chromatogram. 

 

As can be seen from this chromatogram, primarily methanol leaves column at 

4.6 min and then, fatty acid methyl esters according to their carbon number reaches 

detector. In addition, double bond numbers affect the retention time and the more 

double bond in structure the longer the retention times. In addition, there is no 

overlaping peaks on the chromatogram.  

 

Table 6.1. Detailed information about FAME standard solution and retention times. 

 

Fatty acid methyl esters (FAME) Retention Times (min) 

Myristic acid methyl ester, C14: 0 08.17 

Palmitic acid methyl ester, C16: 0 10.94 

Stearic acid methyl ester, C18: 0 14.62 

Oleic acid methyl ester, C18: 1 15.90 

Linoleic acid methyl ester, C18: 2 16.40 

Linolenic acid methyl ester, C18: 3 17.51 

Arachidic acid methyl ester, C20: 0 19.90 

Behenic acid methyl ester, C22: 0 25.87 

Erucic acid methyl ester, C22: 1 26.90 

Lignoseric acid methyl ester, C24: 0 36.89 
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The values for percentages of FAME standard solution by mass which retention 

times were determined. FAME concentrations in solution were calculated and this 

concentration values were connected to the peak areas to construct calibration plots. 

Table 6.2 illustrates the values used in calibration model. 

 

Table 6.2. Concentration values related to standard calibration solutions. 

 

  
STD1 

(mg/L) 

STD2 

(mg/L) 

STD3 

(mg/L) 

STD4 

(mg/L) 

STD5 

(mg/L) 

STD6 

(mg/L) 

C14:0 0.99 4.98 9.96 14.94 19.92 24.90 

C16:0 4.04 20.18 40.37 60.55 80.74 100.92 

C18:0 2.99 14.95 29.90 44.85 59.80 74.75 

C18:1 44.85 224.26 448.53 672.79 897.06 1121.32 

C18:2 14.94 74.68 149.36 224.04 298.72 373.40 

C18:3 3.19 15.93 31.87 47.80 63.74 79.67 

C20:0 3.01 15.04 30.08 45.12 60.16 75.20 

C22:0 2.99 14.93 29.86 44.79 59.72 74.65 

C22:1 19.99 99.96 199.92 299.88 399.84 499.80 

C24:0 3.01 15.06 30.13 45.19 60.26 75.32 

 

From Table 6.2, concentration values, which belong to the FAME components, 

were between 0.99 mg/L and 1121 mg /L. Figure 6.2 displays the calibration plots 

prepared by GC analysis of these standard solutions. 

  

Figure 6.2. Standard calibration plots prepared by GC analysis for FAME components. 
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Figure 6.2. (cont.) 
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Figure 6.2. (cont.) 

  

 According to the Figure 6.2, regression values are between 0.98 and 1.00. 

However, there is no significant peak at the lowest concentration value for C14:0, C22:0 

and C24:0 components, therefore, calibration plots have 5 points for these fatty acids. 

These calibration plots used for the FAME percentages of the synthesized biodiesels 

samples. Figure 6.3 illustrates the GC chromatogram of solutions prepared in 4 g/L 

methanol with synthesized biodiesels from three different types of vegetable oils.  
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Figure 6.3. GC chromatogram of synthesized biodiesels from sunflower oil, cottonseed 

oil and canola oil, respectively.  

 

As can be seen from chromatograms, sunflower oil consists of more C16:0, 

C18:0, C18:1 and C18:2 rather than the cottonseed and canola oils whereas cottonseed 

oil includes C18:3 and C20:0 fatty acid methyl esters as well. However, from 
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chromatogram of canola oil, it is seen that canola oil has C22:0, C22:1 and lower 

amount of C24:0 fatty acid methyl esters apart from the mentioned earlier.  

GC analysis were performed for biodiesels from three different vegetable oils 

with respect to 20 samples, which were diluted to the ratio of 1:1, 1:2, 1:4, 1:8, and 

calibration plots were obtained from the software installed in GC automatically. Outlier 

values were not considered and FAME percentages by mass, which were proper for 

calibration plot for dilution factors, displayed in the Table 6.3.  

 

Table 6.3. FAME percentages by mass from synthesized biodiesel using sunflower oil, 

cottonseed oil, canola oil. 

 

FAME 

components 

Biodiesel 

synthesized from 

sunflower oil 

(w/w %) 

Biodiesel 

synthesized from 

cottonseed oil 

(w/w %) 

Biodiesel 

synthesized from 

canola oil 

(w/w %) 

C14:0 0.00 0.00 0.00 

C16:0 6.74 11.47 4.97 

C18:0 3.21 1.89 2.16 

C18:1 35.45 27.91 64.79 

C18:2 53.22 56.83 19.55 

C18:3 0.17 1.06 6.27 

C20:0 0.29 0.43 0.64 

C22:0 0.68 0.16 0.27 

C22:1 0.00 0.00 1.16 

C24:0 0.23 0.25 0.18 

 

After obtaining these values, they are compared with literature (Table 6.4, 

Knothe et al. 1997) at which there is wide range within the values and it is pointed out 

that they were similar to each other.  

 

Table 6.4. FAME percentages by mass found in sunflower, cottonseed and canola oils 

(Source: Knothe et al. 1997) 

 

 
Sunflower Oil 

(w/w%) 

Cottonseed Oil 

(w/w%) 

Canola Oil 

(w/w%) 

C14:0    

C16:0 3.50-6.50 7.00-13.0 4.00-5.00 

C18:0 1.30-5.60 2.50-3.00 1.00-2.00 

C18:1 14.0-43.0 30.50-43.0 55.0-63.0 

C18:2 44.0-68.7 39.0-52.0 20.0-31.0 

C18:3  1.00 9.0-10.0 

C22:1   1.00-2.00 
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Consequently, construction of GC models for the synthesized biodiesel and 

production of biodiesels were completed successfully. In addition, this indicates the 

availability of the models for the determination of FAME percentages by mass in 

biodiesels. 

 

6.2. Ternary mixtures of Biodiesel – Vegetable oil – Methanol Set 

 

As stated before, the transesterification monitoring is an important issue to 

biodiesel quality control since some contaminants arise from this reaction also; such 

monitoring allows recognizing and correcting problems at an early stage. Generally, it is 

unfeasible to distinguish the infrared spectra of the mixture of vegetable oils and 

biodiesel produced from these oils especially because these species have almost the 

same chemical properties; it is incredibly difficult to select the wavelengths related to 

them in a spectroscopic study. However, there is no complexity with respect to 

chemometric studies. 

All samples whose concentrations by mass percentages displayed in Table 6.5 

and Table 6.6 were analyzed using NIR and MIR spectrometers and the data collected 

for the prediction. Each set corresponding to the transesterification reaction divided into 

two sets: one was for calibration and the other was for validation. Calibration set 

contained 27 samples spectra and validation set contained 12 samples spectra at which 

the samples used in calibration or validation set arranged in a random order. The range 

of concentrations each constituent in the sets were in the range of 0 – 100 % for both 

biodiesel and vegetable oil, 0 – 20 % for alcohol. 
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Table 6.5. Concentration profiles for calibration set of ternary mixture of biodiesel, 

sunflower oil, methanol set. All concentrations are given by mass 

percentages. 

 

Sample 

No 

Biodiesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Methanol 

(w/w%) 

Sample 

No 

Biodesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Methanol 

(w/w%) 

1 79.87 20.13 0.00 15 83.24 6.15 10.61 

2 75.66 23.60 0.75 16 78.28 10.75 10.97 

3 67.78 30.28 1.94 17 70.10 17.93 11.97 

4 63.77 33.73 2.50 18 65.71 21.75 12.54 

5 55.76 40.93 3.31 19 56.42 30.37 13.21 

6 48.94 47.38 3.68 20 64.67 19.91 15.42 

7 44.31 50.66 5.03 21 73.45 10.47 16.09 

8 39.81 54.89 5.29 22 75.64 7.97 16.40 

9 32.29 61.72 5.99 23 20.09 79.91 0.00 

10 65.40 27.62 6.98 24 85.11 0.00 14.89 

11 72.10 20.05 7.94 25 0.00 0.00 20.00 

12 74.59 15.66 9.75 26 0.00 100.00 0.00 

13 81.90 8.20 9.90 27 100.00 0.00 0.00 

14 86.66 4.15 9.19     

 

As it is seen in Table 6.5 calibration data set includes the pure form of sunflower 

oil, biodiesel, and methanol also. 

 

Table 6.6. Concentration profiles for validation set of ternary mixtures of biodiesel, 

sunflower oil, methanol set. All concentrations are given by mass 

percentages. 

 

Sample 

No 

Biodiesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Methanol 

(w/w%) 

Sample 

No 

Biodiesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Methanol 

(w/w%) 

1 60.27 37.10 2.63 7 87.50 2.25 10.25 

2 47.73 47.91 4.36 8 74.01 13.80 12.19 

3 36.07 58.16 5.78 9 60.28 26.63 13.10 

4 69.19 23.75 7.06 10 77.53 7.03 15.45 

5 79.05 12.12 8.83 11 71.62 11.05 17.33 

6 87.79 2.07 10.15 12 73.34 6.39 20.27 

 

6.2.1. Near Infrared Analysis 

 

In the NIR spectral region, the absorbance bands are often broad and 

overlapping. Figure 6.4 demonstrates the near infrared spectra of biodiesel, sunflower 

oil, methanol and their ternary mixture between 4000-600 cm
-1

.  
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Figure 6.4. FT-NIR spectra of biodiesel, sunflower oil, and methanol along with their 

ternary mixture 

 

As it is seen from these spectra, it is obvious that each constituent apart from 

methanol exhibits very similar spectral characteristics, which makes it necessary to use 

a multivariate calibration method to resolve the mixtures of these compounds. As can be 

seen in Figure 6.4, spectra show NIR absorption bands corresponding to the -CH=CH 

asymmetric stretching and C=C stretching at around 4600 cm
-1

. Also, =C-H and C=C 

stretching belong to –CH=CH- group. The spectra show maximum absorbance at 5800 

cm
-1

. This maximum absorption band is related to first overtone of C-H bond which 

belongs to –CH2 functional group while absorption band (only a shoulder) at 5680cm
-1

 

is the first overtone of -C-H bond. Besides this, C-H stretching vibrations belongs to 

weak and broad -CH3 functional group is seen at 7200 cm
-1 

whereas, the other weak and 

broad shoulder peak at around 7110 cm
-1 

indicates the C-H stretching which leads from 

CH2 functional group. Another important peak in spectra is observed at 8285 cm
-1 

that 

belongs to C-H stretching and represents second overtone. 

If the matrices of vegetable oils and biodiesels synthesized from these oils are 

considered, the NIR spectral changes that result from the varying concentration of the 

compounds in the transesterification reaction mixture are difficult to interpret visually. 

Even though gas chromatographic analysis has been used for determination of these 

mixtures, these are most abundantly time and cost consuming techniques as well. Thus, 

multivariate calibration techniques are preferred.  
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6.2.1.1. GILS Results 

 

For each sample of both calibration and validation set, NIR absorbance spectral 

data matrices obtained and calibration models were constructed in terms of each 

component in ternary mixture, and then tested with validation set. GILS program run 

against 100 times along with 50 iterations and 30 genes. Figure 6.5 shows the actual 

sunflower oil, biodiesel, and methanol concentration values versus their GILS predicted 

concentration values based on FT-NIR spectral data. The standard error of calibration 

(SEC) values of each component were found between 0.89% (w/w) and 1.86% (w/w) 

and the standard error of prediction (SEP) values of each component were found 

between 0.91% (w/w) and 2.88% (w/w) by using GILS method for all components in 

set. SEC and SEP values obtained as 1.21% (w/w) and 2.75% (w/w) for sunflower oil 

and 0.89% (w/w) and 0.91% (w/w) for methanol, respectively. Also, R
2
 values of 

regression lines for sunflower oil and methanol is around 0.997 but is 0.994 for 

biodiesel samples. Therefore if R
2
, SEC and SEP values are examined, it is seen that 

values are compatible with each other, which demonstrates a good prediction for rapid 

monitoring the transesterification reaction of biodiesel synthesis to investigate 

production facilities at which the methanol was up to 20% by mass in medium. 
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Figure 6.5. Actual versus predicted concentration plot for NIR data analysis obtained 

with GILS calibration method. 

 

Since GILS is a method that based on wavelength selection, it is important to 

examine the distribution of selected wavelengths in multiple runs over the entire full 

spectral region. Figure 6.6 displays the frequency distribution of selected wavelengths 

in 100 runs with 30 genes and 50 iterations for biodiesel-sunflower oil-methanol set. 
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Figure 6.6. Wavelength selection frequency distribution of GILS method for ternary 

mixture of biodiesel-sunflower oil-methanol using NIR spectroscopy. 

 

 

 

 

 

 

(cont. on next page) 
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Figure 6.6. (cont.)  

 

 

As can be seen from the figure there are a number of regions where selection 

frequencies are highly compared to the rest of the spectrum. The wavelength region 

around 5000 cm
-1

 for biodiesel and sunflower oil indicates a strong tendency for GILS 

method to select while for methanol content, around 7000 and 8500 cm
-1

 is the most 

frequently selected region. A significant difference between the frequency distribution 

of biodiesel and oil content is that the selected wavelengths are more distributed in the 

former and much more wavelengths are selected. This is a strong indication that the 

genetic algorithm incorporated GILS method is focusing on the regions where the most 

concentration related information is contained. 
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6.2.1.2. ANN Results 

 

The ternary mixture of biodiesel-sunflower oil-methanol set was used for the 

construction of artificial neural network calibration models and optimization processes 

were performed with respect to their NIR spectral data matrices. After some trials to 

construct ANN calibration model, as an optimum conditions, learning rate and 

momentum value selected as 0.8 and 0.7, ‖respectively‖. Even though these values seem 

to be large for this type of model at first glance, mentioned in Chapter 5 in subsection of 

ANN, due to the fact that infrared spectra data have large number of data points in 

spectra matrices. Therefore, prior to ANN analysis, data reduction was performed with 

PCA-SVD algorithms to the full spectral data matrices. In addition, to calculate the total 

error, mse, which represents the term mean square error, applied with a goal of 0.0001 

up to maximum value of 10000 epochs, which is a weight vector or iteration number. 

After launching Neural Network Toolbox in Matlab 7.0.1 software programming 

in terms of the configurations as mentioned above; the user interface results for each 

component of ternary mixture modeled by ANN calibration are given in the Figure 6.7.  
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Figure 6.7. Error versus epochs plot of ternary mixture of a) sunflower oil b) biodiesel 

c) methanol (green line: validation, blue line: calibration, black line: target). 
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As can be seen from the Figure 6.7, for sunflower oil after 6834 iterations 

performed, the mse value reached about 13x10
-5

 for calibration, on the other hand, due 

to increasing of mse value of validation program was stopped. For biodiesel, 7556 

iterations were necessary to achieve about 5x10
-4

 mse value and begin validation mse 

error again. For methanol, epochs reached the limit number, thus program stopped at 

which the performance was 13x10
-4

 mse value.  

For a stable case, after few iterations total error value should begin to decrease 

sharply. As can be seen from Figure 6.7, total error value start to diminish immediately 

after program run and it is only mentioned to have an idea about the model apart from 

whether the attainment of the target value is get or not. If the calibration and validation 

lines are close to target line in a close way, it indicates that the calibration model 

constructed in well and total error is minimized. However, output data is required to 

revise from the 0 – 1 interval to the actual value since log-sigmoid function obtains 

results in from 0.1 to 0.9. After these conversion applied, it is possible to calculate the 

SEC and SEP values along with the regression values between actual and predicted by 

ANN model.  

Furthermore, Figure 6.8 illustrates the R
2 

values found between 0.96 and 0.99. In 

addition to this, SEC values obtained as 0.99% (w/w) for methanol, is 2.93% (w/w) for 

biodiesel and is 1.49% (w/w) for sunflower oil whereas SEP values is 1.69% (w/w) for 

methanol, is 8.63% (w/w) for biodiesel and is 5.58% (w/w) for sunflower oil. Thus, 

these values mention that the constructed model is applicable for calibration of biodiesel 

blends to determine the methanol and untreated vegetable oil content via ANN 

multivariate calibration modeling.  

  



75 

  

 
 

 

 

Figure 6.8. Actual versus predicted concentrations plot for NIR data analysis with ANN 

calibration method 
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6.2.2. Mid Infrared Analysis 

 

Mid-infrared ATR spectra of ternary mixtures samples of biodiesel-sunflower 

oil-methanol and pure forms of components are shown in Figure 6.9. It is evident that 

the samples yield high absorbance values around 3400, 2900, and between the range 

1750 and 1000 cm
-1

 wavenumbers. In addition, there is a peak around 2150 cm
-1

. 

 

 

 

Figure 6.9. FTIR-ATR spectra of biodiesel, sunflower oil, and methanol along with 

their ternary mixture 

 

As can be seen from Figure 6.9, biodiesel blends and its pure component have 

similar spectra except from methanol. The strong peaks, which observed at interval 

1000-600 cm-1,
 
related to C-H bonds of olefin or aromatics found in vegetable oils and 

biodiesels. The peaks at 1300-1000cm
-1 

displays the stretching of C-O bond and peaks 

at 1400-1250 cm
-1 

shows stretching for O-H bonds. The strongest peaks which overlap 

between the range of 2000-1500 cm
-1 

represents to C=C and C=O vibrations. Besides 

this, -CH2 and -CH3 bond stretching can be seen at 2950-2850 cm
-1 

interval. The peaks 

which were obtained in the range of 2900-2700 cm
-1 

are due to –CHO bond whereas the 

less strong peak at 3050cm
-1

 belongs to –C=C-H bond as well.  

Consequently, as can be seen from Figure 6.9, there are very small differences 

between the spectra of oil, biodiesel and methanol with their ternary mixture. 
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Throughout the multivariate calibration process, it is expected these differences will 

reveal the information necessary to build successful calibration models otherwise 

almost impossible with univariate calibration methods. In order to construct MIR 

spectroscopic multivariate calibration models for biodiesel blends which contains 

biodiesel-sunflower oil-methanol the procedure followed in the NIR calibration is again 

used, i.e., ternary mixture calibration set were used again but NIR spectra were replaced 

with the MIR spectra with respect to GILS and ANN chemometric multivariate 

calibration modeling.  

 

6.2.2.1. GILS Results 

 

In order to prepare calibration models, 27 of 39 samples of the first ternary set 

were used to build calibration set and the remaining 12 sample were reserved for 

prediction set to test the performance of the models. GILS program run against 100 

times along with 50 iterations and 30 genes to predict the concentration of ternary 

mixture of biodiesel, sunflower oil and methanol. Figure 6.10 shows the actual 

sunflower oil, biodiesel, and methanol concentration values versus their GILS predicted 

concentration values based on FTIR-ATR spectral data. Calibration models for 

methanol content determination gave standard error of calibration (SEC) and standard 

error of prediction (SEP) values as 1.08% (w/w) and 2.03% (w/w) for calibration and 

validation sets, respectively. In the case of sunflower oil and biodiesel content 

determination, the SEC and SEP values were 0.58% (w/w), 2.01% (w/w) and        

1.33% (w/w), 2.61% (w/w) for calibration and prediction sets, respectively. In addition 

to this, when examining the correlation plots the R
2
 value of regression lines for 

methanol was 0.995 and that for biodiesel and sunflower oil content was 0.993 and 

0.999, respectively.  
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Figure 6.10. Actual versus predicted concentration plot for FTIR-ATR spectral data 

analysis with GILS calibration method. 
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wavelengths from the complete spectral range. However, when the overall calibration 

performance of the models examined, it is possible to state that the MIR spectra do 

contain quantitative information that correlated with sunflower oil and methanol 

contents of the biodiesel blends samples studied here. Figure 6.11 displays the 

frequency distribution of selected wavelengths in 100 runs with 30 genes and 50 

iterations for biodiesel-sunflower oil-methanol set with respect to FTIR-ATR spectra 

data matrices. 

 

  

 

Figure 6.11. Wavelength selection frequency distribution of GILS method for ternary 

mixture of biodiesel-sunflower oil-methanol using FTIR-ATR 

spectroscopy. 
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Figure 6.11. (cont.) 

 

As can be seen from the Figure 6.11 there are a number of regions where 

selection frequencies are highly compared to the rest of the spectrum. The wavelength 

region around 1000 and 3000 cm
-1

 for all components indicates a strong tendency for 

GILS method to select while for biodiesel and sunflower oil content, around 500 cm
-1

 is 

the most frequently selected region. A significant difference between the frequency 

distribution of methanol and biodiesel, oil content is that the selected wavelength are 

more distributed in the former and much more wavelengths are selected.  
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6.2.2.2. ANN Results 

 

In order to prepare calibration models for ANN, 27 of 39 samples of biodiesel, 

sunflower oil, methanol ternary set were used to calibration set and the remaining 12 

samples were reserved for prediction set to test the performance of the models. Spectra 

were collected from each sample yielding a total of 39 spectra. The calibration model 

was tested with 27 spectra and then this model was tested with 17 independent 

prediction spectra which were not used in calibration step. Launching Neural Network 

Toolbox in Matlab 7.0.1 software programming in terms of the configurations as it is 

mentioned before; the user interface results for each component of ternary mixture 

modeled by ANN calibration are given in the Figure 6.12. 

a) 

 

 

Figure 6.12. Error versus epochs plot of ternary mixture of a) sunflower oil b) biodiesel        

c) methanol (green line: validation, blue line: calibration, black line: target) 
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b) 

 

c) 

 

 

Figure 6.12. (cont.) 

 

As can be seen in the Figure 6.12, ANN training process stopped at which the 

epochs number was 5917 for sunflower oil and mean square error value reached about 

104x10
-6

 for calibration, on the other hand, due to increasing of mse value of validation 

program did not continued. Even in case of methanol, 3676 iterations were necessary to 

achieve about 366x10
-6

 mse value and validation mse value again increased. For 

biodiesel, epochs reached 10000, which is the limit number, thus program stopped at 

which the performance was 89x10
-5

 mse value. 
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Moreover, in training process, if the calibration and validation lines tend to be 

proceeding in an adjacent trajectory, it demonstrates that the model constructed 

successfully. Also for a stable case, after few iterations, total error value should begin to 

diminish and this trend was clearly seen in Figure 6.12. However, output data is 

required to revise from the 0-1 interval to the actual value since log-sigmoid function 

obtains results in from 0.1 to 0.9. After these conversion applied, it is possible to 

calculate the SEC and SEP values along with the regression values between actual and 

predicted by ANN model. Hence, Figure 6.13 shows the correlation graphs for FTIR 

analysis with ANN calibration of ternary mixture of biodiesel-sunflower oil-methanol. 

 
 

  

Figure 6.13. Actual versus predicted concentration plot for FTIR-ATR data analysis 

with ANN calibration method 
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Figure 6.13. (cont.) 

 

 

As can be seen from Figure 6.13, R
2 

values found approximately 0.99. In 

addition to this, SEC values obtained 0.27% (w/w) for methanol, 2.82% (w/w) for 

biodiesel and 4.14% (w/w) for sunflower oil whereas SEP values 0.74% (w/w) for 

methanol, 5.02% (w/w) for biodiesel and 8.26% (w/w) for sunflower oil at which the 

methanol content was up to 20 percentages by mass whereas biodiesel and sunflower oil 

was up to 100 percentages by mass concentration. Thus, the constructed model is 

applicable for calibration of biodiesel blends to determine the methanol and untreated 

vegetable oil content via ANN multivariate calibration modeling when the reaction 

medium is considered. Especially to monitor the transesterification reaction of biodiesel 

synthesis by determining the methanol content can be possible by these chemometric 

multivariate calibration methods along with the infrared spectroscopy.  
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6.3. Ternary mixtures of Biodiesel – Vegetable oil – Diesel Set 

 

As it is stated before, determining the amount of biodiesel content in petroleum 

diesel fuel in the presence of vegetable oils, which are not converted into biodiesel, have 

been important. Since biodiesel production process is expensive and time consuming 

diesel fuel may be illegally adulterated with raw or used frying vegetable oils before 

converting into biodiesel. Therefore, their determination with classic methods including 

1
H-NMR spectroscopy (Knothe et al. 2001) and chromatography (Foglia et al. 2005) are 

including more expensive and time-consuming process, due to constraint of sample 

preparation.  

Furthermore, infrared spectroscopy combined to multivariate calibration has 

been shown to be an alternative analytical technique to classic methods since it allows 

low cost, fast, and nondestructive determination without sample preparation (Pimentel 

et al. 2006). 

All samples whose concentrations by mass percentages displayed in Table 6.7 

and Table 6.8 were analyzed using NIR and MIR spectrometers and the data collected 

for the prediction. Each set divided into two sets: one was for calibration and the other 

was for validation. Calibration set contains 33 samples spectra and validation set 

contained 17 samples spectra at which the samples used in calibration or validation set 

arranged in a random order. The range of concentrations each constituent in the sets 

were in the range of 0 – 100 % for all biodiesel, vegetable oil and diesel. 
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Table 6.7. Concentration profiles for calibration set of ternary mixture of biodiesel, 

sunflower oil, diesel set. All concentrations are given by mass percentages 

 

Sample 

No 

Biodiesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Biodesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Diesel 

(w/w%) 

1 100.00 0.00 0.00 18 9.88 14.88 75.24 

2 0.00 100.00 0.00 19 10.41 67.20 22.40 

3 0.00 0.00 100.00 20 57.83 20.17 22.00 

4 56.69 9.59 33.72 21 37.39 10.94 51.68 

5 37.26 22.92 39.82 22 39.30 20.22 40.47 

6 31.38 25.85 42.76 23 35.72 22.97 41.30 

7 17.43 24.39 58.18 24 67.50 24.78 7.72 

8 5.44 12.92 81.64 25 9.75 38.69 51.56 

9 59.70 9.82 30.48 26 16.76 77.99 5.26 

10 44.31 23.25 32.43 27 45.33 8.30 46.38 

11 72.14 9.01 18.85 28 27.14 24.44 48.42 

12 15.69 83.15 1.16 29 33.62 59.07 7.31 

13 4.80 40.66 54.53 30 50.81 15.12 34.07 

14 6.43 63.15 30.42 31 35.52 39.59 24.89 

15 16.57 20.38 63.05 32 2.25 46.25 51.50 

16 42.30 57.10 0.61 33 83.01 1.23 15.75 

17 41.35 26.54 32.11     

 

As it is seen in Table 6.7 calibration data set includes the pure form of sunflower 

oil and biodiesel with diesel components which pay the attentions on this set. 

 

Table 6.8. Concentration profiles for validation set of ternary mixture of biodiesel, 

sunflower oil, diesel set. All concentrations are given by mass percentages 

 

Sample 

No 

Biodiesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Biodiesel 

(w/w%) 

Sunflower 

Oil 

(w/w%) 

Diesel 

(w/w%) 

1 23.87 6.60 69.5 10 9.15 46.88 43.98 

2 32.67 57.50 9.84 11 34.22 9.23 56.55 

3 33.67 60.75 5.57 12 36.47 43.96 19.57 

4 38.00 2.61 59.39 13 14.14 42.41 43.45 

5 11.10 45.02 43.88 14 25.84 45.32 28.84 

6 36.60 43.81 19.59 15 52.28 32.44 15.28 

7 14.74 16.20 69.06 16 29.56 37.07 33.37 

8 33.99 27.60 38.41 17 24.09 41.61 34.29 

9 26.05 26.25 47.69     
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6.3.1. Near Infrared Analysis  

 

The NIR spectral changes that result from the varying concentration of the 

compounds in the biodiesel/diesel blends in vegetable oils are difficult to interpret 

visually. Generally, in the NIR spectral region the absorbance bands observe as broad 

and overlapping of which spectral bands makes the use of multivariate calibration 

necessary to resolve the components from the full spectral data which is impossible with 

univariate calibration. Figure 6.14 illustrates the NIR spectra of a ternary solution with 

pure forms of components of which are biodiesel, sunflower oil and diesel. 

 

 

 

Figure 6.14. FT-NIR spectra of biodiesel, sunflower oil, diesel and their ternary mixture 

 

As can be seen from Figure 6.14 spectra which has the interval of 10000-4500 

cm-1 wavenumber, show NIR absorption bands corresponding to the -CH=CH, -C-H 

asymmetric stretching and C=C stretching at around 4650 cm-1. Also, =C-H and C=C 

stretching belong to –CH=CH- group. The spectra show maximum absorbance at 5810 

cm-1. This maximum absorption band is related to first overtone of C-H bond, which 

belongs to –CH2 functional group while absorption band (only a shoulder) at 5680 cm
-1

 

is the first overtone of -C-H bond. More to the point this, C-H stretching vibrations 

belongs to weak and broad -CH3 functional group is seen at 7210 cm
-1 

whereas, the 

other weak and broad shoulder peak at around 7110 cm
-1 

indicates the C-H stretching 

which leads from CH2 functional group. Another important peak in spectra is observed 
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at 8285 cm
-1 

that belongs to C-H stretching and represents second overtone. Specially, 

the differences in NIR spectra of oils, esters, and petrodiesel were observed for the 

region about 4500 cm
-1

 that can be assigned to CO and C–O stretching combinations.  

From these spectra, it is noticeable that each constituent exhibits very similar 

spectral characteristics, which makes it necessary to use a multivariate calibration 

method to resolve the mixtures of these compounds. 

 

6.3.1.1. GILS Results 

 

FT-NIR absorbance spectral data matrices obtained and calibration models were 

constructed in terms of each component in ternary mixture, and then tested against 100 

times along with 50 iterations and 30 genes. Figure 6.15 shows the actual sunflower oil, 

biodiesel, and diesel concentration values versus their GILS predicted concentration 

values based on FT-NIR spectral data. The standard error of calibration (SEC) values of 

each component were found between 0.90% (w/w) and 1.04% (w/w) and the standard 

error of prediction (SEP) values of each component were found between 1.07% (w/w) 

and 1.46% (w/w) by using GILS method for all components in set. SEC and SEP values  

for the calibration models of sunflower oil and diesel content were 1.04% (w/w), 0.94% 

(w/w) and 1.46% (w/w), 1.07% (w/w) respectively and for biodiesel determination were 

0.90% (w/w) and 1.32% (w/w) for the data set. In addition to this, R
2
 values of 

regression lines for all components were 0.99. Therefore, when R
2
, SEC and SEP values 

are examined, it is seen that these values are compatible with each other, which 

demonstrates a good prediction for rapid determination of the adulteration of 

biodiesel/diesel blends in vegetable oils in illegal marketing. 
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Figure 6.15. Actual versus predicted concentration plot for NIR data analysis with GILS 

calibration method. 

 

Since GILS is a method that based on wavelength selection, it is important to 

examine the distribution of selected wavelengths in multiple runs over the entire full 

spectral region. Figure 6.16 displays the frequency distribution of selected wavelengths 

in 100 runs with 30 genes and 50 iterations for biodiesel-sunflower oil-diesel set. 
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Figure 6.16. Wavelength selection frequency distribution of GILS method for ternary 

mixture of sunflower oil - biodiesel - diesel using FT-NIR spectroscopy. 

 

As can be seen from the Figure 6.16, there are a number of regions where 

selection frequencies are highly compared to the rest of the spectrum. The wavelength 

region around 5000 cm
-1

 for biodiesel and sunflower oil indicates a strong tendency for 

GILS method to select while for diesel content, around 7000 and 8500 cm
-1

 is the most 
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frequently selected region. As can be seen from the figures, the frequency of the 

selected cell numbers correspond to selected wavelengths is significantly higher around 

the peak maximum of each component. This shows that the GILS method selects the 

regions, where the most concentration related information is contained. 

 

6.3.1.2. ANN Results 

 

The ternary mixture of biodiesel-sunflower oil-diesel set was used for the 

construction of artificial neural network and optimization processes were performed 

with respect to their NIR spectral data matrices. After some trials to construct ANN 

calibration model, as an optimum conditions, learning rate and momentum value 

selected as 0.85 and 0.75, respectively. Since infrared spectra of ternary mixtures have 

large number of data points, prior to perform the ANN analysis, reduction of data by 

PCA-SVD algorithms is required. In addition, to calculate the total error, mse, which 

represents the term mean square error, applied with a goal of 0.0001 up to maximum 

value of 10000 epochs that means weight vectors or iteration number. Sample design 

data set and infrared spectral discussion were same as the previous section that is 

subtitled as GILS results 

Launching Neural Network Toolbox in Matlab 7.0.1 software programming in 

terms of the configurations as it is pointed out earlier; the user interface results for each 

component of ternary mixture modeled by ANN calibration are given in the Figure 6.17. 

As can be seen from the Figure 6.17, for biodiesel component after 7889 iterations 

performed, the mse value reached about 306x10
-6

 for calibration; on the other hand, due 

to increasing of mean square error value of validation, program did not continued so far. 

For sunflower and diesel components, epochs reached the limit number which is 

determined as 10000, thus program stopped at which the performance was 295x10
-5

 and 

20x10
-5

 mean square error values, respectively. 
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a)  

b)  

c)  

 

Figure 6.17. Error versus epochs plot of ternary mixture of a) sunflower oil b) biodiesel 

c) diesel  (green line:  validation, blue line:  calibration,  black line: target) 
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For ANN models, after some iteration, total error value should begin to diminish 

significantly and as can be seen from the Figure 6.17, error value immediately reduced 

after program run. Also, the more adjacent calibration and validation lines through the 

target line, the better constructed the model and this trend is seen as well. However, 

output data is required to revise from the 0-1 interval to the actual value since log-

sigmoid function obtains results in from 0.1 to 0.9. After these conversion applied, it is 

possible to calculate the SEC and SEP values along with the regression values between 

actual and predicted by ANN model.  

 

  

 

 

Figure 6.18. Actual versus predicted concentration plot for NIR data analysis with ANN 

calibration method.  

0

20

40

60

80

100

0 20 40 60 80 100

E
st

im
a
te

d
 D

ie
se

l 
C

o
n
te

n
t 
(w

/w
%

)

Actual Diesel Content (w/w%)

calibration

validation

SEC=2.58
SEP=5.32
R² = 0.9935

0

20

40

60

80

100

0 20 40 60 80 100

E
st

im
a
te

d
 S

u
n

fl
o
w

e
r 
O

il
 C

o
n

te
n
t 
(w

/w
%

)

Actual Sunflower Oil Content (w/w%)

calibration

validation

SEC=1.43
SEP=5.88
R² = 0.9832

0

20

40

60

80

100

0 20 40 60 80 100

E
st

im
a
te

d
 B

io
d

ie
se

l 
C

o
n

te
n

t 
(w

/w
%

)

Actual Biodiesel Content (w/w%)

calibration

validation

P
re

d
ic

te
d

 S
u

n
fl

o
w

er
 O

il
 C

o
n

te
n

t 
(w

/w
 %

) 

P
re

d
ic

te
d

 B
io

d
ie

se
l 

C
o
n

te
n

t 
(w

/w
 %

) 

P
re

d
ic

te
d

 D
ie

se
l 

C
o

n
te

n
t 

(w
/w

 %
) 

Actual Diesel Content (w/w % ) 

Actual Biodiesel Content (w/w % ) Actual Sunflower Oil Content (w/w % ) 



94 

As can be seen from Figure 6.18, R
2 

values observed around 0.99. In addition, 

SEC values obtained 1.63% (w/w) for diesel, 1.43% (w/w) for biodiesel and 2.58% 

(w/w) for sunflower oil whereas SEP values 6.52% (w/w) for diesel, 5.88% (w/w) for 

biodiesel and 5.32% (w/w) for sunflower oil. According to these values, the constructed 

model is applicable for determination of adulteration of diesel, which is largely 

responsible for why many industrial machines and car engines using this product 

develop fault at regular intervals and finally break down after several repairs. 

 

6.3.2. Mid Infrared Analysis 

 

Mid-infrared ATR spectra of ternary mixtures samples of biodiesel-sunflower 

oil-diesel and pure forms of components are shown in Figure 6.19. It is obvious that the 

samples yield high absorbance values around 3400, 3000, and between the range 1750 

and 1000 cm
-1

 wavelengths. In addition, there is a peak around 2150 cm
-1

.  

 

 

 

Figure 6.19. FTIR-ATR spectra of ternary mixtures of biodiesel, sunflower oil, diesel 

and their pure forms. 
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MIR spectra of the sunflower oil, their corresponding methyl ester, biodiesel 

were compared with petrodiesel, as shown in Figure 6.19. There are no absorption 

peaks from petrodiesel in the regions (3700 to 3000), (1900 to 1500) and (1800 to 800) 

cm
−1

, while vegetable oils and their corresponding esters absorb well in those regions. 

Stretching vibration carbonyl bands, around 1750 cm
−1

, for all the raw oils are 

overlapped with their corresponding esters. Peaks in the region (1300 to 800) cm
−1

 also 

indicate overlapped bands between oils and their corresponding esters. Peaks in the 

region (1000 to 900) cm
−1

 assigned to symmetric angular deformation out of plane of 

the C–H bonds of olefins. Peaks around 1200 cm
−1

 may be assigned to the axial 

deformation of CC(O)–O bonds of the ester, while peaks around 1183 cm
−1

 may be 

assigned to asymmetric axial deformation of O–C–C bonds. This region (1300 to 900) 

cm
−1

 is known as the ―fingerprint‖ region of complex spectra that include many coupled 

vibration bands. These overlapped peaks indicate that univariate calibration models may 

cause significant prediction error to quantify ester concentration when raw oil is present. 

Those models are also inadequate for identifying the presence of raw oil in a spoiled 

blend either due to the illegal addition of raw oil. Therefore, multivariate calibration 

modeling via the peaks in these mid infrared regions, corresponding to the vibration of 

carbonyl groups to distinguish sunflower oil from its biodiesel with diesel blends along 

with the GILS and ANN chemometric modeling.  

 

6.3.2.1. GILS Results  

 

The sample design set generated from 33 of them as calibration set and the 

remaining 17 samples as validation samples performed as it is same in the NIR spectral 

data analysis.  

GILS program run against 100 times along with 50 iterations and 30 genes to 

predict the concentration of ternary mixture of biodiesel, sunflower oil and diesel. 

Figure 6.20 shows the actual sunflower oil, biodiesel, and diesel concentration values 

versus their GILS predicted concentration values based on FTIR-ATR spectral data. 
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Figure 6.20. Actual versus predicted concentration plot for FTIR-ATR spectral data 

analysis with GILS calibration method. 
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prediction sets, respectively. In addition to this, when examining the correlation plots 

the R
2
 value of regression lines for all components were 0.999 that indicates to be 

powerful multivariate calibration method when accompanied with proper wavelength 

selection methods.  

However, it must be realized that the GILS method is an iterative procedure due 

to the genetic algorithm used to select a subset of wavelengths from the complete 

spectral range. Figure 6.21 displays the frequency distribution of selected wavelengths 

in 100 runs with 30 genes and 50 iterations for biodiesel-sunflower oil-diesel set with 

respect to FTIR-ATR spectra data matrices. 

 

 

 

Figure 6.21. Wavelength selection frequency distribution of GILS method for ternary 

mixture of biodiesel-sunflower oil-methanol using FTIR-ATR 

spectroscopy. 
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Figure 6.21. (cont.) 

 

As can be seen from the Figure 6.21, there are a number of regions where 

selection frequencies are highly compared to the rest of the spectrum. The wavelength 

region around 1000 and 3000 cm
-1

 for all components indicates a strong tendency for 

GILS method to select while for biodiesel and sunflower oil content, around 500 cm
-1

 is 

the most frequently selected region. 
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6.3.2.2. ANN Results 

 

Construction of artificial neural network calibration model is performed with 32 

of 50 samples of biodiesel, diesel, sunflower oil ternary set and the remaining 18 were 

used to test the performance of the model. Spectra were collected from each sample 

yielding a total of 50 spectra and 32 spectra used to construct model while 18 spectra 

used to test. Launching Neural Network Toolbox in Matlab 7.0.1 software programming 

in terms of the configurations as it is discussed earlier, the user interface results for each 

component of ternary mixture modeled by ANN calibration are given in the Figure 6.22. 

 

a)  

 

Figure 6.22. Error versus epochs plot of ternary mixture of a) sunflower oil b) biodiesel 

c) diesel (green line: validation, blue line: calibration, black line: target) 
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b)  

c)  

 

Figure 6.22. (cont.) 

 

As can be seen in the Figure 6.22, ANN training process stopped at which the 

epochs number 2676 for sunflower oil and mean square error value reached about 

111x10
-6

 for calibration, on the other hand, due to increasing of mse value of validation 

program did not continued. Even in case of biodiesel, 2713 iterations were necessary to 

achieve about 967x10
-7

 mse value and validation mse value again increased. For diesel, 
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epochs reached 10000, which is the limit number, thus program stopped at which the 

performance was 549x10
-6

 mse value. 

In training process, if the calibration and validation lines tend to be proceeding 

in an adjacent trajectory, it demonstrates that the model was constructed successfully. 

This is an indication that further training would likely to result in the network over-

fitting the training set. At this stage, the training process would be terminated. However, 

output data is required to revise from the 0-1 interval to the actual value since log-

sigmoid functions obtain results in the range of 0.1 to 0.9. After these conversion 

applied, it is possible to calculate the SEC and SEP values for ANN model. Figure 6.23 

shows the correlation graphs for FTIR analysis with ANN calibration of this ternary 

mixture set. 

 

 
 

 

Figure 6.23. Actual versus predicted concentration plot for FTIR-ATR data analysis 

with ANN calibration method.  
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Figure 6.23. (cont.)  

 

As can be seen from Figure 6.23, R
2 

values found approximately 0.99. Besides 

this, SEC values obtained 2.47 for diesel, 3.27 for biodiesel and 2.25 for sunflower oil 

whereas SEP values 4.40 for diesel, 7.10 for biodiesel and 6.33 for sunflower oil at 

which the methanol content was up to 20 percentages by mass whereas biodiesel and 

sunflower oil was up to 100 percentages by mass concentration. Thus, the constructed 

model is applicable for calibration of biodiesel blends to determine the diesel and 

untreated vegetable oil content via ANN multivariate calibration modeling.  
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6.4. Quaternary Mixtures of Biodiesel, Vegetable Oil, Diesel, Methanol 

Set 

 

As discussed previous sections, adulteration of highly valuable vegetable oils 

with lower-priced oils has begun to common, widespread, and illegal practice. In 

addition to this, monitoring residual methanol in biodiesel blends is a matter of safety 

since even small amounts of this material can reduce the flash point of the biodiesel. 

Moreover, residua methanol can affect fuel pumps, seals and elastomers an can result in 

poor combustion properties.  

Even though as it is discussed in previous sections, ternary mixture solution of 

biodiesel in vegetable oils with diesel and methanol separately. However, combining 

two purposes in one model and determine the methanol and unconverted vegetable oils 

in biodiesel/diesel blends, with respect to chemometric multivariate calibration 

techniques along with infrared spectroscopy, have not been conferred in literature. To 

do this, a total of 60 samples of quaternary mixture of vegetable oils, biodiesels, 

methanol and diesel components were mixed. 42 samples used for calibration and 18 

samples employed for validation. Furthermore, biodiesel, vegetable oils, diesel 

components consist of three different brand of the individual constituents. For instance, 

vegetable oils feedstock includes commercially available sunflower, cottonseed and 

canola oils while biodiesel feedstock has the biodiesels that were synthesized from 

those vegetable oils. In addition, diesel feedstock contains the mixture of three different 

brand of commercially available diesel sample.  

The range of concentrations each constituent in the sets were in the range of         

0 – 100 % for both biodiesel, vegetable oil, diesel by mass percentages but 0 – 20 % for 

alcohol by mass percentages. Table 6.9 and Table 6.10 show the concentration of the 

each constituent for biodiesel-vegetable oil-methanol-diesel quaternary set. 
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Table 6.9. Concentration profiles for calibration set of quaternary mixture of biodiesel, 

sunflower oil, methanol, diesel set. All concentrations are given by mass 

percentages. (No: sample number, VO: vegetable oil, B: biodiesel, D: diesel, 

M: methanol) 

 

No VO B D M No VO B D M 

1 100.00 0.00 0.00 0.00 22 12.01 19.93 65.31 2.74 

2 0.00 100.00 0.00 0.00 23 22.49 37.55 36.89 3.07 

3 0.00 0.00 100.00 0.00 24 21.23 15.59 61.36 1.82 

4 0.00 0.00 0.00 5.00 25 24.05 15.77 58.35 1.82 

5 49.97 50.03 0.00 0.00 26 10.18 32.24 56.91 0.66 

6 50.10 0.00 49.90 0.00 27 21.18 42.99 31.69 4.14 

7 0.00 50.05 49.95 0.00 28 11.53 42.29 45.68 0.51 

8 33.34 33.24 33.43 0.00 29 5.79 44.17 47.73 2.31 

9 12.88 31.92 50.26 4.95 30 15.11 5.83 78.90 0.17 

10 25.88 34.93 35.13 4.06 31 13.65 36.71 48.28 1.36 

11 14.35 26.99 58.12 0.54 32 21.20 6.00 72.44 0.35 

12 19.93 37.83 37.69 4.55 33 9.60 16.50 69.97 3.92 

13 19.71 8.09 71.27 0.93 34 24.47 25.75 44.76 5.02 

14 17.42 25.30 55.82 1.46 35 14.35 9.25 73.11 3.29 

15 17.42 36.78 41.82 3.99 36 12.96 20.30 64.97 1.77 

16 22.55 25.20 47.67 4.58 37 7.69 32.75 58.66 0.90 

17 24.43 6.13 67.25 2.18 38 2.99 38.13 55.44 3.44 

18 16.33 43.54 38.40 1.73 39 23.43 37.37 39.01 0.18 

19 11.35 48.19 38.83 1.63 40 6.94 16.34 73.49 3.23 

20 18.91 30.26 47.86 2.96 41 17.95 3.43 74.34 4.28 

21 19.27 27.08 53.12 0.53 42 16.80 9.34 69.28 4.59 

 

As it is seen in Table 6.10 calibration data set includes the pure form of 

sunflower oil and biodiesel, diesel with methanol components, in addition. 
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Table 6.10. Concentration profiles for validation set of quaternary mixture of biodiesel, 

sunflower oil, methanol, diesel set. All concentrations are given by mass 

percentages (No: sample no, VO: vegetable oil, B: biodiesel, D: diesel,    

M: methanol)  

 

No VO B D M No VO B D M 

1 24.12 49.92 21.79 4.17 10 2.12 43.86 52.66 1.36 

2 1.63 13.77 82.27 2.33 11 4.04 6.17 85.14 4.65 

3 7.79 27.24 61.75 3.22 12 1.76 35.66 60.93 1.65 

4 1.63 31.30 66.56 0.51 13 2.56 3.54 92.11 1.79 

5 9.48 9.91 79.04 1.57 14 5.73 26.92 65.82 4.29 

6 16.01 32.78 47.52 3.69 15 8.69 3.67 85.27 2.37 

7 18.02 12.43 69.03 0.52 16 18.17 19.28 60.35 2.21 

8 19.63 41.35 35.21 3.81 17 14.37 18.52 63.18 3.93 

9 21.74 47.24 29.78 1.24 18 1.76 20.55 72.77 4.92 

 

6.4.1. Near Infrared Analysis  

 

NIR measurements of absorbance were performed using 128 scans in the range 

from 10000 cm
-1

 to 4500 cm
-1

 with a resolution of 16 cm
-1

. Figure 6.24 illustrates the 

NIR spectra of quaternary solution with pure forms of components.  

 

 

Figure 6.24. NIR spectra of biodiesel, vegetable oil, methanol, diesel and their 

quaternary mixture. 
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In the NIR spectral region, the absorbance bands are often broad and 

overlapping. First, methanol causes a relatively broad peak at 4480-4885 cm
-1

, as well 

as a depression of the baseline in the range of 7000-6200 cm
-1 

due to –OH bonds in its 

structure and –CH bonds seen at 8500-8000 cm
-1

. The peak at also, 4480-4885 cm
-1

 can 

be used for quantitation in the fashion discussed above by converting the spectra to 

absorbance with subsequent chemometric evaluation as described for earlier. In 

addition, NIR absorption bands corresponding to the -CH=CH, -C-H asymmetric 

stretching and C=C stretching at around 4600 cm
-1

. Also, =C-H and C=C stretching 

belong to –CH=CH- group. The spectra show maximum absorbance at 5800 cm
-1

. This 

maximum absorption band is related to first overtone of C-H bond that belongs to –CH2 

functional group while absorption band (only a shoulder) at 5680 cm
-1

 is the first 

overtone of -C-H bond. Besides this, C-H stretching vibrations belongs to weak and 

broad -CH3 functional group is seen at 7200 cm
-1 

whereas, the other weak and broad 

shoulder peak at around 7110 cm
-1 

indicates the C-H stretching which leads from CH2 

functional group. Another important peak in spectra is observed at 8285 cm
-1 

that 

belongs to C-H stretching and represents second overtone. Furthermore, for diesel 

component the spectral interval from 3700 to 6500 cm
−1

 shows well behaved spectral 

features presenting absorptions bands that can be attributed largely to the combinations 

of vibrational modes for the C–H bonds (4500–4000 cm
−1

) and to the first overtones of 

C–H bonds (5500–6250 cm
−1

). The major differences in the FTNIR spectra of methyl 

esters, biodiesels are observed at 4670–4700 cm
−1

 (aliphatic CH stretching + CO 

stretching combination modes), 5550–6100 cm
−1

 (first overtone of CH stretching), 

6900–7400 cm
−1

 (CH bending + CH stretching combination modes), and 8000–9000 

cm
−1

 (second overtone of CH stretching).  

 

6.4.1.1. GILS Results  

 

GILS program run against 100 times along with 50 iterations and 30 genes. 

Figure 6.21 shows the actual sunflower oil, biodiesel, diesel and methanol concentration 

values versus their GILS predicted concentration values based on FT-NIR spectral data. 

The standard error of calibration (SEC) values of each component were found between 

0.07 (w/w %) and 1.85 (w/w %) and the standard error of prediction (SEP) values of 

each component were found between 0.38 (w/w %) and 5.11 (w/w %) by using GILS 
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method for all components in set for NIR spectral data. SEC and SEP values for 

vegetable oil content were 1.85 (w/w %) and 5.46 (w/w %) and for methanol content 

were 0.07 (w/w %) and 0.38 (w/w %) while for diesel component were 1.06 (w/w%) 

and 4.83 (w/w%) and for biodiesel component were 1.57 (w/w%) and 5.11 (w/w%) 

respectively. In addition, R
2
 values of regression lines for all components were almost 

0.99. As a consequent, when these R
2
, SEC and SEP values are considered, it is clear 

that these values are compatible with each other, which demonstrates a good prediction 

for rapid monitoring the transesterification reaction of biodiesel synthesis to investigate 

production facilities at which the methanol was up to 5.0 percentages by mass in 

medium. 

In addition to this, to quantify the presence of vegetable oils in biodiesel blends 

and compare their respective accuracies with respect to adulteration in vegetable oils 

succeed along with this chemometric approach.  
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Figure 6.25. Actual versus predicted concentration plot for NIR data analysis with GILS 

calibration method. 
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Since GILS is a method that based on wavelength selection, it is significant to 

examine the distribution of selected wavelengths in multiple runs over the entire full 

spectral region. Figure 6.26 displays the frequency distribution of selected wavelengths 

in 100 runs with 30 genes and 50 iterations for biodiesel-vegetable oil-methanol-diesel 

set. 

 

 

 

Figure 6.26. Wavelength selection frequency distribution of GILS method for 

quaternary mixture of biodiesel-vegetable oil-methanol-diesel using NIR 

spectroscopy. 
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Figure 6.26. (cont.) 

 

As can be seen from the Figure 6.26, there are a number of regions where 

selection frequencies are highly compared to the rest of the spectrum. The most 

frequently selected wavenumbers corresponding to the regions at about 5000 and 6000 

cm
-1

 where strong peak is observed. This indicates that the genetic algorithm 

incorporated GILS method is focusing on the regions where most concentration related 

information is contained. 
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6.4.1.2. ANN Results  

 

Sample design data set and infrared spectral discussion were same as the 

previous section that is subtitled as GILS results and also, the parameters that used for 

ANN calibration method was with a goal of 0.0001 up to maximum value of 10000 

epochs numbers with learning rate and momentum value selected as 0.85 and 0.75. The 

user interface results for each component of quaternary mixture modeled by ANN 

calibration are given in the Figure 6.27. 

 

 

 

Figure 6.27 Error versus epochs plot of quaternary mixture of a) vegetable oil b) 

biodiesel c) methanol d) diesel (green line: validation, blue line: 

calibration, black line: target). 
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Figure 6.27. (cont.) 
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 mse value and begin validation mse 
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mse value, program stopped at which the performance was 112x10
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for diesel mse reached 251x10
-6

 at 2758 epochs. 

In training process, for a stable case after some iteration, the calibration and 

validation lines tend to be proceeding in an adjacent trajectory that demonstrates the 

0 100 200 300 400 500 600 700 800 900 1000

10
-4

10
-3

10
-2

10
-1

10
0

1050 Epochs

T
o

ta
l 

E
rr

o
r

0 500 1000 1500 2000 2500

10
-4

10
-3

10
-2

10
-1

10
0

Epochs

T
o

ta
l 

E
rr

o
r

 

c) 

d) 



113 

model was constructed successfully. This is an indication that further training would 

likely to result in the network over-fitting the training set. At this stage, the training 

process would be terminated. However, output data is required to revise from the 0-1 

interval to the actual value since log-sigmoid functions obtain results in the range of 0.1 

to 0.9. After these conversion applied, it is possible to calculate the SEC and SEP values 

for ANN model. Figure 6.28 shows the correlation graphs for NIR analysis with ANN 

calibration of this quaternary mixture set 

Furthermore, Figure 6.28 illustrates the R
2 

values found between 0.96 and 0.99. 

In addition to this, SEC values obtained was 0.99 for methanol, was 2.93 for biodiesel 

and was 1.49 for sunflower oil whereas SEP values was 1.69 for methanol, was 8.63 for 

biodiesel and was 5.58 for sunflower oil. Consequently, simple for any business to take 

advantage of rapid reliable NIR analysis – a goal achieved with the ready to- use ANN 

calibrations. 
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Figure 6.28. Actual versus predicted concentration plot for NIR data analysis with ANN 

calibration method. 
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6.4.2. Mid Infrared Analysis  

 

The FTIR spectra of biodiesel blends in oil and methanol, which were shown in 

Figure. 6.29, are as expected very similar since the oil, biodiesel and diesel compounds 

have almost the same chemical groups. However, some differences are detectable. The 

position of the carbonyl band in FTIR is sensitive to substituent effects and to the 

structure of the molecule. The methoxycarbonyl group in biodiesel shows a different 

band position of the νC=O vibration when compared to the carbonyl band in the oil. The 

peak of this band changed from 1743 cm
-1

 in oil to 1740 cm
-1

 in biodiesel. The band due 

to the νC(=O)-O vibration shows a peak at 1235 cm
-1

 in the oil and at 1244 cm
-1

 in 

biodiesel. A new band at 1195 cm
-1

 was observed for biodiesel and was attributed to the 

ρMe vibration. The band observed at 1159 cm
-1

 in the oil is observed in biodiesel at 

1169 cm
-1

.  

This band was attributed to methyl groups near carbonyl groups. There are no 

such absorptions due to C=O and C-O functional groups in petroleum diesel. In 

addition, the major changes are observed mainly at 3011 and 1654 cm
−1

. These 

absorptions are assigned to ν(CH) and ν(CC) stretching modes characteristic of olefins. 

Note that the FTIR spectrum of the vegetable oil methyl ester presents the higher 

intensities at these spectral regions due to fact that the vegetable oil presents the largest 

content of unsaturated carbon atoms. Remarkable differences are also observed in the 

finger print region (1100–1500 cm
−1

). The IR absorptions of different types of 

stretching, bending and out-of-plane vibrations of C-H, C=O, C-C-O, C-OH and C-O 

bonds are also useful for the multivariate analysis of biodiesel blends.  
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Figure 6.29. FTIR-ATR spectra of biodiesel, vegetable oil, methanol, diesel and their 

quaternary mixtures.  

 

This spectral separation among the functional groups of vegetable oils, biodiesel 

and petroleum diesel forms the basis of characterization and quantitation of FAMEs in 

biodiesel and in blended biodiesel-diesel fuel through IR spectroscopy combined with 

the chemometric calibration methods such as based on GILS and ANN approach. 

 

6.4.2.1. GILS Results  

 

Since utilizing the GILS algorithm, method will decrease the effect of baseline 

shifts because it can select certain combination of wavelengths, which have maximum 

correlation with biodiesel blends. The sample design set generated from 42 of them as 

calibration set and the remaining 18 samples as validation samples performed as it is 

same in the FTIR-ATR spectral data analysis.  

GILS program run against 100 times along with 50 iterations and 30 genes to 

predict the concentration of quaternary mixture of biodiesel, vegetable oil, diesel and 

methanol. Figure 6.30 shows the actual pure form of quaternary mixture concentration 
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values versus their GILS predicted concentration values based on FTIR-ATR spectral 

data. Calibration models for methanol content determination gave standard error of 

calibration (SEC) and standard error of prediction (SEP) values as 0.17 % (w/w) and 

0.43% (w/w) respectively. In the case of vegetable oil and biodiesel content 

determination, the SEC and SEP values were 0.33% (w/w), 0.31% (w/w) and 0.34% 

(w/w), 0.39% (w/w) whereas for diesel component SEC and SEP values were 0.55% 

(w/w) and 0.51% (w/w) for calibration and prediction sets, respectively. In addition to 

this, when examining the correlation plots the R
2
 value of regression lines was 0.99 

which indicates the model succeed in a reasonable manner.  
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Figure 6.30. Actual versus predicted concentration plot for FTIR-ATR spectral data 

analysis with GILS calibration method. 
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However, GILS method is an iterative procedure due to the genetic algorithm 

used to select a subset of wavelengths from the complete spectral range and Figure 6.31 

displays the frequency distribution of selected wavelengths in 100 runs with 30 genes 

and 50 iterations for biodiesel-vegetable oil-methanol-diesel set with respect to FTIR-

ATR spectra data matrices. 

 

 

 

Figure 6.31. Wavelength selection frequency distribution of GILS method for 

quaternary mixture of biodiesel-vegetable oil-methanol-diesel using 

FTIR-ATR spectroscopy. 

 

 

 

 

(cont. on next page) 
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Figure 6.31. (cont.) 

 

As can be seen from the Figure 6.31 there are a number of regions where 

selection frequencies are highly compared to the rest of the spectrum. The wavenumber 

region around 1000 and 3000 cm
-1

 for all components indicates a strong tendency for 

GILS method to select while for biodiesel and sunflower oil content, around 500 cm
-1

 is 

the most frequently selected region. This indicates that the genetic algorithm 

incorporated GILS method is focusing on the regions where most concentration related 

information is contained. 
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6.4.2.2. ANN Results 

 

A total of 60 samples used for the ANN data analysis at which 42 biodiesel 

blends samples were used for calibration model optimization and training. The root 

mean squared error was used to characterize the prediction capacity of the created 

model and to optimize its parameters. 18 samples employed as validation data, which 

were used for early stopping for network and to check the multivariate model accuracy 

on an independent data set. Sigmoid function logsig generates outputs between 0 and 1 

as the neuron's net input goes from negative to positive infinity and data matrices of 

quaternary mixtures as can be arranged in the NIR spectral data analysis as well as the 

same parameters utilized. Launching Neural Network Toolbox in Matlab 7.0.1 software 

programming in terms of the configurations as it is mentioned earlier, the user interface 

results for each component of quaternary mixture modeled by ANN calibration are 

given in the Figure 6.32.  

In training process, for a stable case, if the calibration and validation lines tend 

to be proceeding in an adjacent trajectory, it demonstrates that the model was 

constructed successfully. This is an indication that further training would likely to result 

in the network over-fitting the training set. At this stage, the training process would be 

terminated. However, output data is required to revise from the 0-1 interval to the actual 

value since log-sigmoid functions obtain results in the range of 0.1 to 0.9. After these 

conversion applied, it is possible to calculate the SEC and SEP values for ANN model. 

Figure 6.33 shows the correlation graphs for FTIR analysis with ANN calibration of this 

ternary mixture set. 
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Figure 6.32. Error versus epochs plot of quaternary mixture of a) vegetable oil b) 

biodiesel c) methanol d) diesel (green line: validation, blue line: 

calibration, black line: target). 
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As can be seen in the Figure 6.32, ANN training process stopped at which the 

epochs number 3176 for vegetable oil and mean square error value reached about 

906x10
-6

 for calibration, on the other hand, due to increasing of mse value of validation 

program did not continued. Even in case of biodiesel, 3741 iterations were necessary to 

achieve about 2241x10
-6

 mse value and validation mse value again increased. For 

methanol, epochs reached 10000, which is the limit number, thus program stopped at 

which the performance was 249x10
-6

 mse value whereas diesel reached 454x10
-6

 mse 

value after 9239 iterations. 

Output data is required to revise from the 0-1 interval to the actual value since 

log-sigmoid function obtains results in from 0.1 to 0.9. After these conversion applied, 

it is possible to calculate the SEC and SEP values along with the regression values 

between actual and predicted by ANN model. Thus, Figure 6.33 shows the correlation 

graphs for FTIR analysis with ANN calibration of quaternary mixture of biodiesel 

blends. 

 

 
 

 

Figure 6.33. Actual versus predicted concentration plot for FTIR-ATR data analysis 

with ANN calibration method. 
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Figure 6.33. (cont.) 

 

 

As can be seen from Figure 6.33, R
2 

values found approximately 0.985. Besides 

this, SEC values obtained 0.17 for methanol, 1.51 for biodiesel, 1.65 for vegetable oil 

and 1.12 for diesel components whereas SEP values 0.44 for methanol, 2.12 for 

biodiesel, 2.43 for diesel and 3.24 for sunflower oil. Methanol content was only up to 

5% by mass whereas biodiesel, vegetable oil and diesels were 100% by mass 

concentration in sample set. Thus, the constructed model is applicable for calibration of 

biodiesel blends to determine the methanol and untreated vegetable oil content via ANN 

that can be an effective multivariate calibration modeling for quality analysis of 

biodiesel blends.  
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6.5. Calibration Summary 

 

To make a comparison between NIR spectroscopy and MIR spectroscopy along 

with the chemometric multivariate calibration techniques which based on GILS and 

ANN approach; SEC, SEP and R
2
 values are given for all three data sets in Table 6.11, 

Table 6.12 and Table 6.13, respectively.  

 

Table 6.11. Calibration summary for ternary mixture of biodiesel, oil and methanol data 

sets. All SEC and SEP values are given as mass percentages (w/w %).  

 

Ternary 

mixtures 
Biodiesel Oil Methanol 

Methanol 

set 
SEC SEP  R

2
 SEC  SEP R

2
 SEC SEP R

2
 

NIR-GILS 1.86 2.88 0.997 1.21 2.75 0.994 0.89 0.91 0.997 

NIR-ANN 2.93 8.63 0.986 1.49 5.58 0.995 0.99 1.69 0.966 

FTIR-GILS 2.01 2.61 0.993 0.58 1.33 0.999 1.08 1.03 0.995 

FTIR-ANN 1.87 2.45 0.994 1.48 2.61 0.996 0.43 0.95 0.993 

 

Table 6.12. Calibration summary for ternary mixture of biodiesel, oil and diesel data 

sets. All SEC and SEP values are given as mass percentages (w/w %). 

 

Ternary 

mixtures 
Biodiesel Oil Diesel 

Diesel set SEC SEP  R
2
 SEC  SEP R

2
 SEC SEP R

2
 

NIR-GILS 0.90 1.32 0.998 1.04 1.46 1.00 0.94 1.07 0.999 

NIR-ANN 1.43 5.88 0.996 2.58 5.32 0.989 1.63 6.52 0.996 

FTIR-GILS 0.20 0.82 0.999 0.34 0.82 0.999 0.20 0.34 0.999 

FTIR-ANN 2.74 3.38 0.985 1.43 4.15 0.996 2.21 3.69 0.992 
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Table 6.13. Calibration summary for quaternary mixture of biodiesel, oil, methanol, 

diesel data sets. All SEC and SEP values are given as mass percentages.  

 

Quaternary 

mixtures 

Biodiesel Oil Diesel Methanol 

SEC SEP R2 SEC SEP R2 SEC SEP R2 SEC SEP R2 

NIR-GILS 1.57 5.11 0.993 1.85 5.46 0.998 1.06 4.38 0.997 0.07 0.38 0.998 

NIR-ANN 1.92 6.12 0.987 2.15 6.19 0.985 2.12 5.83 0.987 0.37 0.88 0.985 

FTIR-GILS 0.33 0.38 0.999 0.32 0.31 0.999 0.55 0.51 0.999 0.17 0.3 0.989 

FTIR-ANN 1.51 2.12 0.989 1.65 3.24 0.991 1.12 2.43 0.989 0.24 0.44 0.990 

 

After taking into an account for all, it is bring to a close that biodiesel blends 

samples with MIR spectroscopic techniques much better than NIR measurements in the 

calibration. The sigmoid ANN method gave clear improvements in prediction ability. 

However, GILS does not only help to calibrate the samples but also select a few 

wavelengths that contain the necessary information. In the future, both the algorithms 

can be improved by adding classification steps after construction of models. Again, it 

must be realized that the GILS method is an iterative procedure due to the genetic 

algorithm used to select a subset of wavelengths from the complete spectral range. The 

effect of baseline fluctuation will be more since MIR region is very sensitive for 

quantitative analysis because absorbance changes become more than it becomes in NIR 

case. The reason can be that fundamental vibrations have more probability to be 

observed than overtones. Yet, when the overall calibration performance of the models 

examined, it is possible to state that the MIR spectra do contain quantitative information 

that correlated with diesel, vegetable oil and methanol contents of the biodiesel blends 

samples studied here.  
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CHAPTER 7 

 

CONCLUSION 

 

This work presents multivariate chemometric calibration methods based on 

genetic algorithm inverse least square (GILS) and artificial neural networks (ANN) for 

the determination of oils, diesels, biodiesel and methanol in blends form.  

The analytical issues with biodiesels have two sources. The production facilities 

and terminal services need to ensure quality (completion of transesterification, glycerol 

removal, etc.) while testing labs and regulatory agents must ensure the labeled blend 

levels are present. The former are generally concerned with high FAME content 

materials (B100), while the latter may be exposed to a wide range of FAME content, 

from B2 and B20 up to B100. Since potential contaminants of biodiesel can arise during 

the transesterification reaction, it is important for biodiesel producers to be able to 

monitor the status of biodiesel production in order to recognize and correct any 

problems at an early stage. Infrared provides a rapid, precise and accurate tool for this 

analysis when these needs are taken into account.  

Analytical methods have been developed using mid infrared (FTIR) and near 

infrared (NIR) spectroscopy conveniently to determine biodiesel content in the reaction 

mixture to monitor the transesterification reaction. It is also shown that it can be used to 

determine biodiesel content in biodiesel-petrodiesel blends. The method with small 

modifications can also be used to determine the oil content in the adulteration of 

biodiesel-petrodiesel blends. It is shown that the method can be used to measure the 

amount of biodiesel accurately to the extent of 98 % accuracy for biodiesel-oil mixtures 

and biodiesel content in the biodiesel-petrodiesel mixture (blend) with an accuracy of 

99%. Transesterification reaction, which yields the methyl esters, can be monitored for 

completion by near infrared (NIR) spectroscopy using a fiber-optic probe or mid-

infrared spectroscopy with ATR crystal attachment in future. 
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