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ABSTRACT

DARK ENERGY MECHANISMS IN THE CONTEXT OF EXTRA
DIMENSIONAL MODELS

Dark energy is the simplest and the most standart explanation to account for the
observed accelerated expansion of the universe. In this thesis we use the term 'dark en-
ergy’ in its standart meaning i.e. a field or fluid that is responsible for the cosmic acceler-
ation in the frame work of general relativity. Meanwhile extra dimensions is an attractive
framework to understand many otherwise unexplained physical phenomena in a clear,
simple formulation. Therefore the study of extra dimensional cosmological models is an
attractive area of study. In this thesis we have considered viability of extra dimensional
cosmological models in the light of the accelerated expansion of the universe. We have
confirmed the results of studies that have shown the incompatibility of a broad class of
extra dimensional cosmological models with a dark energy of an equation of state close
to that of cosmological constant. We have discussed also possible theoritical and obser-
vational ways to avoid the no-go theorems for extra dimensional cosmological models as

well.



OZET

EK BOYUTLU MODELLER CERCEVESSNDE KARANLIK ENERJI
MEKANIZMALARI

Karanlik enerji evrenin ivmelenerek genislemeszigmlerini agiklayan en basit
ve en standart yoldur. Bu tezde karanlik enerji terimi en standart anlaminda yani genel
gorelilik cercevesindeki kozmik ivmelenmenin sorumlusu olan bir alan yada akiskan an-
laminda kullaniimistirOte yandan, ek boyutlar@ér bircok aciklanmamis fiziksel fenomen-
leri acik ve basit forralasyonda anlamaya yarayan bir ¢cercevedir. Baden ek boyutlu
kozmolojik modellerin arastiriimasi ilgi ¢ekici bir calisma alanidir. Bu tezde evrenin
ivmelenerek genislemesi gedirin 1sQ1 altinda ek boyutlu kozmolojik modeller ince-
lendi. Ek boyutlu kozmolojik modeller cercevesinde durum égittiozmolojik sabite
yakin olan karanlik enerji modelleri elde etmenin z@dna iliskin dahance yapiimis
calismalar gzden gegcirildi ve elde edilen sonuclargitalandi. Ek boyutlu kozmolojik
modellere iligkin elde edilmis olan sinirlayici teoremlerden kaginmanin teorigzlemsel
yollari da tartisildi.
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CHAPTER 1

INTRODUCTION

Since 1929 it had been known that the universe is expanding [1, 2]. Researchers
were expecting that the expansion should be slowing because the universe’s own gravity
tugs against the expansion. The cosmic acceleration rate can be observed by measuring
the distances to exploding stars known as supernovae. In 1998 in a quite unexpected way
the observations of high redshift supernovae revealed that the universe is accelerating at
present [3, 4]. There must exist something to make the universe expand at an accelerat-
ing rate. There are some frameworks to explain this acceleration; some form of energy
(called dark energy) [5-9], modification of gravity [6, 10], inhomogeneity in the matter
distribution [11, 12] are the main of these frameworks. The framework we adopt in this
thesis is the most standard of these, known as 'Dark Energy’, some kind of fluid or matter
field that causes accelerated expansion of universe [13] in the context of Einstein’s theory
of general relativity [14]. In the following sections we consider some basic candidates for
dark energy.

Dimension is a natural concept to humans in everyday life. A dimension is a
parameter or measurement used to describe some relevant characteristic of a place or
object. The time and space are known examples of dimensions. Einstein’s theory of
relativity is formulated in 4-dimensions. The question is how it is possible to have more
than 4 dimensions because we do not see the effect of extra dimensions. The possibility of
existence of extra dimensions although we do not see them in everyday life may be seen
through an example. Let us suppose an ant which is moving on a cord. When we look
from a distance we see the cord as one dimensional. But when we zoom onto the cord,
we see one dimension is not enough to describe the exact position of the ant. Therefore
we need a second dimension which takes the form of a small compact circle having the
thickness of the cord. The ant can also move along this circle. As we see from this
example a one dimensional picture from a distance could in fact contain two dimensions.
In fact this (i.e. taking the extra dimension small and compact) is one way to explain why
it is not observed at low energies. Another way is to make matter be confined to a four
dimensional wall i.e. a brane in extra dimensions [15, 16].

We may ask what the physical effect of extra dimensions would be here. Let
us start with the gravitational force between two objects. This force has a magnitude



proportional tori2 . When we suppose in additiod extra dimensions, we will see this
force changing tggi—N. Hence we see the number of extra dimensions change the nature
of the physical law of this force. This is why the question of existance of extra dimensions
becomes an experimental question. Another reason for extra dimensions is also related
to gravity. We do not know the behavior of gravity at distances shorter thahcm

and at distances larger thaf®® cm . All what we know about the gravity is within this
range. In addition to gravity, electromagnetic interactions which obey inverse square law
also are known down to distances Idf ' cm but below this scale there might exist a
change in the behaviour of it. Therefore there is a possibility that they can change with
the laws of extra dimensional space if extra dimensions exist. One can ask what are the
benefits of a world with extra dimensions? | will give few titles related to this questions,
unification of gravity, quantization of gravitational interactions, Higgs mass hierarchy
problem, cosmological constant problem, etc.

As we have discussed above, extra dimension is an attractive framework to explain
some phenomena or relations in nature that seem unaddressed in a simple way. Therefore
the use of extra dimensions to account for accelerated expansion of the universe (cosmic
acceleration) is quite natural and is discussed in many studies and models [17-19].

In this thesis we questioned if extra dimensional models that include cosmic ac-
celeration may be realized in a way consistent with observations and within standart theo-
retical framework. To this end first we reviewed dark energy and extra dimensions. Then,
we reconsidered the constraints on broad class of models that are derived from energy
conditions [20, 21]. We have confirmed their conclusion and discussed possible routes to
avoid these constraints.

Note that we take the signature of the four dimensional metric be (-,+,+,+) unless
otherwise stated.



CHAPTER 2

BASICS OF COSMIC EXPANSION

2.1. Hubble’'s Law

In this chapter | will write the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric and the corresponding equations to explain the rate of expansion of the universe.
But firstly we start with Hubble law.

Hubble law [1] is a natural consequence of homogeneity and isotropy in an ex-
panding universe (here homogeneity tells us that universe looks the same when it is ob-
served from any point whereas isotropy means that the universe looks same in any direc-
tion). Now let us start with a coordinate system with origin O at which matter is at rest.
The velocity field that is the relative average velocity of matter at any two points depends
on the radiug- (i.e. the distance between the points) and tinfiee. the time that takes
light to travel between these points). We can denote this velocity fieldby) and write

down as;

v(r,t) = H(t)r(t) (2.1)

where H(t) is known as the Hubble parameter. Hubble’s law tells us how the average
velocity between any two points in space changes with time. Therefore one #Afes
as the expansion rate of the universe. From equation (2.1) one may write;

dr

dr _ H(t)dt (2.3)
,
r dr
S == Jy H(t)at (2.4)
Now integrating both sides we have;
r(t) = r(0) exp fot Hdt (2.5)



Here we will introduce:(¢) which is known as scale factor :

oty = "0 (2.6)

r(0)

then we may write
a(t) = exp [} H(t')dt' (2.7)

taking the natural logarithm of both sides and taking the derivatives with respect to time

we have;
H(t) = g (2.8)

As it can be seen from (2.8) the expansion rAtg) is a function of scale factai(t).
This scale factor is so important that it contains complete information about the dynamics
of homogeneous and isotropic universe.

According to the Hubble’s law, if the universe is isotropic and homogeneous, par-
ticles move radially from an observer which may be supposed as located at the origin of a
sphere. We can see this directly from the relation (2.1) which tells us that the velocity of
a moving particle is associated with the radial distance of the particle from the observer.
This motion is known as 'Hubble Flow'.

2.2. Newtonian Cosmology

The picture in Friedmann-Lemaitre-Robertson-Walker (FLRW) space may be made
more plausible through a naive Newtonian analysis [22, 23]. One may write the evolution
equation for Hubble’s parameter in (2.8) by using a naive Newtonian approach. Let us
start with a particle which is located at a point on a sphere and the patrticle is at a distance
r(t) from the origin. Here because of the isotropy we take spherical symmetry. We con-
sider that at a given timg there exists matter with density(¢) at the origin. For given
particle of massn we can write the gravitational force and then by calculating the poten-
tial energy of it we may write the total energy of this particle. The gravitational force on



this massn is,

F=-VU (2.9)

where M is the mass located at the origin of the sphere. From equation (2.9) we may
calculate the potential energy of this massvhich is;

_GMm

Ur) = . (2.10)
The total energy of the mass is;
_&m_%mﬁ_¢ywm (2.11)
T

Since we are on the sphere, we may write (2.11) in terms of the volume and density of
matter located at the origin as;

M
po(t) = v (2.12)
4
vz§mﬁﬂ (2.13)
1 4

Ei = §m7'“2 — gGmprQ (2.14)

. .. 7’2 .

Now from the total energy equality if we divide each term%u, we will have;
2 8 2Et0t

22

Here the term on the left hand side of equation (2.15) may be Writtgg aghich is also
a

equal to the square of Hubble’s parameterThen (2.15) may be written as;

2F 2
ot _ & (2.16)

mr? a?

8
H? = ngb—l-



This equation is known as the Friedmann equation. In this equation we will write the

second term on the right side in terms of a new parameter K. Then it may be written
2Et0t

r2(0)m

comparison of kinetic energy and potential energy becausg if £, in (2.14) then we

askK = —

. Here the sign of depends on the energies of the masshat is

seeK is negative butift), < E,, K is positive. Also it can be zero when two energies are
equal. Now one may relate the results of this analysis to the general relativity concepts.
As we will seee in the next section the signigfshows the geometry of space. Af is

be zero, then we say universe is flat, foris negative it is an open universe which is also
called hyperbolic like and finally foK is positive it is a closed universe that is spherical
like.

2.3. FLRW Metric and the Corresponding Einstein Equations

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is an exact solution to the
Einstein’s field equations of general relativity. The form of the metric describes the uni-
verse as homogeneous, isotropic and expanding. Since the scale factor is written in the
metric, the solutions of field equations must give the size of universe as a function of time.
This metric may be written in 4-D as;

dr?

2 2 2

+ 72(d6* + sin®(0)dp?)] (2.17)

wherea(t) is the scale factor andl’ = 0,+1. As we mentioned before, the sign &f
shows the geometry of space Hfis zero, then we say the universe is flatiifis negative

it is an open universe which is also called hyperbolic like, and finally i positive it is

a closed universe that is spherical like. The coordinatégjrare co-moving coordinates

in which a freely moving particle comes to rest. This form of the metric is written in
spherical coordinates. The spatially flat case ité.= 0 may be written in Cartesian
coordinates as;

ds® = —dt® + a*(t)[(dz1)* + (dx)* + (dz3)?] (2.18)

To have information about the dynamics of this metric we should solve Einstein’s
equations for the scale facteft). Now to have a differential equation for the scale factor



we should consider Einstein equations which are written as;
1
Gy = By = 50w R = 87GT,,, (2.19)

where G, is the Einstein tensorRz,, is the Ricci tensor and),, denotes the energy
momentum tensor. Ricci tensor may be written as;

R,, =T? ,—I?  4T»T% —T* T (2.20)

pvop t ppov T pot py po= pv

p

or : , S L
wherel” ., denotesa—“p” andI, is called 'Affine connection’ in general. When it is
X

symmetric i.e. when it is the metric compatibi;,g,, = 0 it is called the 'Christoffel
symbol’. Christoffel symbols have the form written as ;

1 o
FZI/ = égp [g;uﬂl/ +ga'u7p, _gp,u,a] (221)

Now after giving these information we may calculate Einstein tensor for FLRW met-
ric given in (2.17). The elements of our metric may be written@g;= —1, ¢11 =

a*(t)
1 — Kr?’
given in appendix A.

goo = a*(H)r?, gs3 = a*(t)r*sin*(#). The explicit calculations of7,, are

The elements of the Einstein tensor are;

oo = %(gﬂ +K), Gn = (Kr?—1)(2ia + + K)

Goo = —1%*(2ai + a*> + K), Gs3 = —r?sin®(0)(2aid + a* + K)

We may also write the elements of energy momentum tensor using these equations
and the relatiorty,, = 87GT,,, as;

1 3
Too = ———Glop = 22+ K
W= B = Gy 2@ T
_ ! _ 1 2 _ . -2
T11 = (87TG) GH = (87‘{'G) (K’/’ 1)(2@@ +a“ + K)
1 1
T — — 2 2 .. n2 K
b —(87TG)G22 (87rG)r (2ad + a* + K)
T35 = —G ! r?sin®(0)(2ad + a* + K)

(87G) #  (87G)
In all our calculations, j range froml to 3, GG is gravitational constant andl is
Ricci curvature scalar. When we suppose an ideal perfect fluid, because of homogeneity

7



and isotropy, the energy momentum tensor takes the form;
™ = (p 4 P)U*UY 4 Pg" (2.22)

wherep is the energy density, is the pressurd/* is the velocity vector field. If the three
dimensional space is flat then (2.22) in co-moving coordinates becomes ;

T,, = Diag(p, P, P, P) (2.23)

whereU* = (1,0, 0,0) in co-moving coordinates.

We have written Einstein equations and the elements of Einstein t€hsoFrom
the four Einstein equations, we are able to write two independent equations. For the 00
component we have;

GOO = 87TGT00
(87QG) K

3
8nGp = E(c'ﬂ +K)= H?= b (2.24)

whereH = < is the Hubble parameter. For another element of Einstein tensor we have ;
a

GH = 87TGT11
S
2% (2 = =81GP (2.25)

a a

After multiplying (2.25) by three and then adding the resulting equation to (2.24) one
gets;

_—
g = —%G(p +3P) (2.26)

We remind thap denotes the total energy density of all the fluid components present in
the universe. In this equation we waito be positive to have an accelerating universe,
so the parenthesis on right side of equation must be negative.



2.4. Observational Evidence for Cosmic Expansion and Acceleration

In 1929 Edwin Hubble, who is an astronomer, was working at the Carnegie Ob-
servatories in Pasadena, California. He made some observation about the expansion of
universe and he measured the redshifts of a number of distant galaxies. He also measured
the relative distances of these galaxies by measuring the apparent brightness of a class of
stars in each galaxy. When he plotted redshift against relative distance, he found that the
average redshift of distant galaxies increased as a linear function of their distance as we
mentioned in the first section of this chapter. But there must have existed an explanation
for this relation and the only explanation is that the universe was expanding. This may be
shown by using mathematical explanation of redshift.

In the picture of Hubble, ratio of the wavelength of an observed light to the that of
source is given as;

)\obs _ a(tO)
)\source CL(t)

where),; is the wavelength of observed light aig,,,... is the wavelength of the

source. The timesandt, are the time when light emitted and observation (the present)
time respectively. One may write this equation as;

t
>\0bs = Asourcea( O)
a(t)

As wee see there is a difference between wavelengths with the fraction of scale

factors. It is known that in the case of redshift we hayg > A\, then one may

a(to)

conclude = 1+ z > 1 wherez is the redshift. This shows us that the scale factor

a(t
of present time is grater than that of the time of the light emission which means that there

must exist an expansion.

So what about the expansion rate? Is it accelerating, decelerating or at a constant
rate? These questions found their answers in 1998 when there were some observations of
type la supernovae [3, 4] suggested that the expansion of the universe has been acceler-
ating. This of course may be seen mathematically by looking at the luminosity distance
which is defined as the relationship between the absolute magrifuated apparent mag-
nitudem of an astronomical object. In general luminosity distarieg, is defined by the

formula;

L
D, =] ——
L ArF



where F' is the observed flux and is the intrinsic luminosity of the source. Also the
luminosity distance in cosmology is known in another form which depends on redshift,
that may be derived from (2.24);

1+2 .. dz
Dy = fo
Ho 7% \/Qu(1+ 2)3 4+ Qp (1 + 2/)30+w)
where), = Pz \which is the ratio of density of any source to the critical density

Pe
which is the energy density & = 0. Here(2,, stands for matter whil€, stands for
cosmological constant. When we perform this integration for matter and for cosmological
constant seperately we have the relations;

2
Dp=—0+z—+v1+42), for Qu=1

Hy
z
Dp=—(1+2), for Qy=1

Hy

One may see from these two relations that the luminosity distance for cosmolog-
ical constant is larger than that of matter. In terms of the the absolute magnifiated
apparent magnitude:, luminosity distance in Mpc is given in [24, 25] as;

m — M = 5log Dy + 25

If one sketches the graph of — M to z (we can see the relations by putting the
found values ofD);, into this equation), the graph shows that there is deflection in the line.
When this graph is performed for matter dominated universe, we expect a line which must
curve to the axis ot but found graph is like linear. This only can be explained as there
must occur an acceleration to cause this deflection.

10



CHAPTER 3

DARK ENERGY

3.1. Cosmological Constant

The question of evolution of universe begins with Einstein and his belief that the
universe should be static. But when he wrote down the equations of the general relativity
for a static universe, he realised that the universe was not static as he thought. Therefore
he needed to modify his equation by introducing a term which is called 'Cosmological
constant’[26—30] (see Appendix B). This may be supported by mathematical tools. We
know that Einstein tensor and the energy momentum tensor satisfy the Bianchi identity.
Here we mean that their covariant derivatives are zero. Also we know that the covariant
derivative of metric is also zero. Therefore there is a freedom to add a term dike
because it also satisfies the Bianchi identity. Although Einstein has ada@edmological
constant, he has seen that the static universe he obtained is not stable and in fact it stands
for universe that expands or contracts depending on the signlaffact the cosmological
observations of Hubble as we have mentioned in chapter2 suggest that the universe is
expanding.

In the presence of cosmological constant Einstein equations read;

G = 87GT,, — Agy (3.1)

whereA is called the 'Cosmological constant’. It should be noted that the effect of in-
cluding A in the equations may be observed more prominently in large distance scales at
which contributions from higher order derivatives of the metric tensor tend to fall.

Now what about the equation of state of cosmological constant? The equation of
state is defined as the ratio of pressure to the total energy density and denotekh blye
case of cosmological constant we hawe = —1. This is the simplest candidate for the
dark energy. But as we mentioned in early sections there are also some scalar fields which
are slowly varying with time to describe dark energy similiar to cosmological constant
[6, 7, 27]. We require all dark energy candidates mimic cosmological constant since a
positive cosmological constant fits observational data very well.

11



3.2. Slowly Varying Scalar Fields

A field which is invariant under Lorentz transformations is called a "scalar field”.

In cosmology, as we mentioned before, scalar fields that homogeneous and weakly cou-
pled to ordinary matter are alternative ways to describe the dark energy. If the scalar field
is slowly varying and if the potential of this scalar field slowly decreased towards zero for
large potential, the energy density associated with it could act like cosmological constant
that varying with time less rapidly than the mass densities of matter and radiation. These
fields are known as quintessence, tachyon and phantom. Now we will look at these fields
in details.

3.2.1. Quintessence

Quintessence is a hypothetical form of dark energy postulated as an explanation
of observations of an accelerating universe [3]. Also it may be defined as a time-varying
form of vacuum energy. Quintessence is a standart scalar field that is minimally coupled
to gravity [6, 7, 27, 31]. We may write the action which is related to the quintessence as;

5= [ eyv=gits = [159" 0,606+ V(o)V=ad's (3.2)

whereg denotes the determinant of FLRW metric adds the Lagrangian density of
quintessence. Now by using this action we may find the related energy momentum tensor
for this scalar field as;

oL 1
TMV - Wau¢ + guu£ = 8M¢0,,¢ - guu[§gaﬁaa¢aﬂ¢ + V(¢)] (3.3)

Here the scalar field is considered as a function of time only because of the homogeniety
and isotropy of the universe. It does not depend on space part so we will have only time
derivative of it. We may now calculate energy density and pressure in FLRW background.
As we know the energy density is equalfig. Then itis found as;

1

poo = Too = 0oy — 900[%(90050(1550(%5 + ¢70,00;¢) + V(9)] = 5452 + V(o) (3.4)

12



Also we may calculate the pressure by the space component of energy momentum tensor.

T;j = 0:90;¢ — gz‘j[%(gooao(baoaﬁ + ¢" 0,00, ¢) + V()] = [%éﬁz = V($)]o;;  (3.5)

Py= T =Ty = Tos = 5 ~ V(0) 36)

After finding energy density and pressure, we may write the equation of state which is the
. : . . Py
ratio of pressure to the total energy density as introduced befarg is —. When we

p
put values of energy density and pressure we get; ’
L.,
59 = V()
wy = §———— (3.7)
59+ V(9)

As we said before if we want to approach to the cosmological constant from a scalar field,
it must vary slowly with time that i$9 << V(¢). Under this condition equation of state
approaches te-1 which is the value for cosmological constant. When we have this limit
we mean that’(¢) is a flat potential. 1% > 0 this requires thap + 3P < 0, this term is
written for quintessence as;

p+3p:%&+¢m@+3g&—vwm=2&—2vw>
¢ < V(9)

this means that for accelerated expansion we need a nearly flat potential in time.

3.2.2. Tachyon Field

Tachyon is a particle with 4-momentum and imaginary proper time, moving faster
than light i.e has imaginary proper time. As we mentioned before tachyon field can be
considered phenomenologically as a suitable candidate for a viable model of dark energy.
The tachyon is an unstable field [8, 32—34], its state parameter in the equation of state
varies smoothly between1 ando.

Tachyons we consider are string theory type of tachyons whose action is;

S = [~V(6)\/T= 070,60y —gd' (3.8)

13



where the signature of the metric is taken to be (+,-,-,-), this is called the 'Dirac-Born-
Infel(DBI)’ type action. And here we shall consider potential that whier> oo then
V(¢) — 0. Now we are ready to calculate corresponding energy momentum tensor as;

= 9 o gur = L0 -
T = 50,y 0~ b = Nier oy V($)\/1= 040,60  (3.9)

We assume that is spatially constant (i.e. it only depends on time).

V(9)
po = Too = - (3.10)
\/1— ¢?
and also the pressure may be found fropas
Tij = ~V($)\/ 1 - §%; (3.11)

Py=—V(¢)\/1—¢? (3.12)

The corresponding equation of state may be written as;
wy=—2=¢*—1 (3.13)

Since the pressure and energy density must be real then we may set the conditin for
11— ¢% > 0 = ¢* < 1. From this relation we may find the range ©f. We have
—1 S W S 0.

3.2.3. Phantom Field

The scalar field models as we gave in previous sections lead to —1. But
now we want to talk about phantom field [35-38] whose equation of statg is —1.
The simplest way by which we may get a phantom field is to have a scalar field with a
negative kinetic energy term (i.e. a ghost field). The action of the standart phantom field

14



may be written as;
1
S = [Ly=gdiz = [[59" 000,06 = V(9)]V=gd'x (3.14)

Again as we performed for quintessence and tachyon fields, the corresponding energy
density and pressure of phantom field may be found from energy-momentum tensor so

we have;

1

Py = §<;52 + V(o) (3.15)
po =58 V(o) (3.16)
S5+ V()
§¢2 —V(¢)

As we see from the equation of state, Wh;eh? < V(¢) then we will get the condition

that we need for phantom field. Therefore we see that the equation of state is lesg than
l.ewy < —1. One may say this equation of state of phantom field is the same as that of
ordinary scalar field with inverted potential.

15



CHAPTER 4

EXTRA DIMENSIONS

The concepts of extra dimensions are discussed in Introduction. As we mentioned
there are several models associated with extra dimensions. Let us consider some basic
models of extra dimensions.

4.1. Kaluza-Klein Theory

Kaluza-Klein Theory was an idea which was developed in the 1920’s as an attempt
to unify the forces of electromagnetism and gravity. This theory was first published in
1921 by Theodor Kaluza who suggested that in extending Einstein’s theory of general
relativity to a five dimensional space-time the first part of resulting equations is Maxwell’'s
equations for electromagnetism, the second part is Einstein equations, and the final part
is an extra scalar field now termed the "radiation”. But in Kaluza-Klein approach [39—
41] extra spatial dimensions are not similar to the three dimensions. In this theory the
extra dimensions form a compact space with a s€aleor one extra dimension we have
a circle with radiusL and for higher dimensions we have sphere, torus, or any other
manifold. From now on | will denote the name of this theory by KK. In general, the
D-dimensional space-time in the KK approach has a geometky‘ok XP—*. HereM*
denotes four dimensional (4-D) Minkowski space-time antl~* denotes manifold of
extra dimensions. Itis also called 'internal manifold’.

Kaluza introduced a condition that is called 'cylinder condition’ in order to explain
absence of the evidence of the extra dimension. This means the all partial derivatives with
respect to the fifth dimension are zero. Then in 1926 Oscar Klein showed that 'cylinder
condition’ may be explained if the fifth dimension is circular, that means the fifth dimen-
sion is periodic. Under this assumption Kaluza’s cylinder condition arises naturally (see
Appendix C).

We consider (4+1) dimensional gravity i.e. Kaluza-Klein theory itself and see how
4D gravity may be unified with electromagnetism in 5-D. The corresponding 5D action

is;

Go__ 1 /d%\/?g“ﬁz (4.1)

167G
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where the tilde notation denotes the 5D variablesicci scalar in 5D and,/—7 is the
determinant of metric in 5D. One may decompgse (A,B =0,1,2,3,4) into its Kaluza-

Klein models as given in (C.12) and may take the zero modes as the usual 4-dimensional
fields. This explains the rationale Kaluza’'s assumption that the fields in the Kaluza-Klein
expansion ofy,, depend only on 4-dimensions. For our present purpose it is enough to
consider the zero mode, and take the non-zero elemepfs .of

_ : _
G = €V3 g () + € \/gd)AuAu]

3 =20
_ eV3 (g + e_\/gd)AuAl, evs A,
9gAB = =2 =2¢
evs A, e V3

and the inverse of this matrix may be written as;

o
_e _e
~AB _ [e V3 gt —e VBAH

_9 _¢ 3¢
—e VEAY e V3i(A%+4evs)

The variation of (4.1) with respect {9, 5 results in the Einstein equations which have the
same form of that in 4D.

_ _ 1. -
Gap = Rap — 3 apR (4.2)

where R 45 is Ricci tensor in 5D. It may be written in terms of 5D Christoffel symbols
are defined by;

Rap = ng,C - 1Nﬂ(A;c,B + fgcfﬁ)B - ngfgC’ (4.3)
where the Christoffel symbols are defined by;

~ 1 - - -
I'%p = §§CD(QBD,A + 9pa,B — JaB,D) (4.4)
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Here one should not forget that there is no dependence on the extra dimension because
we are considering the zero mode. Therefore derivatives wyror y is zero. Then the
corresponding non-zero Christoffel symbols are;

~ 1
Fﬁu = Fﬁu + _3[5281/¢ + (Si\auqs - guua)\qb]

1 2\/_1
_ 3¢
—l—%A“A,,@*qb + 3¢ V3 [AI,Fj + A, F)
~ 1 3¢
I‘g‘5 = —e V30
V3
Bo = — e Viang
55 — —ﬁe O
I L B0 a,0.0— Lo B AR, — 0.0
AT T 56 V8 A\OpP — € V3 Ap — 0N
3 2 3
. lf—g’fA D6+ Lo B> v
5 ﬁe S Ay 56 3 I
~e 1 1 3¢
F.UV = [§<AM%V + Avy) — 56 E[AP(ALF, + ALF,,]
3 1
—ﬁ(/ly@ugb + A,0,9) + Z—ﬁ(guyApé?pgb)]

Here | used the notation,,,, = A, , —I', A, whereA,,, denotes the covariant derivative
of 4, . Now we are ready to construct the Ricci tensor and scalar respectively by using
these symbols. As we wrote before the Ricci tensor can be written in 5D as;

Rap = ng,c - fgC,B + TGI8, — TG

Ry =TG,0—T5%, +T9:Th —T5, e

Rys = fgs),c - fgog) + fgcf;% - fgsffc

Rss = f505,0 - f500,5 + TG ID — TG,

One may construct the Ricci scalar in 5D by using the given Christoffels. For the KK zero
mode the action become;

S = M3rL / d*z\/g[R4 — %am&% - %LemFWF“”] (4.5)

As we see in the action in addition to usual 4D Einstein-Hilbert action of gravity we have
two terms. The part of action containing field strength tensor is known as 'Maxwell’s
action’ and the other term is an action of a scalar field.
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4.2. Large Extra Dimensions (ADD Model)

One way to obtain 4D gravity on a brane is combining the braneworld idea with
KK compactification. This was studied by Arkani-Hamed, Dimopoulos and Dvali [42].
In this model Standart Model (SM) particles are located in 4-dimensions and the gravity
spreads to all dimensions with compact extra dimensions.

The action for the simplest ADD model may be written as;

M2+N 2nL
SADD = *2 /d4l'/ dNy\/ GR4+N —l—/d4[E\/§(T—|—LSM) (46)
0

whereg(z) = G(z,y = 0), M, ~ (1 —10)TeV and N denotes the number of extra
dimensions.

If we integrate the action (4.6) over the extra dimensions we will have the 4D
action for zero mode as;

M2+N 2L M2+N oL N
s / d'z / dNyVGRy N = # / d*z\/gR 4.7)
0

here we take the second part of the action (4.6) to be zero. In the above equation the right
side is the 4D action with the Plank mas&,, = M*™(2xL)"N. From this relation we
may find what should be the size of extra dimensions;

Mp,
M.

1
2w M.,

L= (G

(4.8)

) Mp,
e. L ~ M (==
* <M

*
the size of extra dimension becomes;

)2/N1f the fundamental scale of gravity is taken®s ~ TeV then

L~ 10717H30/N ey (4.9)

Now we may list some of the values bfwith the change of numbeéy;

o forN=2L~01mm,1/L~ 1073V
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e forN=3;L~ 1nm,1/L ~ 100eV
o ...
e forN=6,L ~10""%2cm ,1/L ~10MeV

WhenN = 1 one obtaing. ~ 10*cm, and this is excluded within the ADD framework
since gravity below this value would have been higher dimensional. The other important
value is atN = 2 because at this value in whidh~ 10~2cm the modification of the 4D
laws of gravity is predicted at sub-millimeter distances.

Now let us suppose two static faraway sources on the brane interact with the fol-
lowing non-relativistic gravitational potential written as;

+oo

V(r) = =Gymimz Y [Ua(y = 0)

n=—oo

—MnT
e mn

(4.10)

r

whereV, (y = 0) is the wave function of.'th KK mode at a position of a brane and
r denotes the distance between massesn,. The mass term of KK mode are given
as;m, = |n|/L wheren stands for the number of KK modes. In the limit> L the
potential given in (4.10) becomes;

V()= -2 (4.11)

for only m,, = 0 contributes. Equation (4.11) is the conventional 4D law of Newtonian
dynamics. This limit shows the distances much larger than the size of extra dimensions.
But in the opposite limit- < L. we may get the potential in higher dimensions.

Gmims

V(T> - _M3+N7’2+N

(4.12)

As we mentioned before this is the law of (4+N) dimensional gravitational interactions.
Therefore we may conclude that the laws of gravity are modified at distances oflorder
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4.3. Randall Sundrum Models

Before starting to this model let us first say something about braneworld [15, 16,
43]. The central idea is that the visible, four-dimensional universe is restricted to a brane
inside a higher-dimensional space, called the "bulk”. If the additional dimensions are
compact, then the observed universe contains the extra dimensions. Therefore we should
obtain the 4D gravity on a brane. In the brane picture 3 fundamental forces are localized
on the brane but some fields e.g. the gravity has no such constraint. There are some ways
to obtain 4D gravity on a brane. The first one is to combine the braneworld with the KK
compactification which was done by Arkani-Hamed, Dimopoulos and Divali (ADD) [42].
Here the extra dimensions are compact. The other possibility is based on the phenomenon
of damping or localization of gravity through extra dimensions discovered by Randall and
Sundrum (RS) [44, 45]. In this model extra dimensions are strongly curved by a large
cosmological constant. Here the extra dimensions are warped. We start with the a so-
called RS Il model [44] that has two branes one of which is located at infinity. The metric

of this form can be written as;
ds* = e Wty | datda” + dy? (4.13)

wheren,,, = diag(—, +, +, +) is the 4D Minkowski metric. The pre-facter ¥/, called
the warp factor, is written as an exponential for convenience. Its dependence on the
extra dimension coordinate y causes this metric to be non-factorizable, which means that,
unlike the metrics appearing in the usual Kaluza-Klein scenarios, it cannot be expressed
as a product of the 4D Minkowski metric and a manifold of extra dimensions.

This metric is the solution of the equation given below;

1
M.NG(Rap — 5GapR) = —~MIAVGGap + V=99, T54550(y) (4.14)

whereT is the brane tension antis the negative cosmological constant. This equation
is found from the action of RS model which is given by;

SRS =

3 +o0
]‘g* / d'z /_ . dyvV'G(Rs — 2M) + / d*z\/g(T + L) (4.15)
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The equation (4.14) is found from the variation of (4.15) w.r.t. 5D meftit®. For
simplicity we takeL g, to be zero.

Here the question is that how the gravity is localized. To answer this question let
us consider graviton fluctuations. The metric becomes

ds? = (e WLy, + hy, (2, y))de'da” + dy? (4.16)

whereh,,, (z,y) is the perturbation term. To understand the form of this perturbation term
we should find the linearized Einstein equations and solve for the perturbation term. |
will denote usual metric byjapdzdz? = e~ W/Ly,, dztdz? + dy? and the terms which
contain the perturbation term By Then the linearized Einstein equations are written as;

1 _ 1 _
Gap = Ruap — égABR = (RAB + (SRAB) — 5(77,43 + hAB)(R + 5R) (4.17)

where the bar over the quantities refer to the background mgtgic= e 1¥/Ly,,, + dy?
while the quantities without bar refer to the pertubed metric. In all calculations we will
set higher order terms iy, to zero.

Now let us find the term8R 45, R anddG 45.

1
Fﬁu = §€|y|/L77uU(hm/,p + hap,u - hup,o’) (418)
1
F;r))l/ = _§(hpu,5 + aE')(e_"yVL)an) (419)
1
[l = §€|y|/L77W(hpa,5 + 05 (e M ) n,,)) (4.20)

where we take the higher order termsfij, to be zero and we usg,, for rising and
lowering the indices. By using (4.18),(4.19) and (4.20) one may construct the elements
of Einstein tensor as;

1 1

R}U/ — —56585(6_“:"/[’)77“” — 56‘y|/L77/u/[a5(6_‘y|/L>]2 _|_ 6R/“/
1 1 1

R/U/ = —§€‘y|/LDhMV — 58585hm, — 58585(€_|y|/L>77MV

1 1
—iely\/LnW[ag,(e—lyl/L)]Q _ §e|y|/LhW[85(e_|y|/L)]2
R55 g _2€|y‘/L8585<€_|y‘/L) — €2|y‘/L[a5<€_|y‘/L)]2

whereé R, contains the,, terms and is given as;
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1 1 1
ORyy = —5 €M/ Bhy, — S 0505hy, — el hy, [O5(e” W]

Here we have used the gauge fixingfsh,,, = 0 andd,h% = 0. Also the derivatives w.r.t.
extra dimension are given as;

e~ lul/L
Os(e”tVE) = == —[6() ~ O(-y)]
e —lyl/L
0505 (e WI/E) = e " 96 o
(05 (e~ 1w/ 1)]2 = e—2lyl/L
12

where©(y) is the step function which is related to the first derivative of absolute value
function andd(y) is Dirac-delta function that is the second derivative. Also we use
[©(y) — ©(—y))*> = 1. Hence;

1 1 1 3 2
5guu - +§€‘y|/LDhW/ + 585a5hu1/ + ﬁe \y|/LhMV + mhuy - Zhuué(y)

The right side of the Einstein equation is related to the energy-momentum tensor as
known. From equation (4.14) one may find the pertubed part of energy-momentum tensor
which comes fronk,,,. In that equation we use for determinant of the metric;

VG =VG+ VG
wheredv/G is the determinant containirfg,, terms and is known as;

1
5VG = —5\/6(;“”50#” =0

where the gauge choisg,h,, = 0. Also the termV/G is the determinant of the un-
perturbed metric. One may write (4.14) fdr B = u,v and for the perturbed metric

as,
MGG, = —MPAVGSGH + \/=G6G* Ti(y)

with 0G*” = h*¥. This equation may be written in details as ;

1 1 1 3 2
M*€72|y|/l’ [+§e|y‘/LDhW + 58585h,w + ﬁeﬂy‘/LhW + ﬁhuy - Ehuyé(y)]
3

M
= —M3Ne2W/Th,, +3 L* o 0(y)

Also for L andT we use;

Then we will try a solution of the form ;
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ipT

b (2,y) = u(y)e

with p? = —m?. One gets the equation foxy);
3

S lu(y) =0

2
2 L 2
[—m2ell/E — 92 — zé(y) +
When we suppose zero modewill be taken zero then a simple solution may be found

as;
u(y) ~ e W/ (4.21)

This function ofy is important to explain the location of gravitation because it is like a
wave function of gravitation. As we see from the formudf)) asy — oo, u(y) — 0
which shows us that gravitation is located on the brane in which we live.

In the other Randall-Sundrum model that is RS | [45] model there are again two
branes located at the end point of an interval of a certain size. One brane is called 'hidden
brane’ and the other one is called 'visible brane’. The first one has positive tension while
the second one has negative. The action containing the gravity and branes may be written
as;

S = Sgravity + Sbranel + Strane2 (4.22)

If we want to write this total action clearly it becomes;

— / d*z / dyvVG(2M3Rs+A) + / d*z\/qr (L1 —Th)+ / d*z\/ga(Lo—Ty) (4.23)

where R; is five dimensional scalar curvaturg{, is 5D Plank massT]}, T, are branes
tension andL,, L, are matter langrangians. We again take the contributions of matter
to be zero. The variation of the action w.r.t. the 5D meit? gives the equations of

motion.
08 0Sgravity 05, 05,

SGAB — T 5GAB + SGAB + SGAB

whereS; and.S, denote the actions of brane one and brane two respectively. The corre-

(4.24)

sponding Einstein equaitons are;

1
MNG(Rap — 5GasR) - MEAVGGap = Thia/Griagi's'6%0 (y) (4.25)

+ Tvzs\/ gmsgmsau(su (y - L)
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whereg!(z) = G, (x,0) andg!i?(z) = G, (z, yo). Here the extra dimensigpruns in

the interval—yo, yo]. The solution of the equation of motion is given as [45];
ds* = e Wty datde” 4 dy? (4.26)

As we said in this section the hidden brane is locateg en0 and visible one is aj = ;.
With these values af we replacey,,, by g,... Then we have the relations;

git (@) = Gu (), gl(x) =exp /T g, (2) (4.27)

In RSI model it is tought to be that the SM fileds are located on visible brane which has a
negative tension. Let us now look for the matter part of the action which is given as;

[ e alatt (D) (D) = MHH ~ 1)) (4.28)

whereH is the Higgs field. If we write the form of’* (x) given in (4.27), we will get the

new form for the action given in (4.28);
/ d*z\/glg" (D H) (D, H) — N(HTH — e~ lvol/2y;2)2] (4.29)

where we rescaled the Higgs field BHs— e 1%/l H and the new mass term becomes
Ae~lvol/B2 - As we see the exponential factor shows the behaviour of gravity. In this
model the source of gravity is located at hidden brane and the graviton’s probability func-
tion is extremely high at the hidden brane. But it drops exponentially as it propagates
closer towards the visible brane. Therefore one may see that as it propagates the gravity
would be much weaker on the visible brane.
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CHAPTER 5

DARK ENERGY IN EXTRA DIMENSIONS

In this chapter we consider the main features and problems of extra dimensional
models related to cosmic acceleration. The main aim in this type of models is to account
for cosmic acceleration (i.e. dark energy) in a simpler way e.g. through extra dimensional
curvature [17, 18, 46]. We will see that the usual 4-dimensional cosmic acceleration tends
to dynamic extra dimensions. An attempt to stabilize extra dimensions in general seems to
neccesiate introduction of ghost type unordinary fields or fluids into picture. The inclusion
of cosmic acceleration into an extra dimensional setting is an attractive idea because of the
possibility of treating extra dimensions as a source or a suitable setting for dark energy.
Therefore may be seen as a potential to solve many problems of high energy physics.

In fact the tendency of destabilization of extra dimension in the pressence of cos-
mic acceleration may be seen through the following simple extra dimensional metric, in
which we suppose an extra dimensional model with a single static extra dimension.

ds? = —dt?* + a®(t)(da? + da2 + da) + dxs (5.1)

with a,a > 0 that is the condition for accelerated expansion as we said before. Here
if we denote the pressure of the extra dimensional parPpy then it corresponds to
the 55 component of the energy-momentum tensor. We tai@ in front of the energy-

momentum tensor as This may be written as;
1
Ts5 = Rss — 59553

whereRs; is zero since the extra dimensional part is flat. Therefore only the Ricci scalar

contributes to the extra dimensional pressure.

“)

1 a
Tss = =595 = =3(= + —
a a

2

And the equation of state of extra dimensional part is;

a a a
—3(= 4+ — s

w L (a ag)——i—l
5 — - D) - -9
P @
a? a?
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As we see from herey; is less than-1 because as we said befargi > 0. This suggests
that after integration over extra dimensions one may get a ghost-like fluid, generically,
that is not desirable. Let us discuss the situation in more complicated cases.

5.1. An Examplary Model

To see the main problems of extra dimensional models with dark energy we con-
sider the following seven dimensional space. Here we suppose both the ordinary 3-space
and the extra dimensions may expand or contract. This model is special case of [19] where
the number of extra dimensions are taken to be three. Then the corresponding metric is

given by;
ds® = dt2—a2(t)[d—7€+r2(d02+sm29 d¢2)]—b2(t)[d—@+r2(d6’2+sin20 do?)]
1— K2 ¢ aa 1— K2 P70 b

(5.2)
where bothu(t) andb(t) are scale factors K, and K, are related to the curvature of 3-
space and extra space, respectively. As we said before we suppose matter content to be a
perfect fluid. In order to write down the corresponding Ricci tensors and the Ricci scalar
we may write this metric in conformally transformed [47] form as;

dr?

2 _ 2 2 2 a 20102 | o 2 2
ds®* =10 (t)[bQ(t) (dt* —a (t)[1 T + r5(dO; + sin“6,d¢3)]) (5.3)
dry 20 102 2 2
_ [1 o + r;/(dO; + sin“0yd ;)]
b

whereb?(t) = Q2 andb~2(t) = Q2. Here we wrote our metric in the form, y = Q%G1
wheregyny = Q2gun. In the light of conformal transformations [47] one may write the
Ricci tensor and the Ricci scalar as;

E]V[N = ﬁMN — (n — 2)§M§N(ln§21) — ngMNﬂgvABﬁAﬁg(ln Ql)
+(n — 2)VM(111 Ql)VN(ln Ql) — (TL — 2)§MN§ABVA(1D Ql)VB(ln Ql)

R =07 - 2(n - B 0) — (n— 1)(n - 2)5MN6N(S%>%(91>]

This is written for the metri@MN. And for the transformed metrig,, v the formulations
become;
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EMN = RMN — (n — Q)VMVNOH QQ) — gMNgABVAVB(ln QQ)
+(n —2)Vy(In Q) Va(In Q) — (n — 2)gung BV 4(In Q) Vp(In Q)

while the Ricci scalar is written as;

R=0%R—2(n—1)0nQ) — (n—1)(n— 2)gMNVN(g%)vN(Ql)]

where the ternf? contains two parts one of which comes from the conformal 4D part and
the other one is from the extra dimensional part. Therefore we may ks

§:§4+Rex

whereR,, is the Ricci scalar of the extra dimensional par§@kdz*dz? and§4 has the
form;

601(€2)
Q) ]

Ry = O3[Ry —
By using the Appendix A we may fin@, andR..;

6

Ry = ——(da + a* + K,)
a

R, = —6K,

where we také = 1 because in the extra dimensional part of the meixig; ,where
M,N = 5,6,7, we do not have a conformal factor. Now we are ready to construct the
Ricci tensor elements as follow;

éoo = Eoo - 5%060(111 Ql) - Eoo@ﬂoeoﬁoml Ql))

+5V0(ln Q DVo(In ) = 5G00(9% Vo (In 1) Vo(In )
ab b

R = —3% 4622 _3°
00 %0

Rll = R11 - ﬁll(wovovg(ln Ql)) + 5gll(~OOV0(1HQ )VO(IHQ ))
a? a _a? K, ab b
R11 m( +2—+2—+3 b+5b2)
R22 = R22 — §22(~OOVOV0(1D Ql)) -+ 5922(~00V0(1H Ql)ﬁo(ln Ql))
R 2 +22+2K +3“b+552)
22 = = a’r ab b2
R33 = R33 — §33(~00VOVO(11’1 Ql)) + 5g33(A00V0(1n Ql)VO(IH Ql))
2 K, b b2
R33—a r2sin%(0,)(— +2_+2_+3gl_)+5b2>
R55 = R55 — 555(~OOVOVU(IH Ql)) + 5g55(~00V0(1HQ )VO(IHQ ))
R b? K, ab oob b2
55 —

ot 390 37 0
=52 P 3Ty TR

28



Since the conformal factors depend only on the time then we take the derivatives w.r.t.
to other dimensions to be zero. Now we may calculate the Ricci scalar with the given

formula as;

~ ~MNXZ a a® K, K, ab b b2
R=g RMN:_6(5+?+?+5_2+355+5+Z)_2)

Now the corresponding elements of energy-momentum tensor are;

TIPS CINNPHLICSNE (IR
8wGp_3Ka)f-ﬁ]+3Kb)+»w]f15ab (5.4)
_ a b _a K ab
—81GP, =2— +3-+[(-)* + = —- :
8rGP, q—%3b+[gﬂ +‘ﬁ]+6ab | (5.5)
- = b a a K, b K, ab
87GP, b+3a+3[(a) + a2]+[(b) + b2]+6ab (5.6)

where( is gravitational constanf is energy density in the higher dimensional world ,
andP,, P, are the pressure of 3-space and the extra space respectively.

Now let us consider some possible cases. In all cases we will take the curvature
of the extra dimensions to be zero i.e. the Einstein equations effectively equivalent to
4-dimensional Einstein equations. For a radiation-dominated universe wd%ave%p,

P, = 0 wherew, = 1/3 andw, = 0. If we consider static extra dimensions that is with
constant, equaitons (5.4), (5.5), (5.6) read for radiation dominated universe as follow;

a, K, 8Gr_

2

e e T8 T

a a K G
2= N2 e P05 .

CH ()T 5P (5.8)
. : K
(e R R (5.9)
a a a

Since the constarit solution is stable for small perturbations of scale factor, one may
conclude that we can reach ordinary evolution of a radiation dominated universe with
static extra dimensions. In fact this is expected since the use of (5.9) in (5.8) and (5.9)
reduces (5.8) to the 4-dimensional FLRW space. On the other hand when we consider
a matter dominated universe (in which the pressures are zero), there is no solution for
constan®. In order to have solution for this case, the matter needs to provide a negative
pressure in the extra space. This pressure may be calculated by tadomgtant and
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putting equations (5.4) and (5.5) into (5.6) one gets;

= 1

Now let us look for the evolution of extra dimensions which suggéstbe non-
static. Let us consider a matter dominated universe with zero pressures and we take the
spatial curvatures to be zero. Then equations (5.5) and (5.6) reduce to ;

i L a., ab b,

e 42 L322 = 11
5q+7(a) +6al?+3(b) 0 (5.11)
booan  ab b,

57 =3(-)? 465 —2(;)* =0 (5.12)

where (5.11) is obtained by multiplying (5.5) Byand (5.6) by3 and substracting the first
equation from the second one. And also (5.12) is obtained in a similiar way. These two
equations are for the accelerqtiohand?i respectively. Now in the case of accelerated
expansion in three-space tha%s> 0, from the first equation we have the condition;

b 106 a
-0 2=, =
[?>[+ S]a J+a or
b 10.a a
Sl /e =J"
b [ 3]a a

[1 /1 ) .
whereJ, = [1+ ?O] andJ_ =[1- EO] are the roots og. Now we introduce a new

_ . H, .
parameter which is the ratio of Hubbles’ parameted té the that ob, n(t) = T This
b
qguantity will be the key for the acceleration of the three-space. In order to see this we
should find the form of) = % From the form of the) we find its derivative as follows;

dn __ H, _ Hg Hy

t Hy Hy Hb

a

After using H, = ~ — (£)? and i, = g - (%)2, equations (5.11) and (5.12)
a

a
becomes;

5H, +12H? 4+ 6H,H, + 3H2 = 0 (5.13)
5H, + 3H? + 6H,H, + —3H? =0 (5.14)
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Then in terms of the) andr, equations (5.13) and (5.14) become a single equation after
multiplying (5.13) byHi and (5.14) by% and the subtracting resulting equations we

b b
get;

1
i = =(3H, — 6Han + 3H, — 3H,n*) =0 (5.15)

In this equation ify > 0 (i.e 3H, — 6H,n + 3H, — 3H,n* > 0) then we say thay <

~1+ V3 = Ky or K, = —1 — v/3 < n which come from the equation (5.15). On the
other handk ., < n < K., for7n < 0. Fast expansion or contraction of extra dimensions
may lead to fast variation of some fundamental constants of nature such as Newton’s
gravitational constant, coupling constants etc. Therefore it is safer tdtake0, which
implies|n| >> 1.7 < 0and|n| >> 1 can not be satisfied simultaneously. Hence 0

is excluded. Ifp > 0 and|n| >> 1 thenn < 0. This impliesH, < 0 sinceH, > 0. In

other words the extra dimensions tend to contract under generic conditions for accelerated
expansion of the usual three dimensional space. This example shows the difficulty of
stabilization of extra dimensions in the context of accelerating cosmic expansion.

5.2. Energy Conditions

In relativistic classical field theories of gravitation, particularly in general relativ-
ity, an energy condition is one of various alternative conditions which can be applied to
the matter content of the theory. In general relativity, energy conditions [48, 49] are of-
ten used (and required) in proofs of various important theorems. As we know in general
relativity and allied theories, the distribution of the mass, momentum, and stress due to
matter and to any non-gravitational fields is described by the energy-momentum tensor
(or matter tensor)/*”. However, the Einstein field equations do not specify what kinds
of states of matter or non-gravitational fields are maintained in a space-time model. Be-
cause without some further criterion, the Einstein field equations give default solutions
with properties most physicists regard as unphysical. The energy conditions represent
such criteria. There are some energy conditions namely called 'strong, null, weak and
dominant energy conditions’. Now let us write down mathematically these conditions.

o Null energy condition (NEC):
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The null energy condition [49] stipulates that for every future-pointing null vector field

—

k;

o T, k'k" > 0 where g, k*E" =0
For a perfect fluid NEC becomes;

o T,k'k" =p+P>0

We can see from here that all cases such as matter, radiation and cosmological constant
satisfy NEC.

o Weak energy condition : where g, X' X" <0

The weak energy condition [50] stipulates that for every future-pointing timelike vec-
tor field )_() the matter density observed by the corresponding observers is always non-
negative:

o T, X'X" >0
In the case of perfect fluid we have;

e T, X'X">0,0>0,p+P>0
Here again all the sources satisfy WEC.

e Strong energy condition : where g, X* X" <0

The strong energy condition stipulates that for every future-pointing time-like vector field
)_f, the trace of the tidal tensor measured by the corresponding observers is always non-
negative:

1
o (T~ 5T9)X X" 20

Again in the case of perfect fluid SEC becomes;

1
o (T~ 5T9u)X"X" 20 ,p+ P20 ,p+3P 20

For the SEC one may see from the given conditions that matter and radiation satisfy
SEC but cosmological constant does not satisfy the second condition for SEC that is
p+3P > 0.

e Dominant enerqgy condition :
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The dominant energy condition stipulates that, in addition to the weak energy condition
holding true, for every future-pointing causal vector field (either timelike or ri_ﬂ)l,llhe
vector field7Y® must be a future-pointing causal vector which means that mass-energy
can never be observed to be flowing faster than light. In the case of perfect fluid DEC
becomes;

° p>|P|

When we check this for the various sources matter, radiation and cosmological constant
satisfy this condition but phantom does not satisfy.

5.3. Constraints on Extra Dimensional Models of Dark Energy From

Energy Conditions

Epoch(s) of cosmic acceleration play essential roles in modern cosmological mod-
els. As we said in previous chapters observations of type la supernovae [3, 4] and the
cosmic microwave background [51, 52] indicate that the universe is expanding at an ac-
celerating rate. A complete cosmological model based on more fundamental physics must
accommodate or should explain this epoch of acceleration. In this section we consider a
broad class of accelerating models with extra spatial dimensions. We see that these higher
dimensional models violate either the strong or null energy condition (NEC) respectively.
The analysis given here are the review and the discussion of the works in [20, 21]. We
have supposed 4 assumptions in our work;

e GGR condition

e Flatness condition

e Boundedness condition
o Metric condition

By General Relativity (GR) condition we mean that we describe both the 4D and higher
dimensional theory by General Relativity (GR). Flatness and boundness conditions imply
that the 3D is spatially flat and the extra dimensions are bounded, respectively. Finally
the metric condition is that the extra dimensional metric is Ricci flat (RF) or conformally
Ricci flat (CRF).
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The violation of NEC in these models is unavoidable if the universe is de Sitter or
nearly de Sitter. Let us consider a class of extra dimensional models for dark energy in
the light of energy conditions.

In the subsection before the last subsection in this section we consider some theo-
rems that severely restrict the possibility of realistic models that obey NEC. We will call
the theorems as 'no-go theorems’. The no-go theorems depend on the intrinsic curvature
of the compactification manifold/. There exist two possibilities far/ that are;

e Curvature free :

In this category all modes are with a single extra dimension such as braneworlds [15, 16,
43]. It also includes compact manifolds with vanishing intrinsic Ricci scalar.

o Curved :

This category includes compact manifolds this time with non-vanishing intrinsic Ricci
scalar. We mainly consider conformally Ricci flat curved internal manifolds.

In this analysis we consider the shape and size of the compactification &pace
acts as fields in 4D. Knowing the time evolution of this field gives us chance to work out
the time evolution ofA/. The basic idea is the reverse of the Kaluza Klein philosophy
that is instead of starting with a specific matter in higher dimensional model and then
reducing to the 4D we go back way the 4D relations and observations are used to put con-
straints on extra dimensional models. Studying this may be also called 'oxidised cosmic
acceleration’ [21].

The no-go theorems we consider in this section suggest that there are some thresh-
olds inw . If we want to makew below these thresholds we should violate an energy
condition in higher-dimensional theory.

Here in our study we will consider the higher-dimensional action in the Einstein-
Hilbert action [53] which may be reduced to;

1
Sip = — /R\/—gd% + otherterms (5.16)

2

wherel, is the Planck length in 4D and it is constant.
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5.3.1. Some Simple Examples

As we said before the NEC is violated if the extra dimensions are flat and static.
Here we considet extra dimensions with the corresponding metric written as;

dsy,), = ds; + ds;, (5.17)

whereds? describes the 4D part of the metric ahd shows the metric of extra dimension.
As we said it is flat and may be written as;

ds? = dapdy”dy® (5.18)

And also we consider the 4D part to be a flat FLRW universe with the metric may be
written as;

ds? = —dt* + a*(t)(dx? + dx3 + dxd) (5.19)

As we know already the 4D universe is accelerating with > 0. The Einstein equations
in D-dimensions may be written as;

1
GMN == RMN — §gMNR = 87TGTMN (520)
Now let us look component by component to this equation. heomponent is;
1
Goo = Roo — EQOOR = 81GTyo (5.21)

where thed0 component of Ricci tensor is written as;

R = F(%,c - Fgc,o + 5T — Thlbe (5.22)
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with ;

1
Foco = §QCD [90p,0 + 9D0,0 — Go0,D); Foco =0 (5.23)
i ag
I = 55]‘ (5.24)

Then theD0 component of Ricci tensor is found as;

a?

Reo = —3% + 3% (5.25)
a a
The other components of Ricci tensor may be formulated as;
Ry =T§ o —T,; + 5.0 —T5.Ti (5.26)
with;
1 . i a i
Ie = §gCD[giD,j + 9pji — gijn), Lo = (ad)dy, To, = (a)5j (5.27)
using this inR;; we have;
Rij =T 0+ Ty, — TR, Th = TETY, = (24% + ad)d; (5.28)

And the other components of the Ricci tensor are zero since extra dimensions are flat and
static. Now we are ready to construct the Einstein equations.

1 . . -2 -2

Goo = Roo — —gooR = —32 +3(2 + L) = 3% (5.29)
2 a a a a
1

Gij = Rij — 59i 1 = —(a* +2@)d;; (5.30)
1 .. .2

Gab = Rab — —gabR = —3(2 + a—)éab (531)
2 a a
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wherei, j run over 3 spatial dimensions andb run over the extra dimensions. Now let
us assume that the 4D cosmology has a power-law scale fagjor ¢". Now by using
the given form of scale factor we may rewrite the Einstein equations as;

t2Goo = 312 (5.32)
tQGij = 7"(2 — 37")(5@' (533)
t2Gap = 3r(1 — 2r)64 (5.34)

wherea(t)  t". Here the pressure along the extra dimensions is negative therefore the
corresponding stress energy violates the NEC. We may check this by using the definition
of NEC given by;

Tank™EN = Took®k° + Ty;k k7 + Tpkk" > 0 (5.35)
Ty k™ kYN = 3r(1 —1r) (5.36)

Here as we said before sinee> 1 or » < 0 for an accelerated 4D universe (5.36) is
negative, indicating NEC violation.

In an another model we may suppose a universe in which the extra dimensions
evolve as power laws in time as in three spatial dimensions. This is also a possibility and
may be explored by using a metric called 'Kasner metric’ [54]. It may be written as;

3+k
STcqmner = —dt* + Y 17ida? (5.37)

j=1

wherek denotes the number of extra dimensions. As we see both the three spatial di-
mensions and the extra dimensions have scale factors which depends on time. Here we
suppose that the volume of extra dimensions behavesdikéth ¢ = Ejifj rr. We are

ready to calculate the corresponding Ricci tensors and the Ricci scalar to construct the
Einstein equations.

05 = (rt Doy, Top = (rat®™")da (5.38)
Top = (met ™2 1)dg, - TG, = (nt™™ 7 1)5p (5.39)
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The corresponding elements of Ricci tensor are;

Roo = 1100 C 110000 +I5 CF F%OFODC (5.40)
Sre 32 >or?
Roozt—2+ 2 T a2 (5.41)
3r Tq
ROO = —2(1 - T) + ZtQ (1 - Ta) (542)
Rij =T+ 5Ty — DTl — T5,T5, (5.43)
Ry =t"[r(r — 1) + 3+ 1) 1, — 2r]6; (5.44)
Rij = t2r—2[3,’,,2 + T(Z T — 1)}(52] (545)
Ry = Tgyc = Toop + Thela, — Dp.lie (5.46)
Ry = tQT“’Z[QTa —Tq+3r7re + 14 Z To — 27a7p)0ap (5.47)

where we have written; = r, = r3 = r for spatial dimensions. We may calculate the
Ricci scalarR.

R =g"Ry + g"Ri; + g Ry

R=1t72[6r> —6r —>.r2+6r> r,+ (> r.)?

We consider vacuum Einstein solutions. Therefore all components of Einstein tensor
G v must be equal to zero respectively.

1
Goo = Roo — =gooR =t72>_ra —3/2> 12+ 3r> ra+ O ra)? =0

2
1 2 " 2
Gij = Rij — §QUR = t2r72[27" — QTZTG + era — <22T ) ]5” =0
1
Gab - Rab - EgabR
Gapy =1 722r2 —1g + 31y + 714> Ta — 27ary — 312 + 31
2 2
P DL S O DL P
2 2
When we solve these three equations we will get two conditions éordg.
° Z3+k rj -1
3+k 3+k
o Y =3+ =1

The first condition implieg; < 0 if » > 1/3. Sor > 1 is excluded which means the

three non-compact dimensions are expanding and the other directions tend to contract.
(On the other hand the other case that leads to accelerated expansion in the non-compact
dimensions i.e. the case < 0 corresponds to contracting universe and is inagreement
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with cosmological observations.) To intercept this a negative pressure is required as in the
case of cosmological constant. When the three noncompact dimensions are expanding at
an accelerated rate then NEC is violated.

In order to evade this problem let us try a new metric in which the extra dimen-
sional part evolve with time. The corresponding metric is written as;

2c
d3421+k = A2(77)(—d772 + dx% + dx% + dx%) + exp[zzp(n)]dsi (5.48)

whereA(n) is the scale factor of the 4D universe measured in (4+k) dimensional Einstein
frame. Here) is the conformal time. Also the term canonically normalised scalar field

in the 4D Einstein frame. Therefore it is called 'universal Kaluza-Klein breathing mode
modulus’. The constantis given by;

c=4/—— (5.49)
The 4-D Einstein frame scale factefn) may be found as;
a(n) = e A(n) (5.50)

which comes from the determinant of the metric tensor of (4+k) dimensions as we reduce
it to 4D. Now we may write the equations of motion of Friedmann universe in terms of
the derivative of) as;

dy

p—I—P:p(l—i—w):?)(l—i—w)Hz:(dn

)2 (5.51)

wherep = P/w = 3H? from Friedmann equations arfd = ¢ where dot denotes the
a

derivative with respect to time, If we put H = %into equation and make a change of
a
variable fromt to  one gets a solution fap;

j:2 3(1+ w)

(n) = 1+ 3w

Inn + g (5.52)
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We will use this solution later in the elements of energy-momentum tensor. Now from
the Einstein equations we may calculate the energy-momentum tensor of (5.48). The
corresponding Christoffels are;

2c

A c v dy

0 _ o ° "

F,uzz A6HV7Fab k}A (dn)
7 A 7 a ¢ dw a
Lo, = Zélmr()b k(d )5

From now on | will use dot for the derivatives w.rif. Then using these Christoffels one
may find Ricci tensors as;

A A, AL e,
Roo = _QZ +22(Z) + C_w - %w —cp
A A A
Rij (A A2 +e— 77[]) j
20#} 2c2 4 2 2
_ ? L . 4 C .. C_ ‘o

with the Ricci scalar;

- . ,
One may put all these into Einsteln equatlons and find energy-momentum tensor com-
ponents. We may write these components in terms @nd» by using the equations
(5.50) and (5.52). | will call the whole function8(n,w). Finally the components of
energy-momentum tensor become;

Too = F(1 — ), T, = F(1 - w3, 559
T =P - w0 B2,

From the NEC with the null vector™ = (1, 0 , 1) one gets;

—F(1- w)[i\/?)(l;w) (kZZ) —1]>0= i\/?’(l;w) (kzz) >1 (5.54)

which is only possible for one of the branches. In other words NEC is violated by one
branch at least. When the inside of square root is equiathenw becomes;

_ k+6
3(k+2)

(5.55)
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Here for only one extra dimensian = —7/9 which is its most negative value closest to
—1. We see that we can not approach de Sitter expansion without violating NEC.

In these models we have shown that flat extra dimensions with only breathing
mode dynamics could let accelerating universes without violating NEC but these models
can not be close to de Sitter because of the value.oThere are many different ideas
that may be supposed such as the extra dimensional space could be static then some other
fields could cause acceleration. Also there is a possibility with warp factors but none of
these make a difference. As the compactification manifdlds curvature free then the
higher dimensional theory violate the NEC up to a valuevafalled critical value. This
relation of these values means that there is a gap between pure de Sitter case and NEC
satisfying condition.

There is only one possibility in whichv ~ —1 and NEC is not violated is to
have a curvature for internal manifold. To see this consideR, R, whose values for
conformally flat extra dimensions are;

MV n (21) V(1)

R=0?2(n— DO(In Q) — (n —1)(n - 2) 07 ]

Roab = (n — 2)%N16N(1H Ql) — EN[NgAB%A%B(ln Ql)

We will not calculate these terms because we may interpret the results in this general
form. When we write the elements of Einstein ten&qyy these additional terms will

give;

1
2

o o o 1 o ° ° 1 ©
G8 - — R, va, == —§R521, Gg == Rg - §R52

wherem,n run over three spatial dimensions,b run over the extra dimensions and
R, ég are the extra dimensional contributions for (5.48). Now if we look for the NEC
condition with a null vector of the form™ = (1,1, _)) we will see thatk does not
appear. When we consider the another form of a null vector mfith= (1, ﬁ, u) where

u is k-dimensional unit vector. With this null vector the NEC becomes;

TyunnMny =R

Here if it is possible to adjust the additional tetfh, then the NEC may be satisfied
without any other contributions. This is in fact a kind of fine-tuning. In 5.3.3 we will
see that even with such a fine tuning it is impossible to attain —1 for a sufficiently

long time for conformally Ricci flat extra dimensional spaces. However the situation in
the case of general curved extra dimensional spaces remain open.
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5.3.2. General Analysis

In this section we will consider how the accelerated expansion orders strong con-
straints on many extra dimensional models. As we said before the accelerated expansion
could be due to inflation or dark energy. We are interested in dark energy in our thesis. In
fact most of the conclusions obtained for dark energy are true for inflation as well while
inflation may impose stronger constraints since it needs many e-folds.

In the compactified theories the expansion of the non-compact directions has affin-
ity to cause the extra dimensions to contract. But this contraction is physically problem-
atic because it may let the physical constants to vary with time. What about the con-
straints? The models containing dark energy are described by Einstein gravity either in
4D or efective theory and in the higher dimensional theory. But the problem is that the
4D effective theory may require some extra constraints when lifted into the higher dimen-
sional Einstein gravity.

First we will consider the metric of the form;

ds? = e¥Y(—dt? + a*dx;dx’) + gupdy®dy®

whereg,, and {2 depens on time and extra the dimensions arfdrun over the extra
dimensions ¢ is the usual FRW scale factor and the scalar curvature,fds zero. IfR
corresponding tg,, is zero then we say that extra dimensional space is Ricci flat while it
is conformally Ricci flat ifg,, = ¢**2g,, whereg,, is Ricci flat. For the calculations we
will use Maurer-Cartan formalism. Then any metric may be written in vielbetress;

gundXM AN dXN = nape AeP

wheren g flat Minkowski metric of all space. This form is used to introduc tensors in a
non-coordinate basis which are defined by vielbeins. Now the time derivative of a vielbein
e® may be taken as;

de®
— = e (5.56)

where¢,, is defined as the velocity and may be written in terms of a symmetric and an
antisymmetric part as;

da
éab = Wap + ?bé + Oap (557)
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wherek is the number of extra dimensions,; is antisymmetric partt = §¢,;, is the
trace ands,;, is symmetric but traceless. Now in the light of these properties one may
write the time derivative of metrig,s by using (5.56) and (5.57) as;

1 dgab 1

where the termsg, o are functions of time and the extra dimensions. The pressures along
the 3 spatial dimensions and the extra dimensions are defined as;

1 .

Py = g(siij (5.58)
1

P, = E(SabT“b (5.59)

wherek is the number of compact extra dimensions dikd 7°° are energy momentum
tensor of 3-space and the extra space respectively. The violation of NEC requires;

T]V[NTLMTLN <0

whereM, N run over all the dimensions. One may show that whenP; or p+ Py is less
than zero NEC is necessarily violated. And also wkeR- P;)4 < 00r (p+ Py)a <0

NEC is again violated. Her&)) denotes the average of a quantity. In general this average
is defined as;

(@Q)a = ( / Qe gdty) /([ A% /ady) (5.60)

whereA is a constant and the tered is called 'weight factor’. We take the average of
the weight factor oveH to be positive. This term is the average®in the warped metric
on M. The averaging process defines a projection operator which is actihg dve may
divide @ into to parts a constant part and a perpendicular gait,y*) = Qo+ @, where

Qo is the constant part witf)) = Qy. The average of the perpendicular part is given to
be zero and the constant part is equal to the average of total qu@ntyfferantiating
(5.60) w.r.t. time one may find;

QL) =—(20,Q, +£,.Q.) (5.61)
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Since(@ ) = 0 one may see from (5.61) that ;

QQ—F@_ =0 (5-62)

We will use these informations while constructing the elements of Ricci tensor and Ein-
stein equations.

We should convert the extra dimension scale fagtmto 4D scale factoa. Now
we will introduce CRF metric to express thedependent terms in terms of 4D effective
scale factor(t). To do this we use the relatiar{t) = e*/2a with;

e =F, [ ¥\ /gdy (5.63)

where/l,, . is (4+k) dimensional Planck length. Now we may find the elements of Ricci
tensor by using the given Christoffels in termsudéelow;

TSy = %QCF(QFM,N + grNM — MN,F) (5.64)
Iy = (5.65)
= (Qa° + aa)dy; (5.66)

T, = %e‘mgab (5.67)

0

I, = dyaéﬁ (5.68)
Lo = (2 + )5’ (5.69)
TGy = €*g" ;Ki (5.70)
If; = —g*e™a’s; (5.71)
G = ;9‘“’9"” (5.72)
I = %gad(gdb,c + Gdeb — Gbe,d) (5.73)

wherea, b, ¢, d run over the extra dimensions while v run over the 4 dimensions. The
elements of Ricci tensor is given in [20, 21] as;

1 k42
— ,—2Q
Roo= (=32 — T2 o2 tg124 001+ o 2 ()
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k+2

-3@—3§Q+Q&—{L— T Sof L]+ 4(50)° +AQ

1 d . .
Rij_e—29+¢[a+2(a) + &———( 3¢0) 4202 4

2a3 dt
- . 1 2
+5%Q — Q& + g& - —fofJ—] i — 4 (59) + AQ](S“
1 d
Ry = ’mw[k; Bdt( a*&o) + €l2+ 5LQ+ €L€°+ 50

1 d 1 d
+——(a*€1)]0ay + €2 [—

ka3 dt — = (@%0w) +ELow + 200 4;)

And the Ricci scalar is found in [20, 21] as;

o ! k42

R= R —8AQ - 20(00) + e~ 22+9[6" +6€)—— (3@) ;;ﬁ (5.74)
k2 . 1 d oy 2

+ 0%+ Tgi + 46, Q4 6(Q) + 2_3E( £1)+ 6$E(a3§2) — 20 + E&)@]

By using these Ricci tensors and the Ricci scalar 4D Einstein equaitons are found in
[20, 21] as;

3C) = pr (5.75)
_Qé — (9)2 = Pr (5.76)
a a

wherepr and P are total efective energy density and efective pressure in 4D. As we
mentioned before to satisfy NE@,+ P; andp + P, must be grater than zero. Now let

us look for these conditions by using given Einstein equations. The elements of Einstein
tensor are given in [20, 21] as;

R N CR 0)

1o o
GU:{—§R+3AQ+6wQﬂ@j (5.78)

+ e-2“+¢[—2§ I

Gap = Ry — R%b—4VY%Q+4AQ&w—4aQ&Q (5.79)

_ a a k+2 1
-+1M89)5w—%629*ﬂ—35—ixaf 1 @o+£lf-—§aﬂ@b
k+2d 1d,

Y dt( S(&+EL) ab+—3%(a Tab)]

1o o :
Gm:§R—3AQ—6@QP+64mﬂ%gf—

i
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whereR is the intrinsic curvature af/ in unwarped metric. In these given tensor elements
by ignoring the intrinsic curvature and warp terms one may obtain the standart Friedmann
equations for the scale facteft) with the terms containing, , £y, c. Now let us calculate

the pressure along the extra dimensions which is given in (5.59). We have;

P = (% ~ R E)M + (10 - —)(aQ) (5.80)
+ 6_29+¢[—3% — 3(%)2 — k;j(f +&1)° - 10 ?]
i e R ))

whereA = 5“(’@&% and as defined befor&’s,, = 0. The total pressure is equal to the
zero-zero component of the Einstein tensor. It may be written as;

1. o _ ' k+2 1
p= §R —3A0 —6(00)* +e 29+¢[3(g)2 — T(f{) +&1)? - 502] (5.81)

Finally for the pressure along the 3 spatial dimensions which is defined in (5.58) may be
calculated as;

k:+2

. L
Py= 3R+ 350+ 6(99)° + e 202 _ (%)2

a

(Co+&1)° — %‘72”
(5.82)

As itis seen we calculated three elements of NEC and now let us construct the conditions
and see if they satisfy the NEC or not. One of the condition is ;

k+2

p+ Py = 6_29+¢[—2% + 2(%)2 - 7@ +&1)° =07 (5.83)

As one may see in (5.83) we have summation of derivatives of scale factor. This term is
exactly equal to the summation of (5.75) and (5.76). Then we may rewrite the equation
(5.83) as;

i —;2(50 +£1)*— 07 (5.84)

p+ Py =e " (pr + Pr) —
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wherepr and Pr are total energy density and total pressure respectively. It must be said
that these density and pressure are different fpcand P; because the warp term is non-
trivial. By the same way we may construct the other element of NEC as;

p+f¢:%é+41—5&9+4u—lxmn2 (5.85)

k
kE+21d

: k_%2(£o+—£L) — o e @ G+ &)

+ e o[ —3—
a

To detect the NEC conditions let us find averages of these two elements given in (5.84)
and (5.85) respectively. They are found as;

U o+ P = (or + Pr) — 2463~ B2 (e (62704 — (0%)4 (5.86)
o 1 A k42 )
e (p+ Pr))a = 5 (pr +3Pr) +2(7 = 1) == ((€ = {€)4)")a— (5.87)

kE+21d

k+2 LY
2%k addt

2k §)a)

(€%~ 0%+ [k =5+ 2+ A — 309 )a +

Now let us interpret these two conditions whether they violate the NEC or not and if they
violate, the question is under which conditions?

As we see in equation (5.86) the first term on the right hand side is positive as
known from Friedmann equaitons sinee> —1. And the other terms are positive also
because in all terms we have square of them. But since they all have minus sign in front
they are non-positive. Therefore in order to satisfy NEC, summation of last three terms
must be taken to be very close to zero to have a positive term on the right hand side. What
about the equation (5.87). When we look at the term on the right side coming from the 4D
Friedmann equaitons is not positive because of the accelerated expansion. And sign of the
other terms depend on the average numbewWe find a range forl which must include
the cased = 2. In order to include this value we impose the following conditions;

A
Z—1§0:>A§4 (5.88)
k? — 5k — 10
A>——— .
= 3k—6 (5.89)
2 _rp_
4>A>k 5k — 10
- 3k—6
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In terms of the equation of state we may rewrite (5.86) and (5.87) as;

- k+2
e e* (p+ Py))a = pr(l +w) — W@i‘ (5.90)
+ (non — positive — terms — for — all — A)
1 E+21d
) _ 3
e e p+ Pr))a = gpr(1+3w) + ——— = (a°(§)4) (5.91)

+ (non — positive — terms — for — some — A)

As we see from these equations there are some terms which are non-positive. We should
have a value ford by which these terms become positive if there exist that value.

In equation (5.90) one may see that wher- —1 the first term on the right side is
zero. Then we have other terms which are non-positive. Therefore in order to satisfy NEC
the only possibility is that these non-positive terms must be zero. But situation is different
in (5.91). When we look at this equation the first term on the right side is negative as
said before and last terms are non-positive. Therefore there exists only one possibility in
which the term containing the derivative ©imust be non-zero to satisfy NEC. We will
see in the next subsection that it is very difficult (if not impossible) to satisfy NEC for
both of (5.90) and (5.91).

5.3.3. Steinhardt-Wesley No-Go Theorems

Now let us focus on the theorems that satisfy NEC or violate NEC for dark energy
cases. We have two types of such theorems those are theorems that satisfy NEC and
violate NEC. Firstly we focus on the theorems that satisfy NEC.

e Dark Energy No-go Theorem I A:

AC DM (the current concordance model in cosmology) is incompatible with compactified
models satisfying the NEC.

e Proof:

In the AC DM model in which the universe is a mixture of matter and a positive
cosmological constant or the equaiton of state betwekf8 and—1 because of the pres-
ence of matter existency. (At the value when= —1 that is pure de Sitter case, the
first term on the right hand side of (5.90) is zero and we have some non-positive terms
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also. Therefore in order to satisfy NEC in (5.90), we should have the last two terms to be
zero. However when we look at the equaiton (5.91), the first term on the right hand side
is negative ifw = —1. Since we have non-positive terms also, we should have the middle
term to be positive in order to satisfy NEC; but this requifeand its time derivative to
be non-zero. But wheg = 0 ,NEC is satisfied in (5.90) while it is violated in (5.91).
Additionally when time derivative of is positive then (5.90) is violated while (5.91) is
satisfied. Therefore as we see, NEC can not be satisfied in both equaitons wheri).

In the ACDM model the current energy density of the universe is a mixture of
matter and cosmological constant. The density of matter is proportior%lwmle that
of cosmological constant is constant. Hence— —1 ast — oo. ThereforeAC DM
model is incompatible with compactified models satisfying NEC at least in future.

e Dark Energy No-go Theorem IB:

Dark energy models with constamt, i less thanuv,,..,sien: OF time-varyingwpg
whose value remain less than, ..., for a continuous period lasting more than a few
Hubble times are incompatible with compactified models satisfying the NEC.igre
denotes the equation of state for dark energy.

e Proof:

In the case wherer < —1, 4D does not satisfy NEC. Since this does not go with
our asumption then this case is forbidden also. As we mentionetl'ib M universe,
w is in the interval betweenr-1/3 to —1. Therefore we should focus on this range. De-
pending on the number of extra dimensiohsthere exists aw called w;;,qnsien:’” Which
changes between1/3 and—1. Whenw is less than the transient one, then NEC is vi-
olated in (5.91) if¢ and its time derivative are small or negative; or NEC is violated in
(5.90) if¢ is large and positive. the only possibility for NEC satisfying is to hagembe
nearly zero and its time derivative to be large and positive enough. This is only compati-
ble for a short period. When we look at (5.91), in order to satisfy NEC, we should have
the following condition on the right hand side;

k+21d 1
%Ea(a%m > —5pr(L+3w) (5.92)

The right side of inequality is positive it < —1/3. Then we see from (5.92), on the left
hand side from derivative af we have the Hubble’s parameter, and also the derivative of
¢. If this (&) 4 is small in the beginning of its evolution then we say that (5.90) satisfies
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NEC. Then (5.92) suggest that;

H =0(1) (5.93)

if (£)a < H andl + 3w ~ 0, whereO(1) shows the magnitude. Then integrating this
over time tillt ~ I one may have a condition fgritself ;

(§)a/H = 0(1) (5.94)

One may conclude from here that in order to satisfy NEC in (5.90) that is having small
(€) 4, is only possible for a few Hubble times.

e Dark Energy No-go Theorem IC"

All dark energy models are incompatible with compactified models satisfying the
NEC if the moduli fields are frozen.

e Proof:

As we mentioned before, any form of dark energy requirés reach a value less
than—1/3. When we look at equation (5.90), NEC is satisfieddox —1/3 if the other
two terms are nearly zero. But in equation (5.91) the first term as we said is negative and
also last terms are non-positive. Then we say that moduli fields must vary with time in
order to satisfy NEC.

Now let us focus on the theorems that violate NEC.

e Dark Energy No-go Theorem I1A:

Dark energy is incompatible with compactified models (with fixed moduli) if the
NEC is satisfied in the compact dimensions (re- P, > 0 for all t andy™ ) whether or
not NEC is violated in the non-compact directions.

e Proof:

In this theorem as we mentioned, the moduli fields must be frozen that means time
derivative of them is zero or very small. Therefore the middle term in equation (5.91) is

zero. And at best we may take the last term zero, that may be achieved by choosing the
k? — 5k — 10

ragin ram
averaging parametet to be Y-

. In the light of these conditions we have only
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the first term on the right hand side of (5.91) which is proportionglite- 3w). This
term has turning point for its sign at the valuewf= —1/3. Whenw is less than this
value then the term is negative and it is positive wheis grater. But the acceleration of
universe imposes the to be less than-1/3. Therefore one may conclude from here that
whenever universe is accelerating, NEC is violated in the compact dimensions.

e Dark Energy No-go Theorem I1B:

Dark energy is incompatible with compactified models (with fixed moduli) for
which the net NEC violation along the compact directions is time-independent

e Proof:
As we mentioned before, at = % the equation (5.91) is proportional
to (1 + 3w). However cosmic evolution need_s time dependestnce it includes cosmic
acceleration (i.e. inflationary era and present era) and cosmic deceleration (i.e. matter
dominated eras). Therefore the NEC violation in the compact directions needs to be time-

dependent.
e Dark Energy No-go Theorem 11C"

Dark energy is incompatible with compactified models with fixed moduli if the
warp factor()(¢,y) is non-trivial and has continuous first derivative and if any of the
following quantities is homogeneousgjn

° p+P3:

o zp+ Py for RF metric for x tobe (1/2)(1 —3w) >z > 4(k —1)/3k:

p for CRF metric for k > 4:

2p + Py for CRF metric for k> 3 andw > —1:

Proof-

The first quantity that is found in Appendix D, is inhomogeneous because of the
factore=2?+%. This exponential factor has the tefwhich is the function of extra di-
mensions. In the definition of exponential function we have the all poweis ©herefore
we say thap + P; is inhomogeneous in.

The second quantity may be found by using equations (B.1) and (B.2). Then it
becomes;

4 4
zp+ Py = (4— 7 3z)AQ 4+ (10 — e 62)(0Q)? + e > pp(z + — — =) (5.95)



As we mentioned before the last term here is inhomogeneous. The other terms are also
inhomogeneous for the given rangexathat insures NEC violation.

For the third one we have from the appendix B, in the equation (B.6) the first term
on the right hand side is positive for the given conditiorBut this term changes its sign
with the extremum points d2. Thenp is inhomogeneous in.

Finally the for the last quantity we have the equaiton;

6 K k2 3 3w
Po=(k—-1—)AQ+(——=—=— D) (0N 4+ e 2oy (= 4 — .
p+ P, = (k k) +(2 5T % )(00)° + e pT(2+ 2) (5.96)

As it may be seen from this equation, for the given rangke, tifie first term is positive and
also the second one on the right hand side while the last term is also positive for the values
of w > —1. Because of the same reason fof? , this quantity is also inhomogeneous in

Y.
e Dark Energy No-go Theorem I1D:

Dark energy is incompatible with compactified models with fixed moduli if the
warp factor()(¢, y) is non-trivial if p + P, is homogeneous.

e Proof:

Forw < —1/3 the last term for both RF and CRF casepin- P, < 0. And the
other termA(2 is non-zero sincé€)(t, y) is non-trivial. This term changes its sign at the
maximum and minimum of)(¢, y). Thenp + P is inhomogeneous at least for some

e Dark Energy No-go Theorem I F:.

Dark energy is incompatible with compactified models with fixed modulj.ifA) >

2 _ 5k —
—1for (p)a > 0orif wy(A) < —1for (p)a < 0 both atA = M-Sk 10 3;? 5 1

e Proof:

Let us first construct this, the ratio of the average of pressure along extra di-
mensions to average of energy density, it may be found for RF metric by dividing (B.2)
to (B.1) as follows;

IA 4 ,  Bw 1 —2
(10 = 44) + == = 21(0Q)* + (5 = 5)e’(e ™ pr)a (5.97)

wi(A) = (34— 6)(0Q)2 + e?(e~2pr) ,
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Here we consider for dark energy cage*!p;) > 0. At the critical value ofA that is
k* — 5k — 10

3k —6 5 )
case of dark energy, theé“g -5 < —1. Then we can see from (5.97) that at this value

, the ratios of the multipliers afo2)? is —1. Also forw < —1/3, as in the

of A wy, is less than—1 which is in contradiction with theorem. On the other hand for
(e=22pr) < 0 we see thatv, > —1 again in contradiction with theorem. This proves the
theorem.

In the case of CRF we have the value f@rwhich can be found by dividing (B.8)
to (B.6);

6 2 5k k? 3 1
(7= 7 =R+ 6 7+ 5 — DN+ (G — H)ele ™ pr)a
A) = k k2 2 2 2
wi(A)
[—(k —4) A+ - (k% — 3k — 10)](0N2)2 + e? (e~ prp)
o510
Here again by the same way that is takiag®pr) > 0 and puttingA = ﬁ

it may be seen thaty, > —1. Therefore we say that this is also incompatible with
compactified models.

5.3.4. Critical Analysis of No-Go Theorems

Two crucial ingredients of the no-go theorems of Steinhardt and Wesley [20, 21]

are;
e A-averaging as the averaging tool to higher dimensional results to 4D

e the assumption of the necessecity of the applicability of the higher dimensional

null energy condition

We give a critical discussion of these assumptions before considering each of the theorems
in [20, 21]. First consider A-averaging whose definiton is given in (5.60). At distance
much larger than the size of extra dimension(s) we see the extra dimensions integrated. In
analogy this is similiar to what we see when look at a hBsex S*. We may see smaller
smaller patch on the side of the hose as we examine it close and closer while at very large
distances we can not see the details , we see the §itdl@egrated out and hence we see

the hose just as a liné?!. Therefore in reduction to 4-dimensions the extra dimensions
must be integrated out. To do this one may consider extra dimensional classical solution
(metric) in the action and integrate out. For example for Einstein-Hilbert action we may
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take;
M? / R\/gd** e = M3 / Ry/gd'z (5.99)

Of course the intermadiate steps depend on the form of the metric. For the Ricci flat
metric considered in [21] i.e. for ;

ds® = emhwdx“dx” + gaﬂdxo‘dxﬁ

whereu, v = 0,1,2,3anda, 5 = 1,2, ,, k. With this form of metric one may write (5.99)
as;

32 [ RGattte =g [ 0GR+ S g gold's (5.100)

with g = (—1)%det(gap) whereS is the number of spatial dimensions. For flat Robertson-
Walker metric (5.100) becomes ;

3 [ @R+ . 0 gl (5.101)
where;
o =a’ / VgeXdry (5.102)
Therefore it is naturel to defingt) = e*/3a(t) where ;
e? = ék/\]ﬁemdky (5.103)

where (=% is the higher dimensional Planck length rather than the definition given in
[20, 21] ;

a(t) = e?%a(t) (5.104)
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where the definiton 0é?/? is given in (5.63). And the corresponding averaging is also
given in (5.60).

The second questionable point in our opinion is the imposing the higher dimen-
sional energy conditiori], zn“n?, as a strict physical condition ( that insures absence
of ghost,instabilities etc.) In fact this has a ligitimate basis since the extra dimensional
components of energy-momentum tensor seem like energy (e.g. masses) when viewed
from 4-dimensions. However a concrete analysis is needed to arrive clear out, definite
conclusions. In principle it seems possible that an equaiton of state smaller than
olation of NEC in extra dimensions may be due to an unconventional form of the extra
dimensional piece of the Lagrangian (extra dimensional metric part) rather than a wrong
sign in kinetic energy (i.e. ghost). It is possible that such a case may lead to a case where
extra dimensional energy conditions are violated while there is no ghost. In our opinion
the correct procedure to get the 4-dimensional energy conditions is not the averaging of
the extra dimensional’yzn“n? done in [20, 21]. The unambigous way to derive the
4-dimensional energy conditions is to integrate the action over the extra dimensions and
than obtain Einstein equations and constriigtn*n” to check validity of NEC. In fact
all these points should be considered in a seperate study to see how the conclusions of
[20, 21] survive.

Another point to mention is that the no-go theorems discussed in previous subsec-
tion employ the assumption of the applicability of general relativity (i.e. Einstein-Hilbert
action), three dimensional flatness, boundness of extra dimensions and extra dimensions
being Ricci flat or conformally Ricci flat. The cosmological observations confirm the as-
sumptions of general relativity and three dimensional flatness (at least up to a very high
degree approximation) for present time hence these are wholly valid assumptions for dark
energy. However [20, 21] uses these assumptions for the time of inflation where their
applicability is questionable. It is possible that gravitational action is in a form other
than Einstein-Hilbert action and this is pronounced at inflationary era while it approaches
usual Einstein-Hilbert form at late times. Therefore in our opinion the applicability of
constraints obtained in [20, 21] are not so restrictive as given in [20, 21]. Still another
point is that they consider only extra dimensionally Ricci flat and conformally Ricci flat
extra dimensional metrics. In fact the conformally Ricci flat metrics considered in [20, 21]
are not the possible most general ones where the conformal factors multiplying the four
dimensional and the extra dimensional pieces of the metric being independent. Now let
us also make some analysis on some no-go theorems of the previous subsection.

e Dark Energy No-go Theorem I A:
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The pure de Sitter universe (i.ew = —1), since in that case the right hand side of
(5.91) is negative, hence violates NEC. Th€ DM (i.e. the standart model of cosmol-

ogy) approachv = —1 as time goes to infinity. Therefore the current standart model

of cosmology (i.e.ACDM) is in contradiction this type of extra dimensional models.
However there are other viable models of dark energy whose equaiton of state does not
go to -1 at infinite future, such as thawing quintessence, tachyon or phantom dark energy
models [55, 56]. In other words this theorem alone does not rule out extra dimensional
cosmological models.

e Dark Energy No-go Theorem IB:

This theorem states that cannot be less tham;, ,,,sicn: With —1 < Wiransient < —% for

more than a few Hubble times. However a constant or an almost consiartompat-

ible with observations and is in fact more compatible then the case whemies large
amount. In fact the result of this theorem introduces a problem for inflationary models
[57, 58] formulated in the framework of the assumptions of [20, 21] since inflation needs
at least 40 e-fold expansion [59]. However as we mentioned before, it is possible use an
extension of general relativity which effectively reduces to general relativity at late times
or one may adopt extra dimensional models more general than those given in [20, 21] (i.e.
those that are not conformally Ricci flat in the extra dimensions).

e Dark Energy No-go Theorem IC"

This theorem states that the models in which the magalie fixed (and specificallg
Is constant) are incompatible with NEC.

The dynamical nature d@fis a direct consequence of NEC and the equations (5.90)
and (5.91). This conclusion is the framework of the assumptions of [20, 21] is inescable.
However variation ofGy is not an inevitable consequence of this result. If gravitaion
and matter fields live in the same extra dimensional space then their extra dimensional
volume varies at the some rate , so both sides of Einstein equaiton are multiplied by
the same extra dimensional volume factor heGge remains constant. The remaining
theorems (i.e. those for the models with NEC violation) are specific technical theorems.
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CHAPTER 6

CONCLUSION

In this thesis first we have reviewed the basic concepts of cosmic expansion, dark
energy, and extra dimensions. Then we have reviewed and reexamined the constraints
derived from energy conditions on extra dimensional cosmological models [19-21].

In the second chapter we have seen the basic formulation of cosmic expansion and
the observational evidence for the expansion of the universe. We have derived Einstein
equations for the Friedmann-Lemaitre-Robertson-Walker metric that describes universe at
cosmological scales. And by using these results in the following chapter we construct the
dark energy models. In Chapter 3 we have reviewed dark energy and the corresponding
models of dark energy. We have seen that there are some scalar fields that are viable,
standart candidates for dark energy.

In Chapter 4 we have gone through extra dimensions. We have reviewed the basic
models of extra dimensions; Kaluza-Klein model, ADD model and Randall-Sundrum
models. In Kaluza-Klein model we got the form of Einstein-Hilbert action in 4D by using
5D metric. In this model we aimed to combine Einsten gravity with Maxwell’s theory and
got the corresponding action. In other models we have used extra dimensions to explain
the weakness and the localization of gravity.

In Chapter 5 we have reviwed the dark energy models with extra dimensions. In
this chapter we have given some examples for the models of dark energy in extra dimen-
sions. We have seen that there are constraints on these models. In order to understand
these constraints, we have given some information about energy conditions. In all models
we have checked the possibility of null energy condition (NEC). Therefore by obtaning
the corresponding Einstein equations for each model we have constructed the null en-
ergy condition (NEC) on the models and checked whether it is satisfied or not. We have
seen that it is not easy to accommodate accelerated expansion of the universe in extra
dimensional models. It seems that the only possibility of accommodAting M (i.e the
Standard model of cosmology) in the context of extra dimensional models in the context
of Einstein-Hilbert action is to have an intrinsic curvature for the extra dimensions. In the
next subsections we have reviewed the study of [20, 21].

In the subsection 5.3.2 we have considered extra dimensional models satisfying
general relativity, flatness condition, boundedness condition, and Ricci flat and confor-
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mally Ricci flat metrics. We have found the NEC elements that are the sum of energy
density and pressure along both the three space and extra space. Next we have considered
some no-go theorems for dark energy in extra dimensions [20]. We have seen that these
theorems suggest the difficulty of constructing extra dimensional models in the context of
the accelerated expansion of the universe.

In the last subsection we have given our critical analysis on these theorems. We
have argued that one may define a physically more relevant averaging than the one given
[20, 21]. In future one should check consequences of such a change in the identifica-
tion of averaging process. The second thought provoking point is the assumption of the
applicability of the higher dimensional NEC. We have seen that imposing higher higher
dimensional NEC is not well founded. Although the implications of NEC in the usual
four dimensions is well known, its implications for higher dimensions is not studied well,
and if the higher dimensional NEC lead to four dimensional conclusions (even after av-
eraging) is not evident. All these points must be studied carefully and in detail in further

studies.
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APPENDIX A

EINSTEIN TENSOR FOR
FRIEDMANN-LEMAITRE-ROBERTSON-WALKER
SPACE

After using equation (2.17) we obtain;

1 o
F/pu/ = égp [gucr,zz + Jov,u — guu,a}

1
Fgo =—g" (9060 + 950,0 — G00,0]

2
Fgo =0
0 1 Oc
Fij = 59 [gio',j + Gjoi — gij#"]
1
Iy = 59”90, + dos = Gijol
1
F?j = 280 [glj]
1
0 aa
Fll 1 — KTQ
1
FgQ = 580 [922]
1Y, = aar?

1
gy = 530 [933]
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1Y, = aar’sin0

F;‘k = %gw[gja,k + Gokj — Gik.o)
ISR %911[911,1 + 9111 — 9111
gy = 3911[912,2 + G212 — g22,1]
F%z = %911[—81(922)]

Iy, = —r(l1— Kr?

I35 = %911[—31(933)]

I, = —r(1 — Kr?)sin®0
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1
I3 = 5922[922,1 + G122 — 921,2]
1
I3 = 592231 (922)
1
r2 — -
21 = 7
3 L g
Iy, = 59 01(933)
1
3 = -
517
2 L o
I3 = 59 [923,3 + g32,3 — G33,2]
1
F§3 = 5922[—82(933)]
2, = —sinfcost

1
F§3 =—g” [923,3 + G332 — G23.3]

2
1
F%g = 593332(933)
I3, = cotf
i 1 i
I = 59 [9jo0 + 50,5 — Gjo,0]
i L
FjO = 59 kao(gjk>
i i a
T = 5]-5

After calculating these elements we can also calcutgteand also R which is equal to
R=g"R,,

R, =T? —T* 4T¢T9 —T%T7

pp posv po v po pv
Ry = Fgo,p - ng,o + Fﬁofgo - FG’UFZO
a
Rop = —3—
a
_T1° p o P o
Ry =15, =Ty + 1515 = i1,
ad + 2a%> + 2K
Ry = 5
1—-—Kr

Roy = 1*(ad + 24 + 2K)
Rsz = 1*(ad + 24° + 2K )sin*(0)
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Now we are ready to calculate R which we have written as;

R = g“l’RW
R=g"Ro + g"' Ry + ¢**Roy + g% Ra3

6, . .
R:g(aa%—aQ—l—K)

After finding Ricci elements we can calculate Einstein tensor eledgnfrom the Ein-
stein equation.We have written it as;

1
Gw/ = R,uz/ - §guuR

1
Goo = Roo — 59003

i 16, .
G00:—35+§?(aa+a +K)
3.

;(a2+K)

1
G = Ry — 59113

GOO =

ai +2a* + 2K 1 a’ 6
Gy — 2 Y .9 K
n 1— Kr? S =) T K
Gll = (KT’2 — 1)(2aa—|—a2 +K)
1

Gag = Ryy — 5922R

Gao = r*(ad + 2a* + 2K) — %cﬂﬂ%(ad +a*+ K)

Goy = —1?(2ai + a* + K)

Ga3 = Ra3 — %gs3R

Gs3 = r?(ai + 2a* + 2K )sin®(0) — %a%%irﬂ(&)%(ad +a*+ K)

Gz = —r?sin?(0)(2ad + a* + K)
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APPENDIX B

COSMOLOGICAL CONSTANT IN EINSTEIN STATIC
UNIVERSE

Although Einstein static universe is not a viable model it is instructive to see how a
cosmological constant arises and to see its effect in a simple way. As we found in Chapter
2, when the energy momentum tensor is taken t@pe= Diag(p, P, P, P) , that is of a
perfect fluid, then we have from (2.24) for a static universe i.efer0 ;

_ 8nGpa®
3

K (B.1)

Here if p > 0 then we see K is positive and this means that the universe is positively
curved to make:? positive. From equation (2.25) takirigto be zero and the value pf
we get;

K = —8rGPd? (B.2)

We see that to have a positive K we should have negative pressure, but as we know in all
forms of energy pressure is not negative. To describe the static universe, we should add
this new term to the Einstein equations. Now the Einstein equations fort his fluid and dust
become;

_ 8rGpa? N 8Gpya®
3 3

2
K — —87GPd? + 8”@%

K

(B.3)

(B.4)

Here P, = 0 andp, is the energy density of matter. Cosmological constant contributes
positively to the background energy density and negatively to the pressure. This corre-
sponds to a new form of energy where= —P. This is called 'cosmological constant’.

Cosmological constant can be considered as a perfect fluid pyith; % = — P, which
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shows us that equation of state-ig.
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APPENDIX C

KALUZA-KLEIN TOWER

Now let us see how 'cylinder condition’ arises naturally in detail with an example
of a real scalar field in 5D space-time. Let us write the Lagrangian density for this scalar
field in 5D;

1
L= —iaA@a%, A=0,1,2,35 (C.1)

Here the fieldb(¢, 7, y) = ®(x,,y) with u = 0, 1, 2, 3. Herez,, denotes the 4-dimensional
space-time ang is the fifth dimension that is assumed to be compactified on a circle S
with radius L. As we said before the extra dimension should be periodigmvithy+27 L.

Now we can expand the field in the harmonics on a circle of radius L.

+00 )
O(x,y) = Z dn(x)eT (C.2)

n=—oo

here | denoter,, by z. Then (4.1) reduces to ;

1 = nm i(ntm)y
L=—3 m;_m@mnawm ~ 3 Onbme T (C3)

Taking®(x, y) real or assuming,, even undey — —y implies¢_,, = ¢*. If we use this
in (4.3)

2w L +o0o 2
S = / d'z /0 Ldy = —wL / d'z Y (0,600"¢; + %Wbi) (C.4)

n=—0oo

Here we performed the integration with respect to extra dimengiorhis resulting ex-
pression is the action for an infinite number of 4-dimensional fielgs). Now let us
study some properties of these fields. We introduce the notatjoa /27 L¢,. Then
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writing the action ;

1 +00 L2
5= [ -Gl - [t Y @000+ pad)  (€5)

k=—o0

Now let us interpret this picture. The action above consist of :

e A real single massless scalar field also called’zero mode’

k2
2

e infinite number of scalar fields with masses
These massive states are called the Kaluza-Klein modes. They are relevant at high en-
ergies. And the zero mode is relevant at low energies. These massive states are not
observed because they are too heavy to be produced in current accelerators since
very small. For example if we take = 10~ 'cm then for the first KK mode i.& = 1
me? = % ~ 200GeV. We do not observe such particles in current high energy physics
experiments. Therefor® must be smaller than0—!¢ cm. Therefore we may say that
since KK modes are not observed yet, extra dimensions are not observed yet.

As a next step let us consider a (4+1) dimensional example of Abelian gauge
fields. For this let us consider the Lagrangian density given as;

1
L=——FypF"’ (C.6)
4g;

wheregs is coupling term with the dimension ¢frass| ™! and Fyp F4% = F,, Fr +
2(0,A5 — 05A,)* andF 5 is called 'Field strength tensor’ in 5-D and the 4-D part of this
tensor isF,, = 0,A, — 0,A,. Here again expanding the fields,, A5 in the harmonics
on a circle of lenthl. as;

+00 +oo
Aday) = Y AP @)™/t As(w,y) = Y AL (x)ev/ (C.7)

The 5-D action can be reduced to 4-D by integrating Lagrangian density over the extra
2nL
S = /d%/ L= /d4mL4 (C.8)
0
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The derivatives of the Abelian gauge fields, A5 give ;

+00 +oo
= Z D, A ()™t 9, As = Z 0, A (z)emv/ (C.9)
DA, = Z AM(z) (=) e™/L 95 Ay = Z AlMz)(=)em/ L (C.10)

Using (4.9) and (4.10) i, 3 F*? we have;

—+o00

FapF* = () (0,A0(x) — 0,A[ (x))em/

+oo
Z (8MA(VW) (z) — v Alwm) ($))6imy/L}

m=—00

+00 +oo 3
(2 QuAg@)e™™ = (37 A5(@)(T))em™/ P

n=—oo n=—oo

Here we use the conditiod, ™ = (A ™)* then some terms will cancel and some
integrals over the extra dimension will be zero. Finally we get;

1 <= 22
Ly= —4—92[F$)FW(0) +2 ) [FE pre) 4 Ty AR A 20,A")]  (C.11)
4 k=1

where we see the following physical states;
o A zeromode massless gauge field A,(P)
e Massive KK gauge bosons
o Massless scalar field Ago)

As we see from these results all the KK modes are massive except for the zero mode. This
can be interpreted as an effect of Higgs mechanism. In a similiar way one may do Kaluza-
Klein reduction forg,,, andR. For the metric tensgj,, (z, y), we may decompose it as;

gun(7,y) ZQM )e'mv/E (C.12)
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APPENDIX D

PRESSURE AND ENERGY DENSITY FOR FIXED
MODULI

For (RF) models, we have the following useful relations in the case of fixed
(breathing mode) and metrig,,, :

Goo = =340 — 6(9Q)* + e 2 pp (D.1)
1 4 1
Py = +4(1 - E)AQ + (10 — E)(@Q)Q + 6_29+¢§pT(—1 + 3w) (D.2)

Py = +3AQ + 6(9Q)* + e 2 Py (D.3)

Now we can calculate the elements of NEC by just summing energy density with pressures
respectively. We fnd;

p+ Py =e""(pr + Pp) (D.4)
4 1 1
ptFi=(1-2)A0+4(1 - E)(aQ)2 + €_QQ+¢§,0T(1 + 3w) (D.5)

For (CRF) models we have ;

1

Goo = (k —4)AQ + 5(k;2 — 3k — 10)(09Q)? + e 2 pp (D.6)
1 1

Py = —(k—4)AQ — 5(k2 — 3k — 10)(09Q)* + e*29+¢§pT(1 + 3w) (D.7)
6 2 5k K2 1

P, = (7 — k- EAQ + (GE + 7 - 5(89)2 + 672Q+¢§pT(—1 + 3’LU) (D.8)

Ant the corresponding NEC elements are ;

p+Ps=e*(pr + Pr) (D.9)

2 1
p+P=(3- %)AQ + (k4 1= 2)(0Q)° + e 95 pr(1 + uw) (D.10)
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