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July 2011
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ABSTRACT

DARK ENERGY MECHANISMS IN THE CONTEXT OF EXTRA
DIMENSIONAL MODELS

Dark energy is the simplest and the most standart explanation to account for the

observed accelerated expansion of the universe. In this thesis we use the term ’dark en-

ergy’ in its standart meaning i.e. a field or fluid that is responsible for the cosmic acceler-

ation in the frame work of general relativity. Meanwhile extra dimensions is an attractive

framework to understand many otherwise unexplained physical phenomena in a clear,

simple formulation. Therefore the study of extra dimensional cosmological models is an

attractive area of study. In this thesis we have considered viability of extra dimensional

cosmological models in the light of the accelerated expansion of the universe. We have

confirmed the results of studies that have shown the incompatibility of a broad class of

extra dimensional cosmological models with a dark energy of an equation of state close

to that of cosmological constant. We have discussed also possible theoritical and obser-

vational ways to avoid the no-go theorems for extra dimensional cosmological models as

well.
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ÖZET

EK BOYUTLU MODELLER ÇERÇEVEṠINDE KARANLIK ENERJİ
MEKANİZMALARI

Karanlık enerji evrenin ivmelenerek genişlemesi gözlemlerini açıklayan en basit

ve en standart yoldur. Bu tezde karanlık enerji terimi en standart anlamında yani genel

görelilik çerçevesindeki kozmik ivmelenmenin sorumlusu olan bir alan yada akışkan an-

lamında kullanılmıştır.̈Ote yandan, ek boyutlar diğer birçok açıklanmamış fiziksel fenomen-

leri açık ve basit form̈ulasyonda anlamaya yarayan bir çerçevedir. Bu yüzden ek boyutlu

kozmolojik modellerin araştırılması ilgi çekici bir çalışma alanıdır. Bu tezde evrenin

ivmelenerek genişlemesi gerçeğinin ışı̆gı altında ek boyutlu kozmolojik modeller ince-

lendi. Ek boyutlu kozmolojik modeller çerçevesinde durum eşitliği kozmolojik sabite

yakın olan karanlık enerji modelleri elde etmenin zorluğuna ilişkin dahäonce yapılmış

çalışmalar g̈ozden geçirildi ve elde edilen sonuçlar doğrulandı. Ek boyutlu kozmolojik

modellere ilişkin elde edilmiş olan sınırlayıcı teoremlerden kaçınmanın teorik ve gözlemsel

yolları da tartışıldı.
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CHAPTER 1

INTRODUCTION

Since 1929 it had been known that the universe is expanding [1, 2]. Researchers

were expecting that the expansion should be slowing because the universe’s own gravity

tugs against the expansion. The cosmic acceleration rate can be observed by measuring

the distances to exploding stars known as supernovae. In 1998 in a quite unexpected way

the observations of high redshift supernovae revealed that the universe is accelerating at

present [3, 4]. There must exist something to make the universe expand at an accelerat-

ing rate. There are some frameworks to explain this acceleration; some form of energy

(called dark energy) [5–9], modification of gravity [6, 10], inhomogeneity in the matter

distribution [11, 12] are the main of these frameworks. The framework we adopt in this

thesis is the most standard of these, known as ’Dark Energy’, some kind of fluid or matter

field that causes accelerated expansion of universe [13] in the context of Einstein’s theory

of general relativity [14]. In the following sections we consider some basic candidates for

dark energy.

Dimension is a natural concept to humans in everyday life. A dimension is a

parameter or measurement used to describe some relevant characteristic of a place or

object. The time and space are known examples of dimensions. Einstein’s theory of

relativity is formulated in 4-dimensions. The question is how it is possible to have more

than 4 dimensions because we do not see the effect of extra dimensions. The possibility of

existence of extra dimensions although we do not see them in everyday life may be seen

through an example. Let us suppose an ant which is moving on a cord. When we look

from a distance we see the cord as one dimensional. But when we zoom onto the cord,

we see one dimension is not enough to describe the exact position of the ant. Therefore

we need a second dimension which takes the form of a small compact circle having the

thickness of the cord. The ant can also move along this circle. As we see from this

example a one dimensional picture from a distance could in fact contain two dimensions.

In fact this (i.e. taking the extra dimension small and compact) is one way to explain why

it is not observed at low energies. Another way is to make matter be confined to a four

dimensional wall i.e. a brane in extra dimensions [15, 16].

We may ask what the physical effect of extra dimensions would be here. Let

us start with the gravitational force between two objects. This force has a magnitude
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proportional to 1
r2

. When we suppose in additionN extra dimensions, we will see this

force changing to 1
r2+N . Hence we see the number of extra dimensions change the nature

of the physical law of this force. This is why the question of existance of extra dimensions

becomes an experimental question. Another reason for extra dimensions is also related

to gravity. We do not know the behavior of gravity at distances shorter than10−4 cm

and at distances larger than1028 cm . All what we know about the gravity is within this

range. In addition to gravity, electromagnetic interactions which obey inverse square law

also are known down to distances of10−16 cm but below this scale there might exist a

change in the behaviour of it. Therefore there is a possibility that they can change with

the laws of extra dimensional space if extra dimensions exist. One can ask what are the

benefits of a world with extra dimensions? I will give few titles related to this questions,

unification of gravity, quantization of gravitational interactions, Higgs mass hierarchy

problem, cosmological constant problem, etc.

As we have discussed above, extra dimension is an attractive framework to explain

some phenomena or relations in nature that seem unaddressed in a simple way. Therefore

the use of extra dimensions to account for accelerated expansion of the universe (cosmic

acceleration) is quite natural and is discussed in many studies and models [17–19].

In this thesis we questioned if extra dimensional models that include cosmic ac-

celeration may be realized in a way consistent with observations and within standart theo-

retical framework. To this end first we reviewed dark energy and extra dimensions. Then,

we reconsidered the constraints on broad class of models that are derived from energy

conditions [20, 21]. We have confirmed their conclusion and discussed possible routes to

avoid these constraints.

Note that we take the signature of the four dimensional metric be (-,+,+,+) unless

otherwise stated.

2



CHAPTER 2

BASICS OF COSMIC EXPANSION

2.1. Hubble’s Law

In this chapter I will write the Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric and the corresponding equations to explain the rate of expansion of the universe.

But firstly we start with Hubble law.

Hubble law [1] is a natural consequence of homogeneity and isotropy in an ex-

panding universe (here homogeneity tells us that universe looks the same when it is ob-

served from any point whereas isotropy means that the universe looks same in any direc-

tion). Now let us start with a coordinate system with origin O at which matter is at rest.

The velocity field that is the relative average velocity of matter at any two points depends

on the radiusr (i.e. the distance between the points) and timet (i.e. the time that takes

light to travel between these points). We can denote this velocity field byv(r, t) and write

down as;

v(r, t) = H(t)r(t) (2.1)

whereH(t) is known as the Hubble parameter. Hubble’s law tells us how the average

velocity between any two points in space changes with time. Therefore one namesH(t)

as the expansion rate of the universe. From equation (2.1) one may write;

dr

dt
= H(t)r (2.2)

dr

r
= H(t)dt (2.3)∫ rt

r0

dr

r
=

∫ t

0
H(t)dt (2.4)

Now integrating both sides we have;

r(t) = r(0) exp
∫ t

o
Hdt (2.5)
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Here we will introducea(t) which is known as scale factor :

a(t) =
r(t)

r(0)
(2.6)

then we may write

a(t) = exp
∫ t

0
H(t′)dt′ (2.7)

taking the natural logarithm of both sides and taking the derivatives with respect to time

we have;

H(t) =
ȧ

a
(2.8)

As it can be seen from (2.8) the expansion rateH(t) is a function of scale factora(t).

This scale factor is so important that it contains complete information about the dynamics

of homogeneous and isotropic universe.

According to the Hubble’s law, if the universe is isotropic and homogeneous, par-

ticles move radially from an observer which may be supposed as located at the origin of a

sphere. We can see this directly from the relation (2.1) which tells us that the velocity of

a moving particle is associated with the radial distance of the particle from the observer.

This motion is known as ’Hubble Flow’.

2.2. Newtonian Cosmology

The picture in Friedmann-Lemaitre-Robertson-Walker (FLRW) space may be made

more plausible through a naive Newtonian analysis [22, 23]. One may write the evolution

equation for Hubble’s parameter in (2.8) by using a naive Newtonian approach. Let us

start with a particle which is located at a point on a sphere and the particle is at a distance

r(t) from the origin. Here because of the isotropy we take spherical symmetry. We con-

sider that at a given timet, there exists matter with densityρb(t) at the origin. For given

particle of massm we can write the gravitational force and then by calculating the poten-

tial energy of it we may write the total energy of this particle. The gravitational force on

4



this massm is,

−→
F = −GMm

r2
r̂ = −

−→
∇U (2.9)

whereM is the mass located at the origin of the sphere. From equation (2.9) we may

calculate the potential energy of this massm which is;

U(r) = −GMm

r
(2.10)

The total energy of the massm is;

Etot =
1

2
mṙ2 − GMm

r
(2.11)

Since we are on the sphere, we may write (2.11) in terms of the volume and density of

matter located at the origin as;

ρb(t) =
M

V
(2.12)

V =
4

3
πr3(t) (2.13)

Etot =
1

2
mṙ2 − 4π

3
Gmρbr

2 (2.14)

Now from the total energy equality if we divide each term by
mr2

2
, we will have;

ṙ2

r2
=

8π

3
Gρb +

2Etot
mr2

(2.15)

Here the term on the left hand side of equation (2.15) may be written as
ȧ2

a2
which is also

equal to the square of Hubble’s parameterH. Then (2.15) may be written as;

H2 =
8π

3
Gρb +

2Etot
mr2

=
ȧ2

a2
(2.16)
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This equation is known as the Friedmann equation. In this equation we will write the

second term on the right side in terms of a new parameter K. Then it may be written

asK = − 2Etot
r2(0)m

. Here the sign ofK depends on the energies of the massm that is

comparison of kinetic energy and potential energy because ifEk > Ep in (2.14) then we

seeK is negative but ifEk < Ep,K is positive. Also it can be zero when two energies are

equal. Now one may relate the results of this analysis to the general relativity concepts.

As we will seee in the next section the sign ofK shows the geometry of space. IfK is

be zero, then we say universe is flat, forK is negative it is an open universe which is also

called hyperbolic like and finally forK is positive it is a closed universe that is spherical

like.

2.3. FLRW Metric and the Corresponding Einstein Equations

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is an exact solution to the

Einstein’s field equations of general relativity. The form of the metric describes the uni-

verse as homogeneous, isotropic and expanding. Since the scale factor is written in the

metric, the solutions of field equations must give the size of universe as a function of time.

This metric may be written in 4-D as;

ds2 = −dt2 + a2(t)[
dr2

1−Kr2
+ r2(dθ2 + sin2(θ)dφ2)] (2.17)

wherea(t) is the scale factor andK = 0,±1. As we mentioned before, the sign ofK

shows the geometry of space. IfK is zero, then we say the universe is flat, ifK is negative

it is an open universe which is also called hyperbolic like, and finally ifK is positive it is

a closed universe that is spherical like. The coordinates (r,θ,φ) are co-moving coordinates

in which a freely moving particle comes to rest. This form of the metric is written in

spherical coordinates. The spatially flat case i.e.K = 0 may be written in Cartesian

coordinates as;

ds2 = −dt2 + a2(t)[(dx1)
2 + (dx2)

2 + (dx3)
2] (2.18)

To have information about the dynamics of this metric we should solve Einstein’s

equations for the scale factora(t). Now to have a differential equation for the scale factor

6



we should consider Einstein equations which are written as;

Gµν = Rµν −
1

2
gµνR = 8πGTµν (2.19)

whereGµν is the Einstein tensor,Rµν is the Ricci tensor andTµν denotes the energy

momentum tensor. Ricci tensor may be written as;

Rµν = Γρµν ,ρ−Γρµρ,ν +ΓρρσΓ
σ
µν − ΓρµσΓ

σ
ρν (2.20)

whereΓρµν ,ρ denotes
∂Γρµν
∂xρ

andΓρµν is called ’Affine connection’ in general. When it is

symmetric i.e. when it is the metric compatible;∇µgρτ = 0 it is called the ’Christoffel

symbol’. Christoffel symbols have the form written as ;

Γρµν =
1

2
gρσ[gµσ,ν +gσν ,µ−gµν ,σ ] (2.21)

Now after giving these information we may calculate Einstein tensor for FLRW met-

ric given in (2.17). The elements of our metric may be written as;g00 = −1, g11 =
a2(t)

1−Kr2
, g22 = a2(t)r2, g33 = a2(t)r2sin2(θ). The explicit calculations ofGµν are

given in appendix A.

The elements of the Einstein tensor are;

G00 =
3

a2
(ȧ2 +K), G11 = (Kr2 − 1)(2äa+ ȧ2 +K)

G22 = −r2(2aä+ ȧ2 +K), G33 = −r2sin2(θ)(2aä+ ȧ2 +K)

We may also write the elements of energy momentum tensor using these equations

and the relationGµν = 8πGTµν as;

T00 =
1

(8πG)
G00 =

1

(8πG)

3

a2
(ȧ2 +K)

T11 =
1

(8πG)
G11 =

1

(8πG)
(Kr2 − 1)(2äa+ ȧ2 +K)

T22 =
1

(8πG)
G22 =

1

(8πG)
r2(2aä+ ȧ2 +K)

T33 =
1

(8πG)
G33 =

1

(8πG)
r2sin2(θ)(2aä+ ȧ2 +K)

In all our calculationsi, j range from1 to 3, G is gravitational constant andR is

Ricci curvature scalar. When we suppose an ideal perfect fluid, because of homogeneity

7



and isotropy, the energy momentum tensor takes the form;

T µν = (ρ+ P )UµU ν + Pgµν (2.22)

whereρ is the energy density,P is the pressure,Uµ is the velocity vector field. If the three

dimensional space is flat then (2.22) in co-moving coordinates becomes ;

Tµν = Diag(ρ, P, P, P ) (2.23)

whereUµ = (1, 0, 0, 0) in co-moving coordinates.

We have written Einstein equations and the elements of Einstein tensorGµν . From

the four Einstein equations, we are able to write two independent equations. For the 00

component we have;

G00 = 8πGT00

8πGρ =
3

a2
(ȧ2 +K) ⇒ H2 =

(8πG)

3
ρ− K

a2
(2.24)

whereH =
ȧ

a
is the Hubble parameter. For another element of Einstein tensor we have ;

G11 = 8πGT11

−2
ä

a
− (

ȧ

a
)2 − K

a2
= 8πGP (2.25)

After multiplying (2.25) by three and then adding the resulting equation to (2.24) one

gets;

ä

a
= −4πG

3
(ρ+ 3P ) (2.26)

We remind thatρ denotes the total energy density of all the fluid components present in

the universe. In this equation we wantä to be positive to have an accelerating universe,

so the parenthesis on right side of equation must be negative.
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2.4. Observational Evidence for Cosmic Expansion and Acceleration

In 1929 Edwin Hubble, who is an astronomer, was working at the Carnegie Ob-

servatories in Pasadena, California. He made some observation about the expansion of

universe and he measured the redshifts of a number of distant galaxies. He also measured

the relative distances of these galaxies by measuring the apparent brightness of a class of

stars in each galaxy. When he plotted redshift against relative distance, he found that the

average redshift of distant galaxies increased as a linear function of their distance as we

mentioned in the first section of this chapter. But there must have existed an explanation

for this relation and the only explanation is that the universe was expanding. This may be

shown by using mathematical explanation of redshift.

In the picture of Hubble, ratio of the wavelength of an observed light to the that of

source is given as;

λobs
λsource

=
a(t0)

a(t)

whereλobs is the wavelength of observed light andλsource is the wavelength of the

source. The timest andt0 are the time when light emitted and observation (the present)

time respectively. One may write this equation as;

λobs = λsource
a(t0)

a(t)

As wee see there is a difference between wavelengths with the fraction of scale

factors. It is known that in the case of redshift we haveλobs > λsource, then one may

conclude
a(t0)

a(t)
= 1 + z > 1 wherez is the redshift. This shows us that the scale factor

of present time is grater than that of the time of the light emission which means that there

must exist an expansion.

So what about the expansion rate? Is it accelerating, decelerating or at a constant

rate? These questions found their answers in 1998 when there were some observations of

type Ia supernovae [3, 4] suggested that the expansion of the universe has been acceler-

ating. This of course may be seen mathematically by looking at the luminosity distance

which is defined as the relationship between the absolute magnitudeM and apparent mag-

nitudem of an astronomical object. In general luminosity distance,DL, is defined by the

formula;

DL =

√
L

4πF

9



whereF is the observed flux andL is the intrinsic luminosity of the source. Also the

luminosity distance in cosmology is known in another form which depends on redshift,z,

that may be derived from (2.24);

DL =
1 + z

H0

∫ z

0

dz′√
ΩM(1 + z′)3 + ΩΛ(1 + z′)3(1+w)

whereΩx =
ρx
ρc

which is the ratio of density of any source to the critical density

which is the energy density atK = 0. HereΩM stands for matter whileΩΛ stands for

cosmological constant. When we perform this integration for matter and for cosmological

constant seperately we have the relations;

DL =
2

H0

(1 + z −
√

1 + z), for ΩM = 1

DL =
z

H0

(1 + z), for ΩΛ = 1

One may see from these two relations that the luminosity distance for cosmolog-

ical constant is larger than that of matter. In terms of the the absolute magnitudeM and

apparent magnitudem, luminosity distance in Mpc is given in [24, 25] as;

m−M = 5 logDL + 25

If one sketches the graph ofm −M to z (we can see the relations by putting the

found values ofDL into this equation), the graph shows that there is deflection in the line.

When this graph is performed for matter dominated universe, we expect a line which must

curve to the axis ofz but found graph is like linear. This only can be explained as there

must occur an acceleration to cause this deflection.
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CHAPTER 3

DARK ENERGY

3.1. Cosmological Constant

The question of evolution of universe begins with Einstein and his belief that the

universe should be static. But when he wrote down the equations of the general relativity

for a static universe, he realised that the universe was not static as he thought. Therefore

he needed to modify his equation by introducing a term which is called ’Cosmological

constant’[26–30] (see Appendix B). This may be supported by mathematical tools. We

know that Einstein tensor and the energy momentum tensor satisfy the Bianchi identity.

Here we mean that their covariant derivatives are zero. Also we know that the covariant

derivative of metric is also zero. Therefore there is a freedom to add a term likeΛgµν

because it also satisfies the Bianchi identity. Although Einstein has addedΛ, cosmological

constant, he has seen that the static universe he obtained is not stable and in fact it stands

for universe that expands or contracts depending on the sign ofΛ. In fact the cosmological

observations of Hubble as we have mentioned in chapter2 suggest that the universe is

expanding.

In the presence of cosmological constant Einstein equations read;

Gµν = 8πGTµν − Λgµν (3.1)

whereΛ is called the ’Cosmological constant’. It should be noted that the effect of in-

cludingΛ in the equations may be observed more prominently in large distance scales at

which contributions from higher order derivatives of the metric tensor tend to fall.

Now what about the equation of state of cosmological constant? The equation of

state is defined as the ratio of pressure to the total energy density and denoted byw. In the

case of cosmological constant we havewΛ = −1. This is the simplest candidate for the

dark energy. But as we mentioned in early sections there are also some scalar fields which

are slowly varying with time to describe dark energy similiar to cosmological constant

[6, 7, 27]. We require all dark energy candidates mimic cosmological constant since a

positive cosmological constant fits observational data very well.
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3.2. Slowly Varying Scalar Fields

A field which is invariant under Lorentz transformations is called a ”scalar field”.

In cosmology, as we mentioned before, scalar fields that homogeneous and weakly cou-

pled to ordinary matter are alternative ways to describe the dark energy. If the scalar field

is slowly varying and if the potential of this scalar field slowly decreased towards zero for

large potential, the energy density associated with it could act like cosmological constant

that varying with time less rapidly than the mass densities of matter and radiation. These

fields are known as quintessence, tachyon and phantom. Now we will look at these fields

in details.

3.2.1. Quintessence

Quintessence is a hypothetical form of dark energy postulated as an explanation

of observations of an accelerating universe [3]. Also it may be defined as a time-varying

form of vacuum energy. Quintessence is a standart scalar field that is minimally coupled

to gravity [6, 7, 27, 31]. We may write the action which is related to the quintessence as;

S =

∫
L
√
−gd4x = −

∫
[
1

2
gµν∂µφ∂νφ+ V (φ)]

√
−gd4x (3.2)

whereg denotes the determinant of FLRW metric andL is the Lagrangian density of

quintessence. Now by using this action we may find the related energy momentum tensor

for this scalar field as;

Tµν =
∂L

∂(∂µφ)
∂νφ+ gµνL = ∂µφ∂νφ− gµν [

1

2
gαβ∂αφ∂βφ+ V (φ)] (3.3)

Here the scalar fieldφ is considered as a function of time only because of the homogeniety

and isotropy of the universe. It does not depend on space part so we will have only time

derivative of it. We may now calculate energy density and pressure in FLRW background.

As we know the energy density is equal toT00. Then it is found as;

ρ00 = T00 = ∂0φ∂0φ− g00[
1

2
(g00∂0φ∂0φ+ gij∂iφ∂jφ) + V (φ)] =

1

2
φ̇2 + V (φ) (3.4)
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Also we may calculate the pressure by the space component of energy momentum tensor.

Tij = ∂iφ∂jφ− gij[
1

2
(g00∂0φ∂0φ+ gkr∂kφ∂rφ) + V (φ)] = [

1

2
φ̇2 − V (φ)]δij (3.5)

Pφ = T11 = T22 = T33 =
1

2
φ̇2 − V (φ) (3.6)

After finding energy density and pressure, we may write the equation of state which is the

ratio of pressure to the total energy density as introduced before iswφ =
Pφ
ρφ

. When we

put values of energy density and pressure we get;

wφ =

1

2
φ̇2 − V (φ)

1

2
φ̇2 + V (φ)

(3.7)

As we said before if we want to approach to the cosmological constant from a scalar field,

it must vary slowly with time that iṡφ � V (φ). Under this condition equation of state

approaches to−1 which is the value for cosmological constant. When we have this limit

we mean thatV (φ) is a flat potential. If̈a > 0 this requires thatρ + 3P < 0, this term is

written for quintessence as;

ρ+ 3P =
1

2
φ̇2 + V (φ) + 3[

1

2
φ̇2 − V (φ)] = 2φ̇2 − 2V (φ)

φ̇2 < V (φ)

this means that for accelerated expansion we need a nearly flat potential in time.

3.2.2. Tachyon Field

Tachyon is a particle with 4-momentum and imaginary proper time, moving faster

than light i.e has imaginary proper time. As we mentioned before tachyon field can be

considered phenomenologically as a suitable candidate for a viable model of dark energy.

The tachyon is an unstable field [8, 32–34], its state parameter in the equation of state

varies smoothly between−1 and0.

Tachyons we consider are string theory type of tachyons whose action is;

S =
∫
−V (φ)

√
1− ∂µφ∂µφ

√
−gd4x (3.8)
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where the signature of the metric is taken to be (+,-,-,-), this is called the ’Dirac-Born-

Infel(DBI)’ type action. And here we shall consider potential that whenφ → ∞ then

V (φ) → 0. Now we are ready to calculate corresponding energy momentum tensor as;

Tµν =
∂L

∂(∂µφ)
∂νφ− gµνL =

V (φ)∂µφ∂νφ√
1− ∂µφ∂µφ

+ V (φ)
√

1− ∂µφ∂µφ (3.9)

We assume thatφ is spatially constant (i.e. it only depends on time).

ρφ = T00 =
V (φ)√
1− φ̇2

(3.10)

and also the pressure may be found fromTij as

Tij = −V (φ)

√
1− φ̇2δij (3.11)

Pφ = −V (φ)

√
1− φ̇2 (3.12)

The corresponding equation of state may be written as;

wφ =
Pφ
ρφ

= φ̇2 − 1 (3.13)

Since the pressure and energy density must be real then we may set the condition forφ̇2

: 1 − φ̇2 ≥ 0 ⇒ φ̇2 ≤ 1. From this relation we may find the range ofwφ. We have

−1 ≤ wφ ≤ 0.

3.2.3. Phantom Field

The scalar field models as we gave in previous sections lead towφ ≥ −1. But

now we want to talk about phantom field [35–38] whose equation of state iswφ < −1.

The simplest way by which we may get a phantom field is to have a scalar field with a

negative kinetic energy term (i.e. a ghost field). The action of the standart phantom field
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may be written as;

S =
∫
L
√
−gd4x =

∫
[
1

2
gµν∂µφ∂νφ− V (φ)]

√
−gd4x (3.14)

Again as we performed for quintessence and tachyon fields, the corresponding energy

density and pressure of phantom field may be found from energy-momentum tensor so

we have;

Pφ =
1

2
φ̇2 + V (φ) (3.15)

ρφ =
1

2
φ̇2 − V (φ) (3.16)

wφ =

1

2
φ̇2 + V (φ)

1

2
φ̇2 − V (φ)

(3.17)

As we see from the equation of state, when
1

2
φ̇2 < V (φ) then we will get the condition

that we need for phantom field. Therefore we see that the equation of state is less than−1

i.ewφ < −1. One may say this equation of state of phantom field is the same as that of

ordinary scalar field with inverted potential.
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CHAPTER 4

EXTRA DIMENSIONS

The concepts of extra dimensions are discussed in Introduction. As we mentioned

there are several models associated with extra dimensions. Let us consider some basic

models of extra dimensions.

4.1. Kaluza-Klein Theory

Kaluza-Klein Theory was an idea which was developed in the 1920’s as an attempt

to unify the forces of electromagnetism and gravity. This theory was first published in

1921 by Theodor Kaluza who suggested that in extending Einstein’s theory of general

relativity to a five dimensional space-time the first part of resulting equations is Maxwell’s

equations for electromagnetism, the second part is Einstein equations, and the final part

is an extra scalar field now termed the ”radiation”. But in Kaluza-Klein approach [39–

41] extra spatial dimensions are not similar to the three dimensions. In this theory the

extra dimensions form a compact space with a scaleL. For one extra dimension we have

a circle with radiusL and for higher dimensions we have sphere, torus, or any other

manifold. From now on I will denote the name of this theory by KK. In general, the

D-dimensional space-time in the KK approach has a geometry ofM4 ×XD−4. HereM4

denotes four dimensional (4-D) Minkowski space-time andXD−4 denotes manifold of

extra dimensions. It is also called ’internal manifold’.

Kaluza introduced a condition that is called ’cylinder condition’ in order to explain

absence of the evidence of the extra dimension. This means the all partial derivatives with

respect to the fifth dimension are zero. Then in 1926 Oscar Klein showed that ’cylinder

condition’ may be explained if the fifth dimension is circular, that means the fifth dimen-

sion is periodic. Under this assumption Kaluza’s cylinder condition arises naturally (see

Appendix C).

We consider (4+1) dimensional gravity i.e. Kaluza-Klein theory itself and see how

4D gravity may be unified with electromagnetism in 5-D. The corresponding 5D action

is;

S̃ = − 1

16πG̃

∫
d5x

√
−g̃R̃ (4.1)
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where the tilde notation denotes the 5D variables,R̃ Ricci scalar in 5D and
√
−g̃ is the

determinant of metric in 5D. One may decomposeg̃AB (A,B = 0,1,2,3,4) into its Kaluza-

Klein models as given in (C.12) and may take the zero modes as the usual 4-dimensional

fields. This explains the rationale Kaluza’s assumption that the fields in the Kaluza-Klein

expansion of̃gµν depend only on 4-dimensions. For our present purpose it is enough to

consider the zero mode, and take the non-zero elements ofg̃µν .

g̃µν = e
φ√
3 [gµν(x) + e−

√
3φAµAν ]

g̃5µ = g̃µ5 = e
−2φ√

3 Aµ

g̃55 = e
−2φ√

3

i.e.;

g̃AB =

[
e

φ√
3 (gµν + e−

√
3φAµAν e

−2φ√
3 Aµ

e
−2φ√

3 Aν e
−2φ√

3

]

and the inverse of this matrix may be written as;

g̃AB =

[
e
− φ√

3 gµν −e−
φ√
3Aµ

−e−
φ√
3Aν e

− φ√
3 (A2 + e

3φ√
3 )

]

The variation of (4.1) with respect tõgAB results in the Einstein equations which have the

same form of that in 4D.

G̃AB = R̃AB −
1

2
g̃ABR̃ (4.2)

whereR̃AB is Ricci tensor in 5D. It may be written in terms of 5D Christoffel symbols

are defined by;

R̃AB = Γ̃CAB,C − Γ̃CAC,B + Γ̃CDCΓ̃DAB − Γ̃CDBΓ̃DAC (4.3)

where the Christoffel symbols are defined by;

Γ̃CAB =
1

2
g̃CD(g̃BD,A + g̃DA,B − g̃AB,D) (4.4)
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Here one should not forget that there is no dependence on the extra dimension because

we are considering the zero mode. Therefore derivatives w.r.t.x5 or y is zero. Then the

corresponding non-zero Christoffel symbols are;

Γ̃λµν = Γλµν +
1

2
√

3
[δλµ∂νφ+ δλν∂µφ− gµν∂

λφ]

+
1√
3
AµAν∂

λφ+
1

2
e
− 3φ√

3 [AνF
λ
µ + AµF

λ
ν ]

Γ̃λ55 =
1√
3
e
− 3φ√

3∂λφ

Γ̃5
55 = − 1√

3
e
− 3φ√

3Aρ∂ρφ

Γ̃5
5λ = − 1√

3
e
− 3φ√

3AρAλ∂ρφ−
1

2
e
− 3φ√

3AρFλρ −
1√
3
∂λφ

Γ̃λ5µ =
1√
3
e
− 3φ√

3Aµ∂
λφ+

1

2
e
− 3φ√

3F λ
µ

Γ̃5
µν = [

1

2
(Aµ;ν + Aν;µ)−

1

2
e
− 3φ√

3 [Aρ(AνFµρ + AµFνρ]

− 3

2
√

3
(Aν∂µφ+ Aµ∂νφ) +

1

2
√

3
(gµνA

ρ∂ρφ)]

Here I used the notationAµ;ν = Aµ,ν−ΓρµνAρ whereAµ;ν denotes the covariant derivative

of Aµ . Now we are ready to construct the Ricci tensor and scalar respectively by using

these symbols. As we wrote before the Ricci tensor can be written in 5D as;

R̃AB = Γ̃CAB,C − Γ̃CAC,B + Γ̃CDCΓ̃DAB − Γ̃CDBΓ̃DAC

R̃µν = Γ̃Cµν,C − Γ̃CµC,ν + Γ̃CDCΓ̃Dµν − Γ̃CDνΓ̃
D
µC

R̃µ5 = Γ̃Cµ5,C − Γ̃CµC,5 + Γ̃CDCΓ̃Dµ5 − Γ̃CD5Γ̃
D
µC

R̃55 = Γ̃C55,C − Γ̃C5C,5 + Γ̃CDCΓ̃D55 − Γ̃CD5Γ̃
D
5C

One may construct the Ricci scalar in 5D by using the given Christoffels. For the KK zero

mode the action become;

S = M3
∗πL

∫
d4x
√
g[R4 −

1

2
∂µφ∂

µφ− 1

4
e−

√
3φFµνF

µν ] (4.5)

As we see in the action in addition to usual 4D Einstein-Hilbert action of gravity we have

two terms. The part of action containing field strength tensor is known as ’Maxwell’s

action’ and the other term is an action of a scalar field.
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4.2. Large Extra Dimensions (ADD Model)

One way to obtain 4D gravity on a brane is combining the braneworld idea with

KK compactification. This was studied by Arkani-Hamed, Dimopoulos and Dvali [42].

In this model Standart Model (SM) particles are located in 4-dimensions and the gravity

spreads to all dimensions with compact extra dimensions.

The action for the simplest ADD model may be written as;

SADD =
M2+N

∗
2

∫
d4x

∫ 2πL

0

dNy
√
GR4+N +

∫
d4x
√
g(T + LSM) (4.6)

whereg(x) = G(x, y = 0), M∗ ∼ (1 − 10)TeV andN denotes the number of extra

dimensions.

If we integrate the action (4.6) over the extra dimensions we will have the 4D

action for zero mode as;

M2+N
∗
2

∫
d4x

∫ 2πL

0

dNy
√
GR4+N =

M2+N
∗ (2πL)N

2

∫
d4x
√
gR (4.7)

here we take the second part of the action (4.6) to be zero. In the above equation the right

side is the 4D action with the Plank massM2
Pl = M2+N

∗ (2πL)N . From this relation we

may find what should be the size of extra dimensions;

L = (
MPl

M∗
)2/N 1

2πM∗
(4.8)

i.e. L ∼ M−1
∗ (

MPl

M∗
)2/N . If the fundamental scale of gravity is taken asM∗ ∼ TeV then

the size of extra dimension becomes;

L ∼ 10−17+30/Ncm (4.9)

Now we may list some of the values ofL with the change of numberN ;

• forN = 2;L ∼ 0.1mm , 1/L ∼ 10−3eV
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• forN = 3;L ∼ 1nm , 1/L ∼ 100eV

• ...

• forN = 6;L ∼ 10−12cm , 1/L ∼ 10MeV

WhenN = 1 one obtainsL ∼ 1013cm, and this is excluded within the ADD framework

since gravity below this value would have been higher dimensional. The other important

value is atN = 2 because at this value in whichL ∼ 10−2cm the modification of the 4D

laws of gravity is predicted at sub-millimeter distances.

Now let us suppose two static faraway sources on the brane interact with the fol-

lowing non-relativistic gravitational potential written as;

V (r) = −GNm1m2

+∞∑
n=−∞

|Ψn(y = 0)|2 e
−mnr

r
(4.10)

whereΨn(y = 0) is the wave function ofn’th KK mode at a position of a brane and

r denotes the distance between massesm1,m2. The mass term of KK mode are given

as;mn = |n|/L wheren stands for the number of KK modes. In the limitr � L the

potential given in (4.10) becomes;

V (r) = −GNm1m2

r
(4.11)

for only mn = 0 contributes. Equation (4.11) is the conventional 4D law of Newtonian

dynamics. This limit shows the distances much larger than the size of extra dimensions.

But in the opposite limitr � L we may get the potential in higher dimensions.

V (r) = − Gm1m2

M2+N
∗ r2+N

(4.12)

As we mentioned before this is the law of (4+N) dimensional gravitational interactions.

Therefore we may conclude that the laws of gravity are modified at distances of orderL.
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4.3. Randall Sundrum Models

Before starting to this model let us first say something about braneworld [15, 16,

43]. The central idea is that the visible, four-dimensional universe is restricted to a brane

inside a higher-dimensional space, called the ”bulk”. If the additional dimensions are

compact, then the observed universe contains the extra dimensions. Therefore we should

obtain the 4D gravity on a brane. In the brane picture 3 fundamental forces are localized

on the brane but some fields e.g. the gravity has no such constraint. There are some ways

to obtain 4D gravity on a brane. The first one is to combine the braneworld with the KK

compactification which was done by Arkani-Hamed, Dimopoulos and Divali (ADD) [42].

Here the extra dimensions are compact. The other possibility is based on the phenomenon

of damping or localization of gravity through extra dimensions discovered by Randall and

Sundrum (RS) [44, 45]. In this model extra dimensions are strongly curved by a large

cosmological constant. Here the extra dimensions are warped. We start with the a so-

called RS II model [44] that has two branes one of which is located at infinity. The metric

of this form can be written as;

ds2 = e−|y|/Lηµνdx
µdxν + dy2 (4.13)

whereηµν = diag(−,+,+,+) is the 4D Minkowski metric. The pre-factore−|y|/L, called

the warp factor, is written as an exponential for convenience. Its dependence on the

extra dimension coordinate y causes this metric to be non-factorizable, which means that,

unlike the metrics appearing in the usual Kaluza-Klein scenarios, it cannot be expressed

as a product of the 4D Minkowski metric and a manifold of extra dimensions.

This metric is the solution of the equation given below;

M∗
√
G(RAB −

1

2
GABR) = −M3

∗Λ
√
GGAB +

√
−ggµνTδµAδ

ν
Bδ(y) (4.14)

whereT is the brane tension andΛ is the negative cosmological constant. This equation

is found from the action of RS model which is given by;

SRS =
M3

∗
2

∫
d4x

∫ +∞

−∞
dy
√
G(R5 − 2Λ) +

∫
d4x
√
g(T + LSM) (4.15)

21



The equation (4.14) is found from the variation of (4.15) w.r.t. 5D metricGAB. For

simplicity we takeLSM to be zero.

Here the question is that how the gravity is localized. To answer this question let

us consider graviton fluctuations. The metric becomes

ds2 = (e−|y|/Lηµν + hµν(x, y))dx
µdxν + dy2 (4.16)

wherehµν(x, y) is the perturbation term. To understand the form of this perturbation term

we should find the linearized Einstein equations and solve for the perturbation term. I

will denote usual metric bȳηABdxAdxB ≡ e−|y|/Lηµνdx
µdxν + dy2 and the terms which

contain the perturbation term byδ. Then the linearized Einstein equations are written as;

GAB = RAB −
1

2
gABR = (R̄AB + δRAB)− 1

2
(η̄AB + hAB)(R̄ + δR) (4.17)

where the bar over the quantities refer to the background metricη̄AB ≡ e−|y|/Lηµν + dy2

while the quantities without bar refer to the pertubed metric. In all calculations we will

set higher order terms inhµν to zero.

Now let us find the termsδRAB, δR andδGAB.

Γµρν =
1

2
e|y|/Lηµσ(hσν,ρ + hσρ,ν − hνρ,σ) (4.18)

Γ5
ρν = −1

2
(hρν,5 + ∂5(e

−|y|/L)ηνρ) (4.19)

Γµρ5 =
1

2
e|y|/Lηµσ(hρσ,5 + ∂5(e

−|y|/L)ησρ)) (4.20)

where we take the higher order terms inhµν to be zero and we useηµν for rising and

lowering the indices. By using (4.18),(4.19) and (4.20) one may construct the elements

of Einstein tensor as;

Rµν = −1

2
∂5∂5(e

−|y|/L)ηµν −
1

2
e|y|/Lηµν [∂5(e

−|y|/L)]2 + δRµν

Rµν = −1

2
e|y|/L2hµν −

1

2
∂5∂5hµν −

1

2
∂5∂5(e

−|y|/L)ηµν

−1

2
e|y|/Lηµν [∂5(e

−|y|/L)]2 − 1

2
e|y|/Lhµν [∂5(e

−|y|/L)]2

R55 = −2e|y|/L∂5∂5(e
−|y|/L)− e2|y|/L[∂5(e

−|y|/L)]2

whereδRµν contains thehµν terms and is given as;
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δRµν = −1

2
e|y|/L2hµν −

1

2
∂5∂5hµν −

1

2
e|y|/Lhµν [∂5(e

−|y|/L)]2

Here we have used the gauge fixingsηµνhµν = 0 and∂µhµν = 0. Also the derivatives w.r.t.

extra dimension are given as;

∂5(e
−|y|/L) = −e

−|y|/L

L
[Θ(y)−Θ(−y)]

∂5∂5(e
−|y|/L) = −e

−|y|/L

L2
− 2e−|y|/L

L
δ(y)

[∂5(e
−|y|/L)]2 =

e−2|y|/L

L2

whereΘ(y) is the step function which is related to the first derivative of absolute value

function andδ(y) is Dirac-delta function that is the second derivative. Also we use

[Θ(y)−Θ(−y)]2 = 1. Hence;

δGµν = +
1

2
e|y|/L2hµν +

1

2
∂5∂5hµν +

1

2L2
e−|y|/Lhµν +

3

2L2
hµν −

2

L
hµνδ(y)

The right side of the Einstein equation is related to the energy-momentum tensor as

known. From equation (4.14) one may find the pertubed part of energy-momentum tensor

which comes fromhµν . In that equation we use for determinant of the metric;

√
G =

√
Ḡ+ δ

√
G

whereδ
√
G is the determinant containinghµν terms and is known as;

δ
√
G = −1

2

√
GGµνδG

µν = 0

where the gauge choiseηµνhµν = 0. Also the term
√
Ḡ is the determinant of the un-

perturbed metric. One may write (4.14) forA,B = µ, ν and for the perturbed metric

as;

M∗
√
ḠδGµν = −M3

∗Λ
√
ḠδGµν +

√
−ḡδGµνTδ(y)

with δGµν = hµν . This equation may be written in details as ;

M∗e
−2|y|/L[+

1

2
e|y|/L2hµν +

1

2
∂5∂5hµν +

1

2L2
e−|y|/Lhµν +

3

2L2
hµν −

2

L
hµνδ(y)]

= −M3
∗Λe

−2|y|/Lhµν + 3
M3

∗
L
hµνδ(y)

Also forL andT we use;

L ≡
√
− 3

2Λ

T =
3M3

∗
L

Then we will try a solution of the form ;
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hµν(x, y) ≡ u(y)eipx

with p2 = −m2. One gets the equation foru(y);

[−m2e|y|/L − ∂2
y −

2

L
δ(y) +

3

2L2
]u(y) = 0

When we suppose zero modem will be taken zero then a simple solution may be found

as;

u(y) ∼ e−|y|/L (4.21)

This function ofy is important to explain the location of gravitation because it is like a

wave function of gravitation. As we see from the form ofu(y) asy → ∞ , u(y) → 0

which shows us that gravitation is located on the brane in which we live.

In the other Randall-Sundrum model that is RS I [45] model there are again two

branes located at the end point of an interval of a certain size. One brane is called ’hidden

brane’ and the other one is called ’visible brane’. The first one has positive tension while

the second one has negative. The action containing the gravity and branes may be written

as;

S = Sgravity + Sbrane1 + Sbrane2 (4.22)

If we want to write this total action clearly it becomes;

S =

∫
d4x

∫
dy
√
G(2M3

∗R5+Λ)+

∫
d4x
√
g1(L1−T1)+

∫
d4x
√
g2(L2−T2) (4.23)

whereR5 is five dimensional scalar curvature,M∗ is 5D Plank mass,T1, T2 are branes

tension andL1, L2 are matter langrangians. We again take the contributions of matter

to be zero. The variation of the action w.r.t. the 5D metricGAB gives the equations of

motion.
δS

δGAB
=
δSgravity
δGAB

+
δS1

δGAB
+

δS2

δGAB
(4.24)

whereS1 andS2 denote the actions of brane one and brane two respectively. The corre-

sponding Einstein equaitons are;

M∗
√
G(RAB −

1

2
GABR)−M3

∗Λ
√
GGAB = Thid

√
ghidg

hid
µν δ

µ
Aδ

ν
Bδ(y) (4.25)

+ Tvis
√
gvisg

vis
µν δ

µ
Aδ

ν
Bδ(y − L)
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whereghidµν (x) = Gµν(x, 0) andgvisµν (x) = Gµν(x, y0). Here the extra dimensiony runs in

the interval[−y0, y0]. The solution of the equation of motion is given as [45];

ds2 = e−|y|/Lgµνdx
µdxν + dy2 (4.26)

As we said in this section the hidden brane is located ony = 0 and visible one is aty = y0.

With these values ofy we replacegµν by ḡµν . Then we have the relations;

ghidµν (x) = ḡµν(x), gvisµν (x) = exp−|y0|/L ḡµν(x) (4.27)

In RSI model it is tought to be that the SM fileds are located on visible brane which has a

negative tension. Let us now look for the matter part of the action which is given as;

∫
d4x
√
gvis[g

µν
vis(DµH)†(DνH)− λ(H†H − v2

0)
2] (4.28)

whereH is the Higgs field. If we write the form ofgvisµν (x) given in (4.27), we will get the

new form for the action given in (4.28);

∫
d4x
√
ḡ[ḡµν(DµH)†(DνH)− λ(H†H − e−|y0|/Lv2

0)
2] (4.29)

where we rescaled the Higgs field asH → e−|y0|/2LH and the new mass term becomes

λe−|y0|/Lv2
0. As we see the exponential factor shows the behaviour of gravity. In this

model the source of gravity is located at hidden brane and the graviton’s probability func-

tion is extremely high at the hidden brane. But it drops exponentially as it propagates

closer towards the visible brane. Therefore one may see that as it propagates the gravity

would be much weaker on the visible brane.
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CHAPTER 5

DARK ENERGY IN EXTRA DIMENSIONS

In this chapter we consider the main features and problems of extra dimensional

models related to cosmic acceleration. The main aim in this type of models is to account

for cosmic acceleration (i.e. dark energy) in a simpler way e.g. through extra dimensional

curvature [17, 18, 46]. We will see that the usual 4-dimensional cosmic acceleration tends

to dynamic extra dimensions. An attempt to stabilize extra dimensions in general seems to

neccesiate introduction of ghost type unordinary fields or fluids into picture. The inclusion

of cosmic acceleration into an extra dimensional setting is an attractive idea because of the

possibility of treating extra dimensions as a source or a suitable setting for dark energy.

Therefore may be seen as a potential to solve many problems of high energy physics.

In fact the tendency of destabilization of extra dimension in the pressence of cos-

mic acceleration may be seen through the following simple extra dimensional metric, in

which we suppose an extra dimensional model with a single static extra dimension.

ds2 = −dt2 + a2(t)(dx2
1 + dx2

2 + dx2
3) + dx5 (5.1)

with ȧ, ä > 0 that is the condition for accelerated expansion as we said before. Here

if we denote the pressure of the extra dimensional part byP5 , then it corresponds to

the55 component of the energy-momentum tensor. We take8πG in front of the energy-

momentum tensor as1. This may be written as;

T55 = R55 −
1

2
g55R

whereR55 is zero since the extra dimensional part is flat. Therefore only the Ricci scalar

contributes to the extra dimensional pressure.

T55 = −1

2
g55R = −3(

ä

a
+
ȧ2

a2
)

And the equation of state of extra dimensional part is;

w5 =
P5

ρ
=
−3(

ä

a
+
ȧ2

a2
)

3
ȧ2

a2

= −

ä

a
ȧ2

a2

− 1
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As we see from herew5 is less than−1 because as we said beforeȧ, ä > 0. This suggests

that after integration over extra dimensions one may get a ghost-like fluid, generically,

that is not desirable. Let us discuss the situation in more complicated cases.

5.1. An Examplary Model

To see the main problems of extra dimensional models with dark energy we con-

sider the following seven dimensional space. Here we suppose both the ordinary 3-space

and the extra dimensions may expand or contract. This model is special case of [19] where

the number of extra dimensions are taken to be three. Then the corresponding metric is

given by;

ds2 = dt2−a2(t)[
dr2

a

1−Kar2
a

+r2
a(dθ

2
a+sin

2θadφ
2
a)]−b2(t)[

dr2
b

1−Kbr2
b

+r2
b (dθ

2
b+sin

2θbdφ
2
b)]

(5.2)

where botha(t) andb(t) are scale factors ,Ka andKb are related to the curvature of 3-

space and extra space, respectively. As we said before we suppose matter content to be a

perfect fluid. In order to write down the corresponding Ricci tensors and the Ricci scalar

we may write this metric in conformally transformed [47] form as;

ds2 = b2(t)[
1

b2(t)
(dt2 − a2(t)[

dr2
a

1−Kar2
a

+ r2
a(dθ

2
a + sin2θadφ

2
a)]) (5.3)

− [
dr2

b

1−Kbr2
b

+ r2
b (dθ

2
b + sin2θbdφ

2
b)]]

whereb2(t) = Ω2
1 andb−2(t) = Ω2

2. Here we wrote our metric in the form̃̃gMN = Ω2
1g̃MN

whereg̃MN = Ω2
2gMN . In the light of conformal transformations [47] one may write the

Ricci tensor and the Ricci scalar as;

˜̃
RMN = R̃MN − (n− 2)∇̃M∇̃N(ln Ω1)− g̃MN g̃

AB∇̃A∇̃B(ln Ω1)

+(n− 2)∇̃M(ln Ω1)∇̃N(ln Ω1)− (n− 2)g̃MN g̃
AB∇̃A(ln Ω1)∇̃B(ln Ω1)˜̃

R = Ω−2
1 [R̃− 2(n− 1)�̃(ln Ω1)− (n− 1)(n− 2)

g̃MN∇̃N(Ω1)∇̃N(Ω1)

Ω2
1

]

This is written for the metric̃̃gMN . And for the transformed metric̃gMN the formulations

become;
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R̃MN = RMN − (n− 2)∇M∇N(ln Ω2)− gMNg
AB∇A∇B(ln Ω2)

+(n− 2)∇M(ln Ω2)∇N(ln Ω2)− (n− 2)gMNg
AB∇A(ln Ω2)∇B(ln Ω2)

while the Ricci scalar is written as;

R̃ = Ω−2
2 [R− 2(n− 1)�(ln Ω1)− (n− 1)(n− 2)

gMN∇N(Ω1)∇N(Ω1)

Ω2
1

]

where the term̃R contains two parts one of which comes from the conformal 4D part and

the other one is from the extra dimensional part. Therefore we may writeR̃ as;

R̃ = R̃4 +Rex

whereRex is the Ricci scalar of the extra dimensional part ofg̃ABdx
AdxB andR̃4 has the

form;

R̃4 = Ω−2
2 [R4 −

6�(Ω2)

Ω2

]

By using the Appendix A we may findR4 andRex;

R4 = − 6

a2
(äa+ ȧ2 +Ka)

Rex = −6Kb

where we takeb = 1 because in the extra dimensional part of the metricg̃MN ,where

M,N = 5, 6, 7, we do not have a conformal factor. Now we are ready to construct the

Ricci tensor elements as follow;

˜̃
R00 = R̃00 − 5∇̃0∇̃0(ln Ω1)− g̃00(g̃

00∇̃0∇̃0(ln Ω1))

+5∇̃0(ln Ω1)∇̃0(ln Ω1)− 5g̃00(̃g
00∇̃0(ln Ω1)∇̃0(ln Ω1))˜̃

R00 = −3
ä

a
+ 6

ȧ

a

ḃ

b
− 3

b̈

b˜̃
R11 = R̃11 − g̃11(g̃

00∇̃0∇̃0(ln Ω1)) + 5g̃11(g̃
00∇̃0(ln Ω1)∇̃0(ln Ω1))˜̃

R11 =
a2

1−Kar2
a

(
ä

a
+ 2

ȧ2

a2
+ 2

Ka

a2
+ 3

ȧ

a

ḃ

b
+ 5

ḃ2

b2
)˜̃

R22 = R̃22 − g̃22(g̃
00∇̃0∇̃0(ln Ω1)) + 5g̃22(g̃

00∇̃0(ln Ω1)∇̃0(ln Ω1))˜̃
R22 = a2r2

a(
ä

a
+ 2

ȧ2

a2
+ 2

Ka

a2
+ 3

ȧ

a

ḃ

b
+ 5

ḃ2

b2
)˜̃

R33 = R̃33 − g̃33(g̃
00∇̃0∇̃0(ln Ω1)) + 5g̃33(g̃

00∇̃0(ln Ω1)∇̃0(ln Ω1))˜̃
R33 = a2r2

asin
2(θa)(

ä

a
+ 2

ȧ2

a2
+ 2

Ka

a2
+ 3

ȧ

a

ḃ

b
+ 5

ḃ2

b2
)˜̃

R55 = R̃55 − g̃55(g̃
00∇̃0∇̃0(ln Ω1)) + 5g̃55(g̃

00∇̃0(ln Ω1)∇̃0(ln Ω1))˜̃
R55 =

b2

1−Kbr2
b

(2
Kb

b2
+ 3

ȧ

a

ḃ

b
− 3

ḃ2

b2
+
b̈

b
+ 5

ḃ2

b2
)
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Since the conformal factors depend only on the time then we take the derivatives w.r.t.

to other dimensions to be zero. Now we may calculate the Ricci scalar with the given

formula as;

˜̃
R = ˜̃gMN ˜̃

RMN = −6(
ä

a
+
ȧ2

a2
+
Ka

a2
+
Kb

b2
+ 3

ȧ

a

ḃ

b
+
b̈

b
+
ḃ2

b2
)

Now the corresponding elements of energy-momentum tensor are;

8πḠρ̄ = 3[(
ȧ

a
)2 +

Ka

a2
] + 3[(

ḃ

b
)2 +

Kb

b2
] + 15

ȧ

a

ḃ

b
(5.4)

−8πḠP̄a = 2
ä

a
+ 3

b̈

b
+ [(

ȧ

a
)2 +

Ka

a2
] + 6

ȧ

a

ḃ

b
(5.5)

−8πḠP̄b = 2
b̈

b
+ 3

ä

a
+ 3[(

ȧ

a
)2 +

Ka

a2
] + [(

ḃ

b
)2 +

Kb

b2
] + 6

ȧ

a

ḃ

b
(5.6)

whereḠ is gravitational constant,̄ρ is energy density in the higher dimensional world ,

andP̄a, P̄b are the pressure of 3-space and the extra space respectively.

Now let us consider some possible cases. In all cases we will take the curvature

of the extra dimensions to be zero i.e. the Einstein equations effectively equivalent to

4-dimensional Einstein equations. For a radiation-dominated universe we haveP̄a =
1

3
ρ̄,

P̄b = 0 wherewa = 1/3 andwb = 0. If we consider static extra dimensions that is with

constantb, equaitons (5.4), (5.5), (5.6) read for radiation dominated universe as follow;

(
ȧ

a
)2 +

Ka

a2
=

8Ḡπ

3
ρ̄ (5.7)

2
ä

a
+ (

ȧ

a
)2 +

Ka

a2
= −8Ḡπ

3
ρ̄ (5.8)

ä

a
+ (

ȧ

a
)2 +

Ka

a2
= 0 (5.9)

Since the constantb solution is stable for small perturbations of scale factor, one may

conclude that we can reach ordinary evolution of a radiation dominated universe with

static extra dimensions. In fact this is expected since the use of (5.9) in (5.8) and (5.9)

reduces (5.8) to the 4-dimensional FLRW space. On the other hand when we consider

a matter dominated universe (in which the pressures are zero), there is no solution for

constantb. In order to have solution for this case, the matter needs to provide a negative

pressure in the extra space. This pressure may be calculated by takingb constant and
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putting equations (5.4) and (5.5) into (5.6) one gets;

P̄b = −1

2
ρ̄ (5.10)

Now let us look for the evolution of extra dimensions which suggestb to be non-

static. Let us consider a matter dominated universe with zero pressures and we take the

spatial curvatures to be zero. Then equations (5.5) and (5.6) reduce to ;

5
ä

a
+ 7(

ȧ

a
)2 + 6

ȧ

a

ḃ

b
+ 3(

ḃ

b
)2 = 0 (5.11)

5
b̈

b
− 3(

ȧ

a
)2 + 6

ȧ

a

ḃ

b
− 2(

ḃ

b
)2 = 0 (5.12)

where (5.11) is obtained by multiplying (5.5) by2 and (5.6) by3 and substracting the first

equation from the second one. And also (5.12) is obtained in a similiar way. These two

equations are for the accelerationsä and b̈ respectively. Now in the case of accelerated

expansion in three-space that is
ä

a
> 0 , from the first equation we have the condition;

ḃ

b
> [1 +

√
10

3
]
ȧ

a
≡ J+

ȧ

a
or

ḃ

b
< [1−

√
10

3
]
ȧ

a
≡ J−

ȧ

a

whereJ+ = [1+

√
10

3
] andJ− = [1−

√
10

3
] are the roots of

ḃ

b
. Now we introduce a new

parameter which is the ratio of Hubbles’ parameter ofa to the that ofb, η(t) =
Ha

Hb

. This

quantity will be the key for the acceleration of the three-space. In order to see this we

should find the form oḟη =
dη

dt
. From the form of theη we find its derivative as follows;

dη
dt

= Ḣa

Hb
− Ha

Hb

Ḣb

Hb

After using Ḣa =
ä

a
− (

ȧ

a
)2 and Ḣb =

b̈

b
− (

ḃ

b
)2, equations (5.11) and (5.12)

becomes;

5Ḣa + 12H2
a + 6HaHb + 3H2

b = 0 (5.13)

5Ḣb + 3H2
b + 6HaHb +−3H2

a = 0 (5.14)
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Then in terms of theη andη̇, equations (5.13) and (5.14) become a single equation after

multiplying (5.13) by
1

Hb

and (5.14) by
Ha

H2
b

and the subtracting resulting equations we

get;

η̇ − 1

5
(3Ha − 6Haη + 3Hb − 3Haη

2) = 0 (5.15)

In this equation ifη̇ > 0 (i.e 3Ha − 6Haη + 3Hb − 3Haη
2 > 0) then we say thatη <

−1 +
√

3 ≡ Katt orKrep ≡ −1−
√

3 < η which come from the equation (5.15). On the

other handKatt < η < Krep for η̇ < 0. Fast expansion or contraction of extra dimensions

may lead to fast variation of some fundamental constants of nature such as Newton’s

gravitational constant, coupling constants etc. Therefore it is safer to takeHb ∼ 0, which

implies |η| >> 1. η̇ < 0 and|η| >> 1 can not be satisfied simultaneously. Henceη̇ < 0

is excluded. Ifη̇ > 0 and|η| >> 1 thenη < 0. This impliesHb < 0 sinceHa > 0. In

other words the extra dimensions tend to contract under generic conditions for accelerated

expansion of the usual three dimensional space. This example shows the difficulty of

stabilization of extra dimensions in the context of accelerating cosmic expansion.

5.2. Energy Conditions

In relativistic classical field theories of gravitation, particularly in general relativ-

ity, an energy condition is one of various alternative conditions which can be applied to

the matter content of the theory. In general relativity, energy conditions [48, 49] are of-

ten used (and required) in proofs of various important theorems. As we know in general

relativity and allied theories, the distribution of the mass, momentum, and stress due to

matter and to any non-gravitational fields is described by the energy-momentum tensor

(or matter tensor),T µν . However, the Einstein field equations do not specify what kinds

of states of matter or non-gravitational fields are maintained in a space-time model. Be-

cause without some further criterion, the Einstein field equations give default solutions

with properties most physicists regard as unphysical. The energy conditions represent

such criteria. There are some energy conditions namely called ’strong, null, weak and

dominant energy conditions’. Now let us write down mathematically these conditions.

• Null energy condition (NEC):
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The null energy condition [49] stipulates that for every future-pointing null vector field
−→
k ;

• Tµνk
µkν ≥ 0 where gµνk

µkν = 0

For a perfect fluid NEC becomes;

• Tµνk
µkν = ρ+ P ≥ 0

We can see from here that all cases such as matter, radiation and cosmological constant

satisfy NEC.

• Weak energy condition : where gµνX
µXν ≤ 0

The weak energy condition [50] stipulates that for every future-pointing timelike vec-

tor field
−→
X , the matter density observed by the corresponding observers is always non-

negative:

• TµνX
µXν ≥ 0

In the case of perfect fluid we have;

• TµνX
µXν ≥ 0 ,ρ ≥ 0 , ρ+ P ≥ 0

Here again all the sources satisfy WEC.

• Strong energy condition : where gµνX
µXν ≤ 0

The strong energy condition stipulates that for every future-pointing time-like vector field
−→
X , the trace of the tidal tensor measured by the corresponding observers is always non-

negative:

• (Tµν −
1

2
Tgµν)X

µXν ≥ 0

Again in the case of perfect fluid SEC becomes;

• (Tµν −
1

2
Tgµν)X

µXν ≥ 0 ,ρ+ P ≥ 0 ,ρ+ 3P ≥ 0

For the SEC one may see from the given conditions that matter and radiation satisfy

SEC but cosmological constant does not satisfy the second condition for SEC that is

ρ+ 3P ≥ 0.

• Dominant energy condition :
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The dominant energy condition stipulates that, in addition to the weak energy condition

holding true, for every future-pointing causal vector field (either timelike or null)
−→
Y , the

vector fieldT ab Y
b must be a future-pointing causal vector which means that mass-energy

can never be observed to be flowing faster than light. In the case of perfect fluid DEC

becomes;

• ρ ≥ |P |

When we check this for the various sources matter, radiation and cosmological constant

satisfy this condition but phantom does not satisfy.

5.3. Constraints on Extra Dimensional Models of Dark Energy From

Energy Conditions

Epoch(s) of cosmic acceleration play essential roles in modern cosmological mod-

els. As we said in previous chapters observations of type Ia supernovae [3, 4] and the

cosmic microwave background [51, 52] indicate that the universe is expanding at an ac-

celerating rate. A complete cosmological model based on more fundamental physics must

accommodate or should explain this epoch of acceleration. In this section we consider a

broad class of accelerating models with extra spatial dimensions. We see that these higher

dimensional models violate either the strong or null energy condition (NEC) respectively.

The analysis given here are the review and the discussion of the works in [20, 21]. We

have supposed 4 assumptions in our work;

• GR condition

• Flatness condition

• Boundedness condition

• Metric condition

By General Relativity (GR) condition we mean that we describe both the 4D and higher

dimensional theory by General Relativity (GR). Flatness and boundness conditions imply

that the 3D is spatially flat and the extra dimensions are bounded, respectively. Finally

the metric condition is that the extra dimensional metric is Ricci flat (RF) or conformally

Ricci flat (CRF).
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The violation of NEC in these models is unavoidable if the universe is de Sitter or

nearly de Sitter. Let us consider a class of extra dimensional models for dark energy in

the light of energy conditions.

In the subsection before the last subsection in this section we consider some theo-

rems that severely restrict the possibility of realistic models that obey NEC. We will call

the theorems as ’no-go theorems’. The no-go theorems depend on the intrinsic curvature

of the compactification manifoldM . There exist two possibilities forM that are;

• Curvature free :

In this category all modes are with a single extra dimension such as braneworlds [15, 16,

43]. It also includes compact manifolds with vanishing intrinsic Ricci scalar.

• Curved :

This category includes compact manifolds this time with non-vanishing intrinsic Ricci

scalar. We mainly consider conformally Ricci flat curved internal manifolds.

In this analysis we consider the shape and size of the compactification spaceM

acts as fields in 4D. Knowing the time evolution of this field gives us chance to work out

the time evolution ofM . The basic idea is the reverse of the Kaluza Klein philosophy

that is instead of starting with a specific matter in higher dimensional model and then

reducing to the 4D we go back way the 4D relations and observations are used to put con-

straints on extra dimensional models. Studying this may be also called ’oxidised cosmic

acceleration’ [21].

The no-go theorems we consider in this section suggest that there are some thresh-

olds inw . If we want to makew below these thresholds we should violate an energy

condition in higher-dimensional theory.

Here in our study we will consider the higher-dimensional action in the Einstein-

Hilbert action [53] which may be reduced to;

S4D =
1

2l24

∫
R
√
−gd4x+ otherterms (5.16)

wherel4 is the Planck length in 4D and it is constant.
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5.3.1. Some Simple Examples

As we said before the NEC is violated if the extra dimensions are flat and static.

Here we considerk extra dimensions with the corresponding metric written as;

ds2
4+k = ds2

4 + ds2
k (5.17)

whereds2
4 describes the 4D part of the metric andds2

k shows the metric of extra dimension.

As we said it is flat and may be written as;

ds2
k = δabdy

adyb (5.18)

And also we consider the 4D part to be a flat FLRW universe with the metric may be

written as;

ds2
4 = −dt2 + a2(t)(dx2

1 + dx2
2 + dx2

3) (5.19)

As we know already the 4D universe is accelerating withä/a > 0. The Einstein equations

in D-dimensions may be written as;

GMN = RMN −
1

2
gMNR = 8πGTMN (5.20)

Now let us look component by component to this equation. The00 component is;

G00 = R00 −
1

2
g00R = 8πGT00 (5.21)

where the00 component of Ricci tensor is written as;

R00 = ΓC00,C − ΓC0C,0 + ΓCDCΓD00 − ΓCD0Γ
D
0C (5.22)

35



with ;

ΓC00 =
1

2
gCD[g0D,0 + gD0,0 − g00,D], ΓC00 = 0 (5.23)

Γij0 =
ȧ

a
δij (5.24)

Then the00 component of Ricci tensor is found as;

R00 = −3
ä

a
+ 3

ȧ2

a2
(5.25)

The other components of Ricci tensor may be formulated as;

Rij = ΓCij,C − ΓCiC,j + ΓCDCΓDij − ΓCDjΓ
D
iC (5.26)

with;

ΓCij =
1

2
gCD[giD,j + gDj,i − gij,D], Γ0

ij = (aȧ)δij, Γi0j = (
ȧ

a
)δij (5.27)

using this inRij we have;

Rij = Γ0
ij,0 + Γk0kΓ

0
ij − Γ0

kjΓ
k
i0 − Γk0jΓ

0
ik = (2ȧ2 + aä)δij (5.28)

And the other components of the Ricci tensor are zero since extra dimensions are flat and

static. Now we are ready to construct the Einstein equations.

G00 = R00 −
1

2
g00R = −3

ä

a
+ 3(

ä

a
+
ȧ2

a
) = 3

ȧ2

a
(5.29)

Gij = Rij −
1

2
gijR = −(ȧ2 + 2ä)δij (5.30)

Gab = Rab −
1

2
gabR = −3(

ä

a
+
ȧ2

a
)δab (5.31)
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wherei, j run over 3 spatial dimensions anda, b run over the extra dimensions. Now let

us assume that the 4D cosmology has a power-law scale factora(t) ∼ tr. Now by using

the given form of scale factor we may rewrite the Einstein equations as;

t2G00 = 3r2 (5.32)

t2Gij = r(2− 3r)δij (5.33)

t2Gab = 3r(1− 2r)δab (5.34)

wherea(t) ∝ tr. Here the pressure along the extra dimensions is negative therefore the

corresponding stress energy violates the NEC. We may check this by using the definition

of NEC given by;

TMNk
MkN = T00k

0k0 + Tijk
ikj + Tabk

akb ≥ 0 (5.35)

t2TMNk
MkN = 3r(1− r) (5.36)

Here as we said before sincer > 1 or r < 0 for an accelerated 4D universe (5.36) is

negative, indicating NEC violation.

In an another model we may suppose a universe in which the extra dimensions

evolve as power laws in time as in three spatial dimensions. This is also a possibility and

may be explored by using a metric called ’Kasner metric’ [54]. It may be written as;

ds2
Kasner = −dt2 +

3+k∑
j=1

t2rjdx2
j (5.37)

wherek denotes the number of extra dimensions. As we see both the three spatial di-

mensions and the extra dimensions have scale factors which depends on time. Here we

suppose that the volume of extra dimensions behaves liketq with q =
∑3+k

j=4 rk. We are

ready to calculate the corresponding Ricci tensors and the Ricci scalar to construct the

Einstein equations.

Γ0
ij = (rt2r−1)δij, Γ0

ab = (rat
2ra−1)δab (5.38)

Γiok = (rkt
2rk−2ri−1)δik, Γa0b = (rbt

2rb−2ra−1)δab (5.39)
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The corresponding elements of Ricci tensor are;

R00 = ΓC00,C − ΓC0C,0 + ΓCDCΓD00 − ΓCD0Γ
D
0C (5.40)

R00 =
3r

t2
+

∑
ra
t2

− 3r2

t2
−

∑
r2
a

t2
(5.41)

R00 =
3r

t2
(1− r) +

∑
ra
t2

(1− ra) (5.42)

Rij = Γ0
ij,0 + Γk0kΓ

0
ij − Γ0

kjΓ
k
i0 − Γk0jΓ

0
ik (5.43)

Rij = t2r−2[r(r − 1) + 3r2 + r
∑

ra − 2r2]δij (5.44)

Rij = t2r−2[3r2 + r(
∑

ra − 1)]δij (5.45)

Rab = ΓCab,C − ΓCaC,b + ΓCDCΓDab − ΓCDaΓ
D
bC (5.46)

Rab = t2ra−2[2r2
a − ra + 3rra + ra

∑
ra − 2rarb]δab (5.47)

where we have writtenr1 = r2 = r3 = r for spatial dimensions. We may calculate the

Ricci scalarR.

R = g00R00 + gijRij + gabRab

R = t−2[6r2 − 6r −
∑
r2
a + 6r

∑
ra + (

∑
ra)

2]

We consider vacuum Einstein solutions. Therefore all components of Einstein tensor

GMN must be equal to zero respectively.

G00 = R00 −
1

2
g00R = t−2[

∑
ra − 3/2

∑
r2
a + 3r

∑
ra + (

∑
ra)

2] = 0

Gij = Rij −
1

2
gijR = t2r−2[2r − 2r

∑
ra +

∑
r2
a

2
− (

∑
ra)

2

2
]δij = 0

Gab = Rab −
1

2
gabR

Gab = t2r−2[2r2
a − ra + 3rra + ra

∑
ra − 2rarb − 3r2 + 3r

+

∑
r2
a

2
− 3r

∑
ra −

(
∑
ra)

2

2
]δab = 0

When we solve these three equations we will get two conditions forr andq.

•
∑3+k

j=1 rj = 1

•
∑3+k

j=1 r
2
j = 3r2 +

∑3+k
j=4 r

2
j = 1

The first condition impliesq < 0 if r > 1/3. So r > 1 is excluded which means the

three non-compact dimensions are expanding and the other directions tend to contract.

(On the other hand the other case that leads to accelerated expansion in the non-compact

dimensions i.e. the caser < 0 corresponds to contracting universe and is inagreement
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with cosmological observations.) To intercept this a negative pressure is required as in the

case of cosmological constant. When the three noncompact dimensions are expanding at

an accelerated rate then NEC is violated.

In order to evade this problem let us try a new metric in which the extra dimen-

sional part evolve with time. The corresponding metric is written as;

ds2
4+k = A2(η)(−dη2 + dx2

1 + dx2
2 + dx2

3) + exp[
2c

k
ψ(η)]ds2

k (5.48)

whereA(η) is the scale factor of the 4D universe measured in (4+k) dimensional Einstein

frame. Hereη is the conformal time. Also the termψ canonically normalised scalar field

in the 4D Einstein frame. Therefore it is called ’universal Kaluza-Klein breathing mode

modulus’. The constantc is given by;

c =

√
2k

k + 2
(5.49)

The 4-D Einstein frame scale factora(η) may be found as;

a(η) = ecψ/2A(η) (5.50)

which comes from the determinant of the metric tensor of (4+k) dimensions as we reduce

it to 4D. Now we may write the equations of motion of Friedmann universe in terms of

the derivative ofψ as;

ρ+ P = ρ(1 + w) = 3(1 + w)H2 = (
dψ

dη
)2 (5.51)

whereρ = P/w = 3H2 from Friedmann equations andH =
ȧ

a
where dot denotes the

derivative with respect to time,t. If we putH =
ȧ

a
into equation and make a change of

variable fromt to η one gets a solution forψ;

ψ(η) = ±
2
√

3(1 + w)

1 + 3w
ln η + ψ0 (5.52)
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We will use this solution later in the elements of energy-momentum tensor. Now from

the Einstein equations we may calculate the energy-momentum tensor of (5.48). The

corresponding Christoffels are;

Γ0
µν =

Ȧ

A
δµν ,Γ

0
ab =

c

kA
e

2c

k
ψ
(
dψ

dη
)

Γi0k =
Ȧ

A
δik,Γ

a
0b =

c

k
(
dψ

dη
)δab

From now on I will use dot for the derivatives w.r.t.η. Then using these Christoffels one

may find Ricci tensors as;

R00 = −2
Ä

A
+ 2(

Ȧ

A
)2 + c

Ȧ

A
ψ̇ − c2

k
ψ̇2 − cψ̈

Rij = (
Ä

A
+
Ȧ2

A2
+ c

Ȧ

A
ψ̇)δij

Rab = e

2c

k
ψ
[
2c2

k2A
ψ̈ + (

4

A
− 2c

k
)
c

kA
Ȧψ̇ +

c2

kA
ψ̇2]δab

with the Ricci scalar;

R = 5
Ä

A3
+
Ȧ2

A4
+

2c

A2

Ȧ

A
ψ̇ +

c

A
(
1

A
+

2c

k
)ψ̈ +

c2

A
(
1

A
+ 1)ψ̇2 + 2c

Ȧ

A
ψ̇(

2

A
− c

k
)

One may put all these into Einstein equations and find energy-momentum tensor com-

ponents. We may write these components in terms ofw andη by using the equations

(5.50) and (5.52). I will call the whole functionsF (η, w). Finally the components of

energy-momentum tensor become;

T00 = F (1− w), Tij = F (1− w)δij, (5.53)

Tab = −F (1− w)[2∓
√

3(1 + w)

2

(k + 2)

k
]δab

From the NEC with the null vectornM = (1,
−→
0 , û) one gets;

−F (1− w)[±
√

3(1 + w)

2

(k + 2)

k
− 1] ≥ 0 ⇒ ±

√
3(1 + w)

2

(k + 2)

k
≥ 1 (5.54)

which is only possible for one of the branches. In other words NEC is violated by one

branch at least. When the inside of square root is equal to1 thenw becomes;

wk = − k + 6

3(k + 2)
(5.55)
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Here for only one extra dimensionw = −7/9 which is its most negative value closest to

−1. We see that we can not approach de Sitter expansion without violating NEC.

In these models we have shown that flat extra dimensions with only breathing

mode dynamics could let accelerating universes without violating NEC but these models

can not be close to de Sitter because of the value ofw. There are many different ideas

that may be supposed such as the extra dimensional space could be static then some other

fields could cause acceleration. Also there is a possibility with warp factors but none of

these make a difference. As the compactification manifoldM is curvature free then the

higher dimensional theory violate the NEC up to a value ofw called critical value. This

relation of these values means that there is a gap between pure de Sitter case and NEC

satisfying condition.

There is only one possibility in whichw ' −1 and NEC is not violated is to

have a curvature for internal manifoldM . To see this considerR, Rab whose values for

conformally flat extra dimensions are;

R̊ = Ω−2
1 [2(n− 1)�̃(ln Ω1)− (n− 1)(n− 2)

g̃MN∇̃N(Ω1)∇̃N(Ω1)

Ω2
1

]

R̊ab = (n− 2)∇̃M∇̃N(ln Ω1)− g̃MN g̃
AB∇̃A∇̃B(ln Ω1)

We will not calculate these terms because we may interpret the results in this general

form. When we write the elements of Einstein tensorGMN these additional terms will

give;

G̊0
0 = −1

2
R̊, G̊n

m = −1

2
R̊δnm, G̊b

a = R̊b
a −

1

2
R̊δba

wherem,n run over three spatial dimensions,a, b run over the extra dimensions and

R̊, R̊b
a are the extra dimensional contributions for (5.48). Now if we look for the NEC

condition with a null vector of the formnM = (1, û,
−→
0), we will see thatR̊ does not

appear. When we consider the another form of a null vector withnM = (1,
−→
0 , û) where

û is k-dimensional unit vector. With this null vector the NEC becomes;

˚TMNn
MnN = R̊

Here if it is possible to adjust the additional term̊R , then the NEC may be satisfied

without any other contributions. This is in fact a kind of fine-tuning. In 5.3.3 we will

see that even with such a fine tuning it is impossible to attainω ' −1 for a sufficiently

long time for conformally Ricci flat extra dimensional spaces. However the situation in

the case of general curved extra dimensional spaces remain open.
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5.3.2. General Analysis

In this section we will consider how the accelerated expansion orders strong con-

straints on many extra dimensional models. As we said before the accelerated expansion

could be due to inflation or dark energy. We are interested in dark energy in our thesis. In

fact most of the conclusions obtained for dark energy are true for inflation as well while

inflation may impose stronger constraints since it needs many e-folds.

In the compactified theories the expansion of the non-compact directions has affin-

ity to cause the extra dimensions to contract. But this contraction is physically problem-

atic because it may let the physical constants to vary with time. What about the con-

straints? The models containing dark energy are described by Einstein gravity either in

4D or efective theory and in the higher dimensional theory. But the problem is that the

4D effective theory may require some extra constraints when lifted into the higher dimen-

sional Einstein gravity.

First we will consider the metric of the form;

ds2 = e2Ω(−dt2 + ã2dxidx
i) + gabdy

adyb

wheregab andΩ depens on time and extra the dimensions anda, b run over the extra

dimensions ,̃a is the usual FRW scale factor and the scalar curvature forgab is zero. IfR̊

corresponding togab is zero then we say that extra dimensional space is Ricci flat while it

is conformally Ricci flat ifgab = e2Ω2 ḡab whereḡab is Ricci flat. For the calculations we

will use Maurer-Cartan formalism. Then any metric may be written in vielbeinseA as;

gMNdX
M ∧ dXN = ηABe

A ∧ eB

whereηAB flat Minkowski metric of all space. This form is used to introduc tensors in a

non-coordinate basis which are defined by vielbeins. Now the time derivative of a vielbein

ea may be taken as;

dea

dt
≡ ξab e

b (5.56)

whereξab is defined as the velocity and may be written in terms of a symmetric and an

antisymmetric part as;

ξab = wab +
δab
k
ξ + σab (5.57)
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wherek is the number of extra dimensions,wab is antisymmetric part,ξ = δabξab is the

trace andσab is symmetric but traceless. Now in the light of these properties one may

write the time derivative of metricgαβ by using (5.56) and (5.57) as;

1

2

dgab
dt

=
1

k
ξgab + σab

where the termsξ, σ are functions of time and the extra dimensions. The pressures along

the 3 spatial dimensions and the extra dimensions are defined as;

P3 =
1

3
δijT

ij (5.58)

Pk =
1

k
δabT

ab (5.59)

wherek is the number of compact extra dimensions andT ij, T ab are energy momentum

tensor of 3-space and the extra space respectively. The violation of NEC requires;

TMNn
MnN < 0

whereM,N run over all the dimensions. One may show that whenρ+P3 or ρ+Pk is less

than zero NEC is necessarily violated. And also when〈ρ + P3〉A < 0 or 〈ρ + Pk〉A < 0

NEC is again violated. Here〈Q〉 denotes the average of a quantity. In general this average

is defined as;

〈Q〉A = (

∫
QeAΩ√gdky)/(

∫
eAΩ√gdky) (5.60)

whereA is a constant and the termeAΩ is called ’weight factor’. We take the average of

the weight factor overA to be positive. This term is the average ofQ in the warped metric

on M. The averaging process defines a projection operator which is acting onM . We may

divideQ into to parts a constant part and a perpendicular part,Q(t, ya) = Q0 +Q⊥ where

Q0 is the constant part with〈Q〉 = Q0. The average of the perpendicular part is given to

be zero and the constant part is equal to the average of total quantityQ. Differantiating

(5.60) w.r.t. time one may find;

〈Q̇⊥〉 = −〈2Ω̇⊥Q⊥ + ξ⊥Q⊥〉 (5.61)
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Since〈Q⊥〉 = 0 one may see from (5.61) that ;

2Ω̇ + ξ⊥ = 0 (5.62)

We will use these informations while constructing the elements of Ricci tensor and Ein-

stein equations.

We should convert the extra dimension scale factorã into 4D scale factora. Now

we will introduce CRF metric to express theã dependent terms in terms of 4D effective

scale factora(t). To do this we use the relationa(t) ≡ eφ/2ã with;

eφ/2 = `−k4+k

∫
e2Ω√gdky (5.63)

where`4+k is (4+k) dimensional Planck length. Now we may find the elements of Ricci

tensor by using the given Christoffels in terms ofã below;

ΓCMN =
1

2
gCF (gFM,N + gFN,M − gMN,F ) (5.64)

Γ0
00 = Ω̇ (5.65)

Γ0
ij = (Ω̇ã2 + ˙̃aã)δij (5.66)

Γ0
ab =

1

2
e−2Ωġab (5.67)

Γµ0ν =
dΩ

dya
δµν (5.68)

Γi0k = (Ω̇ +
˙̃a

ã
)δik (5.69)

Γa00 = e2Ωgab
dΩ

dyb
(5.70)

Γaij = −gabe2Ωã2δij (5.71)

Γa0b =
1

2
gabġab (5.72)

Γabc =
1

2
gad(gdb,c + gdc,b − gbc,d) (5.73)

wherea, b, c, d run over the extra dimensions whileµ, ν run over the 4 dimensions. The

elements of Ricci tensor is given in [20, 21] as;

R00 = e−2Ω+φ[−3
ä

a
− k + 2

2k
ξ2
0 − σ2 − 1

k
ξ⊥2 + Ω̇ξ⊥+

1

2a3

d

dt
(a3ξ0)
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−3Ω̈− 3
ä

a
Ω̇ + Ω̇ξ0 − ξ̇⊥ −

k + 2

2k
ξ0ξ⊥] + 4(δΩ)2 + 4̊Ω

Rij = e−2Ω+φ[
ä

a
+ 2(

ȧ

a
)2 + Ω̇ξ⊥ −

1

2a3

d

dt
(a3ξ0) + 2Ω̇2 + Ω̈

+5
ȧ

a
Ω̇− Ω̇ξ0 +

ȧ

a
ξ⊥ −

1

2
ξ0ξ⊥]δij − [4(δΩ)2 + 4̊Ω]δij

Rab = e−2Ω+φ[
1

ka3

d

dt
(a3ξ0) +

1

k
ξ⊥2 +

2

k
ξ⊥Ω̇ +

1

k
ξ⊥ξ0 +

2

k
ξ0Ω̇

+
1

ka3

d

dt
(a3ξ⊥)]δab + e−2Ω+φ[

1

a3

d

dt
(a3σab) + ξ⊥σab + 2Ω̇σab]

And the Ricci scalar is found in [20, 21] as;

R = R̊− 84̊Ω− 20(∂Ω)2 + e−2Ω+φ[6
ä

a
+ 6(

ȧ

a
)2 − 1

a3

d

dt
(a3ξ0) +

k + 2

2k
ξ2
0 (5.74)

+ σ2 +
k + 2

k
ξ2
⊥ + 4ξ⊥Ω̇ + 6(Ω̇)2 + 2

1

a3

d

dt
(a3ξ⊥) + 6

1

a3

d

dt
(a3Ω̇)− 2Ω̇ξ0 +

2

k
ξ0ξ⊥]

By using these Ricci tensors and the Ricci scalar 4D Einstein equaitons are found in

[20, 21] as;

3(
ȧ

a
)2 = ρT (5.75)

−2
ä

a
− (

ȧ

a
)2 = PT (5.76)

whereρT andPT are total efective energy density and efective pressure in 4D. As we

mentioned before to satisfy NEC,ρ + P3 andρ + Pk must be grater than zero. Now let

us look for these conditions by using given Einstein equations. The elements of Einstein

tensor are given in [20, 21] as;

G00 =
1

2
R̊− 34̊Ω− 6(∂Ω)2 + e−2Ω+φ[3(

ȧ

a
)2 − k + 2

4k
(ξ0 + ξ⊥)2 − 1

2
σ2] (5.77)

Gij = [−1

2
R̊ + 34̊Ω + 6(∂Ω)2]δij (5.78)

+ e−2Ω+φ[−2
ä

a
− (

ȧ

a
)2 − k + 2

4k
(ξ0 + ξ⊥)2 − 1

2
σ2]δij

Gab = R̊ab −
1

2
R̊δab − 4∇̊a∇̊bΩ + 44̊Ωδab − 4∂aΩ∂bΩ (5.79)

+ 10(∂Ω)2δab + e−2Ω+φ[−3
ä

a
− 3(

ȧ

a
)2 − k + 2

4k
(ξ0 + ξ⊥)2 − 1

2
σ2]δab

+ e−2Ω+φ[
k + 2

2ka3

d

dt
(a3(ξ0 + ξ⊥))δab +

1

a3

d

dt
(a3σab)]
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whereR̊ is the intrinsic curvature ofM in unwarped metric. In these given tensor elements

by ignoring the intrinsic curvature and warp terms one may obtain the standart Friedmann

equations for the scale factora(t) with the terms containingξ⊥, ξ0, σ. Now let us calculate

the pressure along the extra dimensions which is given in (5.59). We have;

Pk = (
1

k
− 1

2
)R̊ + 4(1− 1

k
)4̊Ω + (10− 4

k
)(∂Ω)2 (5.80)

+ e−2Ω+φ[−3
ä

a
− 3(

ȧ

a
)2 − k + 2

4k
(ξ0 + ξ⊥)2 − 1

2
σ2]

+ e−2Ω+φ[
k + 2

2ka3

d

dt
(a3(ξ0 + ξ⊥))]

where4̊ = δab∇̊a∇̊b and as defined beforeδabσab = 0. The total pressure is equal to the

zero-zero component of the Einstein tensor. It may be written as;

ρ =
1

2
R̊− 34̊Ω− 6(∂Ω)2 + e−2Ω+φ[3(

ȧ

a
)2 − k + 2

4k
(ξ0 + ξ⊥)2 − 1

2
σ2] (5.81)

Finally for the pressure along the 3 spatial dimensions which is defined in (5.58) may be

calculated as;

P3 = −1

2
R̊ + 34̊Ω + 6(∂Ω)2 + e−2Ω+φ[−2

ä

a
− (

ȧ

a
)2 − k + 2

4k
(ξ0 + ξ⊥)2 − 1

2
σ2]]

(5.82)

As it is seen we calculated three elements of NEC and now let us construct the conditions

and see if they satisfy the NEC or not. One of the condition is ;

ρ+ P3 = e−2Ω+φ[−2
ä

a
+ 2(

ȧ

a
)2 − k + 2

2k
(ξ0 + ξ⊥)2 − σ2] (5.83)

As one may see in (5.83) we have summation of derivatives of scale factor. This term is

exactly equal to the summation of (5.75) and (5.76). Then we may rewrite the equation

(5.83) as;

ρ+ P3 = e−2Ω+φ[(ρT + PT )− k + 2

2k
(ξ0 + ξ⊥)2 − σ2] (5.84)
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whereρT andPT are total energy density and total pressure respectively. It must be said

that these density and pressure are different fromρ andP3 because the warp term is non-

trivial. By the same way we may construct the other element of NEC as;

ρ+ Pk =
1

k
R̊ + 4(1− 4

k
)4̊Ω + 4(1− 1

k
)(∂Ω)2 (5.85)

+ e−2Ω+φ[−3
ä

a
− k + 2

2k
(ξ0 + ξ⊥)2 − σ2] + e−2Ω+φ[

k + 2

2k

1

a3

d

dt
(a3(ξ0 + ξ⊥))]

To detect the NEC conditions let us find averages of these two elements given in (5.84)

and (5.85) respectively. They are found as;

e−φ〈e2Ω(ρ+ P3)〉A = (ρT + PT )− k + 2

2k
〈ξ〉2A −

k + 2

2k
〈(ξ − 〈ξ〉A)2〉A − 〈σ2〉A (5.86)

e−φ〈e2Ω(ρ+ Pk)〉A =
1

2
(ρT + 3PT ) + 2(

A

4
− 1)

k + 2

2k
〈(ξ − 〈ξ〉A)2〉A− (5.87)

k + 2

2k
〈ξ〉2A − 〈σ2〉A + [k − 5 +

10

k
+ A(

6

k
− 3)]〈e2Ω(∂Ω)2〉A +

k + 2

2k

1

a3

d

dt
(a3〈ξ〉A)

Now let us interpret these two conditions whether they violate the NEC or not and if they

violate, the question is under which conditions?

As we see in equation (5.86) the first term on the right hand side is positive as

known from Friedmann equaitons sincew > −1. And the other terms are positive also

because in all terms we have square of them. But since they all have minus sign in front

they are non-positive. Therefore in order to satisfy NEC, summation of last three terms

must be taken to be very close to zero to have a positive term on the right hand side. What

about the equation (5.87). When we look at the term on the right side coming from the 4D

Friedmann equaitons is not positive because of the accelerated expansion. And sign of the

other terms depend on the average numberA. We find a range forA which must include

the caseA = 2. In order to include this value we impose the following conditions;

A

4
− 1 ≤ 0 ⇒ A ≤ 4 (5.88)

A ≥k
2 − 5k − 10

3k − 6
(5.89)

4 ≥A ≥ k2 − 5k − 10

3k − 6
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In terms of the equation of state we may rewrite (5.86) and (5.87) as;

e−φ〈e2Ω(ρ+ P3)〉A = ρT (1 + w)− k + 2

2k
〈ξ〉2A (5.90)

+ (non− positive− terms− for − all − A)

e−φ〈e2Ω(ρ+ Pk)〉A =
1

2
ρT (1 + 3w) +

k + 2

2k

1

a3

d

dt
(a3〈ξ〉A) (5.91)

+ (non− positive− terms− for − some− A)

As we see from these equations there are some terms which are non-positive. We should

have a value forA by which these terms become positive if there exist that value.

In equation (5.90) one may see that whenw = −1 the first term on the right side is

zero. Then we have other terms which are non-positive. Therefore in order to satisfy NEC

the only possibility is that these non-positive terms must be zero. But situation is different

in (5.91). When we look at this equation the first term on the right side is negative as

said before and last terms are non-positive. Therefore there exists only one possibility in

which the term containing the derivative ofξ must be non-zero to satisfy NEC. We will

see in the next subsection that it is very difficult (if not impossible) to satisfy NEC for

both of (5.90) and (5.91).

5.3.3. Steinhardt-Wesley No-Go Theorems

Now let us focus on the theorems that satisfy NEC or violate NEC for dark energy

cases. We have two types of such theorems those are theorems that satisfy NEC and

violate NEC. Firstly we focus on the theorems that satisfy NEC.

• Dark Energy No-go Theorem IA:

ΛCDM (the current concordance model in cosmology) is incompatible with compactified

models satisfying the NEC.

• Proof :

In theΛCDM model in which the universe is a mixture of matter and a positive

cosmological constant or the equaiton of state between−1/3 and−1 because of the pres-

ence of matter existency. (At the value whenw = −1 that is pure de Sitter case, the

first term on the right hand side of (5.90) is zero and we have some non-positive terms
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also. Therefore in order to satisfy NEC in (5.90), we should have the last two terms to be

zero. However when we look at the equaiton (5.91), the first term on the right hand side

is negative ifw = −1. Since we have non-positive terms also, we should have the middle

term to be positive in order to satisfy NEC; but this requiresξ and its time derivative to

be non-zero. But whenξ = 0 ,NEC is satisfied in (5.90) while it is violated in (5.91).

Additionally when time derivative ofξ is positive then (5.90) is violated while (5.91) is

satisfied. Therefore as we see, NEC can not be satisfied in both equaitons whenw = −1).

In the ΛCDM model the current energy density of the universe is a mixture of

matter and cosmological constant. The density of matter is proportional to
1

a3
while that

of cosmological constant is constant. Hencew → −1 as t → ∞. ThereforeΛCDM

model is incompatible with compactified models satisfying NEC at least in future.

• Dark Energy No-go Theorem IB:

Dark energy models with constantwDE less thanwtransient or time-varyingwDE

whose value remain less thanwtransient for a continuous period lasting more than a few

Hubble times are incompatible with compactified models satisfying the NEC. HerewDE

denotes the equation of state for dark energy.

• Proof :

In the case wherew < −1, 4D does not satisfy NEC. Since this does not go with

our asumption then this case is forbidden also. As we mentioned, inΛCDM universe,

w is in the interval between−1/3 to −1. Therefore we should focus on this range. De-

pending on the number of extra dimensions,k, there exists anw called ’wtransient’ which

changes between−1/3 and−1. Whenw is less than the transient one, then NEC is vi-

olated in (5.91) ifξ and its time derivative are small or negative; or NEC is violated in

(5.90) if ξ is large and positive. the only possibility for NEC satisfying is to have aξ to be

nearly zero and its time derivative to be large and positive enough. This is only compati-

ble for a short period. When we look at (5.91), in order to satisfy NEC, we should have

the following condition on the right hand side;

k + 2

2k

1

a3

d

dt
(a3〈ξ〉A) > −1

2
ρT (1 + 3w) (5.92)

The right side of inequality is positive ifw < −1/3. Then we see from (5.92), on the left

hand side from derivative ofa we have the Hubble’s parameter, and also the derivative of

ξ. If this 〈ξ〉A is small in the beginning of its evolution then we say that (5.90) satisfies
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NEC. Then (5.92) suggest that;

H−2d〈ξ〉A
dt

= O(1) (5.93)

if 〈ξ〉A � H and1 + 3w ' 0, whereO(1) shows the magnitude. Then integrating this

over time till t ∼ 1

H
one may have a condition forξ itself ;

〈ξ〉A/H = O(1) (5.94)

One may conclude from here that in order to satisfy NEC in (5.90) that is having small

〈ξ〉A, is only possible for a few Hubble times.

• Dark Energy No-go Theorem IC:

All dark energy models are incompatible with compactified models satisfying the

NEC if the moduli fields are frozen.

• Proof :

As we mentioned before, any form of dark energy requiresw to reach a value less

than−1/3. When we look at equation (5.90), NEC is satisfied forw < −1/3 if the other

two terms are nearly zero. But in equation (5.91) the first term as we said is negative and

also last terms are non-positive. Then we say that moduli fields must vary with time in

order to satisfy NEC.

Now let us focus on the theorems that violate NEC.

• Dark Energy No-go Theorem IIA:

Dark energy is incompatible with compactified models (with fixed moduli) if the

NEC is satisfied in the compact dimensions (i.e.ρ+ Pk ≥ 0 for all t andym ) whether or

not NEC is violated in the non-compact directions.

• Proof :

In this theorem as we mentioned, the moduli fields must be frozen that means time

derivative of them is zero or very small. Therefore the middle term in equation (5.91) is

zero. And at best we may take the last term zero, that may be achieved by choosing the

averaging parameterA to be
k2 − 5k − 10

3k − 6
. In the light of these conditions we have only
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the first term on the right hand side of (5.91) which is proportional to(1 + 3w). This

term has turning point for its sign at the value ofw = −1/3. Whenw is less than this

value then the term is negative and it is positive whenw is grater. But the acceleration of

universe imposes thew to be less than−1/3. Therefore one may conclude from here that

whenever universe is accelerating, NEC is violated in the compact dimensions.

• Dark Energy No-go Theorem IIB:

Dark energy is incompatible with compactified models (with fixed moduli) for

which the net NEC violation along the compact directions is time-independent

• Proof :

As we mentioned before, atA =
k2 − 5k − 10

3k − 6
the equation (5.91) is proportional

to (1 + 3w). However cosmic evolution needs time dependentw since it includes cosmic

acceleration (i.e. inflationary era and present era) and cosmic deceleration (i.e. matter

dominated eras). Therefore the NEC violation in the compact directions needs to be time-

dependent.

• Dark Energy No-go Theorem IIC:

Dark energy is incompatible with compactified models with fixed moduli if the

warp factorΩ(t, y) is non-trivial and has continuous first derivative and if any of the

following quantities is homogeneous iny:

• ρ+ P3:

• xρ+ Pk for RF metric for x to be (1/2)(1− 3w) > x > 4(k − 1)/3k:

• ρ for CRF metric for k > 4:

• 2ρ+ Pk for CRF metric for k > 3 and w > −1:

• Proof :

The first quantity that is found in Appendix D, is inhomogeneous because of the

factore−2Ω+φ. This exponential factor has the termΩ which is the function of extra di-

mensions. In the definition of exponential function we have the all powers ofΩ. Therefore

we say thatρ+ P3 is inhomogeneous iny.

The second quantity may be found by using equations (B.1) and (B.2). Then it

becomes;

xρ+ Pk = (4− 4

k
− 3x)4Ω + (10− 4

k
− 6x)(∂Ω)2 + e−2Ω+φρT (x+

3w

2
− 1

2
) (5.95)
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As we mentioned before the last term here is inhomogeneous. The other terms are also

inhomogeneous for the given range ofx that insures NEC violation.

For the third one we have from the appendix B, in the equation (B.6) the first term

on the right hand side is positive for the given conditionk. But this term changes its sign

with the extremum points ofΩ. Thenρ is inhomogeneous iny.

Finally the for the last quantity we have the equaiton;

ρ+ Pk = (k − 1− 6

k
)4Ω + (

k2

2
− k

2
− 2

k
− 4)(∂Ω)2 + e−2Ω+φρT (

3

2
+

3w

2
) (5.96)

As it may be seen from this equation, for the given range ofk, the first term is positive and

also the second one on the right hand side while the last term is also positive for the values

of w > −1. Because of the same reason for4Ω , this quantity is also inhomogeneous in

y.

• Dark Energy No-go Theorem IID:

Dark energy is incompatible with compactified models with fixed moduli if the

warp factorΩ(t, y) is non-trivial if ρ+ Pk is homogeneous.

• Proof :

Forw ≤ −1/3 the last term for both RF and CRF case inρ + Pk ≤ 0. And the

other term4Ω is non-zero sinceΩ(t, y) is non-trivial. This term changes its sign at the

maximum and minimum ofΩ(t, y). Thenρ+ Pk is inhomogeneous at least for somey.

• Dark Energy No-go Theorem IIE:

Dark energy is incompatible with compactified models with fixed moduli ifwk(A) >

−1 for 〈ρ〉A > 0 or if wk(A) < −1 for 〈ρ〉A < 0 both atA =
k2 − 5k − 10

3k − 6
.

• Proof :

Let us first construct thiswk, the ratio of the average of pressure along extra di-

mensions to average of energy density, it may be found for RF metric by dividing (B.2)

to (B.1) as follows;

wk(A) =
[(10− 4A) +

4A

k
− 4

k
](∂Ω)2 + (

3w

2
− 1

2
)eφ〈e−2ΩρT 〉A

(3A− 6)(∂Ω)2 + eφ〈e−2ΩρT 〉A
(5.97)
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Here we consider for dark energy case〈e−2ΩρT 〉 > 0. At the critical value ofA that is
k2 − 5k − 10

3k − 6
, the ratios of the multipliers of(∂Ω)2 is−1. Also forw < −1/3, as in the

case of dark energy, then
3w

2
− 1

2
< −1. Then we can see from (5.97) that at this value

of A wk is less than−1 which is in contradiction with theorem. On the other hand for

〈e−2ΩρT 〉 < 0 we see thatwk > −1 again in contradiction with theorem. This proves the

theorem.

In the case of CRF we have the value forwk which can be found by dividing (B.8)

to (B.6);

wk(A) =
[−(7− 6

k
− k) + (6− 2

k
+

5k

2
− k2

2
)](∂Ω)2 + (

3w

2
− 1

2
)eφ〈e−2ΩρT 〉A

[−(k − 4)A+
1

2
(k2 − 3k − 10)](∂Ω)2 + eφ〈e−2ΩρT 〉A

(5.98)

Here again by the same way that is taking〈e−2ΩρT 〉 > 0 and puttingA =
k2 − 5k − 10

3k − 6
it may be seen thatwk > −1. Therefore we say that this is also incompatible with

compactified models.

5.3.4. Critical Analysis of No-Go Theorems

Two crucial ingredients of the no-go theorems of Steinhardt and Wesley [20, 21]

are;

• A - averaging as the averaging tool to higher dimensional results to 4D

• the assumption of the necessecity of the applicability of the higher dimensional

null energy condition

We give a critical discussion of these assumptions before considering each of the theorems

in [20, 21]. First consider A-averaging whose definiton is given in (5.60). At distance

much larger than the size of extra dimension(s) we see the extra dimensions integrated. In

analogy this is similiar to what we see when look at a hoseR1 × S1. We may see smaller

smaller patch on the side of the hose as we examine it close and closer while at very large

distances we can not see the details , we see the circleS1 integrated out and hence we see

the hose just as a line,R1. Therefore in reduction to 4-dimensions the extra dimensions

must be integrated out. To do this one may consider extra dimensional classical solution

(metric) in the action and integrate out. For example for Einstein-Hilbert action we may
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take;

M2
∗

∫
R̃

√
g̃d4+kx = M2

pl

∫
R
√
gd4x (5.99)

Of course the intermadiate steps depend on the form of the metric. For the Ricci flat

metric considered in [21] i.e. for ;

ds2 = e2Ωhµνdx
µdxν + gαβdx

αdxβ

whereµ, ν = 0, 1, 2, 3 andα, β = 1, 2, , , k. With this form of metric one may write (5.99)

as;

M2
∗

∫
R̃

√
g̃d4+kx = M2

pl

∫
e2Ω√g[R4 + f(Ω, gµν , gαβ)]d

4x (5.100)

with g̃ = (−1)Sdet(gAB) whereS is the number of spatial dimensions. For flat Robertson-

Walker metric (5.100) becomes ;

M2
pl

∫
a3[R̄4 + f(Ω, gµν , gαβ)]d

4x (5.101)

where;

a3 = ā3

∫
√̄
ge2Ωdky (5.102)

Therefore it is naturel to definea(t) = eφ/3ā(t) where ;

eφ = `−k
∫
√̄
ge2Ωdky (5.103)

where`−k is the higher dimensional Planck length rather than the definition given in

[20, 21] ;

a(t) = eφ/2ā(t) (5.104)
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where the definiton ofeφ/2 is given in (5.63). And the corresponding averaging is also

given in (5.60).

The second questionable point in our opinion is the imposing the higher dimen-

sional energy condition,TABnAnB, as a strict physical condition ( that insures absence

of ghost,instabilities etc.) In fact this has a ligitimate basis since the extra dimensional

components of energy-momentum tensor seem like energy (e.g. masses) when viewed

from 4-dimensions. However a concrete analysis is needed to arrive clear out, definite

conclusions. In principle it seems possible that an equaiton of state smaller than−1 vi-

olation of NEC in extra dimensions may be due to an unconventional form of the extra

dimensional piece of the Lagrangian (extra dimensional metric part) rather than a wrong

sign in kinetic energy (i.e. ghost). It is possible that such a case may lead to a case where

extra dimensional energy conditions are violated while there is no ghost. In our opinion

the correct procedure to get the 4-dimensional energy conditions is not the averaging of

the extra dimensionalTABnAnB done in [20, 21]. The unambigous way to derive the

4-dimensional energy conditions is to integrate the action over the extra dimensions and

than obtain Einstein equations and constructTµνn
µnν to check validity of NEC. In fact

all these points should be considered in a seperate study to see how the conclusions of

[20, 21] survive.

Another point to mention is that the no-go theorems discussed in previous subsec-

tion employ the assumption of the applicability of general relativity (i.e. Einstein-Hilbert

action), three dimensional flatness, boundness of extra dimensions and extra dimensions

being Ricci flat or conformally Ricci flat. The cosmological observations confirm the as-

sumptions of general relativity and three dimensional flatness (at least up to a very high

degree approximation) for present time hence these are wholly valid assumptions for dark

energy. However [20, 21] uses these assumptions for the time of inflation where their

applicability is questionable. It is possible that gravitational action is in a form other

than Einstein-Hilbert action and this is pronounced at inflationary era while it approaches

usual Einstein-Hilbert form at late times. Therefore in our opinion the applicability of

constraints obtained in [20, 21] are not so restrictive as given in [20, 21]. Still another

point is that they consider only extra dimensionally Ricci flat and conformally Ricci flat

extra dimensional metrics. In fact the conformally Ricci flat metrics considered in [20, 21]

are not the possible most general ones where the conformal factors multiplying the four

dimensional and the extra dimensional pieces of the metric being independent. Now let

us also make some analysis on some no-go theorems of the previous subsection.

• Dark Energy No-go Theorem IA:
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The pure de Sitter universe (i.e.w = −1), since in that case the right hand side of

(5.91) is negative, hence violates NEC. TheΛCDM (i.e. the standart model of cosmol-

ogy) approachw = −1 as time goes to infinity. Therefore the current standart model

of cosmology (i.e.ΛCDM ) is in contradiction this type of extra dimensional models.

However there are other viable models of dark energy whose equaiton of state does not

go to -1 at infinite future, such as thawing quintessence, tachyon or phantom dark energy

models [55, 56]. In other words this theorem alone does not rule out extra dimensional

cosmological models.

• Dark Energy No-go Theorem IB:

This theorem states thatw cannot be less thanwtransient with −1 < wtransient < −
1

3
for

more than a few Hubble times. However a constant or an almost constantw is compat-

ible with observations and is in fact more compatible then the case whenw varies large

amount. In fact the result of this theorem introduces a problem for inflationary models

[57, 58] formulated in the framework of the assumptions of [20, 21] since inflation needs

at least 40 e-fold expansion [59]. However as we mentioned before, it is possible use an

extension of general relativity which effectively reduces to general relativity at late times

or one may adopt extra dimensional models more general than those given in [20, 21] (i.e.

those that are not conformally Ricci flat in the extra dimensions).

• Dark Energy No-go Theorem IC:

This theorem states that the models in which the moduliξ are fixed (and specificallyGN

is constant) are incompatible with NEC.

The dynamical nature ofξ is a direct consequence of NEC and the equations (5.90)

and (5.91). This conclusion is the framework of the assumptions of [20, 21] is inescable.

However variation ofGN is not an inevitable consequence of this result. If gravitaion

and matter fields live in the same extra dimensional space then their extra dimensional

volume varies at the some rate , so both sides of Einstein equaiton are multiplied by

the same extra dimensional volume factor henceGN remains constant. The remaining

theorems (i.e. those for the models with NEC violation) are specific technical theorems.
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CHAPTER 6

CONCLUSION

In this thesis first we have reviewed the basic concepts of cosmic expansion, dark

energy, and extra dimensions. Then we have reviewed and reexamined the constraints

derived from energy conditions on extra dimensional cosmological models [19–21].

In the second chapter we have seen the basic formulation of cosmic expansion and

the observational evidence for the expansion of the universe. We have derived Einstein

equations for the Friedmann-Lemaitre-Robertson-Walker metric that describes universe at

cosmological scales. And by using these results in the following chapter we construct the

dark energy models. In Chapter 3 we have reviewed dark energy and the corresponding

models of dark energy. We have seen that there are some scalar fields that are viable,

standart candidates for dark energy.

In Chapter 4 we have gone through extra dimensions. We have reviewed the basic

models of extra dimensions; Kaluza-Klein model, ADD model and Randall-Sundrum

models. In Kaluza-Klein model we got the form of Einstein-Hilbert action in 4D by using

5D metric. In this model we aimed to combine Einsten gravity with Maxwell’s theory and

got the corresponding action. In other models we have used extra dimensions to explain

the weakness and the localization of gravity.

In Chapter 5 we have reviwed the dark energy models with extra dimensions. In

this chapter we have given some examples for the models of dark energy in extra dimen-

sions. We have seen that there are constraints on these models. In order to understand

these constraints, we have given some information about energy conditions. In all models

we have checked the possibility of null energy condition (NEC). Therefore by obtaning

the corresponding Einstein equations for each model we have constructed the null en-

ergy condition (NEC) on the models and checked whether it is satisfied or not. We have

seen that it is not easy to accommodate accelerated expansion of the universe in extra

dimensional models. It seems that the only possibility of accommodatingΛCDM (i.e the

Standard model of cosmology) in the context of extra dimensional models in the context

of Einstein-Hilbert action is to have an intrinsic curvature for the extra dimensions. In the

next subsections we have reviewed the study of [20, 21].

In the subsection 5.3.2 we have considered extra dimensional models satisfying

general relativity, flatness condition, boundedness condition, and Ricci flat and confor-
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mally Ricci flat metrics. We have found the NEC elements that are the sum of energy

density and pressure along both the three space and extra space. Next we have considered

some no-go theorems for dark energy in extra dimensions [20]. We have seen that these

theorems suggest the difficulty of constructing extra dimensional models in the context of

the accelerated expansion of the universe.

In the last subsection we have given our critical analysis on these theorems. We

have argued that one may define a physically more relevant averaging than the one given

[20, 21]. In future one should check consequences of such a change in the identifica-

tion of averaging process. The second thought provoking point is the assumption of the

applicability of the higher dimensional NEC. We have seen that imposing higher higher

dimensional NEC is not well founded. Although the implications of NEC in the usual

four dimensions is well known, its implications for higher dimensions is not studied well,

and if the higher dimensional NEC lead to four dimensional conclusions (even after av-

eraging) is not evident. All these points must be studied carefully and in detail in further

studies.
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APPENDIX A

EINSTEIN TENSOR FOR

FRIEDMANN-LEMAITRE-ROBERTSON-WALKER

SPACE

After using equation (2.17) we obtain;

Γρµν =
1

2
gρσ[gµσ,ν + gσν,µ − gµν,σ]

Γ0
00 =

1

2
g0σ[g0σ,0 + gσ0,0 − g00,σ]

Γ0
00 = 0

Γ0
ij =

1

2
g0σ[giσ,j + gjσ,i − gij,σ]

Γ0
ij =

1

2
g00[gi0,j + g0j,i − gij,0]

Γ0
ij =

1

2
∂0[gij]

Γ0
11 =

1

2
∂0[g11]

Γ0
11 =

aȧ

1−Kr2

Γ0
22 =

1

2
∂0[g22]

Γ0
22 = aȧr2

Γ0
33 =

1

2
∂0[g33]
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Γ0
33 = aȧr2sin2θ

Γijk =
1

2
giσ[gjσ,k + gσk,j − gjk,σ]

Γ1
11 =

1

2
g11[g11,1 + g11,1 − g11,1]

Γ1
11 =

2K

1−Kr2

Γ1
22 =

1

2
g11[g12,2 + g21,2 − g22,1]

Γ1
22 =

1

2
g11[−∂1(g22)]

Γ1
22 = −r(1−Kr2)

Γ1
33 =

1

2
g11[−∂1(g33)]

Γ1
33 = −r(1−Kr2)sin2θ
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Γ2
21 =

1

2
g22[g22,1 + g12,2 − g21,2]

Γ2
21 =

1

2
g22∂1(g22)

Γ2
21 =

1

r

Γ3
31 =

1

2
g33∂1(g33)

Γ3
31 =

1

r

Γ2
33 =

1

2
g22[g23,3 + g32,3 − g33,2]

Γ2
33 =

1

2
g22[−∂2(g33)]

Γ2
33 = −sinθcosθ

Γ3
23 =

1

2
g33[g23,3 + g33,2 − g23,3]

Γ3
23 =

1

2
g33∂2(g33)

Γ3
23 = cotθ

Γij0 =
1

2
giσ[gjσ,0 + gσ0,j − gj0,σ]

Γij0 =
1

2
gik∂0(gjk)

Γij0 = δij
ȧ

a

After calculating these elements we can also calculateRµν and also R which is equal to

R = gµνRµν

Rµν = Γρµν,ρ − Γρµρ,ν + ΓρρσΓ
σ
µν − ΓρµσΓ

σ
ρν

R00 = Γρ00,ρ − Γρ0ρ,0 + ΓρρσΓ
σ
00 − Γρ0σΓ

σ
ρ0

R00 = −3
ä

a

Rij = Γρij,ρ − Γρiρ,j + ΓρρσΓ
σ
ij − ΓρiσΓ

σ
ρj

R11 =
aä+ 2ȧ2 + 2K

1−Kr2

R22 = r2(aä+ 2ȧ2 + 2K)

R33 = r2(aä+ 2ȧ2 + 2K)sin2(θ)
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Now we are ready to calculate R which we have written as;

R = gµνRµν

R = g00R00 + g11R11 + g22R22 + g33R33

R =
6

a2
(aä+ ȧ2 +K)

After finding Ricci elements we can calculate Einstein tensor elementGµν from the Ein-

stein equation.We have written it as;

Gµν = Rµν −
1

2
gµνR

G00 = R00 −
1

2
g00R

G00 = −3
ä

a
+

1

2

6

a2
(aä+ ȧ2 +K)

G00 =
3

a2
(ȧ2 +K)

G11 = R11 −
1

2
g11R

G11 =
aä+ 2ȧ2 + 2K

1−Kr2
− 1

2

a2

(1−Kr2)

6

a2
(aä+ ȧ2 +K)

G11 = (Kr2 − 1)(2äa+ ȧ2 +K)

G22 = R22 −
1

2
g22R

G22 = r2(aä+ 2ȧ2 + 2K)− 1

2
a2r2 6

a2
(aä+ ȧ2 +K)

G22 = −r2(2aä+ ȧ2 +K)

G33 = R33 −
1

2
g33R

G33 = r2(aä+ 2ȧ2 + 2K)sin2(θ)− 1

2
a2r2sin2(θ)

6

a2
(aä+ ȧ2 +K)

G33 = −r2sin2(θ)(2aä+ ȧ2 +K)
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APPENDIX B

COSMOLOGICAL CONSTANT IN EINSTEIN STATIC

UNIVERSE

Although Einstein static universe is not a viable model it is instructive to see how a

cosmological constant arises and to see its effect in a simple way. As we found in Chapter

2, when the energy momentum tensor is taken to beTµν = Diag(ρ, P, P, P ) , that is of a

perfect fluid, then we have from (2.24) for a static universe i.e forȧ = 0 ;

K =
8πGρa2

3
(B.1)

Here if ρ > 0 then we see K is positive and this means that the universe is positively

curved to makea2 positive. From equation (2.25) taking̈a to be zero and the value ofρ

we get;

K = −8πGPa2 (B.2)

We see that to have a positive K we should have negative pressure, but as we know in all

forms of energy pressure is not negative. To describe the static universe, we should add

this new term to the Einstein equations. Now the Einstein equations fort his fluid and dust

become;

K =
8πGρa2

3
+

8πGρba
2

3
(B.3)

K = −8πGPa2 +
8πGρba

2

3
(B.4)

HerePb = 0 andρb is the energy density of matter. Cosmological constant contributes

positively to the background energy density and negatively to the pressure. This corre-

sponds to a new form of energy whereρ = −P . This is called ’cosmological constant’.

Cosmological constant can be considered as a perfect fluid with;ρΛ = Λ
8πG

= −PΛ which
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shows us that equation of state is−1.
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APPENDIX C

KALUZA-KLEIN TOWER

Now let us see how ’cylinder condition’ arises naturally in detail with an example

of a real scalar field in 5D space-time. Let us write the Lagrangian density for this scalar

field in 5D;

L = −1

2
∂AΦ∂AΦ, A = 0, 1, 2, 3, 5 (C.1)

Here the fieldΦ(t,−→x , y) ≡ Φ(xµ, y) with µ = 0, 1, 2, 3. Herexµ denotes the 4-dimensional

space-time andy is the fifth dimension that is assumed to be compactified on a circle S

with radius L. As we said before the extra dimension should be periodic withy → y+2πL.

Now we can expand the field in the harmonics on a circle of radius L.

Φ(x, y) =
+∞∑

n=−∞

φn(x)e
iny
L (C.2)

here I denotexµ by x. Then (4.1) reduces to ;

L = −1

2

+∞∑
n,m=−∞

(∂µφn∂
µφm −

nm

L2
φnφm)e

i(n+m)y
L (C.3)

TakingΦ(x, y) real or assumingφn even undery → −y impliesφ−n = φ∗n. If we use this

in (4.3)

S =

∫
d4x

∫ 2πL

0

Ldy = −πL
∫
d4x

+∞∑
n=−∞

(∂µφn∂
µφ∗n +

n2

L2
φnφ

∗
n) (C.4)

Here we performed the integration with respect to extra dimensiony. This resulting ex-

pression is the action for an infinite number of 4-dimensional fieldsφn(x). Now let us

study some properties of these fields. We introduce the notationϕn ≡
√

2πLφn. Then
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writing the action ;

S =

∫
d4x[−1

2
∂µϕ0∂

µϕ0]−
∫
d4x

+∞∑
k=−∞

(∂µφk∂
µφ∗k +

k2

L2
φkφ

∗
k) (C.5)

Now let us interpret this picture. The action above consist of :

• A real single massless scalar field also called ′zero mode′

• infinite number of scalar fields with masses k2

L2

These massive states are called the Kaluza-Klein modes. They are relevant at high en-

ergies. And the zero mode is relevant at low energies. These massive states are not

observed because they are too heavy to be produced in current accelerators sinceL is

very small. For example if we takeL = 10−16cm then for the first KK mode i.ek = 1

mc2 = ~c
L
' 200GeV . We do not observe such particles in current high energy physics

experiments. ThereforeL must be smaller than10−16 cm. Therefore we may say that

since KK modes are not observed yet, extra dimensions are not observed yet.

As a next step let us consider a (4+1) dimensional example of Abelian gauge

fields. For this let us consider the Lagrangian density given as;

L = − 1

4g2
5

FABF
AB (C.6)

whereg5 is coupling term with the dimension of[mass]−1 andFABFAB = FµνF
µν +

2(∂µA5− ∂5Aµ)
2 andFAB is called ’Field strength tensor’ in 5-D and the 4-D part of this

tensor isFµν = ∂µAν − ∂νAµ. Here again expanding the fieldsAµ, A5 in the harmonics

on a circle of lenthL as;

Aµ(x, y) =
+∞∑

n=−∞

A(n)
µ (x)einy/L, A5(x, y) =

+∞∑
n=−∞

A
(n)
5 (x)einy/L (C.7)

The 5-D action can be reduced to 4-D by integrating Lagrangian density over the extra

dimensions we have;

S =

∫
d4x

∫ 2πL

0

L ≡
∫
d4xL4 (C.8)
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The derivatives of the Abelian gauge fieldsAµ, A5 give ;

∂µAν =
+∞∑

n=−∞

∂µA
n
ν (x)e

iny/L, ∂µA5 =
+∞∑

n=−∞

∂µA
n
5 (x)einy/L (C.9)

∂5Aµ =
+∞∑

n=−∞

Anν (x)(
in

L
)einy/L, ∂5A5 =

+∞∑
n=−∞

An5 (x)(
in

L
)einy/L (C.10)

Using (4.9) and (4.10) inFABFAB we have;

FABF
AB = [(

+∞∑
n=−∞

(∂µA
(n)
ν (x)− ∂νA

(n)
µ (x))einy/L

+∞∑
m=−∞

(∂µA(νm)(x)− ∂νA(µm)(x))eimy/L]

+ 2[(
+∞∑

n=−∞

∂µA
n
5 (x))einy/L − (

+∞∑
n=−∞

An5 (x)(
in

L
))einy/L]2

Here we use the conditionA(−n)
µ = (A

(−n)
µ )∗ then some terms will cancel and some

integrals over the extra dimension will be zero. Finally we get;

L4 = − 1

4g2
4

[F (0)
µν F

µν(0) + 2
+∞∑
k=1

[F (k)
µν F

µν∗(k) +
2k2

L2
A(k)
µ Aµ∗(k)] + 2(∂µA

(0)
5 )] (C.11)

where we see the following physical states;

• A zero mode massless gauge field A
(0)
µ

• Massive KK gauge bosons

• Massless scalar field A
(0)
5

As we see from these results all the KK modes are massive except for the zero mode. This

can be interpreted as an effect of Higgs mechanism. In a similiar way one may do Kaluza-

Klein reduction forgµν andR. For the metric tensor̃gµν(x, y), we may decompose it as;

g̃MN(x, y) =
∑
n

g
(n)
MN(x)einy/L (C.12)
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APPENDIX D

PRESSURE AND ENERGY DENSITY FOR FIXED

MODULI

For (RF) models, we have the following useful relations in the case of fixedξ

(breathing mode) and metricgmn :

G00 = −34Ω− 6(∂Ω)2 + e−2Ω+φρT (D.1)

Pk = +4(1− 1

k
)4Ω + (10− 4

k
)(∂Ω)2 + e−2Ω+φ1

2
ρT (−1 + 3w) (D.2)

P3 = +34Ω + 6(∂Ω)2 + e−2Ω+φPT (D.3)

Now we can calculate the elements of NEC by just summing energy density with pressures

respectively. We fnd;

ρ+ P3 = e−2Ω+φ(ρT + PT ) (D.4)

ρ+ Pk = (1− 4

k
)4Ω + 4(1− 1

k
)(∂Ω)2 + e−2Ω+φ1

2
ρT (1 + 3w) (D.5)

For (CRF) models we have ;

G00 = (k − 4)4Ω +
1

2
(k2 − 3k − 10)(∂Ω)2 + e−2Ω+φρT (D.6)

P3 = −(k − 4)4Ω− 1

2
(k2 − 3k − 10)(∂Ω)2 + e−2Ω+φ1

2
ρT (1 + 3w) (D.7)

Pk = (7− k − 6

k
4Ω + (6

2

k
+

5k

2
− k2

2
(∂Ω)2 + e−2Ω+φ1

2
ρT (−1 + 3w) (D.8)

Ant the corresponding NEC elements are ;

ρ+ P3 = e−2Ω+φ(ρT + PT ) (D.9)

ρ+ Pk = (3− 6

k
)4Ω + (k + 1− 2

k
)(∂Ω)2 + e−2Ω+φ1

2
ρT (1 + 3w) (D.10)

68



REFERENCES

[1] E. Hubble. A relation between distance and radial velocity among extra-galactic nebu-

lae.Proceedings of the National Academy of Sciences of the United States of Amer-

ica, 15(3):168, 1929.

[2] D.L. Block. A hubble eclipse: Lemaitre and censorship.History and Philosophy of

Physics (physics.hist-ph), 2011.

[3] A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich,

R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, et al. Observational evidence

from supernovae for an accelerating universe and a cosmological constant.The

Astronomical Journal, 116:1009, 1998.

[4] L. Page, MR Nolta, C. Barnes, CL Bennett, M. Halpern, G. Hinshaw, N. Jarosik,

A. Kogut, M. Limon, SS Meyer, et al. First-year wilkinson microwave anisotropy

probe (wmap) observations: Interpretation of the tt and te angular power spectrum

peaks.ASTROPHYS J SUPPL S, 148(1):233–241, 2003.

[5] J.A. Frieman, M.S. Turner, and D. Huterer. Dark energy and the accelerating universe.

Annual Review of Astronomy and Astrophysics, 46:385–432, 2008.

[6] M. Sami. A primer on problems and prospects of dark energy.Current Science,

97(6):887–910, 2009.

[7] M. Sami. Dark energy and possible alternatives.THE PROBLEMS OF MODERN COS-

MOLOGY, page 303, 2009.

[8] E.J. Copeland, M. Sami, and S. Tsujikawa. Dynamics of dark energy.International

Journal of Modern Physics D, 15(11):1753–1935, 2006.

[9] J.A. Frieman. Lectures on dark energy and cosmic acceleration. InAIP Conference

Proceedings, volume 1057, page 87, 2008.

[10] L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa. Conditions for the cosmo-

69



logical viability of f (r) dark energy models.Physical Review D, 75(8):083504,

2007.

[11] A. Ishibashi and R.M. Wald. Can the acceleration of our universe be explained by the

effects of inhomogeneities?Classical and Quantum Gravity, 23:235, 2006.

[12] C.H. Chuang, J.A. Gu, and WY Hwang. Inhomogeneity-induced cosmic acceleration

in a dust universe.Classical and Quantum Gravity, 25:175001, 2008.

[13] G. Wolschin.Lectures on cosmology: accelerated expansion of the Universe, volume

800. Springer Heidelberg Dordrecht London New York, 2010.

[14] R.M. Wald.General relativity. University of Chicago press, 1984.

[15] D. Ida. Brane-world cosmology.Journal of High Energy Physics, 2000:014, 2000.

[16] V. Sahni and Y. Shtanov. Braneworld models of dark energy.Journal of Cosmology

and Astroparticle Physics, 2003:014, 2003.

[17] B. Greene and J. Levin. Dark energy and stabilization of extra dimensions.Journal of

High Energy Physics, 2007:096, 2007.

[18] B. Cuadros-Melgar and E. Papantonopoulos. Need of dark energy for dynamical

compactification of extra dimensions on the brane.Brazilian journal of physics,

35(4B):1117–1120, 2005.

[19] J.A. Gu and W.Y.P. Hwang. Accelerating universe from the evolution of extra dimen-

sions.Physical Review D, 66(2):024003, 2002.

[20] P.J. Steinhardt and D. Wesley. Dark energy, inflation, and extra dimensions.Physical

Review D, 79(10):104026, 2009.

[21] D.H. Wesley. Oxidised cosmic acceleration.Journal of Cosmology and Astroparticle

Physics, 2009:041, 2009.

[22] E.A. Milne. A newtonian expanding universe.The Quarterly Journal of Mathematics,

(1):64, 1934.

70



[23] D. Layzer. On the significance of newtonian cosmology.The Astronomical Journal,

59:268, 1954.

[24] B. Leibundgut. Cosmological implications from observations of type ia supernovae.

Annual Review of Astronomy and Astrophysics, 39(1):67–98, 2001.

[25] N. Straumann. On the cosmological constant problems and the astronomical evidence

for a homogeneous energy density with negative pressure. InPoincaŕe Seminar
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