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İzmir Institute of Technology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 December 2006
Prof. Dr. Oktay PASHAEV

Department of Mathematics
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ABSTRACT

SPACETIME COMPACTIFICATION INDUCED BY SCALAR

FIELDS

This thesis work is devoted to a discussion of spacetime compactification via

scalar fields. We first provide an introduction to basic concepts and mechanisms, and

review existing compactification methods. We then review and discuss spacetime

compactification triggered by non-linear sigma model fields.

We study spacetime compactification via a single scalar field by requiring

scalar field in higher dimensions to gravitate only in a subset of spacetime dimen-

sions. For this purpose we first review fully non-gravitating scalar field configurations

and then determine conditions and mechanisms for obtaining a partially gravitating

scalar field. In each case Ricci and hence energy-momentum tensor of the scalar

field vanishes completely or partially though this does not imply or require scalar

field itself to vanish.

By making use of the partially-gravitating scalar fields, we discuss how space-

time dimensions get compactified if the scalar field gravitates in those dimensions,

only. We illustrate how this mechanism works in special cases, like generating a

constant-curvature manifold of extra dimensions.
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ÖZET

SKALER ALANLAR YARDIMIYLA UZAYZAMAN

KOMPAKTİFİKASYONU

Bu tez çalışması, skaler alanlar yolu ile uzayzaman kompaktifikasyonunun bir

tartışması olarak hazırlanmıştır.Öncelikle, temel içerikler ve mekanizmalar için bir

giriş yaptık ve varolan kompaktifikasyon metotlarını gözden geçirdik. Daha sonra,

lineer olmayan sigma model alanlarını gözden geçirip, tartıştık.

Bir skaler alan yolu ile uzayzaman kompaktifikayonunu çalıştık öyle ki bunun

için uzayzamanın sadece bir alt kümesinde çekim alanına katkıda bulunan yüksek

boyutlardaki skaler alana gerek vardır. Bunun için, ilk olarak çekim alanına tama-

men katkıda bulunmayan skaler alan biçimlenimlerini gözden geçirdik ve daha sonra

çekim alanına kısmen katkıda bulunan bir skaler alan elde etmek için koşullar ve

mekanizmalar belirledik. Herbir durumda, Ricci tensörü ve dolayısıyla skaler alanın

enerji-momentum tensörü tamamen ya da kısmen yok olur fakat bu skaler alanın

kendisinin yokolması anlamına gelmez ya da bunu gerektirmez.

Çekim alanına kısmen katkıda bulunan skaler alanları kullanarak, eger skaler

alan sadece kompaktife olan boyutlarda çekime katkıda bulunuyorsa, uzayzaman

boyutları nasıl kompaktife olur durumunu tartıştık. Bu mekanizmanın özel durum-

larda, ekstra boyutların sabit egrilikli bir manifoldunu oluşturarak, nasıl çalıştıgını

gösterdik.
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CHAPTER 1

INTRODUCTION

A true understanding of Nature will be achieved when ideas such as matter,

space, time and the number of dimensions we live in are explained. Paul Ehrenfest in

(1917) pointed out that the equations which describe the motion of electrons bound

to nuclei in atoms and the planets around the sun had stable solutions only in three

space dimensions. So it can be inferred from this result that the solar system and

atoms can conserve their structure only if we live in three space dimensions.

A German mathematician Theodor Kaluza pointed out () that if Einstein’s

theory of general relativity is extended to a five-dimensional (5D) spacetime, the

equations can be separated out into ordinary 4D gravitation plus an extra set, which

is equivalent to Maxwell’s equations for the electromagnetic field, plus an extra

field known as dilaton. So in his programme electromagnetism is explained as a

manifestation of curvature in an extra dimension of physical space, in the same way

that gravitation is explained in the theory of general relativity as a manifestation

of curvature in the first three dimensions. There is only one force, gravity, in the

theory and since it is a universal force it effects everything. The component of the

gravitational field in the direction of the fifth (extra) dimension obeyed the same

equation as the electromagnetic field, that is to say, the gravitational force in the fifth

direction was the electromagnetism that we knew. Then a Swedish physicist Oskar

Klein proposed (Klein 1926) that the reason the extra spatial dimension goes unseen

is that it is compact (curled up) like a ball with a fantastically small radius. He

assumed the extra dimension to be compact instead of assuming total independence

from it. So, the extra dimension would have the topology of a circle, with a radius of

the order of the Plank length. The 5D spacetime has the topology M4×S1 where M4

is the usual Minkowski spacetime, and S1 is a circle on which the extra coordinate

takes values.

Since then a wealth of higher-dimensional theories have been motivated by

Kaluza-Klein programme (Overduin and Wesson 1997). The extra dimensions are

assumed to roll up to form a sufficiently small and compact space in the theories
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that we mentioned above and in many other ones. The present experiments tell us

that the characteristic size of the extra dimensions can vary from Planck length up

to a few mm (Long et. al.1999).

It is important to have an understanding of how or why extra dimensions

differed so markedly in size and topology from the ordinary four dimensions. In

other words, it is necessary to find the dynamical mechanism that leads to compact-

ification of the extra dimensions, that is, the higher dimensional space assumes the

topology of ordinary four-dimensional spacetime of macroscopic dimensions times a

compact manifold of extra dimensions. Namely, the configuration M4 × ED should

be an energetically-preferred solution of the higher-dimensional Einstein equations.

This programme has been studied by utilizing higher-curvature gravity (Wetterich

1982, Mueller-Hoissen 1985) and by coupling Einstein gravity to matter in a judi-

cious way. The latter leads to spontaneous compactification of extra dimensions

was pointed out in (Cremmer and Scherk 1976, Cremmer and Scherk 1977). Spon-

taneous compactification has been realized with Yang-Mills fields (Randjbar-Daemi

and Percacci 1982), antisymmetric tensor fields (Freund and Rubin 1980), sigma

model fields (Gell-Mann and Zwiebach 1984) and conformally-coupled scalars (Ger-

ard et. al. 1984). In each case, components of the Ricci tensor are balanced by

those of the stress tensor, and depending on the structure of the latter a subset of

dimensions are found to get compactified.

In this thesis work, we are interested in the dynamical compactification in-

duced by scalar fields. The role of scalars in dynamical compactification process was

first analyzed in (Omero and Percacci 1980, Gell-Mann and Zwiebach 1984, Gell-

Mann and Zwiebach 1985) where a D–dimensional minimally-coupled non-linear

sigma model with metric hij(φ) (i, j = 1, . . . , D) was shown to lead to a dynamical

compactification of D extra dimensions provided that sigma model metric is in the

Riemannian metric form. In other words, equations of motion for the metric field

requires the Ricci tensor Rij to be proportional to hij(φ), and thus, D-dimensional

extra space relaxes to the geometry of the sigma model. The remaining dimensions

xµ (µ = 0, 1, . . .) span a strictly flat Minkowski space. That this set-up compactifies

the extra dimensions yi becomes especially clear with the ansatz φi = yi or any

function of yi is used (Gell-Mann and Zwiebach 1984).
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Obviously, the space of extra dimensions may (Cremmer and Scherk 1976,

Cremmer and Scherk 1977, Randjbar-Daemi and Percacci 1982, Omero and Percacci

1980, Gell-Mann and Zwiebach 1984, Gell-Mann and Zwiebach 1985) or may not

(Gell-Mann and Zwiebach 1984, Gell-Mann and Zwiebach 1985, Randjbar-Daemi

and Wetterich 1986) form a compact space. The extra dimensions can possess neg-

ative curvature yet they can still be compact (Demir and Shifman 2002). Moreover,

the geometry does not need to be factorizable (Randall and Sundrum 1999). In

general, shape and topology of the extra space are entirely determined by the mech-

anism of dynamical compactification.

In this thesis work we discuss yet another compactification mechanism (Demir

and Pulice 2006) induced by scalar fields. We will show that a single scalar field

living in a higher dimensional spacetime can lead to dynamical compactification

of the extra dimensions without inducing a classical cosmological constant when it

gravitates only in those dimensions which are to be compactified. In what follows we

will first review the Kaluza-Klein programme and the method of compactification

induced by scalar fields (Gell-Mann and Zwiebach 1984) in the next chapter.

For a coherent discussion of the compactification mechanism by (Demir and

Pulice 2006), it is necessary to show first that a strictly flat spacetime supports

non-trivial scalar field configurations (Ayon-Beato et. al. 2005). This we will do in

Chapter 3. The next step is to show the compactification of the extra dimensions

into a D–dimensional manifold, and this we will show in Chapter 4. Following that,

we will see the details of the compactification mechanism in chapter 5. We will

conclude in Chapter 6. There are some reviews on curvature tensor (’t Hooft 2002,

Landau and Lifshitz 1975) and energy-momentum tensor (Wienberg 1971) which

are reviewed for completeness in Appendix A and B.
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CHAPTER 2

THE KALUZA-KLEIN PROGRAMME

In the early 20th century the theory of electromagnetism was complete and

well understood, and the theory of gravitation had just been completed by Einstein.

Einstein used Riemannian differential geometry and formulated his theory in four

dimensions by admitting generally relativistic transformations among spacetime co-

ordinates. Then it was natural to try to unify electromagnetism and gravity inspired

by Maxwell’s unification of electricity and magnetism as well as Einstein’s unifica-

tion of time and space. Several people like Nordström in 1914, Weyl in 1918 and

Kaluza in 1921 attempted to accomplish this. As he was working before general rel-

ativity, Nordström assumed a scalar gravitational potential while Weyl and Kaluza

used Einstein’s tensor potential.

Kaluza realized (1919) that Einstein’s four-dimensional theory of gravity and

Maxwell’s theory of electromagnetism can be unified into five-dimensional general

relativity. This theory was entirely a classical theory with the only goal of deriving

both Maxwell’s equations for electromagnetism and Einstein’s general relativity from

5D general relativity. He further assumed that, because no empirical evidence so far

pointed towards a fifth dimension, the field variable would not depend on the fifth

coordinate, but only on the four coordinates of the ordinary space-time continuum.

He achieved this by having some sort of axis of symmetry around which the fifth

coordinate is measured, that is to say, making the metric cylindrical. However,

after that Klein provided an important contribution (1926) where he accomplished

compactification of the fifth dimension. He assumed that the extra dimension was

microscopically small.The idea of Klein has motivated field theorists to unify the

long-range and short-range interactions of physics in higher dimensions. So a wealth

of higher-dimensional theories (such as eleven-dimensional supergravity theories of

1980s and ten-dimensional superstrings) has been motivated by this idea.

The Kaluza-Klein programme is essentially general relativity in five dimen-

sions with imposition certain constraints so as to take into account the facts that
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extra dimensions differ markedly in size and topology from the ordinary four dimen-

sions, and we seem to perceive only a four-dimensional continuum. More explicitly,

the fundamental assumptions included:

a)Cylinder condition: The first condition which consists in setting all par-

tial derivatives with respect to the fifth coordinate (x4) to zero was introduced by

Kaluza. He assumed this condition because no empirical evidence (even today) was

found in favor of a fifth dimension; the field variable would not depend on the fifth

coordinate, but only on the four coordinates of an ordinary space-time continuum.

In other words, physics was to take place in a four-dimensional hypersurface in a

five-dimensional universe. This condition reduced the algebraic complexity of the

programme to a manageable level.

b)Compactification Condition: This condition, brought about by Klein, has

rectified the cylinder condition above. Indeed, instead of full independence of fields

from the extra dimension, Klein has made use of a compact topology (for only one

extra dimension it is a circle) so that fields admitted a zero-mode (a mode which

is completely independent of the extra coordinate) followed by higher harmonics

(which may not be accessible at ordinary energies) was introduced by Klein. The

Klein’s idea was convincing in that extra dimensions do not appear in physics in

four dimensions because they are compactified and unobservable in experimentally

accessible energy scales (even today). Given absence of deviations from Newtonian

gravitational attraction within present-day experimental precision, the characteristic

size of the extra dimensions can vary from Planck length up to a few mm (Long

1999).

2.1. Compactification á la Kaluza

The field equations of both electromagnetism and gravity were obtained

from a single five-dimensional theory with the assumption of cylinder condition.

Kaluza demonstrated that five-dimensional general relativity in vacuum (i.e., ĜAB =

0, A,B = 0, 1, 2, 3, 4) contained four-dimensional general relativity plus electromag-

netic field (i.e., Gαβ = TEMαβ , α, β = 0, 1, 2, 3). The vacuum Einstein equations in
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five dimensions are given by:

ĜAB = 0 (2.1)

or equivalently

R̂AB = 0 (2.2)

where ĜAB ≡ R̂AB − 1
2
R̂ĝAB is the Einstein tensor, R̂AB and R̂ = ĝABR̂

AB are the

five-dimensional Ricci tensor and Ricci scalar, respectively, and ĝAB is the five-

dimensional metric tensor, (A,B=0,1,2,3,4 and the quantities with hat are five-

dimensional). The absence of matter sources in the field equations shows one of

Kaluza’s assumptions which was inspired by Einstein: the universe in higher dimen-

sions is empty. This idea explains matter (in four dimensions) as a manifestation of

pure geometry (in higher dimensions), that is to say, four-dimensional matter arises

purely from the geometry of empty five-dimensional spacetime. Though emptiness

of the higher dimensions sounds appealing, there is no solid ground to prove this.

Therefore, a more general setting that replaces (2.1) would be to use ĜAB = kT̂AB

where k is a constant and T̂AB is a five-dimensional energy-momentum tensor (of

matter living in five dimensions).

The field equations can be derived from a five-dimensional version of the

usual Einstein-Hilbert action by taking the variation of it with respect to the five-

dimensional metric. The action is

S =
1

16πĜ

∫
R̂
√
−ĝd4xdy (2.3)

where y = x4 is the fifth coordinate and Ĝ is five-dimensional gravitational constant.

The five-dimensional Ricci tensor and Christoffel symbols are defined in terms

of the metric as in general number of dimensions:

R̂AB = ∂CΓ̂CAB − ∂BΓ̂CAC + Γ̂CABΓ̂DCD − Γ̂CADΓ̂DBC

Γ̂CAB =
1

2
ĝCD(∂AĝDB + ∂B ĝDA − ∂DĝAB) (2.4)

It is now important to determine the form of the five-dimensional metric. There are

15 relations that serve to determine the 15 ĝAB but this is only possible by making

some educated guess about ĝAB. Kaluza was interested in Maxwell’s theory and
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realized that ĝAB could be expressed in a way involving the four-dimensional vector

potential Aα which is the one in Maxwell’s theory.He adopted the cylinder condition

and took the 44-component of the metric constant, g44 =constant.

In general, the αβ-part of ĝAB is described by gαβ (the four dimensional

metric tensor), the α4-part is defined with Aα (the electromagnetic potential) and

the 44-part is defined with Φ (a scalar field). So the five-dimensional metric tensor

can be decomposed as:

ĝAB =


 gαβ − κ2φ2AαAβ −κφ2Aα

−κφ2Aβ −φ2


 (2.5)

where κ is a coupling constant and Greek indices αβ run over 0,1,2,3, 0 designating

the temporal component. If the cylinder condition is used, that is to say, if all

derivatives with respect to the fifth coordinate drop out, the five-dimensional field

equations (2.2) reduce to the equations below:

Gαβ =
κ2φ2

2
TEMαβ − 1

φ
[∇α∇βφ− gαβg

µν∇µ∇νφ] (2.6)

∇αFαβ = −3
∇αφ

φ
Fαβ (2.7)

gαβ∇α∇βφ = −κ
2φ3

4
FαβF

αβ (2.8)

where

Gαβ ≡ Rαβ −
1

2
Rgαβ (2.9)

is the Einstein tensor,

TEMαβ ≡ 1

4
gαβFγδF

γδ − F γ
αFβγ (2.10)

is the electromagnetic energy-momentum tensor,and

Fαβ ≡ ∂αAβ − ∂βAα (2.11)

is the field strength tensor of electromagnetism.

We can see that Kaluza succeeded in unifying electromagnetism and gravity,

we recover not only the Einstein equations but also the Maxwell equations as well

7



as a Klein-Gordon equation for the massless scalar field φ. He showed that five

dimensional general relativity in vacuum contains both four-dimensional general

relativity in the presence of an electromagnetic field as well as Maxwell’s laws for

electromagnetism. In short, Kaluza-Klein theory is in general a unified account of

gravity, electromagnetism and a scalar field.

However the presence of the scalar field influences the theory. If it is set to

being a constant throughout spacetime (Kaluza set φ = 1) then the first two field

equations (2.6) and (2.7) reduce to Einstein and Maxwell equations:

Gαβ = 8πGTEMαβ (2.12)

∇αFαβ = 0 (2.13)

where the scaling parameter κ is identified in terms of the four-dimensional gravi-

tational constant G as κ ≡ (16πG). This is the result that was obtained by Kaluza

and Klein by setting φ = 1 as we mentioned before. However, it was first pointed

out by Jordan and Thiry that the condition φ = constant is consistent with the

third of the field equations (2.8) if one sets FαβF
αβ = 0.

By using the metric decomposition in (2.5) and definitions of curvature tensor

in five dimensions (2.4), one can see that (2.3) contains three terms. By pulling
∫
dy

out of the action while making use of the cylinder condition (dropping derivatives

with respect to y) one finds:

S =

∫
d4x

√−gφ
( R

16πG
+

1

4
φ2FµνF

µν +
2

3κ2

∂µφ∂µφ

φ2

)
(2.14)

where the five-dimensional gravitational constant Ĝ is defined in terms of the four-

dimensional one G by:

Ĝ ≡ G

∫
dy (2.15)

which expresses that the fundamental scale of gravity in four-dimensions (M 2
Pl =

8πG) equals the fundamental scale of gravity in five dimensions M 3
5 = 8πĜ times

the volume of the extra space Vextra =
∫
dy. More explicitly, M 2

Pl ≡M3
5Vextra.
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The action (2.14) is seen to consist of Einstein and Maxwell actions which

couple to a scalar field φ coming from the 44 component of the metric. The φ

field in (2.14) is seen to possess a non-minimal kinetic term, and this makes it

a perfect candidate from Brans-Dicke (Brans 1961) type scalar field. The Brans-

Dicke models provide a general parametrization of gravity plus scalar field theories

i.e. scalar-tensor theories of gravity. To exemplify such theories more clearly, set

Aµ = 0 in (2.14) then (2.5) reduces to

ĝAB =


 gµν 0

0 φ2


 (2.16)

which exhibits a completely decoupled structure between the four-dimensional sector

and the fifth dimension. For (2.16), the action (2.3) takes the form

S =
1

16πG

∫
d4x

√−gRφ (2.17)

which is nothing but the special case of the Brans-Dicke action with vanishing Brans-

Dicke constant (ω = 0)

SBD =

∫
d4x

√−g
( Rφ

16πG
+ ω

∂µφ∂µφ

φ

)
+ Sm (2.18)

where Sm stands for matter fields that may be coupled to the metric and scalar field.

We here note that the Brans-Dicke constant ω is forced to take very large values by

present-day experiments on the moon.

2.2. Compactification á la Klein

The Swedish theoretical physicist Oscar Klein made a major contribution

to Kaluza’s theory in 1926 by making a physical explanation for Kaluza’s cylinder

condition. In a sense, Klein has rectified the trivial-looking cylinder condition of

Kaluza. Klein assumed that the fifth coordinate has:

1. a small size

2. a circular topology(S1)
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which hand-shake in shaping the experimental and phenomenological studies of extra

dimensions. Under these properties, in particular, the second one any field existing

in 5-dimensional bulk possesses is periodic in the fifth dimension. In other words,

f(xµ, y) = f(xµ, y + 2πr) (2.19)

where r is the radius of S1, and µ = 0, 1, 2, 3 as usual. Here f is a generic field

in 5-dimensional space. This periodicity condition is satisfied if f admits a Fourier

expansion

f(xµ, y) =
n=+∞∑

n=−∞

fn(x
µ)ein

y

r (2.20)

from which we infer that:

1. The lowest mode n = 0 (the so-called zero-mode) is independent of y. This

stems directly from the compact nature of the extra space i.e. S1 on which

the extra dimension y extends.

2. Higher modes n 6= 0 (the so-called higher harmonics) depend explicitly on y

with a wavelength (or equivalently inverse-mass, in natural units) λn = r/n

for n-th harmonic.

3. The xµ-dependence of f(xµ, y) does not exhibit any periodicity at all because

these macroscopic dimensions are not compact; they extend to infinity in both

directions. Thus, the energy spectrum of f(xµ, y) in four-dimensional space-

time can be extracted via Fourier integral rather than Fourier series.

It is clear that Item 1 above, the one about the zero-mode, comprises Kaluza’s

cylinder condition. The Item 2 tells us that higher harmonics can be hidden from

present-day experiments as they may not have reached yet the energies ∼ n/r which

is the main reason behind assuming ’r’ small.

The Fourier expansion (2.20) is valid for any bulk field such as the components

of the five-dimensional metric tensor (2.5):

gµν(x, y) =
n=∞∑

n=−∞

g(n)
µν (x)e

iny

r

10



Aµ(x, y) =
n=∞∑

n=−∞

A(n)
µ (x)e

iny

r

φ(x, y) =
n=∞∑

n=−∞

φ(n)(x)e
iny

r (2.21)

where each Kaluza-Klein mode g
(n)
µν (x) or A

(n)
µ (x) or φ(n)(x) carries a momentum

pn = n/r along the extra dimension. The zero-mode has, of course, no momentum

into the extra space.

The zero-modes of gµν(x, y), Aµ(x, y) and φ(x, y) are nothing but the fields

which have already been established by experiments i.e. photon, quarks, leptons

etc., that is, they are the fields which are strictly bound to live in M4. On the other

hand, their higher harmonics do have a sinusoidal extension into the extra space

with a wavelength decreasing with increasing Kaluza-Klein index, n. For instance,

to be able to disentangle effects of g
(9)
µν (x) on a physical process it is necessary to

have a collider with a characteristic energy ∼ 9/r apart from additional effects that

might come from strength of its coupling to colliding matter species.

In general, taking `Pl ∼ 10−35 m to be the smallest scale above which one can

have a sensible notion of field theories, one can take size of the extra dimensions, r,

to lie from `Pl up to a few mm where the latter follows from experimental studies

on deviations from Newton’s law of attraction (Long 1999).

The higher-dimensional unification, in the sense of metric decomposition (2.5)

and action (2.14) there are three key features:

1. The electromagnetic and gravitational fields are contained in the higher di-

mensional Eintein tensor (4+D)GAB, that is, in the metric and its derivatives.

Therefore, there is no need to have an explicit source of energy and momen-

tum 4+DTAB. In this sense, matter species in four-dimensions, follow from

pure geometry.

2. The mathematical structure of higher dimensional theories are the same as

Einstein gravity in four dimensions. The only change is that tensor indices

run over 0 to (3 +D) instead of 0 to 3.

3. The simple S1 compactification illustrated above or its direct extension to
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more extra dimensions assume that extra dimensions are curled up to form

a compact manifold, in other words there is a cylindrical structure with re-

spect to the extra dimensions. However, this procedure does not explain or

attempt at explaining why and how such a geometrical structure has emerged

dynamically.

The third feature above has always been regarded as some problematic aspect of

the existing compactification schemes, and several approaches have been devised to

put dynamical origin of geometrical structure into a solid ground. In other words,

it is necessary to find the dynamical mechanism that leads to compactification of

the extra dimensions, that is, the macroscopic four-dimensional spacetime times the

compact manifold of extra dimensions should be an energetically-preferred solution

of the higher-dimensional Einstein equations. As we mentioned in the introduction

part, there are several methods for compactification of extra dimensions. Out of

all those methods, in the next section, we will discuss spontaneous spacetime com-

pactification method of Gell-Mann and Zwiebach in order to study roles of scalar

fields in compactification. This section will prove useful for analyses in the following

chapters.

2.3. Compactification á la Gell-Mann and Zwiebach

This method shows that scalar fields of a nonlinear sigma model coupled to

gravity can trigger spontaneous compactification of spacetime if the scalar manifold

has an Einstein metric and the scalar self-coupling constant takes a specific value.

It is then possible to obtain a flat (actually, Ricci-flat) four-dimensional spacetime

times a curved manifold of extra dimensions as the geometrical structure.

The action density consists of Einstein gravity coupled to a non-linear sigma

model in (4 +D) dimensions:

S =
1

2

∫
d4+Dx

√−g
{
−1

2
MD+2

? R +
gµν

λ2
hij(φ)∂µφ

i∂νφ
j

}
(2.22)

where M? is the fundamental scale of gravity in (4 + D) dimensions, and metric

signature is taken to be (−,+,+, ...,+). Here scalar fields φi (i = 1, 2, . . . , D) are

12



regarded as coordinates of a D–dimensional Riemannian manifold ED with met-

ric hij(φ). It is clear that number of scalar fields φi equals the number of extra

dimensions to be compactified.

The equations of motion for metric and scalar fields, as follows form (2.22),

read as:

Rµν =
2

λ2
hij(φ)∂µφ

i∂νφ
j (2.23)

2√−g∂µ(
√−ggµνhij∂νφj) = gµν

∂hpq
∂φi

∂µφ
p∂νφ

q (2.24)

where the Greek indices α, β, γ, . . . with values running from 0 to 3 denote curved

vector indices in the physical 4-dimensional space, and indices i, j, k, . . . with values

running from 1 to D denote curved vector indices in the extra space.

The compactification method of Gell-Mann and Zwiebach (Gell-Mann and

Zwiebach 1984) is based on establishing a one-to-one relation between the scalar

fields φi and extra dimensions xi. In fact, they take

φi(x) = xi (2.25)

where right-hand side may be replaced by any function f(xi) of the extra dimensions.

This correspondence between scalar fields and extra dimensions enforces the system

of equations (2.23,2.24) to have a specific solution enabling one to trade, effectively,

scalars φi for extra dimensions and vice versa.

Under the ansatze (2.25), it is clear that (2.23) give rise to the solutions

Rαβ = 0 (2.26)

Rij(ḡ) =
2

λ2MD+2
?

hij(φ) (2.27)

which explicitly leads to a background geometry with (metric ḡ) a Ricci-flat M4 and

curved (in a way similar to the manifold of scalar fields themselves) extra space ED.

It is clear that (2.27) is easily solved if hij(φ) is a positive-signature Rieman-

nian metric for a positively curved manifold ED, that is, if there is a real constant

α such that

Rij(h(φ)) = α2hij(φ) (2.28)
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so that it suffices to take ḡij = −a2hij (with real a) to find that λ2 = 2MD+2
? /α2

to satisfy (2.27). This relation determines the self-coupling in kinetic term of the

scalar fields in terms of the curvature of the internal manifold.

From this analysis one concludes that extra dimensions roll up to form a

manifold having the same shape as the manifold of sigma model fields φi. The metric

of the manifold ḡij is determined in terms of the Riemannian metric of scalars hij up

to a constant −a2 which cannot be determined by the classical equations of motion.

One notes that the solution above does not admit existence of a scalar self-

interaction potential V (φ). One is also reminded of the fact that a compact manifold

cannot, in general, be covered by a single coordinate patch. For this reason, the

scalar fields are set equal to the extra coordinates over patches.

For scalar fields living on a 2–sphere, the parameter λ2 is calculated to be

1/2. This number agrees with results of (Witten and Bagger 1982) which discusses

consistency of S2 sigma model with N=1 supergravity in four dimensions. This

entails the conclusion that (Witten and Bagger 1982) realizes Gell-Mann–Zwiebach

model in (2 + 2) dimensions.

Our goal is to realize compactification via a single scalar field living in the

bulk, and requisite preparatory work will be given in Chapter 3, below.
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CHAPTER 3

FIELDS WITH VANISHING

ENERGY-MOMENTUM TENSORS

In general, vector fields and fermions are to vanish for them to have vanishing

energy-momentum tensor. Naively, one expects this to hold also for scalar fields.

However, as we will study in detail in this chapter, the scalar fields can have non-

trivial configurations with vanishing energy-momentum tensors.

Let us consider a real scalar field φ living in a (4+D)–dimensional spacetime

with coordinates zA = (xµ, yi) where µ = 0, . . . , 3 and i = 1, . . . , D. Keeping the

gravitational sector minimal, the most general action integral takes the form

S =

∫
d4+Dz

√−g
{

1

2
MD+2

? R− 1

2
gAB∂Aφ ∂Bφ− 1

2
ζRφ2 − V (φ)

}
(3.1)

where we have adopted (−1,+1, . . . ,+1) metric signature, and denoted the curva-

ture scalar by R and fundamental scale of gravity by M?. There is no symmetry

principle for avoiding direct coupling of φ to the curvature scalar, namely, a scalar

field should always exhibit ζRφ2 type interaction with Ricci scalar. The main excep-

tion here is Goldstone bosons. Indeed, Goldstone bosons of spontaneously broken

continuous symmetries do not couple to curvature scalar directly.

Note that the scalar field theory in (3.1) exhibits conformal invariance when

V (φ) ∝ φ4+D and ζ = ζ4+D, where

ζ4+D =
D + 2

4 (D + 3)
(3.2)

which equals 1/6 for D = 0 and 1/4 for D = ∞. The conformal invariance implies

invariance of system under resizings.

The field equations, as usual, follow from (3.1) by the variational principle.

We start analysis by computing the first variation of the action against variations

in the metric field:

δS =

∫
d4+Dz

{
δ
√−g

(
1

2
MD+2

? R− 1

2
gAB∂Aφ∂Bφ− 1

2
ζRφ2 − V (φ)

)

15



+
√−g

(
1

2
MD+2

? δR− 1

2
∂Aφ∂Bφδg

AB − 1

2
ζφ2δR

)}
(3.3)

where we took self-interaction potential V (φ) to be independent of gAB which is

always the case. By using the equalities

δ
√−g =

−1

2

√−ggCDδgCD (3.4)

δR = δ(RABg
AB) = δRABg

AB + RABδg
AB (3.5)

δRAB = ∇CδΓ
C
AB −∇BδΓ

C
AC (3.6)

in (3.3) we get:

δS =

∫
d4+Dz

√−g
{
gCD(−1

4
MD+2

? R +
1

4
gAB∂Aφ∂Bφ+

1

4
ζRφ2 +

1

2
V (φ))δgCD

+
1

2
(MD+2

? − ζφ2)RABδg
AB − 1

2
∂Aφ∂Bφδg

AB − δV (φ)

+
1

2
(MD+2

? − ζφ2)(∇CδΓ
C
AB −∇BδΓ

C
AC)

}
(3.7)

whose last line can be further simplified into

δI =

∫
d4+Dz

√−g1

2
ζ

(
∂A∂Bφ

2δgAB − gAB∂A∂Bφ
2gCDδg

CD

)
(3.8)

which stems solely from the direct coupling between φ2 and curvature scalar R.

Substitution of (3.8) into (3.7) and use of the action principle i.e. the prin-

ciple that the first variation of the action, δS, must vanish for classical gAB config-

uration, lead us to

δS

δgEF (x)
= 0

=

∫
d4+Dz

√−g
{(

−1

4
MD+2

? R +
1

4
gCD∂Cφ∂Dφ+

1

4
ζRφ2 +

1

2
V (φ)

)
gAB

+
1

2
(MD+2

? − ζφ2)RAB − 1

2
∂Aφ∂Bφ

+
1

2
ζ∂A∂Bφ

2 − 1

2
ζgCD∂C∂Dφ

2gAB

}
δ4+D(x− z) (3.9)

which implies

GAB = RAB − 1

2
RgAB =

TAB

MD+2
? − ζφ2

(3.10)
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as the equation of motion for metric field components gAB. These are nothing but

gravitational field equations (the Einstein equations) in (4 +D) dimensions with a

variable Newton constant: MD+2
? − ζφ2 instead of MD+2

? alone.

TAB at the right-hand side designates energy-momentum distribution of the

scalar field. In fact, from (3.9) it follows that

TAB = ∂Aφ∂Bφ− gAB

(
1

2
gCD∂Cφ∂Dφ+ V (φ)

)

+ ζ(gAB∂µ∂
µ −∇A∇B)φ2 . (3.11)

whose last term, which involves second derivatives of φ2, follow from direct coupling

between curvature scalar and φ in the original action (3.1).

As usual, one can rewrite (3.10) for Ricci tensor RAB by first determining

the curvature scalar from the trace of (3.10):

R = − 2

D + 2

T

MD+2
? − ζφ2

(3.12)

where T = gABTAB is the trace of the energy-momentum tensor. Plugging (3.12)

into (3.10) above gives us

RAB =
1

MD+2
? − ζφ2

(TAB − 1

D + 2
TgAB) (3.13)

which is a dynamical equation for Ricci tensor rather than Einstein tensor. The

source term at right-hand side is given by

TAB(φ) = TAB − 1

D + 2
gABg

CDTCD

= ∂Aφ∂Bφ− ζ∇A∇Bφ
2

+
1

D + 2

(
2V (φ) − ζ∂C∂

Cφ2
)
gAB (3.14)

which will be utilized throughout the chapters to come.

Having formed equations of motion for gAB we turn to that of the scalar field

φ. This requires computing the first variation of (3.1) with respect to variations in

φ. More explicitly we have:

δS =

∫
d4+Dz

√−g
{

− gAB∂Aφ∂B(δφ) − ζRδ(φ) − δV (φ)

}
(3.15)
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where we keep in mind that derivative ∂ and variation δ operations commute since

the latter is related to deviations of φ from a fixed configuration at each spacetime

point. This fact allows us to rewrite (3.15) in the form

δS

δφ(x)
=

∫
d4+Dz

√−g
{
gAB∂Aφ∂Bφ− ζRφ− V ′(φ)

}
δ4+D(x− z)

(3.16)

which has to vanish according to action principle if φ is to represent the true con-

figuration of the system.

As a result, the correct configurations of gAB and φ fields, equivalently, the

field configurations that extremize the action functional (3.1) obey the system of

partial differential equations

RAB =
TAB(φ)

MD+2
? − ζφ2

(3.17)

∇A∇Aφ = ζRφ+ V ′(φ) (3.18)

where prime denotes differentiation with respect to φ.

In the next two sections we will be exclusively dealing with self-consistent

solutions of (3.17) and (3.18). As will be detailed below, our primary inquiry will

be to nullify TAB fully or partially depending on what we want.

3.1. Non-gravitating Scalar Field

We start our analysis by considering first a completely non-gravitating scalar

i.e. we impose TAB = 0 for all A = (µ, i) and B = (ν, j). This implies that

RAB vanishes for all A,B so that metric tensor may be assumed to take the form

ηAB = (−1, 1, . . . , 1), as mentioned before. In other words, we take spacetime having

a vanishing Ricci tensor to be ’flat’. This is actually a critical assumption since there

are curved spacetimes having vanishing Ricci tensor. In this sense, our concern in

this thesis work is Ricci-flat spacetimes or spacetimes which are taken to be flat once

the corresponding Ricci tensor vanishes.

The non-gravitating scalar fields have originally been analyzed in (Ayon-

Beato et. al. 2005). Here we essentially repeat their analysis as a preparatory work

for partially-gravitating scalars to be discussed in the next section.
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It is convenient to nullify first TAB for A 6= B.

T A6=B
AB = ∂Aφ∂Bφ− ζ∂A∂Bφ

2

= 0 (3.19)

These equations receive contributions from the first line of the second equality in

(3.14) only, and the form that they enforce φ to have can be guessed to be

φ = ψα, α : constant (3.20)

where derivatives of φ can be related to those of ψ via

∂Bφ = αψα−1∂Bψ

∂Bφ
2 = 2αψ2α−1∂Bψ

∂A∂Bφ
2 = 2α(2α− 1)ψ2α−2∂Aψ∂Bψ + 2αψ2α−1∂A∂Bψ

(3.21)

as needed for analyzing (3.19). Indeed, by substituting these equalities into (3.19)

one arrives at

T (A6=B)
AB = α2ψ2α−2∂Aψ∂Bψ − ζ2α(2α− 1)ψ2α−2∂Aψ∂Bψ − ζ2ψ2α−1∂A∂Bψ

= 0 (3.22)

from which it is easy to obtain

α− 2ζ(2α− 1) = 0 (3.23)

or equivalently

α = − 2ζ

1 − 4ζ
(3.24)

so that φ is determined to have the form

φ = ψ− 2ζ

1−4ζ . (3.25)

Here ψ is another scalar field introduced as a result of the transformation (3.20).

The vanishing of the diagonal entries of TAB further determines ψ to be a

second order polynomial in zA, and V (φ) to be a function of φ only. This can be
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seen by an explicit calculation. First, one notes that both T00 and Tii (no sum over

i) must vanish:

T00 = 0 = (∂0φ)2 − 2

D + 2
V (φ) − ζ

D + 2
(−∂µ∂µ + (D + 2)∂2

0)φ
2 (3.26)

Tii = 0 = (∂iφ)2 +
2

D + 2
V (φ) − ζ

D + 2
(∂µ∂

µ + (D + 2)∂2
i )φ

2 (3.27)

and hence their sum

T00 + Tii = (∂0φ)2 + (∂iφ)2 − ζ(∂2
0 + ∂2

i )φ
2

= 0 . (3.28)

By using (3.25) in (3.28) we get

T00 + Tii = α2ψ
2α−2

[
(∂0ψ)2 + (∂iψ)2

]

− ζ

[
2α(2α− 1)ψ2α−2(∂0ψ)2 + 2αψ2α−1∂2

0ψ

+ 2α(2α− 1)ψ2α−2(∂iψ)2 + 2αψ2α−1∂2
i ψ

]

= −2ζαψ2α−1(∂2
0ψ + ∂2

i ψ)

= 0 . (3.29)

Consequently, φ(z) must have the form

φ(z) ≡ φ0(z) =

(
ã

2
ηABzAzB + ηABzAp̃B + b̃

)− 2ζ

1−4ζ

(3.30)

where ã, b̃ and p̃A are constants of integration. For φ(z) to take this rather specific

form its self-interaction potential must take a special form which can be found by

using (3.26):

T00 = α2ψ2α−2(∂ψ)2 − 2

D + 2
V (φ)

− ζ

D + 2

{
− 2α(2α− 1)ψ2α−2ηAB∂Aψ∂Bψ − 2αψ2α−1ηAB∂A∂Bψ

+ (D + 2)

(
2α(2α− 1)ψ2α−2(∂0ψ)2 + 2αψ2α−1∂2

0ψ

)}

= α2ψ2α−2(ãz0 + p̃0)
2 − 2

D + 2
V (φ)
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− ζ

D + 2

{
− 2α(2α− 1)ψ2α−2

(
− (ãz0 + p̃0)

2 +
∑

i

(ãzi + p̃i)
2

)

− 2αψ2α−1ã(D + 4)

+ (D + 2)

(
2α(2α− 1)ψ2α−2(ãz0 + p̃0)

2 − 2αψ2α−1ã

)}

(3.32)

whose algebraic rearrangements gives

T00 = ψ2α−2(α2 − 2ζα(2α− 1)) − 2

D + 2
V (φ) +

4ζαã(D + 3)

D + 2
ψ2α−1

+
2ζα(2α− 1)

D + 2
ψ2α−2

(
− (ãx0 + p̃0)

2 +
∑

i

(ãxi + pi)
2

)
. (3.33)

The first term at the right-hand side vanishes due to (3.23) so that

T00 =
2ζα(2α− 1)

D + 2
ψ2α−2

(
− (ãz0 + p̃0)

2 +
∑

i

(ãzi + p̃i)
2

)

+
4ζã(D + 3)

D + 2
ψ2α−1 − 2

D + 2
V (φ) . (3.34)

Now, by using the functional dependence of φ on z in (3.30) we can rearrange the

last term in (3.34) as

ηAB(ãzA + p̃A)(ãzB + p̃B) = ηABã2zAzB + ηAB2ãp̃AzB + 2ãb̃+ ηAB p̃Ap̃B − 2ãb̃

= 2ãψ + ηAB p̃Ap̃B − 2ãb̃ (3.35)

whose replacement into (3.34) gives

T00 =
4ζα(2α− 1)ã

D + 2
ψ2α−1 +

4ζα(D + 3)ãψ2α−1

D + 2

+
2ζα(2α− 1)

D + 2
(p̃2 − 2ãb̃)ψ2α−2 − 2

D + 2
V (φ)

=
32ã(D + 3)

(D + 2)

ζ2

(1 − 4ζ)2
(ζ − ζD+4)ψ

2α−1

+ 4
(ηAB p̃Ap̃B − 2ãb̃)

(D + 2)

ζ2

(1 − 4ζ)2
ψ2α−2 − 2

D + 2
V (φ)

= 0 . (3.36)

This then enforces a specific form for the self-interaction potential of φ:

V (φ0) = 16ã(D + 3)
ζ2

(1 − 4ζ)2 (ζ − ζ4+D)φ
1

2ζ

0

+ 2
(
ηAB p̃Ap̃B − 2ãb̃

) ζ2

(1 − 4ζ)2φ
1−2ζ

ζ

0 (3.37)
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which explicitly depends on the parameters of (3.30). Consequently, for TAB to van-

ish the scalar field itself does not need to vanish; all that is required is to devise a

self-interaction potential (3.37) on the specific solution (3.30) for φ(z). One notices

that this non-gravitating nontrivial field configuration arises thanks to the ζ depen-

dent terms in TAB or equivalently the non-minimal coupling of φ to the curvature

scalar. Indeed, when ζ → 0 the scalar field reduces to a constant and V (φ) → 0,

which is the well-known trivial configuration.

It is not hard to see that (3.30) and (3.37) also nullify TAB, the true energy-

momentum tensor of φ in (3.11). Actually, this coincidence is expected since the

Einstein tensor vanishes whenever the Ricci tensor vanishes. The fact that a non-

minimally coupled scalar field possesses a non-trivial configuration despite its van-

ishing TAB has recently been discussed in (Ayon-Beato et. al. 2005), and field and

potential solutions in (3.30) and (3.37) have already been obtained therein. The

wave front is spherical for p̃A = 0 and planar for ã = 0. When ζ = ζ4+D the first

term in potential drops out, and the second term becomes proportional to φ
−(D+4)
0 ,

which is precisely what is required by conformal invariance (Demir 2004).

An interesting property of the potential function (3.37) is that its minimum

varies with ζ.

V (φ) = Aφ
1

2ζ +Bφ
1−2ζ

ζ (3.38)

where

A = 16ã(D + 3)
ζ2

(1 − 4ζ)2 (ζ − ζ4+D)

B = 2
(
ηAB p̃Ap̃B − 2ãb̃

) ζ2

(1 − 4ζ)2 (3.39)

If we differentiate (3.38) we get

V ′ =
A

2ζ
+Bφ

1−2ζ

2ζ +B

(
1 − 2ζ

ζ

)
φ

1−2ζ

ζ

= φ
1−2ζ

2ζ

{
A

2ζ
+B

(
1 − 2ζ

ζ

)
φ

1−4ζ

2ζ

}

= 0 (3.40)

One can see that for ζ > ζ4+D it is minimized at φ = 0 whereas its minimum occurs
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at

φ =

(
(D + 3)(ζ − ζ4+D)

2ζ − 1

4ã

ηAB p̃Ap̃B − 2ãb̃

) 2ζ

1−4ζ

(3.41)

when ζ < ζ4+D and ηAB p̃Ap̃B − 2ãb̃ > 0. In this sense the conformal value of ζ

represents a threshold level below and above which the lowest energy configuration

for V (φ0) drastically changes.

So far we have discussed only the solution of TAB = 0 with no mention of

the equation of motion of φ in (3.18). Actually, the field configuration (3.30) with

V (φ) given in (3.37) automatically satisfies (3.18). This observation is correct for all

parameter ranges; in particular, at the two possible minima of the potential: φ = 0

and φ = φ.

3.2. Partially-gravitating Scalar Field

In this section we discuss cases where φ gravitates only in a subset of di-

mensions. The construction of completely non-gravitating scalar above will serve as

a guide for our analysis. We will look for metric and scalar field configurations in

agreement with the following TAB texture:

Tµν(φ) = 0 (3.42)

Tµj(φ) = Tiν(φ) = 0 (3.43)

Tij(φ) 6= 0 (3.44)

where Tij(φ) determines topology and shape of the extra space via (3.17). As men-

tioned before, when TAB vanishes for a certain range of indices so does the Ricci ten-

sor. This, however, is not a trivial condition when φ gravitates in a subset of dimen-

sions only. To clarify this point consider, for instance, the constraint (3.42) above.

It guarantees that Rµν = 0; however, it cannot guarantee, even with gµν = ηµν , that

the quartet (x0, x1, x2, x3) forms a flat space. The reason is that ∇µ∇νφ
2 = ∂µ∂νφ

2

if and only if the connection coefficients, ΓABC , satisfy ΓAµν = 0 for all (A, µ, ν). This

is guaranteed if gµj and giν depend only on the extra dimensions. On the other

hand, considering Tµj and Tiν , one finds that ∇µ∇i = ∂µ∂i if gµj and giν both are

constants with respect to all coordinates xA, and if gij depends only on the extra
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dimensions. These flatness conditions on different groups of coordinates implies that

the metric tensor gAB must conform to structure of TAB in (3.42-3.44):

gµν = ηµν (3.45)

gµj = giν = 0 (3.46)

gij = gij(~y) (3.47)

which exhibits a block-diagonal structure as it should for extra coordinates {yi}
to be compactified i.e. decoupled from the usual non-compact dimensions. With

this structure for the metric tensor, the source term of the Ricci tensor Rµν in four

dimensions can be found as

Tµν = ∂µφ∂νφ− ζ∂µ∂νφ
2 +

1

D + 2
(2V (φ)

− ζηαβ∂α∂βφ
2 − ζgij∂i∂jφ

2)ηµν (3.48)

which can be put into a more familiar form

Tµν(φ) = ∂µφ∂νφ− ζ∂µ∂νφ
2

+
1

D + 2

(
2Vnew(φ) − ζηαβ∂α∂βφ

2
)
ηµν (3.49)

as follows from (3.14). This expression is similar to the modified energy-momentum

tensor of a scalar field living in four dimensions except for two key features: (i)

instead of 1/2 factor in four dimensions we have 1/(D+ 2), and (ii) the scalar field

lives in the entire (4 + D)–dimensional spacetime i.e. it depends also on the extra

dimensions.

From (3.49) it is seen that, as seen from four dimensions, the self-interaction

potential of φ is not the original one V (φ), but

Vnew(φ) = V (φ) − 1

2
ζgij∇i∇jφ

2 (3.50)

which involves derivatives of φ2 with respect to extra coordinates {yi}.

For Tµν(φ) to vanish, first of all, the scalar field must have the special form

φ(z) ≡ φ0(z) =
(a

2
ηµνxµxν + ηµνxµpν + b

)− 2ζ

1−4ζ

(3.51)

in analogy with (3.30) derived in Sec. 3.1 above. Here, in principle, all the parame-

ters a, b and pµ are functions of the extra coordinates {yi}, and their mass dimensions
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are 2 − (1 − 4ζ)(D + 2)/4ζ, −(1 − 4ζ)(D + 2)/4ζ and 1 − (1 − 4ζ)(D + 2)/4ζ, re-

spectively. The scalar field configuration (3.51) describes a shock wave propagation

in four dimensions at each point {yi} of the extra space.

Having φ(z) obeying to (3.51) is not sufficient for nullifying all components

of Tµν , however. Indeed, for Tµν to vanish completely we have to find the special

form of the self-interaction potential which would yield φ0(z) as a solution. Let us

consider

T00 = (∂0φ)2 − ζ∂2
0φ

2 − 1

D + 2
(2Ṽ (φ) − ζηαβ∂α∂βφ

2) (3.52)

which can be rearranged to give

T00 = (∂0φ)2 − ζ

(
D + 3

D + 2

)
∂2

0φ
2 − 2

D + 2
Ṽ (φ) +

ζ

D + 2

2∑

j

φ2 . (3.53)

As in Sec.3.1 above, it is convenient to perform a transformation of φ to

another scalar field ε similar to (3.20):

φ(z) = ε−
2

1−4ζ (3.54)

so that various derivatives take the form

∂0φ =

(
− 2ζ

1 − 4ζ

)
ε

2ζ−1

1−4ζ ∂0ε

∂2
0φ

2 =
4ζ

(1 − 4ζ)2
ε

4ζ−2

1−4ζ (∂0ε)
2 − 4ζ

1 − 4ζ
ε−

1

1−4ζ ∂2
0ε

∂2
i φ

2 =
4ζ

(1 − 4ζ)2
ε

4ζ−2

1−4ζ (∂iε)
2 − 4ζ

1 − 4ζ
ε−

1

1−4ζ ∂2
i ε (3.55)

and their substitution in in (3.52) gives

T00 = − 2

D + 2
Ṽ (φ) − 4ζ2

1 − 4ζ

1

D + 2

φ2

ε

(
− 1

1 − 4ζ

∂µε∂
µε

ε

− (D + 3)∂2
0ε+

∑

j

∂2
j ε

)
. (3.56)

Furthermore, by using the identities

∂µε∂
µε

ε
=

1

ε
ηµν(axµ + pµ)(axν + pν)

=
1

ε
(a2ηµνxµxν + 2aηµνxµpν + p2)

=
1

ε

(
2a(

a

2
ηµνxµxν + ηµνxµpν + b) + p2 − 2ab

)

= 2a+
p2 − 2ab

ε
(3.57)
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and

∑

j

∂2
j ε = 3a

∂2
0ε = −a (3.58)

(3.56) takes the form

T00 = − 2

D + 2
Ṽ (φ) − 4ζ2

(1 − 4ζ)2

a[(D + 6)(1 − 4ζ) − 2]

D + 2
φ

1

2ζ

+
4ζ2

(1 − 4ζ)2

1

D + 2
(p2 − 2ab)φ

1−2ζ

ζ

(3.59)

whose vanishing yields a solution for Ṽ (φ)

Ṽ (φ) = − 2ζ2a

(1 − 4ζ)2

(
(D + 6)(1 − 4ζ) − 2

)
φ

1

2ζ

+
2ζ2

(1 − 4ζ)2
(p2 − 2ab)φ

1−2ζ

ζ . (3.60)

This expression for self-interaction potential can be put into a more suggestive form

by defining

(D + 6)(1 − 4ζ) − 2 = −4(D + 6)

(
ζ − D + 4

4(D + 6)

)

= −4(D + 6)(ζ − ζcrit) (3.61)

which finally yields

Ṽ (φ0) = 8a(D + 6)
ζ2

(1 − 4ζ)2 (ζ − ζcrit)φ
1

2ζ

0

+ 2 (ηµν p̃µp̃ν − 2ab)
ζ2

(1 − 4ζ)2φ
1−2ζ

ζ

0 (3.62)

which is to be contrasted with the potential function (3.37) of purely non-gravitating

scalar field discussed in Sec. 3.1 above. The most important difference between the

two potentials comes from replacement of ζ4+D in (3.37) by

ζcrit =
(D + 4)

4(D + 6)
(3.63)

which ranges from 1/6 at D = 0 to 1/4 at D = ∞. These two critical ζ values, ζcrit

and ζ4+D, agree at D = 0 and D = ∞, but behave differently in between. Clearly,
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ζcrit arises from 1/(D+ 2) factor in (3.49), and the two potentials (3.37) and (3.62)

coincide when D = 0. In other words, (3.49) is not the true stress tensor of a scalar

field living in four-dimensions; it is just projection of the stress tensor of a scalar

field living in (4 + D) dimensions upon four-dimensional subspace. It is with the

special solution (3.62) i.e. it is with

Vnew(φ0) = Ṽ (φ0) (3.64)

which holds on φ(z) = φ0(z) that all ten components of Tµν and hence those of Rµν

vanish with a strictly flat metric ηµν .

Having determined under what conditions Tµν vanishes, we now look for

implications of (3.43). Obviously, vanishing of Tµj and Tiν is guaranteed if φ0(z) in

(3.51) does not involve mixed terms of xµ and yi. In other words, the parameters

a, ζ and pµ must be global constants yet b = b(~y). The dependence of b on extra

dimensions is rather general; all that is needed is to satisfy equations of motion

self-consistently. For future reference, the two values of φ which makes the potential

minimum are found as

Ṽ (φ) = Aφ
1

2ζ +Bφ
1−2ζ

ζ (3.65)

where

A = 8a(D + 6)
ζ2

(1 − 4ζ)2
(ζ − ζcrit)

B =
2ζ2

(1 − 4ζ)2
(ηµνpµpν − 2ab) . (3.66)

First, by requiring (3.65) to have a vanishing derivative we get

Ṽ ′(φ) =
A

2ζ
φ

1−2ζ

2ζ +B

(
1 − 2ζ

ζ

)
φ

1−3ζ

ζ

= φ
1−2ζ

2ζ

{
A

2ζ
+B

(
1 − 2ζ

ζ

)
φ

1−4ζ

2ζ

}

= 0 (3.67)

from which it follows that (by taking a > 0 and pµp
µ − 2ab(~y) > 0) Ṽ (φ0) is

minimized at φ0 = 0 for 1/4 > ζ > ζcrit, and at φ0 = φ with

φ =

(
(D + 6)(ζ − ζcrit)

2ζ − 1

2a

ηµνpµpν − 2ab(~y)

) 2ζ

1−4ζ

(3.68)
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for ζ < ζcrit. Clearly, unless the shock wave propagation in four dimensions is a

spherical one, a 6= 0, this very minimum of Ṽ (φ0) is neither possible nor meaningful.

Finally, we analyze implications of a finite Tij. By construction, Tij does

not vanish and hence extra space experiences a nontrivial curving. On the field

configuration (3.51) for which Tµν , Tiν and Tµj vanish identically, equations of motion

for the metric tensor and φ0 take the form

Rij =
Tij(φ0)

MD+2
? − ζφ2

0

(3.69)

gij∇i∇jφ0 = ζRφ0 + V ′(φ0) − Ṽ ′(φ0) − aD
ζ

1 − 4ζ
φ

1−2ζ

2ζ

0 (3.70)

where the source of Ricci tensor is found from (3.14). Explicitly,

Tij(φ0) = ∂iφ0∂jφ0 − ζ∇i∇jφ
2
0

+
1

D + 2

(
2V (φ0) − ζηµν∂µ∂νφ

2
0 − ζgij∇i∇jφ

2
0

)
gij

= ∂iφ0∂jφ0 − ζ∇i∇jφ
2
0 +

1

D + 2

(
2Ṽ (φ0) − ζηµν∂µ∂νφ

2
0

)
(3.71)

where the terms in the parenthesis can be computed by using (3.62) and the identity

∂µ∂νφ
2
0 =

4ζ

(1 − 4ζ)2
ε

4ζ−2

1−4ζ ∂µε∂νε−
4ζ

1 − 4ζ
ε−

1

1−4ζ ∂µ∂νε (3.72)

so that

2Ṽ (φ0) − ζηµνφ2
0 = 16a(D + 6)

ζ2

(1 − 4ζ)2

(
ζ − D + 4

4(D + 6)

)
φ

1

2ζ

0

+
4ζ2

(1 − 4ζ)2
(p2 − 2ab)φ

1−2ζ

ζ

0

− 4ζ2

(1 − 4ζ)2
ε

4ζ−2

1−4ζ ∂µε∂
µε+

4ζ2

1 − 4ζ
ε−

1

1−4ζ ∂µ∂νε

= 4a
ζ2

(1 − 4ζ)2

(
4(D + 6)ζ − (D + 4)

)
φ

1

2ζ

0

+
4ζ2

(1 − 4ζ)2
(p2 − 2ab)φ

1−2ζ

ζ

0

− 4ζ2

(1 − 4ζ)2
ε

4ζ−2

1−4ζ (2aσ + p2 − 2ab)

+
4ζ2

1 − 4ζ
ε−

1

1−4ζ 4a (3.73)
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where use has been made of

−∂2ε

∂x2
0

=
∂2ε

∂x2
1

=
∂2ε

∂x2
2

=
∂2ε

∂x2
3

= a

ηµν∂µ∂νε = −∂2
0ε+ ∂2

i ε = 4a (3.74)

Then by rewriting ε in terms of φ one finds

2Ṽ (φ0) − ζηµν∂µ∂νφ
2
0 = − 4aζ2

1 − 4ζ
(D + 2) (3.75)

so that the source term for Ricci tensor takes the form:

Tij(φ0) = ∂iφ0∂jφ0 − ζ∇i∇jφ
2
0 −

4aζ2

1 − 4ζ
φ

1

2ζ

0 gij (3.76)

which requires φ to possess the specific solution φ0 given in (3.51).

A simultaneous solution of (3.69) and (3.70) completely determines the cur-

vature scalar. To see this, first let us take trace of (3.69). It gives

R =
T

MD+2
? − ζφ2

(3.77)

whose right-hand side requires trace of (3.76):

T (φ0) = gijTij(φ0)

= ∂iφ0∂
iφ0 − ζ∇i∇iφ2

0 −
4aDζ2

1 − 4ζ
φ

1

2ζ

0 . (3.78)

Then by using (3.50) we find

−ζgij∇i∇jφ
2
0 = 2

(
Ṽ (φ)0 − V (φ0)

)
(3.79)

so that (3.78) takes the form

T (φ0) = ∂iφ0∂
iφ0 + 2

(
Ṽ (φ0) − V (φ0)

)
− 4aDζ2

1 − 4ζ
φ

1

2ζ

0 . (3.80)

We can further iterate the first term of this expression. Consider first

gij∇i∇jφ
2
0 = 2gij∇iφ0∇jφ0 + 2gijφ0∇i∇jφ0 (3.81)

where the second term at right-hand side follows from (3.70) to be

φ0g
ij∇i∇jφ0 = ζRφ2

0 + φ0

(
V ′(φ0) − Ṽ ′(φ0)

)
− aDζ

1 − 4ζ
φ

1

2ζ

0 (3.82)
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whose substitution back in (3.81) gives

gij∂iφ0∂jφ0 = −1

ζ

(
Ṽ (φ0) − V (φ0)

)
− ζRφ2

0 − φ0

(
V ′(φ0) − Ṽ ′(φ0)

)
+

aDζ

1 − 4ζ
φ

1

2ζ

0 .(3.83)

This last expression when plugged (3.80) yields

T (φ0) = −1

ζ

(
Ṽ (φ0) − V (φ0)

)
− ζRφ2

0 − φ0

(
V ′(φ0) − Ṽ ′(φ0)

)
+

aDζ

1 − 4ζ
φ

1

2ζ

0

+ 2
(
Ṽ (φ0) − V (φ0)

)
− 4aDζ2

1 − 4ζ
φ

1

2ζ

0

= RMD+2
? − ζRφ2

0 (3.84)

from which the scalar curvature follows:

R =
1

MD+2
?

{(
2 − 1

ζ

)(
Ṽ (φ0) − V (φ0)

)

+ φ0

(
Ṽ ′(φ0) − V ′(φ0)

)
+ aDζφ

1

2ζ

0

}
(3.85)

which is a measure of the degree to which the extra space is curved.

Having worked out the question of under what conditions a bulk scalar in

4 + D dimensions gravitates only in a subgroup of dimensions, we now turn to a

discussion of the role and nature of the self-interaction potential Vnew(φ) of φ(z).

First of all, Vnew(φ) is the scalar potential felt by a generic scalar field when the

higher dimensional metric obtains the block diagonal structure in (3.45-3.47). In

other words, it refers to part of the action density when all derivatives with respect

to xµ are dropped out. In fact, it is not more than a rearrangement of the terms

involving derivatives with respect to extra dimensions so that action density looks

like a four-dimensional one to facilitate analysis of Tµν = 0. In particular, Vnew(φ)

has nothing to do with the effective potential one would obtain by integrating out

degrees of freedom associated with extra dimensions. It is neither a four-dimensional

effective potential in the common sense of the word nor a (4 + D)–dimensional

effective potential; it is a local function of coordinates, and by taking the specific

form Ṽ (φ), it directly participates in flattening of the four-dimensional spacetime

and in curving of the extra space via the equations of motion (3.69) and (3.70).

To stress again, Ṽ (φ) is just an analog of (3.37), and mathematically it is highly

useful since its extrema in (3.68) will feature in the next section when we discuss

compactification of the extra dimensions.
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In summary, the entire dynamical problem has thus reduced to a self-

consistent solution of (3.69) and (3.70). The unknowns of the problem are the

metric tensor gij(~y) and b(~y). Once these two parameters are fixed one obtains a

precise description of the geometry and shape of the extra space. The terms in-

volving derivatives with respect to xµ in the original equations of motion (3.17) and

(3.18) have been eliminated by using the explicit expression of φ in (3.51). It is easy

to see that, when b(~y) = a
2
ηijyiyj + ηijyipj + b0, b0 being a constant, all components

of Tij vanish and entire (4 + D)–dimensional spacetime becomes flat, as discussed

in detail in Sec.3.1 above. All other forms of b(~y) lead to a nontrivial curving of the

extra space. In the next section we will analyze (3.69) and (3.70), and discuss their

implications for compactification of the extra dimensions.

In the next chapter we will discuss role of partially gravitating scalars in

compactification of the extra dimensions.
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CHAPTER 4

SPACETIME COMPACTIFICATION

Spontaneous compactification of (4 +D)–dimensional spacetime M
4+D into

a four-dimensional flat spacetime M
4 spanned by the four macroscopic dimensions

times a D-dimensional manifold E
D means that M

4 ⊗ E
D is an energetically pre-

ferred solution compared to M
4+D (Omero and Percacci 1980, Forste et. al. 2000).

The analysis in Chapter 3 should have made it clear that flatness of M
4 is gov-

erned by Ṽ (φ) not by V (φ). Indeed, V (φ) is the self-interaction potential of φ in

(4 + D) dimensions whereas Vnew(φ) is the potential of the same scalar as seen

from a four-dimensional perspective (see (3.49) which has to vanish for flattening

the four-dimensional subspace). In this sense, higher-dimensional spacetime config-

uration consisting of a strictly flat four-dimensional geometry times an extra curved

manifold becomes energetically preferable only at those φ0 values for which Ṽ (φ0)

is a minimum.

As follows from Chapter 3, by taking a > 0 and ηµνpµpν − 2ab(~y) > 0 for

definiteness, the scalar potential Ṽ (φ0) is found to possess two minima: φ0 = 0 (for

ζ > ζcrit) and φ0 = φ (for ζ < ζcrit) given in (3.68). In the minimum of Ṽ (φ0) at

φ0 = 0, the scalar field equation (3.70) is consistently solved if V (φ0) = Ṽ (φ0) i.e.

V (0) = 0. This, in fact, follows from (3.50) which implies that V (φ0) must be equal

to Ṽ (φ0) for any ~y independent φ0 configuration. With φ0 = 0 and V (0) = 0, Ricci

tensor and curvature scalar are found to vanish identically, as follows from (3.69) and

(3.85). It is clear that the whole picture is consistent since a vanishing φ possesses

a vanishing TAB if its potential does also vanish at the field configuration under

concern. Consequently, the minimum of Ṽ (φ0) at φ0 = 0 represents a Ricci-flat

manifold. This, as mentioned at the beginning of Sec.2.1, may be taken to indicate

a strictly flat space i.e. gij = ηij. One thus arrives at the conclusion that if Ṽ (φ0)

is minimized at φ0 = 0 and if V (0) = 0 then the resulting spacetime is a (4 + D)

dimensional Minkowski spacetime M
4+D i.e. there is no compactification effect at

all. The extra space is a strictly flat manifold as the four-dimensional subspace

itself.
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Figure 4.1: The two minima of Ṽ (φ) and the corresponding spacetime structures.

For ζ < ζcrit, the potential Ṽ (φ0) is minimized at a nonzero φ0 value given in

(3.68). The dynamical equations governing the compactification process are (3.69)

and (3.70) where now φ0 is replaced by φ. All one is to do is to solve dynamical

equations for determining gij(~y) (with D(D + 1)/2 independent components) and

b(~y) in a self-consistent fashion. These two must give a complete description of the

shape and topology of the extra space.

We schematically illustrate the two minima and corresponding spacetime

structures of Ṽ (φ) in Fig. 4. The overall picture is that as ζ makes a transition

from ζ > ζcrit regime to ζ < ζcrit regime the spacetime structure changes from

M
4+D to M

4 ⊗ E
D spontaneously. The topology and shape of the extra space are

determined by simultaneous solutions of (3.69) and (3.70) for φ0 = φ, defined in

(3.68).

An analytic solution of the topology and shape of the extra space is quite

difficult to implement since (3.69) and (3.70) exhibit a functional dependence on b(~y)

and b(~y) itself depends on gij(~y) via contraction of the extra coordinates. Therefore,

one may eventually need to resort numerical techniques to determine the structure

of the extra space. Despite these difficulties in establishing an analytic solution, it

may be instructive to analyze certain simple cases by explicit examples:
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Constant Curvature Space: The simplest φ configuration which admits

an analytic solution of (3.69) and (3.70) is provided by the ansatze b(~y) = b0, a

completely ~y independent configuration. The equation of motion for φ (3.70) is

satisfied with V (φ) = Ṽ (φ) as expected from (3.50). A self-consistent solution of

(3.69), (3.70) and (3.85) gives R after the following steps

φ0 = φ

b(~y) = b0

⇒ ∇i∇jφ = 0

⇒ ∇i∇jφ
2

= 0

Ṽ (φ) − V (φ) = 0

Ṽ ′(φ) − V ′(φ) = 0 (4.1)

By replacing these equalities in (3.70) we get the curvature scalar as

Rij =
R
D
gij with R =

aD

1 − 4ζ
φ

1−4ζ

2ζ (4.2)

where vacuum expectation value of the scalar field is fixed via the consistency con-

dition which is found as below

From (3.85) and (4.1) one can see

R =
aDζ

MD+2
?

φ
1

2ζ (4.3)

Then by using the consistence between (4.2) and (4.3) we get

MD+2
? =

ζ

1 − 4ζ
φ

2
(4.4)

In other words, the fundamental scale of gravity in (4 + D) dimensions, M?, fixes

the vacuum expectation value of the bulk scalar φ0 which is already designed not to

gravitate in the four-dimensional subspace. The integration constants a, b and pµ

in (3.51) are naturally O(M?) – the only mass scale in the bulk. In fact, by taking

a = λM
2− 1−4ζ

4ζ
(D+2)

? with λ being a dimensionless constant, one finds curvature scalar

in several steps

Firstly, let us replace value of a in (4.3)

R =
λDζ

M
D+2

4ζ

?

φ
1

2ζ (4.5)
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Then replacing the value of M? given in (4.4) gives

R = λDζ
4ζ−1

4ζ (1 − 4ζ)−
1

4ζ M2
? (4.6)

which is completely determined by ζ, D, λ andM?. The resulting spacetime topology

is obviously M
4⊗E

D with E
D being aD dimensional manifold with positive constant

curvature. The coordinates {yi} may or may not be compact. The constant b(~y) case

under discussion offers an elegant way of solving (3.69) and (3.70) and it results in an

intuitively simple interpretation of the manifold formed by extra dimensions. Indeed,

the self-interaction potential V (φ), on the partially-gravitating configuration φ0 in

(3.51), gets converted into Ṽ (φ0) whose minimum at φ0 = φ results in a non-trivial

constant-curvature space. In essence, the would-be cosmological term, V (φ), as seen

from a four-dimensional Poincare-invariant perspective via (3.49) is off-loaded and

utilized in curving the extra space (in similarity with the mechanism advocated in

(Arkani-Hamed et. al. 2000) for solving the cosmological constant problem).

More General Cases: Some further properties of (3.69) and (3.70) can

be revealed by using an appropriate coordinate system. A suitable setting for such

an analysis is provided by the Riemann normal coordinates which are defined by a

locally-flat space attached to a point N of the manifold of extra dimensions. The

local flatness of the space at (not in any neighborhood of) the point N implies

that ∂igjk ≡ 0 for all i, j, k = 1, . . . , D at N i.e. all components of the connection

coefficients Γijk vanish at N . Clearly, curvature tensors do not need to vanish at N

since they involve not only Γijk but also their first derivatives. Consequently, one

finds

T (N)
ij (φ) =

4ζ2

1 − 4ζ
φ

1

2ζ

(
1 − 2ζ

(D + 6)(ζ − ζcrit)
∂i∂jb− agij

)
(4.7)

so that Rij, unlike (4.2) where it is strictly proportional to gij, now picks up novel

structures generated by ∂i∂jb. In other words, it is the ~y dependence of b(~y) that

enables Rij to develop new components not necessarily related to those of the metric

field.

Having replaced covariant derivatives with ordinary ones in this particular

coordinate system, it is now possible to examine implications of different ~y depen-

dencies of b(~y). If b(~y) exhibits a linear dependence, b(~y) = gijp′iyj, then the Ricci
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tensor turns out to depend on p′kxl∂i∂jgkl which involves curvature tensors rather

than the metric tensor itself. When b(~y) is quadratic in ~y, b(~y) = (a′/2)yiy
i, the

Ricci tensor now involves 2a′gij + a′xkxl∂i∂jgkl which again depends on curvature

tensors computed at the point N . Consequently, when b(~y) exhibits an explicit ~y

dependence the Ricci tensor involves not only the metric tensor itself (as in (4.2)

holding for constant-curvature spaces) but also double derivatives of the metric ten-

sor i.e. the curvature tensors. More general dependencies are expected to yield more

general structures for the geometry and topology of the extra space.

In general, irrespective of what coordinate system is chosen b(~y) is a bounded

quantity. Therefore, it forces extra dimensions to take values within a hyperboloid.

Indeed, a quadratic polynomial dependence for b(~y), for instance, results in

a′

2
yiy

i + p′iy
i + b0 <

pµp
µ

2a
(4.8)

so that extra dimensions are bounded to have a finite size. For a purely quadratic

dependence one finds yiy
i < pµp

µ/aa′ which gives an idea on the maximal size

a given dimension yi can have. However, for more general, in particular, non-

polynomial ~y dependencies of b(~y) its bounded nature may not imply any size re-

striction on the extra space at all. One keeps in mind that all model parameters

must eventually return the correct value of Newton’s constant in four dimensions:
∫
dDy

√−g = 8πGNM
D+2
? . This constraint requires the extra space to be of fi-

nite volume irrespective of the nature of the manifold (Cremmer and Scherk 1976,

Cremmer and Scherk 1977, Randjbar-Daemi and Percacci 1982, Omero and Percacci

1980, Gell-Mann and Zwiebach 1984, Gell-Mann and Zweibach 1985, Gerard et. al.

1984, Randjbar-Daemi and Wetterich 1986)
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CHAPTER 5

CONCLUSION

In this thesis work we have introduced a new method of spontaneous com-

pactification triggered by a partially gravitating bulk scalar field (Demir and Pulice

2006). We have systematically constructed first a completely non-gravitating scalar

field and then a partially gravitating one. We have examined scalar field configura-

tions and minimum energy configurations in each case. Finally, we have discussed

implications of a partially gravitating scalar for spacetime compactification. Our

analysis here serves as an existence proof of a novel scalar-induced compactification.

In particular, existence of a constant-curvature manifold for extra dimensions, and

other novel properties observed in the frame of Riemann normal coordinates are par-

ticularly encouraging indications for the fact that a single scalar field, non-minimally

coupled to the curvature scalar, can indeed lead to spontaneous compactification of

the extra dimensions.

It is necessary to determine a simultaneous solution of (3.69) and (3.70) for

having a precise knowledge of the shape and topology of the aimed-at manifold. In

particular, these equations cannot be guaranteed to be free of singularities in the

extra space. A detailed analysis is expected to shed light on nature of such singu-

larities (see, for instance, (Forste et. al. 2000) for an analysis of the singularities

in braneworld scenarios with a self-tuning cosmological term). Moreover, a full ac-

count of the spontaneous compactification might require a numerical determination

of variables for sample values of the parameters. It will be after such an analysis

that one will have detailed information on under what conditions the extra space

takes a given shape and topology.

Another important issue is the determination of excitation spectrum about

the background geometry we have determined. In other words, it is necessary to

determine the gravi-particle spectra corresponding to normal modes generated by

small oscillations about the background (see (Gell-Mann and Zwiebach 1984), for

instance). This involves shifts ηµν → ηµν+hµν , gij → gij+hij, φ(xµ, yi) → φ(xµ, yi)+
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δ(xµ, yi) as well as small but finite values of gµj and giν . In doing the spectrum

analysis, particular care should be payed to the fact that the partially gravitating

scalar field configuration in (3.51) depends explicitly on the metric tensor, and thus,

its variation stems from both δ(xµ, yi) and variations of the metric components.

One final remark concerns the use of higher curvature gravity. Indeed, higher-

curvature gravity theories which generalize Einstein-Hilbert action to a function

f (R,R) of the curvature scalar can be mapped, via conformal transformations, into

Einstein-Hilbert action plus a scalar field theory (Maeda 1989, Demir and Tanyildizi

2006). In this context, the scalar field theory which facilitates the compactification

may be interpreted to have a purely gravitational origin, and this may entail possi-

bility of spontaneous compactification via higher curvature gravity.
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APPENDIX A

AFFINE CONNECTION AND CURVATURE

TENSOR

The curvature of a Riemannian manifold (or more generally, any manifold

with affine connection) is completely described by the Riemann tensor. In this

Appendix we will give some basics about curvature tensor and dynamical equations

thereof.

Consider a contravariant vector field ζµ(x) and the spacetime trajectory xµ(τ)

on a curve S of an observer. Let us assume that the observer can determine whether

ζµ(x) is constant or varies as its eigentime τ goes by. If we show the observed time

derivative by a dot, we can write the time derivative of the contravariant vector field

as

ζ̇µ =
d

dτ
ζ(x(τ)) (A.1)

Let us try to write this equation in some other coordinate frame v instead of coor-

dinate frame x:

ζµ(x) =
∂xµ

∂vν
ζ̃ν(v(x)) (A.2)

∂xµ

∂vν
˜̇ζ
ν

(v(x)) =
d

dτ
ζµ(x(τ))

=
d

dτ

(∂xµ
∂vν

ζ̃ν(v(x))
)

=
∂xµ

∂vν
d

dτ
ζ̃ν(v(x(τ))) +

dvλ

dτ

∂

∂vλ
∂xµ

∂vν
ζ̃ν(v)

=
∂xµ

∂vν
d

dτ
ζ̃ν(v(x(τ))) +

∂2xµ

∂vν∂vλ
dvλ

dτ
ζ̃ν(v) (A.3)

where vµ and xµ obey a rather general relationship. Apart from invertibility of their

functional interdependence, they do not need to satisfy any specific condition at all.

It can be inferred from this last equation that the transformation of a con-

travariant vector field in a general coordinate frame is written as

∂vν

∂xµ
∂xµ

∂vν
˜̇ζ
ν

(v(x)) =
∂vν

∂xµ
∂xµ

∂vν
d

dτ
ζ̃(v(x(τ))) +

∂vν

∂xµ
∂2xµ

∂vν∂vλ
dvλ

dτ
ζ̃ν(v) (A.4)

42



ζ̇ν(v(τ)) =
d

dτ
ζν(v(τ)) + Γνκλ

dvλ

dτ
ζκ(v(τ))

This is the equation that defines the parallel displacement of a contravariant vector

along a curve S, and Γνλµ is a new field which is called ”affine connection”. It is not

a tensor field as we can see this from its general transformation rule

Γ̃νκλ(v(x)) =
∂vν

∂xµ
∂xα

∂vκ
∂xβ

∂vλ
Γµαβ(x) +

∂vν

∂xµ
∂2xµ

∂vκ∂vλ
(A.5)

where the second term at right-hand side indeed shows that it is not a tensor.

That it is not a tensor is important in that it can be generated by a coordinate

transformation even if it vanishes in the original frame.

A preferred coordinate frame x can be used near the point v by the local

observer such that

Γ̃νκλ =
∂vν

∂xµ
∂2xµ

∂vκ∂vλ
(A.6)

so that Γ vanishes in the preferred coordinate frame of the observer (only on the

observer’s curve S) but, in general, it does not vanish everywhere.

One can observe that (A.6) implies

Γνλκ = Γνκλ (A.7)

and this symmetry will hold in any other coordinate frame since

∂2xµ

∂vκ∂vλ
=

∂2xµ

∂vλ∂vκ
(A.8)

From (A.7) one arrives at Newton’s second law equation. Indeed, a curve

xµ(δ) is a geodesic curve if it obeys

d2xµ(δ)

dδ2
+ Γµκλ

dxκ

dδ

dxλ

dδ
= 0 (A.9)

where one notices that this is the particular case of (A.4) for a contravariant vector

ζν = dxλ

dδ
.

One notes that the second term at the left-hand side of (A.9) is effectively

the force acting on a particle and balanced by particle’s acceleration (the first term

at left-hand side). The fact that Γµκλ is not a tensor tells us that this force term can
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be nullified or modified, in general, by going to different frames of reference. This

is familiar, actually, even from the Newtonian mechanics where one can always go

to a frame where gravitational field is eliminated locally.

Spacetime trajectories of particles that are moving in a gravitational field

are described by the curves which obey the geodesic equation above. There exists a

coordinate frame for every point x in which Γ vanishes so in that coordinate frame,

the frame of the freely falling elevator, the trajectories are straight but they are

curved in an accelerated elevator. This curvature can be attributed to a gravitational

field by an observer inside the elevator.

Since the partial derivative is not a good tensor operator we now need to

define a covariant derivative which reduces to the partial derivative in flat space with

Cartesian coordinates, and as an operator transforms as a tensor on an arbitrary

manifold. Partial derivative operator ∂µ is a map that transforms (k, l) tensor fields

to (k, l + 1) tensor fields and acts linearly on its arguments and obeys the Leibniz

rule on tensor products. The map, which the partial derivative provides, depends

on the coordinate system used since for every local point coordinate system changes.

Then, we need to try to define a covariant derivative of a covariant vector field Vµ

which means that, for each direction µ, the covariant derivative ∇µ will be given by

the partial derivative ∂µ plus a correction specified by a matrix Γνµλ which is an n×n
matrix (where n is the dimensionality of the manifold, for each µ) and which will

perform the functions of the partial derivative, but not depending on coordinates.

There are two properties that the covariant derivative ∇ should obey:

1. Linearity:

∇(A+ V ) = ∇A+ ∇V (A.10)

2. Leibniz rule:

∇(A⊗ V ) = (∇A) ⊗ V + A⊗ (∇V ) (A.11)

The covariant derivative can be written as the partial derivative plus some linear

transformation that makes the result covariant when the first property is obeyed. It

can be defined for a co-vector as

∇αVµ = ∂αVµ − ΓναµVν (A.12)
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The transformation rule for this quantity is

∇αṼν(u) =
∂xµ

∂uν
∂xβ

∂uα
∇βVµ(x) (A.13)

which is the same for a tensor. The covariant derivative of a contravariant vector

field can be defined similarly:

∇αV
µ = ∂αV

µ + ΓµαβV
β (A.14)

It is now not difficult to take the covariant derivative of a tensor of arbitrary rank

by introducing a term with single +Γ for each upper index and a term with a single

−Γ for each lower index:

∇αT
µν...
κλ... = ∂αT

µν...
κλ...

+ ΓµαβT
βν...
κλ... + ΓναβT

µβ...
κλ... ...

− ΓβκαT
µν...
βλ... − ΓβλαT

µν...
κβ... ... (A.15)

The covariant derivative of a scalar field φ is the ordinary derivative:

∇αφ = ∂αφ (A.16)

Let us now discuss curvature property after discussing parallel transport and

covariant derivative. One conventional way to introduce the Riemann tensor is to

consider parallel transport around an infinitesimal loop. Let us consider a curved

two-dimensional space,that is to say, any curved surface and try to find the change

of this vector after parallel displacement. The change of a vector after parallel

displacement 4Aµ around an infinitesimal closed contour can be written in the

form
∮
δAµ (where the integral is taken over the loop) and it can be expressed as

δAα = ΓγαβAγdx
β (A.17)

Then, by replacing this last expression into the integral, we get:

4Aα =

∮
ΓγαβAγdx

β (A.18)

There are some important points to notice at this stage. The values of the vector Aα

depend on the path, that is to say, they are not unique at points inside the contour.
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This is related to the second order terms discussed below. Therefore, we have the

components of the vector Aα as being uniquely determined by their values on the

contour itself by the formulas (A.17), in another way as below

∂Aα
∂xβ

= ΓγαβAγ (A.19)

The Stokes’ theorem states that

∮
Aµdx

µ =

∫
dfµν

∂Aν
∂xµ

=
1

2

∫
dfµν

(∂Aµ
∂xν

− ∂Aν
∂xµ

)
(A.20)

where dfµν stands for a differential surface element. Consequently, by applying

Stokes’ theorem to the integral (A.18) we get:

∆Aα =
1

2

[
∂
(
ΓγαβAγ

)

∂xρ
−
∂
(
ΓγαρAγ

)

∂xβ

]
∆fρβ

=
1

2

[
∂Γγαβ
∂xρ

Aγ −
∂Γγαρ
∂xβ

Aγ + Γγαρ
∂Aγ
∂xρ

− Γγαρ
∂Aγ
∂xβ

]
∆fρβ (A.21)

where we considered that the area enclosed by the contour has the infinitesimal

value 4Aρβ. Now, by replacing the derivatives (A.19) into this equation we get

∂Aν
∂xλ

= ΓγνλAγ

∂Aν
∂xµ

= ΓγνµAγ

∆Aα =
1

2

[∂Γγαµ
∂xλ

Aγ −
∂Γγαλ
∂xµ

Aγ + ΓναµΓ
γ
νλAγ − ΓναλΓ

γ
νµAγ

]
∆fλµ (A.22)

and finally we have

∆Aα =
1

2
Rγ
αλµAγ∆f

µ (A.23)

where Rγ
αλµ is the curvature tensor, a (1,3) tensor, commonly known as the Riemann

tensor. From the expressions above, one finds its explicit form to be

Rγ
κλµ =

∂Γγκµ
∂xλ

− ∂Γγκλ
∂xµ

+ ΓνκµΓ
γ
νλ − ΓνκλΓ

γ
νµ (A.24)

which involves terms which are either linear in the derivatives of connection coef-

ficients or quadratic in connection coefficients themselves. If we restrict ourselves

to at most first derivative of the connection coefficients then Rγ
κλµ is unique. It

completely specifies the curvature of the manifold under concern.
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Curvature tensor can be written in another form,

gλρR
λ
σµν = Rρσµν (A.25)

It is invariant under interchange of the first pair of indices with the second:

Rρσµν = Rµνρσ (A.26)

and it is antisymmetric in its first two indices and in its last two indices separately:

Rρσµν = −Rσρµν (A.27)

Rρσµν = −Rρσνµ (A.28)

The sum of cyclic permutations of the last three indices vanishes:

Rρσµν +Rρµνσ +Rρνσµ = 0 (A.29)

or equivalently

Rρ[σµν] = 0 (A.30)

These last properties will be true in any coordinates since they are all tensor equa-

tions.

Let us now see how many independent quantities remain after these relations

between the different components of the Riemann tensor.We know curvature tensor

Rρσµν is antisymmetric in the first two indices, antisymmetric in the last two in-

dices and symmetric under interchange of these two pairs so it can be thought as a

symmetric matrix R[ρσ][µν] where the pairs ρσ and µν may be thought as individual

indices.An n × n antisymmetric matrix has n(n − 1)/2 independent components,

while an m×m symmetric matrix has m(m + 1)/2 independent components.Then

the number of independent components is found as

1

2
[
1

2
n(n− 1)][

1

2
n(n− 1) + 1] =

1

8
(n4 − 2n3 + 3n2 − 2n) (A.31)

There is still the identity (A.29) to deal with.The totally antisymmetric part

of the Riemann tensor vanishes as a consequence of this identity:

R[ρσµν] = 0 (A.32)
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Let us consider decomposing

Rρσµν = Xρσµν +R[ρσµν] (A.33)

Any totally antisymmetric 4-index tensor is automatically antisymmetric in its first

and last indices, and symmetric under interchange of the two pairs.A totally anti-

symmetric 4-index tensor has n(n− 1)(n− 2)(n− 3)/4! terms, and therefore (A.32)

reduces the number of independent components by this amount.So the number of

independent components of the Riemann tensor is

1

8
(n4 − 2n3 + 3n2 − 2n) − 1

24
n(n− 1)(n− 2)(n− 3) =

1

12
n2(n2 − 1) (A.34)

For instance, in four dimensions the Riemann tensor has 20 independent components

and in one dimension it has no components.

We have seen the algebraic symmetries of the Riemann tensor that con-

strain the number of independent components at any point.There is an additional

differential identity that the Riemann tensor obeys.So let us consider the covariant

derivative of the Riemann tensor which is evaluated in Riemann normal coordinates:

∇λRρσµν = ∂λRρσµν

=
1

2
∂λ(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) (A.35)

When we consider the sum of cyclic permutation of the first three indices we get:

∇λRρσµν + ∇ρRσλµν + ∇σRλρµν

=
1

2
(∂λ∂µ∂σgρν − ∂λ∂µ∂ρgνσ − ∂λ∂ν∂σgρµ + ∂λ∂ν∂ρgµσ

= ∂ρ∂µ∂λgσν − ∂ρ∂µ∂σgνλ − ∂ρ∂ν∂λgσµ + ∂ρ∂ν∂σgµλ

= ∂σ∂µ∂ρgλν − ∂σ∂µ∂λgνρ − ∂σ∂ν∂ρgνµ + ∂σ∂ν∂λgµρ)

= 0 (A.36)

It can be recognized that the antisymmetry property (A.29) allows us to write the

last result as

∇[λRρσ]µν = 0 (A.37)

which is called as the Bianchi identity.
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One can directly obtain a symmetric second rank tensor from the Riemann

tensor by contracting γ and λ:

Rκµ ≡ Rγ
κγµ (A.38)

which is known as the Ricci tensor.

So far, the manifold we have worked on has been required to have only

geodesics, that is, trajectories of material points in a curved spacetime. Neither the

Riemann nor the Ricci tensor need any structure on the manifold other than the

connection coefficients. However, if the manifold is equipped with a metric field,

that is, if the observers on the manifold have meter sticks and clocks to measure

distances between the events then we obtain a more structured manifold. In fact, if

a metric field is given then one can contract Ricci tensor to obtain a scalar, that is,

the Ricci scalar:

R = gκµRκµ . (A.39)

In general, the connection coefficients are unknown non-tensorial structures.

They are contained in the covariant derivative of all objects on the manifold, and

they make up the curvature tensor of the manifold. However, metric compatibility,

that is, the fact that metric tensor is a covariantly constant tensor determines the

connection coefficients uniquely. Indeed, from

∇µgαβ = 0 (A.40)

we can solve for the connection coefficients to obtain

Γγαβ =
1

2
gγρ (∂αgβρ + ∂βgρα − ∂ρgαβ) (A.41)

which is known as ’metric connection’. Since difference between any two connections

is a tensor, any other connection differs from (A.41) by a tensorial structure.

The Riemann tensor (A.24) and its contractions Ricci tensor and Ricci scalar,

computed for the metric connection (A.41), satisfies the gravitational field equations

Rµν −
1

2
Rgµν =

1

MD+2
?

Tµν (A.42)

in a (4 +D)–dimensional spacetime populated by some general form of matter and

energy described by the energy-momentum tensor Tµν .
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APPENDIX B

STRESS-ENERGY-MOMENTUM TENSOR

The stress-energy tensor (sometimes it is also called energy-momentum ten-

sor) is a tensor quantity that describes the density and current of the energy-

momentum four-vector pα. In other words, energy-momentum four-vector pα is

the conserved charge of the energy-momentum flow described by Tαβ. We here dis-

cuss these quantities in detail by considering a system of particles labeled by n with

energy-momentum four-vectors pαn(t). We can define the density of pα as

T α0(~x, t) ≡
∑

n

pαn(t)δ
3(~x− ~xn(t)) (B.1)

the current of it is defined as

T αi(~x, t) ≡
∑

n

pαn(t)
dxin(t)

dt
δ3(~x− ~xn(t)) . (B.2)

These two quantities are indeed densities of energy and momentum since the right-

hand side involve Dirac δ-functions over the space.

The two definitions (B.1) and (B.2) can be unified into a single quantity:

T αβ(x) =
∑

n

pαn
dxβn(t)

dt
δ3(x− xn(t)) (B.3)

where δx0/dt = 1 by definition. In general, for a relativistic particles obey the

relation

~p

E
= ~v (B.4)

where ~p is the momentum, E is the energy and ~v is the velocity of the particle. We

can write this formula for our system of particles as

pβn = En
dxβn
dt

(B.5)

relating thus four-momentum of a particle to four-velocity.

If we substitute (B.5) into (B.3), we get:

T αβ(x) =
∑

n

pαnp
β
n

En
δ3(~x− ~xn(t)) (B.6)
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which is clearly a symmetric second rank tensor.

It could be instructive to check check if T αβ(x) is indeed conserved. This is

a important issue because if it is not conserved then momentum four-vector of the

particle cannot be a conserved charge.

By utilizing (B.1) and (B.2):

∂

∂xi
T αi(~x, t) = −

∑

n

pαn(t)
dxin(t)

dt

∂

∂xin
δ3(~x− ~xn(t))

= −
∑

n

pαn(t)
∂

∂t
δ3(~x− ~xn(t))

= − ∂

∂t
T α0(~x, t) +

∑

n

dpαn(t)

dt
δ3(~x− ~xn(t)) (B.7)

so that we can write

∂

∂xβ
T αβ = Gα (B.8)

where Gα is the density of force defined as

Gα(~x, t) ≡
∑

n

δ3(~x− ~xn(t))
dpαn(t)

dt
(B.9)

It is clear that if the momentum four-vectors pαn of particles are constant, that is to

say, if the particles are free (from any external force) then the energy-momentum

tensor is conserved:

∂

∂xβ
T αβ(x) = 0 (B.10)

establishing thus momentum four-vector of particles as conserved charges.

So far we have discussed only a set of particles to establish some basic features

of the energy-momentum tensor. The concepts above can be put in a more general

setting by considering the action functional. In field theories, all interactions and

dynamics are contained in the action

S [ψ] =

∫
d4x

√−gL (ψ,∇ψ) (B.11)

where gαβ is the metric tensor and ψ are some generic matter fields encoded in the

lagrangian density L. The energy-momentum tensor of the matter fields ψ is defined
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via the relation

T αβ(x) =
2√−g

δS

δgαβ(x)

= 2
δL

δgαβ(x)
− Lgαβ (B.12)

By using this expression one can compute energy-momentum tensor of any field

theory. Here we list down energy-momentum tensors of some basic fields:

The energy-momentum tensor of a massive vector field Aµ:

T (J=1)
µν = ηµν

(
1

4
F λρFλρ −

1

2
M2

AAλA
λ

)
−
(
F ρ
µFνρ −M2

AAµAν
)

(B.13)

The energy-momentum tensor of a massive fermion field ψ:

T (J=1/2)
µν = −ηµν

(
ψi∂ψ −mψψψ

)
+
i

2
ψ (γµ∂ν + γν∂µ)ψ

+
1

4

[
2ηµν∂

λ
(
ψiγλψ

)
− ∂µ

(
ψiγνψ

)
− ∂ν

(
ψiγµψ

)]
(B.14)

The energy-momentum tensor of a massive complex scalar field Φ:

T (J=0)
µν = −ηµν

[
∂ρΦ†∂ρΦ −M 2

ΦΦ†Φ − λ
(
Φ†Φ

)2]
+ ∂µΦ

†∂νΦ + ∂νΦ
†∂µΦ

+ 2ζ (ηµν − ∂µ∂ν) Φ†Φ (B.15)
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