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ABSTRACT 
 

DYNAMIC ANALYSIS OF PLANAR FLEXIBLE MECHANISMS 
 

In this study, dynamic behaviors of planar mechanisms with elastic linkages are 

investigated. For this purpose, slider-crank mechanisms which are widely used in many 

fields of industry are chosen. Flexible coupler of the mechanism is considered as a pin 

jointed beam under the effect of elastic oscillations in transverse direction. Euler-

Bernoulli beam theory is considered to obtain dynamic responses of the elastic link. 

Lumped parameters approach is used to model the flexible links. Since, the assumption 

of small deflections is made, linear and continuous form of the elastic curve equation is 

written for each lumped masses on the beam to derive the equations of motion of the 

system. Derived set of nonlinear partial differential equations are reduced to ordinary 

differential equations by applying finite difference method. Finally, a symbolic 

mathematical program which gives the dynamic responses of the system is developed to 

solve the equations of motion. The results obtained from the developed program are 

tested and verified by the results available in the literature. Elastic deflection results are 

obtained for different parameters such as mass ratio and length ratio of the links of the 

mechanisms. The effects of the aforementioned parameters on dynamic response are 

found and presented in graphical forms. 
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ÖZET 
 

DÜZLEMSEL ESNEK MEKANİZMALARIN D İNAM İK ANAL İZİ 
 

Bu çalışmada, elastik uzuvlu düzlemsel mekanizmaların dinamik davranışları 

incelenmiştir. Bu amaçla, birçok sanayi alanında sıklıkla kullanılan krank-biyel 

mekanizmaları seçilmiştir. Mekanizmanın esnek biyel uzvu, enine titreşimlerin etkisi 

altında pimler ile mesnetlenmiş bir çubuk olarak ele alınmıştır. Elastik uzvun dinamik 

cevaplarını elde etmek için Euler-Bernoulli çubuk teorisi uygulanmıştır. Esnek çubuğu 

modellemek için topaklanmış kütleler yöntemi kullanılmıştır. Küçük yerdeğiştirmeler 

kabulü yapıldığından, sistemin hareket denklemlerini elde etmek için elastik eğri 

denkleminin lineer ve sürekli hali, çubuk üzerindeki her bir topaklanmış kütle için 

yazılmıştır. Elde edilen nonlineer ve kısmi diferansiyel denklem takımı, sonlu farklar 

yöntemi uygulanarak adi diferansiyel denklem takımına dönüştürülmüştür. Son olarak, 

sistemin dinamik cevaplarını veren hareket denklemlerini çözmek için sembolik bir 

matematiksel program geliştirilmi ştir. Geliştirilen programdan elde edilen sonuçlar, 

literatürdeki mevcut sonuçlarla karşılaştırılmış ve doğruluğu sağlanmıştır. 

Mekanizmaya ait kütle oranı, uzuv boy oranı gibi farklı parametreler için elastik 

yerdeğiştirme sonuçları elde edilmiştir. Bahsedilen parametrelerin dinamik cevaplara 

etkileri bulunmuş ve grafikler halinde sunulmuştur. 



 vi

TABLE OF CONTENTS 

 

LIST OF FIGURES ..................................................................................................... viii 

 

LIST OF SYMBOLS ................................................................................................... ix 

 

CHAPTER 1. INTRODUCTION ................................................................................ 1 

 

CHAPTER 2. ANALYSIS OF PLANAR MECHANISMS ........................................ 4 

2.1. Rigid Slider-Crank Mechanism ....................................................... 4 

2.1.1. Rigid Body Motion .................................................................... 4 

2.1.2. Kinematics of Rigid Slider-Crank Mechanism .......................... 6 

2.1.3. Kinetics of Rigid Slider-Crank Mechanism ............................... 9 

2.2. Flexible Slider-Crank Mechanism ................................................... 10 

2.2.1. Flexible Body Motion ................................................................ 10 

2.2.2. Kinematics of Flexible Slider-Crank Mechanism ...................... 13 

2.2.3. Kinetics of Flexible Slider-Crank Mechanism ........................... 15 

2.3. Derivation of Equations of Motion .................................................. 18 

2.3.1. Distributed Parameter Method ................................................... 18 

2.3.2. Lumped Parameter Method ........................................................ 20 

2.4. Finite Difference Method for Dynamic Elastic Deflections ............ 24 

 

CHAPTER 3. NUMERICAL RESULTS AND DISCUSSION .................................. 27 

3.1. Introduction ...................................................................................... 27 

3.2. Verification of the Developed Program ........................................... 27 

3.3. Dynamic Responses of Slider-Crank Mechanism ........................... 27 

3.3.1. Dynamic Response of the Example Mechanism ........................ 27 

3.3.2. Effects of the Link Masses on Dynamic Responses .................. 29 

3.3.3. Effects of the Operation Speeds on Dynamic Responses .......... 30 

3.3.4. Effects of the Crank Length on Dynamic Responses ................. 32 

 

CHAPTER 4. CONCLUSIONS .................................................................................. 37 

 



 vii

REFERENCES ............................................................................................................ 38 



 viii  

LIST OF FIGURES 

 

Figure              Page 

Figure 2.1. References of a rigid body ............................................................................ 4 

Figure 2.2. Slider-crank mechanism ............................................................................... 6 

Figure 2.3. References of a flexible body ....................................................................... 10 

Figure 2.4. Deformed and undeformed configurations of slider-crank mechanism ....... 13 

Figure 2.5. Forces acting on flexible coupler ................................................................. 16 

Figure 2.6. Joint forces at the end point of coupler ........................................................ 17 

Figure 2.7. Free body diagram of the left part of the coupler ......................................... 19 

Figure 2.8. Lumped masses on flexible coupler ............................................................. 21 

Figure 2.9. Discretization of functions with two variables ............................................. 24 

Figure 3.1. Mechanism with significant properties ........................................................ 28 

Figure 3.2. Elastic deflections of the midpoint of coupler .............................................. 28 

Figure 3.3. Elastic deflections for various mass properties ............................................ 29 

Figure 3.4. Effect of the operation speed on elastic behavior for mass ratio 0.10 .......... 30 

Figure 3.5. Effects of operation speed on elastic behavior for mass ratio 0.25 .............. 31 

Figure 3.6. Effects of operation speed on elastic behavior for mass ratio 0.50 .............. 31 

Figure 3.7. Effect of crank length for ω2=40 rad/s and mass ratio 0.10 ........................ 32 

Figure 3.8. Effect of crank length for ω2=50 rad/s and mass ratio 0.10 ........................ 33 

Figure 3.9. Effect of crank length for ω2=60 rad/s and mass ratio 0.10 ........................ 33 

Figure 3.10. Effect of crank length for ω2=40 rad/s and mass ratio 0.25 ...................... 34 

Figure 3.11. Effect of crank length for ω2=50 rad/s and mass ratio 0.25 ...................... 34 

Figure 3.12. Effect of crank length for ω2=60 rad/s and mass ratio 0.25 ...................... 35 

Figure 3.13. Effect of crank length for ω2=40 rad/s and mass ratio 0.50 ...................... 35 

Figure 3.14. Effect of crank length for ω2=50 rad/s and mass ratio 0.50 ...................... 36 

Figure 3.15. Effect of crank length for ω2=60 rad/s and mass ratio 0.50 ...................... 36 



 ix

LIST OF SYMBOLS 

 

A  cross-sectional area 

ia
r

 acceleration vector of point i 

xia
r

 x component of acceleration vector of point i 

yia
r

 y component of acceleration vector of point i 

xGa 2  x component of acceleration of the center of mass for crank  

yGa 2  y component of acceleration of the center of mass for crank  

xGa 3  x component of acceleration of the center of mass for coupler  

yGa 3  y component of acceleration of the center of mass for coupler  

),( txax  function of x component of the acceleration 

),( txay  function of y component of the acceleration 

b  width of the cross-section of the coupler 

xiD
r

 x component of D’Alembert force acting on mass i 

yiD
r

 y component of D’Alembert force acting on mass i 

E  modulus of elasticity 

iF
r

 inertial force 

23
xF  x component of the joint force exerted on link 3 by link 2 

23
yF  y component of the joint force exerted on link 3 by link 2 

43
XF  x component of the joint force exerted on link 3 by link 4 in terms 

of global coordinate system 

43
YF  y component of the joint force exerted on link 3 by link 4 in terms 

of global coordinate system 

43
xF  x component of the joint force exerted on link 3 by link 4 in terms 

of local coordinate system 

43
yF  y component of the joint force exerted on link 3 by link4 in terms 

of local coordinate system 

2g  relative position of mass center of crank 



 x

3g  relative position of mass center of coupler 

h  height of the cross-section of the coupler 

I  second moment of area 

i notation of an arbitrary point 

i
r

 unit vector in x direction 

j
r

 unit vector in y direction 

k
r

 unit vector in z direction 

l  distance parameter used between lumped masses 

2L  length of the crank 

3L  length of the coupler 

im3  mass of the i-th lumped mass on coupler 

2M  mass of link 2 

3M  mass of link 3 

4M  mass of link 4 

),( txM  bending moment along the coupler 

n  number of lumped masses 

r
r

 position vector of origin of the local coordinate frame  

ir
r

 position vector of point i 

4s  position of the slider 

is
r

 position vector of point i with respect to local coordinate system 

xis
r

 x component of the vector is
r

 

yis
r

 y component of the vector is
r

 

),( txS  shear force along the coupler 

iu
r

 elastic deflection vector 

xiu
r

 x component of elastic deflection vector 

yiu
r

 y component elastic deflection vector 

iv
r

 velocity of point i 

),( txv  elastic transverse deflection of coupler 

ix  position of mass i on coupler 



 xi

αr  angular acceleration vector 

2α  angular acceleration of crank 

3α  angular acceleration of coupler 

x∆  mesh size on x domain 

θ  angle between global and local coordinate frames 

2θ  crank angle measured from the X axis 

3θ  coupler angle measured from the X axis 

ξ  independent variable for position 

ρ  density 

ω  angular velocity 

2ω  angular velocity of crank 

3ω  angular velocity of coupler 

)(
.

 derivative with respect to “t” 

 

 



 1

CHAPTER 1 

 

INTRODUCTION 

 

Dynamic analysis of flexible mechanisms is one of the significant problems in 

engineering research areas. By developments in robot technologies, utilization of 

various mechanisms in many fields of industry is increased. Most of mechanisms are 

designed to minimize the vibrations and maximize the stiffness of the mechanism 

components; however this design purposes make the mechanisms heavy. The usage of 

high weighted mechanisms is not convenient in many fields of engineering and 

industrial applications.  

The weight of the components of robot manipulators, mechanisms and machines 

is one of the important design restrictions. Furthermore, high operation speeds, good 

efficiency, low manufacturing costs and so forth, are other design criteria that engineers 

take into account in modern machinery. The quest for these design features requires to 

use low weighted and slender components for various mechanisms, robot manipulators 

and machines. Namely, reducing the weight of the mechanisms is necessary for 

increasing accurate performance, having superior efficiency and decreasing energy 

consumption in modern machinery. 

On the other hand, there are disadvantages that appear on the light weighted and 

high operated systems. Because of the high operation speeds and the slenderness of the 

components of mechanisms, elastic oscillations may occur. It is clear that, due to these 

elastic oscillations, classical rigid body model gives ineffective solutions in dynamic 

analysis of the components of mechanisms. So, these components must be thought as 

flexible and a new model that takes into account this flexibility feature must be used in 

modelling and analyzing flexible mechanisms. 

Mechanisms with high operation speeds and light weighted, slender components 

are considered as flexible multibody systems. Planar mechanisms, like slider-crank 

mechanisms and four-bar mechanisms which serve as a model of flexible multibody 

systems are widely used in industry. 
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Along with technological developments, many researchers have been 

investigated modeling, dynamic analysis and control of flexible mechanisms since 

1970s. 

Different types of approaches to derive the mathematical model and equations of 

motion of flexible mechanisms are used by the researchers. Beside, different solution 

techniques for derived equations of motion are investigated. The significant examples of 

those studies are summarized to clarify the main theme of the flexible mechanism 

investigations. 

Vibration and stress analysis of a slider-crank mechanism with rigid crank and 

flexible coupler is given. A lumped parameter approach is derived to obtain elastic 

deflections of moving linkages. Euler-Bernoulli beam theory is applied to the system to 

obtain equations of motion (Sadler and Sandor 1973). A similar study is done to analyze 

planar four-bar mechanism. Lumped parameter approach is applied to have dynamic 

response of three links of moving mechanism (Sadler and Sandor 1974). Those studies 

are improved to give stress-strain responses together with elastic deflections of linkages 

in a four-bar mechanism (Sadler and Sandor 1975). The bending vibration of an elastic 

connecting rod in a slider-crank mechanism is investigated. Energy methods are used to 

derive the equations of motion. Derived partial differential equations are converted to 

ordinary differential equations by application of Galerkin variational technique and 

dynamic responses of elastic coupler are given (Viscomi and Ayre 1971). Free vibration 

analysis of planar four-bar mechanisms is presented by using finite element method. 

Higher-order beam elements are employed to each flexible link for axial and lateral 

elastic deformations. Dynamical frequencies and dynamical mode shapes taking into 

account gyroscopic effects and dynamical axial loads are obtained (Yu and Xi 2003). 

Vibration control of a four-bar mechanism with a flexible coupler is investigated. The 

fully coupled nonlinear equations of motion are derived using Lagrangian approach 

(Karkoub and Yigit 1999). Dynamical stabilities of slider-crank and four-bar 

mechanisms with flexible coupler are studied. Elastic coupler is considered as Euler-

Bernoulli beam (Turhan 1993). A method for dynamic stability analysis of a closed-

loop flexible mechanism by using modal coordinates is presented (Yang and Park 

1998). Dynamic instability of high-speed flexible four-bar mechanisms is investigated. 

Equations of motion for global system are formulated using Lagrange equations and 

finite element method is employed to model each unconstrained flexible links (Yu and 

Cleghorn 2002). An expression for the equations of motion of flexible multibody 
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systems with rigid and flexible components are developed using Lagrangian approach 

(Fanghella et al. 2003). Time dependent boundary effect on the dynamic responses of 

the flexible connecting rod of a slider-crank mechanism is studied (Fung 1997). 

Furthermore, dynamical behavior of a damped flexible connecting rod with the effects 

of rigid crank length is investigated (Chen and Chian 2001). Kinematics and kinetics of 

mechanisms are given (Söylemez 1999). Rigid and flexible multibody motions and 

mechanics of deformable bodies are introduced (Shabana 2005). Dynamics of flexible 

multibody systems are given. (de Jalon and Bayo 1993). 

Flexible mechanisms have been subjected to various investigations ever since 

the first studies were given in 1970s. However, to our best knowledge, if the wide usage 

of flexible mechanisms in modern industry is taken into account, it is seen that there is 

not enough study and application on this issue. Therefore, in this study, dynamic 

behavior of flexible linkages in slider-crank mechanisms is investigated. Elastic 

deflections of the flexible links are determined and the effects of various parameters on 

the dynamic behavior are discussed. Euler-Bernoulli beam theory is used to derive the 

equations of motion and Finite Difference schemes are applied to non-linear partial 

differential equations of motion.  

In Chapter 2, rigid and flexible body motions are introduced briefly. Kinematic 

and kinetic analyses of planar slider-crank mechanism are given for both rigid 

mechanism and mechanism with flexible coupler. Finite Difference Method for elastic 

deflections is presented. Applications and numerical examples for slider-crank 

mechanisms having flexible coupler are given in Chapter 3. Lastly, conclusions are 

given in Chapter 4. 
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CHAPTER 2 

 

ANALYSIS OF PLANAR MECHANISMS 

 

2.1. Rigid Slider-Crank Mechanism 

 

2.1.1. Rigid Body Motion 

 

The configuration of a point on a rigid body can be expressed through local and 

fixed coordinate systems. As the position and orientation of the fixed coordinate system 

never change with time, local coordinate system whose origin is attached to the body 

moves with the rigid body. In Figure 2.1, an arbitrary point i on a rigid body is shown 

and the position of the point in terms of fixed coordinate system can be written as 

follows (Shabana 2005): 

 

ii s rr
rrr

+=      (2.1) 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. References of a rigid body 

 

Furthermore, in terms of local coordinate system which attached to the rigid 

body, point i can be expressed as follows, where i
r

 and j
r

 are the unit vectors belong to 

local coordinate system: 

ri 

yi 

si 

zi 

r xi 

Z 

Y 

X  
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ji
rrr

yixii s ss +=      (2.2) 

 

To obtain the velocity expressions of point i, it is required to derivate the 

position equations with respect to time. It is obvious that sxi and syi are constant. 

 

i
i sr

dt

rd &r&r
r

r +==iv     (2.3) 

 

Differentiation of the vector is
r

 is found by considering the time derivatives of 

unit vectors i
r

 and j
r

 which are given as j
r

&&r

3i θ=  and i
r

&&r

3j θ−=  , respectively. 

 

ij
dt

jd

dt

id r
&

r
&

rr

&r θθ yixiyixii sss ss −=+=    (2.4) 

 

where θ is rotation angle of the local coordinate system. 

An angular velocity of rigid body is introduced as the time derivative of angle θ: 

 

k
r

&
r θω =      (2.5) 

 

Equation 2.4 can be written as: 

 

is
rr&r ×= ωis      (2.6) 

 

Substituting Equation 2.6 to Equation 2.3, velocity expression for point i in 

terms of fixed coordinate system is obtained as: 

 

iii srv
rr&rr ×+= ω      (2.7) 

 

Furthermore, acceleration expressions which consist of coordinates and their 

time derivatives can be obtained by differentiation with respect to time: 
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iiii ssra &rrr&r&&rr ×+×+= ωω     (2.8) 

 

An angular acceleration is defined as second derivative of angle θ: 

 

k
r

&&
r θα =      (2.9) 

 

And Equation 2.8 can be rewritten as: 

 

iiii ssra
rrrrr&&rr ××+×+= ωωα     (2.10) 

 

2.1.2. Kinematics of Rigid Slider-Crank Mechanism 

 

Position, velocity and acceleration expressions of a rigid slider-crank mechanism 

are given in this section. In Figure 2.2, a sample mechanism with the names of the 

components is shown. 

 

 

 

 

 

 

 

 

 

Figure 2.2. Slider-crank mechanism 

 

When the crank angle θ2 is taken as input of the system, a vector loop equation 

can be written as follows (Söylemez 1999): 

 

432 sLL
rrr

=+      (2.11) 

 

coupler crank 
L₂ θ₃ 

θ₂ 

L₃ 

s₄ 

A
o 

B O 
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It should be noted that the vector s4 varies with the position of the slider, 

therefore the magnitude of the vector s4 is unknown. Equation 2.11 can be written 

considering the magnitudes and directions of vectors as: 

 

isjLiLjLiL
rrrrr

433332222 sincossincos =+++ θθθθ   (2.11) 

 

Equation 2.11 can be resolved into horizontal and vertical components as: 

 

43322 coscos sLL =+ θθ     (2.12) 

 

0sinsin 3322 =+ θθ LL     (2.13) 

 

Considering the input crank angle θ2 is known, the unknown angle θ3 belong the 

position analysis of slider-crank mechanism can be obtained as: 

 









−= 2

3

2
3 sinsin θθ

L

L
Arc     (2.14) 

 

It should be noted that, Equation 2.12 gives the position of the slider with 

respect to global coordinate system. 

In order to make velocity analysis, differentiations with respect to time of the 

loop closure equation for horizontal and vertical components should be written: 

 

4333222 sinsin sLL &=−− θωθω    (2.15) 

 

0sincos 333222 =+ θωθω LL     (2.16) 

 

where the angular velocities ω2 and ω3 are: 

 

dt

d 2
22

θθω == &
     (2.17) 
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and 

 

dt

d 3
33

θθω == &
     (2.18) 

 

Angular velocity of the crank is known and by arranging Equations 2.15 and 

2.16, unknown parameters for velocity analysis are found as: 

 

2
33

22
3 cos

cos ω
θ
θω

L

L−=     (2.19) 

 

and velocity of the slider with respect to point O is: 

 

2
3

32
24 )cos(

)sin( ω
θ

θθ −= Ls&     (2.20) 

 

Lastly, time derivatives of the velocity loop equation are taken to obtain 

acceleration loop equations: 

 

43
2

333332
2

22222 cossincossin sLLLL &&=−−−− θωθαθωθα   (2.21) 

 

0sincossincos 3
2

333332
2

22222 =−+− θωθαθωθα LLLL   (2.22) 

 

where the angular accelerations are defined as time derivatives of the angular velocities: 

 

dt

d 2
22

ωωα == &     (2.23) 

and 

dt

d 3
33

ωωα == &     (2.24) 

 

Equations 2.21 and 2.22 are two equations with two unknowns, which are 3α  

and 4s&& . By solving the aforementioned unknowns the following equations are obtained: 
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( )
33

3
2

332222
2

22
3 cos

sincossin
θ

θωθαθωα
L

LLL +−=   (2.25) 

 

and 

 

3
2

333332
2

222224 cossincossin θωθαθωθα LLLLs −−−−=&&   (2.26) 

 

2.1.3. Kinetics of Rigid Slider-Crank Mechanism 

 

Kinetic analysis of rigid slider-crank mechanism based on lumped mass 

approach requires to obtain the joint forces due to the inertia forces acting on the mass 

centers of the linkages. 

Inertial force acting on a rigid body can be written by D’Alembert principle as: 

 

G
i amF

rr
−=

     
(2.27) 

 

where the vector Ga
r

is the acceleration expression for center of gravity of the linkage. 

In a slider-crank mechanism, accelerations of the mass centers of the crank and 

coupler can be written by using kinematic relationships of crank and couplers as follows 

(Söylemez 1999): 

 

2222
2

22G2x singcosa θαθω −−= g
   

(2.28) 

 

2222
2

22G2y cosgsina θαθω +−= g
   

(2.29) 

 

3333
2

332222
2

22G3x singcossinLcosLa θαθωθαθω −−−−= g
 

(2.30) 

 

3333
2

332222
2

22G3y cosgsincosLsinLa θαθωθαθω +−+−= g
 

(2.31) 

 

In Equations 2.28 to 2.31, g2 and g3 represent the relative positions of crank and 

coupler, respectively. 
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2.2. Flexible Slider-Crank Mechanism 

 

2.2.1. Flexible Body Motion 

 

According to rigid body assumption, it is considered that a body consists of a 

great number of particles. So, kinematic and kinetic analyses perform due to this fact. 

The distance between two points in a rigid body is assumed constant during the motion 

and a coordinate system whose origin fixed to the rigid body is adequate to define the 

position of any arbitrary point on the rigid body. A global and a local coordinate system 

which define the position and orientation of the body are simply enough to specify all of 

the points of the body during the motion. 

However, when flexible body motion is taken into account, it is not accurate to 

approve the invariability of the distance between two points on a body. Due to the 

elastic oscillations, the positions of the points will be changed and elastic deflections 

will be in question during the motion. The position of an arbitrary point on the flexible 

body is shown in Figure 2.3. The vector r
r

 defines the position of the origin of the local 

coordinate frame in terms of the global coordinate frame and the constant vector is
r

 

defines the position of the point i before the elastic deflection. Lastly, an elastic 

deflection vector iu
r

 is defined to give the accurate position of the point i. (Shabana 

2005) 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. References of a flexible body 
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The final position of the point i on a flexible body with respect to global 

coordinate system is defined as the vector ir
r

 and it is written as follows: 

 

iii usrr
rrrr ++=      (2.32) 

 

The vector is
r

 which specifies the undeformed position of point i is constant with 

respect to local coordinate system during the motion; however the vector iu
r

 which 

defines the elastic deflection of the point i varies with time and space. As a result of this 

property, the equations of motion appear as partial differential equations depending on 

time and space. 

Consequently, infinite numbers of local coordinate systems are required to give 

analytical solutions to flexible body motion. So, numerical methods like finite element 

method and finite difference method are used to achieve difficulties of solutions. 

The components of undeformed position vectoris
r

 and elastic deflection vector 

iu
r

 can be expressed as: 

 

jsiss yixii

rrr +=      (2.33) 

 

juiuu yixii

rrr +=     (2.34) 

 

It is obvious that while the components of undeformed position vector are 

constant during the motion with respect to local coordinate frame, the components of 

elastic deflection vector varies with time and space. To obtain the velocity expressions, 

derivations of position vectors are given below: 

 

isjs
dt

jd
s

dt

id
ss yixiyixii

r
&

r
&

rr

&r θθ −=+=    (2.35) 

 

juiuiujuju
dt

jd
uiu

dt

id
uu yiyixixiyiyixixii

r
&

r
&

r
&

r
&

r
&

r
r

&

r

&r +−+=+++= θθ   (2.36) 
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Time derivatives of is
r

 and iu
r

 can be rewritten as: 

 

ii ss
rr&r ×= ω      (2.37) 

 

juiuuu yixiii

r
&

r
&

rr&r ++×= ω     (2.38) 

 

where ωr  is the angular velocity vector: 

 

k
r

&
r θω =      (2.39) 

 

Finally, velocity expression for an arbitrary point i on a flexible body with 

respect to global coordinate system is given as: 

 

juiuusrv yixiiii

r
&

r
&

rrr&rr +++×+= )(ω    (2.40) 

 

Acceleration vector in terms of global coordinate system for an arbitrary point i 

on a flexible body can be obtained by differentiating velocity expression with respect to 

time (Shabana 2005): 

 

juiujuiuususra yixiyixiiiiii

r
&&

r
&&

r
&

r
&

rrrrrrrr&&rr +++×++×++××+= )(2)())(( ωαωω  (2.41) 

 

where the angular acceleration is introduced as: 

 

k
r

&&
r θα =      (2.42) 

 

First term of the acceleration vector is acceleration of the origin of body-fixed 

coordinate frame with respect to global coordinate frame. Second and third terms are 

normal and tangential components of the acceleration vector of undeformed 

configuration of any point on flexible body with respect to body-fixed coordinate frame. 

Finally, last three terms are normal and tangential components of the acceleration vector 

of any arbitrary point on the flexible body which appear due to the elastic deflection 
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vector. First three terms of Equation 2.41 are similar with rigid body acceleration terms 

while last three terms defines the acceleration that comes from elastic deflection.  

 

2.2.2. Kinematics of Flexible Slider-Crank Mechanism 

 

Slider-crank mechanisms have been used in machinery systems since the early 

times. In modern machinery, slider-crank mechanisms are often used in many fields of 

engineering. A mechanism shown in Figure 2.2 is investigated in this study by flexible 

body motion. 

In this subsection, kinematic analysis of a slider-crank mechanism is given. The 

connecting rod of the mechanism is considered as flexible, however the crank is 

assumed rigid. It can be said that, due to the short length of the crank compared to the 

coupler, rigid assumption will give effective and convincing solutions. Longitudinal 

elastic displacement of flexible coupler is neglected compared to the elastic deflections. 

Global and local coordinate systems of slider-crank mechanism are shown in 

Figure 2.4. Global coordinate system is fixed to the origin of the rigid crank, while the 

origin of the local coordinate system is attached to the connecting point of the crank and 

couplers. The vectors i
r

 and j
r

 are the unit vectors of this local coordinate system. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Deformed and undeformed configurations of slider-crank mechanism 

 

Deformed and undeformed configurations of coupler are shown in the Figure 

2.4. An elastic deformation function v(x,t) is introduced which depends on space and 

mechanism configuration that varies with time. As longitudinal displacements are 
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neglected, function v(x,t) which depend on space and time represent a deformation 

vector on y direction in terms of local coordinate system. 

Position vector of an arbitrary point i on the flexible coupler is represented by 

the vectorir
r

.  

 

jtxvXYixYXr iii

rrr
)),(sincos()sincos( 3333 +−+++= θθθθ  (2.43.a) 

 

where X and Y are components of crank vector and written as: 

 

22 cosθLX =      (2.43.b) 

 

22 sinθLY =      (2.43.c) 

 

In above equation, L2 is the length of crank, xi is the relative position of point i 

before deformation, measured from the origin of the local coordinate system, θ2 and θ3 

are the position angles of crank and couplers, respectively. 

Noting that the derivations of i
r

 and j
r

 are j
r

&&r

3i θ=  and i
r

&&r

3j θ−= , the velocity 

vector of arbitrary point i can be obtained by derivation of Equation 2.43 with respect to 

time: 
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Finally, time derivation of velocity vector is given below as the acceleration 

expression of an arbitrary point on deformable coupler in slider-crank mechanism. 

 

jtxvtxvxLL

LLitxvtxvx

LLLLa

iii

iii

i

r
&&&&&&&&

&&&
r

&&&&&

&&&&&&r

)),(),(cossincoscos

sincossinsin()),(),(2

sinsinsincoscoscoscossin(

2
3332

2
223222

32
2

22322233
2

3

32
2

22322232
2

223222

θθθθθθθθ

θθθθθθθθθ

θθθθθθθθθθθθ

−++−+

++−−−

−+−−=

 

(2.45) 

 



 15

For the constant angular velocity of the crank, longitudinal and transverse 

components of acceleration vectors become: 

 

),(),(2sinsincoscos 33
2

332
2

2232
2

22 txvtxvxLLa iiixi θθθθθθθθθ &&&&&&&r −−−−−=  (2.46) 
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3332

2
2232

2
22 txvtxvxLLa iiiyi θθθθθθθθ &&&&&&&r −++−=

 
(2.47) 

 

Because of the rigid body assumption for crank, the relation between the crank 

angle θ2 and the coupler angle θ3 can be written by using the geometrical properties as 

follows: 

 

)sinarcsin( 2
3

2
3 θθ

L

L−=
    

(2.48) 

 

It should be noted that, both angles θ2 and θ3 are depend on moving mechanism 

configuration that varies with time. 

Consequently, the acceleration vectors in x and y direction which will be 

mentioned in derivation of equations of motion leads to inertia forces. 

 

2.2.3. Kinetics of Flexible Slider-Crank Mechanism 

 

Kinetic analysis of slider-crank mechanism with flexible coupler is given in this 

section. In Figure 2.5, the forces acting on the coupler are shown. 

The forces Fx
23 and Fy

23 are x and y components of the joint forces exerted on 

coupler 3 by the rigid crank 2. Similarly, the forces Fx
43 and Fy

43 are x and y 

components of the joint forces at point B. 

D’Alembert forces acting on an arbitrary point i in x and y directions which are 

also shown in Figure 2.5 constitute the inertia forces. These forces associated with 

acceleration expressions in x and y directions are written as follows: 
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Figure 2.5. Forces acting on flexible coupler 
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(2.50) 

 

The mass on point ion coupler can be considered as a differential mass; thus, 

D’Alembert forces can be taken into account as distributed parameter system. 

Force equilibrium in longitudinal and transverse directions and moment 

equilibrium about origin of the local coordinate system are written to obtain joint forces 

in terms of inertia forces: 
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where ρ is mass per unit length and A is cross-sectional area of the coupler. By, 

arranging these equations, transverse reaction forces can easily be found as: 

 

∫ ∫+−=
3 3

0 033

43 ),(),(
1
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yyy dxtxaAFF ρ
   

(2.55) 

 

To obtain the longitudinal joint forces Fx
23 and Fx

43, it is necessary to consider 

the condition of the piston denoted by capital B shown in Figure 2.6. The forces FX
43 

and FY
43 which are written in terms of global coordinate system are components of joint 

force at point B. These forces are shown in Figure 2.6 clearly. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Joint forces at the end point of coupler 
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Equation 2.56 can be written separately as: 
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3
43

3
4343 cossin θθ YXy FFF +−=

   
(2.57.b) 

 

The relation between these joint forces are arranged to give longitudinal 

components which are determined as: 

 

3
43

3
4343 csccot θθ Xyx FFF +=

    
(2.58) 

 

where FX
43 can be found from dynamic equilibrium condition of slider: 

 

)sincoscos( 3333
2

332
2

224
43 θθθθθω &&& LLLMFX ++−=

   
(2.59) 

 

Similar to Equation 2.55: 
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(2.60) 

 

These reaction forces are effect to response of flexible coupler by bending 

moment expression which will be introduced in next section. 

 

2.3. Derivation of Equations of Motion 

 

Derivation of equations of motion for a slider-crank mechanism with flexible 

coupler is given in this section. Flexible link is assumed as a pin jointed beam under the 

effect of harmonic transverse loading. 

 

2.3.1. Distributed Parameter Method 

 

Dynamic response, namely elastic deflections of beam is obtained by applying 

Euler-Bernoulli beam theory. Small deflection assumption is made to use the linear and 

continuous form of the elastic curve equation given as: 
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(2.61) 

 

where E is modulus of elasticity and I is second moment of area of the cross-section of 

the beam.  

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Free body diagram of the left part of the coupler 

 

A new independent variable ξ which is shown in Figure 2.7 is introduced to 

obtain the integral summation of inertia forces denoted by Dxi and Dyi over the x 

domain. Taking the moment about point C, the following expression can be written for 

bending moment: 
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(2.62) 

 

Equations 2.61 and 2.62, constitute the equation of motion of the coupler. It is 

noted that, the forces Fy
23 and Fx

23 should be substituted into the equation of motion to 

express it explicitly. The boundary conditions which should be satisfied for a pin jointed 

beam are given as: 
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0),0( =tv
     

(2.63) 

 

and 

 

0),( 3 =tLv
     

(2.64) 

 

However, integro-differential equation that explained above cannot be solved by 

the analytical techniques because of the complexity of the equation. Therefore, a 

method of lumped parameter is employed to reduce the system to a more convenient 

form of set of differential equations (Sadler and Sandor 1973). 

 

2.3.2. Lumped Parameter Method 

 

Lumped parameter method can be used in vibration analysis to obtain the natural 

frequencies and to determine the vibration responses when the analytical solutions are 

not available. By using this method, the results having desired accuracy can be 

obtained. 

In this study, lumped parameter method gives a set of differential equations 

instead of a single equation contains integral and differential terms by considering 

lumped masses instead of distributed one. A finite number of equally lumped masses 

are considered for flexible coupler. The sum of the lumped masses m3i is equal to the 

total mass M3 of the link 3.  

 

∑
=

=
n

i
imM

1
33      

(2.65) 

 

where i is the mass number and n is the total number of the lumped masses. 

In Figure 2.8, the configuration of lumped masses is shown. No masses are 

located on left and right boundaries of the link, since these points are the boundaries of 

the coupler. Otherwise, lumped masses on the boundaries would be required extra 

computational effort for joint force calculations. 
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Figure 2.8. Lumped masses on flexible coupler 

 

Lumped masses are located on the neutral axis of the beam with the distance 2l, 

in which l is written as: 

 

n

L
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2
3=

      
(2.66) 

 

The relation between relative position of lumped mass xi and the mass distance 

parameter l is written as: 

 

nilixi ,...,1)12( =−=
   

(2.67) 

 

Recalling the transverse displacement function v(x,t), position vector of an 

arbitrary lumped mass after deformation can be written in terms of local coordinate 

system.  
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where X and Y are given by Equations 2.43.b and 2.43.c, respectively. 
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In Equation 2.68, vi(xi,t) represent the transverse displacement function of the i-

th lumped mass. If two times derivation is taken with respect to time, acceleration 

expressions in x and y direction for a lumped mass can be written as: 

 

),(),(2)12(sinsincoscos 33
2

332
2

2232
2

22 txvtxvliLLa iiiixi θθθθθθθθθ &&&&&&&r −−−−−−=  (2.69) 
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Longitudinal and transverse inertia force components as D’Alembert forces that 

effect on the each lumped masses are given by the following equations: 
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(2.72) 

 

For determining joint forces exerted on the coupler, it is necessary to write force 

and moment equilibrium conditions for coupler similar with the previous section. 

Instead of integral terms, discrete summations are used for lumped system. Joint forces 

at both ends, shown in Figure 2.5 and 2.6 are given below: 

 

∑∑
==

+−−=
n

i
xiii

n

i
yiy Dtxv

L
lDi

L
F

1313

43 ),(
1

)12(
1

   
(2.73) 

 

∑
=

−−=
n

i
yiyy DFF

1

4323

     
(2.74) 

 

3
43

3
4343 csccot θθ Xyx FFF +=

    
(2.75) 

 

∑
=

−−=
n

i
xixx DFF

1

4323

     
(2.76) 

 

where FX
43 is written as: 
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(2.77) 

 

In order to obtain the right hand side of the Equation 2.61, it is required to 

express the bending moment function along the coupler. Bending moment expression 

can be written as: 
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If joint forces Fy
23 and Fx

23 are substituted into the bending moment expression 

given by Equation 2.78, the equation of motion for the lumped mass becomes: 
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(2.79) 

 

This single equation is derived for only a single lumped mass located on the 

neutral axis of the flexible coupler. A set of equations for all masses on the link can be 

written for i=1,2..n. Equation 2.79 includes nonlinear terms due to the multiplication of 

transverse displacement function by itself or its derivatives. It is not easy to solve this 

nonlinear partial differential equation in this form.  

Finite difference approximation is used for the derivation with respect to x, 

namely the coefficient of EI appeared in Equation 2.79. Therefore, the problem is 

reduced to solution of a set of ordinary differential equations with time derivatives 

which can be solved by any numerical methods. 
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2.4. Finite Difference Method for Dynamic Elastic Deflections 

 

Numerical techniques are widely used to solve the boundary and initial value 

problems which come out in many fields of engineering. Finite difference method is one 

of the numerical techniques which frequently used and give effective and convenient 

solutions for differential equations. (Hildebrand 1987). The applicability of this method 

to complex geometries and the simplicity of solution procedure are the advantages of 

this method over other numerical techniques. 

In Finite Difference Method, either ordinary or partial derivatives are replaced 

with finite difference formulas, so the differential equation which to be solved becomes 

algebraic set of equations that easy to deal with. 

Considering a function v(x, t) depends on two variables x and t, derivation of this 

function with respect to independent variables are replaced by finite difference 

approximations in partial differential equation. Hence, domain of the function is divided 

into sub-domains which constitute the meshes of the function. Mesh size can be uniform 

as well as nonuniform. Differential equation is enforced only at this mesh points and in 

our problem, it corresponds to points that lumped masses located. Thus, discrete values 

of function v(x,t) is obtained. Discretization of space and time domain of a function is 

shown in Figure 2.9 with mesh points xi and tj. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Discretization of functions with two variables. 
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To deal with our problem, the second derivative of v(x,t) with respect to x is 

replaced with second order central difference formula. By writing Taylor series 

expansion of v(x,t), about point xi-1: 
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Although, first three terms of the Taylor series expansion is written, it should be 

noted that a truncation error O(∆x2) is exist which will be ignored. If an expansion of 

v(x,t) about point xi+1 is written: 
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First derivative terms written in the expression are eliminate to give second 

derivation finite difference formulation: 
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Equation 2.82 along with boundary conditions given by the Equations 2.63 and 

2.64 are substituted into Equation 2.79, to obtain a set of ordinary differential equations 

depend on time and time derivatives of unknown functions representing the transverse 

displacements of coupler at point xi. The set of equations found using the procedure 

outlined above are written as follows: 
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where M(xi,t) is given by Equation 2.78.  

A symbolic mathematical program based on Equation 2.78 is developed to solve 

the equations of motion to achieve the dynamic responses of the system for the initial 

conditions given below: 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 

 

3.1. Introduction 

 

In this chapter, using the developed program tested by the results available in the 

literature (Sadler and Sandor 1973), dynamic responses for the midpoint of the flexible 

coupler are presented with respect to crank angle for different mechanism properties. 

The parameters that effect the elastic deflections of the flexible links are discussed. 

 

3.2. Verification of Developed Program 

 

Developed program based on the Equation 2.83 is tested by using the results 

given by (Sadler and Sandor 1973). The excellent agreement has been found between 

the present results and the results of the aforementioned study. 

 

3.3. Dynamic Responses of Slider-Crank Mechanism 

 

3.3.1. Dynamic Response of the Example Mechanism 

 

In this subsection, elastic deflection results are given for a slider-crank 

mechanism shown in the Figure 3.1. Numerical values belong the example mechanism 

are also listed below: 

 

L3 = 0.3048 m  Coupler length 

L2 = 0.5 L3  Relation between crank and coupler lengths 

M4 = 0.25 M3  Relation between slider and coupler masses 

E = 6.9 x 1010 N/m2 Modulus of elasticity of coupler 

ρ = 2770 kg/m3 Density 
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b = 0.0254 m  Width of the cross-section of the coupler 

h = 0.00206 m  Height of the cross-section of the coupler 

ω2 = 50 rad/s  Operation speed of the rigid crank 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Mechanism with significant properties 

 

Elastic deflection of the midpoint of coupler versus time plot is given for two 

cycles of the crank in Figure 3.2. It is clear that, if the horizontal axis of the plot is 

changed to crank angle, the same graph is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Elastic deflections of the midpoint of coupler 
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3.3.2. Effects of the Link Masses on Dynamic Responses 

 

Link masses are one of the design parameters that should be interested. While 

obtaining the dynamic response of the flexible coupler, masses of slider and coupler are 

effective on result. To see this effect, considering the mass of the coupler as in the 

example mechanism, three selected slider mass depending on the mass ratios between 

the coupler and slider are given as: 
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Other parameters are selected as the same with the example mechanism. The 

results of three different cases for two cycles of crank rotation are given in Figure 3.3 

together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Elastic deflections for various mass properties 

 

It can be seen from Figure 3.3 that mass of the slider does not affect the 

deflection of the coupler excessively. 

 

 

0.05 0.1 0.15 0.2 0.25
t

-0.004

-0.002

0.002

0.004

v3HtL

M4êM3=0.50
M4êM3=0.25
M4êM3=0.10



 30

3.3.3. Effects of the Operation Speeds on Dynamic Responses 

 

It is obvious that operation speeds have a significant role on elastic behaviors of 

flexible linkages. High operation speeds generates high deflections on the coupler. It 

can be seen by considering different rotation speeds for crank as, ω2=40 rad/s, ω2=50 

rad/s, ω2=60 rad/s. 

Dynamic displacement of midpoint of the coupler for M4/M3=0.10 is plotted for 

two cycles of crank rotation in Figure 3.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Effects of operation speed on elastic behavior for mass ratio 0.10 

 

It can be seen from Figure 3.4 that the absolute values of the elastic deflections 

of the coupler increase, when the angular velocity of crank increases. Therefore, it is 

necessary to choose lower speed values if it is feasible in mechanism systems. However, 

high-operated systems are indispensable mostly in modern machinery. So, it is essential 

to investigate the effects of operation speed on dynamic response with other parameters. 

To examine the effect of crank rotation on the elastic deflection of coupler, the 

different mass ratios for between the coupler and slider can be chosen. 

Dynamic displacement of midpoint of the coupler for M4/M3=0.25 and 

M4/M3=0.50 are plotted for two cycles of crank rotation in Figures 3.5 and 3.6, 

respectively. 

0.05 0.1 0.15 0.2
t

-0.006

-0.004

-0.002

0.002

0.004

0.006

v3HtL

w2=60radês
w2=50radês
w2=40radês



 31

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Effects of operation speed on elastic behavior for mass ratio 0.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Effects of operation speed on elastic behavior for mass ratio 0.50 

 

It can be seen from Figures 3.5 and 3.6 that the same tendency in the Figure 3.4 

is observed. 

It can also be seen that from the Figures 3.4, 3.5, and 3.6 that the two cycles of 
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3.3.4. Effects of the Crank Length on Dynamic Responses 

 

To see the effects of the length ratio between the crank and coupler on the 

dynamic response; while the length of the coupler L3 is taken as in the example 

mechanism, three different length ratios given below are selected: 
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In addition to the selection of different length ratios, three different operation 

speeds are also chosen to obtain their effects on dynamic response. 

Dynamic displacement of midpoint of the coupler having the mass ratio 

M4/M3=0.1 for ω2=40 rad/s, ω2=50 rad/s, ω2=60 rad/s are plotted for two cycles of 

crank rotation in Figures 3.7, 3.8, and 3.9, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Effect of crank length for ω2=40 rad/s and mass ratio 0.10 

 

It can be seen from Figure 3.7 that the absolute values of the elastic deflections 

of the coupler increase, when the length ratio between the crank and coupler increases. 

Therefore, it is necessary to choose short crank length values if it is feasible in 

mechanism systems. 
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Figure 3.8. Effect of crank length for ω2=50 rad/s and mass ratio 0.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Effect of crank length for ω2=60 rad/s and mass ratio 0.10 

 

It can be seen from Figures 3.8 and 3.9 that the same tendency in the Figure 3.7 

is observed. 

Effects of the operation speeds on dynamic responses obtained and discussed in 

Section 3.3.3 can also be seen from the Figures 3.7, 3.8, and 3.9 that when the operation 

speed increase, the absolute values of the elastic deflections of the coupler increase. 
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Additionally, dynamic displacement of midpoint of the coupler having the mass 

ratio M4/M3=0.25 for ω2=40 rad/s, ω2=50 rad/s, ω2=60 rad/s are plotted for two cycles 

of crank rotation in Figures 3.10, 3.11, and 3.12, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Effect of crank length for ω2=40 rad/s and mass ratio 0.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Effect of crank length for ω2=50 rad/s and mass ratio 0.25 

 

It can be seen from Figures 3.10, 3.11, and 3.12 that the elastic deflections of the 

coupler have different plots depending on the selected parameters. 
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Figure 3.12. Effect of crank length for ω2=60 rad/s and mass ratio 0.25 

 

Furthermore, dynamic displacement of midpoint of the coupler having the mass 

ratio M4/M3=0.50 for ω2=40 rad/s, ω2=50 rad/s, ω2=60 rad/s are plotted for two cycles 

of crank rotation in Figures 3.13, 3.14, and 3.15, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Effect of crank length for ω2=40 rad/s and mass ratio 0.50 
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Figure 3.14. Effect of crank length for ω2=50 rad/s and mass ratio 0.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Effect of crank length for ω2=60 rad/s and mass ratio 0.50 

 

Similar to Figures 3.10, 3.11, and 3.12, Figures 3.13, 3.14, and 3.15 show that 

the elastic deflections of the coupler have different plots depending on the selected 

parameters. 
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CHAPTER 4 

 

CONCLUSIONS 

 

This study presents a solution procedure for the dynamic response of elastic 

linkages in mechanisms by using lumped parameter method. Slider-crank mechanism is 

chosen for this analysis since it is widely used in many industrial areas. Crank is 

assumed as rigid and the coupler is considered as flexible. This approach gives efficient 

solutions when it is compared to other studies available in the literature. 

The applications of this mechanism with different design parameters are 

presented. The effects of these parameters such as crank length ratio, mass ratio, and 

operation speed on elastic behaviors of the mechanism are examined. The results and 

discussions are given in previous chapter. 
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